1 /* 2 * Definitions for the 'struct sk_buff' memory handlers. 3 * 4 * Authors: 5 * Alan Cox, <[email protected]> 6 * Florian La Roche, <[email protected]> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14 #ifndef _LINUX_SKBUFF_H 15 #define _LINUX_SKBUFF_H 16 17 #include <linux/kernel.h> 18 #include <linux/kmemcheck.h> 19 #include <linux/compiler.h> 20 #include <linux/time.h> 21 #include <linux/bug.h> 22 #include <linux/cache.h> 23 24 #include <linux/atomic.h> 25 #include <asm/types.h> 26 #include <linux/spinlock.h> 27 #include <linux/net.h> 28 #include <linux/textsearch.h> 29 #include <net/checksum.h> 30 #include <linux/rcupdate.h> 31 #include <linux/dmaengine.h> 32 #include <linux/hrtimer.h> 33 #include <linux/dma-mapping.h> 34 #include <linux/netdev_features.h> 35 #include <net/flow_keys.h> 36 37 /* Don't change this without changing skb_csum_unnecessary! */ 38 #define CHECKSUM_NONE 0 39 #define CHECKSUM_UNNECESSARY 1 40 #define CHECKSUM_COMPLETE 2 41 #define CHECKSUM_PARTIAL 3 42 43 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \ 44 ~(SMP_CACHE_BYTES - 1)) 45 #define SKB_WITH_OVERHEAD(X) \ 46 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 47 #define SKB_MAX_ORDER(X, ORDER) \ 48 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 49 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 50 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 51 52 /* return minimum truesize of one skb containing X bytes of data */ 53 #define SKB_TRUESIZE(X) ((X) + \ 54 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ 55 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 56 57 /* A. Checksumming of received packets by device. 58 * 59 * NONE: device failed to checksum this packet. 60 * skb->csum is undefined. 61 * 62 * UNNECESSARY: device parsed packet and wouldbe verified checksum. 63 * skb->csum is undefined. 64 * It is bad option, but, unfortunately, many of vendors do this. 65 * Apparently with secret goal to sell you new device, when you 66 * will add new protocol to your host. F.e. IPv6. 8) 67 * 68 * COMPLETE: the most generic way. Device supplied checksum of _all_ 69 * the packet as seen by netif_rx in skb->csum. 70 * NOTE: Even if device supports only some protocols, but 71 * is able to produce some skb->csum, it MUST use COMPLETE, 72 * not UNNECESSARY. 73 * 74 * PARTIAL: identical to the case for output below. This may occur 75 * on a packet received directly from another Linux OS, e.g., 76 * a virtualised Linux kernel on the same host. The packet can 77 * be treated in the same way as UNNECESSARY except that on 78 * output (i.e., forwarding) the checksum must be filled in 79 * by the OS or the hardware. 80 * 81 * B. Checksumming on output. 82 * 83 * NONE: skb is checksummed by protocol or csum is not required. 84 * 85 * PARTIAL: device is required to csum packet as seen by hard_start_xmit 86 * from skb->csum_start to the end and to record the checksum 87 * at skb->csum_start + skb->csum_offset. 88 * 89 * Device must show its capabilities in dev->features, set 90 * at device setup time. 91 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum 92 * everything. 93 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only 94 * TCP/UDP over IPv4. Sigh. Vendors like this 95 * way by an unknown reason. Though, see comment above 96 * about CHECKSUM_UNNECESSARY. 8) 97 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead. 98 * 99 * UNNECESSARY: device will do per protocol specific csum. Protocol drivers 100 * that do not want net to perform the checksum calculation should use 101 * this flag in their outgoing skbs. 102 * NETIF_F_FCOE_CRC this indicates the device can do FCoE FC CRC 103 * offload. Correspondingly, the FCoE protocol driver 104 * stack should use CHECKSUM_UNNECESSARY. 105 * 106 * Any questions? No questions, good. --ANK 107 */ 108 109 struct net_device; 110 struct scatterlist; 111 struct pipe_inode_info; 112 113 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 114 struct nf_conntrack { 115 atomic_t use; 116 }; 117 #endif 118 119 #ifdef CONFIG_BRIDGE_NETFILTER 120 struct nf_bridge_info { 121 atomic_t use; 122 unsigned int mask; 123 struct net_device *physindev; 124 struct net_device *physoutdev; 125 unsigned long data[32 / sizeof(unsigned long)]; 126 }; 127 #endif 128 129 struct sk_buff_head { 130 /* These two members must be first. */ 131 struct sk_buff *next; 132 struct sk_buff *prev; 133 134 __u32 qlen; 135 spinlock_t lock; 136 }; 137 138 struct sk_buff; 139 140 /* To allow 64K frame to be packed as single skb without frag_list we 141 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for 142 * buffers which do not start on a page boundary. 143 * 144 * Since GRO uses frags we allocate at least 16 regardless of page 145 * size. 146 */ 147 #if (65536/PAGE_SIZE + 1) < 16 148 #define MAX_SKB_FRAGS 16UL 149 #else 150 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1) 151 #endif 152 153 typedef struct skb_frag_struct skb_frag_t; 154 155 struct skb_frag_struct { 156 struct { 157 struct page *p; 158 } page; 159 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536) 160 __u32 page_offset; 161 __u32 size; 162 #else 163 __u16 page_offset; 164 __u16 size; 165 #endif 166 }; 167 168 static inline unsigned int skb_frag_size(const skb_frag_t *frag) 169 { 170 return frag->size; 171 } 172 173 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) 174 { 175 frag->size = size; 176 } 177 178 static inline void skb_frag_size_add(skb_frag_t *frag, int delta) 179 { 180 frag->size += delta; 181 } 182 183 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) 184 { 185 frag->size -= delta; 186 } 187 188 #define HAVE_HW_TIME_STAMP 189 190 /** 191 * struct skb_shared_hwtstamps - hardware time stamps 192 * @hwtstamp: hardware time stamp transformed into duration 193 * since arbitrary point in time 194 * @syststamp: hwtstamp transformed to system time base 195 * 196 * Software time stamps generated by ktime_get_real() are stored in 197 * skb->tstamp. The relation between the different kinds of time 198 * stamps is as follows: 199 * 200 * syststamp and tstamp can be compared against each other in 201 * arbitrary combinations. The accuracy of a 202 * syststamp/tstamp/"syststamp from other device" comparison is 203 * limited by the accuracy of the transformation into system time 204 * base. This depends on the device driver and its underlying 205 * hardware. 206 * 207 * hwtstamps can only be compared against other hwtstamps from 208 * the same device. 209 * 210 * This structure is attached to packets as part of the 211 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 212 */ 213 struct skb_shared_hwtstamps { 214 ktime_t hwtstamp; 215 ktime_t syststamp; 216 }; 217 218 /* Definitions for tx_flags in struct skb_shared_info */ 219 enum { 220 /* generate hardware time stamp */ 221 SKBTX_HW_TSTAMP = 1 << 0, 222 223 /* generate software time stamp */ 224 SKBTX_SW_TSTAMP = 1 << 1, 225 226 /* device driver is going to provide hardware time stamp */ 227 SKBTX_IN_PROGRESS = 1 << 2, 228 229 /* device driver supports TX zero-copy buffers */ 230 SKBTX_DEV_ZEROCOPY = 1 << 3, 231 232 /* generate wifi status information (where possible) */ 233 SKBTX_WIFI_STATUS = 1 << 4, 234 235 /* This indicates at least one fragment might be overwritten 236 * (as in vmsplice(), sendfile() ...) 237 * If we need to compute a TX checksum, we'll need to copy 238 * all frags to avoid possible bad checksum 239 */ 240 SKBTX_SHARED_FRAG = 1 << 5, 241 }; 242 243 /* 244 * The callback notifies userspace to release buffers when skb DMA is done in 245 * lower device, the skb last reference should be 0 when calling this. 246 * The zerocopy_success argument is true if zero copy transmit occurred, 247 * false on data copy or out of memory error caused by data copy attempt. 248 * The ctx field is used to track device context. 249 * The desc field is used to track userspace buffer index. 250 */ 251 struct ubuf_info { 252 void (*callback)(struct ubuf_info *, bool zerocopy_success); 253 void *ctx; 254 unsigned long desc; 255 }; 256 257 /* This data is invariant across clones and lives at 258 * the end of the header data, ie. at skb->end. 259 */ 260 struct skb_shared_info { 261 unsigned char nr_frags; 262 __u8 tx_flags; 263 unsigned short gso_size; 264 /* Warning: this field is not always filled in (UFO)! */ 265 unsigned short gso_segs; 266 unsigned short gso_type; 267 struct sk_buff *frag_list; 268 struct skb_shared_hwtstamps hwtstamps; 269 __be32 ip6_frag_id; 270 271 /* 272 * Warning : all fields before dataref are cleared in __alloc_skb() 273 */ 274 atomic_t dataref; 275 276 /* Intermediate layers must ensure that destructor_arg 277 * remains valid until skb destructor */ 278 void * destructor_arg; 279 280 /* must be last field, see pskb_expand_head() */ 281 skb_frag_t frags[MAX_SKB_FRAGS]; 282 }; 283 284 /* We divide dataref into two halves. The higher 16 bits hold references 285 * to the payload part of skb->data. The lower 16 bits hold references to 286 * the entire skb->data. A clone of a headerless skb holds the length of 287 * the header in skb->hdr_len. 288 * 289 * All users must obey the rule that the skb->data reference count must be 290 * greater than or equal to the payload reference count. 291 * 292 * Holding a reference to the payload part means that the user does not 293 * care about modifications to the header part of skb->data. 294 */ 295 #define SKB_DATAREF_SHIFT 16 296 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 297 298 299 enum { 300 SKB_FCLONE_UNAVAILABLE, 301 SKB_FCLONE_ORIG, 302 SKB_FCLONE_CLONE, 303 }; 304 305 enum { 306 SKB_GSO_TCPV4 = 1 << 0, 307 SKB_GSO_UDP = 1 << 1, 308 309 /* This indicates the skb is from an untrusted source. */ 310 SKB_GSO_DODGY = 1 << 2, 311 312 /* This indicates the tcp segment has CWR set. */ 313 SKB_GSO_TCP_ECN = 1 << 3, 314 315 SKB_GSO_TCPV6 = 1 << 4, 316 317 SKB_GSO_FCOE = 1 << 5, 318 319 SKB_GSO_GRE = 1 << 6, 320 321 SKB_GSO_IPIP = 1 << 7, 322 323 SKB_GSO_SIT = 1 << 8, 324 325 SKB_GSO_UDP_TUNNEL = 1 << 9, 326 327 SKB_GSO_MPLS = 1 << 10, 328 }; 329 330 #if BITS_PER_LONG > 32 331 #define NET_SKBUFF_DATA_USES_OFFSET 1 332 #endif 333 334 #ifdef NET_SKBUFF_DATA_USES_OFFSET 335 typedef unsigned int sk_buff_data_t; 336 #else 337 typedef unsigned char *sk_buff_data_t; 338 #endif 339 340 /** 341 * struct sk_buff - socket buffer 342 * @next: Next buffer in list 343 * @prev: Previous buffer in list 344 * @tstamp: Time we arrived 345 * @sk: Socket we are owned by 346 * @dev: Device we arrived on/are leaving by 347 * @cb: Control buffer. Free for use by every layer. Put private vars here 348 * @_skb_refdst: destination entry (with norefcount bit) 349 * @sp: the security path, used for xfrm 350 * @len: Length of actual data 351 * @data_len: Data length 352 * @mac_len: Length of link layer header 353 * @hdr_len: writable header length of cloned skb 354 * @csum: Checksum (must include start/offset pair) 355 * @csum_start: Offset from skb->head where checksumming should start 356 * @csum_offset: Offset from csum_start where checksum should be stored 357 * @priority: Packet queueing priority 358 * @local_df: allow local fragmentation 359 * @cloned: Head may be cloned (check refcnt to be sure) 360 * @ip_summed: Driver fed us an IP checksum 361 * @nohdr: Payload reference only, must not modify header 362 * @nfctinfo: Relationship of this skb to the connection 363 * @pkt_type: Packet class 364 * @fclone: skbuff clone status 365 * @ipvs_property: skbuff is owned by ipvs 366 * @peeked: this packet has been seen already, so stats have been 367 * done for it, don't do them again 368 * @nf_trace: netfilter packet trace flag 369 * @protocol: Packet protocol from driver 370 * @destructor: Destruct function 371 * @nfct: Associated connection, if any 372 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 373 * @skb_iif: ifindex of device we arrived on 374 * @tc_index: Traffic control index 375 * @tc_verd: traffic control verdict 376 * @rxhash: the packet hash computed on receive 377 * @queue_mapping: Queue mapping for multiqueue devices 378 * @ndisc_nodetype: router type (from link layer) 379 * @ooo_okay: allow the mapping of a socket to a queue to be changed 380 * @l4_rxhash: indicate rxhash is a canonical 4-tuple hash over transport 381 * ports. 382 * @wifi_acked_valid: wifi_acked was set 383 * @wifi_acked: whether frame was acked on wifi or not 384 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS 385 * @dma_cookie: a cookie to one of several possible DMA operations 386 * done by skb DMA functions 387 * @napi_id: id of the NAPI struct this skb came from 388 * @secmark: security marking 389 * @mark: Generic packet mark 390 * @dropcount: total number of sk_receive_queue overflows 391 * @vlan_proto: vlan encapsulation protocol 392 * @vlan_tci: vlan tag control information 393 * @inner_protocol: Protocol (encapsulation) 394 * @inner_transport_header: Inner transport layer header (encapsulation) 395 * @inner_network_header: Network layer header (encapsulation) 396 * @inner_mac_header: Link layer header (encapsulation) 397 * @transport_header: Transport layer header 398 * @network_header: Network layer header 399 * @mac_header: Link layer header 400 * @tail: Tail pointer 401 * @end: End pointer 402 * @head: Head of buffer 403 * @data: Data head pointer 404 * @truesize: Buffer size 405 * @users: User count - see {datagram,tcp}.c 406 */ 407 408 struct sk_buff { 409 /* These two members must be first. */ 410 struct sk_buff *next; 411 struct sk_buff *prev; 412 413 ktime_t tstamp; 414 415 struct sock *sk; 416 struct net_device *dev; 417 418 /* 419 * This is the control buffer. It is free to use for every 420 * layer. Please put your private variables there. If you 421 * want to keep them across layers you have to do a skb_clone() 422 * first. This is owned by whoever has the skb queued ATM. 423 */ 424 char cb[48] __aligned(8); 425 426 unsigned long _skb_refdst; 427 #ifdef CONFIG_XFRM 428 struct sec_path *sp; 429 #endif 430 unsigned int len, 431 data_len; 432 __u16 mac_len, 433 hdr_len; 434 union { 435 __wsum csum; 436 struct { 437 __u16 csum_start; 438 __u16 csum_offset; 439 }; 440 }; 441 __u32 priority; 442 kmemcheck_bitfield_begin(flags1); 443 __u8 local_df:1, 444 cloned:1, 445 ip_summed:2, 446 nohdr:1, 447 nfctinfo:3; 448 __u8 pkt_type:3, 449 fclone:2, 450 ipvs_property:1, 451 peeked:1, 452 nf_trace:1; 453 kmemcheck_bitfield_end(flags1); 454 __be16 protocol; 455 456 void (*destructor)(struct sk_buff *skb); 457 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 458 struct nf_conntrack *nfct; 459 #endif 460 #ifdef CONFIG_BRIDGE_NETFILTER 461 struct nf_bridge_info *nf_bridge; 462 #endif 463 464 int skb_iif; 465 466 __u32 rxhash; 467 468 __be16 vlan_proto; 469 __u16 vlan_tci; 470 471 #ifdef CONFIG_NET_SCHED 472 __u16 tc_index; /* traffic control index */ 473 #ifdef CONFIG_NET_CLS_ACT 474 __u16 tc_verd; /* traffic control verdict */ 475 #endif 476 #endif 477 478 __u16 queue_mapping; 479 kmemcheck_bitfield_begin(flags2); 480 #ifdef CONFIG_IPV6_NDISC_NODETYPE 481 __u8 ndisc_nodetype:2; 482 #endif 483 __u8 pfmemalloc:1; 484 __u8 ooo_okay:1; 485 __u8 l4_rxhash:1; 486 __u8 wifi_acked_valid:1; 487 __u8 wifi_acked:1; 488 __u8 no_fcs:1; 489 __u8 head_frag:1; 490 /* Encapsulation protocol and NIC drivers should use 491 * this flag to indicate to each other if the skb contains 492 * encapsulated packet or not and maybe use the inner packet 493 * headers if needed 494 */ 495 __u8 encapsulation:1; 496 /* 6/8 bit hole (depending on ndisc_nodetype presence) */ 497 kmemcheck_bitfield_end(flags2); 498 499 #if defined CONFIG_NET_DMA || defined CONFIG_NET_RX_BUSY_POLL 500 union { 501 unsigned int napi_id; 502 dma_cookie_t dma_cookie; 503 }; 504 #endif 505 #ifdef CONFIG_NETWORK_SECMARK 506 __u32 secmark; 507 #endif 508 union { 509 __u32 mark; 510 __u32 dropcount; 511 __u32 reserved_tailroom; 512 }; 513 514 __be16 inner_protocol; 515 __u16 inner_transport_header; 516 __u16 inner_network_header; 517 __u16 inner_mac_header; 518 __u16 transport_header; 519 __u16 network_header; 520 __u16 mac_header; 521 /* These elements must be at the end, see alloc_skb() for details. */ 522 sk_buff_data_t tail; 523 sk_buff_data_t end; 524 unsigned char *head, 525 *data; 526 unsigned int truesize; 527 atomic_t users; 528 }; 529 530 #ifdef __KERNEL__ 531 /* 532 * Handling routines are only of interest to the kernel 533 */ 534 #include <linux/slab.h> 535 536 537 #define SKB_ALLOC_FCLONE 0x01 538 #define SKB_ALLOC_RX 0x02 539 540 /* Returns true if the skb was allocated from PFMEMALLOC reserves */ 541 static inline bool skb_pfmemalloc(const struct sk_buff *skb) 542 { 543 return unlikely(skb->pfmemalloc); 544 } 545 546 /* 547 * skb might have a dst pointer attached, refcounted or not. 548 * _skb_refdst low order bit is set if refcount was _not_ taken 549 */ 550 #define SKB_DST_NOREF 1UL 551 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 552 553 /** 554 * skb_dst - returns skb dst_entry 555 * @skb: buffer 556 * 557 * Returns skb dst_entry, regardless of reference taken or not. 558 */ 559 static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 560 { 561 /* If refdst was not refcounted, check we still are in a 562 * rcu_read_lock section 563 */ 564 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 565 !rcu_read_lock_held() && 566 !rcu_read_lock_bh_held()); 567 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 568 } 569 570 /** 571 * skb_dst_set - sets skb dst 572 * @skb: buffer 573 * @dst: dst entry 574 * 575 * Sets skb dst, assuming a reference was taken on dst and should 576 * be released by skb_dst_drop() 577 */ 578 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 579 { 580 skb->_skb_refdst = (unsigned long)dst; 581 } 582 583 void __skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst, 584 bool force); 585 586 /** 587 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference 588 * @skb: buffer 589 * @dst: dst entry 590 * 591 * Sets skb dst, assuming a reference was not taken on dst. 592 * If dst entry is cached, we do not take reference and dst_release 593 * will be avoided by refdst_drop. If dst entry is not cached, we take 594 * reference, so that last dst_release can destroy the dst immediately. 595 */ 596 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) 597 { 598 __skb_dst_set_noref(skb, dst, false); 599 } 600 601 /** 602 * skb_dst_set_noref_force - sets skb dst, without taking reference 603 * @skb: buffer 604 * @dst: dst entry 605 * 606 * Sets skb dst, assuming a reference was not taken on dst. 607 * No reference is taken and no dst_release will be called. While for 608 * cached dsts deferred reclaim is a basic feature, for entries that are 609 * not cached it is caller's job to guarantee that last dst_release for 610 * provided dst happens when nobody uses it, eg. after a RCU grace period. 611 */ 612 static inline void skb_dst_set_noref_force(struct sk_buff *skb, 613 struct dst_entry *dst) 614 { 615 __skb_dst_set_noref(skb, dst, true); 616 } 617 618 /** 619 * skb_dst_is_noref - Test if skb dst isn't refcounted 620 * @skb: buffer 621 */ 622 static inline bool skb_dst_is_noref(const struct sk_buff *skb) 623 { 624 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 625 } 626 627 static inline struct rtable *skb_rtable(const struct sk_buff *skb) 628 { 629 return (struct rtable *)skb_dst(skb); 630 } 631 632 void kfree_skb(struct sk_buff *skb); 633 void kfree_skb_list(struct sk_buff *segs); 634 void skb_tx_error(struct sk_buff *skb); 635 void consume_skb(struct sk_buff *skb); 636 void __kfree_skb(struct sk_buff *skb); 637 extern struct kmem_cache *skbuff_head_cache; 638 639 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); 640 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 641 bool *fragstolen, int *delta_truesize); 642 643 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags, 644 int node); 645 struct sk_buff *build_skb(void *data, unsigned int frag_size); 646 static inline struct sk_buff *alloc_skb(unsigned int size, 647 gfp_t priority) 648 { 649 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 650 } 651 652 static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 653 gfp_t priority) 654 { 655 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); 656 } 657 658 struct sk_buff *__alloc_skb_head(gfp_t priority, int node); 659 static inline struct sk_buff *alloc_skb_head(gfp_t priority) 660 { 661 return __alloc_skb_head(priority, -1); 662 } 663 664 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 665 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); 666 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority); 667 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority); 668 struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, gfp_t gfp_mask); 669 670 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask); 671 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 672 unsigned int headroom); 673 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, 674 int newtailroom, gfp_t priority); 675 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, 676 int len); 677 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer); 678 int skb_pad(struct sk_buff *skb, int pad); 679 #define dev_kfree_skb(a) consume_skb(a) 680 681 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 682 int getfrag(void *from, char *to, int offset, 683 int len, int odd, struct sk_buff *skb), 684 void *from, int length); 685 686 struct skb_seq_state { 687 __u32 lower_offset; 688 __u32 upper_offset; 689 __u32 frag_idx; 690 __u32 stepped_offset; 691 struct sk_buff *root_skb; 692 struct sk_buff *cur_skb; 693 __u8 *frag_data; 694 }; 695 696 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 697 unsigned int to, struct skb_seq_state *st); 698 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 699 struct skb_seq_state *st); 700 void skb_abort_seq_read(struct skb_seq_state *st); 701 702 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 703 unsigned int to, struct ts_config *config, 704 struct ts_state *state); 705 706 void __skb_get_rxhash(struct sk_buff *skb); 707 static inline __u32 skb_get_rxhash(struct sk_buff *skb) 708 { 709 if (!skb->l4_rxhash) 710 __skb_get_rxhash(skb); 711 712 return skb->rxhash; 713 } 714 715 #ifdef NET_SKBUFF_DATA_USES_OFFSET 716 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 717 { 718 return skb->head + skb->end; 719 } 720 721 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 722 { 723 return skb->end; 724 } 725 #else 726 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 727 { 728 return skb->end; 729 } 730 731 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 732 { 733 return skb->end - skb->head; 734 } 735 #endif 736 737 /* Internal */ 738 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 739 740 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 741 { 742 return &skb_shinfo(skb)->hwtstamps; 743 } 744 745 /** 746 * skb_queue_empty - check if a queue is empty 747 * @list: queue head 748 * 749 * Returns true if the queue is empty, false otherwise. 750 */ 751 static inline int skb_queue_empty(const struct sk_buff_head *list) 752 { 753 return list->next == (struct sk_buff *)list; 754 } 755 756 /** 757 * skb_queue_is_last - check if skb is the last entry in the queue 758 * @list: queue head 759 * @skb: buffer 760 * 761 * Returns true if @skb is the last buffer on the list. 762 */ 763 static inline bool skb_queue_is_last(const struct sk_buff_head *list, 764 const struct sk_buff *skb) 765 { 766 return skb->next == (struct sk_buff *)list; 767 } 768 769 /** 770 * skb_queue_is_first - check if skb is the first entry in the queue 771 * @list: queue head 772 * @skb: buffer 773 * 774 * Returns true if @skb is the first buffer on the list. 775 */ 776 static inline bool skb_queue_is_first(const struct sk_buff_head *list, 777 const struct sk_buff *skb) 778 { 779 return skb->prev == (struct sk_buff *)list; 780 } 781 782 /** 783 * skb_queue_next - return the next packet in the queue 784 * @list: queue head 785 * @skb: current buffer 786 * 787 * Return the next packet in @list after @skb. It is only valid to 788 * call this if skb_queue_is_last() evaluates to false. 789 */ 790 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 791 const struct sk_buff *skb) 792 { 793 /* This BUG_ON may seem severe, but if we just return then we 794 * are going to dereference garbage. 795 */ 796 BUG_ON(skb_queue_is_last(list, skb)); 797 return skb->next; 798 } 799 800 /** 801 * skb_queue_prev - return the prev packet in the queue 802 * @list: queue head 803 * @skb: current buffer 804 * 805 * Return the prev packet in @list before @skb. It is only valid to 806 * call this if skb_queue_is_first() evaluates to false. 807 */ 808 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 809 const struct sk_buff *skb) 810 { 811 /* This BUG_ON may seem severe, but if we just return then we 812 * are going to dereference garbage. 813 */ 814 BUG_ON(skb_queue_is_first(list, skb)); 815 return skb->prev; 816 } 817 818 /** 819 * skb_get - reference buffer 820 * @skb: buffer to reference 821 * 822 * Makes another reference to a socket buffer and returns a pointer 823 * to the buffer. 824 */ 825 static inline struct sk_buff *skb_get(struct sk_buff *skb) 826 { 827 atomic_inc(&skb->users); 828 return skb; 829 } 830 831 /* 832 * If users == 1, we are the only owner and are can avoid redundant 833 * atomic change. 834 */ 835 836 /** 837 * skb_cloned - is the buffer a clone 838 * @skb: buffer to check 839 * 840 * Returns true if the buffer was generated with skb_clone() and is 841 * one of multiple shared copies of the buffer. Cloned buffers are 842 * shared data so must not be written to under normal circumstances. 843 */ 844 static inline int skb_cloned(const struct sk_buff *skb) 845 { 846 return skb->cloned && 847 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 848 } 849 850 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) 851 { 852 might_sleep_if(pri & __GFP_WAIT); 853 854 if (skb_cloned(skb)) 855 return pskb_expand_head(skb, 0, 0, pri); 856 857 return 0; 858 } 859 860 /** 861 * skb_header_cloned - is the header a clone 862 * @skb: buffer to check 863 * 864 * Returns true if modifying the header part of the buffer requires 865 * the data to be copied. 866 */ 867 static inline int skb_header_cloned(const struct sk_buff *skb) 868 { 869 int dataref; 870 871 if (!skb->cloned) 872 return 0; 873 874 dataref = atomic_read(&skb_shinfo(skb)->dataref); 875 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 876 return dataref != 1; 877 } 878 879 /** 880 * skb_header_release - release reference to header 881 * @skb: buffer to operate on 882 * 883 * Drop a reference to the header part of the buffer. This is done 884 * by acquiring a payload reference. You must not read from the header 885 * part of skb->data after this. 886 */ 887 static inline void skb_header_release(struct sk_buff *skb) 888 { 889 BUG_ON(skb->nohdr); 890 skb->nohdr = 1; 891 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref); 892 } 893 894 /** 895 * skb_shared - is the buffer shared 896 * @skb: buffer to check 897 * 898 * Returns true if more than one person has a reference to this 899 * buffer. 900 */ 901 static inline int skb_shared(const struct sk_buff *skb) 902 { 903 return atomic_read(&skb->users) != 1; 904 } 905 906 /** 907 * skb_share_check - check if buffer is shared and if so clone it 908 * @skb: buffer to check 909 * @pri: priority for memory allocation 910 * 911 * If the buffer is shared the buffer is cloned and the old copy 912 * drops a reference. A new clone with a single reference is returned. 913 * If the buffer is not shared the original buffer is returned. When 914 * being called from interrupt status or with spinlocks held pri must 915 * be GFP_ATOMIC. 916 * 917 * NULL is returned on a memory allocation failure. 918 */ 919 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) 920 { 921 might_sleep_if(pri & __GFP_WAIT); 922 if (skb_shared(skb)) { 923 struct sk_buff *nskb = skb_clone(skb, pri); 924 925 if (likely(nskb)) 926 consume_skb(skb); 927 else 928 kfree_skb(skb); 929 skb = nskb; 930 } 931 return skb; 932 } 933 934 /* 935 * Copy shared buffers into a new sk_buff. We effectively do COW on 936 * packets to handle cases where we have a local reader and forward 937 * and a couple of other messy ones. The normal one is tcpdumping 938 * a packet thats being forwarded. 939 */ 940 941 /** 942 * skb_unshare - make a copy of a shared buffer 943 * @skb: buffer to check 944 * @pri: priority for memory allocation 945 * 946 * If the socket buffer is a clone then this function creates a new 947 * copy of the data, drops a reference count on the old copy and returns 948 * the new copy with the reference count at 1. If the buffer is not a clone 949 * the original buffer is returned. When called with a spinlock held or 950 * from interrupt state @pri must be %GFP_ATOMIC 951 * 952 * %NULL is returned on a memory allocation failure. 953 */ 954 static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 955 gfp_t pri) 956 { 957 might_sleep_if(pri & __GFP_WAIT); 958 if (skb_cloned(skb)) { 959 struct sk_buff *nskb = skb_copy(skb, pri); 960 kfree_skb(skb); /* Free our shared copy */ 961 skb = nskb; 962 } 963 return skb; 964 } 965 966 /** 967 * skb_peek - peek at the head of an &sk_buff_head 968 * @list_: list to peek at 969 * 970 * Peek an &sk_buff. Unlike most other operations you _MUST_ 971 * be careful with this one. A peek leaves the buffer on the 972 * list and someone else may run off with it. You must hold 973 * the appropriate locks or have a private queue to do this. 974 * 975 * Returns %NULL for an empty list or a pointer to the head element. 976 * The reference count is not incremented and the reference is therefore 977 * volatile. Use with caution. 978 */ 979 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) 980 { 981 struct sk_buff *skb = list_->next; 982 983 if (skb == (struct sk_buff *)list_) 984 skb = NULL; 985 return skb; 986 } 987 988 /** 989 * skb_peek_next - peek skb following the given one from a queue 990 * @skb: skb to start from 991 * @list_: list to peek at 992 * 993 * Returns %NULL when the end of the list is met or a pointer to the 994 * next element. The reference count is not incremented and the 995 * reference is therefore volatile. Use with caution. 996 */ 997 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, 998 const struct sk_buff_head *list_) 999 { 1000 struct sk_buff *next = skb->next; 1001 1002 if (next == (struct sk_buff *)list_) 1003 next = NULL; 1004 return next; 1005 } 1006 1007 /** 1008 * skb_peek_tail - peek at the tail of an &sk_buff_head 1009 * @list_: list to peek at 1010 * 1011 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1012 * be careful with this one. A peek leaves the buffer on the 1013 * list and someone else may run off with it. You must hold 1014 * the appropriate locks or have a private queue to do this. 1015 * 1016 * Returns %NULL for an empty list or a pointer to the tail element. 1017 * The reference count is not incremented and the reference is therefore 1018 * volatile. Use with caution. 1019 */ 1020 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) 1021 { 1022 struct sk_buff *skb = list_->prev; 1023 1024 if (skb == (struct sk_buff *)list_) 1025 skb = NULL; 1026 return skb; 1027 1028 } 1029 1030 /** 1031 * skb_queue_len - get queue length 1032 * @list_: list to measure 1033 * 1034 * Return the length of an &sk_buff queue. 1035 */ 1036 static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 1037 { 1038 return list_->qlen; 1039 } 1040 1041 /** 1042 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 1043 * @list: queue to initialize 1044 * 1045 * This initializes only the list and queue length aspects of 1046 * an sk_buff_head object. This allows to initialize the list 1047 * aspects of an sk_buff_head without reinitializing things like 1048 * the spinlock. It can also be used for on-stack sk_buff_head 1049 * objects where the spinlock is known to not be used. 1050 */ 1051 static inline void __skb_queue_head_init(struct sk_buff_head *list) 1052 { 1053 list->prev = list->next = (struct sk_buff *)list; 1054 list->qlen = 0; 1055 } 1056 1057 /* 1058 * This function creates a split out lock class for each invocation; 1059 * this is needed for now since a whole lot of users of the skb-queue 1060 * infrastructure in drivers have different locking usage (in hardirq) 1061 * than the networking core (in softirq only). In the long run either the 1062 * network layer or drivers should need annotation to consolidate the 1063 * main types of usage into 3 classes. 1064 */ 1065 static inline void skb_queue_head_init(struct sk_buff_head *list) 1066 { 1067 spin_lock_init(&list->lock); 1068 __skb_queue_head_init(list); 1069 } 1070 1071 static inline void skb_queue_head_init_class(struct sk_buff_head *list, 1072 struct lock_class_key *class) 1073 { 1074 skb_queue_head_init(list); 1075 lockdep_set_class(&list->lock, class); 1076 } 1077 1078 /* 1079 * Insert an sk_buff on a list. 1080 * 1081 * The "__skb_xxxx()" functions are the non-atomic ones that 1082 * can only be called with interrupts disabled. 1083 */ 1084 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, 1085 struct sk_buff_head *list); 1086 static inline void __skb_insert(struct sk_buff *newsk, 1087 struct sk_buff *prev, struct sk_buff *next, 1088 struct sk_buff_head *list) 1089 { 1090 newsk->next = next; 1091 newsk->prev = prev; 1092 next->prev = prev->next = newsk; 1093 list->qlen++; 1094 } 1095 1096 static inline void __skb_queue_splice(const struct sk_buff_head *list, 1097 struct sk_buff *prev, 1098 struct sk_buff *next) 1099 { 1100 struct sk_buff *first = list->next; 1101 struct sk_buff *last = list->prev; 1102 1103 first->prev = prev; 1104 prev->next = first; 1105 1106 last->next = next; 1107 next->prev = last; 1108 } 1109 1110 /** 1111 * skb_queue_splice - join two skb lists, this is designed for stacks 1112 * @list: the new list to add 1113 * @head: the place to add it in the first list 1114 */ 1115 static inline void skb_queue_splice(const struct sk_buff_head *list, 1116 struct sk_buff_head *head) 1117 { 1118 if (!skb_queue_empty(list)) { 1119 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1120 head->qlen += list->qlen; 1121 } 1122 } 1123 1124 /** 1125 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list 1126 * @list: the new list to add 1127 * @head: the place to add it in the first list 1128 * 1129 * The list at @list is reinitialised 1130 */ 1131 static inline void skb_queue_splice_init(struct sk_buff_head *list, 1132 struct sk_buff_head *head) 1133 { 1134 if (!skb_queue_empty(list)) { 1135 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1136 head->qlen += list->qlen; 1137 __skb_queue_head_init(list); 1138 } 1139 } 1140 1141 /** 1142 * skb_queue_splice_tail - join two skb lists, each list being a queue 1143 * @list: the new list to add 1144 * @head: the place to add it in the first list 1145 */ 1146 static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 1147 struct sk_buff_head *head) 1148 { 1149 if (!skb_queue_empty(list)) { 1150 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1151 head->qlen += list->qlen; 1152 } 1153 } 1154 1155 /** 1156 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list 1157 * @list: the new list to add 1158 * @head: the place to add it in the first list 1159 * 1160 * Each of the lists is a queue. 1161 * The list at @list is reinitialised 1162 */ 1163 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 1164 struct sk_buff_head *head) 1165 { 1166 if (!skb_queue_empty(list)) { 1167 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1168 head->qlen += list->qlen; 1169 __skb_queue_head_init(list); 1170 } 1171 } 1172 1173 /** 1174 * __skb_queue_after - queue a buffer at the list head 1175 * @list: list to use 1176 * @prev: place after this buffer 1177 * @newsk: buffer to queue 1178 * 1179 * Queue a buffer int the middle of a list. This function takes no locks 1180 * and you must therefore hold required locks before calling it. 1181 * 1182 * A buffer cannot be placed on two lists at the same time. 1183 */ 1184 static inline void __skb_queue_after(struct sk_buff_head *list, 1185 struct sk_buff *prev, 1186 struct sk_buff *newsk) 1187 { 1188 __skb_insert(newsk, prev, prev->next, list); 1189 } 1190 1191 void skb_append(struct sk_buff *old, struct sk_buff *newsk, 1192 struct sk_buff_head *list); 1193 1194 static inline void __skb_queue_before(struct sk_buff_head *list, 1195 struct sk_buff *next, 1196 struct sk_buff *newsk) 1197 { 1198 __skb_insert(newsk, next->prev, next, list); 1199 } 1200 1201 /** 1202 * __skb_queue_head - queue a buffer at the list head 1203 * @list: list to use 1204 * @newsk: buffer to queue 1205 * 1206 * Queue a buffer at the start of a list. This function takes no locks 1207 * and you must therefore hold required locks before calling it. 1208 * 1209 * A buffer cannot be placed on two lists at the same time. 1210 */ 1211 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 1212 static inline void __skb_queue_head(struct sk_buff_head *list, 1213 struct sk_buff *newsk) 1214 { 1215 __skb_queue_after(list, (struct sk_buff *)list, newsk); 1216 } 1217 1218 /** 1219 * __skb_queue_tail - queue a buffer at the list tail 1220 * @list: list to use 1221 * @newsk: buffer to queue 1222 * 1223 * Queue a buffer at the end of a list. This function takes no locks 1224 * and you must therefore hold required locks before calling it. 1225 * 1226 * A buffer cannot be placed on two lists at the same time. 1227 */ 1228 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 1229 static inline void __skb_queue_tail(struct sk_buff_head *list, 1230 struct sk_buff *newsk) 1231 { 1232 __skb_queue_before(list, (struct sk_buff *)list, newsk); 1233 } 1234 1235 /* 1236 * remove sk_buff from list. _Must_ be called atomically, and with 1237 * the list known.. 1238 */ 1239 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 1240 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 1241 { 1242 struct sk_buff *next, *prev; 1243 1244 list->qlen--; 1245 next = skb->next; 1246 prev = skb->prev; 1247 skb->next = skb->prev = NULL; 1248 next->prev = prev; 1249 prev->next = next; 1250 } 1251 1252 /** 1253 * __skb_dequeue - remove from the head of the queue 1254 * @list: list to dequeue from 1255 * 1256 * Remove the head of the list. This function does not take any locks 1257 * so must be used with appropriate locks held only. The head item is 1258 * returned or %NULL if the list is empty. 1259 */ 1260 struct sk_buff *skb_dequeue(struct sk_buff_head *list); 1261 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 1262 { 1263 struct sk_buff *skb = skb_peek(list); 1264 if (skb) 1265 __skb_unlink(skb, list); 1266 return skb; 1267 } 1268 1269 /** 1270 * __skb_dequeue_tail - remove from the tail of the queue 1271 * @list: list to dequeue from 1272 * 1273 * Remove the tail of the list. This function does not take any locks 1274 * so must be used with appropriate locks held only. The tail item is 1275 * returned or %NULL if the list is empty. 1276 */ 1277 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 1278 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 1279 { 1280 struct sk_buff *skb = skb_peek_tail(list); 1281 if (skb) 1282 __skb_unlink(skb, list); 1283 return skb; 1284 } 1285 1286 1287 static inline bool skb_is_nonlinear(const struct sk_buff *skb) 1288 { 1289 return skb->data_len; 1290 } 1291 1292 static inline unsigned int skb_headlen(const struct sk_buff *skb) 1293 { 1294 return skb->len - skb->data_len; 1295 } 1296 1297 static inline int skb_pagelen(const struct sk_buff *skb) 1298 { 1299 int i, len = 0; 1300 1301 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--) 1302 len += skb_frag_size(&skb_shinfo(skb)->frags[i]); 1303 return len + skb_headlen(skb); 1304 } 1305 1306 /** 1307 * __skb_fill_page_desc - initialise a paged fragment in an skb 1308 * @skb: buffer containing fragment to be initialised 1309 * @i: paged fragment index to initialise 1310 * @page: the page to use for this fragment 1311 * @off: the offset to the data with @page 1312 * @size: the length of the data 1313 * 1314 * Initialises the @i'th fragment of @skb to point to &size bytes at 1315 * offset @off within @page. 1316 * 1317 * Does not take any additional reference on the fragment. 1318 */ 1319 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, 1320 struct page *page, int off, int size) 1321 { 1322 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1323 1324 /* 1325 * Propagate page->pfmemalloc to the skb if we can. The problem is 1326 * that not all callers have unique ownership of the page. If 1327 * pfmemalloc is set, we check the mapping as a mapping implies 1328 * page->index is set (index and pfmemalloc share space). 1329 * If it's a valid mapping, we cannot use page->pfmemalloc but we 1330 * do not lose pfmemalloc information as the pages would not be 1331 * allocated using __GFP_MEMALLOC. 1332 */ 1333 frag->page.p = page; 1334 frag->page_offset = off; 1335 skb_frag_size_set(frag, size); 1336 1337 page = compound_head(page); 1338 if (page->pfmemalloc && !page->mapping) 1339 skb->pfmemalloc = true; 1340 } 1341 1342 /** 1343 * skb_fill_page_desc - initialise a paged fragment in an skb 1344 * @skb: buffer containing fragment to be initialised 1345 * @i: paged fragment index to initialise 1346 * @page: the page to use for this fragment 1347 * @off: the offset to the data with @page 1348 * @size: the length of the data 1349 * 1350 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of 1351 * @skb to point to @size bytes at offset @off within @page. In 1352 * addition updates @skb such that @i is the last fragment. 1353 * 1354 * Does not take any additional reference on the fragment. 1355 */ 1356 static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 1357 struct page *page, int off, int size) 1358 { 1359 __skb_fill_page_desc(skb, i, page, off, size); 1360 skb_shinfo(skb)->nr_frags = i + 1; 1361 } 1362 1363 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 1364 int size, unsigned int truesize); 1365 1366 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 1367 unsigned int truesize); 1368 1369 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags) 1370 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb)) 1371 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 1372 1373 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1374 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1375 { 1376 return skb->head + skb->tail; 1377 } 1378 1379 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1380 { 1381 skb->tail = skb->data - skb->head; 1382 } 1383 1384 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1385 { 1386 skb_reset_tail_pointer(skb); 1387 skb->tail += offset; 1388 } 1389 1390 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 1391 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1392 { 1393 return skb->tail; 1394 } 1395 1396 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1397 { 1398 skb->tail = skb->data; 1399 } 1400 1401 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1402 { 1403 skb->tail = skb->data + offset; 1404 } 1405 1406 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1407 1408 /* 1409 * Add data to an sk_buff 1410 */ 1411 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len); 1412 unsigned char *skb_put(struct sk_buff *skb, unsigned int len); 1413 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len) 1414 { 1415 unsigned char *tmp = skb_tail_pointer(skb); 1416 SKB_LINEAR_ASSERT(skb); 1417 skb->tail += len; 1418 skb->len += len; 1419 return tmp; 1420 } 1421 1422 unsigned char *skb_push(struct sk_buff *skb, unsigned int len); 1423 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len) 1424 { 1425 skb->data -= len; 1426 skb->len += len; 1427 return skb->data; 1428 } 1429 1430 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len); 1431 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len) 1432 { 1433 skb->len -= len; 1434 BUG_ON(skb->len < skb->data_len); 1435 return skb->data += len; 1436 } 1437 1438 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len) 1439 { 1440 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 1441 } 1442 1443 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta); 1444 1445 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len) 1446 { 1447 if (len > skb_headlen(skb) && 1448 !__pskb_pull_tail(skb, len - skb_headlen(skb))) 1449 return NULL; 1450 skb->len -= len; 1451 return skb->data += len; 1452 } 1453 1454 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len) 1455 { 1456 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 1457 } 1458 1459 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) 1460 { 1461 if (likely(len <= skb_headlen(skb))) 1462 return 1; 1463 if (unlikely(len > skb->len)) 1464 return 0; 1465 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; 1466 } 1467 1468 /** 1469 * skb_headroom - bytes at buffer head 1470 * @skb: buffer to check 1471 * 1472 * Return the number of bytes of free space at the head of an &sk_buff. 1473 */ 1474 static inline unsigned int skb_headroom(const struct sk_buff *skb) 1475 { 1476 return skb->data - skb->head; 1477 } 1478 1479 /** 1480 * skb_tailroom - bytes at buffer end 1481 * @skb: buffer to check 1482 * 1483 * Return the number of bytes of free space at the tail of an sk_buff 1484 */ 1485 static inline int skb_tailroom(const struct sk_buff *skb) 1486 { 1487 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 1488 } 1489 1490 /** 1491 * skb_availroom - bytes at buffer end 1492 * @skb: buffer to check 1493 * 1494 * Return the number of bytes of free space at the tail of an sk_buff 1495 * allocated by sk_stream_alloc() 1496 */ 1497 static inline int skb_availroom(const struct sk_buff *skb) 1498 { 1499 if (skb_is_nonlinear(skb)) 1500 return 0; 1501 1502 return skb->end - skb->tail - skb->reserved_tailroom; 1503 } 1504 1505 /** 1506 * skb_reserve - adjust headroom 1507 * @skb: buffer to alter 1508 * @len: bytes to move 1509 * 1510 * Increase the headroom of an empty &sk_buff by reducing the tail 1511 * room. This is only allowed for an empty buffer. 1512 */ 1513 static inline void skb_reserve(struct sk_buff *skb, int len) 1514 { 1515 skb->data += len; 1516 skb->tail += len; 1517 } 1518 1519 static inline void skb_reset_inner_headers(struct sk_buff *skb) 1520 { 1521 skb->inner_mac_header = skb->mac_header; 1522 skb->inner_network_header = skb->network_header; 1523 skb->inner_transport_header = skb->transport_header; 1524 } 1525 1526 static inline void skb_reset_mac_len(struct sk_buff *skb) 1527 { 1528 skb->mac_len = skb->network_header - skb->mac_header; 1529 } 1530 1531 static inline unsigned char *skb_inner_transport_header(const struct sk_buff 1532 *skb) 1533 { 1534 return skb->head + skb->inner_transport_header; 1535 } 1536 1537 static inline void skb_reset_inner_transport_header(struct sk_buff *skb) 1538 { 1539 skb->inner_transport_header = skb->data - skb->head; 1540 } 1541 1542 static inline void skb_set_inner_transport_header(struct sk_buff *skb, 1543 const int offset) 1544 { 1545 skb_reset_inner_transport_header(skb); 1546 skb->inner_transport_header += offset; 1547 } 1548 1549 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) 1550 { 1551 return skb->head + skb->inner_network_header; 1552 } 1553 1554 static inline void skb_reset_inner_network_header(struct sk_buff *skb) 1555 { 1556 skb->inner_network_header = skb->data - skb->head; 1557 } 1558 1559 static inline void skb_set_inner_network_header(struct sk_buff *skb, 1560 const int offset) 1561 { 1562 skb_reset_inner_network_header(skb); 1563 skb->inner_network_header += offset; 1564 } 1565 1566 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) 1567 { 1568 return skb->head + skb->inner_mac_header; 1569 } 1570 1571 static inline void skb_reset_inner_mac_header(struct sk_buff *skb) 1572 { 1573 skb->inner_mac_header = skb->data - skb->head; 1574 } 1575 1576 static inline void skb_set_inner_mac_header(struct sk_buff *skb, 1577 const int offset) 1578 { 1579 skb_reset_inner_mac_header(skb); 1580 skb->inner_mac_header += offset; 1581 } 1582 static inline bool skb_transport_header_was_set(const struct sk_buff *skb) 1583 { 1584 return skb->transport_header != (typeof(skb->transport_header))~0U; 1585 } 1586 1587 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 1588 { 1589 return skb->head + skb->transport_header; 1590 } 1591 1592 static inline void skb_reset_transport_header(struct sk_buff *skb) 1593 { 1594 skb->transport_header = skb->data - skb->head; 1595 } 1596 1597 static inline void skb_set_transport_header(struct sk_buff *skb, 1598 const int offset) 1599 { 1600 skb_reset_transport_header(skb); 1601 skb->transport_header += offset; 1602 } 1603 1604 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 1605 { 1606 return skb->head + skb->network_header; 1607 } 1608 1609 static inline void skb_reset_network_header(struct sk_buff *skb) 1610 { 1611 skb->network_header = skb->data - skb->head; 1612 } 1613 1614 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 1615 { 1616 skb_reset_network_header(skb); 1617 skb->network_header += offset; 1618 } 1619 1620 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 1621 { 1622 return skb->head + skb->mac_header; 1623 } 1624 1625 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 1626 { 1627 return skb->mac_header != (typeof(skb->mac_header))~0U; 1628 } 1629 1630 static inline void skb_reset_mac_header(struct sk_buff *skb) 1631 { 1632 skb->mac_header = skb->data - skb->head; 1633 } 1634 1635 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1636 { 1637 skb_reset_mac_header(skb); 1638 skb->mac_header += offset; 1639 } 1640 1641 static inline void skb_probe_transport_header(struct sk_buff *skb, 1642 const int offset_hint) 1643 { 1644 struct flow_keys keys; 1645 1646 if (skb_transport_header_was_set(skb)) 1647 return; 1648 else if (skb_flow_dissect(skb, &keys)) 1649 skb_set_transport_header(skb, keys.thoff); 1650 else 1651 skb_set_transport_header(skb, offset_hint); 1652 } 1653 1654 static inline void skb_mac_header_rebuild(struct sk_buff *skb) 1655 { 1656 if (skb_mac_header_was_set(skb)) { 1657 const unsigned char *old_mac = skb_mac_header(skb); 1658 1659 skb_set_mac_header(skb, -skb->mac_len); 1660 memmove(skb_mac_header(skb), old_mac, skb->mac_len); 1661 } 1662 } 1663 1664 static inline int skb_checksum_start_offset(const struct sk_buff *skb) 1665 { 1666 return skb->csum_start - skb_headroom(skb); 1667 } 1668 1669 static inline int skb_transport_offset(const struct sk_buff *skb) 1670 { 1671 return skb_transport_header(skb) - skb->data; 1672 } 1673 1674 static inline u32 skb_network_header_len(const struct sk_buff *skb) 1675 { 1676 return skb->transport_header - skb->network_header; 1677 } 1678 1679 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) 1680 { 1681 return skb->inner_transport_header - skb->inner_network_header; 1682 } 1683 1684 static inline int skb_network_offset(const struct sk_buff *skb) 1685 { 1686 return skb_network_header(skb) - skb->data; 1687 } 1688 1689 static inline int skb_inner_network_offset(const struct sk_buff *skb) 1690 { 1691 return skb_inner_network_header(skb) - skb->data; 1692 } 1693 1694 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 1695 { 1696 return pskb_may_pull(skb, skb_network_offset(skb) + len); 1697 } 1698 1699 /* 1700 * CPUs often take a performance hit when accessing unaligned memory 1701 * locations. The actual performance hit varies, it can be small if the 1702 * hardware handles it or large if we have to take an exception and fix it 1703 * in software. 1704 * 1705 * Since an ethernet header is 14 bytes network drivers often end up with 1706 * the IP header at an unaligned offset. The IP header can be aligned by 1707 * shifting the start of the packet by 2 bytes. Drivers should do this 1708 * with: 1709 * 1710 * skb_reserve(skb, NET_IP_ALIGN); 1711 * 1712 * The downside to this alignment of the IP header is that the DMA is now 1713 * unaligned. On some architectures the cost of an unaligned DMA is high 1714 * and this cost outweighs the gains made by aligning the IP header. 1715 * 1716 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 1717 * to be overridden. 1718 */ 1719 #ifndef NET_IP_ALIGN 1720 #define NET_IP_ALIGN 2 1721 #endif 1722 1723 /* 1724 * The networking layer reserves some headroom in skb data (via 1725 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 1726 * the header has to grow. In the default case, if the header has to grow 1727 * 32 bytes or less we avoid the reallocation. 1728 * 1729 * Unfortunately this headroom changes the DMA alignment of the resulting 1730 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 1731 * on some architectures. An architecture can override this value, 1732 * perhaps setting it to a cacheline in size (since that will maintain 1733 * cacheline alignment of the DMA). It must be a power of 2. 1734 * 1735 * Various parts of the networking layer expect at least 32 bytes of 1736 * headroom, you should not reduce this. 1737 * 1738 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 1739 * to reduce average number of cache lines per packet. 1740 * get_rps_cpus() for example only access one 64 bytes aligned block : 1741 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 1742 */ 1743 #ifndef NET_SKB_PAD 1744 #define NET_SKB_PAD max(32, L1_CACHE_BYTES) 1745 #endif 1746 1747 int ___pskb_trim(struct sk_buff *skb, unsigned int len); 1748 1749 static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 1750 { 1751 if (unlikely(skb_is_nonlinear(skb))) { 1752 WARN_ON(1); 1753 return; 1754 } 1755 skb->len = len; 1756 skb_set_tail_pointer(skb, len); 1757 } 1758 1759 void skb_trim(struct sk_buff *skb, unsigned int len); 1760 1761 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 1762 { 1763 if (skb->data_len) 1764 return ___pskb_trim(skb, len); 1765 __skb_trim(skb, len); 1766 return 0; 1767 } 1768 1769 static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 1770 { 1771 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 1772 } 1773 1774 /** 1775 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 1776 * @skb: buffer to alter 1777 * @len: new length 1778 * 1779 * This is identical to pskb_trim except that the caller knows that 1780 * the skb is not cloned so we should never get an error due to out- 1781 * of-memory. 1782 */ 1783 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 1784 { 1785 int err = pskb_trim(skb, len); 1786 BUG_ON(err); 1787 } 1788 1789 /** 1790 * skb_orphan - orphan a buffer 1791 * @skb: buffer to orphan 1792 * 1793 * If a buffer currently has an owner then we call the owner's 1794 * destructor function and make the @skb unowned. The buffer continues 1795 * to exist but is no longer charged to its former owner. 1796 */ 1797 static inline void skb_orphan(struct sk_buff *skb) 1798 { 1799 if (skb->destructor) { 1800 skb->destructor(skb); 1801 skb->destructor = NULL; 1802 skb->sk = NULL; 1803 } else { 1804 BUG_ON(skb->sk); 1805 } 1806 } 1807 1808 /** 1809 * skb_orphan_frags - orphan the frags contained in a buffer 1810 * @skb: buffer to orphan frags from 1811 * @gfp_mask: allocation mask for replacement pages 1812 * 1813 * For each frag in the SKB which needs a destructor (i.e. has an 1814 * owner) create a copy of that frag and release the original 1815 * page by calling the destructor. 1816 */ 1817 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) 1818 { 1819 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY))) 1820 return 0; 1821 return skb_copy_ubufs(skb, gfp_mask); 1822 } 1823 1824 /** 1825 * __skb_queue_purge - empty a list 1826 * @list: list to empty 1827 * 1828 * Delete all buffers on an &sk_buff list. Each buffer is removed from 1829 * the list and one reference dropped. This function does not take the 1830 * list lock and the caller must hold the relevant locks to use it. 1831 */ 1832 void skb_queue_purge(struct sk_buff_head *list); 1833 static inline void __skb_queue_purge(struct sk_buff_head *list) 1834 { 1835 struct sk_buff *skb; 1836 while ((skb = __skb_dequeue(list)) != NULL) 1837 kfree_skb(skb); 1838 } 1839 1840 #define NETDEV_FRAG_PAGE_MAX_ORDER get_order(32768) 1841 #define NETDEV_FRAG_PAGE_MAX_SIZE (PAGE_SIZE << NETDEV_FRAG_PAGE_MAX_ORDER) 1842 #define NETDEV_PAGECNT_MAX_BIAS NETDEV_FRAG_PAGE_MAX_SIZE 1843 1844 void *netdev_alloc_frag(unsigned int fragsz); 1845 1846 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length, 1847 gfp_t gfp_mask); 1848 1849 /** 1850 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 1851 * @dev: network device to receive on 1852 * @length: length to allocate 1853 * 1854 * Allocate a new &sk_buff and assign it a usage count of one. The 1855 * buffer has unspecified headroom built in. Users should allocate 1856 * the headroom they think they need without accounting for the 1857 * built in space. The built in space is used for optimisations. 1858 * 1859 * %NULL is returned if there is no free memory. Although this function 1860 * allocates memory it can be called from an interrupt. 1861 */ 1862 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 1863 unsigned int length) 1864 { 1865 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 1866 } 1867 1868 /* legacy helper around __netdev_alloc_skb() */ 1869 static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 1870 gfp_t gfp_mask) 1871 { 1872 return __netdev_alloc_skb(NULL, length, gfp_mask); 1873 } 1874 1875 /* legacy helper around netdev_alloc_skb() */ 1876 static inline struct sk_buff *dev_alloc_skb(unsigned int length) 1877 { 1878 return netdev_alloc_skb(NULL, length); 1879 } 1880 1881 1882 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, 1883 unsigned int length, gfp_t gfp) 1884 { 1885 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); 1886 1887 if (NET_IP_ALIGN && skb) 1888 skb_reserve(skb, NET_IP_ALIGN); 1889 return skb; 1890 } 1891 1892 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 1893 unsigned int length) 1894 { 1895 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); 1896 } 1897 1898 /** 1899 * __skb_alloc_pages - allocate pages for ps-rx on a skb and preserve pfmemalloc data 1900 * @gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX 1901 * @skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used 1902 * @order: size of the allocation 1903 * 1904 * Allocate a new page. 1905 * 1906 * %NULL is returned if there is no free memory. 1907 */ 1908 static inline struct page *__skb_alloc_pages(gfp_t gfp_mask, 1909 struct sk_buff *skb, 1910 unsigned int order) 1911 { 1912 struct page *page; 1913 1914 gfp_mask |= __GFP_COLD; 1915 1916 if (!(gfp_mask & __GFP_NOMEMALLOC)) 1917 gfp_mask |= __GFP_MEMALLOC; 1918 1919 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, order); 1920 if (skb && page && page->pfmemalloc) 1921 skb->pfmemalloc = true; 1922 1923 return page; 1924 } 1925 1926 /** 1927 * __skb_alloc_page - allocate a page for ps-rx for a given skb and preserve pfmemalloc data 1928 * @gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX 1929 * @skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used 1930 * 1931 * Allocate a new page. 1932 * 1933 * %NULL is returned if there is no free memory. 1934 */ 1935 static inline struct page *__skb_alloc_page(gfp_t gfp_mask, 1936 struct sk_buff *skb) 1937 { 1938 return __skb_alloc_pages(gfp_mask, skb, 0); 1939 } 1940 1941 /** 1942 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page 1943 * @page: The page that was allocated from skb_alloc_page 1944 * @skb: The skb that may need pfmemalloc set 1945 */ 1946 static inline void skb_propagate_pfmemalloc(struct page *page, 1947 struct sk_buff *skb) 1948 { 1949 if (page && page->pfmemalloc) 1950 skb->pfmemalloc = true; 1951 } 1952 1953 /** 1954 * skb_frag_page - retrieve the page refered to by a paged fragment 1955 * @frag: the paged fragment 1956 * 1957 * Returns the &struct page associated with @frag. 1958 */ 1959 static inline struct page *skb_frag_page(const skb_frag_t *frag) 1960 { 1961 return frag->page.p; 1962 } 1963 1964 /** 1965 * __skb_frag_ref - take an addition reference on a paged fragment. 1966 * @frag: the paged fragment 1967 * 1968 * Takes an additional reference on the paged fragment @frag. 1969 */ 1970 static inline void __skb_frag_ref(skb_frag_t *frag) 1971 { 1972 get_page(skb_frag_page(frag)); 1973 } 1974 1975 /** 1976 * skb_frag_ref - take an addition reference on a paged fragment of an skb. 1977 * @skb: the buffer 1978 * @f: the fragment offset. 1979 * 1980 * Takes an additional reference on the @f'th paged fragment of @skb. 1981 */ 1982 static inline void skb_frag_ref(struct sk_buff *skb, int f) 1983 { 1984 __skb_frag_ref(&skb_shinfo(skb)->frags[f]); 1985 } 1986 1987 /** 1988 * __skb_frag_unref - release a reference on a paged fragment. 1989 * @frag: the paged fragment 1990 * 1991 * Releases a reference on the paged fragment @frag. 1992 */ 1993 static inline void __skb_frag_unref(skb_frag_t *frag) 1994 { 1995 put_page(skb_frag_page(frag)); 1996 } 1997 1998 /** 1999 * skb_frag_unref - release a reference on a paged fragment of an skb. 2000 * @skb: the buffer 2001 * @f: the fragment offset 2002 * 2003 * Releases a reference on the @f'th paged fragment of @skb. 2004 */ 2005 static inline void skb_frag_unref(struct sk_buff *skb, int f) 2006 { 2007 __skb_frag_unref(&skb_shinfo(skb)->frags[f]); 2008 } 2009 2010 /** 2011 * skb_frag_address - gets the address of the data contained in a paged fragment 2012 * @frag: the paged fragment buffer 2013 * 2014 * Returns the address of the data within @frag. The page must already 2015 * be mapped. 2016 */ 2017 static inline void *skb_frag_address(const skb_frag_t *frag) 2018 { 2019 return page_address(skb_frag_page(frag)) + frag->page_offset; 2020 } 2021 2022 /** 2023 * skb_frag_address_safe - gets the address of the data contained in a paged fragment 2024 * @frag: the paged fragment buffer 2025 * 2026 * Returns the address of the data within @frag. Checks that the page 2027 * is mapped and returns %NULL otherwise. 2028 */ 2029 static inline void *skb_frag_address_safe(const skb_frag_t *frag) 2030 { 2031 void *ptr = page_address(skb_frag_page(frag)); 2032 if (unlikely(!ptr)) 2033 return NULL; 2034 2035 return ptr + frag->page_offset; 2036 } 2037 2038 /** 2039 * __skb_frag_set_page - sets the page contained in a paged fragment 2040 * @frag: the paged fragment 2041 * @page: the page to set 2042 * 2043 * Sets the fragment @frag to contain @page. 2044 */ 2045 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page) 2046 { 2047 frag->page.p = page; 2048 } 2049 2050 /** 2051 * skb_frag_set_page - sets the page contained in a paged fragment of an skb 2052 * @skb: the buffer 2053 * @f: the fragment offset 2054 * @page: the page to set 2055 * 2056 * Sets the @f'th fragment of @skb to contain @page. 2057 */ 2058 static inline void skb_frag_set_page(struct sk_buff *skb, int f, 2059 struct page *page) 2060 { 2061 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page); 2062 } 2063 2064 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio); 2065 2066 /** 2067 * skb_frag_dma_map - maps a paged fragment via the DMA API 2068 * @dev: the device to map the fragment to 2069 * @frag: the paged fragment to map 2070 * @offset: the offset within the fragment (starting at the 2071 * fragment's own offset) 2072 * @size: the number of bytes to map 2073 * @dir: the direction of the mapping (%PCI_DMA_*) 2074 * 2075 * Maps the page associated with @frag to @device. 2076 */ 2077 static inline dma_addr_t skb_frag_dma_map(struct device *dev, 2078 const skb_frag_t *frag, 2079 size_t offset, size_t size, 2080 enum dma_data_direction dir) 2081 { 2082 return dma_map_page(dev, skb_frag_page(frag), 2083 frag->page_offset + offset, size, dir); 2084 } 2085 2086 static inline struct sk_buff *pskb_copy(struct sk_buff *skb, 2087 gfp_t gfp_mask) 2088 { 2089 return __pskb_copy(skb, skb_headroom(skb), gfp_mask); 2090 } 2091 2092 /** 2093 * skb_clone_writable - is the header of a clone writable 2094 * @skb: buffer to check 2095 * @len: length up to which to write 2096 * 2097 * Returns true if modifying the header part of the cloned buffer 2098 * does not requires the data to be copied. 2099 */ 2100 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) 2101 { 2102 return !skb_header_cloned(skb) && 2103 skb_headroom(skb) + len <= skb->hdr_len; 2104 } 2105 2106 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 2107 int cloned) 2108 { 2109 int delta = 0; 2110 2111 if (headroom > skb_headroom(skb)) 2112 delta = headroom - skb_headroom(skb); 2113 2114 if (delta || cloned) 2115 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 2116 GFP_ATOMIC); 2117 return 0; 2118 } 2119 2120 /** 2121 * skb_cow - copy header of skb when it is required 2122 * @skb: buffer to cow 2123 * @headroom: needed headroom 2124 * 2125 * If the skb passed lacks sufficient headroom or its data part 2126 * is shared, data is reallocated. If reallocation fails, an error 2127 * is returned and original skb is not changed. 2128 * 2129 * The result is skb with writable area skb->head...skb->tail 2130 * and at least @headroom of space at head. 2131 */ 2132 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 2133 { 2134 return __skb_cow(skb, headroom, skb_cloned(skb)); 2135 } 2136 2137 /** 2138 * skb_cow_head - skb_cow but only making the head writable 2139 * @skb: buffer to cow 2140 * @headroom: needed headroom 2141 * 2142 * This function is identical to skb_cow except that we replace the 2143 * skb_cloned check by skb_header_cloned. It should be used when 2144 * you only need to push on some header and do not need to modify 2145 * the data. 2146 */ 2147 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 2148 { 2149 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 2150 } 2151 2152 /** 2153 * skb_padto - pad an skbuff up to a minimal size 2154 * @skb: buffer to pad 2155 * @len: minimal length 2156 * 2157 * Pads up a buffer to ensure the trailing bytes exist and are 2158 * blanked. If the buffer already contains sufficient data it 2159 * is untouched. Otherwise it is extended. Returns zero on 2160 * success. The skb is freed on error. 2161 */ 2162 2163 static inline int skb_padto(struct sk_buff *skb, unsigned int len) 2164 { 2165 unsigned int size = skb->len; 2166 if (likely(size >= len)) 2167 return 0; 2168 return skb_pad(skb, len - size); 2169 } 2170 2171 static inline int skb_add_data(struct sk_buff *skb, 2172 char __user *from, int copy) 2173 { 2174 const int off = skb->len; 2175 2176 if (skb->ip_summed == CHECKSUM_NONE) { 2177 int err = 0; 2178 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy), 2179 copy, 0, &err); 2180 if (!err) { 2181 skb->csum = csum_block_add(skb->csum, csum, off); 2182 return 0; 2183 } 2184 } else if (!copy_from_user(skb_put(skb, copy), from, copy)) 2185 return 0; 2186 2187 __skb_trim(skb, off); 2188 return -EFAULT; 2189 } 2190 2191 static inline bool skb_can_coalesce(struct sk_buff *skb, int i, 2192 const struct page *page, int off) 2193 { 2194 if (i) { 2195 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 2196 2197 return page == skb_frag_page(frag) && 2198 off == frag->page_offset + skb_frag_size(frag); 2199 } 2200 return false; 2201 } 2202 2203 static inline int __skb_linearize(struct sk_buff *skb) 2204 { 2205 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 2206 } 2207 2208 /** 2209 * skb_linearize - convert paged skb to linear one 2210 * @skb: buffer to linarize 2211 * 2212 * If there is no free memory -ENOMEM is returned, otherwise zero 2213 * is returned and the old skb data released. 2214 */ 2215 static inline int skb_linearize(struct sk_buff *skb) 2216 { 2217 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 2218 } 2219 2220 /** 2221 * skb_has_shared_frag - can any frag be overwritten 2222 * @skb: buffer to test 2223 * 2224 * Return true if the skb has at least one frag that might be modified 2225 * by an external entity (as in vmsplice()/sendfile()) 2226 */ 2227 static inline bool skb_has_shared_frag(const struct sk_buff *skb) 2228 { 2229 return skb_is_nonlinear(skb) && 2230 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG; 2231 } 2232 2233 /** 2234 * skb_linearize_cow - make sure skb is linear and writable 2235 * @skb: buffer to process 2236 * 2237 * If there is no free memory -ENOMEM is returned, otherwise zero 2238 * is returned and the old skb data released. 2239 */ 2240 static inline int skb_linearize_cow(struct sk_buff *skb) 2241 { 2242 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 2243 __skb_linearize(skb) : 0; 2244 } 2245 2246 /** 2247 * skb_postpull_rcsum - update checksum for received skb after pull 2248 * @skb: buffer to update 2249 * @start: start of data before pull 2250 * @len: length of data pulled 2251 * 2252 * After doing a pull on a received packet, you need to call this to 2253 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 2254 * CHECKSUM_NONE so that it can be recomputed from scratch. 2255 */ 2256 2257 static inline void skb_postpull_rcsum(struct sk_buff *skb, 2258 const void *start, unsigned int len) 2259 { 2260 if (skb->ip_summed == CHECKSUM_COMPLETE) 2261 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0)); 2262 } 2263 2264 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 2265 2266 #define skb_queue_walk(queue, skb) \ 2267 for (skb = (queue)->next; \ 2268 skb != (struct sk_buff *)(queue); \ 2269 skb = skb->next) 2270 2271 #define skb_queue_walk_safe(queue, skb, tmp) \ 2272 for (skb = (queue)->next, tmp = skb->next; \ 2273 skb != (struct sk_buff *)(queue); \ 2274 skb = tmp, tmp = skb->next) 2275 2276 #define skb_queue_walk_from(queue, skb) \ 2277 for (; skb != (struct sk_buff *)(queue); \ 2278 skb = skb->next) 2279 2280 #define skb_queue_walk_from_safe(queue, skb, tmp) \ 2281 for (tmp = skb->next; \ 2282 skb != (struct sk_buff *)(queue); \ 2283 skb = tmp, tmp = skb->next) 2284 2285 #define skb_queue_reverse_walk(queue, skb) \ 2286 for (skb = (queue)->prev; \ 2287 skb != (struct sk_buff *)(queue); \ 2288 skb = skb->prev) 2289 2290 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \ 2291 for (skb = (queue)->prev, tmp = skb->prev; \ 2292 skb != (struct sk_buff *)(queue); \ 2293 skb = tmp, tmp = skb->prev) 2294 2295 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ 2296 for (tmp = skb->prev; \ 2297 skb != (struct sk_buff *)(queue); \ 2298 skb = tmp, tmp = skb->prev) 2299 2300 static inline bool skb_has_frag_list(const struct sk_buff *skb) 2301 { 2302 return skb_shinfo(skb)->frag_list != NULL; 2303 } 2304 2305 static inline void skb_frag_list_init(struct sk_buff *skb) 2306 { 2307 skb_shinfo(skb)->frag_list = NULL; 2308 } 2309 2310 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag) 2311 { 2312 frag->next = skb_shinfo(skb)->frag_list; 2313 skb_shinfo(skb)->frag_list = frag; 2314 } 2315 2316 #define skb_walk_frags(skb, iter) \ 2317 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 2318 2319 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags, 2320 int *peeked, int *off, int *err); 2321 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock, 2322 int *err); 2323 unsigned int datagram_poll(struct file *file, struct socket *sock, 2324 struct poll_table_struct *wait); 2325 int skb_copy_datagram_iovec(const struct sk_buff *from, int offset, 2326 struct iovec *to, int size); 2327 int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb, int hlen, 2328 struct iovec *iov); 2329 int skb_copy_datagram_from_iovec(struct sk_buff *skb, int offset, 2330 const struct iovec *from, int from_offset, 2331 int len); 2332 int zerocopy_sg_from_iovec(struct sk_buff *skb, const struct iovec *frm, 2333 int offset, size_t count); 2334 int skb_copy_datagram_const_iovec(const struct sk_buff *from, int offset, 2335 const struct iovec *to, int to_offset, 2336 int size); 2337 void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 2338 void skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb); 2339 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags); 2340 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len); 2341 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len); 2342 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, 2343 int len, __wsum csum); 2344 int skb_splice_bits(struct sk_buff *skb, unsigned int offset, 2345 struct pipe_inode_info *pipe, unsigned int len, 2346 unsigned int flags); 2347 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 2348 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len); 2349 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen); 2350 void skb_scrub_packet(struct sk_buff *skb, bool xnet); 2351 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features); 2352 2353 struct skb_checksum_ops { 2354 __wsum (*update)(const void *mem, int len, __wsum wsum); 2355 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len); 2356 }; 2357 2358 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 2359 __wsum csum, const struct skb_checksum_ops *ops); 2360 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len, 2361 __wsum csum); 2362 2363 /** 2364 * pskb_trim_rcsum - trim received skb and update checksum 2365 * @skb: buffer to trim 2366 * @len: new length 2367 * 2368 * This is exactly the same as pskb_trim except that it ensures the 2369 * checksum of received packets are still valid after the operation. 2370 */ 2371 2372 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 2373 { 2374 if (likely(len >= skb->len)) 2375 return 0; 2376 if (skb->ip_summed == CHECKSUM_COMPLETE) { 2377 __wsum adj = skb_checksum(skb, len, skb->len - len, 0); 2378 2379 skb->csum = csum_sub(skb->csum, adj); 2380 } 2381 return __pskb_trim(skb, len); 2382 } 2383 2384 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset, 2385 int len, void *buffer) 2386 { 2387 int hlen = skb_headlen(skb); 2388 2389 if (hlen - offset >= len) 2390 return skb->data + offset; 2391 2392 if (skb_copy_bits(skb, offset, buffer, len) < 0) 2393 return NULL; 2394 2395 return buffer; 2396 } 2397 2398 static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 2399 void *to, 2400 const unsigned int len) 2401 { 2402 memcpy(to, skb->data, len); 2403 } 2404 2405 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 2406 const int offset, void *to, 2407 const unsigned int len) 2408 { 2409 memcpy(to, skb->data + offset, len); 2410 } 2411 2412 static inline void skb_copy_to_linear_data(struct sk_buff *skb, 2413 const void *from, 2414 const unsigned int len) 2415 { 2416 memcpy(skb->data, from, len); 2417 } 2418 2419 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 2420 const int offset, 2421 const void *from, 2422 const unsigned int len) 2423 { 2424 memcpy(skb->data + offset, from, len); 2425 } 2426 2427 void skb_init(void); 2428 2429 static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 2430 { 2431 return skb->tstamp; 2432 } 2433 2434 /** 2435 * skb_get_timestamp - get timestamp from a skb 2436 * @skb: skb to get stamp from 2437 * @stamp: pointer to struct timeval to store stamp in 2438 * 2439 * Timestamps are stored in the skb as offsets to a base timestamp. 2440 * This function converts the offset back to a struct timeval and stores 2441 * it in stamp. 2442 */ 2443 static inline void skb_get_timestamp(const struct sk_buff *skb, 2444 struct timeval *stamp) 2445 { 2446 *stamp = ktime_to_timeval(skb->tstamp); 2447 } 2448 2449 static inline void skb_get_timestampns(const struct sk_buff *skb, 2450 struct timespec *stamp) 2451 { 2452 *stamp = ktime_to_timespec(skb->tstamp); 2453 } 2454 2455 static inline void __net_timestamp(struct sk_buff *skb) 2456 { 2457 skb->tstamp = ktime_get_real(); 2458 } 2459 2460 static inline ktime_t net_timedelta(ktime_t t) 2461 { 2462 return ktime_sub(ktime_get_real(), t); 2463 } 2464 2465 static inline ktime_t net_invalid_timestamp(void) 2466 { 2467 return ktime_set(0, 0); 2468 } 2469 2470 void skb_timestamping_init(void); 2471 2472 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 2473 2474 void skb_clone_tx_timestamp(struct sk_buff *skb); 2475 bool skb_defer_rx_timestamp(struct sk_buff *skb); 2476 2477 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 2478 2479 static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 2480 { 2481 } 2482 2483 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 2484 { 2485 return false; 2486 } 2487 2488 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 2489 2490 /** 2491 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 2492 * 2493 * PHY drivers may accept clones of transmitted packets for 2494 * timestamping via their phy_driver.txtstamp method. These drivers 2495 * must call this function to return the skb back to the stack, with 2496 * or without a timestamp. 2497 * 2498 * @skb: clone of the the original outgoing packet 2499 * @hwtstamps: hardware time stamps, may be NULL if not available 2500 * 2501 */ 2502 void skb_complete_tx_timestamp(struct sk_buff *skb, 2503 struct skb_shared_hwtstamps *hwtstamps); 2504 2505 /** 2506 * skb_tstamp_tx - queue clone of skb with send time stamps 2507 * @orig_skb: the original outgoing packet 2508 * @hwtstamps: hardware time stamps, may be NULL if not available 2509 * 2510 * If the skb has a socket associated, then this function clones the 2511 * skb (thus sharing the actual data and optional structures), stores 2512 * the optional hardware time stamping information (if non NULL) or 2513 * generates a software time stamp (otherwise), then queues the clone 2514 * to the error queue of the socket. Errors are silently ignored. 2515 */ 2516 void skb_tstamp_tx(struct sk_buff *orig_skb, 2517 struct skb_shared_hwtstamps *hwtstamps); 2518 2519 static inline void sw_tx_timestamp(struct sk_buff *skb) 2520 { 2521 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP && 2522 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) 2523 skb_tstamp_tx(skb, NULL); 2524 } 2525 2526 /** 2527 * skb_tx_timestamp() - Driver hook for transmit timestamping 2528 * 2529 * Ethernet MAC Drivers should call this function in their hard_xmit() 2530 * function immediately before giving the sk_buff to the MAC hardware. 2531 * 2532 * @skb: A socket buffer. 2533 */ 2534 static inline void skb_tx_timestamp(struct sk_buff *skb) 2535 { 2536 skb_clone_tx_timestamp(skb); 2537 sw_tx_timestamp(skb); 2538 } 2539 2540 /** 2541 * skb_complete_wifi_ack - deliver skb with wifi status 2542 * 2543 * @skb: the original outgoing packet 2544 * @acked: ack status 2545 * 2546 */ 2547 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); 2548 2549 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 2550 __sum16 __skb_checksum_complete(struct sk_buff *skb); 2551 2552 static inline int skb_csum_unnecessary(const struct sk_buff *skb) 2553 { 2554 return skb->ip_summed & CHECKSUM_UNNECESSARY; 2555 } 2556 2557 /** 2558 * skb_checksum_complete - Calculate checksum of an entire packet 2559 * @skb: packet to process 2560 * 2561 * This function calculates the checksum over the entire packet plus 2562 * the value of skb->csum. The latter can be used to supply the 2563 * checksum of a pseudo header as used by TCP/UDP. It returns the 2564 * checksum. 2565 * 2566 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 2567 * this function can be used to verify that checksum on received 2568 * packets. In that case the function should return zero if the 2569 * checksum is correct. In particular, this function will return zero 2570 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 2571 * hardware has already verified the correctness of the checksum. 2572 */ 2573 static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 2574 { 2575 return skb_csum_unnecessary(skb) ? 2576 0 : __skb_checksum_complete(skb); 2577 } 2578 2579 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2580 void nf_conntrack_destroy(struct nf_conntrack *nfct); 2581 static inline void nf_conntrack_put(struct nf_conntrack *nfct) 2582 { 2583 if (nfct && atomic_dec_and_test(&nfct->use)) 2584 nf_conntrack_destroy(nfct); 2585 } 2586 static inline void nf_conntrack_get(struct nf_conntrack *nfct) 2587 { 2588 if (nfct) 2589 atomic_inc(&nfct->use); 2590 } 2591 #endif 2592 #ifdef CONFIG_BRIDGE_NETFILTER 2593 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge) 2594 { 2595 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use)) 2596 kfree(nf_bridge); 2597 } 2598 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge) 2599 { 2600 if (nf_bridge) 2601 atomic_inc(&nf_bridge->use); 2602 } 2603 #endif /* CONFIG_BRIDGE_NETFILTER */ 2604 static inline void nf_reset(struct sk_buff *skb) 2605 { 2606 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2607 nf_conntrack_put(skb->nfct); 2608 skb->nfct = NULL; 2609 #endif 2610 #ifdef CONFIG_BRIDGE_NETFILTER 2611 nf_bridge_put(skb->nf_bridge); 2612 skb->nf_bridge = NULL; 2613 #endif 2614 } 2615 2616 static inline void nf_reset_trace(struct sk_buff *skb) 2617 { 2618 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) 2619 skb->nf_trace = 0; 2620 #endif 2621 } 2622 2623 /* Note: This doesn't put any conntrack and bridge info in dst. */ 2624 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src) 2625 { 2626 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2627 dst->nfct = src->nfct; 2628 nf_conntrack_get(src->nfct); 2629 dst->nfctinfo = src->nfctinfo; 2630 #endif 2631 #ifdef CONFIG_BRIDGE_NETFILTER 2632 dst->nf_bridge = src->nf_bridge; 2633 nf_bridge_get(src->nf_bridge); 2634 #endif 2635 } 2636 2637 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 2638 { 2639 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2640 nf_conntrack_put(dst->nfct); 2641 #endif 2642 #ifdef CONFIG_BRIDGE_NETFILTER 2643 nf_bridge_put(dst->nf_bridge); 2644 #endif 2645 __nf_copy(dst, src); 2646 } 2647 2648 #ifdef CONFIG_NETWORK_SECMARK 2649 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 2650 { 2651 to->secmark = from->secmark; 2652 } 2653 2654 static inline void skb_init_secmark(struct sk_buff *skb) 2655 { 2656 skb->secmark = 0; 2657 } 2658 #else 2659 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 2660 { } 2661 2662 static inline void skb_init_secmark(struct sk_buff *skb) 2663 { } 2664 #endif 2665 2666 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 2667 { 2668 skb->queue_mapping = queue_mapping; 2669 } 2670 2671 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 2672 { 2673 return skb->queue_mapping; 2674 } 2675 2676 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 2677 { 2678 to->queue_mapping = from->queue_mapping; 2679 } 2680 2681 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 2682 { 2683 skb->queue_mapping = rx_queue + 1; 2684 } 2685 2686 static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 2687 { 2688 return skb->queue_mapping - 1; 2689 } 2690 2691 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 2692 { 2693 return skb->queue_mapping != 0; 2694 } 2695 2696 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb, 2697 unsigned int num_tx_queues); 2698 2699 static inline struct sec_path *skb_sec_path(struct sk_buff *skb) 2700 { 2701 #ifdef CONFIG_XFRM 2702 return skb->sp; 2703 #else 2704 return NULL; 2705 #endif 2706 } 2707 2708 /* Keeps track of mac header offset relative to skb->head. 2709 * It is useful for TSO of Tunneling protocol. e.g. GRE. 2710 * For non-tunnel skb it points to skb_mac_header() and for 2711 * tunnel skb it points to outer mac header. 2712 * Keeps track of level of encapsulation of network headers. 2713 */ 2714 struct skb_gso_cb { 2715 int mac_offset; 2716 int encap_level; 2717 }; 2718 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)(skb)->cb) 2719 2720 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb) 2721 { 2722 return (skb_mac_header(inner_skb) - inner_skb->head) - 2723 SKB_GSO_CB(inner_skb)->mac_offset; 2724 } 2725 2726 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra) 2727 { 2728 int new_headroom, headroom; 2729 int ret; 2730 2731 headroom = skb_headroom(skb); 2732 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC); 2733 if (ret) 2734 return ret; 2735 2736 new_headroom = skb_headroom(skb); 2737 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom); 2738 return 0; 2739 } 2740 2741 static inline bool skb_is_gso(const struct sk_buff *skb) 2742 { 2743 return skb_shinfo(skb)->gso_size; 2744 } 2745 2746 /* Note: Should be called only if skb_is_gso(skb) is true */ 2747 static inline bool skb_is_gso_v6(const struct sk_buff *skb) 2748 { 2749 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 2750 } 2751 2752 void __skb_warn_lro_forwarding(const struct sk_buff *skb); 2753 2754 static inline bool skb_warn_if_lro(const struct sk_buff *skb) 2755 { 2756 /* LRO sets gso_size but not gso_type, whereas if GSO is really 2757 * wanted then gso_type will be set. */ 2758 const struct skb_shared_info *shinfo = skb_shinfo(skb); 2759 2760 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 2761 unlikely(shinfo->gso_type == 0)) { 2762 __skb_warn_lro_forwarding(skb); 2763 return true; 2764 } 2765 return false; 2766 } 2767 2768 static inline void skb_forward_csum(struct sk_buff *skb) 2769 { 2770 /* Unfortunately we don't support this one. Any brave souls? */ 2771 if (skb->ip_summed == CHECKSUM_COMPLETE) 2772 skb->ip_summed = CHECKSUM_NONE; 2773 } 2774 2775 /** 2776 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 2777 * @skb: skb to check 2778 * 2779 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 2780 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 2781 * use this helper, to document places where we make this assertion. 2782 */ 2783 static inline void skb_checksum_none_assert(const struct sk_buff *skb) 2784 { 2785 #ifdef DEBUG 2786 BUG_ON(skb->ip_summed != CHECKSUM_NONE); 2787 #endif 2788 } 2789 2790 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 2791 2792 u32 __skb_get_poff(const struct sk_buff *skb); 2793 2794 /** 2795 * skb_head_is_locked - Determine if the skb->head is locked down 2796 * @skb: skb to check 2797 * 2798 * The head on skbs build around a head frag can be removed if they are 2799 * not cloned. This function returns true if the skb head is locked down 2800 * due to either being allocated via kmalloc, or by being a clone with 2801 * multiple references to the head. 2802 */ 2803 static inline bool skb_head_is_locked(const struct sk_buff *skb) 2804 { 2805 return !skb->head_frag || skb_cloned(skb); 2806 } 2807 #endif /* __KERNEL__ */ 2808 #endif /* _LINUX_SKBUFF_H */ 2809