xref: /linux-6.15/include/linux/skbuff.h (revision e73173db)
1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <[email protected]>
6  *		Florian La Roche, <[email protected]>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/cache.h>
21 
22 #include <asm/atomic.h>
23 #include <asm/types.h>
24 #include <linux/spinlock.h>
25 #include <linux/net.h>
26 #include <linux/textsearch.h>
27 #include <net/checksum.h>
28 #include <linux/rcupdate.h>
29 #include <linux/dmaengine.h>
30 #include <linux/hrtimer.h>
31 
32 /* Don't change this without changing skb_csum_unnecessary! */
33 #define CHECKSUM_NONE 0
34 #define CHECKSUM_UNNECESSARY 1
35 #define CHECKSUM_COMPLETE 2
36 #define CHECKSUM_PARTIAL 3
37 
38 #define SKB_DATA_ALIGN(X)	(((X) + (SMP_CACHE_BYTES - 1)) & \
39 				 ~(SMP_CACHE_BYTES - 1))
40 #define SKB_WITH_OVERHEAD(X)	\
41 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
42 #define SKB_MAX_ORDER(X, ORDER) \
43 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
44 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
45 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
46 
47 /* A. Checksumming of received packets by device.
48  *
49  *	NONE: device failed to checksum this packet.
50  *		skb->csum is undefined.
51  *
52  *	UNNECESSARY: device parsed packet and wouldbe verified checksum.
53  *		skb->csum is undefined.
54  *	      It is bad option, but, unfortunately, many of vendors do this.
55  *	      Apparently with secret goal to sell you new device, when you
56  *	      will add new protocol to your host. F.e. IPv6. 8)
57  *
58  *	COMPLETE: the most generic way. Device supplied checksum of _all_
59  *	    the packet as seen by netif_rx in skb->csum.
60  *	    NOTE: Even if device supports only some protocols, but
61  *	    is able to produce some skb->csum, it MUST use COMPLETE,
62  *	    not UNNECESSARY.
63  *
64  *	PARTIAL: identical to the case for output below.  This may occur
65  *	    on a packet received directly from another Linux OS, e.g.,
66  *	    a virtualised Linux kernel on the same host.  The packet can
67  *	    be treated in the same way as UNNECESSARY except that on
68  *	    output (i.e., forwarding) the checksum must be filled in
69  *	    by the OS or the hardware.
70  *
71  * B. Checksumming on output.
72  *
73  *	NONE: skb is checksummed by protocol or csum is not required.
74  *
75  *	PARTIAL: device is required to csum packet as seen by hard_start_xmit
76  *	from skb->csum_start to the end and to record the checksum
77  *	at skb->csum_start + skb->csum_offset.
78  *
79  *	Device must show its capabilities in dev->features, set
80  *	at device setup time.
81  *	NETIF_F_HW_CSUM	- it is clever device, it is able to checksum
82  *			  everything.
83  *	NETIF_F_NO_CSUM - loopback or reliable single hop media.
84  *	NETIF_F_IP_CSUM - device is dumb. It is able to csum only
85  *			  TCP/UDP over IPv4. Sigh. Vendors like this
86  *			  way by an unknown reason. Though, see comment above
87  *			  about CHECKSUM_UNNECESSARY. 8)
88  *	NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
89  *
90  *	Any questions? No questions, good. 		--ANK
91  */
92 
93 struct net_device;
94 struct scatterlist;
95 struct pipe_inode_info;
96 
97 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
98 struct nf_conntrack {
99 	atomic_t use;
100 };
101 #endif
102 
103 #ifdef CONFIG_BRIDGE_NETFILTER
104 struct nf_bridge_info {
105 	atomic_t use;
106 	struct net_device *physindev;
107 	struct net_device *physoutdev;
108 	unsigned int mask;
109 	unsigned long data[32 / sizeof(unsigned long)];
110 };
111 #endif
112 
113 struct sk_buff_head {
114 	/* These two members must be first. */
115 	struct sk_buff	*next;
116 	struct sk_buff	*prev;
117 
118 	__u32		qlen;
119 	spinlock_t	lock;
120 };
121 
122 struct sk_buff;
123 
124 /* To allow 64K frame to be packed as single skb without frag_list */
125 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
126 
127 typedef struct skb_frag_struct skb_frag_t;
128 
129 struct skb_frag_struct {
130 	struct page *page;
131 	__u32 page_offset;
132 	__u32 size;
133 };
134 
135 #define HAVE_HW_TIME_STAMP
136 
137 /**
138  * struct skb_shared_hwtstamps - hardware time stamps
139  * @hwtstamp:	hardware time stamp transformed into duration
140  *		since arbitrary point in time
141  * @syststamp:	hwtstamp transformed to system time base
142  *
143  * Software time stamps generated by ktime_get_real() are stored in
144  * skb->tstamp. The relation between the different kinds of time
145  * stamps is as follows:
146  *
147  * syststamp and tstamp can be compared against each other in
148  * arbitrary combinations.  The accuracy of a
149  * syststamp/tstamp/"syststamp from other device" comparison is
150  * limited by the accuracy of the transformation into system time
151  * base. This depends on the device driver and its underlying
152  * hardware.
153  *
154  * hwtstamps can only be compared against other hwtstamps from
155  * the same device.
156  *
157  * This structure is attached to packets as part of the
158  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
159  */
160 struct skb_shared_hwtstamps {
161 	ktime_t	hwtstamp;
162 	ktime_t	syststamp;
163 };
164 
165 /**
166  * struct skb_shared_tx - instructions for time stamping of outgoing packets
167  * @hardware:		generate hardware time stamp
168  * @software:		generate software time stamp
169  * @in_progress:	device driver is going to provide
170  *			hardware time stamp
171  * @flags:		all shared_tx flags
172  *
173  * These flags are attached to packets as part of the
174  * &skb_shared_info. Use skb_tx() to get a pointer.
175  */
176 union skb_shared_tx {
177 	struct {
178 		__u8	hardware:1,
179 			software:1,
180 			in_progress:1;
181 	};
182 	__u8 flags;
183 };
184 
185 /* This data is invariant across clones and lives at
186  * the end of the header data, ie. at skb->end.
187  */
188 struct skb_shared_info {
189 	atomic_t	dataref;
190 	unsigned short	nr_frags;
191 	unsigned short	gso_size;
192 	/* Warning: this field is not always filled in (UFO)! */
193 	unsigned short	gso_segs;
194 	unsigned short  gso_type;
195 	__be32          ip6_frag_id;
196 	union skb_shared_tx tx_flags;
197 #ifdef CONFIG_HAS_DMA
198 	unsigned int	num_dma_maps;
199 #endif
200 	struct sk_buff	*frag_list;
201 	struct skb_shared_hwtstamps hwtstamps;
202 	skb_frag_t	frags[MAX_SKB_FRAGS];
203 #ifdef CONFIG_HAS_DMA
204 	dma_addr_t	dma_maps[MAX_SKB_FRAGS + 1];
205 #endif
206 };
207 
208 /* We divide dataref into two halves.  The higher 16 bits hold references
209  * to the payload part of skb->data.  The lower 16 bits hold references to
210  * the entire skb->data.  A clone of a headerless skb holds the length of
211  * the header in skb->hdr_len.
212  *
213  * All users must obey the rule that the skb->data reference count must be
214  * greater than or equal to the payload reference count.
215  *
216  * Holding a reference to the payload part means that the user does not
217  * care about modifications to the header part of skb->data.
218  */
219 #define SKB_DATAREF_SHIFT 16
220 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
221 
222 
223 enum {
224 	SKB_FCLONE_UNAVAILABLE,
225 	SKB_FCLONE_ORIG,
226 	SKB_FCLONE_CLONE,
227 };
228 
229 enum {
230 	SKB_GSO_TCPV4 = 1 << 0,
231 	SKB_GSO_UDP = 1 << 1,
232 
233 	/* This indicates the skb is from an untrusted source. */
234 	SKB_GSO_DODGY = 1 << 2,
235 
236 	/* This indicates the tcp segment has CWR set. */
237 	SKB_GSO_TCP_ECN = 1 << 3,
238 
239 	SKB_GSO_TCPV6 = 1 << 4,
240 
241 	SKB_GSO_FCOE = 1 << 5,
242 };
243 
244 #if BITS_PER_LONG > 32
245 #define NET_SKBUFF_DATA_USES_OFFSET 1
246 #endif
247 
248 #ifdef NET_SKBUFF_DATA_USES_OFFSET
249 typedef unsigned int sk_buff_data_t;
250 #else
251 typedef unsigned char *sk_buff_data_t;
252 #endif
253 
254 /**
255  *	struct sk_buff - socket buffer
256  *	@next: Next buffer in list
257  *	@prev: Previous buffer in list
258  *	@sk: Socket we are owned by
259  *	@tstamp: Time we arrived
260  *	@dev: Device we arrived on/are leaving by
261  *	@transport_header: Transport layer header
262  *	@network_header: Network layer header
263  *	@mac_header: Link layer header
264  *	@dst: destination entry
265  *	@sp: the security path, used for xfrm
266  *	@cb: Control buffer. Free for use by every layer. Put private vars here
267  *	@len: Length of actual data
268  *	@data_len: Data length
269  *	@mac_len: Length of link layer header
270  *	@hdr_len: writable header length of cloned skb
271  *	@csum: Checksum (must include start/offset pair)
272  *	@csum_start: Offset from skb->head where checksumming should start
273  *	@csum_offset: Offset from csum_start where checksum should be stored
274  *	@local_df: allow local fragmentation
275  *	@cloned: Head may be cloned (check refcnt to be sure)
276  *	@nohdr: Payload reference only, must not modify header
277  *	@pkt_type: Packet class
278  *	@fclone: skbuff clone status
279  *	@ip_summed: Driver fed us an IP checksum
280  *	@priority: Packet queueing priority
281  *	@users: User count - see {datagram,tcp}.c
282  *	@protocol: Packet protocol from driver
283  *	@truesize: Buffer size
284  *	@head: Head of buffer
285  *	@data: Data head pointer
286  *	@tail: Tail pointer
287  *	@end: End pointer
288  *	@destructor: Destruct function
289  *	@mark: Generic packet mark
290  *	@nfct: Associated connection, if any
291  *	@ipvs_property: skbuff is owned by ipvs
292  *	@peeked: this packet has been seen already, so stats have been
293  *		done for it, don't do them again
294  *	@nf_trace: netfilter packet trace flag
295  *	@nfctinfo: Relationship of this skb to the connection
296  *	@nfct_reasm: netfilter conntrack re-assembly pointer
297  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
298  *	@iif: ifindex of device we arrived on
299  *	@queue_mapping: Queue mapping for multiqueue devices
300  *	@tc_index: Traffic control index
301  *	@tc_verd: traffic control verdict
302  *	@ndisc_nodetype: router type (from link layer)
303  *	@do_not_encrypt: set to prevent encryption of this frame
304  *	@requeue: set to indicate that the wireless core should attempt
305  *		a software retry on this frame if we failed to
306  *		receive an ACK for it
307  *	@dma_cookie: a cookie to one of several possible DMA operations
308  *		done by skb DMA functions
309  *	@secmark: security marking
310  *	@vlan_tci: vlan tag control information
311  */
312 
313 struct sk_buff {
314 	/* These two members must be first. */
315 	struct sk_buff		*next;
316 	struct sk_buff		*prev;
317 
318 	struct sock		*sk;
319 	ktime_t			tstamp;
320 	struct net_device	*dev;
321 
322 	union {
323 		struct  dst_entry	*dst;
324 		struct  rtable		*rtable;
325 	};
326 #ifdef CONFIG_XFRM
327 	struct	sec_path	*sp;
328 #endif
329 	/*
330 	 * This is the control buffer. It is free to use for every
331 	 * layer. Please put your private variables there. If you
332 	 * want to keep them across layers you have to do a skb_clone()
333 	 * first. This is owned by whoever has the skb queued ATM.
334 	 */
335 	char			cb[48];
336 
337 	unsigned int		len,
338 				data_len;
339 	__u16			mac_len,
340 				hdr_len;
341 	union {
342 		__wsum		csum;
343 		struct {
344 			__u16	csum_start;
345 			__u16	csum_offset;
346 		};
347 	};
348 	__u32			priority;
349 	__u8			local_df:1,
350 				cloned:1,
351 				ip_summed:2,
352 				nohdr:1,
353 				nfctinfo:3;
354 	__u8			pkt_type:3,
355 				fclone:2,
356 				ipvs_property:1,
357 				peeked:1,
358 				nf_trace:1;
359 	__be16			protocol;
360 
361 	void			(*destructor)(struct sk_buff *skb);
362 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
363 	struct nf_conntrack	*nfct;
364 	struct sk_buff		*nfct_reasm;
365 #endif
366 #ifdef CONFIG_BRIDGE_NETFILTER
367 	struct nf_bridge_info	*nf_bridge;
368 #endif
369 
370 	int			iif;
371 	__u16			queue_mapping;
372 #ifdef CONFIG_NET_SCHED
373 	__u16			tc_index;	/* traffic control index */
374 #ifdef CONFIG_NET_CLS_ACT
375 	__u16			tc_verd;	/* traffic control verdict */
376 #endif
377 #endif
378 #ifdef CONFIG_IPV6_NDISC_NODETYPE
379 	__u8			ndisc_nodetype:2;
380 #endif
381 #if defined(CONFIG_MAC80211) || defined(CONFIG_MAC80211_MODULE)
382 	__u8			do_not_encrypt:1;
383 	__u8			requeue:1;
384 #endif
385 	/* 0/13/14 bit hole */
386 
387 #ifdef CONFIG_NET_DMA
388 	dma_cookie_t		dma_cookie;
389 #endif
390 #ifdef CONFIG_NETWORK_SECMARK
391 	__u32			secmark;
392 #endif
393 
394 	__u32			mark;
395 
396 	__u16			vlan_tci;
397 
398 	sk_buff_data_t		transport_header;
399 	sk_buff_data_t		network_header;
400 	sk_buff_data_t		mac_header;
401 	/* These elements must be at the end, see alloc_skb() for details.  */
402 	sk_buff_data_t		tail;
403 	sk_buff_data_t		end;
404 	unsigned char		*head,
405 				*data;
406 	unsigned int		truesize;
407 	atomic_t		users;
408 };
409 
410 #ifdef __KERNEL__
411 /*
412  *	Handling routines are only of interest to the kernel
413  */
414 #include <linux/slab.h>
415 
416 #include <asm/system.h>
417 
418 #ifdef CONFIG_HAS_DMA
419 #include <linux/dma-mapping.h>
420 extern int skb_dma_map(struct device *dev, struct sk_buff *skb,
421 		       enum dma_data_direction dir);
422 extern void skb_dma_unmap(struct device *dev, struct sk_buff *skb,
423 			  enum dma_data_direction dir);
424 #endif
425 
426 extern void kfree_skb(struct sk_buff *skb);
427 extern void consume_skb(struct sk_buff *skb);
428 extern void	       __kfree_skb(struct sk_buff *skb);
429 extern struct sk_buff *__alloc_skb(unsigned int size,
430 				   gfp_t priority, int fclone, int node);
431 static inline struct sk_buff *alloc_skb(unsigned int size,
432 					gfp_t priority)
433 {
434 	return __alloc_skb(size, priority, 0, -1);
435 }
436 
437 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
438 					       gfp_t priority)
439 {
440 	return __alloc_skb(size, priority, 1, -1);
441 }
442 
443 extern int skb_recycle_check(struct sk_buff *skb, int skb_size);
444 
445 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
446 extern struct sk_buff *skb_clone(struct sk_buff *skb,
447 				 gfp_t priority);
448 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
449 				gfp_t priority);
450 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
451 				 gfp_t gfp_mask);
452 extern int	       pskb_expand_head(struct sk_buff *skb,
453 					int nhead, int ntail,
454 					gfp_t gfp_mask);
455 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
456 					    unsigned int headroom);
457 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
458 				       int newheadroom, int newtailroom,
459 				       gfp_t priority);
460 extern int	       skb_to_sgvec(struct sk_buff *skb,
461 				    struct scatterlist *sg, int offset,
462 				    int len);
463 extern int	       skb_cow_data(struct sk_buff *skb, int tailbits,
464 				    struct sk_buff **trailer);
465 extern int	       skb_pad(struct sk_buff *skb, int pad);
466 #define dev_kfree_skb(a)	consume_skb(a)
467 #define dev_consume_skb(a)	kfree_skb_clean(a)
468 extern void	      skb_over_panic(struct sk_buff *skb, int len,
469 				     void *here);
470 extern void	      skb_under_panic(struct sk_buff *skb, int len,
471 				      void *here);
472 
473 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
474 			int getfrag(void *from, char *to, int offset,
475 			int len,int odd, struct sk_buff *skb),
476 			void *from, int length);
477 
478 struct skb_seq_state
479 {
480 	__u32		lower_offset;
481 	__u32		upper_offset;
482 	__u32		frag_idx;
483 	__u32		stepped_offset;
484 	struct sk_buff	*root_skb;
485 	struct sk_buff	*cur_skb;
486 	__u8		*frag_data;
487 };
488 
489 extern void	      skb_prepare_seq_read(struct sk_buff *skb,
490 					   unsigned int from, unsigned int to,
491 					   struct skb_seq_state *st);
492 extern unsigned int   skb_seq_read(unsigned int consumed, const u8 **data,
493 				   struct skb_seq_state *st);
494 extern void	      skb_abort_seq_read(struct skb_seq_state *st);
495 
496 extern unsigned int   skb_find_text(struct sk_buff *skb, unsigned int from,
497 				    unsigned int to, struct ts_config *config,
498 				    struct ts_state *state);
499 
500 #ifdef NET_SKBUFF_DATA_USES_OFFSET
501 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
502 {
503 	return skb->head + skb->end;
504 }
505 #else
506 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
507 {
508 	return skb->end;
509 }
510 #endif
511 
512 /* Internal */
513 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
514 
515 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
516 {
517 	return &skb_shinfo(skb)->hwtstamps;
518 }
519 
520 static inline union skb_shared_tx *skb_tx(struct sk_buff *skb)
521 {
522 	return &skb_shinfo(skb)->tx_flags;
523 }
524 
525 /**
526  *	skb_queue_empty - check if a queue is empty
527  *	@list: queue head
528  *
529  *	Returns true if the queue is empty, false otherwise.
530  */
531 static inline int skb_queue_empty(const struct sk_buff_head *list)
532 {
533 	return list->next == (struct sk_buff *)list;
534 }
535 
536 /**
537  *	skb_queue_is_last - check if skb is the last entry in the queue
538  *	@list: queue head
539  *	@skb: buffer
540  *
541  *	Returns true if @skb is the last buffer on the list.
542  */
543 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
544 				     const struct sk_buff *skb)
545 {
546 	return (skb->next == (struct sk_buff *) list);
547 }
548 
549 /**
550  *	skb_queue_is_first - check if skb is the first entry in the queue
551  *	@list: queue head
552  *	@skb: buffer
553  *
554  *	Returns true if @skb is the first buffer on the list.
555  */
556 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
557 				      const struct sk_buff *skb)
558 {
559 	return (skb->prev == (struct sk_buff *) list);
560 }
561 
562 /**
563  *	skb_queue_next - return the next packet in the queue
564  *	@list: queue head
565  *	@skb: current buffer
566  *
567  *	Return the next packet in @list after @skb.  It is only valid to
568  *	call this if skb_queue_is_last() evaluates to false.
569  */
570 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
571 					     const struct sk_buff *skb)
572 {
573 	/* This BUG_ON may seem severe, but if we just return then we
574 	 * are going to dereference garbage.
575 	 */
576 	BUG_ON(skb_queue_is_last(list, skb));
577 	return skb->next;
578 }
579 
580 /**
581  *	skb_queue_prev - return the prev packet in the queue
582  *	@list: queue head
583  *	@skb: current buffer
584  *
585  *	Return the prev packet in @list before @skb.  It is only valid to
586  *	call this if skb_queue_is_first() evaluates to false.
587  */
588 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
589 					     const struct sk_buff *skb)
590 {
591 	/* This BUG_ON may seem severe, but if we just return then we
592 	 * are going to dereference garbage.
593 	 */
594 	BUG_ON(skb_queue_is_first(list, skb));
595 	return skb->prev;
596 }
597 
598 /**
599  *	skb_get - reference buffer
600  *	@skb: buffer to reference
601  *
602  *	Makes another reference to a socket buffer and returns a pointer
603  *	to the buffer.
604  */
605 static inline struct sk_buff *skb_get(struct sk_buff *skb)
606 {
607 	atomic_inc(&skb->users);
608 	return skb;
609 }
610 
611 /*
612  * If users == 1, we are the only owner and are can avoid redundant
613  * atomic change.
614  */
615 
616 /**
617  *	skb_cloned - is the buffer a clone
618  *	@skb: buffer to check
619  *
620  *	Returns true if the buffer was generated with skb_clone() and is
621  *	one of multiple shared copies of the buffer. Cloned buffers are
622  *	shared data so must not be written to under normal circumstances.
623  */
624 static inline int skb_cloned(const struct sk_buff *skb)
625 {
626 	return skb->cloned &&
627 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
628 }
629 
630 /**
631  *	skb_header_cloned - is the header a clone
632  *	@skb: buffer to check
633  *
634  *	Returns true if modifying the header part of the buffer requires
635  *	the data to be copied.
636  */
637 static inline int skb_header_cloned(const struct sk_buff *skb)
638 {
639 	int dataref;
640 
641 	if (!skb->cloned)
642 		return 0;
643 
644 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
645 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
646 	return dataref != 1;
647 }
648 
649 /**
650  *	skb_header_release - release reference to header
651  *	@skb: buffer to operate on
652  *
653  *	Drop a reference to the header part of the buffer.  This is done
654  *	by acquiring a payload reference.  You must not read from the header
655  *	part of skb->data after this.
656  */
657 static inline void skb_header_release(struct sk_buff *skb)
658 {
659 	BUG_ON(skb->nohdr);
660 	skb->nohdr = 1;
661 	atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
662 }
663 
664 /**
665  *	skb_shared - is the buffer shared
666  *	@skb: buffer to check
667  *
668  *	Returns true if more than one person has a reference to this
669  *	buffer.
670  */
671 static inline int skb_shared(const struct sk_buff *skb)
672 {
673 	return atomic_read(&skb->users) != 1;
674 }
675 
676 /**
677  *	skb_share_check - check if buffer is shared and if so clone it
678  *	@skb: buffer to check
679  *	@pri: priority for memory allocation
680  *
681  *	If the buffer is shared the buffer is cloned and the old copy
682  *	drops a reference. A new clone with a single reference is returned.
683  *	If the buffer is not shared the original buffer is returned. When
684  *	being called from interrupt status or with spinlocks held pri must
685  *	be GFP_ATOMIC.
686  *
687  *	NULL is returned on a memory allocation failure.
688  */
689 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
690 					      gfp_t pri)
691 {
692 	might_sleep_if(pri & __GFP_WAIT);
693 	if (skb_shared(skb)) {
694 		struct sk_buff *nskb = skb_clone(skb, pri);
695 		kfree_skb(skb);
696 		skb = nskb;
697 	}
698 	return skb;
699 }
700 
701 /*
702  *	Copy shared buffers into a new sk_buff. We effectively do COW on
703  *	packets to handle cases where we have a local reader and forward
704  *	and a couple of other messy ones. The normal one is tcpdumping
705  *	a packet thats being forwarded.
706  */
707 
708 /**
709  *	skb_unshare - make a copy of a shared buffer
710  *	@skb: buffer to check
711  *	@pri: priority for memory allocation
712  *
713  *	If the socket buffer is a clone then this function creates a new
714  *	copy of the data, drops a reference count on the old copy and returns
715  *	the new copy with the reference count at 1. If the buffer is not a clone
716  *	the original buffer is returned. When called with a spinlock held or
717  *	from interrupt state @pri must be %GFP_ATOMIC
718  *
719  *	%NULL is returned on a memory allocation failure.
720  */
721 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
722 					  gfp_t pri)
723 {
724 	might_sleep_if(pri & __GFP_WAIT);
725 	if (skb_cloned(skb)) {
726 		struct sk_buff *nskb = skb_copy(skb, pri);
727 		kfree_skb(skb);	/* Free our shared copy */
728 		skb = nskb;
729 	}
730 	return skb;
731 }
732 
733 /**
734  *	skb_peek
735  *	@list_: list to peek at
736  *
737  *	Peek an &sk_buff. Unlike most other operations you _MUST_
738  *	be careful with this one. A peek leaves the buffer on the
739  *	list and someone else may run off with it. You must hold
740  *	the appropriate locks or have a private queue to do this.
741  *
742  *	Returns %NULL for an empty list or a pointer to the head element.
743  *	The reference count is not incremented and the reference is therefore
744  *	volatile. Use with caution.
745  */
746 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
747 {
748 	struct sk_buff *list = ((struct sk_buff *)list_)->next;
749 	if (list == (struct sk_buff *)list_)
750 		list = NULL;
751 	return list;
752 }
753 
754 /**
755  *	skb_peek_tail
756  *	@list_: list to peek at
757  *
758  *	Peek an &sk_buff. Unlike most other operations you _MUST_
759  *	be careful with this one. A peek leaves the buffer on the
760  *	list and someone else may run off with it. You must hold
761  *	the appropriate locks or have a private queue to do this.
762  *
763  *	Returns %NULL for an empty list or a pointer to the tail element.
764  *	The reference count is not incremented and the reference is therefore
765  *	volatile. Use with caution.
766  */
767 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
768 {
769 	struct sk_buff *list = ((struct sk_buff *)list_)->prev;
770 	if (list == (struct sk_buff *)list_)
771 		list = NULL;
772 	return list;
773 }
774 
775 /**
776  *	skb_queue_len	- get queue length
777  *	@list_: list to measure
778  *
779  *	Return the length of an &sk_buff queue.
780  */
781 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
782 {
783 	return list_->qlen;
784 }
785 
786 /**
787  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
788  *	@list: queue to initialize
789  *
790  *	This initializes only the list and queue length aspects of
791  *	an sk_buff_head object.  This allows to initialize the list
792  *	aspects of an sk_buff_head without reinitializing things like
793  *	the spinlock.  It can also be used for on-stack sk_buff_head
794  *	objects where the spinlock is known to not be used.
795  */
796 static inline void __skb_queue_head_init(struct sk_buff_head *list)
797 {
798 	list->prev = list->next = (struct sk_buff *)list;
799 	list->qlen = 0;
800 }
801 
802 /*
803  * This function creates a split out lock class for each invocation;
804  * this is needed for now since a whole lot of users of the skb-queue
805  * infrastructure in drivers have different locking usage (in hardirq)
806  * than the networking core (in softirq only). In the long run either the
807  * network layer or drivers should need annotation to consolidate the
808  * main types of usage into 3 classes.
809  */
810 static inline void skb_queue_head_init(struct sk_buff_head *list)
811 {
812 	spin_lock_init(&list->lock);
813 	__skb_queue_head_init(list);
814 }
815 
816 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
817 		struct lock_class_key *class)
818 {
819 	skb_queue_head_init(list);
820 	lockdep_set_class(&list->lock, class);
821 }
822 
823 /*
824  *	Insert an sk_buff on a list.
825  *
826  *	The "__skb_xxxx()" functions are the non-atomic ones that
827  *	can only be called with interrupts disabled.
828  */
829 extern void        skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
830 static inline void __skb_insert(struct sk_buff *newsk,
831 				struct sk_buff *prev, struct sk_buff *next,
832 				struct sk_buff_head *list)
833 {
834 	newsk->next = next;
835 	newsk->prev = prev;
836 	next->prev  = prev->next = newsk;
837 	list->qlen++;
838 }
839 
840 static inline void __skb_queue_splice(const struct sk_buff_head *list,
841 				      struct sk_buff *prev,
842 				      struct sk_buff *next)
843 {
844 	struct sk_buff *first = list->next;
845 	struct sk_buff *last = list->prev;
846 
847 	first->prev = prev;
848 	prev->next = first;
849 
850 	last->next = next;
851 	next->prev = last;
852 }
853 
854 /**
855  *	skb_queue_splice - join two skb lists, this is designed for stacks
856  *	@list: the new list to add
857  *	@head: the place to add it in the first list
858  */
859 static inline void skb_queue_splice(const struct sk_buff_head *list,
860 				    struct sk_buff_head *head)
861 {
862 	if (!skb_queue_empty(list)) {
863 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
864 		head->qlen += list->qlen;
865 	}
866 }
867 
868 /**
869  *	skb_queue_splice - join two skb lists and reinitialise the emptied list
870  *	@list: the new list to add
871  *	@head: the place to add it in the first list
872  *
873  *	The list at @list is reinitialised
874  */
875 static inline void skb_queue_splice_init(struct sk_buff_head *list,
876 					 struct sk_buff_head *head)
877 {
878 	if (!skb_queue_empty(list)) {
879 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
880 		head->qlen += list->qlen;
881 		__skb_queue_head_init(list);
882 	}
883 }
884 
885 /**
886  *	skb_queue_splice_tail - join two skb lists, each list being a queue
887  *	@list: the new list to add
888  *	@head: the place to add it in the first list
889  */
890 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
891 					 struct sk_buff_head *head)
892 {
893 	if (!skb_queue_empty(list)) {
894 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
895 		head->qlen += list->qlen;
896 	}
897 }
898 
899 /**
900  *	skb_queue_splice_tail - join two skb lists and reinitialise the emptied list
901  *	@list: the new list to add
902  *	@head: the place to add it in the first list
903  *
904  *	Each of the lists is a queue.
905  *	The list at @list is reinitialised
906  */
907 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
908 					      struct sk_buff_head *head)
909 {
910 	if (!skb_queue_empty(list)) {
911 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
912 		head->qlen += list->qlen;
913 		__skb_queue_head_init(list);
914 	}
915 }
916 
917 /**
918  *	__skb_queue_after - queue a buffer at the list head
919  *	@list: list to use
920  *	@prev: place after this buffer
921  *	@newsk: buffer to queue
922  *
923  *	Queue a buffer int the middle of a list. This function takes no locks
924  *	and you must therefore hold required locks before calling it.
925  *
926  *	A buffer cannot be placed on two lists at the same time.
927  */
928 static inline void __skb_queue_after(struct sk_buff_head *list,
929 				     struct sk_buff *prev,
930 				     struct sk_buff *newsk)
931 {
932 	__skb_insert(newsk, prev, prev->next, list);
933 }
934 
935 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
936 		       struct sk_buff_head *list);
937 
938 static inline void __skb_queue_before(struct sk_buff_head *list,
939 				      struct sk_buff *next,
940 				      struct sk_buff *newsk)
941 {
942 	__skb_insert(newsk, next->prev, next, list);
943 }
944 
945 /**
946  *	__skb_queue_head - queue a buffer at the list head
947  *	@list: list to use
948  *	@newsk: buffer to queue
949  *
950  *	Queue a buffer at the start of a list. This function takes no locks
951  *	and you must therefore hold required locks before calling it.
952  *
953  *	A buffer cannot be placed on two lists at the same time.
954  */
955 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
956 static inline void __skb_queue_head(struct sk_buff_head *list,
957 				    struct sk_buff *newsk)
958 {
959 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
960 }
961 
962 /**
963  *	__skb_queue_tail - queue a buffer at the list tail
964  *	@list: list to use
965  *	@newsk: buffer to queue
966  *
967  *	Queue a buffer at the end of a list. This function takes no locks
968  *	and you must therefore hold required locks before calling it.
969  *
970  *	A buffer cannot be placed on two lists at the same time.
971  */
972 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
973 static inline void __skb_queue_tail(struct sk_buff_head *list,
974 				   struct sk_buff *newsk)
975 {
976 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
977 }
978 
979 /*
980  * remove sk_buff from list. _Must_ be called atomically, and with
981  * the list known..
982  */
983 extern void	   skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
984 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
985 {
986 	struct sk_buff *next, *prev;
987 
988 	list->qlen--;
989 	next	   = skb->next;
990 	prev	   = skb->prev;
991 	skb->next  = skb->prev = NULL;
992 	next->prev = prev;
993 	prev->next = next;
994 }
995 
996 /**
997  *	__skb_dequeue - remove from the head of the queue
998  *	@list: list to dequeue from
999  *
1000  *	Remove the head of the list. This function does not take any locks
1001  *	so must be used with appropriate locks held only. The head item is
1002  *	returned or %NULL if the list is empty.
1003  */
1004 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1005 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1006 {
1007 	struct sk_buff *skb = skb_peek(list);
1008 	if (skb)
1009 		__skb_unlink(skb, list);
1010 	return skb;
1011 }
1012 
1013 /**
1014  *	__skb_dequeue_tail - remove from the tail of the queue
1015  *	@list: list to dequeue from
1016  *
1017  *	Remove the tail of the list. This function does not take any locks
1018  *	so must be used with appropriate locks held only. The tail item is
1019  *	returned or %NULL if the list is empty.
1020  */
1021 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1022 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1023 {
1024 	struct sk_buff *skb = skb_peek_tail(list);
1025 	if (skb)
1026 		__skb_unlink(skb, list);
1027 	return skb;
1028 }
1029 
1030 
1031 static inline int skb_is_nonlinear(const struct sk_buff *skb)
1032 {
1033 	return skb->data_len;
1034 }
1035 
1036 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1037 {
1038 	return skb->len - skb->data_len;
1039 }
1040 
1041 static inline int skb_pagelen(const struct sk_buff *skb)
1042 {
1043 	int i, len = 0;
1044 
1045 	for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1046 		len += skb_shinfo(skb)->frags[i].size;
1047 	return len + skb_headlen(skb);
1048 }
1049 
1050 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1051 				      struct page *page, int off, int size)
1052 {
1053 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1054 
1055 	frag->page		  = page;
1056 	frag->page_offset	  = off;
1057 	frag->size		  = size;
1058 	skb_shinfo(skb)->nr_frags = i + 1;
1059 }
1060 
1061 extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
1062 			    int off, int size);
1063 
1064 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
1065 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->frag_list)
1066 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
1067 
1068 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1069 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1070 {
1071 	return skb->head + skb->tail;
1072 }
1073 
1074 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1075 {
1076 	skb->tail = skb->data - skb->head;
1077 }
1078 
1079 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1080 {
1081 	skb_reset_tail_pointer(skb);
1082 	skb->tail += offset;
1083 }
1084 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1085 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1086 {
1087 	return skb->tail;
1088 }
1089 
1090 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1091 {
1092 	skb->tail = skb->data;
1093 }
1094 
1095 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1096 {
1097 	skb->tail = skb->data + offset;
1098 }
1099 
1100 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1101 
1102 /*
1103  *	Add data to an sk_buff
1104  */
1105 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1106 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1107 {
1108 	unsigned char *tmp = skb_tail_pointer(skb);
1109 	SKB_LINEAR_ASSERT(skb);
1110 	skb->tail += len;
1111 	skb->len  += len;
1112 	return tmp;
1113 }
1114 
1115 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1116 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1117 {
1118 	skb->data -= len;
1119 	skb->len  += len;
1120 	return skb->data;
1121 }
1122 
1123 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1124 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1125 {
1126 	skb->len -= len;
1127 	BUG_ON(skb->len < skb->data_len);
1128 	return skb->data += len;
1129 }
1130 
1131 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1132 
1133 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1134 {
1135 	if (len > skb_headlen(skb) &&
1136 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1137 		return NULL;
1138 	skb->len -= len;
1139 	return skb->data += len;
1140 }
1141 
1142 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1143 {
1144 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1145 }
1146 
1147 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1148 {
1149 	if (likely(len <= skb_headlen(skb)))
1150 		return 1;
1151 	if (unlikely(len > skb->len))
1152 		return 0;
1153 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1154 }
1155 
1156 /**
1157  *	skb_headroom - bytes at buffer head
1158  *	@skb: buffer to check
1159  *
1160  *	Return the number of bytes of free space at the head of an &sk_buff.
1161  */
1162 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1163 {
1164 	return skb->data - skb->head;
1165 }
1166 
1167 /**
1168  *	skb_tailroom - bytes at buffer end
1169  *	@skb: buffer to check
1170  *
1171  *	Return the number of bytes of free space at the tail of an sk_buff
1172  */
1173 static inline int skb_tailroom(const struct sk_buff *skb)
1174 {
1175 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1176 }
1177 
1178 /**
1179  *	skb_reserve - adjust headroom
1180  *	@skb: buffer to alter
1181  *	@len: bytes to move
1182  *
1183  *	Increase the headroom of an empty &sk_buff by reducing the tail
1184  *	room. This is only allowed for an empty buffer.
1185  */
1186 static inline void skb_reserve(struct sk_buff *skb, int len)
1187 {
1188 	skb->data += len;
1189 	skb->tail += len;
1190 }
1191 
1192 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1193 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1194 {
1195 	return skb->head + skb->transport_header;
1196 }
1197 
1198 static inline void skb_reset_transport_header(struct sk_buff *skb)
1199 {
1200 	skb->transport_header = skb->data - skb->head;
1201 }
1202 
1203 static inline void skb_set_transport_header(struct sk_buff *skb,
1204 					    const int offset)
1205 {
1206 	skb_reset_transport_header(skb);
1207 	skb->transport_header += offset;
1208 }
1209 
1210 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1211 {
1212 	return skb->head + skb->network_header;
1213 }
1214 
1215 static inline void skb_reset_network_header(struct sk_buff *skb)
1216 {
1217 	skb->network_header = skb->data - skb->head;
1218 }
1219 
1220 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1221 {
1222 	skb_reset_network_header(skb);
1223 	skb->network_header += offset;
1224 }
1225 
1226 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1227 {
1228 	return skb->head + skb->mac_header;
1229 }
1230 
1231 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1232 {
1233 	return skb->mac_header != ~0U;
1234 }
1235 
1236 static inline void skb_reset_mac_header(struct sk_buff *skb)
1237 {
1238 	skb->mac_header = skb->data - skb->head;
1239 }
1240 
1241 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1242 {
1243 	skb_reset_mac_header(skb);
1244 	skb->mac_header += offset;
1245 }
1246 
1247 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1248 
1249 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1250 {
1251 	return skb->transport_header;
1252 }
1253 
1254 static inline void skb_reset_transport_header(struct sk_buff *skb)
1255 {
1256 	skb->transport_header = skb->data;
1257 }
1258 
1259 static inline void skb_set_transport_header(struct sk_buff *skb,
1260 					    const int offset)
1261 {
1262 	skb->transport_header = skb->data + offset;
1263 }
1264 
1265 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1266 {
1267 	return skb->network_header;
1268 }
1269 
1270 static inline void skb_reset_network_header(struct sk_buff *skb)
1271 {
1272 	skb->network_header = skb->data;
1273 }
1274 
1275 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1276 {
1277 	skb->network_header = skb->data + offset;
1278 }
1279 
1280 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1281 {
1282 	return skb->mac_header;
1283 }
1284 
1285 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1286 {
1287 	return skb->mac_header != NULL;
1288 }
1289 
1290 static inline void skb_reset_mac_header(struct sk_buff *skb)
1291 {
1292 	skb->mac_header = skb->data;
1293 }
1294 
1295 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1296 {
1297 	skb->mac_header = skb->data + offset;
1298 }
1299 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1300 
1301 static inline int skb_transport_offset(const struct sk_buff *skb)
1302 {
1303 	return skb_transport_header(skb) - skb->data;
1304 }
1305 
1306 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1307 {
1308 	return skb->transport_header - skb->network_header;
1309 }
1310 
1311 static inline int skb_network_offset(const struct sk_buff *skb)
1312 {
1313 	return skb_network_header(skb) - skb->data;
1314 }
1315 
1316 /*
1317  * CPUs often take a performance hit when accessing unaligned memory
1318  * locations. The actual performance hit varies, it can be small if the
1319  * hardware handles it or large if we have to take an exception and fix it
1320  * in software.
1321  *
1322  * Since an ethernet header is 14 bytes network drivers often end up with
1323  * the IP header at an unaligned offset. The IP header can be aligned by
1324  * shifting the start of the packet by 2 bytes. Drivers should do this
1325  * with:
1326  *
1327  * skb_reserve(NET_IP_ALIGN);
1328  *
1329  * The downside to this alignment of the IP header is that the DMA is now
1330  * unaligned. On some architectures the cost of an unaligned DMA is high
1331  * and this cost outweighs the gains made by aligning the IP header.
1332  *
1333  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1334  * to be overridden.
1335  */
1336 #ifndef NET_IP_ALIGN
1337 #define NET_IP_ALIGN	2
1338 #endif
1339 
1340 /*
1341  * The networking layer reserves some headroom in skb data (via
1342  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1343  * the header has to grow. In the default case, if the header has to grow
1344  * 32 bytes or less we avoid the reallocation.
1345  *
1346  * Unfortunately this headroom changes the DMA alignment of the resulting
1347  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1348  * on some architectures. An architecture can override this value,
1349  * perhaps setting it to a cacheline in size (since that will maintain
1350  * cacheline alignment of the DMA). It must be a power of 2.
1351  *
1352  * Various parts of the networking layer expect at least 32 bytes of
1353  * headroom, you should not reduce this.
1354  */
1355 #ifndef NET_SKB_PAD
1356 #define NET_SKB_PAD	32
1357 #endif
1358 
1359 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1360 
1361 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1362 {
1363 	if (unlikely(skb->data_len)) {
1364 		WARN_ON(1);
1365 		return;
1366 	}
1367 	skb->len = len;
1368 	skb_set_tail_pointer(skb, len);
1369 }
1370 
1371 extern void skb_trim(struct sk_buff *skb, unsigned int len);
1372 
1373 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1374 {
1375 	if (skb->data_len)
1376 		return ___pskb_trim(skb, len);
1377 	__skb_trim(skb, len);
1378 	return 0;
1379 }
1380 
1381 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1382 {
1383 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1384 }
1385 
1386 /**
1387  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1388  *	@skb: buffer to alter
1389  *	@len: new length
1390  *
1391  *	This is identical to pskb_trim except that the caller knows that
1392  *	the skb is not cloned so we should never get an error due to out-
1393  *	of-memory.
1394  */
1395 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1396 {
1397 	int err = pskb_trim(skb, len);
1398 	BUG_ON(err);
1399 }
1400 
1401 /**
1402  *	skb_orphan - orphan a buffer
1403  *	@skb: buffer to orphan
1404  *
1405  *	If a buffer currently has an owner then we call the owner's
1406  *	destructor function and make the @skb unowned. The buffer continues
1407  *	to exist but is no longer charged to its former owner.
1408  */
1409 static inline void skb_orphan(struct sk_buff *skb)
1410 {
1411 	if (skb->destructor)
1412 		skb->destructor(skb);
1413 	skb->destructor = NULL;
1414 	skb->sk		= NULL;
1415 }
1416 
1417 /**
1418  *	__skb_queue_purge - empty a list
1419  *	@list: list to empty
1420  *
1421  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
1422  *	the list and one reference dropped. This function does not take the
1423  *	list lock and the caller must hold the relevant locks to use it.
1424  */
1425 extern void skb_queue_purge(struct sk_buff_head *list);
1426 static inline void __skb_queue_purge(struct sk_buff_head *list)
1427 {
1428 	struct sk_buff *skb;
1429 	while ((skb = __skb_dequeue(list)) != NULL)
1430 		kfree_skb(skb);
1431 }
1432 
1433 /**
1434  *	__dev_alloc_skb - allocate an skbuff for receiving
1435  *	@length: length to allocate
1436  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
1437  *
1438  *	Allocate a new &sk_buff and assign it a usage count of one. The
1439  *	buffer has unspecified headroom built in. Users should allocate
1440  *	the headroom they think they need without accounting for the
1441  *	built in space. The built in space is used for optimisations.
1442  *
1443  *	%NULL is returned if there is no free memory.
1444  */
1445 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1446 					      gfp_t gfp_mask)
1447 {
1448 	struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1449 	if (likely(skb))
1450 		skb_reserve(skb, NET_SKB_PAD);
1451 	return skb;
1452 }
1453 
1454 extern struct sk_buff *dev_alloc_skb(unsigned int length);
1455 
1456 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1457 		unsigned int length, gfp_t gfp_mask);
1458 
1459 /**
1460  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
1461  *	@dev: network device to receive on
1462  *	@length: length to allocate
1463  *
1464  *	Allocate a new &sk_buff and assign it a usage count of one. The
1465  *	buffer has unspecified headroom built in. Users should allocate
1466  *	the headroom they think they need without accounting for the
1467  *	built in space. The built in space is used for optimisations.
1468  *
1469  *	%NULL is returned if there is no free memory. Although this function
1470  *	allocates memory it can be called from an interrupt.
1471  */
1472 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1473 		unsigned int length)
1474 {
1475 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1476 }
1477 
1478 extern struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask);
1479 
1480 /**
1481  *	netdev_alloc_page - allocate a page for ps-rx on a specific device
1482  *	@dev: network device to receive on
1483  *
1484  * 	Allocate a new page node local to the specified device.
1485  *
1486  * 	%NULL is returned if there is no free memory.
1487  */
1488 static inline struct page *netdev_alloc_page(struct net_device *dev)
1489 {
1490 	return __netdev_alloc_page(dev, GFP_ATOMIC);
1491 }
1492 
1493 static inline void netdev_free_page(struct net_device *dev, struct page *page)
1494 {
1495 	__free_page(page);
1496 }
1497 
1498 /**
1499  *	skb_clone_writable - is the header of a clone writable
1500  *	@skb: buffer to check
1501  *	@len: length up to which to write
1502  *
1503  *	Returns true if modifying the header part of the cloned buffer
1504  *	does not requires the data to be copied.
1505  */
1506 static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len)
1507 {
1508 	return !skb_header_cloned(skb) &&
1509 	       skb_headroom(skb) + len <= skb->hdr_len;
1510 }
1511 
1512 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1513 			    int cloned)
1514 {
1515 	int delta = 0;
1516 
1517 	if (headroom < NET_SKB_PAD)
1518 		headroom = NET_SKB_PAD;
1519 	if (headroom > skb_headroom(skb))
1520 		delta = headroom - skb_headroom(skb);
1521 
1522 	if (delta || cloned)
1523 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1524 					GFP_ATOMIC);
1525 	return 0;
1526 }
1527 
1528 /**
1529  *	skb_cow - copy header of skb when it is required
1530  *	@skb: buffer to cow
1531  *	@headroom: needed headroom
1532  *
1533  *	If the skb passed lacks sufficient headroom or its data part
1534  *	is shared, data is reallocated. If reallocation fails, an error
1535  *	is returned and original skb is not changed.
1536  *
1537  *	The result is skb with writable area skb->head...skb->tail
1538  *	and at least @headroom of space at head.
1539  */
1540 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1541 {
1542 	return __skb_cow(skb, headroom, skb_cloned(skb));
1543 }
1544 
1545 /**
1546  *	skb_cow_head - skb_cow but only making the head writable
1547  *	@skb: buffer to cow
1548  *	@headroom: needed headroom
1549  *
1550  *	This function is identical to skb_cow except that we replace the
1551  *	skb_cloned check by skb_header_cloned.  It should be used when
1552  *	you only need to push on some header and do not need to modify
1553  *	the data.
1554  */
1555 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1556 {
1557 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
1558 }
1559 
1560 /**
1561  *	skb_padto	- pad an skbuff up to a minimal size
1562  *	@skb: buffer to pad
1563  *	@len: minimal length
1564  *
1565  *	Pads up a buffer to ensure the trailing bytes exist and are
1566  *	blanked. If the buffer already contains sufficient data it
1567  *	is untouched. Otherwise it is extended. Returns zero on
1568  *	success. The skb is freed on error.
1569  */
1570 
1571 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1572 {
1573 	unsigned int size = skb->len;
1574 	if (likely(size >= len))
1575 		return 0;
1576 	return skb_pad(skb, len - size);
1577 }
1578 
1579 static inline int skb_add_data(struct sk_buff *skb,
1580 			       char __user *from, int copy)
1581 {
1582 	const int off = skb->len;
1583 
1584 	if (skb->ip_summed == CHECKSUM_NONE) {
1585 		int err = 0;
1586 		__wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1587 							    copy, 0, &err);
1588 		if (!err) {
1589 			skb->csum = csum_block_add(skb->csum, csum, off);
1590 			return 0;
1591 		}
1592 	} else if (!copy_from_user(skb_put(skb, copy), from, copy))
1593 		return 0;
1594 
1595 	__skb_trim(skb, off);
1596 	return -EFAULT;
1597 }
1598 
1599 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1600 				   struct page *page, int off)
1601 {
1602 	if (i) {
1603 		struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1604 
1605 		return page == frag->page &&
1606 		       off == frag->page_offset + frag->size;
1607 	}
1608 	return 0;
1609 }
1610 
1611 static inline int __skb_linearize(struct sk_buff *skb)
1612 {
1613 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1614 }
1615 
1616 /**
1617  *	skb_linearize - convert paged skb to linear one
1618  *	@skb: buffer to linarize
1619  *
1620  *	If there is no free memory -ENOMEM is returned, otherwise zero
1621  *	is returned and the old skb data released.
1622  */
1623 static inline int skb_linearize(struct sk_buff *skb)
1624 {
1625 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1626 }
1627 
1628 /**
1629  *	skb_linearize_cow - make sure skb is linear and writable
1630  *	@skb: buffer to process
1631  *
1632  *	If there is no free memory -ENOMEM is returned, otherwise zero
1633  *	is returned and the old skb data released.
1634  */
1635 static inline int skb_linearize_cow(struct sk_buff *skb)
1636 {
1637 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1638 	       __skb_linearize(skb) : 0;
1639 }
1640 
1641 /**
1642  *	skb_postpull_rcsum - update checksum for received skb after pull
1643  *	@skb: buffer to update
1644  *	@start: start of data before pull
1645  *	@len: length of data pulled
1646  *
1647  *	After doing a pull on a received packet, you need to call this to
1648  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1649  *	CHECKSUM_NONE so that it can be recomputed from scratch.
1650  */
1651 
1652 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1653 				      const void *start, unsigned int len)
1654 {
1655 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1656 		skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1657 }
1658 
1659 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1660 
1661 /**
1662  *	pskb_trim_rcsum - trim received skb and update checksum
1663  *	@skb: buffer to trim
1664  *	@len: new length
1665  *
1666  *	This is exactly the same as pskb_trim except that it ensures the
1667  *	checksum of received packets are still valid after the operation.
1668  */
1669 
1670 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1671 {
1672 	if (likely(len >= skb->len))
1673 		return 0;
1674 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1675 		skb->ip_summed = CHECKSUM_NONE;
1676 	return __pskb_trim(skb, len);
1677 }
1678 
1679 #define skb_queue_walk(queue, skb) \
1680 		for (skb = (queue)->next;					\
1681 		     prefetch(skb->next), (skb != (struct sk_buff *)(queue));	\
1682 		     skb = skb->next)
1683 
1684 #define skb_queue_walk_safe(queue, skb, tmp)					\
1685 		for (skb = (queue)->next, tmp = skb->next;			\
1686 		     skb != (struct sk_buff *)(queue);				\
1687 		     skb = tmp, tmp = skb->next)
1688 
1689 #define skb_queue_walk_from(queue, skb)						\
1690 		for (; prefetch(skb->next), (skb != (struct sk_buff *)(queue));	\
1691 		     skb = skb->next)
1692 
1693 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
1694 		for (tmp = skb->next;						\
1695 		     skb != (struct sk_buff *)(queue);				\
1696 		     skb = tmp, tmp = skb->next)
1697 
1698 #define skb_queue_reverse_walk(queue, skb) \
1699 		for (skb = (queue)->prev;					\
1700 		     prefetch(skb->prev), (skb != (struct sk_buff *)(queue));	\
1701 		     skb = skb->prev)
1702 
1703 
1704 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
1705 					   int *peeked, int *err);
1706 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1707 					 int noblock, int *err);
1708 extern unsigned int    datagram_poll(struct file *file, struct socket *sock,
1709 				     struct poll_table_struct *wait);
1710 extern int	       skb_copy_datagram_iovec(const struct sk_buff *from,
1711 					       int offset, struct iovec *to,
1712 					       int size);
1713 extern int	       skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1714 							int hlen,
1715 							struct iovec *iov);
1716 extern int	       skb_copy_datagram_from_iovec(struct sk_buff *skb,
1717 						    int offset,
1718 						    struct iovec *from,
1719 						    int len);
1720 extern void	       skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1721 extern int	       skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1722 					 unsigned int flags);
1723 extern __wsum	       skb_checksum(const struct sk_buff *skb, int offset,
1724 				    int len, __wsum csum);
1725 extern int	       skb_copy_bits(const struct sk_buff *skb, int offset,
1726 				     void *to, int len);
1727 extern int	       skb_store_bits(struct sk_buff *skb, int offset,
1728 				      const void *from, int len);
1729 extern __wsum	       skb_copy_and_csum_bits(const struct sk_buff *skb,
1730 					      int offset, u8 *to, int len,
1731 					      __wsum csum);
1732 extern int             skb_splice_bits(struct sk_buff *skb,
1733 						unsigned int offset,
1734 						struct pipe_inode_info *pipe,
1735 						unsigned int len,
1736 						unsigned int flags);
1737 extern void	       skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1738 extern void	       skb_split(struct sk_buff *skb,
1739 				 struct sk_buff *skb1, const u32 len);
1740 extern int	       skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
1741 				 int shiftlen);
1742 
1743 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
1744 
1745 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1746 				       int len, void *buffer)
1747 {
1748 	int hlen = skb_headlen(skb);
1749 
1750 	if (hlen - offset >= len)
1751 		return skb->data + offset;
1752 
1753 	if (skb_copy_bits(skb, offset, buffer, len) < 0)
1754 		return NULL;
1755 
1756 	return buffer;
1757 }
1758 
1759 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
1760 					     void *to,
1761 					     const unsigned int len)
1762 {
1763 	memcpy(to, skb->data, len);
1764 }
1765 
1766 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
1767 						    const int offset, void *to,
1768 						    const unsigned int len)
1769 {
1770 	memcpy(to, skb->data + offset, len);
1771 }
1772 
1773 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
1774 					   const void *from,
1775 					   const unsigned int len)
1776 {
1777 	memcpy(skb->data, from, len);
1778 }
1779 
1780 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
1781 						  const int offset,
1782 						  const void *from,
1783 						  const unsigned int len)
1784 {
1785 	memcpy(skb->data + offset, from, len);
1786 }
1787 
1788 extern void skb_init(void);
1789 
1790 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
1791 {
1792 	return skb->tstamp;
1793 }
1794 
1795 /**
1796  *	skb_get_timestamp - get timestamp from a skb
1797  *	@skb: skb to get stamp from
1798  *	@stamp: pointer to struct timeval to store stamp in
1799  *
1800  *	Timestamps are stored in the skb as offsets to a base timestamp.
1801  *	This function converts the offset back to a struct timeval and stores
1802  *	it in stamp.
1803  */
1804 static inline void skb_get_timestamp(const struct sk_buff *skb,
1805 				     struct timeval *stamp)
1806 {
1807 	*stamp = ktime_to_timeval(skb->tstamp);
1808 }
1809 
1810 static inline void skb_get_timestampns(const struct sk_buff *skb,
1811 				       struct timespec *stamp)
1812 {
1813 	*stamp = ktime_to_timespec(skb->tstamp);
1814 }
1815 
1816 static inline void __net_timestamp(struct sk_buff *skb)
1817 {
1818 	skb->tstamp = ktime_get_real();
1819 }
1820 
1821 static inline ktime_t net_timedelta(ktime_t t)
1822 {
1823 	return ktime_sub(ktime_get_real(), t);
1824 }
1825 
1826 static inline ktime_t net_invalid_timestamp(void)
1827 {
1828 	return ktime_set(0, 0);
1829 }
1830 
1831 /**
1832  * skb_tstamp_tx - queue clone of skb with send time stamps
1833  * @orig_skb:	the original outgoing packet
1834  * @hwtstamps:	hardware time stamps, may be NULL if not available
1835  *
1836  * If the skb has a socket associated, then this function clones the
1837  * skb (thus sharing the actual data and optional structures), stores
1838  * the optional hardware time stamping information (if non NULL) or
1839  * generates a software time stamp (otherwise), then queues the clone
1840  * to the error queue of the socket.  Errors are silently ignored.
1841  */
1842 extern void skb_tstamp_tx(struct sk_buff *orig_skb,
1843 			struct skb_shared_hwtstamps *hwtstamps);
1844 
1845 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
1846 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
1847 
1848 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
1849 {
1850 	return skb->ip_summed & CHECKSUM_UNNECESSARY;
1851 }
1852 
1853 /**
1854  *	skb_checksum_complete - Calculate checksum of an entire packet
1855  *	@skb: packet to process
1856  *
1857  *	This function calculates the checksum over the entire packet plus
1858  *	the value of skb->csum.  The latter can be used to supply the
1859  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
1860  *	checksum.
1861  *
1862  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
1863  *	this function can be used to verify that checksum on received
1864  *	packets.  In that case the function should return zero if the
1865  *	checksum is correct.  In particular, this function will return zero
1866  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1867  *	hardware has already verified the correctness of the checksum.
1868  */
1869 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
1870 {
1871 	return skb_csum_unnecessary(skb) ?
1872 	       0 : __skb_checksum_complete(skb);
1873 }
1874 
1875 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1876 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
1877 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1878 {
1879 	if (nfct && atomic_dec_and_test(&nfct->use))
1880 		nf_conntrack_destroy(nfct);
1881 }
1882 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1883 {
1884 	if (nfct)
1885 		atomic_inc(&nfct->use);
1886 }
1887 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
1888 {
1889 	if (skb)
1890 		atomic_inc(&skb->users);
1891 }
1892 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
1893 {
1894 	if (skb)
1895 		kfree_skb(skb);
1896 }
1897 #endif
1898 #ifdef CONFIG_BRIDGE_NETFILTER
1899 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1900 {
1901 	if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1902 		kfree(nf_bridge);
1903 }
1904 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1905 {
1906 	if (nf_bridge)
1907 		atomic_inc(&nf_bridge->use);
1908 }
1909 #endif /* CONFIG_BRIDGE_NETFILTER */
1910 static inline void nf_reset(struct sk_buff *skb)
1911 {
1912 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1913 	nf_conntrack_put(skb->nfct);
1914 	skb->nfct = NULL;
1915 	nf_conntrack_put_reasm(skb->nfct_reasm);
1916 	skb->nfct_reasm = NULL;
1917 #endif
1918 #ifdef CONFIG_BRIDGE_NETFILTER
1919 	nf_bridge_put(skb->nf_bridge);
1920 	skb->nf_bridge = NULL;
1921 #endif
1922 }
1923 
1924 /* Note: This doesn't put any conntrack and bridge info in dst. */
1925 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1926 {
1927 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1928 	dst->nfct = src->nfct;
1929 	nf_conntrack_get(src->nfct);
1930 	dst->nfctinfo = src->nfctinfo;
1931 	dst->nfct_reasm = src->nfct_reasm;
1932 	nf_conntrack_get_reasm(src->nfct_reasm);
1933 #endif
1934 #ifdef CONFIG_BRIDGE_NETFILTER
1935 	dst->nf_bridge  = src->nf_bridge;
1936 	nf_bridge_get(src->nf_bridge);
1937 #endif
1938 }
1939 
1940 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1941 {
1942 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1943 	nf_conntrack_put(dst->nfct);
1944 	nf_conntrack_put_reasm(dst->nfct_reasm);
1945 #endif
1946 #ifdef CONFIG_BRIDGE_NETFILTER
1947 	nf_bridge_put(dst->nf_bridge);
1948 #endif
1949 	__nf_copy(dst, src);
1950 }
1951 
1952 #ifdef CONFIG_NETWORK_SECMARK
1953 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1954 {
1955 	to->secmark = from->secmark;
1956 }
1957 
1958 static inline void skb_init_secmark(struct sk_buff *skb)
1959 {
1960 	skb->secmark = 0;
1961 }
1962 #else
1963 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1964 { }
1965 
1966 static inline void skb_init_secmark(struct sk_buff *skb)
1967 { }
1968 #endif
1969 
1970 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
1971 {
1972 	skb->queue_mapping = queue_mapping;
1973 }
1974 
1975 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
1976 {
1977 	return skb->queue_mapping;
1978 }
1979 
1980 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
1981 {
1982 	to->queue_mapping = from->queue_mapping;
1983 }
1984 
1985 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
1986 {
1987 	skb->queue_mapping = rx_queue + 1;
1988 }
1989 
1990 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
1991 {
1992 	return skb->queue_mapping - 1;
1993 }
1994 
1995 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
1996 {
1997 	return (skb->queue_mapping != 0);
1998 }
1999 
2000 extern u16 skb_tx_hash(const struct net_device *dev,
2001 		       const struct sk_buff *skb);
2002 
2003 #ifdef CONFIG_XFRM
2004 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2005 {
2006 	return skb->sp;
2007 }
2008 #else
2009 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2010 {
2011 	return NULL;
2012 }
2013 #endif
2014 
2015 static inline int skb_is_gso(const struct sk_buff *skb)
2016 {
2017 	return skb_shinfo(skb)->gso_size;
2018 }
2019 
2020 static inline int skb_is_gso_v6(const struct sk_buff *skb)
2021 {
2022 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
2023 }
2024 
2025 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
2026 
2027 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
2028 {
2029 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
2030 	 * wanted then gso_type will be set. */
2031 	struct skb_shared_info *shinfo = skb_shinfo(skb);
2032 	if (shinfo->gso_size != 0 && unlikely(shinfo->gso_type == 0)) {
2033 		__skb_warn_lro_forwarding(skb);
2034 		return true;
2035 	}
2036 	return false;
2037 }
2038 
2039 static inline void skb_forward_csum(struct sk_buff *skb)
2040 {
2041 	/* Unfortunately we don't support this one.  Any brave souls? */
2042 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2043 		skb->ip_summed = CHECKSUM_NONE;
2044 }
2045 
2046 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
2047 #endif	/* __KERNEL__ */
2048 #endif	/* _LINUX_SKBUFF_H */
2049