xref: /linux-6.15/include/linux/skbuff.h (revision e6116fc6)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  *	Definitions for the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:
6  *		Alan Cox, <[email protected]>
7  *		Florian La Roche, <[email protected]>
8  */
9 
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12 
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
22 
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <net/checksum.h>
27 #include <linux/rcupdate.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/netdev_features.h>
30 #include <net/flow_dissector.h>
31 #include <linux/in6.h>
32 #include <linux/if_packet.h>
33 #include <linux/llist.h>
34 #include <linux/page_frag_cache.h>
35 #include <net/flow.h>
36 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
37 #include <linux/netfilter/nf_conntrack_common.h>
38 #endif
39 #include <net/net_debug.h>
40 #include <net/dropreason-core.h>
41 #include <net/netmem.h>
42 
43 /**
44  * DOC: skb checksums
45  *
46  * The interface for checksum offload between the stack and networking drivers
47  * is as follows...
48  *
49  * IP checksum related features
50  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
51  *
52  * Drivers advertise checksum offload capabilities in the features of a device.
53  * From the stack's point of view these are capabilities offered by the driver.
54  * A driver typically only advertises features that it is capable of offloading
55  * to its device.
56  *
57  * .. flat-table:: Checksum related device features
58  *   :widths: 1 10
59  *
60  *   * - %NETIF_F_HW_CSUM
61  *     - The driver (or its device) is able to compute one
62  *	 IP (one's complement) checksum for any combination
63  *	 of protocols or protocol layering. The checksum is
64  *	 computed and set in a packet per the CHECKSUM_PARTIAL
65  *	 interface (see below).
66  *
67  *   * - %NETIF_F_IP_CSUM
68  *     - Driver (device) is only able to checksum plain
69  *	 TCP or UDP packets over IPv4. These are specifically
70  *	 unencapsulated packets of the form IPv4|TCP or
71  *	 IPv4|UDP where the Protocol field in the IPv4 header
72  *	 is TCP or UDP. The IPv4 header may contain IP options.
73  *	 This feature cannot be set in features for a device
74  *	 with NETIF_F_HW_CSUM also set. This feature is being
75  *	 DEPRECATED (see below).
76  *
77  *   * - %NETIF_F_IPV6_CSUM
78  *     - Driver (device) is only able to checksum plain
79  *	 TCP or UDP packets over IPv6. These are specifically
80  *	 unencapsulated packets of the form IPv6|TCP or
81  *	 IPv6|UDP where the Next Header field in the IPv6
82  *	 header is either TCP or UDP. IPv6 extension headers
83  *	 are not supported with this feature. This feature
84  *	 cannot be set in features for a device with
85  *	 NETIF_F_HW_CSUM also set. This feature is being
86  *	 DEPRECATED (see below).
87  *
88  *   * - %NETIF_F_RXCSUM
89  *     - Driver (device) performs receive checksum offload.
90  *	 This flag is only used to disable the RX checksum
91  *	 feature for a device. The stack will accept receive
92  *	 checksum indication in packets received on a device
93  *	 regardless of whether NETIF_F_RXCSUM is set.
94  *
95  * Checksumming of received packets by device
96  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
97  *
98  * Indication of checksum verification is set in &sk_buff.ip_summed.
99  * Possible values are:
100  *
101  * - %CHECKSUM_NONE
102  *
103  *   Device did not checksum this packet e.g. due to lack of capabilities.
104  *   The packet contains full (though not verified) checksum in packet but
105  *   not in skb->csum. Thus, skb->csum is undefined in this case.
106  *
107  * - %CHECKSUM_UNNECESSARY
108  *
109  *   The hardware you're dealing with doesn't calculate the full checksum
110  *   (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums
111  *   for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY
112  *   if their checksums are okay. &sk_buff.csum is still undefined in this case
113  *   though. A driver or device must never modify the checksum field in the
114  *   packet even if checksum is verified.
115  *
116  *   %CHECKSUM_UNNECESSARY is applicable to following protocols:
117  *
118  *     - TCP: IPv6 and IPv4.
119  *     - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
120  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
121  *       may perform further validation in this case.
122  *     - GRE: only if the checksum is present in the header.
123  *     - SCTP: indicates the CRC in SCTP header has been validated.
124  *     - FCOE: indicates the CRC in FC frame has been validated.
125  *
126  *   &sk_buff.csum_level indicates the number of consecutive checksums found in
127  *   the packet minus one that have been verified as %CHECKSUM_UNNECESSARY.
128  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
129  *   and a device is able to verify the checksums for UDP (possibly zero),
130  *   GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to
131  *   two. If the device were only able to verify the UDP checksum and not
132  *   GRE, either because it doesn't support GRE checksum or because GRE
133  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
134  *   not considered in this case).
135  *
136  * - %CHECKSUM_COMPLETE
137  *
138  *   This is the most generic way. The device supplied checksum of the _whole_
139  *   packet as seen by netif_rx() and fills in &sk_buff.csum. This means the
140  *   hardware doesn't need to parse L3/L4 headers to implement this.
141  *
142  *   Notes:
143  *
144  *   - Even if device supports only some protocols, but is able to produce
145  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
146  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
147  *
148  * - %CHECKSUM_PARTIAL
149  *
150  *   A checksum is set up to be offloaded to a device as described in the
151  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
152  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
153  *   on the same host, or it may be set in the input path in GRO or remote
154  *   checksum offload. For the purposes of checksum verification, the checksum
155  *   referred to by skb->csum_start + skb->csum_offset and any preceding
156  *   checksums in the packet are considered verified. Any checksums in the
157  *   packet that are after the checksum being offloaded are not considered to
158  *   be verified.
159  *
160  * Checksumming on transmit for non-GSO
161  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
162  *
163  * The stack requests checksum offload in the &sk_buff.ip_summed for a packet.
164  * Values are:
165  *
166  * - %CHECKSUM_PARTIAL
167  *
168  *   The driver is required to checksum the packet as seen by hard_start_xmit()
169  *   from &sk_buff.csum_start up to the end, and to record/write the checksum at
170  *   offset &sk_buff.csum_start + &sk_buff.csum_offset.
171  *   A driver may verify that the
172  *   csum_start and csum_offset values are valid values given the length and
173  *   offset of the packet, but it should not attempt to validate that the
174  *   checksum refers to a legitimate transport layer checksum -- it is the
175  *   purview of the stack to validate that csum_start and csum_offset are set
176  *   correctly.
177  *
178  *   When the stack requests checksum offload for a packet, the driver MUST
179  *   ensure that the checksum is set correctly. A driver can either offload the
180  *   checksum calculation to the device, or call skb_checksum_help (in the case
181  *   that the device does not support offload for a particular checksum).
182  *
183  *   %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of
184  *   %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate
185  *   checksum offload capability.
186  *   skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based
187  *   on network device checksumming capabilities: if a packet does not match
188  *   them, skb_checksum_help() or skb_crc32c_help() (depending on the value of
189  *   &sk_buff.csum_not_inet, see :ref:`crc`)
190  *   is called to resolve the checksum.
191  *
192  * - %CHECKSUM_NONE
193  *
194  *   The skb was already checksummed by the protocol, or a checksum is not
195  *   required.
196  *
197  * - %CHECKSUM_UNNECESSARY
198  *
199  *   This has the same meaning as CHECKSUM_NONE for checksum offload on
200  *   output.
201  *
202  * - %CHECKSUM_COMPLETE
203  *
204  *   Not used in checksum output. If a driver observes a packet with this value
205  *   set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set.
206  *
207  * .. _crc:
208  *
209  * Non-IP checksum (CRC) offloads
210  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
211  *
212  * .. flat-table::
213  *   :widths: 1 10
214  *
215  *   * - %NETIF_F_SCTP_CRC
216  *     - This feature indicates that a device is capable of
217  *	 offloading the SCTP CRC in a packet. To perform this offload the stack
218  *	 will set csum_start and csum_offset accordingly, set ip_summed to
219  *	 %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication
220  *	 in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c.
221  *	 A driver that supports both IP checksum offload and SCTP CRC32c offload
222  *	 must verify which offload is configured for a packet by testing the
223  *	 value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to
224  *	 resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
225  *
226  *   * - %NETIF_F_FCOE_CRC
227  *     - This feature indicates that a device is capable of offloading the FCOE
228  *	 CRC in a packet. To perform this offload the stack will set ip_summed
229  *	 to %CHECKSUM_PARTIAL and set csum_start and csum_offset
230  *	 accordingly. Note that there is no indication in the skbuff that the
231  *	 %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
232  *	 both IP checksum offload and FCOE CRC offload must verify which offload
233  *	 is configured for a packet, presumably by inspecting packet headers.
234  *
235  * Checksumming on output with GSO
236  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
237  *
238  * In the case of a GSO packet (skb_is_gso() is true), checksum offload
239  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
240  * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as
241  * part of the GSO operation is implied. If a checksum is being offloaded
242  * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and
243  * csum_offset are set to refer to the outermost checksum being offloaded
244  * (two offloaded checksums are possible with UDP encapsulation).
245  */
246 
247 /* Don't change this without changing skb_csum_unnecessary! */
248 #define CHECKSUM_NONE		0
249 #define CHECKSUM_UNNECESSARY	1
250 #define CHECKSUM_COMPLETE	2
251 #define CHECKSUM_PARTIAL	3
252 
253 /* Maximum value in skb->csum_level */
254 #define SKB_MAX_CSUM_LEVEL	3
255 
256 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
257 #define SKB_WITH_OVERHEAD(X)	\
258 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
259 
260 /* For X bytes available in skb->head, what is the minimal
261  * allocation needed, knowing struct skb_shared_info needs
262  * to be aligned.
263  */
264 #define SKB_HEAD_ALIGN(X) (SKB_DATA_ALIGN(X) + \
265 	SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
266 
267 #define SKB_MAX_ORDER(X, ORDER) \
268 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
269 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
270 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
271 
272 /* return minimum truesize of one skb containing X bytes of data */
273 #define SKB_TRUESIZE(X) ((X) +						\
274 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
275 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
276 
277 struct ahash_request;
278 struct net_device;
279 struct scatterlist;
280 struct pipe_inode_info;
281 struct iov_iter;
282 struct napi_struct;
283 struct bpf_prog;
284 union bpf_attr;
285 struct skb_ext;
286 struct ts_config;
287 
288 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
289 struct nf_bridge_info {
290 	enum {
291 		BRNF_PROTO_UNCHANGED,
292 		BRNF_PROTO_8021Q,
293 		BRNF_PROTO_PPPOE
294 	} orig_proto:8;
295 	u8			pkt_otherhost:1;
296 	u8			in_prerouting:1;
297 	u8			bridged_dnat:1;
298 	u8			sabotage_in_done:1;
299 	__u16			frag_max_size;
300 	int			physinif;
301 
302 	/* always valid & non-NULL from FORWARD on, for physdev match */
303 	struct net_device	*physoutdev;
304 	union {
305 		/* prerouting: detect dnat in orig/reply direction */
306 		__be32          ipv4_daddr;
307 		struct in6_addr ipv6_daddr;
308 
309 		/* after prerouting + nat detected: store original source
310 		 * mac since neigh resolution overwrites it, only used while
311 		 * skb is out in neigh layer.
312 		 */
313 		char neigh_header[8];
314 	};
315 };
316 #endif
317 
318 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
319 /* Chain in tc_skb_ext will be used to share the tc chain with
320  * ovs recirc_id. It will be set to the current chain by tc
321  * and read by ovs to recirc_id.
322  */
323 struct tc_skb_ext {
324 	union {
325 		u64 act_miss_cookie;
326 		__u32 chain;
327 	};
328 	__u16 mru;
329 	__u16 zone;
330 	u8 post_ct:1;
331 	u8 post_ct_snat:1;
332 	u8 post_ct_dnat:1;
333 	u8 act_miss:1; /* Set if act_miss_cookie is used */
334 	u8 l2_miss:1; /* Set by bridge upon FDB or MDB miss */
335 };
336 #endif
337 
338 struct sk_buff_head {
339 	/* These two members must be first to match sk_buff. */
340 	struct_group_tagged(sk_buff_list, list,
341 		struct sk_buff	*next;
342 		struct sk_buff	*prev;
343 	);
344 
345 	__u32		qlen;
346 	spinlock_t	lock;
347 };
348 
349 struct sk_buff;
350 
351 #ifndef CONFIG_MAX_SKB_FRAGS
352 # define CONFIG_MAX_SKB_FRAGS 17
353 #endif
354 
355 #define MAX_SKB_FRAGS CONFIG_MAX_SKB_FRAGS
356 
357 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
358  * segment using its current segmentation instead.
359  */
360 #define GSO_BY_FRAGS	0xFFFF
361 
362 typedef struct skb_frag {
363 	netmem_ref netmem;
364 	unsigned int len;
365 	unsigned int offset;
366 } skb_frag_t;
367 
368 /**
369  * skb_frag_size() - Returns the size of a skb fragment
370  * @frag: skb fragment
371  */
372 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
373 {
374 	return frag->len;
375 }
376 
377 /**
378  * skb_frag_size_set() - Sets the size of a skb fragment
379  * @frag: skb fragment
380  * @size: size of fragment
381  */
382 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
383 {
384 	frag->len = size;
385 }
386 
387 /**
388  * skb_frag_size_add() - Increments the size of a skb fragment by @delta
389  * @frag: skb fragment
390  * @delta: value to add
391  */
392 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
393 {
394 	frag->len += delta;
395 }
396 
397 /**
398  * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
399  * @frag: skb fragment
400  * @delta: value to subtract
401  */
402 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
403 {
404 	frag->len -= delta;
405 }
406 
407 /**
408  * skb_frag_must_loop - Test if %p is a high memory page
409  * @p: fragment's page
410  */
411 static inline bool skb_frag_must_loop(struct page *p)
412 {
413 #if defined(CONFIG_HIGHMEM)
414 	if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p))
415 		return true;
416 #endif
417 	return false;
418 }
419 
420 /**
421  *	skb_frag_foreach_page - loop over pages in a fragment
422  *
423  *	@f:		skb frag to operate on
424  *	@f_off:		offset from start of f->netmem
425  *	@f_len:		length from f_off to loop over
426  *	@p:		(temp var) current page
427  *	@p_off:		(temp var) offset from start of current page,
428  *	                           non-zero only on first page.
429  *	@p_len:		(temp var) length in current page,
430  *				   < PAGE_SIZE only on first and last page.
431  *	@copied:	(temp var) length so far, excluding current p_len.
432  *
433  *	A fragment can hold a compound page, in which case per-page
434  *	operations, notably kmap_atomic, must be called for each
435  *	regular page.
436  */
437 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
438 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
439 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
440 	     p_len = skb_frag_must_loop(p) ?				\
441 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
442 	     copied = 0;						\
443 	     copied < f_len;						\
444 	     copied += p_len, p++, p_off = 0,				\
445 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
446 
447 /**
448  * struct skb_shared_hwtstamps - hardware time stamps
449  * @hwtstamp:		hardware time stamp transformed into duration
450  *			since arbitrary point in time
451  * @netdev_data:	address/cookie of network device driver used as
452  *			reference to actual hardware time stamp
453  *
454  * Software time stamps generated by ktime_get_real() are stored in
455  * skb->tstamp.
456  *
457  * hwtstamps can only be compared against other hwtstamps from
458  * the same device.
459  *
460  * This structure is attached to packets as part of the
461  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
462  */
463 struct skb_shared_hwtstamps {
464 	union {
465 		ktime_t	hwtstamp;
466 		void *netdev_data;
467 	};
468 };
469 
470 /* Definitions for tx_flags in struct skb_shared_info */
471 enum {
472 	/* generate hardware time stamp */
473 	SKBTX_HW_TSTAMP_NOBPF = 1 << 0,
474 
475 	/* generate software time stamp when queueing packet to NIC */
476 	SKBTX_SW_TSTAMP = 1 << 1,
477 
478 	/* device driver is going to provide hardware time stamp */
479 	SKBTX_IN_PROGRESS = 1 << 2,
480 
481 	/* reserved */
482 	SKBTX_RESERVED = 1 << 3,
483 
484 	/* generate wifi status information (where possible) */
485 	SKBTX_WIFI_STATUS = 1 << 4,
486 
487 	/* determine hardware time stamp based on time or cycles */
488 	SKBTX_HW_TSTAMP_NETDEV = 1 << 5,
489 
490 	/* generate software time stamp when entering packet scheduling */
491 	SKBTX_SCHED_TSTAMP = 1 << 6,
492 
493 	/* used for bpf extension when a bpf program is loaded */
494 	SKBTX_BPF = 1 << 7,
495 };
496 
497 #define SKBTX_HW_TSTAMP		(SKBTX_HW_TSTAMP_NOBPF | SKBTX_BPF)
498 
499 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
500 				 SKBTX_SCHED_TSTAMP | \
501 				 SKBTX_BPF)
502 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | \
503 				 SKBTX_ANY_SW_TSTAMP)
504 
505 /* Definitions for flags in struct skb_shared_info */
506 enum {
507 	/* use zcopy routines */
508 	SKBFL_ZEROCOPY_ENABLE = BIT(0),
509 
510 	/* This indicates at least one fragment might be overwritten
511 	 * (as in vmsplice(), sendfile() ...)
512 	 * If we need to compute a TX checksum, we'll need to copy
513 	 * all frags to avoid possible bad checksum
514 	 */
515 	SKBFL_SHARED_FRAG = BIT(1),
516 
517 	/* segment contains only zerocopy data and should not be
518 	 * charged to the kernel memory.
519 	 */
520 	SKBFL_PURE_ZEROCOPY = BIT(2),
521 
522 	SKBFL_DONT_ORPHAN = BIT(3),
523 
524 	/* page references are managed by the ubuf_info, so it's safe to
525 	 * use frags only up until ubuf_info is released
526 	 */
527 	SKBFL_MANAGED_FRAG_REFS = BIT(4),
528 };
529 
530 #define SKBFL_ZEROCOPY_FRAG	(SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG)
531 #define SKBFL_ALL_ZEROCOPY	(SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY | \
532 				 SKBFL_DONT_ORPHAN | SKBFL_MANAGED_FRAG_REFS)
533 
534 struct ubuf_info_ops {
535 	void (*complete)(struct sk_buff *, struct ubuf_info *,
536 			 bool zerocopy_success);
537 	/* has to be compatible with skb_zcopy_set() */
538 	int (*link_skb)(struct sk_buff *skb, struct ubuf_info *uarg);
539 };
540 
541 /*
542  * The callback notifies userspace to release buffers when skb DMA is done in
543  * lower device, the skb last reference should be 0 when calling this.
544  * The zerocopy_success argument is true if zero copy transmit occurred,
545  * false on data copy or out of memory error caused by data copy attempt.
546  * The ctx field is used to track device context.
547  * The desc field is used to track userspace buffer index.
548  */
549 struct ubuf_info {
550 	const struct ubuf_info_ops *ops;
551 	refcount_t refcnt;
552 	u8 flags;
553 };
554 
555 struct ubuf_info_msgzc {
556 	struct ubuf_info ubuf;
557 
558 	union {
559 		struct {
560 			unsigned long desc;
561 			void *ctx;
562 		};
563 		struct {
564 			u32 id;
565 			u16 len;
566 			u16 zerocopy:1;
567 			u32 bytelen;
568 		};
569 	};
570 
571 	struct mmpin {
572 		struct user_struct *user;
573 		unsigned int num_pg;
574 	} mmp;
575 };
576 
577 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
578 #define uarg_to_msgzc(ubuf_ptr)	container_of((ubuf_ptr), struct ubuf_info_msgzc, \
579 					     ubuf)
580 
581 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
582 void mm_unaccount_pinned_pages(struct mmpin *mmp);
583 
584 /* Preserve some data across TX submission and completion.
585  *
586  * Note, this state is stored in the driver. Extending the layout
587  * might need some special care.
588  */
589 struct xsk_tx_metadata_compl {
590 	__u64 *tx_timestamp;
591 };
592 
593 /* This data is invariant across clones and lives at
594  * the end of the header data, ie. at skb->end.
595  */
596 struct skb_shared_info {
597 	__u8		flags;
598 	__u8		meta_len;
599 	__u8		nr_frags;
600 	__u8		tx_flags;
601 	unsigned short	gso_size;
602 	/* Warning: this field is not always filled in (UFO)! */
603 	unsigned short	gso_segs;
604 	struct sk_buff	*frag_list;
605 	union {
606 		struct skb_shared_hwtstamps hwtstamps;
607 		struct xsk_tx_metadata_compl xsk_meta;
608 	};
609 	unsigned int	gso_type;
610 	u32		tskey;
611 
612 	/*
613 	 * Warning : all fields before dataref are cleared in __alloc_skb()
614 	 */
615 	atomic_t	dataref;
616 
617 	union {
618 		struct {
619 			u32		xdp_frags_size;
620 			u32		xdp_frags_truesize;
621 		};
622 
623 		/*
624 		 * Intermediate layers must ensure that destructor_arg
625 		 * remains valid until skb destructor.
626 		 */
627 		void		*destructor_arg;
628 	};
629 
630 	/* must be last field, see pskb_expand_head() */
631 	skb_frag_t	frags[MAX_SKB_FRAGS];
632 };
633 
634 /**
635  * DOC: dataref and headerless skbs
636  *
637  * Transport layers send out clones of payload skbs they hold for
638  * retransmissions. To allow lower layers of the stack to prepend their headers
639  * we split &skb_shared_info.dataref into two halves.
640  * The lower 16 bits count the overall number of references.
641  * The higher 16 bits indicate how many of the references are payload-only.
642  * skb_header_cloned() checks if skb is allowed to add / write the headers.
643  *
644  * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr
645  * (via __skb_header_release()). Any clone created from marked skb will get
646  * &sk_buff.hdr_len populated with the available headroom.
647  * If there's the only clone in existence it's able to modify the headroom
648  * at will. The sequence of calls inside the transport layer is::
649  *
650  *  <alloc skb>
651  *  skb_reserve()
652  *  __skb_header_release()
653  *  skb_clone()
654  *  // send the clone down the stack
655  *
656  * This is not a very generic construct and it depends on the transport layers
657  * doing the right thing. In practice there's usually only one payload-only skb.
658  * Having multiple payload-only skbs with different lengths of hdr_len is not
659  * possible. The payload-only skbs should never leave their owner.
660  */
661 #define SKB_DATAREF_SHIFT 16
662 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
663 
664 
665 enum {
666 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
667 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
668 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
669 };
670 
671 enum {
672 	SKB_GSO_TCPV4 = 1 << 0,
673 
674 	/* This indicates the skb is from an untrusted source. */
675 	SKB_GSO_DODGY = 1 << 1,
676 
677 	/* This indicates the tcp segment has CWR set. */
678 	SKB_GSO_TCP_ECN = 1 << 2,
679 
680 	SKB_GSO_TCP_FIXEDID = 1 << 3,
681 
682 	SKB_GSO_TCPV6 = 1 << 4,
683 
684 	SKB_GSO_FCOE = 1 << 5,
685 
686 	SKB_GSO_GRE = 1 << 6,
687 
688 	SKB_GSO_GRE_CSUM = 1 << 7,
689 
690 	SKB_GSO_IPXIP4 = 1 << 8,
691 
692 	SKB_GSO_IPXIP6 = 1 << 9,
693 
694 	SKB_GSO_UDP_TUNNEL = 1 << 10,
695 
696 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
697 
698 	SKB_GSO_PARTIAL = 1 << 12,
699 
700 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
701 
702 	SKB_GSO_SCTP = 1 << 14,
703 
704 	SKB_GSO_ESP = 1 << 15,
705 
706 	SKB_GSO_UDP = 1 << 16,
707 
708 	SKB_GSO_UDP_L4 = 1 << 17,
709 
710 	SKB_GSO_FRAGLIST = 1 << 18,
711 };
712 
713 #if BITS_PER_LONG > 32
714 #define NET_SKBUFF_DATA_USES_OFFSET 1
715 #endif
716 
717 #ifdef NET_SKBUFF_DATA_USES_OFFSET
718 typedef unsigned int sk_buff_data_t;
719 #else
720 typedef unsigned char *sk_buff_data_t;
721 #endif
722 
723 enum skb_tstamp_type {
724 	SKB_CLOCK_REALTIME,
725 	SKB_CLOCK_MONOTONIC,
726 	SKB_CLOCK_TAI,
727 	__SKB_CLOCK_MAX = SKB_CLOCK_TAI,
728 };
729 
730 /**
731  * DOC: Basic sk_buff geometry
732  *
733  * struct sk_buff itself is a metadata structure and does not hold any packet
734  * data. All the data is held in associated buffers.
735  *
736  * &sk_buff.head points to the main "head" buffer. The head buffer is divided
737  * into two parts:
738  *
739  *  - data buffer, containing headers and sometimes payload;
740  *    this is the part of the skb operated on by the common helpers
741  *    such as skb_put() or skb_pull();
742  *  - shared info (struct skb_shared_info) which holds an array of pointers
743  *    to read-only data in the (page, offset, length) format.
744  *
745  * Optionally &skb_shared_info.frag_list may point to another skb.
746  *
747  * Basic diagram may look like this::
748  *
749  *                                  ---------------
750  *                                 | sk_buff       |
751  *                                  ---------------
752  *     ,---------------------------  + head
753  *    /          ,-----------------  + data
754  *   /          /      ,-----------  + tail
755  *  |          |      |            , + end
756  *  |          |      |           |
757  *  v          v      v           v
758  *   -----------------------------------------------
759  *  | headroom | data |  tailroom | skb_shared_info |
760  *   -----------------------------------------------
761  *                                 + [page frag]
762  *                                 + [page frag]
763  *                                 + [page frag]
764  *                                 + [page frag]       ---------
765  *                                 + frag_list    --> | sk_buff |
766  *                                                     ---------
767  *
768  */
769 
770 /**
771  *	struct sk_buff - socket buffer
772  *	@next: Next buffer in list
773  *	@prev: Previous buffer in list
774  *	@tstamp: Time we arrived/left
775  *	@skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
776  *		for retransmit timer
777  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
778  *	@list: queue head
779  *	@ll_node: anchor in an llist (eg socket defer_list)
780  *	@sk: Socket we are owned by
781  *	@dev: Device we arrived on/are leaving by
782  *	@dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
783  *	@cb: Control buffer. Free for use by every layer. Put private vars here
784  *	@_skb_refdst: destination entry (with norefcount bit)
785  *	@len: Length of actual data
786  *	@data_len: Data length
787  *	@mac_len: Length of link layer header
788  *	@hdr_len: writable header length of cloned skb
789  *	@csum: Checksum (must include start/offset pair)
790  *	@csum_start: Offset from skb->head where checksumming should start
791  *	@csum_offset: Offset from csum_start where checksum should be stored
792  *	@priority: Packet queueing priority
793  *	@ignore_df: allow local fragmentation
794  *	@cloned: Head may be cloned (check refcnt to be sure)
795  *	@ip_summed: Driver fed us an IP checksum
796  *	@nohdr: Payload reference only, must not modify header
797  *	@pkt_type: Packet class
798  *	@fclone: skbuff clone status
799  *	@ipvs_property: skbuff is owned by ipvs
800  *	@inner_protocol_type: whether the inner protocol is
801  *		ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
802  *	@remcsum_offload: remote checksum offload is enabled
803  *	@offload_fwd_mark: Packet was L2-forwarded in hardware
804  *	@offload_l3_fwd_mark: Packet was L3-forwarded in hardware
805  *	@tc_skip_classify: do not classify packet. set by IFB device
806  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
807  *	@redirected: packet was redirected by packet classifier
808  *	@from_ingress: packet was redirected from the ingress path
809  *	@nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h
810  *	@peeked: this packet has been seen already, so stats have been
811  *		done for it, don't do them again
812  *	@nf_trace: netfilter packet trace flag
813  *	@protocol: Packet protocol from driver
814  *	@destructor: Destruct function
815  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
816  *	@_sk_redir: socket redirection information for skmsg
817  *	@_nfct: Associated connection, if any (with nfctinfo bits)
818  *	@skb_iif: ifindex of device we arrived on
819  *	@tc_index: Traffic control index
820  *	@hash: the packet hash
821  *	@queue_mapping: Queue mapping for multiqueue devices
822  *	@head_frag: skb was allocated from page fragments,
823  *		not allocated by kmalloc() or vmalloc().
824  *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
825  *	@pp_recycle: mark the packet for recycling instead of freeing (implies
826  *		page_pool support on driver)
827  *	@active_extensions: active extensions (skb_ext_id types)
828  *	@ndisc_nodetype: router type (from link layer)
829  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
830  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
831  *		ports.
832  *	@sw_hash: indicates hash was computed in software stack
833  *	@wifi_acked_valid: wifi_acked was set
834  *	@wifi_acked: whether frame was acked on wifi or not
835  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
836  *	@encapsulation: indicates the inner headers in the skbuff are valid
837  *	@encap_hdr_csum: software checksum is needed
838  *	@csum_valid: checksum is already valid
839  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
840  *	@csum_complete_sw: checksum was completed by software
841  *	@csum_level: indicates the number of consecutive checksums found in
842  *		the packet minus one that have been verified as
843  *		CHECKSUM_UNNECESSARY (max 3)
844  *	@unreadable: indicates that at least 1 of the fragments in this skb is
845  *		unreadable.
846  *	@dst_pending_confirm: need to confirm neighbour
847  *	@decrypted: Decrypted SKB
848  *	@slow_gro: state present at GRO time, slower prepare step required
849  *	@tstamp_type: When set, skb->tstamp has the
850  *		delivery_time clock base of skb->tstamp.
851  *	@napi_id: id of the NAPI struct this skb came from
852  *	@sender_cpu: (aka @napi_id) source CPU in XPS
853  *	@alloc_cpu: CPU which did the skb allocation.
854  *	@secmark: security marking
855  *	@mark: Generic packet mark
856  *	@reserved_tailroom: (aka @mark) number of bytes of free space available
857  *		at the tail of an sk_buff
858  *	@vlan_all: vlan fields (proto & tci)
859  *	@vlan_proto: vlan encapsulation protocol
860  *	@vlan_tci: vlan tag control information
861  *	@inner_protocol: Protocol (encapsulation)
862  *	@inner_ipproto: (aka @inner_protocol) stores ipproto when
863  *		skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
864  *	@inner_transport_header: Inner transport layer header (encapsulation)
865  *	@inner_network_header: Network layer header (encapsulation)
866  *	@inner_mac_header: Link layer header (encapsulation)
867  *	@transport_header: Transport layer header
868  *	@network_header: Network layer header
869  *	@mac_header: Link layer header
870  *	@kcov_handle: KCOV remote handle for remote coverage collection
871  *	@tail: Tail pointer
872  *	@end: End pointer
873  *	@head: Head of buffer
874  *	@data: Data head pointer
875  *	@truesize: Buffer size
876  *	@users: User count - see {datagram,tcp}.c
877  *	@extensions: allocated extensions, valid if active_extensions is nonzero
878  */
879 
880 struct sk_buff {
881 	union {
882 		struct {
883 			/* These two members must be first to match sk_buff_head. */
884 			struct sk_buff		*next;
885 			struct sk_buff		*prev;
886 
887 			union {
888 				struct net_device	*dev;
889 				/* Some protocols might use this space to store information,
890 				 * while device pointer would be NULL.
891 				 * UDP receive path is one user.
892 				 */
893 				unsigned long		dev_scratch;
894 			};
895 		};
896 		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
897 		struct list_head	list;
898 		struct llist_node	ll_node;
899 	};
900 
901 	struct sock		*sk;
902 
903 	union {
904 		ktime_t		tstamp;
905 		u64		skb_mstamp_ns; /* earliest departure time */
906 	};
907 	/*
908 	 * This is the control buffer. It is free to use for every
909 	 * layer. Please put your private variables there. If you
910 	 * want to keep them across layers you have to do a skb_clone()
911 	 * first. This is owned by whoever has the skb queued ATM.
912 	 */
913 	char			cb[48] __aligned(8);
914 
915 	union {
916 		struct {
917 			unsigned long	_skb_refdst;
918 			void		(*destructor)(struct sk_buff *skb);
919 		};
920 		struct list_head	tcp_tsorted_anchor;
921 #ifdef CONFIG_NET_SOCK_MSG
922 		unsigned long		_sk_redir;
923 #endif
924 	};
925 
926 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
927 	unsigned long		 _nfct;
928 #endif
929 	unsigned int		len,
930 				data_len;
931 	__u16			mac_len,
932 				hdr_len;
933 
934 	/* Following fields are _not_ copied in __copy_skb_header()
935 	 * Note that queue_mapping is here mostly to fill a hole.
936 	 */
937 	__u16			queue_mapping;
938 
939 /* if you move cloned around you also must adapt those constants */
940 #ifdef __BIG_ENDIAN_BITFIELD
941 #define CLONED_MASK	(1 << 7)
942 #else
943 #define CLONED_MASK	1
944 #endif
945 #define CLONED_OFFSET		offsetof(struct sk_buff, __cloned_offset)
946 
947 	/* private: */
948 	__u8			__cloned_offset[0];
949 	/* public: */
950 	__u8			cloned:1,
951 				nohdr:1,
952 				fclone:2,
953 				peeked:1,
954 				head_frag:1,
955 				pfmemalloc:1,
956 				pp_recycle:1; /* page_pool recycle indicator */
957 #ifdef CONFIG_SKB_EXTENSIONS
958 	__u8			active_extensions;
959 #endif
960 
961 	/* Fields enclosed in headers group are copied
962 	 * using a single memcpy() in __copy_skb_header()
963 	 */
964 	struct_group(headers,
965 
966 	/* private: */
967 	__u8			__pkt_type_offset[0];
968 	/* public: */
969 	__u8			pkt_type:3; /* see PKT_TYPE_MAX */
970 	__u8			ignore_df:1;
971 	__u8			dst_pending_confirm:1;
972 	__u8			ip_summed:2;
973 	__u8			ooo_okay:1;
974 
975 	/* private: */
976 	__u8			__mono_tc_offset[0];
977 	/* public: */
978 	__u8			tstamp_type:2;	/* See skb_tstamp_type */
979 #ifdef CONFIG_NET_XGRESS
980 	__u8			tc_at_ingress:1;	/* See TC_AT_INGRESS_MASK */
981 	__u8			tc_skip_classify:1;
982 #endif
983 	__u8			remcsum_offload:1;
984 	__u8			csum_complete_sw:1;
985 	__u8			csum_level:2;
986 	__u8			inner_protocol_type:1;
987 
988 	__u8			l4_hash:1;
989 	__u8			sw_hash:1;
990 #ifdef CONFIG_WIRELESS
991 	__u8			wifi_acked_valid:1;
992 	__u8			wifi_acked:1;
993 #endif
994 	__u8			no_fcs:1;
995 	/* Indicates the inner headers are valid in the skbuff. */
996 	__u8			encapsulation:1;
997 	__u8			encap_hdr_csum:1;
998 	__u8			csum_valid:1;
999 #ifdef CONFIG_IPV6_NDISC_NODETYPE
1000 	__u8			ndisc_nodetype:2;
1001 #endif
1002 
1003 #if IS_ENABLED(CONFIG_IP_VS)
1004 	__u8			ipvs_property:1;
1005 #endif
1006 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
1007 	__u8			nf_trace:1;
1008 #endif
1009 #ifdef CONFIG_NET_SWITCHDEV
1010 	__u8			offload_fwd_mark:1;
1011 	__u8			offload_l3_fwd_mark:1;
1012 #endif
1013 	__u8			redirected:1;
1014 #ifdef CONFIG_NET_REDIRECT
1015 	__u8			from_ingress:1;
1016 #endif
1017 #ifdef CONFIG_NETFILTER_SKIP_EGRESS
1018 	__u8			nf_skip_egress:1;
1019 #endif
1020 #ifdef CONFIG_SKB_DECRYPTED
1021 	__u8			decrypted:1;
1022 #endif
1023 	__u8			slow_gro:1;
1024 #if IS_ENABLED(CONFIG_IP_SCTP)
1025 	__u8			csum_not_inet:1;
1026 #endif
1027 	__u8			unreadable:1;
1028 #if defined(CONFIG_NET_SCHED) || defined(CONFIG_NET_XGRESS)
1029 	__u16			tc_index;	/* traffic control index */
1030 #endif
1031 
1032 	u16			alloc_cpu;
1033 
1034 	union {
1035 		__wsum		csum;
1036 		struct {
1037 			__u16	csum_start;
1038 			__u16	csum_offset;
1039 		};
1040 	};
1041 	__u32			priority;
1042 	int			skb_iif;
1043 	__u32			hash;
1044 	union {
1045 		u32		vlan_all;
1046 		struct {
1047 			__be16	vlan_proto;
1048 			__u16	vlan_tci;
1049 		};
1050 	};
1051 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
1052 	union {
1053 		unsigned int	napi_id;
1054 		unsigned int	sender_cpu;
1055 	};
1056 #endif
1057 #ifdef CONFIG_NETWORK_SECMARK
1058 	__u32		secmark;
1059 #endif
1060 
1061 	union {
1062 		__u32		mark;
1063 		__u32		reserved_tailroom;
1064 	};
1065 
1066 	union {
1067 		__be16		inner_protocol;
1068 		__u8		inner_ipproto;
1069 	};
1070 
1071 	__u16			inner_transport_header;
1072 	__u16			inner_network_header;
1073 	__u16			inner_mac_header;
1074 
1075 	__be16			protocol;
1076 	__u16			transport_header;
1077 	__u16			network_header;
1078 	__u16			mac_header;
1079 
1080 #ifdef CONFIG_KCOV
1081 	u64			kcov_handle;
1082 #endif
1083 
1084 	); /* end headers group */
1085 
1086 	/* These elements must be at the end, see alloc_skb() for details.  */
1087 	sk_buff_data_t		tail;
1088 	sk_buff_data_t		end;
1089 	unsigned char		*head,
1090 				*data;
1091 	unsigned int		truesize;
1092 	refcount_t		users;
1093 
1094 #ifdef CONFIG_SKB_EXTENSIONS
1095 	/* only usable after checking ->active_extensions != 0 */
1096 	struct skb_ext		*extensions;
1097 #endif
1098 };
1099 
1100 /* if you move pkt_type around you also must adapt those constants */
1101 #ifdef __BIG_ENDIAN_BITFIELD
1102 #define PKT_TYPE_MAX	(7 << 5)
1103 #else
1104 #define PKT_TYPE_MAX	7
1105 #endif
1106 #define PKT_TYPE_OFFSET		offsetof(struct sk_buff, __pkt_type_offset)
1107 
1108 /* if you move tc_at_ingress or tstamp_type
1109  * around, you also must adapt these constants.
1110  */
1111 #ifdef __BIG_ENDIAN_BITFIELD
1112 #define SKB_TSTAMP_TYPE_MASK		(3 << 6)
1113 #define SKB_TSTAMP_TYPE_RSHIFT		(6)
1114 #define TC_AT_INGRESS_MASK		(1 << 5)
1115 #else
1116 #define SKB_TSTAMP_TYPE_MASK		(3)
1117 #define TC_AT_INGRESS_MASK		(1 << 2)
1118 #endif
1119 #define SKB_BF_MONO_TC_OFFSET		offsetof(struct sk_buff, __mono_tc_offset)
1120 
1121 #ifdef __KERNEL__
1122 /*
1123  *	Handling routines are only of interest to the kernel
1124  */
1125 
1126 #define SKB_ALLOC_FCLONE	0x01
1127 #define SKB_ALLOC_RX		0x02
1128 #define SKB_ALLOC_NAPI		0x04
1129 
1130 /**
1131  * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
1132  * @skb: buffer
1133  */
1134 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
1135 {
1136 	return unlikely(skb->pfmemalloc);
1137 }
1138 
1139 /*
1140  * skb might have a dst pointer attached, refcounted or not.
1141  * _skb_refdst low order bit is set if refcount was _not_ taken
1142  */
1143 #define SKB_DST_NOREF	1UL
1144 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
1145 
1146 /**
1147  * skb_dst - returns skb dst_entry
1148  * @skb: buffer
1149  *
1150  * Returns: skb dst_entry, regardless of reference taken or not.
1151  */
1152 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
1153 {
1154 	/* If refdst was not refcounted, check we still are in a
1155 	 * rcu_read_lock section
1156 	 */
1157 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
1158 		!rcu_read_lock_held() &&
1159 		!rcu_read_lock_bh_held());
1160 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
1161 }
1162 
1163 /**
1164  * skb_dst_set - sets skb dst
1165  * @skb: buffer
1166  * @dst: dst entry
1167  *
1168  * Sets skb dst, assuming a reference was taken on dst and should
1169  * be released by skb_dst_drop()
1170  */
1171 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
1172 {
1173 	skb->slow_gro |= !!dst;
1174 	skb->_skb_refdst = (unsigned long)dst;
1175 }
1176 
1177 /**
1178  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
1179  * @skb: buffer
1180  * @dst: dst entry
1181  *
1182  * Sets skb dst, assuming a reference was not taken on dst.
1183  * If dst entry is cached, we do not take reference and dst_release
1184  * will be avoided by refdst_drop. If dst entry is not cached, we take
1185  * reference, so that last dst_release can destroy the dst immediately.
1186  */
1187 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
1188 {
1189 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
1190 	skb->slow_gro |= !!dst;
1191 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
1192 }
1193 
1194 /**
1195  * skb_dst_is_noref - Test if skb dst isn't refcounted
1196  * @skb: buffer
1197  */
1198 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1199 {
1200 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1201 }
1202 
1203 /* For mangling skb->pkt_type from user space side from applications
1204  * such as nft, tc, etc, we only allow a conservative subset of
1205  * possible pkt_types to be set.
1206 */
1207 static inline bool skb_pkt_type_ok(u32 ptype)
1208 {
1209 	return ptype <= PACKET_OTHERHOST;
1210 }
1211 
1212 /**
1213  * skb_napi_id - Returns the skb's NAPI id
1214  * @skb: buffer
1215  */
1216 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1217 {
1218 #ifdef CONFIG_NET_RX_BUSY_POLL
1219 	return skb->napi_id;
1220 #else
1221 	return 0;
1222 #endif
1223 }
1224 
1225 static inline bool skb_wifi_acked_valid(const struct sk_buff *skb)
1226 {
1227 #ifdef CONFIG_WIRELESS
1228 	return skb->wifi_acked_valid;
1229 #else
1230 	return 0;
1231 #endif
1232 }
1233 
1234 /**
1235  * skb_unref - decrement the skb's reference count
1236  * @skb: buffer
1237  *
1238  * Returns: true if we can free the skb.
1239  */
1240 static inline bool skb_unref(struct sk_buff *skb)
1241 {
1242 	if (unlikely(!skb))
1243 		return false;
1244 	if (!IS_ENABLED(CONFIG_DEBUG_NET) && likely(refcount_read(&skb->users) == 1))
1245 		smp_rmb();
1246 	else if (likely(!refcount_dec_and_test(&skb->users)))
1247 		return false;
1248 
1249 	return true;
1250 }
1251 
1252 static inline bool skb_data_unref(const struct sk_buff *skb,
1253 				  struct skb_shared_info *shinfo)
1254 {
1255 	int bias;
1256 
1257 	if (!skb->cloned)
1258 		return true;
1259 
1260 	bias = skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1;
1261 
1262 	if (atomic_read(&shinfo->dataref) == bias)
1263 		smp_rmb();
1264 	else if (atomic_sub_return(bias, &shinfo->dataref))
1265 		return false;
1266 
1267 	return true;
1268 }
1269 
1270 void __fix_address sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb,
1271 				      enum skb_drop_reason reason);
1272 
1273 static inline void
1274 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
1275 {
1276 	sk_skb_reason_drop(NULL, skb, reason);
1277 }
1278 
1279 /**
1280  *	kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason
1281  *	@skb: buffer to free
1282  */
1283 static inline void kfree_skb(struct sk_buff *skb)
1284 {
1285 	kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1286 }
1287 
1288 void skb_release_head_state(struct sk_buff *skb);
1289 void kfree_skb_list_reason(struct sk_buff *segs,
1290 			   enum skb_drop_reason reason);
1291 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1292 void skb_tx_error(struct sk_buff *skb);
1293 
1294 static inline void kfree_skb_list(struct sk_buff *segs)
1295 {
1296 	kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED);
1297 }
1298 
1299 #ifdef CONFIG_TRACEPOINTS
1300 void consume_skb(struct sk_buff *skb);
1301 #else
1302 static inline void consume_skb(struct sk_buff *skb)
1303 {
1304 	return kfree_skb(skb);
1305 }
1306 #endif
1307 
1308 void __consume_stateless_skb(struct sk_buff *skb);
1309 void  __kfree_skb(struct sk_buff *skb);
1310 
1311 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1312 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1313 		      bool *fragstolen, int *delta_truesize);
1314 
1315 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1316 			    int node);
1317 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1318 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1319 struct sk_buff *build_skb_around(struct sk_buff *skb,
1320 				 void *data, unsigned int frag_size);
1321 void skb_attempt_defer_free(struct sk_buff *skb);
1322 
1323 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size);
1324 struct sk_buff *slab_build_skb(void *data);
1325 
1326 /**
1327  * alloc_skb - allocate a network buffer
1328  * @size: size to allocate
1329  * @priority: allocation mask
1330  *
1331  * This function is a convenient wrapper around __alloc_skb().
1332  */
1333 static inline struct sk_buff *alloc_skb(unsigned int size,
1334 					gfp_t priority)
1335 {
1336 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1337 }
1338 
1339 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1340 				     unsigned long data_len,
1341 				     int max_page_order,
1342 				     int *errcode,
1343 				     gfp_t gfp_mask);
1344 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1345 
1346 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1347 struct sk_buff_fclones {
1348 	struct sk_buff	skb1;
1349 
1350 	struct sk_buff	skb2;
1351 
1352 	refcount_t	fclone_ref;
1353 };
1354 
1355 /**
1356  *	skb_fclone_busy - check if fclone is busy
1357  *	@sk: socket
1358  *	@skb: buffer
1359  *
1360  * Returns: true if skb is a fast clone, and its clone is not freed.
1361  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1362  * so we also check that didn't happen.
1363  */
1364 static inline bool skb_fclone_busy(const struct sock *sk,
1365 				   const struct sk_buff *skb)
1366 {
1367 	const struct sk_buff_fclones *fclones;
1368 
1369 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1370 
1371 	return skb->fclone == SKB_FCLONE_ORIG &&
1372 	       refcount_read(&fclones->fclone_ref) > 1 &&
1373 	       READ_ONCE(fclones->skb2.sk) == sk;
1374 }
1375 
1376 /**
1377  * alloc_skb_fclone - allocate a network buffer from fclone cache
1378  * @size: size to allocate
1379  * @priority: allocation mask
1380  *
1381  * This function is a convenient wrapper around __alloc_skb().
1382  */
1383 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1384 					       gfp_t priority)
1385 {
1386 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1387 }
1388 
1389 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1390 void skb_headers_offset_update(struct sk_buff *skb, int off);
1391 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1392 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1393 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1394 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1395 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1396 				   gfp_t gfp_mask, bool fclone);
1397 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1398 					  gfp_t gfp_mask)
1399 {
1400 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1401 }
1402 
1403 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1404 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1405 				     unsigned int headroom);
1406 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom);
1407 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1408 				int newtailroom, gfp_t priority);
1409 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1410 				     int offset, int len);
1411 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1412 			      int offset, int len);
1413 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1414 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1415 
1416 /**
1417  *	skb_pad			-	zero pad the tail of an skb
1418  *	@skb: buffer to pad
1419  *	@pad: space to pad
1420  *
1421  *	Ensure that a buffer is followed by a padding area that is zero
1422  *	filled. Used by network drivers which may DMA or transfer data
1423  *	beyond the buffer end onto the wire.
1424  *
1425  *	May return error in out of memory cases. The skb is freed on error.
1426  */
1427 static inline int skb_pad(struct sk_buff *skb, int pad)
1428 {
1429 	return __skb_pad(skb, pad, true);
1430 }
1431 #define dev_kfree_skb(a)	consume_skb(a)
1432 
1433 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1434 			 int offset, size_t size, size_t max_frags);
1435 
1436 struct skb_seq_state {
1437 	__u32		lower_offset;
1438 	__u32		upper_offset;
1439 	__u32		frag_idx;
1440 	__u32		stepped_offset;
1441 	struct sk_buff	*root_skb;
1442 	struct sk_buff	*cur_skb;
1443 	__u8		*frag_data;
1444 	__u32		frag_off;
1445 };
1446 
1447 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1448 			  unsigned int to, struct skb_seq_state *st);
1449 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1450 			  struct skb_seq_state *st);
1451 void skb_abort_seq_read(struct skb_seq_state *st);
1452 int skb_copy_seq_read(struct skb_seq_state *st, int offset, void *to, int len);
1453 
1454 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1455 			   unsigned int to, struct ts_config *config);
1456 
1457 /*
1458  * Packet hash types specify the type of hash in skb_set_hash.
1459  *
1460  * Hash types refer to the protocol layer addresses which are used to
1461  * construct a packet's hash. The hashes are used to differentiate or identify
1462  * flows of the protocol layer for the hash type. Hash types are either
1463  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1464  *
1465  * Properties of hashes:
1466  *
1467  * 1) Two packets in different flows have different hash values
1468  * 2) Two packets in the same flow should have the same hash value
1469  *
1470  * A hash at a higher layer is considered to be more specific. A driver should
1471  * set the most specific hash possible.
1472  *
1473  * A driver cannot indicate a more specific hash than the layer at which a hash
1474  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1475  *
1476  * A driver may indicate a hash level which is less specific than the
1477  * actual layer the hash was computed on. For instance, a hash computed
1478  * at L4 may be considered an L3 hash. This should only be done if the
1479  * driver can't unambiguously determine that the HW computed the hash at
1480  * the higher layer. Note that the "should" in the second property above
1481  * permits this.
1482  */
1483 enum pkt_hash_types {
1484 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1485 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1486 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1487 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1488 };
1489 
1490 static inline void skb_clear_hash(struct sk_buff *skb)
1491 {
1492 	skb->hash = 0;
1493 	skb->sw_hash = 0;
1494 	skb->l4_hash = 0;
1495 }
1496 
1497 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1498 {
1499 	if (!skb->l4_hash)
1500 		skb_clear_hash(skb);
1501 }
1502 
1503 static inline void
1504 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1505 {
1506 	skb->l4_hash = is_l4;
1507 	skb->sw_hash = is_sw;
1508 	skb->hash = hash;
1509 }
1510 
1511 static inline void
1512 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1513 {
1514 	/* Used by drivers to set hash from HW */
1515 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1516 }
1517 
1518 static inline void
1519 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1520 {
1521 	__skb_set_hash(skb, hash, true, is_l4);
1522 }
1523 
1524 u32 __skb_get_hash_symmetric_net(const struct net *net, const struct sk_buff *skb);
1525 
1526 static inline u32 __skb_get_hash_symmetric(const struct sk_buff *skb)
1527 {
1528 	return __skb_get_hash_symmetric_net(NULL, skb);
1529 }
1530 
1531 void __skb_get_hash_net(const struct net *net, struct sk_buff *skb);
1532 u32 skb_get_poff(const struct sk_buff *skb);
1533 u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
1534 		   const struct flow_keys_basic *keys, int hlen);
1535 __be32 skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1536 			  const void *data, int hlen_proto);
1537 
1538 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1539 			     const struct flow_dissector_key *key,
1540 			     unsigned int key_count);
1541 
1542 struct bpf_flow_dissector;
1543 u32 bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1544 		     __be16 proto, int nhoff, int hlen, unsigned int flags);
1545 
1546 bool __skb_flow_dissect(const struct net *net,
1547 			const struct sk_buff *skb,
1548 			struct flow_dissector *flow_dissector,
1549 			void *target_container, const void *data,
1550 			__be16 proto, int nhoff, int hlen, unsigned int flags);
1551 
1552 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1553 				    struct flow_dissector *flow_dissector,
1554 				    void *target_container, unsigned int flags)
1555 {
1556 	return __skb_flow_dissect(NULL, skb, flow_dissector,
1557 				  target_container, NULL, 0, 0, 0, flags);
1558 }
1559 
1560 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1561 					      struct flow_keys *flow,
1562 					      unsigned int flags)
1563 {
1564 	memset(flow, 0, sizeof(*flow));
1565 	return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1566 				  flow, NULL, 0, 0, 0, flags);
1567 }
1568 
1569 static inline bool
1570 skb_flow_dissect_flow_keys_basic(const struct net *net,
1571 				 const struct sk_buff *skb,
1572 				 struct flow_keys_basic *flow,
1573 				 const void *data, __be16 proto,
1574 				 int nhoff, int hlen, unsigned int flags)
1575 {
1576 	memset(flow, 0, sizeof(*flow));
1577 	return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1578 				  data, proto, nhoff, hlen, flags);
1579 }
1580 
1581 void skb_flow_dissect_meta(const struct sk_buff *skb,
1582 			   struct flow_dissector *flow_dissector,
1583 			   void *target_container);
1584 
1585 /* Gets a skb connection tracking info, ctinfo map should be a
1586  * map of mapsize to translate enum ip_conntrack_info states
1587  * to user states.
1588  */
1589 void
1590 skb_flow_dissect_ct(const struct sk_buff *skb,
1591 		    struct flow_dissector *flow_dissector,
1592 		    void *target_container,
1593 		    u16 *ctinfo_map, size_t mapsize,
1594 		    bool post_ct, u16 zone);
1595 void
1596 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1597 			     struct flow_dissector *flow_dissector,
1598 			     void *target_container);
1599 
1600 void skb_flow_dissect_hash(const struct sk_buff *skb,
1601 			   struct flow_dissector *flow_dissector,
1602 			   void *target_container);
1603 
1604 static inline __u32 skb_get_hash_net(const struct net *net, struct sk_buff *skb)
1605 {
1606 	if (!skb->l4_hash && !skb->sw_hash)
1607 		__skb_get_hash_net(net, skb);
1608 
1609 	return skb->hash;
1610 }
1611 
1612 static inline __u32 skb_get_hash(struct sk_buff *skb)
1613 {
1614 	if (!skb->l4_hash && !skb->sw_hash)
1615 		__skb_get_hash_net(NULL, skb);
1616 
1617 	return skb->hash;
1618 }
1619 
1620 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1621 {
1622 	if (!skb->l4_hash && !skb->sw_hash) {
1623 		struct flow_keys keys;
1624 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1625 
1626 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1627 	}
1628 
1629 	return skb->hash;
1630 }
1631 
1632 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1633 			   const siphash_key_t *perturb);
1634 
1635 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1636 {
1637 	return skb->hash;
1638 }
1639 
1640 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1641 {
1642 	to->hash = from->hash;
1643 	to->sw_hash = from->sw_hash;
1644 	to->l4_hash = from->l4_hash;
1645 };
1646 
1647 static inline int skb_cmp_decrypted(const struct sk_buff *skb1,
1648 				    const struct sk_buff *skb2)
1649 {
1650 #ifdef CONFIG_SKB_DECRYPTED
1651 	return skb2->decrypted - skb1->decrypted;
1652 #else
1653 	return 0;
1654 #endif
1655 }
1656 
1657 static inline bool skb_is_decrypted(const struct sk_buff *skb)
1658 {
1659 #ifdef CONFIG_SKB_DECRYPTED
1660 	return skb->decrypted;
1661 #else
1662 	return false;
1663 #endif
1664 }
1665 
1666 static inline void skb_copy_decrypted(struct sk_buff *to,
1667 				      const struct sk_buff *from)
1668 {
1669 #ifdef CONFIG_SKB_DECRYPTED
1670 	to->decrypted = from->decrypted;
1671 #endif
1672 }
1673 
1674 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1675 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1676 {
1677 	return skb->head + skb->end;
1678 }
1679 
1680 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1681 {
1682 	return skb->end;
1683 }
1684 
1685 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1686 {
1687 	skb->end = offset;
1688 }
1689 #else
1690 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1691 {
1692 	return skb->end;
1693 }
1694 
1695 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1696 {
1697 	return skb->end - skb->head;
1698 }
1699 
1700 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1701 {
1702 	skb->end = skb->head + offset;
1703 }
1704 #endif
1705 
1706 extern const struct ubuf_info_ops msg_zerocopy_ubuf_ops;
1707 
1708 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1709 				       struct ubuf_info *uarg);
1710 
1711 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
1712 
1713 int __zerocopy_sg_from_iter(struct msghdr *msg, struct sock *sk,
1714 			    struct sk_buff *skb, struct iov_iter *from,
1715 			    size_t length);
1716 
1717 int zerocopy_fill_skb_from_iter(struct sk_buff *skb,
1718 				struct iov_iter *from, size_t length);
1719 
1720 static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb,
1721 					  struct msghdr *msg, int len)
1722 {
1723 	return __zerocopy_sg_from_iter(msg, skb->sk, skb, &msg->msg_iter, len);
1724 }
1725 
1726 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1727 			     struct msghdr *msg, int len,
1728 			     struct ubuf_info *uarg);
1729 
1730 /* Internal */
1731 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1732 
1733 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1734 {
1735 	return &skb_shinfo(skb)->hwtstamps;
1736 }
1737 
1738 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1739 {
1740 	bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE;
1741 
1742 	return is_zcopy ? skb_uarg(skb) : NULL;
1743 }
1744 
1745 static inline bool skb_zcopy_pure(const struct sk_buff *skb)
1746 {
1747 	return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY;
1748 }
1749 
1750 static inline bool skb_zcopy_managed(const struct sk_buff *skb)
1751 {
1752 	return skb_shinfo(skb)->flags & SKBFL_MANAGED_FRAG_REFS;
1753 }
1754 
1755 static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1,
1756 				       const struct sk_buff *skb2)
1757 {
1758 	return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2);
1759 }
1760 
1761 static inline void net_zcopy_get(struct ubuf_info *uarg)
1762 {
1763 	refcount_inc(&uarg->refcnt);
1764 }
1765 
1766 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg)
1767 {
1768 	skb_shinfo(skb)->destructor_arg = uarg;
1769 	skb_shinfo(skb)->flags |= uarg->flags;
1770 }
1771 
1772 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1773 				 bool *have_ref)
1774 {
1775 	if (skb && uarg && !skb_zcopy(skb)) {
1776 		if (unlikely(have_ref && *have_ref))
1777 			*have_ref = false;
1778 		else
1779 			net_zcopy_get(uarg);
1780 		skb_zcopy_init(skb, uarg);
1781 	}
1782 }
1783 
1784 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1785 {
1786 	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1787 	skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG;
1788 }
1789 
1790 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1791 {
1792 	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1793 }
1794 
1795 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1796 {
1797 	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1798 }
1799 
1800 static inline void net_zcopy_put(struct ubuf_info *uarg)
1801 {
1802 	if (uarg)
1803 		uarg->ops->complete(NULL, uarg, true);
1804 }
1805 
1806 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1807 {
1808 	if (uarg) {
1809 		if (uarg->ops == &msg_zerocopy_ubuf_ops)
1810 			msg_zerocopy_put_abort(uarg, have_uref);
1811 		else if (have_uref)
1812 			net_zcopy_put(uarg);
1813 	}
1814 }
1815 
1816 /* Release a reference on a zerocopy structure */
1817 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success)
1818 {
1819 	struct ubuf_info *uarg = skb_zcopy(skb);
1820 
1821 	if (uarg) {
1822 		if (!skb_zcopy_is_nouarg(skb))
1823 			uarg->ops->complete(skb, uarg, zerocopy_success);
1824 
1825 		skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY;
1826 	}
1827 }
1828 
1829 void __skb_zcopy_downgrade_managed(struct sk_buff *skb);
1830 
1831 static inline void skb_zcopy_downgrade_managed(struct sk_buff *skb)
1832 {
1833 	if (unlikely(skb_zcopy_managed(skb)))
1834 		__skb_zcopy_downgrade_managed(skb);
1835 }
1836 
1837 /* Return true if frags in this skb are readable by the host. */
1838 static inline bool skb_frags_readable(const struct sk_buff *skb)
1839 {
1840 	return !skb->unreadable;
1841 }
1842 
1843 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1844 {
1845 	skb->next = NULL;
1846 }
1847 
1848 static inline void skb_poison_list(struct sk_buff *skb)
1849 {
1850 #ifdef CONFIG_DEBUG_NET
1851 	skb->next = SKB_LIST_POISON_NEXT;
1852 #endif
1853 }
1854 
1855 /* Iterate through singly-linked GSO fragments of an skb. */
1856 #define skb_list_walk_safe(first, skb, next_skb)                               \
1857 	for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb);  \
1858 	     (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1859 
1860 static inline void skb_list_del_init(struct sk_buff *skb)
1861 {
1862 	__list_del_entry(&skb->list);
1863 	skb_mark_not_on_list(skb);
1864 }
1865 
1866 /**
1867  *	skb_queue_empty - check if a queue is empty
1868  *	@list: queue head
1869  *
1870  *	Returns true if the queue is empty, false otherwise.
1871  */
1872 static inline int skb_queue_empty(const struct sk_buff_head *list)
1873 {
1874 	return list->next == (const struct sk_buff *) list;
1875 }
1876 
1877 /**
1878  *	skb_queue_empty_lockless - check if a queue is empty
1879  *	@list: queue head
1880  *
1881  *	Returns true if the queue is empty, false otherwise.
1882  *	This variant can be used in lockless contexts.
1883  */
1884 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1885 {
1886 	return READ_ONCE(list->next) == (const struct sk_buff *) list;
1887 }
1888 
1889 
1890 /**
1891  *	skb_queue_is_last - check if skb is the last entry in the queue
1892  *	@list: queue head
1893  *	@skb: buffer
1894  *
1895  *	Returns true if @skb is the last buffer on the list.
1896  */
1897 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1898 				     const struct sk_buff *skb)
1899 {
1900 	return skb->next == (const struct sk_buff *) list;
1901 }
1902 
1903 /**
1904  *	skb_queue_is_first - check if skb is the first entry in the queue
1905  *	@list: queue head
1906  *	@skb: buffer
1907  *
1908  *	Returns true if @skb is the first buffer on the list.
1909  */
1910 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1911 				      const struct sk_buff *skb)
1912 {
1913 	return skb->prev == (const struct sk_buff *) list;
1914 }
1915 
1916 /**
1917  *	skb_queue_next - return the next packet in the queue
1918  *	@list: queue head
1919  *	@skb: current buffer
1920  *
1921  *	Return the next packet in @list after @skb.  It is only valid to
1922  *	call this if skb_queue_is_last() evaluates to false.
1923  */
1924 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1925 					     const struct sk_buff *skb)
1926 {
1927 	/* This BUG_ON may seem severe, but if we just return then we
1928 	 * are going to dereference garbage.
1929 	 */
1930 	BUG_ON(skb_queue_is_last(list, skb));
1931 	return skb->next;
1932 }
1933 
1934 /**
1935  *	skb_queue_prev - return the prev packet in the queue
1936  *	@list: queue head
1937  *	@skb: current buffer
1938  *
1939  *	Return the prev packet in @list before @skb.  It is only valid to
1940  *	call this if skb_queue_is_first() evaluates to false.
1941  */
1942 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1943 					     const struct sk_buff *skb)
1944 {
1945 	/* This BUG_ON may seem severe, but if we just return then we
1946 	 * are going to dereference garbage.
1947 	 */
1948 	BUG_ON(skb_queue_is_first(list, skb));
1949 	return skb->prev;
1950 }
1951 
1952 /**
1953  *	skb_get - reference buffer
1954  *	@skb: buffer to reference
1955  *
1956  *	Makes another reference to a socket buffer and returns a pointer
1957  *	to the buffer.
1958  */
1959 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1960 {
1961 	refcount_inc(&skb->users);
1962 	return skb;
1963 }
1964 
1965 /*
1966  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1967  */
1968 
1969 /**
1970  *	skb_cloned - is the buffer a clone
1971  *	@skb: buffer to check
1972  *
1973  *	Returns true if the buffer was generated with skb_clone() and is
1974  *	one of multiple shared copies of the buffer. Cloned buffers are
1975  *	shared data so must not be written to under normal circumstances.
1976  */
1977 static inline int skb_cloned(const struct sk_buff *skb)
1978 {
1979 	return skb->cloned &&
1980 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1981 }
1982 
1983 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1984 {
1985 	might_sleep_if(gfpflags_allow_blocking(pri));
1986 
1987 	if (skb_cloned(skb))
1988 		return pskb_expand_head(skb, 0, 0, pri);
1989 
1990 	return 0;
1991 }
1992 
1993 /* This variant of skb_unclone() makes sure skb->truesize
1994  * and skb_end_offset() are not changed, whenever a new skb->head is needed.
1995  *
1996  * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X))
1997  * when various debugging features are in place.
1998  */
1999 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri);
2000 static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
2001 {
2002 	might_sleep_if(gfpflags_allow_blocking(pri));
2003 
2004 	if (skb_cloned(skb))
2005 		return __skb_unclone_keeptruesize(skb, pri);
2006 	return 0;
2007 }
2008 
2009 /**
2010  *	skb_header_cloned - is the header a clone
2011  *	@skb: buffer to check
2012  *
2013  *	Returns true if modifying the header part of the buffer requires
2014  *	the data to be copied.
2015  */
2016 static inline int skb_header_cloned(const struct sk_buff *skb)
2017 {
2018 	int dataref;
2019 
2020 	if (!skb->cloned)
2021 		return 0;
2022 
2023 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
2024 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
2025 	return dataref != 1;
2026 }
2027 
2028 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
2029 {
2030 	might_sleep_if(gfpflags_allow_blocking(pri));
2031 
2032 	if (skb_header_cloned(skb))
2033 		return pskb_expand_head(skb, 0, 0, pri);
2034 
2035 	return 0;
2036 }
2037 
2038 /**
2039  * __skb_header_release() - allow clones to use the headroom
2040  * @skb: buffer to operate on
2041  *
2042  * See "DOC: dataref and headerless skbs".
2043  */
2044 static inline void __skb_header_release(struct sk_buff *skb)
2045 {
2046 	skb->nohdr = 1;
2047 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
2048 }
2049 
2050 
2051 /**
2052  *	skb_shared - is the buffer shared
2053  *	@skb: buffer to check
2054  *
2055  *	Returns true if more than one person has a reference to this
2056  *	buffer.
2057  */
2058 static inline int skb_shared(const struct sk_buff *skb)
2059 {
2060 	return refcount_read(&skb->users) != 1;
2061 }
2062 
2063 /**
2064  *	skb_share_check - check if buffer is shared and if so clone it
2065  *	@skb: buffer to check
2066  *	@pri: priority for memory allocation
2067  *
2068  *	If the buffer is shared the buffer is cloned and the old copy
2069  *	drops a reference. A new clone with a single reference is returned.
2070  *	If the buffer is not shared the original buffer is returned. When
2071  *	being called from interrupt status or with spinlocks held pri must
2072  *	be GFP_ATOMIC.
2073  *
2074  *	NULL is returned on a memory allocation failure.
2075  */
2076 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
2077 {
2078 	might_sleep_if(gfpflags_allow_blocking(pri));
2079 	if (skb_shared(skb)) {
2080 		struct sk_buff *nskb = skb_clone(skb, pri);
2081 
2082 		if (likely(nskb))
2083 			consume_skb(skb);
2084 		else
2085 			kfree_skb(skb);
2086 		skb = nskb;
2087 	}
2088 	return skb;
2089 }
2090 
2091 /*
2092  *	Copy shared buffers into a new sk_buff. We effectively do COW on
2093  *	packets to handle cases where we have a local reader and forward
2094  *	and a couple of other messy ones. The normal one is tcpdumping
2095  *	a packet that's being forwarded.
2096  */
2097 
2098 /**
2099  *	skb_unshare - make a copy of a shared buffer
2100  *	@skb: buffer to check
2101  *	@pri: priority for memory allocation
2102  *
2103  *	If the socket buffer is a clone then this function creates a new
2104  *	copy of the data, drops a reference count on the old copy and returns
2105  *	the new copy with the reference count at 1. If the buffer is not a clone
2106  *	the original buffer is returned. When called with a spinlock held or
2107  *	from interrupt state @pri must be %GFP_ATOMIC
2108  *
2109  *	%NULL is returned on a memory allocation failure.
2110  */
2111 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
2112 					  gfp_t pri)
2113 {
2114 	might_sleep_if(gfpflags_allow_blocking(pri));
2115 	if (skb_cloned(skb)) {
2116 		struct sk_buff *nskb = skb_copy(skb, pri);
2117 
2118 		/* Free our shared copy */
2119 		if (likely(nskb))
2120 			consume_skb(skb);
2121 		else
2122 			kfree_skb(skb);
2123 		skb = nskb;
2124 	}
2125 	return skb;
2126 }
2127 
2128 /**
2129  *	skb_peek - peek at the head of an &sk_buff_head
2130  *	@list_: list to peek at
2131  *
2132  *	Peek an &sk_buff. Unlike most other operations you _MUST_
2133  *	be careful with this one. A peek leaves the buffer on the
2134  *	list and someone else may run off with it. You must hold
2135  *	the appropriate locks or have a private queue to do this.
2136  *
2137  *	Returns %NULL for an empty list or a pointer to the head element.
2138  *	The reference count is not incremented and the reference is therefore
2139  *	volatile. Use with caution.
2140  */
2141 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
2142 {
2143 	struct sk_buff *skb = list_->next;
2144 
2145 	if (skb == (struct sk_buff *)list_)
2146 		skb = NULL;
2147 	return skb;
2148 }
2149 
2150 /**
2151  *	__skb_peek - peek at the head of a non-empty &sk_buff_head
2152  *	@list_: list to peek at
2153  *
2154  *	Like skb_peek(), but the caller knows that the list is not empty.
2155  */
2156 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
2157 {
2158 	return list_->next;
2159 }
2160 
2161 /**
2162  *	skb_peek_next - peek skb following the given one from a queue
2163  *	@skb: skb to start from
2164  *	@list_: list to peek at
2165  *
2166  *	Returns %NULL when the end of the list is met or a pointer to the
2167  *	next element. The reference count is not incremented and the
2168  *	reference is therefore volatile. Use with caution.
2169  */
2170 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
2171 		const struct sk_buff_head *list_)
2172 {
2173 	struct sk_buff *next = skb->next;
2174 
2175 	if (next == (struct sk_buff *)list_)
2176 		next = NULL;
2177 	return next;
2178 }
2179 
2180 /**
2181  *	skb_peek_tail - peek at the tail of an &sk_buff_head
2182  *	@list_: list to peek at
2183  *
2184  *	Peek an &sk_buff. Unlike most other operations you _MUST_
2185  *	be careful with this one. A peek leaves the buffer on the
2186  *	list and someone else may run off with it. You must hold
2187  *	the appropriate locks or have a private queue to do this.
2188  *
2189  *	Returns %NULL for an empty list or a pointer to the tail element.
2190  *	The reference count is not incremented and the reference is therefore
2191  *	volatile. Use with caution.
2192  */
2193 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
2194 {
2195 	struct sk_buff *skb = READ_ONCE(list_->prev);
2196 
2197 	if (skb == (struct sk_buff *)list_)
2198 		skb = NULL;
2199 	return skb;
2200 
2201 }
2202 
2203 /**
2204  *	skb_queue_len	- get queue length
2205  *	@list_: list to measure
2206  *
2207  *	Return the length of an &sk_buff queue.
2208  */
2209 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
2210 {
2211 	return list_->qlen;
2212 }
2213 
2214 /**
2215  *	skb_queue_len_lockless	- get queue length
2216  *	@list_: list to measure
2217  *
2218  *	Return the length of an &sk_buff queue.
2219  *	This variant can be used in lockless contexts.
2220  */
2221 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
2222 {
2223 	return READ_ONCE(list_->qlen);
2224 }
2225 
2226 /**
2227  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
2228  *	@list: queue to initialize
2229  *
2230  *	This initializes only the list and queue length aspects of
2231  *	an sk_buff_head object.  This allows to initialize the list
2232  *	aspects of an sk_buff_head without reinitializing things like
2233  *	the spinlock.  It can also be used for on-stack sk_buff_head
2234  *	objects where the spinlock is known to not be used.
2235  */
2236 static inline void __skb_queue_head_init(struct sk_buff_head *list)
2237 {
2238 	list->prev = list->next = (struct sk_buff *)list;
2239 	list->qlen = 0;
2240 }
2241 
2242 /*
2243  * This function creates a split out lock class for each invocation;
2244  * this is needed for now since a whole lot of users of the skb-queue
2245  * infrastructure in drivers have different locking usage (in hardirq)
2246  * than the networking core (in softirq only). In the long run either the
2247  * network layer or drivers should need annotation to consolidate the
2248  * main types of usage into 3 classes.
2249  */
2250 static inline void skb_queue_head_init(struct sk_buff_head *list)
2251 {
2252 	spin_lock_init(&list->lock);
2253 	__skb_queue_head_init(list);
2254 }
2255 
2256 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
2257 		struct lock_class_key *class)
2258 {
2259 	skb_queue_head_init(list);
2260 	lockdep_set_class(&list->lock, class);
2261 }
2262 
2263 /*
2264  *	Insert an sk_buff on a list.
2265  *
2266  *	The "__skb_xxxx()" functions are the non-atomic ones that
2267  *	can only be called with interrupts disabled.
2268  */
2269 static inline void __skb_insert(struct sk_buff *newsk,
2270 				struct sk_buff *prev, struct sk_buff *next,
2271 				struct sk_buff_head *list)
2272 {
2273 	/* See skb_queue_empty_lockless() and skb_peek_tail()
2274 	 * for the opposite READ_ONCE()
2275 	 */
2276 	WRITE_ONCE(newsk->next, next);
2277 	WRITE_ONCE(newsk->prev, prev);
2278 	WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk);
2279 	WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk);
2280 	WRITE_ONCE(list->qlen, list->qlen + 1);
2281 }
2282 
2283 static inline void __skb_queue_splice(const struct sk_buff_head *list,
2284 				      struct sk_buff *prev,
2285 				      struct sk_buff *next)
2286 {
2287 	struct sk_buff *first = list->next;
2288 	struct sk_buff *last = list->prev;
2289 
2290 	WRITE_ONCE(first->prev, prev);
2291 	WRITE_ONCE(prev->next, first);
2292 
2293 	WRITE_ONCE(last->next, next);
2294 	WRITE_ONCE(next->prev, last);
2295 }
2296 
2297 /**
2298  *	skb_queue_splice - join two skb lists, this is designed for stacks
2299  *	@list: the new list to add
2300  *	@head: the place to add it in the first list
2301  */
2302 static inline void skb_queue_splice(const struct sk_buff_head *list,
2303 				    struct sk_buff_head *head)
2304 {
2305 	if (!skb_queue_empty(list)) {
2306 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2307 		head->qlen += list->qlen;
2308 	}
2309 }
2310 
2311 /**
2312  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
2313  *	@list: the new list to add
2314  *	@head: the place to add it in the first list
2315  *
2316  *	The list at @list is reinitialised
2317  */
2318 static inline void skb_queue_splice_init(struct sk_buff_head *list,
2319 					 struct sk_buff_head *head)
2320 {
2321 	if (!skb_queue_empty(list)) {
2322 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2323 		head->qlen += list->qlen;
2324 		__skb_queue_head_init(list);
2325 	}
2326 }
2327 
2328 /**
2329  *	skb_queue_splice_tail - join two skb lists, each list being a queue
2330  *	@list: the new list to add
2331  *	@head: the place to add it in the first list
2332  */
2333 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
2334 					 struct sk_buff_head *head)
2335 {
2336 	if (!skb_queue_empty(list)) {
2337 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2338 		head->qlen += list->qlen;
2339 	}
2340 }
2341 
2342 /**
2343  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
2344  *	@list: the new list to add
2345  *	@head: the place to add it in the first list
2346  *
2347  *	Each of the lists is a queue.
2348  *	The list at @list is reinitialised
2349  */
2350 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
2351 					      struct sk_buff_head *head)
2352 {
2353 	if (!skb_queue_empty(list)) {
2354 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2355 		head->qlen += list->qlen;
2356 		__skb_queue_head_init(list);
2357 	}
2358 }
2359 
2360 /**
2361  *	__skb_queue_after - queue a buffer at the list head
2362  *	@list: list to use
2363  *	@prev: place after this buffer
2364  *	@newsk: buffer to queue
2365  *
2366  *	Queue a buffer int the middle of a list. This function takes no locks
2367  *	and you must therefore hold required locks before calling it.
2368  *
2369  *	A buffer cannot be placed on two lists at the same time.
2370  */
2371 static inline void __skb_queue_after(struct sk_buff_head *list,
2372 				     struct sk_buff *prev,
2373 				     struct sk_buff *newsk)
2374 {
2375 	__skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list);
2376 }
2377 
2378 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2379 		struct sk_buff_head *list);
2380 
2381 static inline void __skb_queue_before(struct sk_buff_head *list,
2382 				      struct sk_buff *next,
2383 				      struct sk_buff *newsk)
2384 {
2385 	__skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list);
2386 }
2387 
2388 /**
2389  *	__skb_queue_head - queue a buffer at the list head
2390  *	@list: list to use
2391  *	@newsk: buffer to queue
2392  *
2393  *	Queue a buffer at the start of a list. This function takes no locks
2394  *	and you must therefore hold required locks before calling it.
2395  *
2396  *	A buffer cannot be placed on two lists at the same time.
2397  */
2398 static inline void __skb_queue_head(struct sk_buff_head *list,
2399 				    struct sk_buff *newsk)
2400 {
2401 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
2402 }
2403 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2404 
2405 /**
2406  *	__skb_queue_tail - queue a buffer at the list tail
2407  *	@list: list to use
2408  *	@newsk: buffer to queue
2409  *
2410  *	Queue a buffer at the end of a list. This function takes no locks
2411  *	and you must therefore hold required locks before calling it.
2412  *
2413  *	A buffer cannot be placed on two lists at the same time.
2414  */
2415 static inline void __skb_queue_tail(struct sk_buff_head *list,
2416 				   struct sk_buff *newsk)
2417 {
2418 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
2419 }
2420 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2421 
2422 /*
2423  * remove sk_buff from list. _Must_ be called atomically, and with
2424  * the list known..
2425  */
2426 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
2427 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2428 {
2429 	struct sk_buff *next, *prev;
2430 
2431 	WRITE_ONCE(list->qlen, list->qlen - 1);
2432 	next	   = skb->next;
2433 	prev	   = skb->prev;
2434 	skb->next  = skb->prev = NULL;
2435 	WRITE_ONCE(next->prev, prev);
2436 	WRITE_ONCE(prev->next, next);
2437 }
2438 
2439 /**
2440  *	__skb_dequeue - remove from the head of the queue
2441  *	@list: list to dequeue from
2442  *
2443  *	Remove the head of the list. This function does not take any locks
2444  *	so must be used with appropriate locks held only. The head item is
2445  *	returned or %NULL if the list is empty.
2446  */
2447 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2448 {
2449 	struct sk_buff *skb = skb_peek(list);
2450 	if (skb)
2451 		__skb_unlink(skb, list);
2452 	return skb;
2453 }
2454 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2455 
2456 /**
2457  *	__skb_dequeue_tail - remove from the tail of the queue
2458  *	@list: list to dequeue from
2459  *
2460  *	Remove the tail of the list. This function does not take any locks
2461  *	so must be used with appropriate locks held only. The tail item is
2462  *	returned or %NULL if the list is empty.
2463  */
2464 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2465 {
2466 	struct sk_buff *skb = skb_peek_tail(list);
2467 	if (skb)
2468 		__skb_unlink(skb, list);
2469 	return skb;
2470 }
2471 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2472 
2473 
2474 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2475 {
2476 	return skb->data_len;
2477 }
2478 
2479 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2480 {
2481 	return skb->len - skb->data_len;
2482 }
2483 
2484 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2485 {
2486 	unsigned int i, len = 0;
2487 
2488 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2489 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2490 	return len;
2491 }
2492 
2493 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2494 {
2495 	return skb_headlen(skb) + __skb_pagelen(skb);
2496 }
2497 
2498 static inline void skb_frag_fill_netmem_desc(skb_frag_t *frag,
2499 					     netmem_ref netmem, int off,
2500 					     int size)
2501 {
2502 	frag->netmem = netmem;
2503 	frag->offset = off;
2504 	skb_frag_size_set(frag, size);
2505 }
2506 
2507 static inline void skb_frag_fill_page_desc(skb_frag_t *frag,
2508 					   struct page *page,
2509 					   int off, int size)
2510 {
2511 	skb_frag_fill_netmem_desc(frag, page_to_netmem(page), off, size);
2512 }
2513 
2514 static inline void __skb_fill_netmem_desc_noacc(struct skb_shared_info *shinfo,
2515 						int i, netmem_ref netmem,
2516 						int off, int size)
2517 {
2518 	skb_frag_t *frag = &shinfo->frags[i];
2519 
2520 	skb_frag_fill_netmem_desc(frag, netmem, off, size);
2521 }
2522 
2523 static inline void __skb_fill_page_desc_noacc(struct skb_shared_info *shinfo,
2524 					      int i, struct page *page,
2525 					      int off, int size)
2526 {
2527 	__skb_fill_netmem_desc_noacc(shinfo, i, page_to_netmem(page), off,
2528 				     size);
2529 }
2530 
2531 /**
2532  * skb_len_add - adds a number to len fields of skb
2533  * @skb: buffer to add len to
2534  * @delta: number of bytes to add
2535  */
2536 static inline void skb_len_add(struct sk_buff *skb, int delta)
2537 {
2538 	skb->len += delta;
2539 	skb->data_len += delta;
2540 	skb->truesize += delta;
2541 }
2542 
2543 /**
2544  * __skb_fill_netmem_desc - initialise a fragment in an skb
2545  * @skb: buffer containing fragment to be initialised
2546  * @i: fragment index to initialise
2547  * @netmem: the netmem to use for this fragment
2548  * @off: the offset to the data with @page
2549  * @size: the length of the data
2550  *
2551  * Initialises the @i'th fragment of @skb to point to &size bytes at
2552  * offset @off within @page.
2553  *
2554  * Does not take any additional reference on the fragment.
2555  */
2556 static inline void __skb_fill_netmem_desc(struct sk_buff *skb, int i,
2557 					  netmem_ref netmem, int off, int size)
2558 {
2559 	struct page *page;
2560 
2561 	__skb_fill_netmem_desc_noacc(skb_shinfo(skb), i, netmem, off, size);
2562 
2563 	if (netmem_is_net_iov(netmem)) {
2564 		skb->unreadable = true;
2565 		return;
2566 	}
2567 
2568 	page = netmem_to_page(netmem);
2569 
2570 	/* Propagate page pfmemalloc to the skb if we can. The problem is
2571 	 * that not all callers have unique ownership of the page but rely
2572 	 * on page_is_pfmemalloc doing the right thing(tm).
2573 	 */
2574 	page = compound_head(page);
2575 	if (page_is_pfmemalloc(page))
2576 		skb->pfmemalloc = true;
2577 }
2578 
2579 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2580 					struct page *page, int off, int size)
2581 {
2582 	__skb_fill_netmem_desc(skb, i, page_to_netmem(page), off, size);
2583 }
2584 
2585 static inline void skb_fill_netmem_desc(struct sk_buff *skb, int i,
2586 					netmem_ref netmem, int off, int size)
2587 {
2588 	__skb_fill_netmem_desc(skb, i, netmem, off, size);
2589 	skb_shinfo(skb)->nr_frags = i + 1;
2590 }
2591 
2592 /**
2593  * skb_fill_page_desc - initialise a paged fragment in an skb
2594  * @skb: buffer containing fragment to be initialised
2595  * @i: paged fragment index to initialise
2596  * @page: the page to use for this fragment
2597  * @off: the offset to the data with @page
2598  * @size: the length of the data
2599  *
2600  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2601  * @skb to point to @size bytes at offset @off within @page. In
2602  * addition updates @skb such that @i is the last fragment.
2603  *
2604  * Does not take any additional reference on the fragment.
2605  */
2606 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2607 				      struct page *page, int off, int size)
2608 {
2609 	skb_fill_netmem_desc(skb, i, page_to_netmem(page), off, size);
2610 }
2611 
2612 /**
2613  * skb_fill_page_desc_noacc - initialise a paged fragment in an skb
2614  * @skb: buffer containing fragment to be initialised
2615  * @i: paged fragment index to initialise
2616  * @page: the page to use for this fragment
2617  * @off: the offset to the data with @page
2618  * @size: the length of the data
2619  *
2620  * Variant of skb_fill_page_desc() which does not deal with
2621  * pfmemalloc, if page is not owned by us.
2622  */
2623 static inline void skb_fill_page_desc_noacc(struct sk_buff *skb, int i,
2624 					    struct page *page, int off,
2625 					    int size)
2626 {
2627 	struct skb_shared_info *shinfo = skb_shinfo(skb);
2628 
2629 	__skb_fill_page_desc_noacc(shinfo, i, page, off, size);
2630 	shinfo->nr_frags = i + 1;
2631 }
2632 
2633 void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem,
2634 			    int off, int size, unsigned int truesize);
2635 
2636 static inline void skb_add_rx_frag(struct sk_buff *skb, int i,
2637 				   struct page *page, int off, int size,
2638 				   unsigned int truesize)
2639 {
2640 	skb_add_rx_frag_netmem(skb, i, page_to_netmem(page), off, size,
2641 			       truesize);
2642 }
2643 
2644 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2645 			  unsigned int truesize);
2646 
2647 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2648 
2649 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2650 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2651 {
2652 	return skb->head + skb->tail;
2653 }
2654 
2655 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2656 {
2657 	skb->tail = skb->data - skb->head;
2658 }
2659 
2660 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2661 {
2662 	skb_reset_tail_pointer(skb);
2663 	skb->tail += offset;
2664 }
2665 
2666 #else /* NET_SKBUFF_DATA_USES_OFFSET */
2667 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2668 {
2669 	return skb->tail;
2670 }
2671 
2672 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2673 {
2674 	skb->tail = skb->data;
2675 }
2676 
2677 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2678 {
2679 	skb->tail = skb->data + offset;
2680 }
2681 
2682 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2683 
2684 static inline void skb_assert_len(struct sk_buff *skb)
2685 {
2686 #ifdef CONFIG_DEBUG_NET
2687 	if (WARN_ONCE(!skb->len, "%s\n", __func__))
2688 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
2689 #endif /* CONFIG_DEBUG_NET */
2690 }
2691 
2692 #if defined(CONFIG_FAIL_SKB_REALLOC)
2693 void skb_might_realloc(struct sk_buff *skb);
2694 #else
2695 static inline void skb_might_realloc(struct sk_buff *skb) {}
2696 #endif
2697 
2698 /*
2699  *	Add data to an sk_buff
2700  */
2701 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2702 void *skb_put(struct sk_buff *skb, unsigned int len);
2703 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2704 {
2705 	void *tmp = skb_tail_pointer(skb);
2706 	SKB_LINEAR_ASSERT(skb);
2707 	skb->tail += len;
2708 	skb->len  += len;
2709 	return tmp;
2710 }
2711 
2712 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2713 {
2714 	void *tmp = __skb_put(skb, len);
2715 
2716 	memset(tmp, 0, len);
2717 	return tmp;
2718 }
2719 
2720 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2721 				   unsigned int len)
2722 {
2723 	void *tmp = __skb_put(skb, len);
2724 
2725 	memcpy(tmp, data, len);
2726 	return tmp;
2727 }
2728 
2729 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2730 {
2731 	*(u8 *)__skb_put(skb, 1) = val;
2732 }
2733 
2734 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2735 {
2736 	void *tmp = skb_put(skb, len);
2737 
2738 	memset(tmp, 0, len);
2739 
2740 	return tmp;
2741 }
2742 
2743 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2744 				 unsigned int len)
2745 {
2746 	void *tmp = skb_put(skb, len);
2747 
2748 	memcpy(tmp, data, len);
2749 
2750 	return tmp;
2751 }
2752 
2753 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2754 {
2755 	*(u8 *)skb_put(skb, 1) = val;
2756 }
2757 
2758 void *skb_push(struct sk_buff *skb, unsigned int len);
2759 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2760 {
2761 	DEBUG_NET_WARN_ON_ONCE(len > INT_MAX);
2762 
2763 	skb->data -= len;
2764 	skb->len  += len;
2765 	return skb->data;
2766 }
2767 
2768 void *skb_pull(struct sk_buff *skb, unsigned int len);
2769 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2770 {
2771 	DEBUG_NET_WARN_ON_ONCE(len > INT_MAX);
2772 
2773 	skb->len -= len;
2774 	if (unlikely(skb->len < skb->data_len)) {
2775 #if defined(CONFIG_DEBUG_NET)
2776 		skb->len += len;
2777 		pr_err("__skb_pull(len=%u)\n", len);
2778 		skb_dump(KERN_ERR, skb, false);
2779 #endif
2780 		BUG();
2781 	}
2782 	return skb->data += len;
2783 }
2784 
2785 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2786 {
2787 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2788 }
2789 
2790 void *skb_pull_data(struct sk_buff *skb, size_t len);
2791 
2792 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2793 
2794 static inline enum skb_drop_reason
2795 pskb_may_pull_reason(struct sk_buff *skb, unsigned int len)
2796 {
2797 	DEBUG_NET_WARN_ON_ONCE(len > INT_MAX);
2798 	skb_might_realloc(skb);
2799 
2800 	if (likely(len <= skb_headlen(skb)))
2801 		return SKB_NOT_DROPPED_YET;
2802 
2803 	if (unlikely(len > skb->len))
2804 		return SKB_DROP_REASON_PKT_TOO_SMALL;
2805 
2806 	if (unlikely(!__pskb_pull_tail(skb, len - skb_headlen(skb))))
2807 		return SKB_DROP_REASON_NOMEM;
2808 
2809 	return SKB_NOT_DROPPED_YET;
2810 }
2811 
2812 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2813 {
2814 	return pskb_may_pull_reason(skb, len) == SKB_NOT_DROPPED_YET;
2815 }
2816 
2817 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2818 {
2819 	if (!pskb_may_pull(skb, len))
2820 		return NULL;
2821 
2822 	skb->len -= len;
2823 	return skb->data += len;
2824 }
2825 
2826 void skb_condense(struct sk_buff *skb);
2827 
2828 /**
2829  *	skb_headroom - bytes at buffer head
2830  *	@skb: buffer to check
2831  *
2832  *	Return the number of bytes of free space at the head of an &sk_buff.
2833  */
2834 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2835 {
2836 	return skb->data - skb->head;
2837 }
2838 
2839 /**
2840  *	skb_tailroom - bytes at buffer end
2841  *	@skb: buffer to check
2842  *
2843  *	Return the number of bytes of free space at the tail of an sk_buff
2844  */
2845 static inline int skb_tailroom(const struct sk_buff *skb)
2846 {
2847 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2848 }
2849 
2850 /**
2851  *	skb_availroom - bytes at buffer end
2852  *	@skb: buffer to check
2853  *
2854  *	Return the number of bytes of free space at the tail of an sk_buff
2855  *	allocated by sk_stream_alloc()
2856  */
2857 static inline int skb_availroom(const struct sk_buff *skb)
2858 {
2859 	if (skb_is_nonlinear(skb))
2860 		return 0;
2861 
2862 	return skb->end - skb->tail - skb->reserved_tailroom;
2863 }
2864 
2865 /**
2866  *	skb_reserve - adjust headroom
2867  *	@skb: buffer to alter
2868  *	@len: bytes to move
2869  *
2870  *	Increase the headroom of an empty &sk_buff by reducing the tail
2871  *	room. This is only allowed for an empty buffer.
2872  */
2873 static inline void skb_reserve(struct sk_buff *skb, int len)
2874 {
2875 	skb->data += len;
2876 	skb->tail += len;
2877 }
2878 
2879 /**
2880  *	skb_tailroom_reserve - adjust reserved_tailroom
2881  *	@skb: buffer to alter
2882  *	@mtu: maximum amount of headlen permitted
2883  *	@needed_tailroom: minimum amount of reserved_tailroom
2884  *
2885  *	Set reserved_tailroom so that headlen can be as large as possible but
2886  *	not larger than mtu and tailroom cannot be smaller than
2887  *	needed_tailroom.
2888  *	The required headroom should already have been reserved before using
2889  *	this function.
2890  */
2891 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2892 					unsigned int needed_tailroom)
2893 {
2894 	SKB_LINEAR_ASSERT(skb);
2895 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2896 		/* use at most mtu */
2897 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2898 	else
2899 		/* use up to all available space */
2900 		skb->reserved_tailroom = needed_tailroom;
2901 }
2902 
2903 #define ENCAP_TYPE_ETHER	0
2904 #define ENCAP_TYPE_IPPROTO	1
2905 
2906 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2907 					  __be16 protocol)
2908 {
2909 	skb->inner_protocol = protocol;
2910 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2911 }
2912 
2913 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2914 					 __u8 ipproto)
2915 {
2916 	skb->inner_ipproto = ipproto;
2917 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2918 }
2919 
2920 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2921 {
2922 	skb->inner_mac_header = skb->mac_header;
2923 	skb->inner_network_header = skb->network_header;
2924 	skb->inner_transport_header = skb->transport_header;
2925 }
2926 
2927 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2928 {
2929 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2930 }
2931 
2932 static inline void skb_reset_mac_len(struct sk_buff *skb)
2933 {
2934 	if (!skb_mac_header_was_set(skb)) {
2935 		DEBUG_NET_WARN_ON_ONCE(1);
2936 		skb->mac_len = 0;
2937 	} else {
2938 		skb->mac_len = skb->network_header - skb->mac_header;
2939 	}
2940 }
2941 
2942 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2943 							*skb)
2944 {
2945 	return skb->head + skb->inner_transport_header;
2946 }
2947 
2948 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2949 {
2950 	return skb_inner_transport_header(skb) - skb->data;
2951 }
2952 
2953 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2954 {
2955 	long offset = skb->data - skb->head;
2956 
2957 	DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->inner_transport_header))offset);
2958 	skb->inner_transport_header = offset;
2959 }
2960 
2961 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2962 						   const int offset)
2963 {
2964 	skb_reset_inner_transport_header(skb);
2965 	skb->inner_transport_header += offset;
2966 }
2967 
2968 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2969 {
2970 	return skb->head + skb->inner_network_header;
2971 }
2972 
2973 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2974 {
2975 	long offset = skb->data - skb->head;
2976 
2977 	DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->inner_network_header))offset);
2978 	skb->inner_network_header = offset;
2979 }
2980 
2981 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2982 						const int offset)
2983 {
2984 	skb_reset_inner_network_header(skb);
2985 	skb->inner_network_header += offset;
2986 }
2987 
2988 static inline bool skb_inner_network_header_was_set(const struct sk_buff *skb)
2989 {
2990 	return skb->inner_network_header > 0;
2991 }
2992 
2993 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2994 {
2995 	return skb->head + skb->inner_mac_header;
2996 }
2997 
2998 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2999 {
3000 	long offset = skb->data - skb->head;
3001 
3002 	DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->inner_mac_header))offset);
3003 	skb->inner_mac_header = offset;
3004 }
3005 
3006 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
3007 					    const int offset)
3008 {
3009 	skb_reset_inner_mac_header(skb);
3010 	skb->inner_mac_header += offset;
3011 }
3012 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
3013 {
3014 	return skb->transport_header != (typeof(skb->transport_header))~0U;
3015 }
3016 
3017 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
3018 {
3019 	DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb));
3020 	return skb->head + skb->transport_header;
3021 }
3022 
3023 static inline void skb_reset_transport_header(struct sk_buff *skb)
3024 {
3025 	long offset = skb->data - skb->head;
3026 
3027 	DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->transport_header))offset);
3028 	skb->transport_header = offset;
3029 }
3030 
3031 static inline void skb_set_transport_header(struct sk_buff *skb,
3032 					    const int offset)
3033 {
3034 	skb_reset_transport_header(skb);
3035 	skb->transport_header += offset;
3036 }
3037 
3038 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
3039 {
3040 	return skb->head + skb->network_header;
3041 }
3042 
3043 static inline void skb_reset_network_header(struct sk_buff *skb)
3044 {
3045 	long offset = skb->data - skb->head;
3046 
3047 	DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->network_header))offset);
3048 	skb->network_header = offset;
3049 }
3050 
3051 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
3052 {
3053 	skb_reset_network_header(skb);
3054 	skb->network_header += offset;
3055 }
3056 
3057 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
3058 {
3059 	DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
3060 	return skb->head + skb->mac_header;
3061 }
3062 
3063 static inline int skb_mac_offset(const struct sk_buff *skb)
3064 {
3065 	return skb_mac_header(skb) - skb->data;
3066 }
3067 
3068 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
3069 {
3070 	DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
3071 	return skb->network_header - skb->mac_header;
3072 }
3073 
3074 static inline void skb_unset_mac_header(struct sk_buff *skb)
3075 {
3076 	skb->mac_header = (typeof(skb->mac_header))~0U;
3077 }
3078 
3079 static inline void skb_reset_mac_header(struct sk_buff *skb)
3080 {
3081 	long offset = skb->data - skb->head;
3082 
3083 	DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->mac_header))offset);
3084 	skb->mac_header = offset;
3085 }
3086 
3087 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
3088 {
3089 	skb_reset_mac_header(skb);
3090 	skb->mac_header += offset;
3091 }
3092 
3093 static inline void skb_pop_mac_header(struct sk_buff *skb)
3094 {
3095 	skb->mac_header = skb->network_header;
3096 }
3097 
3098 static inline void skb_probe_transport_header(struct sk_buff *skb)
3099 {
3100 	struct flow_keys_basic keys;
3101 
3102 	if (skb_transport_header_was_set(skb))
3103 		return;
3104 
3105 	if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
3106 					     NULL, 0, 0, 0, 0))
3107 		skb_set_transport_header(skb, keys.control.thoff);
3108 }
3109 
3110 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
3111 {
3112 	if (skb_mac_header_was_set(skb)) {
3113 		const unsigned char *old_mac = skb_mac_header(skb);
3114 
3115 		skb_set_mac_header(skb, -skb->mac_len);
3116 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
3117 	}
3118 }
3119 
3120 /* Move the full mac header up to current network_header.
3121  * Leaves skb->data pointing at offset skb->mac_len into the mac_header.
3122  * Must be provided the complete mac header length.
3123  */
3124 static inline void skb_mac_header_rebuild_full(struct sk_buff *skb, u32 full_mac_len)
3125 {
3126 	if (skb_mac_header_was_set(skb)) {
3127 		const unsigned char *old_mac = skb_mac_header(skb);
3128 
3129 		skb_set_mac_header(skb, -full_mac_len);
3130 		memmove(skb_mac_header(skb), old_mac, full_mac_len);
3131 		__skb_push(skb, full_mac_len - skb->mac_len);
3132 	}
3133 }
3134 
3135 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
3136 {
3137 	return skb->csum_start - skb_headroom(skb);
3138 }
3139 
3140 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
3141 {
3142 	return skb->head + skb->csum_start;
3143 }
3144 
3145 static inline int skb_transport_offset(const struct sk_buff *skb)
3146 {
3147 	return skb_transport_header(skb) - skb->data;
3148 }
3149 
3150 static inline u32 skb_network_header_len(const struct sk_buff *skb)
3151 {
3152 	DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb));
3153 	return skb->transport_header - skb->network_header;
3154 }
3155 
3156 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
3157 {
3158 	return skb->inner_transport_header - skb->inner_network_header;
3159 }
3160 
3161 static inline int skb_network_offset(const struct sk_buff *skb)
3162 {
3163 	return skb_network_header(skb) - skb->data;
3164 }
3165 
3166 static inline int skb_inner_network_offset(const struct sk_buff *skb)
3167 {
3168 	return skb_inner_network_header(skb) - skb->data;
3169 }
3170 
3171 static inline enum skb_drop_reason
3172 pskb_network_may_pull_reason(struct sk_buff *skb, unsigned int len)
3173 {
3174 	return pskb_may_pull_reason(skb, skb_network_offset(skb) + len);
3175 }
3176 
3177 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
3178 {
3179 	return pskb_network_may_pull_reason(skb, len) == SKB_NOT_DROPPED_YET;
3180 }
3181 
3182 /*
3183  * CPUs often take a performance hit when accessing unaligned memory
3184  * locations. The actual performance hit varies, it can be small if the
3185  * hardware handles it or large if we have to take an exception and fix it
3186  * in software.
3187  *
3188  * Since an ethernet header is 14 bytes network drivers often end up with
3189  * the IP header at an unaligned offset. The IP header can be aligned by
3190  * shifting the start of the packet by 2 bytes. Drivers should do this
3191  * with:
3192  *
3193  * skb_reserve(skb, NET_IP_ALIGN);
3194  *
3195  * The downside to this alignment of the IP header is that the DMA is now
3196  * unaligned. On some architectures the cost of an unaligned DMA is high
3197  * and this cost outweighs the gains made by aligning the IP header.
3198  *
3199  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
3200  * to be overridden.
3201  */
3202 #ifndef NET_IP_ALIGN
3203 #define NET_IP_ALIGN	2
3204 #endif
3205 
3206 /*
3207  * The networking layer reserves some headroom in skb data (via
3208  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
3209  * the header has to grow. In the default case, if the header has to grow
3210  * 32 bytes or less we avoid the reallocation.
3211  *
3212  * Unfortunately this headroom changes the DMA alignment of the resulting
3213  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
3214  * on some architectures. An architecture can override this value,
3215  * perhaps setting it to a cacheline in size (since that will maintain
3216  * cacheline alignment of the DMA). It must be a power of 2.
3217  *
3218  * Various parts of the networking layer expect at least 32 bytes of
3219  * headroom, you should not reduce this.
3220  *
3221  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
3222  * to reduce average number of cache lines per packet.
3223  * get_rps_cpu() for example only access one 64 bytes aligned block :
3224  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
3225  */
3226 #ifndef NET_SKB_PAD
3227 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
3228 #endif
3229 
3230 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
3231 
3232 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
3233 {
3234 	if (WARN_ON(skb_is_nonlinear(skb)))
3235 		return;
3236 	skb->len = len;
3237 	skb_set_tail_pointer(skb, len);
3238 }
3239 
3240 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
3241 {
3242 	__skb_set_length(skb, len);
3243 }
3244 
3245 void skb_trim(struct sk_buff *skb, unsigned int len);
3246 
3247 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
3248 {
3249 	if (skb->data_len)
3250 		return ___pskb_trim(skb, len);
3251 	__skb_trim(skb, len);
3252 	return 0;
3253 }
3254 
3255 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
3256 {
3257 	skb_might_realloc(skb);
3258 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
3259 }
3260 
3261 /**
3262  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
3263  *	@skb: buffer to alter
3264  *	@len: new length
3265  *
3266  *	This is identical to pskb_trim except that the caller knows that
3267  *	the skb is not cloned so we should never get an error due to out-
3268  *	of-memory.
3269  */
3270 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
3271 {
3272 	int err = pskb_trim(skb, len);
3273 	BUG_ON(err);
3274 }
3275 
3276 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
3277 {
3278 	unsigned int diff = len - skb->len;
3279 
3280 	if (skb_tailroom(skb) < diff) {
3281 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
3282 					   GFP_ATOMIC);
3283 		if (ret)
3284 			return ret;
3285 	}
3286 	__skb_set_length(skb, len);
3287 	return 0;
3288 }
3289 
3290 /**
3291  *	skb_orphan - orphan a buffer
3292  *	@skb: buffer to orphan
3293  *
3294  *	If a buffer currently has an owner then we call the owner's
3295  *	destructor function and make the @skb unowned. The buffer continues
3296  *	to exist but is no longer charged to its former owner.
3297  */
3298 static inline void skb_orphan(struct sk_buff *skb)
3299 {
3300 	if (skb->destructor) {
3301 		skb->destructor(skb);
3302 		skb->destructor = NULL;
3303 		skb->sk		= NULL;
3304 	} else {
3305 		BUG_ON(skb->sk);
3306 	}
3307 }
3308 
3309 /**
3310  *	skb_orphan_frags - orphan the frags contained in a buffer
3311  *	@skb: buffer to orphan frags from
3312  *	@gfp_mask: allocation mask for replacement pages
3313  *
3314  *	For each frag in the SKB which needs a destructor (i.e. has an
3315  *	owner) create a copy of that frag and release the original
3316  *	page by calling the destructor.
3317  */
3318 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
3319 {
3320 	if (likely(!skb_zcopy(skb)))
3321 		return 0;
3322 	if (skb_shinfo(skb)->flags & SKBFL_DONT_ORPHAN)
3323 		return 0;
3324 	return skb_copy_ubufs(skb, gfp_mask);
3325 }
3326 
3327 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
3328 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
3329 {
3330 	if (likely(!skb_zcopy(skb)))
3331 		return 0;
3332 	return skb_copy_ubufs(skb, gfp_mask);
3333 }
3334 
3335 /**
3336  *	__skb_queue_purge_reason - empty a list
3337  *	@list: list to empty
3338  *	@reason: drop reason
3339  *
3340  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3341  *	the list and one reference dropped. This function does not take the
3342  *	list lock and the caller must hold the relevant locks to use it.
3343  */
3344 static inline void __skb_queue_purge_reason(struct sk_buff_head *list,
3345 					    enum skb_drop_reason reason)
3346 {
3347 	struct sk_buff *skb;
3348 
3349 	while ((skb = __skb_dequeue(list)) != NULL)
3350 		kfree_skb_reason(skb, reason);
3351 }
3352 
3353 static inline void __skb_queue_purge(struct sk_buff_head *list)
3354 {
3355 	__skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE);
3356 }
3357 
3358 void skb_queue_purge_reason(struct sk_buff_head *list,
3359 			    enum skb_drop_reason reason);
3360 
3361 static inline void skb_queue_purge(struct sk_buff_head *list)
3362 {
3363 	skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE);
3364 }
3365 
3366 unsigned int skb_rbtree_purge(struct rb_root *root);
3367 void skb_errqueue_purge(struct sk_buff_head *list);
3368 
3369 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3370 
3371 /**
3372  * netdev_alloc_frag - allocate a page fragment
3373  * @fragsz: fragment size
3374  *
3375  * Allocates a frag from a page for receive buffer.
3376  * Uses GFP_ATOMIC allocations.
3377  */
3378 static inline void *netdev_alloc_frag(unsigned int fragsz)
3379 {
3380 	return __netdev_alloc_frag_align(fragsz, ~0u);
3381 }
3382 
3383 static inline void *netdev_alloc_frag_align(unsigned int fragsz,
3384 					    unsigned int align)
3385 {
3386 	WARN_ON_ONCE(!is_power_of_2(align));
3387 	return __netdev_alloc_frag_align(fragsz, -align);
3388 }
3389 
3390 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
3391 				   gfp_t gfp_mask);
3392 
3393 /**
3394  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
3395  *	@dev: network device to receive on
3396  *	@length: length to allocate
3397  *
3398  *	Allocate a new &sk_buff and assign it a usage count of one. The
3399  *	buffer has unspecified headroom built in. Users should allocate
3400  *	the headroom they think they need without accounting for the
3401  *	built in space. The built in space is used for optimisations.
3402  *
3403  *	%NULL is returned if there is no free memory. Although this function
3404  *	allocates memory it can be called from an interrupt.
3405  */
3406 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
3407 					       unsigned int length)
3408 {
3409 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
3410 }
3411 
3412 /* legacy helper around __netdev_alloc_skb() */
3413 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
3414 					      gfp_t gfp_mask)
3415 {
3416 	return __netdev_alloc_skb(NULL, length, gfp_mask);
3417 }
3418 
3419 /* legacy helper around netdev_alloc_skb() */
3420 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
3421 {
3422 	return netdev_alloc_skb(NULL, length);
3423 }
3424 
3425 
3426 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
3427 		unsigned int length, gfp_t gfp)
3428 {
3429 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
3430 
3431 	if (NET_IP_ALIGN && skb)
3432 		skb_reserve(skb, NET_IP_ALIGN);
3433 	return skb;
3434 }
3435 
3436 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
3437 		unsigned int length)
3438 {
3439 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
3440 }
3441 
3442 static inline void skb_free_frag(void *addr)
3443 {
3444 	page_frag_free(addr);
3445 }
3446 
3447 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3448 
3449 static inline void *napi_alloc_frag(unsigned int fragsz)
3450 {
3451 	return __napi_alloc_frag_align(fragsz, ~0u);
3452 }
3453 
3454 static inline void *napi_alloc_frag_align(unsigned int fragsz,
3455 					  unsigned int align)
3456 {
3457 	WARN_ON_ONCE(!is_power_of_2(align));
3458 	return __napi_alloc_frag_align(fragsz, -align);
3459 }
3460 
3461 struct sk_buff *napi_alloc_skb(struct napi_struct *napi, unsigned int length);
3462 void napi_consume_skb(struct sk_buff *skb, int budget);
3463 
3464 void napi_skb_free_stolen_head(struct sk_buff *skb);
3465 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason);
3466 
3467 /**
3468  * __dev_alloc_pages - allocate page for network Rx
3469  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3470  * @order: size of the allocation
3471  *
3472  * Allocate a new page.
3473  *
3474  * %NULL is returned if there is no free memory.
3475 */
3476 static inline struct page *__dev_alloc_pages_noprof(gfp_t gfp_mask,
3477 					     unsigned int order)
3478 {
3479 	/* This piece of code contains several assumptions.
3480 	 * 1.  This is for device Rx, therefore a cold page is preferred.
3481 	 * 2.  The expectation is the user wants a compound page.
3482 	 * 3.  If requesting a order 0 page it will not be compound
3483 	 *     due to the check to see if order has a value in prep_new_page
3484 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
3485 	 *     code in gfp_to_alloc_flags that should be enforcing this.
3486 	 */
3487 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
3488 
3489 	return alloc_pages_node_noprof(NUMA_NO_NODE, gfp_mask, order);
3490 }
3491 #define __dev_alloc_pages(...)	alloc_hooks(__dev_alloc_pages_noprof(__VA_ARGS__))
3492 
3493 /*
3494  * This specialized allocator has to be a macro for its allocations to be
3495  * accounted separately (to have a separate alloc_tag).
3496  */
3497 #define dev_alloc_pages(_order) __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, _order)
3498 
3499 /**
3500  * __dev_alloc_page - allocate a page for network Rx
3501  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3502  *
3503  * Allocate a new page.
3504  *
3505  * %NULL is returned if there is no free memory.
3506  */
3507 static inline struct page *__dev_alloc_page_noprof(gfp_t gfp_mask)
3508 {
3509 	return __dev_alloc_pages_noprof(gfp_mask, 0);
3510 }
3511 #define __dev_alloc_page(...)	alloc_hooks(__dev_alloc_page_noprof(__VA_ARGS__))
3512 
3513 /*
3514  * This specialized allocator has to be a macro for its allocations to be
3515  * accounted separately (to have a separate alloc_tag).
3516  */
3517 #define dev_alloc_page()	dev_alloc_pages(0)
3518 
3519 /**
3520  * dev_page_is_reusable - check whether a page can be reused for network Rx
3521  * @page: the page to test
3522  *
3523  * A page shouldn't be considered for reusing/recycling if it was allocated
3524  * under memory pressure or at a distant memory node.
3525  *
3526  * Returns: false if this page should be returned to page allocator, true
3527  * otherwise.
3528  */
3529 static inline bool dev_page_is_reusable(const struct page *page)
3530 {
3531 	return likely(page_to_nid(page) == numa_mem_id() &&
3532 		      !page_is_pfmemalloc(page));
3533 }
3534 
3535 /**
3536  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
3537  *	@page: The page that was allocated from skb_alloc_page
3538  *	@skb: The skb that may need pfmemalloc set
3539  */
3540 static inline void skb_propagate_pfmemalloc(const struct page *page,
3541 					    struct sk_buff *skb)
3542 {
3543 	if (page_is_pfmemalloc(page))
3544 		skb->pfmemalloc = true;
3545 }
3546 
3547 /**
3548  * skb_frag_off() - Returns the offset of a skb fragment
3549  * @frag: the paged fragment
3550  */
3551 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
3552 {
3553 	return frag->offset;
3554 }
3555 
3556 /**
3557  * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
3558  * @frag: skb fragment
3559  * @delta: value to add
3560  */
3561 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
3562 {
3563 	frag->offset += delta;
3564 }
3565 
3566 /**
3567  * skb_frag_off_set() - Sets the offset of a skb fragment
3568  * @frag: skb fragment
3569  * @offset: offset of fragment
3570  */
3571 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
3572 {
3573 	frag->offset = offset;
3574 }
3575 
3576 /**
3577  * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
3578  * @fragto: skb fragment where offset is set
3579  * @fragfrom: skb fragment offset is copied from
3580  */
3581 static inline void skb_frag_off_copy(skb_frag_t *fragto,
3582 				     const skb_frag_t *fragfrom)
3583 {
3584 	fragto->offset = fragfrom->offset;
3585 }
3586 
3587 /* Return: true if the skb_frag contains a net_iov. */
3588 static inline bool skb_frag_is_net_iov(const skb_frag_t *frag)
3589 {
3590 	return netmem_is_net_iov(frag->netmem);
3591 }
3592 
3593 /**
3594  * skb_frag_net_iov - retrieve the net_iov referred to by fragment
3595  * @frag: the fragment
3596  *
3597  * Return: the &struct net_iov associated with @frag. Returns NULL if this
3598  * frag has no associated net_iov.
3599  */
3600 static inline struct net_iov *skb_frag_net_iov(const skb_frag_t *frag)
3601 {
3602 	if (!skb_frag_is_net_iov(frag))
3603 		return NULL;
3604 
3605 	return netmem_to_net_iov(frag->netmem);
3606 }
3607 
3608 /**
3609  * skb_frag_page - retrieve the page referred to by a paged fragment
3610  * @frag: the paged fragment
3611  *
3612  * Return: the &struct page associated with @frag. Returns NULL if this frag
3613  * has no associated page.
3614  */
3615 static inline struct page *skb_frag_page(const skb_frag_t *frag)
3616 {
3617 	if (skb_frag_is_net_iov(frag))
3618 		return NULL;
3619 
3620 	return netmem_to_page(frag->netmem);
3621 }
3622 
3623 /**
3624  * skb_frag_netmem - retrieve the netmem referred to by a fragment
3625  * @frag: the fragment
3626  *
3627  * Return: the &netmem_ref associated with @frag.
3628  */
3629 static inline netmem_ref skb_frag_netmem(const skb_frag_t *frag)
3630 {
3631 	return frag->netmem;
3632 }
3633 
3634 int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb,
3635 		    unsigned int headroom);
3636 int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb,
3637 			 const struct bpf_prog *prog);
3638 
3639 /**
3640  * skb_frag_address - gets the address of the data contained in a paged fragment
3641  * @frag: the paged fragment buffer
3642  *
3643  * Returns: the address of the data within @frag. The page must already
3644  * be mapped.
3645  */
3646 static inline void *skb_frag_address(const skb_frag_t *frag)
3647 {
3648 	if (!skb_frag_page(frag))
3649 		return NULL;
3650 
3651 	return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3652 }
3653 
3654 /**
3655  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3656  * @frag: the paged fragment buffer
3657  *
3658  * Returns: the address of the data within @frag. Checks that the page
3659  * is mapped and returns %NULL otherwise.
3660  */
3661 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3662 {
3663 	void *ptr = page_address(skb_frag_page(frag));
3664 	if (unlikely(!ptr))
3665 		return NULL;
3666 
3667 	return ptr + skb_frag_off(frag);
3668 }
3669 
3670 /**
3671  * skb_frag_page_copy() - sets the page in a fragment from another fragment
3672  * @fragto: skb fragment where page is set
3673  * @fragfrom: skb fragment page is copied from
3674  */
3675 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3676 				      const skb_frag_t *fragfrom)
3677 {
3678 	fragto->netmem = fragfrom->netmem;
3679 }
3680 
3681 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3682 
3683 /**
3684  * __skb_frag_dma_map - maps a paged fragment via the DMA API
3685  * @dev: the device to map the fragment to
3686  * @frag: the paged fragment to map
3687  * @offset: the offset within the fragment (starting at the
3688  *          fragment's own offset)
3689  * @size: the number of bytes to map
3690  * @dir: the direction of the mapping (``PCI_DMA_*``)
3691  *
3692  * Maps the page associated with @frag to @device.
3693  */
3694 static inline dma_addr_t __skb_frag_dma_map(struct device *dev,
3695 					    const skb_frag_t *frag,
3696 					    size_t offset, size_t size,
3697 					    enum dma_data_direction dir)
3698 {
3699 	return dma_map_page(dev, skb_frag_page(frag),
3700 			    skb_frag_off(frag) + offset, size, dir);
3701 }
3702 
3703 #define skb_frag_dma_map(dev, frag, ...)				\
3704 	CONCATENATE(_skb_frag_dma_map,					\
3705 		    COUNT_ARGS(__VA_ARGS__))(dev, frag, ##__VA_ARGS__)
3706 
3707 #define __skb_frag_dma_map1(dev, frag, offset, uf, uo) ({		\
3708 	const skb_frag_t *uf = (frag);					\
3709 	size_t uo = (offset);						\
3710 									\
3711 	__skb_frag_dma_map(dev, uf, uo, skb_frag_size(uf) - uo,		\
3712 			   DMA_TO_DEVICE);				\
3713 })
3714 #define _skb_frag_dma_map1(dev, frag, offset)				\
3715 	__skb_frag_dma_map1(dev, frag, offset, __UNIQUE_ID(frag_),	\
3716 			    __UNIQUE_ID(offset_))
3717 #define _skb_frag_dma_map0(dev, frag)					\
3718 	_skb_frag_dma_map1(dev, frag, 0)
3719 #define _skb_frag_dma_map2(dev, frag, offset, size)			\
3720 	__skb_frag_dma_map(dev, frag, offset, size, DMA_TO_DEVICE)
3721 #define _skb_frag_dma_map3(dev, frag, offset, size, dir)		\
3722 	__skb_frag_dma_map(dev, frag, offset, size, dir)
3723 
3724 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3725 					gfp_t gfp_mask)
3726 {
3727 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3728 }
3729 
3730 
3731 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3732 						  gfp_t gfp_mask)
3733 {
3734 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3735 }
3736 
3737 
3738 /**
3739  *	skb_clone_writable - is the header of a clone writable
3740  *	@skb: buffer to check
3741  *	@len: length up to which to write
3742  *
3743  *	Returns true if modifying the header part of the cloned buffer
3744  *	does not requires the data to be copied.
3745  */
3746 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3747 {
3748 	return !skb_header_cloned(skb) &&
3749 	       skb_headroom(skb) + len <= skb->hdr_len;
3750 }
3751 
3752 static inline int skb_try_make_writable(struct sk_buff *skb,
3753 					unsigned int write_len)
3754 {
3755 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3756 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3757 }
3758 
3759 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3760 			    int cloned)
3761 {
3762 	int delta = 0;
3763 
3764 	if (headroom > skb_headroom(skb))
3765 		delta = headroom - skb_headroom(skb);
3766 
3767 	if (delta || cloned)
3768 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3769 					GFP_ATOMIC);
3770 	return 0;
3771 }
3772 
3773 /**
3774  *	skb_cow - copy header of skb when it is required
3775  *	@skb: buffer to cow
3776  *	@headroom: needed headroom
3777  *
3778  *	If the skb passed lacks sufficient headroom or its data part
3779  *	is shared, data is reallocated. If reallocation fails, an error
3780  *	is returned and original skb is not changed.
3781  *
3782  *	The result is skb with writable area skb->head...skb->tail
3783  *	and at least @headroom of space at head.
3784  */
3785 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3786 {
3787 	return __skb_cow(skb, headroom, skb_cloned(skb));
3788 }
3789 
3790 /**
3791  *	skb_cow_head - skb_cow but only making the head writable
3792  *	@skb: buffer to cow
3793  *	@headroom: needed headroom
3794  *
3795  *	This function is identical to skb_cow except that we replace the
3796  *	skb_cloned check by skb_header_cloned.  It should be used when
3797  *	you only need to push on some header and do not need to modify
3798  *	the data.
3799  */
3800 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3801 {
3802 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
3803 }
3804 
3805 /**
3806  *	skb_padto	- pad an skbuff up to a minimal size
3807  *	@skb: buffer to pad
3808  *	@len: minimal length
3809  *
3810  *	Pads up a buffer to ensure the trailing bytes exist and are
3811  *	blanked. If the buffer already contains sufficient data it
3812  *	is untouched. Otherwise it is extended. Returns zero on
3813  *	success. The skb is freed on error.
3814  */
3815 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3816 {
3817 	unsigned int size = skb->len;
3818 	if (likely(size >= len))
3819 		return 0;
3820 	return skb_pad(skb, len - size);
3821 }
3822 
3823 /**
3824  *	__skb_put_padto - increase size and pad an skbuff up to a minimal size
3825  *	@skb: buffer to pad
3826  *	@len: minimal length
3827  *	@free_on_error: free buffer on error
3828  *
3829  *	Pads up a buffer to ensure the trailing bytes exist and are
3830  *	blanked. If the buffer already contains sufficient data it
3831  *	is untouched. Otherwise it is extended. Returns zero on
3832  *	success. The skb is freed on error if @free_on_error is true.
3833  */
3834 static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3835 					       unsigned int len,
3836 					       bool free_on_error)
3837 {
3838 	unsigned int size = skb->len;
3839 
3840 	if (unlikely(size < len)) {
3841 		len -= size;
3842 		if (__skb_pad(skb, len, free_on_error))
3843 			return -ENOMEM;
3844 		__skb_put(skb, len);
3845 	}
3846 	return 0;
3847 }
3848 
3849 /**
3850  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3851  *	@skb: buffer to pad
3852  *	@len: minimal length
3853  *
3854  *	Pads up a buffer to ensure the trailing bytes exist and are
3855  *	blanked. If the buffer already contains sufficient data it
3856  *	is untouched. Otherwise it is extended. Returns zero on
3857  *	success. The skb is freed on error.
3858  */
3859 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3860 {
3861 	return __skb_put_padto(skb, len, true);
3862 }
3863 
3864 bool csum_and_copy_from_iter_full(void *addr, size_t bytes, __wsum *csum, struct iov_iter *i)
3865 	__must_check;
3866 
3867 static inline int skb_add_data(struct sk_buff *skb,
3868 			       struct iov_iter *from, int copy)
3869 {
3870 	const int off = skb->len;
3871 
3872 	if (skb->ip_summed == CHECKSUM_NONE) {
3873 		__wsum csum = 0;
3874 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3875 					         &csum, from)) {
3876 			skb->csum = csum_block_add(skb->csum, csum, off);
3877 			return 0;
3878 		}
3879 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3880 		return 0;
3881 
3882 	__skb_trim(skb, off);
3883 	return -EFAULT;
3884 }
3885 
3886 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3887 				    const struct page *page, int off)
3888 {
3889 	if (skb_zcopy(skb))
3890 		return false;
3891 	if (i) {
3892 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3893 
3894 		return page == skb_frag_page(frag) &&
3895 		       off == skb_frag_off(frag) + skb_frag_size(frag);
3896 	}
3897 	return false;
3898 }
3899 
3900 static inline int __skb_linearize(struct sk_buff *skb)
3901 {
3902 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3903 }
3904 
3905 /**
3906  *	skb_linearize - convert paged skb to linear one
3907  *	@skb: buffer to linarize
3908  *
3909  *	If there is no free memory -ENOMEM is returned, otherwise zero
3910  *	is returned and the old skb data released.
3911  */
3912 static inline int skb_linearize(struct sk_buff *skb)
3913 {
3914 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3915 }
3916 
3917 /**
3918  * skb_has_shared_frag - can any frag be overwritten
3919  * @skb: buffer to test
3920  *
3921  * Return: true if the skb has at least one frag that might be modified
3922  * by an external entity (as in vmsplice()/sendfile())
3923  */
3924 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3925 {
3926 	return skb_is_nonlinear(skb) &&
3927 	       skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3928 }
3929 
3930 /**
3931  *	skb_linearize_cow - make sure skb is linear and writable
3932  *	@skb: buffer to process
3933  *
3934  *	If there is no free memory -ENOMEM is returned, otherwise zero
3935  *	is returned and the old skb data released.
3936  */
3937 static inline int skb_linearize_cow(struct sk_buff *skb)
3938 {
3939 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3940 	       __skb_linearize(skb) : 0;
3941 }
3942 
3943 static __always_inline void
3944 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3945 		     unsigned int off)
3946 {
3947 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3948 		skb->csum = csum_block_sub(skb->csum,
3949 					   csum_partial(start, len, 0), off);
3950 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3951 		 skb_checksum_start_offset(skb) < 0)
3952 		skb->ip_summed = CHECKSUM_NONE;
3953 }
3954 
3955 /**
3956  *	skb_postpull_rcsum - update checksum for received skb after pull
3957  *	@skb: buffer to update
3958  *	@start: start of data before pull
3959  *	@len: length of data pulled
3960  *
3961  *	After doing a pull on a received packet, you need to call this to
3962  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3963  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3964  */
3965 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3966 				      const void *start, unsigned int len)
3967 {
3968 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3969 		skb->csum = wsum_negate(csum_partial(start, len,
3970 						     wsum_negate(skb->csum)));
3971 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3972 		 skb_checksum_start_offset(skb) < 0)
3973 		skb->ip_summed = CHECKSUM_NONE;
3974 }
3975 
3976 static __always_inline void
3977 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3978 		     unsigned int off)
3979 {
3980 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3981 		skb->csum = csum_block_add(skb->csum,
3982 					   csum_partial(start, len, 0), off);
3983 }
3984 
3985 /**
3986  *	skb_postpush_rcsum - update checksum for received skb after push
3987  *	@skb: buffer to update
3988  *	@start: start of data after push
3989  *	@len: length of data pushed
3990  *
3991  *	After doing a push on a received packet, you need to call this to
3992  *	update the CHECKSUM_COMPLETE checksum.
3993  */
3994 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3995 				      const void *start, unsigned int len)
3996 {
3997 	__skb_postpush_rcsum(skb, start, len, 0);
3998 }
3999 
4000 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
4001 
4002 /**
4003  *	skb_push_rcsum - push skb and update receive checksum
4004  *	@skb: buffer to update
4005  *	@len: length of data pulled
4006  *
4007  *	This function performs an skb_push on the packet and updates
4008  *	the CHECKSUM_COMPLETE checksum.  It should be used on
4009  *	receive path processing instead of skb_push unless you know
4010  *	that the checksum difference is zero (e.g., a valid IP header)
4011  *	or you are setting ip_summed to CHECKSUM_NONE.
4012  */
4013 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
4014 {
4015 	skb_push(skb, len);
4016 	skb_postpush_rcsum(skb, skb->data, len);
4017 	return skb->data;
4018 }
4019 
4020 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
4021 /**
4022  *	pskb_trim_rcsum - trim received skb and update checksum
4023  *	@skb: buffer to trim
4024  *	@len: new length
4025  *
4026  *	This is exactly the same as pskb_trim except that it ensures the
4027  *	checksum of received packets are still valid after the operation.
4028  *	It can change skb pointers.
4029  */
4030 
4031 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
4032 {
4033 	skb_might_realloc(skb);
4034 	if (likely(len >= skb->len))
4035 		return 0;
4036 	return pskb_trim_rcsum_slow(skb, len);
4037 }
4038 
4039 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
4040 {
4041 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4042 		skb->ip_summed = CHECKSUM_NONE;
4043 	__skb_trim(skb, len);
4044 	return 0;
4045 }
4046 
4047 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
4048 {
4049 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4050 		skb->ip_summed = CHECKSUM_NONE;
4051 	return __skb_grow(skb, len);
4052 }
4053 
4054 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
4055 #define skb_rb_first(root) rb_to_skb(rb_first(root))
4056 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
4057 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
4058 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
4059 
4060 #define skb_queue_walk(queue, skb) \
4061 		for (skb = (queue)->next;					\
4062 		     skb != (struct sk_buff *)(queue);				\
4063 		     skb = skb->next)
4064 
4065 #define skb_queue_walk_safe(queue, skb, tmp)					\
4066 		for (skb = (queue)->next, tmp = skb->next;			\
4067 		     skb != (struct sk_buff *)(queue);				\
4068 		     skb = tmp, tmp = skb->next)
4069 
4070 #define skb_queue_walk_from(queue, skb)						\
4071 		for (; skb != (struct sk_buff *)(queue);			\
4072 		     skb = skb->next)
4073 
4074 #define skb_rbtree_walk(skb, root)						\
4075 		for (skb = skb_rb_first(root); skb != NULL;			\
4076 		     skb = skb_rb_next(skb))
4077 
4078 #define skb_rbtree_walk_from(skb)						\
4079 		for (; skb != NULL;						\
4080 		     skb = skb_rb_next(skb))
4081 
4082 #define skb_rbtree_walk_from_safe(skb, tmp)					\
4083 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
4084 		     skb = tmp)
4085 
4086 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
4087 		for (tmp = skb->next;						\
4088 		     skb != (struct sk_buff *)(queue);				\
4089 		     skb = tmp, tmp = skb->next)
4090 
4091 #define skb_queue_reverse_walk(queue, skb) \
4092 		for (skb = (queue)->prev;					\
4093 		     skb != (struct sk_buff *)(queue);				\
4094 		     skb = skb->prev)
4095 
4096 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
4097 		for (skb = (queue)->prev, tmp = skb->prev;			\
4098 		     skb != (struct sk_buff *)(queue);				\
4099 		     skb = tmp, tmp = skb->prev)
4100 
4101 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
4102 		for (tmp = skb->prev;						\
4103 		     skb != (struct sk_buff *)(queue);				\
4104 		     skb = tmp, tmp = skb->prev)
4105 
4106 static inline bool skb_has_frag_list(const struct sk_buff *skb)
4107 {
4108 	return skb_shinfo(skb)->frag_list != NULL;
4109 }
4110 
4111 static inline void skb_frag_list_init(struct sk_buff *skb)
4112 {
4113 	skb_shinfo(skb)->frag_list = NULL;
4114 }
4115 
4116 #define skb_walk_frags(skb, iter)	\
4117 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
4118 
4119 
4120 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
4121 				int *err, long *timeo_p,
4122 				const struct sk_buff *skb);
4123 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
4124 					  struct sk_buff_head *queue,
4125 					  unsigned int flags,
4126 					  int *off, int *err,
4127 					  struct sk_buff **last);
4128 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
4129 					struct sk_buff_head *queue,
4130 					unsigned int flags, int *off, int *err,
4131 					struct sk_buff **last);
4132 struct sk_buff *__skb_recv_datagram(struct sock *sk,
4133 				    struct sk_buff_head *sk_queue,
4134 				    unsigned int flags, int *off, int *err);
4135 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err);
4136 __poll_t datagram_poll(struct file *file, struct socket *sock,
4137 			   struct poll_table_struct *wait);
4138 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
4139 			   struct iov_iter *to, int size);
4140 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
4141 					struct msghdr *msg, int size)
4142 {
4143 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
4144 }
4145 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
4146 				   struct msghdr *msg);
4147 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
4148 			   struct iov_iter *to, int len,
4149 			   struct ahash_request *hash);
4150 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
4151 				 struct iov_iter *from, int len);
4152 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
4153 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
4154 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
4155 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
4156 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
4157 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
4158 			      int len);
4159 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
4160 		    struct pipe_inode_info *pipe, unsigned int len,
4161 		    unsigned int flags);
4162 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
4163 			 int len);
4164 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
4165 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
4166 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
4167 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
4168 		 int len, int hlen);
4169 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
4170 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
4171 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
4172 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
4173 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
4174 				 unsigned int offset);
4175 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
4176 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len);
4177 int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev);
4178 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
4179 int skb_vlan_pop(struct sk_buff *skb);
4180 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
4181 int skb_eth_pop(struct sk_buff *skb);
4182 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
4183 		 const unsigned char *src);
4184 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
4185 		  int mac_len, bool ethernet);
4186 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
4187 		 bool ethernet);
4188 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
4189 int skb_mpls_dec_ttl(struct sk_buff *skb);
4190 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
4191 			     gfp_t gfp);
4192 
4193 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
4194 {
4195 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
4196 }
4197 
4198 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
4199 {
4200 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
4201 }
4202 
4203 struct skb_checksum_ops {
4204 	__wsum (*update)(const void *mem, int len, __wsum wsum);
4205 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
4206 };
4207 
4208 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
4209 
4210 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
4211 		      __wsum csum, const struct skb_checksum_ops *ops);
4212 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
4213 		    __wsum csum);
4214 
4215 static inline void * __must_check
4216 __skb_header_pointer(const struct sk_buff *skb, int offset, int len,
4217 		     const void *data, int hlen, void *buffer)
4218 {
4219 	if (likely(hlen - offset >= len))
4220 		return (void *)data + offset;
4221 
4222 	if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0))
4223 		return NULL;
4224 
4225 	return buffer;
4226 }
4227 
4228 static inline void * __must_check
4229 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
4230 {
4231 	return __skb_header_pointer(skb, offset, len, skb->data,
4232 				    skb_headlen(skb), buffer);
4233 }
4234 
4235 static inline void * __must_check
4236 skb_pointer_if_linear(const struct sk_buff *skb, int offset, int len)
4237 {
4238 	if (likely(skb_headlen(skb) - offset >= len))
4239 		return skb->data + offset;
4240 	return NULL;
4241 }
4242 
4243 /**
4244  *	skb_needs_linearize - check if we need to linearize a given skb
4245  *			      depending on the given device features.
4246  *	@skb: socket buffer to check
4247  *	@features: net device features
4248  *
4249  *	Returns true if either:
4250  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
4251  *	2. skb is fragmented and the device does not support SG.
4252  */
4253 static inline bool skb_needs_linearize(struct sk_buff *skb,
4254 				       netdev_features_t features)
4255 {
4256 	return skb_is_nonlinear(skb) &&
4257 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
4258 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
4259 }
4260 
4261 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
4262 					     void *to,
4263 					     const unsigned int len)
4264 {
4265 	memcpy(to, skb->data, len);
4266 }
4267 
4268 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
4269 						    const int offset, void *to,
4270 						    const unsigned int len)
4271 {
4272 	memcpy(to, skb->data + offset, len);
4273 }
4274 
4275 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
4276 					   const void *from,
4277 					   const unsigned int len)
4278 {
4279 	memcpy(skb->data, from, len);
4280 }
4281 
4282 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
4283 						  const int offset,
4284 						  const void *from,
4285 						  const unsigned int len)
4286 {
4287 	memcpy(skb->data + offset, from, len);
4288 }
4289 
4290 void skb_init(void);
4291 
4292 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
4293 {
4294 	return skb->tstamp;
4295 }
4296 
4297 /**
4298  *	skb_get_timestamp - get timestamp from a skb
4299  *	@skb: skb to get stamp from
4300  *	@stamp: pointer to struct __kernel_old_timeval to store stamp in
4301  *
4302  *	Timestamps are stored in the skb as offsets to a base timestamp.
4303  *	This function converts the offset back to a struct timeval and stores
4304  *	it in stamp.
4305  */
4306 static inline void skb_get_timestamp(const struct sk_buff *skb,
4307 				     struct __kernel_old_timeval *stamp)
4308 {
4309 	*stamp = ns_to_kernel_old_timeval(skb->tstamp);
4310 }
4311 
4312 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
4313 					 struct __kernel_sock_timeval *stamp)
4314 {
4315 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4316 
4317 	stamp->tv_sec = ts.tv_sec;
4318 	stamp->tv_usec = ts.tv_nsec / 1000;
4319 }
4320 
4321 static inline void skb_get_timestampns(const struct sk_buff *skb,
4322 				       struct __kernel_old_timespec *stamp)
4323 {
4324 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4325 
4326 	stamp->tv_sec = ts.tv_sec;
4327 	stamp->tv_nsec = ts.tv_nsec;
4328 }
4329 
4330 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
4331 					   struct __kernel_timespec *stamp)
4332 {
4333 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4334 
4335 	stamp->tv_sec = ts.tv_sec;
4336 	stamp->tv_nsec = ts.tv_nsec;
4337 }
4338 
4339 static inline void __net_timestamp(struct sk_buff *skb)
4340 {
4341 	skb->tstamp = ktime_get_real();
4342 	skb->tstamp_type = SKB_CLOCK_REALTIME;
4343 }
4344 
4345 static inline ktime_t net_timedelta(ktime_t t)
4346 {
4347 	return ktime_sub(ktime_get_real(), t);
4348 }
4349 
4350 static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt,
4351 					 u8 tstamp_type)
4352 {
4353 	skb->tstamp = kt;
4354 
4355 	if (kt)
4356 		skb->tstamp_type = tstamp_type;
4357 	else
4358 		skb->tstamp_type = SKB_CLOCK_REALTIME;
4359 }
4360 
4361 static inline void skb_set_delivery_type_by_clockid(struct sk_buff *skb,
4362 						    ktime_t kt, clockid_t clockid)
4363 {
4364 	u8 tstamp_type = SKB_CLOCK_REALTIME;
4365 
4366 	switch (clockid) {
4367 	case CLOCK_REALTIME:
4368 		break;
4369 	case CLOCK_MONOTONIC:
4370 		tstamp_type = SKB_CLOCK_MONOTONIC;
4371 		break;
4372 	case CLOCK_TAI:
4373 		tstamp_type = SKB_CLOCK_TAI;
4374 		break;
4375 	default:
4376 		WARN_ON_ONCE(1);
4377 		kt = 0;
4378 	}
4379 
4380 	skb_set_delivery_time(skb, kt, tstamp_type);
4381 }
4382 
4383 DECLARE_STATIC_KEY_FALSE(netstamp_needed_key);
4384 
4385 /* It is used in the ingress path to clear the delivery_time.
4386  * If needed, set the skb->tstamp to the (rcv) timestamp.
4387  */
4388 static inline void skb_clear_delivery_time(struct sk_buff *skb)
4389 {
4390 	if (skb->tstamp_type) {
4391 		skb->tstamp_type = SKB_CLOCK_REALTIME;
4392 		if (static_branch_unlikely(&netstamp_needed_key))
4393 			skb->tstamp = ktime_get_real();
4394 		else
4395 			skb->tstamp = 0;
4396 	}
4397 }
4398 
4399 static inline void skb_clear_tstamp(struct sk_buff *skb)
4400 {
4401 	if (skb->tstamp_type)
4402 		return;
4403 
4404 	skb->tstamp = 0;
4405 }
4406 
4407 static inline ktime_t skb_tstamp(const struct sk_buff *skb)
4408 {
4409 	if (skb->tstamp_type)
4410 		return 0;
4411 
4412 	return skb->tstamp;
4413 }
4414 
4415 static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond)
4416 {
4417 	if (skb->tstamp_type != SKB_CLOCK_MONOTONIC && skb->tstamp)
4418 		return skb->tstamp;
4419 
4420 	if (static_branch_unlikely(&netstamp_needed_key) || cond)
4421 		return ktime_get_real();
4422 
4423 	return 0;
4424 }
4425 
4426 static inline u8 skb_metadata_len(const struct sk_buff *skb)
4427 {
4428 	return skb_shinfo(skb)->meta_len;
4429 }
4430 
4431 static inline void *skb_metadata_end(const struct sk_buff *skb)
4432 {
4433 	return skb_mac_header(skb);
4434 }
4435 
4436 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
4437 					  const struct sk_buff *skb_b,
4438 					  u8 meta_len)
4439 {
4440 	const void *a = skb_metadata_end(skb_a);
4441 	const void *b = skb_metadata_end(skb_b);
4442 	u64 diffs = 0;
4443 
4444 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) ||
4445 	    BITS_PER_LONG != 64)
4446 		goto slow;
4447 
4448 	/* Using more efficient variant than plain call to memcmp(). */
4449 	switch (meta_len) {
4450 #define __it(x, op) (x -= sizeof(u##op))
4451 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
4452 	case 32: diffs |= __it_diff(a, b, 64);
4453 		fallthrough;
4454 	case 24: diffs |= __it_diff(a, b, 64);
4455 		fallthrough;
4456 	case 16: diffs |= __it_diff(a, b, 64);
4457 		fallthrough;
4458 	case  8: diffs |= __it_diff(a, b, 64);
4459 		break;
4460 	case 28: diffs |= __it_diff(a, b, 64);
4461 		fallthrough;
4462 	case 20: diffs |= __it_diff(a, b, 64);
4463 		fallthrough;
4464 	case 12: diffs |= __it_diff(a, b, 64);
4465 		fallthrough;
4466 	case  4: diffs |= __it_diff(a, b, 32);
4467 		break;
4468 	default:
4469 slow:
4470 		return memcmp(a - meta_len, b - meta_len, meta_len);
4471 	}
4472 	return diffs;
4473 }
4474 
4475 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
4476 					const struct sk_buff *skb_b)
4477 {
4478 	u8 len_a = skb_metadata_len(skb_a);
4479 	u8 len_b = skb_metadata_len(skb_b);
4480 
4481 	if (!(len_a | len_b))
4482 		return false;
4483 
4484 	return len_a != len_b ?
4485 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
4486 }
4487 
4488 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
4489 {
4490 	skb_shinfo(skb)->meta_len = meta_len;
4491 }
4492 
4493 static inline void skb_metadata_clear(struct sk_buff *skb)
4494 {
4495 	skb_metadata_set(skb, 0);
4496 }
4497 
4498 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
4499 
4500 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
4501 
4502 void skb_clone_tx_timestamp(struct sk_buff *skb);
4503 bool skb_defer_rx_timestamp(struct sk_buff *skb);
4504 
4505 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
4506 
4507 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
4508 {
4509 }
4510 
4511 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
4512 {
4513 	return false;
4514 }
4515 
4516 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
4517 
4518 /**
4519  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
4520  *
4521  * PHY drivers may accept clones of transmitted packets for
4522  * timestamping via their phy_driver.txtstamp method. These drivers
4523  * must call this function to return the skb back to the stack with a
4524  * timestamp.
4525  *
4526  * @skb: clone of the original outgoing packet
4527  * @hwtstamps: hardware time stamps
4528  *
4529  */
4530 void skb_complete_tx_timestamp(struct sk_buff *skb,
4531 			       struct skb_shared_hwtstamps *hwtstamps);
4532 
4533 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb,
4534 		     struct skb_shared_hwtstamps *hwtstamps,
4535 		     struct sock *sk, int tstype);
4536 
4537 /**
4538  * skb_tstamp_tx - queue clone of skb with send time stamps
4539  * @orig_skb:	the original outgoing packet
4540  * @hwtstamps:	hardware time stamps, may be NULL if not available
4541  *
4542  * If the skb has a socket associated, then this function clones the
4543  * skb (thus sharing the actual data and optional structures), stores
4544  * the optional hardware time stamping information (if non NULL) or
4545  * generates a software time stamp (otherwise), then queues the clone
4546  * to the error queue of the socket.  Errors are silently ignored.
4547  */
4548 void skb_tstamp_tx(struct sk_buff *orig_skb,
4549 		   struct skb_shared_hwtstamps *hwtstamps);
4550 
4551 /**
4552  * skb_tx_timestamp() - Driver hook for transmit timestamping
4553  *
4554  * Ethernet MAC Drivers should call this function in their hard_xmit()
4555  * function immediately before giving the sk_buff to the MAC hardware.
4556  *
4557  * Specifically, one should make absolutely sure that this function is
4558  * called before TX completion of this packet can trigger.  Otherwise
4559  * the packet could potentially already be freed.
4560  *
4561  * @skb: A socket buffer.
4562  */
4563 static inline void skb_tx_timestamp(struct sk_buff *skb)
4564 {
4565 	skb_clone_tx_timestamp(skb);
4566 	if (skb_shinfo(skb)->tx_flags & (SKBTX_SW_TSTAMP | SKBTX_BPF))
4567 		skb_tstamp_tx(skb, NULL);
4568 }
4569 
4570 /**
4571  * skb_complete_wifi_ack - deliver skb with wifi status
4572  *
4573  * @skb: the original outgoing packet
4574  * @acked: ack status
4575  *
4576  */
4577 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
4578 
4579 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
4580 __sum16 __skb_checksum_complete(struct sk_buff *skb);
4581 
4582 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
4583 {
4584 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
4585 		skb->csum_valid ||
4586 		(skb->ip_summed == CHECKSUM_PARTIAL &&
4587 		 skb_checksum_start_offset(skb) >= 0));
4588 }
4589 
4590 /**
4591  *	skb_checksum_complete - Calculate checksum of an entire packet
4592  *	@skb: packet to process
4593  *
4594  *	This function calculates the checksum over the entire packet plus
4595  *	the value of skb->csum.  The latter can be used to supply the
4596  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
4597  *	checksum.
4598  *
4599  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
4600  *	this function can be used to verify that checksum on received
4601  *	packets.  In that case the function should return zero if the
4602  *	checksum is correct.  In particular, this function will return zero
4603  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
4604  *	hardware has already verified the correctness of the checksum.
4605  */
4606 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
4607 {
4608 	return skb_csum_unnecessary(skb) ?
4609 	       0 : __skb_checksum_complete(skb);
4610 }
4611 
4612 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
4613 {
4614 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4615 		if (skb->csum_level == 0)
4616 			skb->ip_summed = CHECKSUM_NONE;
4617 		else
4618 			skb->csum_level--;
4619 	}
4620 }
4621 
4622 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
4623 {
4624 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4625 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
4626 			skb->csum_level++;
4627 	} else if (skb->ip_summed == CHECKSUM_NONE) {
4628 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4629 		skb->csum_level = 0;
4630 	}
4631 }
4632 
4633 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
4634 {
4635 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4636 		skb->ip_summed = CHECKSUM_NONE;
4637 		skb->csum_level = 0;
4638 	}
4639 }
4640 
4641 /* Check if we need to perform checksum complete validation.
4642  *
4643  * Returns: true if checksum complete is needed, false otherwise
4644  * (either checksum is unnecessary or zero checksum is allowed).
4645  */
4646 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
4647 						  bool zero_okay,
4648 						  __sum16 check)
4649 {
4650 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
4651 		skb->csum_valid = 1;
4652 		__skb_decr_checksum_unnecessary(skb);
4653 		return false;
4654 	}
4655 
4656 	return true;
4657 }
4658 
4659 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
4660  * in checksum_init.
4661  */
4662 #define CHECKSUM_BREAK 76
4663 
4664 /* Unset checksum-complete
4665  *
4666  * Unset checksum complete can be done when packet is being modified
4667  * (uncompressed for instance) and checksum-complete value is
4668  * invalidated.
4669  */
4670 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
4671 {
4672 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4673 		skb->ip_summed = CHECKSUM_NONE;
4674 }
4675 
4676 /* Validate (init) checksum based on checksum complete.
4677  *
4678  * Return values:
4679  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
4680  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4681  *	checksum is stored in skb->csum for use in __skb_checksum_complete
4682  *   non-zero: value of invalid checksum
4683  *
4684  */
4685 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4686 						       bool complete,
4687 						       __wsum psum)
4688 {
4689 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
4690 		if (!csum_fold(csum_add(psum, skb->csum))) {
4691 			skb->csum_valid = 1;
4692 			return 0;
4693 		}
4694 	}
4695 
4696 	skb->csum = psum;
4697 
4698 	if (complete || skb->len <= CHECKSUM_BREAK) {
4699 		__sum16 csum;
4700 
4701 		csum = __skb_checksum_complete(skb);
4702 		skb->csum_valid = !csum;
4703 		return csum;
4704 	}
4705 
4706 	return 0;
4707 }
4708 
4709 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4710 {
4711 	return 0;
4712 }
4713 
4714 /* Perform checksum validate (init). Note that this is a macro since we only
4715  * want to calculate the pseudo header which is an input function if necessary.
4716  * First we try to validate without any computation (checksum unnecessary) and
4717  * then calculate based on checksum complete calling the function to compute
4718  * pseudo header.
4719  *
4720  * Return values:
4721  *   0: checksum is validated or try to in skb_checksum_complete
4722  *   non-zero: value of invalid checksum
4723  */
4724 #define __skb_checksum_validate(skb, proto, complete,			\
4725 				zero_okay, check, compute_pseudo)	\
4726 ({									\
4727 	__sum16 __ret = 0;						\
4728 	skb->csum_valid = 0;						\
4729 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
4730 		__ret = __skb_checksum_validate_complete(skb,		\
4731 				complete, compute_pseudo(skb, proto));	\
4732 	__ret;								\
4733 })
4734 
4735 #define skb_checksum_init(skb, proto, compute_pseudo)			\
4736 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4737 
4738 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
4739 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4740 
4741 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
4742 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4743 
4744 #define skb_checksum_validate_zero_check(skb, proto, check,		\
4745 					 compute_pseudo)		\
4746 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4747 
4748 #define skb_checksum_simple_validate(skb)				\
4749 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4750 
4751 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4752 {
4753 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4754 }
4755 
4756 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4757 {
4758 	skb->csum = ~pseudo;
4759 	skb->ip_summed = CHECKSUM_COMPLETE;
4760 }
4761 
4762 #define skb_checksum_try_convert(skb, proto, compute_pseudo)	\
4763 do {									\
4764 	if (__skb_checksum_convert_check(skb))				\
4765 		__skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4766 } while (0)
4767 
4768 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4769 					      u16 start, u16 offset)
4770 {
4771 	skb->ip_summed = CHECKSUM_PARTIAL;
4772 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4773 	skb->csum_offset = offset - start;
4774 }
4775 
4776 /* Update skbuf and packet to reflect the remote checksum offload operation.
4777  * When called, ptr indicates the starting point for skb->csum when
4778  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4779  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4780  */
4781 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4782 				       int start, int offset, bool nopartial)
4783 {
4784 	__wsum delta;
4785 
4786 	if (!nopartial) {
4787 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
4788 		return;
4789 	}
4790 
4791 	if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4792 		__skb_checksum_complete(skb);
4793 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4794 	}
4795 
4796 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
4797 
4798 	/* Adjust skb->csum since we changed the packet */
4799 	skb->csum = csum_add(skb->csum, delta);
4800 }
4801 
4802 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4803 {
4804 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4805 	return (void *)(skb->_nfct & NFCT_PTRMASK);
4806 #else
4807 	return NULL;
4808 #endif
4809 }
4810 
4811 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4812 {
4813 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4814 	return skb->_nfct;
4815 #else
4816 	return 0UL;
4817 #endif
4818 }
4819 
4820 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4821 {
4822 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4823 	skb->slow_gro |= !!nfct;
4824 	skb->_nfct = nfct;
4825 #endif
4826 }
4827 
4828 #ifdef CONFIG_SKB_EXTENSIONS
4829 enum skb_ext_id {
4830 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4831 	SKB_EXT_BRIDGE_NF,
4832 #endif
4833 #ifdef CONFIG_XFRM
4834 	SKB_EXT_SEC_PATH,
4835 #endif
4836 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4837 	TC_SKB_EXT,
4838 #endif
4839 #if IS_ENABLED(CONFIG_MPTCP)
4840 	SKB_EXT_MPTCP,
4841 #endif
4842 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4843 	SKB_EXT_MCTP,
4844 #endif
4845 	SKB_EXT_NUM, /* must be last */
4846 };
4847 
4848 /**
4849  *	struct skb_ext - sk_buff extensions
4850  *	@refcnt: 1 on allocation, deallocated on 0
4851  *	@offset: offset to add to @data to obtain extension address
4852  *	@chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4853  *	@data: start of extension data, variable sized
4854  *
4855  *	Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4856  *	to use 'u8' types while allowing up to 2kb worth of extension data.
4857  */
4858 struct skb_ext {
4859 	refcount_t refcnt;
4860 	u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4861 	u8 chunks;		/* same */
4862 	char data[] __aligned(8);
4863 };
4864 
4865 struct skb_ext *__skb_ext_alloc(gfp_t flags);
4866 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4867 		    struct skb_ext *ext);
4868 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4869 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4870 void __skb_ext_put(struct skb_ext *ext);
4871 
4872 static inline void skb_ext_put(struct sk_buff *skb)
4873 {
4874 	if (skb->active_extensions)
4875 		__skb_ext_put(skb->extensions);
4876 }
4877 
4878 static inline void __skb_ext_copy(struct sk_buff *dst,
4879 				  const struct sk_buff *src)
4880 {
4881 	dst->active_extensions = src->active_extensions;
4882 
4883 	if (src->active_extensions) {
4884 		struct skb_ext *ext = src->extensions;
4885 
4886 		refcount_inc(&ext->refcnt);
4887 		dst->extensions = ext;
4888 	}
4889 }
4890 
4891 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4892 {
4893 	skb_ext_put(dst);
4894 	__skb_ext_copy(dst, src);
4895 }
4896 
4897 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4898 {
4899 	return !!ext->offset[i];
4900 }
4901 
4902 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4903 {
4904 	return skb->active_extensions & (1 << id);
4905 }
4906 
4907 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4908 {
4909 	if (skb_ext_exist(skb, id))
4910 		__skb_ext_del(skb, id);
4911 }
4912 
4913 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4914 {
4915 	if (skb_ext_exist(skb, id)) {
4916 		struct skb_ext *ext = skb->extensions;
4917 
4918 		return (void *)ext + (ext->offset[id] << 3);
4919 	}
4920 
4921 	return NULL;
4922 }
4923 
4924 static inline void skb_ext_reset(struct sk_buff *skb)
4925 {
4926 	if (unlikely(skb->active_extensions)) {
4927 		__skb_ext_put(skb->extensions);
4928 		skb->active_extensions = 0;
4929 	}
4930 }
4931 
4932 static inline bool skb_has_extensions(struct sk_buff *skb)
4933 {
4934 	return unlikely(skb->active_extensions);
4935 }
4936 #else
4937 static inline void skb_ext_put(struct sk_buff *skb) {}
4938 static inline void skb_ext_reset(struct sk_buff *skb) {}
4939 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4940 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4941 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4942 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4943 #endif /* CONFIG_SKB_EXTENSIONS */
4944 
4945 static inline void nf_reset_ct(struct sk_buff *skb)
4946 {
4947 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4948 	nf_conntrack_put(skb_nfct(skb));
4949 	skb->_nfct = 0;
4950 #endif
4951 }
4952 
4953 static inline void nf_reset_trace(struct sk_buff *skb)
4954 {
4955 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
4956 	skb->nf_trace = 0;
4957 #endif
4958 }
4959 
4960 static inline void ipvs_reset(struct sk_buff *skb)
4961 {
4962 #if IS_ENABLED(CONFIG_IP_VS)
4963 	skb->ipvs_property = 0;
4964 #endif
4965 }
4966 
4967 /* Note: This doesn't put any conntrack info in dst. */
4968 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4969 			     bool copy)
4970 {
4971 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4972 	dst->_nfct = src->_nfct;
4973 	nf_conntrack_get(skb_nfct(src));
4974 #endif
4975 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
4976 	if (copy)
4977 		dst->nf_trace = src->nf_trace;
4978 #endif
4979 }
4980 
4981 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4982 {
4983 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4984 	nf_conntrack_put(skb_nfct(dst));
4985 #endif
4986 	dst->slow_gro = src->slow_gro;
4987 	__nf_copy(dst, src, true);
4988 }
4989 
4990 #ifdef CONFIG_NETWORK_SECMARK
4991 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4992 {
4993 	to->secmark = from->secmark;
4994 }
4995 
4996 static inline void skb_init_secmark(struct sk_buff *skb)
4997 {
4998 	skb->secmark = 0;
4999 }
5000 #else
5001 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
5002 { }
5003 
5004 static inline void skb_init_secmark(struct sk_buff *skb)
5005 { }
5006 #endif
5007 
5008 static inline int secpath_exists(const struct sk_buff *skb)
5009 {
5010 #ifdef CONFIG_XFRM
5011 	return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
5012 #else
5013 	return 0;
5014 #endif
5015 }
5016 
5017 static inline bool skb_irq_freeable(const struct sk_buff *skb)
5018 {
5019 	return !skb->destructor &&
5020 		!secpath_exists(skb) &&
5021 		!skb_nfct(skb) &&
5022 		!skb->_skb_refdst &&
5023 		!skb_has_frag_list(skb);
5024 }
5025 
5026 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
5027 {
5028 	skb->queue_mapping = queue_mapping;
5029 }
5030 
5031 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
5032 {
5033 	return skb->queue_mapping;
5034 }
5035 
5036 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
5037 {
5038 	to->queue_mapping = from->queue_mapping;
5039 }
5040 
5041 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
5042 {
5043 	skb->queue_mapping = rx_queue + 1;
5044 }
5045 
5046 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
5047 {
5048 	return skb->queue_mapping - 1;
5049 }
5050 
5051 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
5052 {
5053 	return skb->queue_mapping != 0;
5054 }
5055 
5056 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
5057 {
5058 	skb->dst_pending_confirm = val;
5059 }
5060 
5061 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
5062 {
5063 	return skb->dst_pending_confirm != 0;
5064 }
5065 
5066 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
5067 {
5068 #ifdef CONFIG_XFRM
5069 	return skb_ext_find(skb, SKB_EXT_SEC_PATH);
5070 #else
5071 	return NULL;
5072 #endif
5073 }
5074 
5075 static inline bool skb_is_gso(const struct sk_buff *skb)
5076 {
5077 	return skb_shinfo(skb)->gso_size;
5078 }
5079 
5080 /* Note: Should be called only if skb_is_gso(skb) is true */
5081 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
5082 {
5083 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
5084 }
5085 
5086 /* Note: Should be called only if skb_is_gso(skb) is true */
5087 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
5088 {
5089 	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
5090 }
5091 
5092 /* Note: Should be called only if skb_is_gso(skb) is true */
5093 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
5094 {
5095 	return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
5096 }
5097 
5098 static inline void skb_gso_reset(struct sk_buff *skb)
5099 {
5100 	skb_shinfo(skb)->gso_size = 0;
5101 	skb_shinfo(skb)->gso_segs = 0;
5102 	skb_shinfo(skb)->gso_type = 0;
5103 }
5104 
5105 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
5106 					 u16 increment)
5107 {
5108 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
5109 		return;
5110 	shinfo->gso_size += increment;
5111 }
5112 
5113 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
5114 					 u16 decrement)
5115 {
5116 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
5117 		return;
5118 	shinfo->gso_size -= decrement;
5119 }
5120 
5121 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
5122 
5123 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
5124 {
5125 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
5126 	 * wanted then gso_type will be set. */
5127 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5128 
5129 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
5130 	    unlikely(shinfo->gso_type == 0)) {
5131 		__skb_warn_lro_forwarding(skb);
5132 		return true;
5133 	}
5134 	return false;
5135 }
5136 
5137 static inline void skb_forward_csum(struct sk_buff *skb)
5138 {
5139 	/* Unfortunately we don't support this one.  Any brave souls? */
5140 	if (skb->ip_summed == CHECKSUM_COMPLETE)
5141 		skb->ip_summed = CHECKSUM_NONE;
5142 }
5143 
5144 /**
5145  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
5146  * @skb: skb to check
5147  *
5148  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
5149  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
5150  * use this helper, to document places where we make this assertion.
5151  */
5152 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
5153 {
5154 	DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE);
5155 }
5156 
5157 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
5158 
5159 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
5160 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5161 				     unsigned int transport_len,
5162 				     __sum16(*skb_chkf)(struct sk_buff *skb));
5163 
5164 /**
5165  * skb_head_is_locked - Determine if the skb->head is locked down
5166  * @skb: skb to check
5167  *
5168  * The head on skbs build around a head frag can be removed if they are
5169  * not cloned.  This function returns true if the skb head is locked down
5170  * due to either being allocated via kmalloc, or by being a clone with
5171  * multiple references to the head.
5172  */
5173 static inline bool skb_head_is_locked(const struct sk_buff *skb)
5174 {
5175 	return !skb->head_frag || skb_cloned(skb);
5176 }
5177 
5178 /* Local Checksum Offload.
5179  * Compute outer checksum based on the assumption that the
5180  * inner checksum will be offloaded later.
5181  * See Documentation/networking/checksum-offloads.rst for
5182  * explanation of how this works.
5183  * Fill in outer checksum adjustment (e.g. with sum of outer
5184  * pseudo-header) before calling.
5185  * Also ensure that inner checksum is in linear data area.
5186  */
5187 static inline __wsum lco_csum(struct sk_buff *skb)
5188 {
5189 	unsigned char *csum_start = skb_checksum_start(skb);
5190 	unsigned char *l4_hdr = skb_transport_header(skb);
5191 	__wsum partial;
5192 
5193 	/* Start with complement of inner checksum adjustment */
5194 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
5195 						    skb->csum_offset));
5196 
5197 	/* Add in checksum of our headers (incl. outer checksum
5198 	 * adjustment filled in by caller) and return result.
5199 	 */
5200 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
5201 }
5202 
5203 static inline bool skb_is_redirected(const struct sk_buff *skb)
5204 {
5205 	return skb->redirected;
5206 }
5207 
5208 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
5209 {
5210 	skb->redirected = 1;
5211 #ifdef CONFIG_NET_REDIRECT
5212 	skb->from_ingress = from_ingress;
5213 	if (skb->from_ingress)
5214 		skb_clear_tstamp(skb);
5215 #endif
5216 }
5217 
5218 static inline void skb_reset_redirect(struct sk_buff *skb)
5219 {
5220 	skb->redirected = 0;
5221 }
5222 
5223 static inline void skb_set_redirected_noclear(struct sk_buff *skb,
5224 					      bool from_ingress)
5225 {
5226 	skb->redirected = 1;
5227 #ifdef CONFIG_NET_REDIRECT
5228 	skb->from_ingress = from_ingress;
5229 #endif
5230 }
5231 
5232 static inline bool skb_csum_is_sctp(struct sk_buff *skb)
5233 {
5234 #if IS_ENABLED(CONFIG_IP_SCTP)
5235 	return skb->csum_not_inet;
5236 #else
5237 	return 0;
5238 #endif
5239 }
5240 
5241 static inline void skb_reset_csum_not_inet(struct sk_buff *skb)
5242 {
5243 	skb->ip_summed = CHECKSUM_NONE;
5244 #if IS_ENABLED(CONFIG_IP_SCTP)
5245 	skb->csum_not_inet = 0;
5246 #endif
5247 }
5248 
5249 static inline void skb_set_kcov_handle(struct sk_buff *skb,
5250 				       const u64 kcov_handle)
5251 {
5252 #ifdef CONFIG_KCOV
5253 	skb->kcov_handle = kcov_handle;
5254 #endif
5255 }
5256 
5257 static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
5258 {
5259 #ifdef CONFIG_KCOV
5260 	return skb->kcov_handle;
5261 #else
5262 	return 0;
5263 #endif
5264 }
5265 
5266 static inline void skb_mark_for_recycle(struct sk_buff *skb)
5267 {
5268 #ifdef CONFIG_PAGE_POOL
5269 	skb->pp_recycle = 1;
5270 #endif
5271 }
5272 
5273 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter,
5274 			     ssize_t maxsize, gfp_t gfp);
5275 
5276 #endif	/* __KERNEL__ */
5277 #endif	/* _LINUX_SKBUFF_H */
5278