xref: /linux-6.15/include/linux/skbuff.h (revision e17fb91c)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  *	Definitions for the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:
6  *		Alan Cox, <[email protected]>
7  *		Florian La Roche, <[email protected]>
8  */
9 
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12 
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
22 
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <net/checksum.h>
27 #include <linux/rcupdate.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/netdev_features.h>
30 #include <net/flow_dissector.h>
31 #include <linux/in6.h>
32 #include <linux/if_packet.h>
33 #include <linux/llist.h>
34 #include <net/flow.h>
35 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
36 #include <linux/netfilter/nf_conntrack_common.h>
37 #endif
38 #include <net/net_debug.h>
39 #include <net/dropreason-core.h>
40 #include <net/netmem.h>
41 
42 /**
43  * DOC: skb checksums
44  *
45  * The interface for checksum offload between the stack and networking drivers
46  * is as follows...
47  *
48  * IP checksum related features
49  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
50  *
51  * Drivers advertise checksum offload capabilities in the features of a device.
52  * From the stack's point of view these are capabilities offered by the driver.
53  * A driver typically only advertises features that it is capable of offloading
54  * to its device.
55  *
56  * .. flat-table:: Checksum related device features
57  *   :widths: 1 10
58  *
59  *   * - %NETIF_F_HW_CSUM
60  *     - The driver (or its device) is able to compute one
61  *	 IP (one's complement) checksum for any combination
62  *	 of protocols or protocol layering. The checksum is
63  *	 computed and set in a packet per the CHECKSUM_PARTIAL
64  *	 interface (see below).
65  *
66  *   * - %NETIF_F_IP_CSUM
67  *     - Driver (device) is only able to checksum plain
68  *	 TCP or UDP packets over IPv4. These are specifically
69  *	 unencapsulated packets of the form IPv4|TCP or
70  *	 IPv4|UDP where the Protocol field in the IPv4 header
71  *	 is TCP or UDP. The IPv4 header may contain IP options.
72  *	 This feature cannot be set in features for a device
73  *	 with NETIF_F_HW_CSUM also set. This feature is being
74  *	 DEPRECATED (see below).
75  *
76  *   * - %NETIF_F_IPV6_CSUM
77  *     - Driver (device) is only able to checksum plain
78  *	 TCP or UDP packets over IPv6. These are specifically
79  *	 unencapsulated packets of the form IPv6|TCP or
80  *	 IPv6|UDP where the Next Header field in the IPv6
81  *	 header is either TCP or UDP. IPv6 extension headers
82  *	 are not supported with this feature. This feature
83  *	 cannot be set in features for a device with
84  *	 NETIF_F_HW_CSUM also set. This feature is being
85  *	 DEPRECATED (see below).
86  *
87  *   * - %NETIF_F_RXCSUM
88  *     - Driver (device) performs receive checksum offload.
89  *	 This flag is only used to disable the RX checksum
90  *	 feature for a device. The stack will accept receive
91  *	 checksum indication in packets received on a device
92  *	 regardless of whether NETIF_F_RXCSUM is set.
93  *
94  * Checksumming of received packets by device
95  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
96  *
97  * Indication of checksum verification is set in &sk_buff.ip_summed.
98  * Possible values are:
99  *
100  * - %CHECKSUM_NONE
101  *
102  *   Device did not checksum this packet e.g. due to lack of capabilities.
103  *   The packet contains full (though not verified) checksum in packet but
104  *   not in skb->csum. Thus, skb->csum is undefined in this case.
105  *
106  * - %CHECKSUM_UNNECESSARY
107  *
108  *   The hardware you're dealing with doesn't calculate the full checksum
109  *   (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums
110  *   for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY
111  *   if their checksums are okay. &sk_buff.csum is still undefined in this case
112  *   though. A driver or device must never modify the checksum field in the
113  *   packet even if checksum is verified.
114  *
115  *   %CHECKSUM_UNNECESSARY is applicable to following protocols:
116  *
117  *     - TCP: IPv6 and IPv4.
118  *     - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
119  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
120  *       may perform further validation in this case.
121  *     - GRE: only if the checksum is present in the header.
122  *     - SCTP: indicates the CRC in SCTP header has been validated.
123  *     - FCOE: indicates the CRC in FC frame has been validated.
124  *
125  *   &sk_buff.csum_level indicates the number of consecutive checksums found in
126  *   the packet minus one that have been verified as %CHECKSUM_UNNECESSARY.
127  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
128  *   and a device is able to verify the checksums for UDP (possibly zero),
129  *   GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to
130  *   two. If the device were only able to verify the UDP checksum and not
131  *   GRE, either because it doesn't support GRE checksum or because GRE
132  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
133  *   not considered in this case).
134  *
135  * - %CHECKSUM_COMPLETE
136  *
137  *   This is the most generic way. The device supplied checksum of the _whole_
138  *   packet as seen by netif_rx() and fills in &sk_buff.csum. This means the
139  *   hardware doesn't need to parse L3/L4 headers to implement this.
140  *
141  *   Notes:
142  *
143  *   - Even if device supports only some protocols, but is able to produce
144  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
145  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
146  *
147  * - %CHECKSUM_PARTIAL
148  *
149  *   A checksum is set up to be offloaded to a device as described in the
150  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
151  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
152  *   on the same host, or it may be set in the input path in GRO or remote
153  *   checksum offload. For the purposes of checksum verification, the checksum
154  *   referred to by skb->csum_start + skb->csum_offset and any preceding
155  *   checksums in the packet are considered verified. Any checksums in the
156  *   packet that are after the checksum being offloaded are not considered to
157  *   be verified.
158  *
159  * Checksumming on transmit for non-GSO
160  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
161  *
162  * The stack requests checksum offload in the &sk_buff.ip_summed for a packet.
163  * Values are:
164  *
165  * - %CHECKSUM_PARTIAL
166  *
167  *   The driver is required to checksum the packet as seen by hard_start_xmit()
168  *   from &sk_buff.csum_start up to the end, and to record/write the checksum at
169  *   offset &sk_buff.csum_start + &sk_buff.csum_offset.
170  *   A driver may verify that the
171  *   csum_start and csum_offset values are valid values given the length and
172  *   offset of the packet, but it should not attempt to validate that the
173  *   checksum refers to a legitimate transport layer checksum -- it is the
174  *   purview of the stack to validate that csum_start and csum_offset are set
175  *   correctly.
176  *
177  *   When the stack requests checksum offload for a packet, the driver MUST
178  *   ensure that the checksum is set correctly. A driver can either offload the
179  *   checksum calculation to the device, or call skb_checksum_help (in the case
180  *   that the device does not support offload for a particular checksum).
181  *
182  *   %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of
183  *   %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate
184  *   checksum offload capability.
185  *   skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based
186  *   on network device checksumming capabilities: if a packet does not match
187  *   them, skb_checksum_help() or skb_crc32c_help() (depending on the value of
188  *   &sk_buff.csum_not_inet, see :ref:`crc`)
189  *   is called to resolve the checksum.
190  *
191  * - %CHECKSUM_NONE
192  *
193  *   The skb was already checksummed by the protocol, or a checksum is not
194  *   required.
195  *
196  * - %CHECKSUM_UNNECESSARY
197  *
198  *   This has the same meaning as CHECKSUM_NONE for checksum offload on
199  *   output.
200  *
201  * - %CHECKSUM_COMPLETE
202  *
203  *   Not used in checksum output. If a driver observes a packet with this value
204  *   set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set.
205  *
206  * .. _crc:
207  *
208  * Non-IP checksum (CRC) offloads
209  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
210  *
211  * .. flat-table::
212  *   :widths: 1 10
213  *
214  *   * - %NETIF_F_SCTP_CRC
215  *     - This feature indicates that a device is capable of
216  *	 offloading the SCTP CRC in a packet. To perform this offload the stack
217  *	 will set csum_start and csum_offset accordingly, set ip_summed to
218  *	 %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication
219  *	 in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c.
220  *	 A driver that supports both IP checksum offload and SCTP CRC32c offload
221  *	 must verify which offload is configured for a packet by testing the
222  *	 value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to
223  *	 resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
224  *
225  *   * - %NETIF_F_FCOE_CRC
226  *     - This feature indicates that a device is capable of offloading the FCOE
227  *	 CRC in a packet. To perform this offload the stack will set ip_summed
228  *	 to %CHECKSUM_PARTIAL and set csum_start and csum_offset
229  *	 accordingly. Note that there is no indication in the skbuff that the
230  *	 %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
231  *	 both IP checksum offload and FCOE CRC offload must verify which offload
232  *	 is configured for a packet, presumably by inspecting packet headers.
233  *
234  * Checksumming on output with GSO
235  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
236  *
237  * In the case of a GSO packet (skb_is_gso() is true), checksum offload
238  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
239  * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as
240  * part of the GSO operation is implied. If a checksum is being offloaded
241  * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and
242  * csum_offset are set to refer to the outermost checksum being offloaded
243  * (two offloaded checksums are possible with UDP encapsulation).
244  */
245 
246 /* Don't change this without changing skb_csum_unnecessary! */
247 #define CHECKSUM_NONE		0
248 #define CHECKSUM_UNNECESSARY	1
249 #define CHECKSUM_COMPLETE	2
250 #define CHECKSUM_PARTIAL	3
251 
252 /* Maximum value in skb->csum_level */
253 #define SKB_MAX_CSUM_LEVEL	3
254 
255 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
256 #define SKB_WITH_OVERHEAD(X)	\
257 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
258 
259 /* For X bytes available in skb->head, what is the minimal
260  * allocation needed, knowing struct skb_shared_info needs
261  * to be aligned.
262  */
263 #define SKB_HEAD_ALIGN(X) (SKB_DATA_ALIGN(X) + \
264 	SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
265 
266 #define SKB_MAX_ORDER(X, ORDER) \
267 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
268 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
269 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
270 
271 /* return minimum truesize of one skb containing X bytes of data */
272 #define SKB_TRUESIZE(X) ((X) +						\
273 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
274 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
275 
276 struct ahash_request;
277 struct net_device;
278 struct scatterlist;
279 struct pipe_inode_info;
280 struct iov_iter;
281 struct napi_struct;
282 struct bpf_prog;
283 union bpf_attr;
284 struct skb_ext;
285 struct ts_config;
286 
287 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
288 struct nf_bridge_info {
289 	enum {
290 		BRNF_PROTO_UNCHANGED,
291 		BRNF_PROTO_8021Q,
292 		BRNF_PROTO_PPPOE
293 	} orig_proto:8;
294 	u8			pkt_otherhost:1;
295 	u8			in_prerouting:1;
296 	u8			bridged_dnat:1;
297 	u8			sabotage_in_done:1;
298 	__u16			frag_max_size;
299 	int			physinif;
300 
301 	/* always valid & non-NULL from FORWARD on, for physdev match */
302 	struct net_device	*physoutdev;
303 	union {
304 		/* prerouting: detect dnat in orig/reply direction */
305 		__be32          ipv4_daddr;
306 		struct in6_addr ipv6_daddr;
307 
308 		/* after prerouting + nat detected: store original source
309 		 * mac since neigh resolution overwrites it, only used while
310 		 * skb is out in neigh layer.
311 		 */
312 		char neigh_header[8];
313 	};
314 };
315 #endif
316 
317 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
318 /* Chain in tc_skb_ext will be used to share the tc chain with
319  * ovs recirc_id. It will be set to the current chain by tc
320  * and read by ovs to recirc_id.
321  */
322 struct tc_skb_ext {
323 	union {
324 		u64 act_miss_cookie;
325 		__u32 chain;
326 	};
327 	__u16 mru;
328 	__u16 zone;
329 	u8 post_ct:1;
330 	u8 post_ct_snat:1;
331 	u8 post_ct_dnat:1;
332 	u8 act_miss:1; /* Set if act_miss_cookie is used */
333 	u8 l2_miss:1; /* Set by bridge upon FDB or MDB miss */
334 };
335 #endif
336 
337 struct sk_buff_head {
338 	/* These two members must be first to match sk_buff. */
339 	struct_group_tagged(sk_buff_list, list,
340 		struct sk_buff	*next;
341 		struct sk_buff	*prev;
342 	);
343 
344 	__u32		qlen;
345 	spinlock_t	lock;
346 };
347 
348 struct sk_buff;
349 
350 #ifndef CONFIG_MAX_SKB_FRAGS
351 # define CONFIG_MAX_SKB_FRAGS 17
352 #endif
353 
354 #define MAX_SKB_FRAGS CONFIG_MAX_SKB_FRAGS
355 
356 extern int sysctl_max_skb_frags;
357 
358 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
359  * segment using its current segmentation instead.
360  */
361 #define GSO_BY_FRAGS	0xFFFF
362 
363 typedef struct skb_frag {
364 	netmem_ref netmem;
365 	unsigned int len;
366 	unsigned int offset;
367 } skb_frag_t;
368 
369 /**
370  * skb_frag_size() - Returns the size of a skb fragment
371  * @frag: skb fragment
372  */
373 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
374 {
375 	return frag->len;
376 }
377 
378 /**
379  * skb_frag_size_set() - Sets the size of a skb fragment
380  * @frag: skb fragment
381  * @size: size of fragment
382  */
383 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
384 {
385 	frag->len = size;
386 }
387 
388 /**
389  * skb_frag_size_add() - Increments the size of a skb fragment by @delta
390  * @frag: skb fragment
391  * @delta: value to add
392  */
393 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
394 {
395 	frag->len += delta;
396 }
397 
398 /**
399  * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
400  * @frag: skb fragment
401  * @delta: value to subtract
402  */
403 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
404 {
405 	frag->len -= delta;
406 }
407 
408 /**
409  * skb_frag_must_loop - Test if %p is a high memory page
410  * @p: fragment's page
411  */
412 static inline bool skb_frag_must_loop(struct page *p)
413 {
414 #if defined(CONFIG_HIGHMEM)
415 	if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p))
416 		return true;
417 #endif
418 	return false;
419 }
420 
421 /**
422  *	skb_frag_foreach_page - loop over pages in a fragment
423  *
424  *	@f:		skb frag to operate on
425  *	@f_off:		offset from start of f->netmem
426  *	@f_len:		length from f_off to loop over
427  *	@p:		(temp var) current page
428  *	@p_off:		(temp var) offset from start of current page,
429  *	                           non-zero only on first page.
430  *	@p_len:		(temp var) length in current page,
431  *				   < PAGE_SIZE only on first and last page.
432  *	@copied:	(temp var) length so far, excluding current p_len.
433  *
434  *	A fragment can hold a compound page, in which case per-page
435  *	operations, notably kmap_atomic, must be called for each
436  *	regular page.
437  */
438 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
439 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
440 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
441 	     p_len = skb_frag_must_loop(p) ?				\
442 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
443 	     copied = 0;						\
444 	     copied < f_len;						\
445 	     copied += p_len, p++, p_off = 0,				\
446 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
447 
448 /**
449  * struct skb_shared_hwtstamps - hardware time stamps
450  * @hwtstamp:		hardware time stamp transformed into duration
451  *			since arbitrary point in time
452  * @netdev_data:	address/cookie of network device driver used as
453  *			reference to actual hardware time stamp
454  *
455  * Software time stamps generated by ktime_get_real() are stored in
456  * skb->tstamp.
457  *
458  * hwtstamps can only be compared against other hwtstamps from
459  * the same device.
460  *
461  * This structure is attached to packets as part of the
462  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
463  */
464 struct skb_shared_hwtstamps {
465 	union {
466 		ktime_t	hwtstamp;
467 		void *netdev_data;
468 	};
469 };
470 
471 /* Definitions for tx_flags in struct skb_shared_info */
472 enum {
473 	/* generate hardware time stamp */
474 	SKBTX_HW_TSTAMP = 1 << 0,
475 
476 	/* generate software time stamp when queueing packet to NIC */
477 	SKBTX_SW_TSTAMP = 1 << 1,
478 
479 	/* device driver is going to provide hardware time stamp */
480 	SKBTX_IN_PROGRESS = 1 << 2,
481 
482 	/* generate hardware time stamp based on cycles if supported */
483 	SKBTX_HW_TSTAMP_USE_CYCLES = 1 << 3,
484 
485 	/* generate wifi status information (where possible) */
486 	SKBTX_WIFI_STATUS = 1 << 4,
487 
488 	/* determine hardware time stamp based on time or cycles */
489 	SKBTX_HW_TSTAMP_NETDEV = 1 << 5,
490 
491 	/* generate software time stamp when entering packet scheduling */
492 	SKBTX_SCHED_TSTAMP = 1 << 6,
493 };
494 
495 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
496 				 SKBTX_SCHED_TSTAMP)
497 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | \
498 				 SKBTX_HW_TSTAMP_USE_CYCLES | \
499 				 SKBTX_ANY_SW_TSTAMP)
500 
501 /* Definitions for flags in struct skb_shared_info */
502 enum {
503 	/* use zcopy routines */
504 	SKBFL_ZEROCOPY_ENABLE = BIT(0),
505 
506 	/* This indicates at least one fragment might be overwritten
507 	 * (as in vmsplice(), sendfile() ...)
508 	 * If we need to compute a TX checksum, we'll need to copy
509 	 * all frags to avoid possible bad checksum
510 	 */
511 	SKBFL_SHARED_FRAG = BIT(1),
512 
513 	/* segment contains only zerocopy data and should not be
514 	 * charged to the kernel memory.
515 	 */
516 	SKBFL_PURE_ZEROCOPY = BIT(2),
517 
518 	SKBFL_DONT_ORPHAN = BIT(3),
519 
520 	/* page references are managed by the ubuf_info, so it's safe to
521 	 * use frags only up until ubuf_info is released
522 	 */
523 	SKBFL_MANAGED_FRAG_REFS = BIT(4),
524 };
525 
526 #define SKBFL_ZEROCOPY_FRAG	(SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG)
527 #define SKBFL_ALL_ZEROCOPY	(SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY | \
528 				 SKBFL_DONT_ORPHAN | SKBFL_MANAGED_FRAG_REFS)
529 
530 /*
531  * The callback notifies userspace to release buffers when skb DMA is done in
532  * lower device, the skb last reference should be 0 when calling this.
533  * The zerocopy_success argument is true if zero copy transmit occurred,
534  * false on data copy or out of memory error caused by data copy attempt.
535  * The ctx field is used to track device context.
536  * The desc field is used to track userspace buffer index.
537  */
538 struct ubuf_info {
539 	void (*callback)(struct sk_buff *, struct ubuf_info *,
540 			 bool zerocopy_success);
541 	refcount_t refcnt;
542 	u8 flags;
543 };
544 
545 struct ubuf_info_msgzc {
546 	struct ubuf_info ubuf;
547 
548 	union {
549 		struct {
550 			unsigned long desc;
551 			void *ctx;
552 		};
553 		struct {
554 			u32 id;
555 			u16 len;
556 			u16 zerocopy:1;
557 			u32 bytelen;
558 		};
559 	};
560 
561 	struct mmpin {
562 		struct user_struct *user;
563 		unsigned int num_pg;
564 	} mmp;
565 };
566 
567 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
568 #define uarg_to_msgzc(ubuf_ptr)	container_of((ubuf_ptr), struct ubuf_info_msgzc, \
569 					     ubuf)
570 
571 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
572 void mm_unaccount_pinned_pages(struct mmpin *mmp);
573 
574 /* Preserve some data across TX submission and completion.
575  *
576  * Note, this state is stored in the driver. Extending the layout
577  * might need some special care.
578  */
579 struct xsk_tx_metadata_compl {
580 	__u64 *tx_timestamp;
581 };
582 
583 /* This data is invariant across clones and lives at
584  * the end of the header data, ie. at skb->end.
585  */
586 struct skb_shared_info {
587 	__u8		flags;
588 	__u8		meta_len;
589 	__u8		nr_frags;
590 	__u8		tx_flags;
591 	unsigned short	gso_size;
592 	/* Warning: this field is not always filled in (UFO)! */
593 	unsigned short	gso_segs;
594 	struct sk_buff	*frag_list;
595 	union {
596 		struct skb_shared_hwtstamps hwtstamps;
597 		struct xsk_tx_metadata_compl xsk_meta;
598 	};
599 	unsigned int	gso_type;
600 	u32		tskey;
601 
602 	/*
603 	 * Warning : all fields before dataref are cleared in __alloc_skb()
604 	 */
605 	atomic_t	dataref;
606 	unsigned int	xdp_frags_size;
607 
608 	/* Intermediate layers must ensure that destructor_arg
609 	 * remains valid until skb destructor */
610 	void *		destructor_arg;
611 
612 	/* must be last field, see pskb_expand_head() */
613 	skb_frag_t	frags[MAX_SKB_FRAGS];
614 };
615 
616 /**
617  * DOC: dataref and headerless skbs
618  *
619  * Transport layers send out clones of payload skbs they hold for
620  * retransmissions. To allow lower layers of the stack to prepend their headers
621  * we split &skb_shared_info.dataref into two halves.
622  * The lower 16 bits count the overall number of references.
623  * The higher 16 bits indicate how many of the references are payload-only.
624  * skb_header_cloned() checks if skb is allowed to add / write the headers.
625  *
626  * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr
627  * (via __skb_header_release()). Any clone created from marked skb will get
628  * &sk_buff.hdr_len populated with the available headroom.
629  * If there's the only clone in existence it's able to modify the headroom
630  * at will. The sequence of calls inside the transport layer is::
631  *
632  *  <alloc skb>
633  *  skb_reserve()
634  *  __skb_header_release()
635  *  skb_clone()
636  *  // send the clone down the stack
637  *
638  * This is not a very generic construct and it depends on the transport layers
639  * doing the right thing. In practice there's usually only one payload-only skb.
640  * Having multiple payload-only skbs with different lengths of hdr_len is not
641  * possible. The payload-only skbs should never leave their owner.
642  */
643 #define SKB_DATAREF_SHIFT 16
644 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
645 
646 
647 enum {
648 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
649 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
650 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
651 };
652 
653 enum {
654 	SKB_GSO_TCPV4 = 1 << 0,
655 
656 	/* This indicates the skb is from an untrusted source. */
657 	SKB_GSO_DODGY = 1 << 1,
658 
659 	/* This indicates the tcp segment has CWR set. */
660 	SKB_GSO_TCP_ECN = 1 << 2,
661 
662 	SKB_GSO_TCP_FIXEDID = 1 << 3,
663 
664 	SKB_GSO_TCPV6 = 1 << 4,
665 
666 	SKB_GSO_FCOE = 1 << 5,
667 
668 	SKB_GSO_GRE = 1 << 6,
669 
670 	SKB_GSO_GRE_CSUM = 1 << 7,
671 
672 	SKB_GSO_IPXIP4 = 1 << 8,
673 
674 	SKB_GSO_IPXIP6 = 1 << 9,
675 
676 	SKB_GSO_UDP_TUNNEL = 1 << 10,
677 
678 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
679 
680 	SKB_GSO_PARTIAL = 1 << 12,
681 
682 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
683 
684 	SKB_GSO_SCTP = 1 << 14,
685 
686 	SKB_GSO_ESP = 1 << 15,
687 
688 	SKB_GSO_UDP = 1 << 16,
689 
690 	SKB_GSO_UDP_L4 = 1 << 17,
691 
692 	SKB_GSO_FRAGLIST = 1 << 18,
693 };
694 
695 #if BITS_PER_LONG > 32
696 #define NET_SKBUFF_DATA_USES_OFFSET 1
697 #endif
698 
699 #ifdef NET_SKBUFF_DATA_USES_OFFSET
700 typedef unsigned int sk_buff_data_t;
701 #else
702 typedef unsigned char *sk_buff_data_t;
703 #endif
704 
705 /**
706  * DOC: Basic sk_buff geometry
707  *
708  * struct sk_buff itself is a metadata structure and does not hold any packet
709  * data. All the data is held in associated buffers.
710  *
711  * &sk_buff.head points to the main "head" buffer. The head buffer is divided
712  * into two parts:
713  *
714  *  - data buffer, containing headers and sometimes payload;
715  *    this is the part of the skb operated on by the common helpers
716  *    such as skb_put() or skb_pull();
717  *  - shared info (struct skb_shared_info) which holds an array of pointers
718  *    to read-only data in the (page, offset, length) format.
719  *
720  * Optionally &skb_shared_info.frag_list may point to another skb.
721  *
722  * Basic diagram may look like this::
723  *
724  *                                  ---------------
725  *                                 | sk_buff       |
726  *                                  ---------------
727  *     ,---------------------------  + head
728  *    /          ,-----------------  + data
729  *   /          /      ,-----------  + tail
730  *  |          |      |            , + end
731  *  |          |      |           |
732  *  v          v      v           v
733  *   -----------------------------------------------
734  *  | headroom | data |  tailroom | skb_shared_info |
735  *   -----------------------------------------------
736  *                                 + [page frag]
737  *                                 + [page frag]
738  *                                 + [page frag]
739  *                                 + [page frag]       ---------
740  *                                 + frag_list    --> | sk_buff |
741  *                                                     ---------
742  *
743  */
744 
745 /**
746  *	struct sk_buff - socket buffer
747  *	@next: Next buffer in list
748  *	@prev: Previous buffer in list
749  *	@tstamp: Time we arrived/left
750  *	@skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
751  *		for retransmit timer
752  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
753  *	@list: queue head
754  *	@ll_node: anchor in an llist (eg socket defer_list)
755  *	@sk: Socket we are owned by
756  *	@dev: Device we arrived on/are leaving by
757  *	@dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
758  *	@cb: Control buffer. Free for use by every layer. Put private vars here
759  *	@_skb_refdst: destination entry (with norefcount bit)
760  *	@len: Length of actual data
761  *	@data_len: Data length
762  *	@mac_len: Length of link layer header
763  *	@hdr_len: writable header length of cloned skb
764  *	@csum: Checksum (must include start/offset pair)
765  *	@csum_start: Offset from skb->head where checksumming should start
766  *	@csum_offset: Offset from csum_start where checksum should be stored
767  *	@priority: Packet queueing priority
768  *	@ignore_df: allow local fragmentation
769  *	@cloned: Head may be cloned (check refcnt to be sure)
770  *	@ip_summed: Driver fed us an IP checksum
771  *	@nohdr: Payload reference only, must not modify header
772  *	@pkt_type: Packet class
773  *	@fclone: skbuff clone status
774  *	@ipvs_property: skbuff is owned by ipvs
775  *	@inner_protocol_type: whether the inner protocol is
776  *		ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
777  *	@remcsum_offload: remote checksum offload is enabled
778  *	@offload_fwd_mark: Packet was L2-forwarded in hardware
779  *	@offload_l3_fwd_mark: Packet was L3-forwarded in hardware
780  *	@tc_skip_classify: do not classify packet. set by IFB device
781  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
782  *	@redirected: packet was redirected by packet classifier
783  *	@from_ingress: packet was redirected from the ingress path
784  *	@nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h
785  *	@peeked: this packet has been seen already, so stats have been
786  *		done for it, don't do them again
787  *	@nf_trace: netfilter packet trace flag
788  *	@protocol: Packet protocol from driver
789  *	@destructor: Destruct function
790  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
791  *	@_sk_redir: socket redirection information for skmsg
792  *	@_nfct: Associated connection, if any (with nfctinfo bits)
793  *	@skb_iif: ifindex of device we arrived on
794  *	@tc_index: Traffic control index
795  *	@hash: the packet hash
796  *	@queue_mapping: Queue mapping for multiqueue devices
797  *	@head_frag: skb was allocated from page fragments,
798  *		not allocated by kmalloc() or vmalloc().
799  *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
800  *	@pp_recycle: mark the packet for recycling instead of freeing (implies
801  *		page_pool support on driver)
802  *	@active_extensions: active extensions (skb_ext_id types)
803  *	@ndisc_nodetype: router type (from link layer)
804  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
805  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
806  *		ports.
807  *	@sw_hash: indicates hash was computed in software stack
808  *	@wifi_acked_valid: wifi_acked was set
809  *	@wifi_acked: whether frame was acked on wifi or not
810  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
811  *	@encapsulation: indicates the inner headers in the skbuff are valid
812  *	@encap_hdr_csum: software checksum is needed
813  *	@csum_valid: checksum is already valid
814  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
815  *	@csum_complete_sw: checksum was completed by software
816  *	@csum_level: indicates the number of consecutive checksums found in
817  *		the packet minus one that have been verified as
818  *		CHECKSUM_UNNECESSARY (max 3)
819  *	@dst_pending_confirm: need to confirm neighbour
820  *	@decrypted: Decrypted SKB
821  *	@slow_gro: state present at GRO time, slower prepare step required
822  *	@mono_delivery_time: When set, skb->tstamp has the
823  *		delivery_time in mono clock base (i.e. EDT).  Otherwise, the
824  *		skb->tstamp has the (rcv) timestamp at ingress and
825  *		delivery_time at egress.
826  *	@napi_id: id of the NAPI struct this skb came from
827  *	@sender_cpu: (aka @napi_id) source CPU in XPS
828  *	@alloc_cpu: CPU which did the skb allocation.
829  *	@secmark: security marking
830  *	@mark: Generic packet mark
831  *	@reserved_tailroom: (aka @mark) number of bytes of free space available
832  *		at the tail of an sk_buff
833  *	@vlan_all: vlan fields (proto & tci)
834  *	@vlan_proto: vlan encapsulation protocol
835  *	@vlan_tci: vlan tag control information
836  *	@inner_protocol: Protocol (encapsulation)
837  *	@inner_ipproto: (aka @inner_protocol) stores ipproto when
838  *		skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
839  *	@inner_transport_header: Inner transport layer header (encapsulation)
840  *	@inner_network_header: Network layer header (encapsulation)
841  *	@inner_mac_header: Link layer header (encapsulation)
842  *	@transport_header: Transport layer header
843  *	@network_header: Network layer header
844  *	@mac_header: Link layer header
845  *	@kcov_handle: KCOV remote handle for remote coverage collection
846  *	@tail: Tail pointer
847  *	@end: End pointer
848  *	@head: Head of buffer
849  *	@data: Data head pointer
850  *	@truesize: Buffer size
851  *	@users: User count - see {datagram,tcp}.c
852  *	@extensions: allocated extensions, valid if active_extensions is nonzero
853  */
854 
855 struct sk_buff {
856 	union {
857 		struct {
858 			/* These two members must be first to match sk_buff_head. */
859 			struct sk_buff		*next;
860 			struct sk_buff		*prev;
861 
862 			union {
863 				struct net_device	*dev;
864 				/* Some protocols might use this space to store information,
865 				 * while device pointer would be NULL.
866 				 * UDP receive path is one user.
867 				 */
868 				unsigned long		dev_scratch;
869 			};
870 		};
871 		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
872 		struct list_head	list;
873 		struct llist_node	ll_node;
874 	};
875 
876 	struct sock		*sk;
877 
878 	union {
879 		ktime_t		tstamp;
880 		u64		skb_mstamp_ns; /* earliest departure time */
881 	};
882 	/*
883 	 * This is the control buffer. It is free to use for every
884 	 * layer. Please put your private variables there. If you
885 	 * want to keep them across layers you have to do a skb_clone()
886 	 * first. This is owned by whoever has the skb queued ATM.
887 	 */
888 	char			cb[48] __aligned(8);
889 
890 	union {
891 		struct {
892 			unsigned long	_skb_refdst;
893 			void		(*destructor)(struct sk_buff *skb);
894 		};
895 		struct list_head	tcp_tsorted_anchor;
896 #ifdef CONFIG_NET_SOCK_MSG
897 		unsigned long		_sk_redir;
898 #endif
899 	};
900 
901 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
902 	unsigned long		 _nfct;
903 #endif
904 	unsigned int		len,
905 				data_len;
906 	__u16			mac_len,
907 				hdr_len;
908 
909 	/* Following fields are _not_ copied in __copy_skb_header()
910 	 * Note that queue_mapping is here mostly to fill a hole.
911 	 */
912 	__u16			queue_mapping;
913 
914 /* if you move cloned around you also must adapt those constants */
915 #ifdef __BIG_ENDIAN_BITFIELD
916 #define CLONED_MASK	(1 << 7)
917 #else
918 #define CLONED_MASK	1
919 #endif
920 #define CLONED_OFFSET		offsetof(struct sk_buff, __cloned_offset)
921 
922 	/* private: */
923 	__u8			__cloned_offset[0];
924 	/* public: */
925 	__u8			cloned:1,
926 				nohdr:1,
927 				fclone:2,
928 				peeked:1,
929 				head_frag:1,
930 				pfmemalloc:1,
931 				pp_recycle:1; /* page_pool recycle indicator */
932 #ifdef CONFIG_SKB_EXTENSIONS
933 	__u8			active_extensions;
934 #endif
935 
936 	/* Fields enclosed in headers group are copied
937 	 * using a single memcpy() in __copy_skb_header()
938 	 */
939 	struct_group(headers,
940 
941 	/* private: */
942 	__u8			__pkt_type_offset[0];
943 	/* public: */
944 	__u8			pkt_type:3; /* see PKT_TYPE_MAX */
945 	__u8			ignore_df:1;
946 	__u8			dst_pending_confirm:1;
947 	__u8			ip_summed:2;
948 	__u8			ooo_okay:1;
949 
950 	/* private: */
951 	__u8			__mono_tc_offset[0];
952 	/* public: */
953 	__u8			mono_delivery_time:1;	/* See SKB_MONO_DELIVERY_TIME_MASK */
954 #ifdef CONFIG_NET_XGRESS
955 	__u8			tc_at_ingress:1;	/* See TC_AT_INGRESS_MASK */
956 	__u8			tc_skip_classify:1;
957 #endif
958 	__u8			remcsum_offload:1;
959 	__u8			csum_complete_sw:1;
960 	__u8			csum_level:2;
961 	__u8			inner_protocol_type:1;
962 
963 	__u8			l4_hash:1;
964 	__u8			sw_hash:1;
965 #ifdef CONFIG_WIRELESS
966 	__u8			wifi_acked_valid:1;
967 	__u8			wifi_acked:1;
968 #endif
969 	__u8			no_fcs:1;
970 	/* Indicates the inner headers are valid in the skbuff. */
971 	__u8			encapsulation:1;
972 	__u8			encap_hdr_csum:1;
973 	__u8			csum_valid:1;
974 #ifdef CONFIG_IPV6_NDISC_NODETYPE
975 	__u8			ndisc_nodetype:2;
976 #endif
977 
978 #if IS_ENABLED(CONFIG_IP_VS)
979 	__u8			ipvs_property:1;
980 #endif
981 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
982 	__u8			nf_trace:1;
983 #endif
984 #ifdef CONFIG_NET_SWITCHDEV
985 	__u8			offload_fwd_mark:1;
986 	__u8			offload_l3_fwd_mark:1;
987 #endif
988 	__u8			redirected:1;
989 #ifdef CONFIG_NET_REDIRECT
990 	__u8			from_ingress:1;
991 #endif
992 #ifdef CONFIG_NETFILTER_SKIP_EGRESS
993 	__u8			nf_skip_egress:1;
994 #endif
995 #ifdef CONFIG_TLS_DEVICE
996 	__u8			decrypted:1;
997 #endif
998 	__u8			slow_gro:1;
999 #if IS_ENABLED(CONFIG_IP_SCTP)
1000 	__u8			csum_not_inet:1;
1001 #endif
1002 
1003 #if defined(CONFIG_NET_SCHED) || defined(CONFIG_NET_XGRESS)
1004 	__u16			tc_index;	/* traffic control index */
1005 #endif
1006 
1007 	u16			alloc_cpu;
1008 
1009 	union {
1010 		__wsum		csum;
1011 		struct {
1012 			__u16	csum_start;
1013 			__u16	csum_offset;
1014 		};
1015 	};
1016 	__u32			priority;
1017 	int			skb_iif;
1018 	__u32			hash;
1019 	union {
1020 		u32		vlan_all;
1021 		struct {
1022 			__be16	vlan_proto;
1023 			__u16	vlan_tci;
1024 		};
1025 	};
1026 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
1027 	union {
1028 		unsigned int	napi_id;
1029 		unsigned int	sender_cpu;
1030 	};
1031 #endif
1032 #ifdef CONFIG_NETWORK_SECMARK
1033 	__u32		secmark;
1034 #endif
1035 
1036 	union {
1037 		__u32		mark;
1038 		__u32		reserved_tailroom;
1039 	};
1040 
1041 	union {
1042 		__be16		inner_protocol;
1043 		__u8		inner_ipproto;
1044 	};
1045 
1046 	__u16			inner_transport_header;
1047 	__u16			inner_network_header;
1048 	__u16			inner_mac_header;
1049 
1050 	__be16			protocol;
1051 	__u16			transport_header;
1052 	__u16			network_header;
1053 	__u16			mac_header;
1054 
1055 #ifdef CONFIG_KCOV
1056 	u64			kcov_handle;
1057 #endif
1058 
1059 	); /* end headers group */
1060 
1061 	/* These elements must be at the end, see alloc_skb() for details.  */
1062 	sk_buff_data_t		tail;
1063 	sk_buff_data_t		end;
1064 	unsigned char		*head,
1065 				*data;
1066 	unsigned int		truesize;
1067 	refcount_t		users;
1068 
1069 #ifdef CONFIG_SKB_EXTENSIONS
1070 	/* only usable after checking ->active_extensions != 0 */
1071 	struct skb_ext		*extensions;
1072 #endif
1073 };
1074 
1075 /* if you move pkt_type around you also must adapt those constants */
1076 #ifdef __BIG_ENDIAN_BITFIELD
1077 #define PKT_TYPE_MAX	(7 << 5)
1078 #else
1079 #define PKT_TYPE_MAX	7
1080 #endif
1081 #define PKT_TYPE_OFFSET		offsetof(struct sk_buff, __pkt_type_offset)
1082 
1083 /* if you move tc_at_ingress or mono_delivery_time
1084  * around, you also must adapt these constants.
1085  */
1086 #ifdef __BIG_ENDIAN_BITFIELD
1087 #define SKB_MONO_DELIVERY_TIME_MASK	(1 << 7)
1088 #define TC_AT_INGRESS_MASK		(1 << 6)
1089 #else
1090 #define SKB_MONO_DELIVERY_TIME_MASK	(1 << 0)
1091 #define TC_AT_INGRESS_MASK		(1 << 1)
1092 #endif
1093 #define SKB_BF_MONO_TC_OFFSET		offsetof(struct sk_buff, __mono_tc_offset)
1094 
1095 #ifdef __KERNEL__
1096 /*
1097  *	Handling routines are only of interest to the kernel
1098  */
1099 
1100 #define SKB_ALLOC_FCLONE	0x01
1101 #define SKB_ALLOC_RX		0x02
1102 #define SKB_ALLOC_NAPI		0x04
1103 
1104 /**
1105  * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
1106  * @skb: buffer
1107  */
1108 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
1109 {
1110 	return unlikely(skb->pfmemalloc);
1111 }
1112 
1113 /*
1114  * skb might have a dst pointer attached, refcounted or not.
1115  * _skb_refdst low order bit is set if refcount was _not_ taken
1116  */
1117 #define SKB_DST_NOREF	1UL
1118 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
1119 
1120 /**
1121  * skb_dst - returns skb dst_entry
1122  * @skb: buffer
1123  *
1124  * Returns skb dst_entry, regardless of reference taken or not.
1125  */
1126 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
1127 {
1128 	/* If refdst was not refcounted, check we still are in a
1129 	 * rcu_read_lock section
1130 	 */
1131 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
1132 		!rcu_read_lock_held() &&
1133 		!rcu_read_lock_bh_held());
1134 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
1135 }
1136 
1137 /**
1138  * skb_dst_set - sets skb dst
1139  * @skb: buffer
1140  * @dst: dst entry
1141  *
1142  * Sets skb dst, assuming a reference was taken on dst and should
1143  * be released by skb_dst_drop()
1144  */
1145 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
1146 {
1147 	skb->slow_gro |= !!dst;
1148 	skb->_skb_refdst = (unsigned long)dst;
1149 }
1150 
1151 /**
1152  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
1153  * @skb: buffer
1154  * @dst: dst entry
1155  *
1156  * Sets skb dst, assuming a reference was not taken on dst.
1157  * If dst entry is cached, we do not take reference and dst_release
1158  * will be avoided by refdst_drop. If dst entry is not cached, we take
1159  * reference, so that last dst_release can destroy the dst immediately.
1160  */
1161 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
1162 {
1163 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
1164 	skb->slow_gro |= !!dst;
1165 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
1166 }
1167 
1168 /**
1169  * skb_dst_is_noref - Test if skb dst isn't refcounted
1170  * @skb: buffer
1171  */
1172 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1173 {
1174 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1175 }
1176 
1177 /**
1178  * skb_rtable - Returns the skb &rtable
1179  * @skb: buffer
1180  */
1181 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
1182 {
1183 	return (struct rtable *)skb_dst(skb);
1184 }
1185 
1186 /* For mangling skb->pkt_type from user space side from applications
1187  * such as nft, tc, etc, we only allow a conservative subset of
1188  * possible pkt_types to be set.
1189 */
1190 static inline bool skb_pkt_type_ok(u32 ptype)
1191 {
1192 	return ptype <= PACKET_OTHERHOST;
1193 }
1194 
1195 /**
1196  * skb_napi_id - Returns the skb's NAPI id
1197  * @skb: buffer
1198  */
1199 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1200 {
1201 #ifdef CONFIG_NET_RX_BUSY_POLL
1202 	return skb->napi_id;
1203 #else
1204 	return 0;
1205 #endif
1206 }
1207 
1208 static inline bool skb_wifi_acked_valid(const struct sk_buff *skb)
1209 {
1210 #ifdef CONFIG_WIRELESS
1211 	return skb->wifi_acked_valid;
1212 #else
1213 	return 0;
1214 #endif
1215 }
1216 
1217 /**
1218  * skb_unref - decrement the skb's reference count
1219  * @skb: buffer
1220  *
1221  * Returns true if we can free the skb.
1222  */
1223 static inline bool skb_unref(struct sk_buff *skb)
1224 {
1225 	if (unlikely(!skb))
1226 		return false;
1227 	if (likely(refcount_read(&skb->users) == 1))
1228 		smp_rmb();
1229 	else if (likely(!refcount_dec_and_test(&skb->users)))
1230 		return false;
1231 
1232 	return true;
1233 }
1234 
1235 static inline bool skb_data_unref(const struct sk_buff *skb,
1236 				  struct skb_shared_info *shinfo)
1237 {
1238 	int bias;
1239 
1240 	if (!skb->cloned)
1241 		return true;
1242 
1243 	bias = skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1;
1244 
1245 	if (atomic_read(&shinfo->dataref) == bias)
1246 		smp_rmb();
1247 	else if (atomic_sub_return(bias, &shinfo->dataref))
1248 		return false;
1249 
1250 	return true;
1251 }
1252 
1253 void __fix_address
1254 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason);
1255 
1256 /**
1257  *	kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason
1258  *	@skb: buffer to free
1259  */
1260 static inline void kfree_skb(struct sk_buff *skb)
1261 {
1262 	kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1263 }
1264 
1265 void skb_release_head_state(struct sk_buff *skb);
1266 void kfree_skb_list_reason(struct sk_buff *segs,
1267 			   enum skb_drop_reason reason);
1268 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1269 void skb_tx_error(struct sk_buff *skb);
1270 
1271 static inline void kfree_skb_list(struct sk_buff *segs)
1272 {
1273 	kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED);
1274 }
1275 
1276 #ifdef CONFIG_TRACEPOINTS
1277 void consume_skb(struct sk_buff *skb);
1278 #else
1279 static inline void consume_skb(struct sk_buff *skb)
1280 {
1281 	return kfree_skb(skb);
1282 }
1283 #endif
1284 
1285 void __consume_stateless_skb(struct sk_buff *skb);
1286 void  __kfree_skb(struct sk_buff *skb);
1287 
1288 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1289 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1290 		      bool *fragstolen, int *delta_truesize);
1291 
1292 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1293 			    int node);
1294 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1295 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1296 struct sk_buff *build_skb_around(struct sk_buff *skb,
1297 				 void *data, unsigned int frag_size);
1298 void skb_attempt_defer_free(struct sk_buff *skb);
1299 
1300 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size);
1301 struct sk_buff *slab_build_skb(void *data);
1302 
1303 /**
1304  * alloc_skb - allocate a network buffer
1305  * @size: size to allocate
1306  * @priority: allocation mask
1307  *
1308  * This function is a convenient wrapper around __alloc_skb().
1309  */
1310 static inline struct sk_buff *alloc_skb(unsigned int size,
1311 					gfp_t priority)
1312 {
1313 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1314 }
1315 
1316 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1317 				     unsigned long data_len,
1318 				     int max_page_order,
1319 				     int *errcode,
1320 				     gfp_t gfp_mask);
1321 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1322 
1323 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1324 struct sk_buff_fclones {
1325 	struct sk_buff	skb1;
1326 
1327 	struct sk_buff	skb2;
1328 
1329 	refcount_t	fclone_ref;
1330 };
1331 
1332 /**
1333  *	skb_fclone_busy - check if fclone is busy
1334  *	@sk: socket
1335  *	@skb: buffer
1336  *
1337  * Returns true if skb is a fast clone, and its clone is not freed.
1338  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1339  * so we also check that didn't happen.
1340  */
1341 static inline bool skb_fclone_busy(const struct sock *sk,
1342 				   const struct sk_buff *skb)
1343 {
1344 	const struct sk_buff_fclones *fclones;
1345 
1346 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1347 
1348 	return skb->fclone == SKB_FCLONE_ORIG &&
1349 	       refcount_read(&fclones->fclone_ref) > 1 &&
1350 	       READ_ONCE(fclones->skb2.sk) == sk;
1351 }
1352 
1353 /**
1354  * alloc_skb_fclone - allocate a network buffer from fclone cache
1355  * @size: size to allocate
1356  * @priority: allocation mask
1357  *
1358  * This function is a convenient wrapper around __alloc_skb().
1359  */
1360 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1361 					       gfp_t priority)
1362 {
1363 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1364 }
1365 
1366 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1367 void skb_headers_offset_update(struct sk_buff *skb, int off);
1368 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1369 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1370 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1371 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1372 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1373 				   gfp_t gfp_mask, bool fclone);
1374 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1375 					  gfp_t gfp_mask)
1376 {
1377 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1378 }
1379 
1380 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1381 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1382 				     unsigned int headroom);
1383 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom);
1384 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1385 				int newtailroom, gfp_t priority);
1386 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1387 				     int offset, int len);
1388 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1389 			      int offset, int len);
1390 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1391 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1392 
1393 /**
1394  *	skb_pad			-	zero pad the tail of an skb
1395  *	@skb: buffer to pad
1396  *	@pad: space to pad
1397  *
1398  *	Ensure that a buffer is followed by a padding area that is zero
1399  *	filled. Used by network drivers which may DMA or transfer data
1400  *	beyond the buffer end onto the wire.
1401  *
1402  *	May return error in out of memory cases. The skb is freed on error.
1403  */
1404 static inline int skb_pad(struct sk_buff *skb, int pad)
1405 {
1406 	return __skb_pad(skb, pad, true);
1407 }
1408 #define dev_kfree_skb(a)	consume_skb(a)
1409 
1410 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1411 			 int offset, size_t size, size_t max_frags);
1412 
1413 struct skb_seq_state {
1414 	__u32		lower_offset;
1415 	__u32		upper_offset;
1416 	__u32		frag_idx;
1417 	__u32		stepped_offset;
1418 	struct sk_buff	*root_skb;
1419 	struct sk_buff	*cur_skb;
1420 	__u8		*frag_data;
1421 	__u32		frag_off;
1422 };
1423 
1424 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1425 			  unsigned int to, struct skb_seq_state *st);
1426 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1427 			  struct skb_seq_state *st);
1428 void skb_abort_seq_read(struct skb_seq_state *st);
1429 
1430 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1431 			   unsigned int to, struct ts_config *config);
1432 
1433 /*
1434  * Packet hash types specify the type of hash in skb_set_hash.
1435  *
1436  * Hash types refer to the protocol layer addresses which are used to
1437  * construct a packet's hash. The hashes are used to differentiate or identify
1438  * flows of the protocol layer for the hash type. Hash types are either
1439  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1440  *
1441  * Properties of hashes:
1442  *
1443  * 1) Two packets in different flows have different hash values
1444  * 2) Two packets in the same flow should have the same hash value
1445  *
1446  * A hash at a higher layer is considered to be more specific. A driver should
1447  * set the most specific hash possible.
1448  *
1449  * A driver cannot indicate a more specific hash than the layer at which a hash
1450  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1451  *
1452  * A driver may indicate a hash level which is less specific than the
1453  * actual layer the hash was computed on. For instance, a hash computed
1454  * at L4 may be considered an L3 hash. This should only be done if the
1455  * driver can't unambiguously determine that the HW computed the hash at
1456  * the higher layer. Note that the "should" in the second property above
1457  * permits this.
1458  */
1459 enum pkt_hash_types {
1460 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1461 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1462 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1463 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1464 };
1465 
1466 static inline void skb_clear_hash(struct sk_buff *skb)
1467 {
1468 	skb->hash = 0;
1469 	skb->sw_hash = 0;
1470 	skb->l4_hash = 0;
1471 }
1472 
1473 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1474 {
1475 	if (!skb->l4_hash)
1476 		skb_clear_hash(skb);
1477 }
1478 
1479 static inline void
1480 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1481 {
1482 	skb->l4_hash = is_l4;
1483 	skb->sw_hash = is_sw;
1484 	skb->hash = hash;
1485 }
1486 
1487 static inline void
1488 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1489 {
1490 	/* Used by drivers to set hash from HW */
1491 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1492 }
1493 
1494 static inline void
1495 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1496 {
1497 	__skb_set_hash(skb, hash, true, is_l4);
1498 }
1499 
1500 void __skb_get_hash(struct sk_buff *skb);
1501 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1502 u32 skb_get_poff(const struct sk_buff *skb);
1503 u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
1504 		   const struct flow_keys_basic *keys, int hlen);
1505 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1506 			    const void *data, int hlen_proto);
1507 
1508 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1509 					int thoff, u8 ip_proto)
1510 {
1511 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1512 }
1513 
1514 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1515 			     const struct flow_dissector_key *key,
1516 			     unsigned int key_count);
1517 
1518 struct bpf_flow_dissector;
1519 u32 bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1520 		     __be16 proto, int nhoff, int hlen, unsigned int flags);
1521 
1522 bool __skb_flow_dissect(const struct net *net,
1523 			const struct sk_buff *skb,
1524 			struct flow_dissector *flow_dissector,
1525 			void *target_container, const void *data,
1526 			__be16 proto, int nhoff, int hlen, unsigned int flags);
1527 
1528 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1529 				    struct flow_dissector *flow_dissector,
1530 				    void *target_container, unsigned int flags)
1531 {
1532 	return __skb_flow_dissect(NULL, skb, flow_dissector,
1533 				  target_container, NULL, 0, 0, 0, flags);
1534 }
1535 
1536 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1537 					      struct flow_keys *flow,
1538 					      unsigned int flags)
1539 {
1540 	memset(flow, 0, sizeof(*flow));
1541 	return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1542 				  flow, NULL, 0, 0, 0, flags);
1543 }
1544 
1545 static inline bool
1546 skb_flow_dissect_flow_keys_basic(const struct net *net,
1547 				 const struct sk_buff *skb,
1548 				 struct flow_keys_basic *flow,
1549 				 const void *data, __be16 proto,
1550 				 int nhoff, int hlen, unsigned int flags)
1551 {
1552 	memset(flow, 0, sizeof(*flow));
1553 	return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1554 				  data, proto, nhoff, hlen, flags);
1555 }
1556 
1557 void skb_flow_dissect_meta(const struct sk_buff *skb,
1558 			   struct flow_dissector *flow_dissector,
1559 			   void *target_container);
1560 
1561 /* Gets a skb connection tracking info, ctinfo map should be a
1562  * map of mapsize to translate enum ip_conntrack_info states
1563  * to user states.
1564  */
1565 void
1566 skb_flow_dissect_ct(const struct sk_buff *skb,
1567 		    struct flow_dissector *flow_dissector,
1568 		    void *target_container,
1569 		    u16 *ctinfo_map, size_t mapsize,
1570 		    bool post_ct, u16 zone);
1571 void
1572 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1573 			     struct flow_dissector *flow_dissector,
1574 			     void *target_container);
1575 
1576 void skb_flow_dissect_hash(const struct sk_buff *skb,
1577 			   struct flow_dissector *flow_dissector,
1578 			   void *target_container);
1579 
1580 static inline __u32 skb_get_hash(struct sk_buff *skb)
1581 {
1582 	if (!skb->l4_hash && !skb->sw_hash)
1583 		__skb_get_hash(skb);
1584 
1585 	return skb->hash;
1586 }
1587 
1588 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1589 {
1590 	if (!skb->l4_hash && !skb->sw_hash) {
1591 		struct flow_keys keys;
1592 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1593 
1594 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1595 	}
1596 
1597 	return skb->hash;
1598 }
1599 
1600 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1601 			   const siphash_key_t *perturb);
1602 
1603 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1604 {
1605 	return skb->hash;
1606 }
1607 
1608 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1609 {
1610 	to->hash = from->hash;
1611 	to->sw_hash = from->sw_hash;
1612 	to->l4_hash = from->l4_hash;
1613 };
1614 
1615 static inline int skb_cmp_decrypted(const struct sk_buff *skb1,
1616 				    const struct sk_buff *skb2)
1617 {
1618 #ifdef CONFIG_TLS_DEVICE
1619 	return skb2->decrypted - skb1->decrypted;
1620 #else
1621 	return 0;
1622 #endif
1623 }
1624 
1625 static inline void skb_copy_decrypted(struct sk_buff *to,
1626 				      const struct sk_buff *from)
1627 {
1628 #ifdef CONFIG_TLS_DEVICE
1629 	to->decrypted = from->decrypted;
1630 #endif
1631 }
1632 
1633 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1634 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1635 {
1636 	return skb->head + skb->end;
1637 }
1638 
1639 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1640 {
1641 	return skb->end;
1642 }
1643 
1644 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1645 {
1646 	skb->end = offset;
1647 }
1648 #else
1649 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1650 {
1651 	return skb->end;
1652 }
1653 
1654 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1655 {
1656 	return skb->end - skb->head;
1657 }
1658 
1659 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1660 {
1661 	skb->end = skb->head + offset;
1662 }
1663 #endif
1664 
1665 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1666 				       struct ubuf_info *uarg);
1667 
1668 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
1669 
1670 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1671 			   bool success);
1672 
1673 int __zerocopy_sg_from_iter(struct msghdr *msg, struct sock *sk,
1674 			    struct sk_buff *skb, struct iov_iter *from,
1675 			    size_t length);
1676 
1677 static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb,
1678 					  struct msghdr *msg, int len)
1679 {
1680 	return __zerocopy_sg_from_iter(msg, skb->sk, skb, &msg->msg_iter, len);
1681 }
1682 
1683 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1684 			     struct msghdr *msg, int len,
1685 			     struct ubuf_info *uarg);
1686 
1687 /* Internal */
1688 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1689 
1690 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1691 {
1692 	return &skb_shinfo(skb)->hwtstamps;
1693 }
1694 
1695 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1696 {
1697 	bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE;
1698 
1699 	return is_zcopy ? skb_uarg(skb) : NULL;
1700 }
1701 
1702 static inline bool skb_zcopy_pure(const struct sk_buff *skb)
1703 {
1704 	return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY;
1705 }
1706 
1707 static inline bool skb_zcopy_managed(const struct sk_buff *skb)
1708 {
1709 	return skb_shinfo(skb)->flags & SKBFL_MANAGED_FRAG_REFS;
1710 }
1711 
1712 static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1,
1713 				       const struct sk_buff *skb2)
1714 {
1715 	return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2);
1716 }
1717 
1718 static inline void net_zcopy_get(struct ubuf_info *uarg)
1719 {
1720 	refcount_inc(&uarg->refcnt);
1721 }
1722 
1723 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg)
1724 {
1725 	skb_shinfo(skb)->destructor_arg = uarg;
1726 	skb_shinfo(skb)->flags |= uarg->flags;
1727 }
1728 
1729 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1730 				 bool *have_ref)
1731 {
1732 	if (skb && uarg && !skb_zcopy(skb)) {
1733 		if (unlikely(have_ref && *have_ref))
1734 			*have_ref = false;
1735 		else
1736 			net_zcopy_get(uarg);
1737 		skb_zcopy_init(skb, uarg);
1738 	}
1739 }
1740 
1741 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1742 {
1743 	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1744 	skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG;
1745 }
1746 
1747 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1748 {
1749 	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1750 }
1751 
1752 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1753 {
1754 	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1755 }
1756 
1757 static inline void net_zcopy_put(struct ubuf_info *uarg)
1758 {
1759 	if (uarg)
1760 		uarg->callback(NULL, uarg, true);
1761 }
1762 
1763 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1764 {
1765 	if (uarg) {
1766 		if (uarg->callback == msg_zerocopy_callback)
1767 			msg_zerocopy_put_abort(uarg, have_uref);
1768 		else if (have_uref)
1769 			net_zcopy_put(uarg);
1770 	}
1771 }
1772 
1773 /* Release a reference on a zerocopy structure */
1774 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success)
1775 {
1776 	struct ubuf_info *uarg = skb_zcopy(skb);
1777 
1778 	if (uarg) {
1779 		if (!skb_zcopy_is_nouarg(skb))
1780 			uarg->callback(skb, uarg, zerocopy_success);
1781 
1782 		skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY;
1783 	}
1784 }
1785 
1786 void __skb_zcopy_downgrade_managed(struct sk_buff *skb);
1787 
1788 static inline void skb_zcopy_downgrade_managed(struct sk_buff *skb)
1789 {
1790 	if (unlikely(skb_zcopy_managed(skb)))
1791 		__skb_zcopy_downgrade_managed(skb);
1792 }
1793 
1794 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1795 {
1796 	skb->next = NULL;
1797 }
1798 
1799 static inline void skb_poison_list(struct sk_buff *skb)
1800 {
1801 #ifdef CONFIG_DEBUG_NET
1802 	skb->next = SKB_LIST_POISON_NEXT;
1803 #endif
1804 }
1805 
1806 /* Iterate through singly-linked GSO fragments of an skb. */
1807 #define skb_list_walk_safe(first, skb, next_skb)                               \
1808 	for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb);  \
1809 	     (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1810 
1811 static inline void skb_list_del_init(struct sk_buff *skb)
1812 {
1813 	__list_del_entry(&skb->list);
1814 	skb_mark_not_on_list(skb);
1815 }
1816 
1817 /**
1818  *	skb_queue_empty - check if a queue is empty
1819  *	@list: queue head
1820  *
1821  *	Returns true if the queue is empty, false otherwise.
1822  */
1823 static inline int skb_queue_empty(const struct sk_buff_head *list)
1824 {
1825 	return list->next == (const struct sk_buff *) list;
1826 }
1827 
1828 /**
1829  *	skb_queue_empty_lockless - check if a queue is empty
1830  *	@list: queue head
1831  *
1832  *	Returns true if the queue is empty, false otherwise.
1833  *	This variant can be used in lockless contexts.
1834  */
1835 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1836 {
1837 	return READ_ONCE(list->next) == (const struct sk_buff *) list;
1838 }
1839 
1840 
1841 /**
1842  *	skb_queue_is_last - check if skb is the last entry in the queue
1843  *	@list: queue head
1844  *	@skb: buffer
1845  *
1846  *	Returns true if @skb is the last buffer on the list.
1847  */
1848 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1849 				     const struct sk_buff *skb)
1850 {
1851 	return skb->next == (const struct sk_buff *) list;
1852 }
1853 
1854 /**
1855  *	skb_queue_is_first - check if skb is the first entry in the queue
1856  *	@list: queue head
1857  *	@skb: buffer
1858  *
1859  *	Returns true if @skb is the first buffer on the list.
1860  */
1861 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1862 				      const struct sk_buff *skb)
1863 {
1864 	return skb->prev == (const struct sk_buff *) list;
1865 }
1866 
1867 /**
1868  *	skb_queue_next - return the next packet in the queue
1869  *	@list: queue head
1870  *	@skb: current buffer
1871  *
1872  *	Return the next packet in @list after @skb.  It is only valid to
1873  *	call this if skb_queue_is_last() evaluates to false.
1874  */
1875 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1876 					     const struct sk_buff *skb)
1877 {
1878 	/* This BUG_ON may seem severe, but if we just return then we
1879 	 * are going to dereference garbage.
1880 	 */
1881 	BUG_ON(skb_queue_is_last(list, skb));
1882 	return skb->next;
1883 }
1884 
1885 /**
1886  *	skb_queue_prev - return the prev packet in the queue
1887  *	@list: queue head
1888  *	@skb: current buffer
1889  *
1890  *	Return the prev packet in @list before @skb.  It is only valid to
1891  *	call this if skb_queue_is_first() evaluates to false.
1892  */
1893 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1894 					     const struct sk_buff *skb)
1895 {
1896 	/* This BUG_ON may seem severe, but if we just return then we
1897 	 * are going to dereference garbage.
1898 	 */
1899 	BUG_ON(skb_queue_is_first(list, skb));
1900 	return skb->prev;
1901 }
1902 
1903 /**
1904  *	skb_get - reference buffer
1905  *	@skb: buffer to reference
1906  *
1907  *	Makes another reference to a socket buffer and returns a pointer
1908  *	to the buffer.
1909  */
1910 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1911 {
1912 	refcount_inc(&skb->users);
1913 	return skb;
1914 }
1915 
1916 /*
1917  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1918  */
1919 
1920 /**
1921  *	skb_cloned - is the buffer a clone
1922  *	@skb: buffer to check
1923  *
1924  *	Returns true if the buffer was generated with skb_clone() and is
1925  *	one of multiple shared copies of the buffer. Cloned buffers are
1926  *	shared data so must not be written to under normal circumstances.
1927  */
1928 static inline int skb_cloned(const struct sk_buff *skb)
1929 {
1930 	return skb->cloned &&
1931 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1932 }
1933 
1934 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1935 {
1936 	might_sleep_if(gfpflags_allow_blocking(pri));
1937 
1938 	if (skb_cloned(skb))
1939 		return pskb_expand_head(skb, 0, 0, pri);
1940 
1941 	return 0;
1942 }
1943 
1944 /* This variant of skb_unclone() makes sure skb->truesize
1945  * and skb_end_offset() are not changed, whenever a new skb->head is needed.
1946  *
1947  * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X))
1948  * when various debugging features are in place.
1949  */
1950 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri);
1951 static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1952 {
1953 	might_sleep_if(gfpflags_allow_blocking(pri));
1954 
1955 	if (skb_cloned(skb))
1956 		return __skb_unclone_keeptruesize(skb, pri);
1957 	return 0;
1958 }
1959 
1960 /**
1961  *	skb_header_cloned - is the header a clone
1962  *	@skb: buffer to check
1963  *
1964  *	Returns true if modifying the header part of the buffer requires
1965  *	the data to be copied.
1966  */
1967 static inline int skb_header_cloned(const struct sk_buff *skb)
1968 {
1969 	int dataref;
1970 
1971 	if (!skb->cloned)
1972 		return 0;
1973 
1974 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1975 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1976 	return dataref != 1;
1977 }
1978 
1979 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1980 {
1981 	might_sleep_if(gfpflags_allow_blocking(pri));
1982 
1983 	if (skb_header_cloned(skb))
1984 		return pskb_expand_head(skb, 0, 0, pri);
1985 
1986 	return 0;
1987 }
1988 
1989 /**
1990  * __skb_header_release() - allow clones to use the headroom
1991  * @skb: buffer to operate on
1992  *
1993  * See "DOC: dataref and headerless skbs".
1994  */
1995 static inline void __skb_header_release(struct sk_buff *skb)
1996 {
1997 	skb->nohdr = 1;
1998 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1999 }
2000 
2001 
2002 /**
2003  *	skb_shared - is the buffer shared
2004  *	@skb: buffer to check
2005  *
2006  *	Returns true if more than one person has a reference to this
2007  *	buffer.
2008  */
2009 static inline int skb_shared(const struct sk_buff *skb)
2010 {
2011 	return refcount_read(&skb->users) != 1;
2012 }
2013 
2014 /**
2015  *	skb_share_check - check if buffer is shared and if so clone it
2016  *	@skb: buffer to check
2017  *	@pri: priority for memory allocation
2018  *
2019  *	If the buffer is shared the buffer is cloned and the old copy
2020  *	drops a reference. A new clone with a single reference is returned.
2021  *	If the buffer is not shared the original buffer is returned. When
2022  *	being called from interrupt status or with spinlocks held pri must
2023  *	be GFP_ATOMIC.
2024  *
2025  *	NULL is returned on a memory allocation failure.
2026  */
2027 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
2028 {
2029 	might_sleep_if(gfpflags_allow_blocking(pri));
2030 	if (skb_shared(skb)) {
2031 		struct sk_buff *nskb = skb_clone(skb, pri);
2032 
2033 		if (likely(nskb))
2034 			consume_skb(skb);
2035 		else
2036 			kfree_skb(skb);
2037 		skb = nskb;
2038 	}
2039 	return skb;
2040 }
2041 
2042 /*
2043  *	Copy shared buffers into a new sk_buff. We effectively do COW on
2044  *	packets to handle cases where we have a local reader and forward
2045  *	and a couple of other messy ones. The normal one is tcpdumping
2046  *	a packet that's being forwarded.
2047  */
2048 
2049 /**
2050  *	skb_unshare - make a copy of a shared buffer
2051  *	@skb: buffer to check
2052  *	@pri: priority for memory allocation
2053  *
2054  *	If the socket buffer is a clone then this function creates a new
2055  *	copy of the data, drops a reference count on the old copy and returns
2056  *	the new copy with the reference count at 1. If the buffer is not a clone
2057  *	the original buffer is returned. When called with a spinlock held or
2058  *	from interrupt state @pri must be %GFP_ATOMIC
2059  *
2060  *	%NULL is returned on a memory allocation failure.
2061  */
2062 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
2063 					  gfp_t pri)
2064 {
2065 	might_sleep_if(gfpflags_allow_blocking(pri));
2066 	if (skb_cloned(skb)) {
2067 		struct sk_buff *nskb = skb_copy(skb, pri);
2068 
2069 		/* Free our shared copy */
2070 		if (likely(nskb))
2071 			consume_skb(skb);
2072 		else
2073 			kfree_skb(skb);
2074 		skb = nskb;
2075 	}
2076 	return skb;
2077 }
2078 
2079 /**
2080  *	skb_peek - peek at the head of an &sk_buff_head
2081  *	@list_: list to peek at
2082  *
2083  *	Peek an &sk_buff. Unlike most other operations you _MUST_
2084  *	be careful with this one. A peek leaves the buffer on the
2085  *	list and someone else may run off with it. You must hold
2086  *	the appropriate locks or have a private queue to do this.
2087  *
2088  *	Returns %NULL for an empty list or a pointer to the head element.
2089  *	The reference count is not incremented and the reference is therefore
2090  *	volatile. Use with caution.
2091  */
2092 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
2093 {
2094 	struct sk_buff *skb = list_->next;
2095 
2096 	if (skb == (struct sk_buff *)list_)
2097 		skb = NULL;
2098 	return skb;
2099 }
2100 
2101 /**
2102  *	__skb_peek - peek at the head of a non-empty &sk_buff_head
2103  *	@list_: list to peek at
2104  *
2105  *	Like skb_peek(), but the caller knows that the list is not empty.
2106  */
2107 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
2108 {
2109 	return list_->next;
2110 }
2111 
2112 /**
2113  *	skb_peek_next - peek skb following the given one from a queue
2114  *	@skb: skb to start from
2115  *	@list_: list to peek at
2116  *
2117  *	Returns %NULL when the end of the list is met or a pointer to the
2118  *	next element. The reference count is not incremented and the
2119  *	reference is therefore volatile. Use with caution.
2120  */
2121 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
2122 		const struct sk_buff_head *list_)
2123 {
2124 	struct sk_buff *next = skb->next;
2125 
2126 	if (next == (struct sk_buff *)list_)
2127 		next = NULL;
2128 	return next;
2129 }
2130 
2131 /**
2132  *	skb_peek_tail - peek at the tail of an &sk_buff_head
2133  *	@list_: list to peek at
2134  *
2135  *	Peek an &sk_buff. Unlike most other operations you _MUST_
2136  *	be careful with this one. A peek leaves the buffer on the
2137  *	list and someone else may run off with it. You must hold
2138  *	the appropriate locks or have a private queue to do this.
2139  *
2140  *	Returns %NULL for an empty list or a pointer to the tail element.
2141  *	The reference count is not incremented and the reference is therefore
2142  *	volatile. Use with caution.
2143  */
2144 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
2145 {
2146 	struct sk_buff *skb = READ_ONCE(list_->prev);
2147 
2148 	if (skb == (struct sk_buff *)list_)
2149 		skb = NULL;
2150 	return skb;
2151 
2152 }
2153 
2154 /**
2155  *	skb_queue_len	- get queue length
2156  *	@list_: list to measure
2157  *
2158  *	Return the length of an &sk_buff queue.
2159  */
2160 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
2161 {
2162 	return list_->qlen;
2163 }
2164 
2165 /**
2166  *	skb_queue_len_lockless	- get queue length
2167  *	@list_: list to measure
2168  *
2169  *	Return the length of an &sk_buff queue.
2170  *	This variant can be used in lockless contexts.
2171  */
2172 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
2173 {
2174 	return READ_ONCE(list_->qlen);
2175 }
2176 
2177 /**
2178  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
2179  *	@list: queue to initialize
2180  *
2181  *	This initializes only the list and queue length aspects of
2182  *	an sk_buff_head object.  This allows to initialize the list
2183  *	aspects of an sk_buff_head without reinitializing things like
2184  *	the spinlock.  It can also be used for on-stack sk_buff_head
2185  *	objects where the spinlock is known to not be used.
2186  */
2187 static inline void __skb_queue_head_init(struct sk_buff_head *list)
2188 {
2189 	list->prev = list->next = (struct sk_buff *)list;
2190 	list->qlen = 0;
2191 }
2192 
2193 /*
2194  * This function creates a split out lock class for each invocation;
2195  * this is needed for now since a whole lot of users of the skb-queue
2196  * infrastructure in drivers have different locking usage (in hardirq)
2197  * than the networking core (in softirq only). In the long run either the
2198  * network layer or drivers should need annotation to consolidate the
2199  * main types of usage into 3 classes.
2200  */
2201 static inline void skb_queue_head_init(struct sk_buff_head *list)
2202 {
2203 	spin_lock_init(&list->lock);
2204 	__skb_queue_head_init(list);
2205 }
2206 
2207 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
2208 		struct lock_class_key *class)
2209 {
2210 	skb_queue_head_init(list);
2211 	lockdep_set_class(&list->lock, class);
2212 }
2213 
2214 /*
2215  *	Insert an sk_buff on a list.
2216  *
2217  *	The "__skb_xxxx()" functions are the non-atomic ones that
2218  *	can only be called with interrupts disabled.
2219  */
2220 static inline void __skb_insert(struct sk_buff *newsk,
2221 				struct sk_buff *prev, struct sk_buff *next,
2222 				struct sk_buff_head *list)
2223 {
2224 	/* See skb_queue_empty_lockless() and skb_peek_tail()
2225 	 * for the opposite READ_ONCE()
2226 	 */
2227 	WRITE_ONCE(newsk->next, next);
2228 	WRITE_ONCE(newsk->prev, prev);
2229 	WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk);
2230 	WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk);
2231 	WRITE_ONCE(list->qlen, list->qlen + 1);
2232 }
2233 
2234 static inline void __skb_queue_splice(const struct sk_buff_head *list,
2235 				      struct sk_buff *prev,
2236 				      struct sk_buff *next)
2237 {
2238 	struct sk_buff *first = list->next;
2239 	struct sk_buff *last = list->prev;
2240 
2241 	WRITE_ONCE(first->prev, prev);
2242 	WRITE_ONCE(prev->next, first);
2243 
2244 	WRITE_ONCE(last->next, next);
2245 	WRITE_ONCE(next->prev, last);
2246 }
2247 
2248 /**
2249  *	skb_queue_splice - join two skb lists, this is designed for stacks
2250  *	@list: the new list to add
2251  *	@head: the place to add it in the first list
2252  */
2253 static inline void skb_queue_splice(const struct sk_buff_head *list,
2254 				    struct sk_buff_head *head)
2255 {
2256 	if (!skb_queue_empty(list)) {
2257 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2258 		head->qlen += list->qlen;
2259 	}
2260 }
2261 
2262 /**
2263  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
2264  *	@list: the new list to add
2265  *	@head: the place to add it in the first list
2266  *
2267  *	The list at @list is reinitialised
2268  */
2269 static inline void skb_queue_splice_init(struct sk_buff_head *list,
2270 					 struct sk_buff_head *head)
2271 {
2272 	if (!skb_queue_empty(list)) {
2273 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2274 		head->qlen += list->qlen;
2275 		__skb_queue_head_init(list);
2276 	}
2277 }
2278 
2279 /**
2280  *	skb_queue_splice_tail - join two skb lists, each list being a queue
2281  *	@list: the new list to add
2282  *	@head: the place to add it in the first list
2283  */
2284 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
2285 					 struct sk_buff_head *head)
2286 {
2287 	if (!skb_queue_empty(list)) {
2288 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2289 		head->qlen += list->qlen;
2290 	}
2291 }
2292 
2293 /**
2294  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
2295  *	@list: the new list to add
2296  *	@head: the place to add it in the first list
2297  *
2298  *	Each of the lists is a queue.
2299  *	The list at @list is reinitialised
2300  */
2301 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
2302 					      struct sk_buff_head *head)
2303 {
2304 	if (!skb_queue_empty(list)) {
2305 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2306 		head->qlen += list->qlen;
2307 		__skb_queue_head_init(list);
2308 	}
2309 }
2310 
2311 /**
2312  *	__skb_queue_after - queue a buffer at the list head
2313  *	@list: list to use
2314  *	@prev: place after this buffer
2315  *	@newsk: buffer to queue
2316  *
2317  *	Queue a buffer int the middle of a list. This function takes no locks
2318  *	and you must therefore hold required locks before calling it.
2319  *
2320  *	A buffer cannot be placed on two lists at the same time.
2321  */
2322 static inline void __skb_queue_after(struct sk_buff_head *list,
2323 				     struct sk_buff *prev,
2324 				     struct sk_buff *newsk)
2325 {
2326 	__skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list);
2327 }
2328 
2329 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2330 		struct sk_buff_head *list);
2331 
2332 static inline void __skb_queue_before(struct sk_buff_head *list,
2333 				      struct sk_buff *next,
2334 				      struct sk_buff *newsk)
2335 {
2336 	__skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list);
2337 }
2338 
2339 /**
2340  *	__skb_queue_head - queue a buffer at the list head
2341  *	@list: list to use
2342  *	@newsk: buffer to queue
2343  *
2344  *	Queue a buffer at the start of a list. This function takes no locks
2345  *	and you must therefore hold required locks before calling it.
2346  *
2347  *	A buffer cannot be placed on two lists at the same time.
2348  */
2349 static inline void __skb_queue_head(struct sk_buff_head *list,
2350 				    struct sk_buff *newsk)
2351 {
2352 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
2353 }
2354 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2355 
2356 /**
2357  *	__skb_queue_tail - queue a buffer at the list tail
2358  *	@list: list to use
2359  *	@newsk: buffer to queue
2360  *
2361  *	Queue a buffer at the end of a list. This function takes no locks
2362  *	and you must therefore hold required locks before calling it.
2363  *
2364  *	A buffer cannot be placed on two lists at the same time.
2365  */
2366 static inline void __skb_queue_tail(struct sk_buff_head *list,
2367 				   struct sk_buff *newsk)
2368 {
2369 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
2370 }
2371 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2372 
2373 /*
2374  * remove sk_buff from list. _Must_ be called atomically, and with
2375  * the list known..
2376  */
2377 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
2378 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2379 {
2380 	struct sk_buff *next, *prev;
2381 
2382 	WRITE_ONCE(list->qlen, list->qlen - 1);
2383 	next	   = skb->next;
2384 	prev	   = skb->prev;
2385 	skb->next  = skb->prev = NULL;
2386 	WRITE_ONCE(next->prev, prev);
2387 	WRITE_ONCE(prev->next, next);
2388 }
2389 
2390 /**
2391  *	__skb_dequeue - remove from the head of the queue
2392  *	@list: list to dequeue from
2393  *
2394  *	Remove the head of the list. This function does not take any locks
2395  *	so must be used with appropriate locks held only. The head item is
2396  *	returned or %NULL if the list is empty.
2397  */
2398 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2399 {
2400 	struct sk_buff *skb = skb_peek(list);
2401 	if (skb)
2402 		__skb_unlink(skb, list);
2403 	return skb;
2404 }
2405 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2406 
2407 /**
2408  *	__skb_dequeue_tail - remove from the tail of the queue
2409  *	@list: list to dequeue from
2410  *
2411  *	Remove the tail of the list. This function does not take any locks
2412  *	so must be used with appropriate locks held only. The tail item is
2413  *	returned or %NULL if the list is empty.
2414  */
2415 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2416 {
2417 	struct sk_buff *skb = skb_peek_tail(list);
2418 	if (skb)
2419 		__skb_unlink(skb, list);
2420 	return skb;
2421 }
2422 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2423 
2424 
2425 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2426 {
2427 	return skb->data_len;
2428 }
2429 
2430 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2431 {
2432 	return skb->len - skb->data_len;
2433 }
2434 
2435 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2436 {
2437 	unsigned int i, len = 0;
2438 
2439 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2440 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2441 	return len;
2442 }
2443 
2444 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2445 {
2446 	return skb_headlen(skb) + __skb_pagelen(skb);
2447 }
2448 
2449 static inline void skb_frag_fill_netmem_desc(skb_frag_t *frag,
2450 					     netmem_ref netmem, int off,
2451 					     int size)
2452 {
2453 	frag->netmem = netmem;
2454 	frag->offset = off;
2455 	skb_frag_size_set(frag, size);
2456 }
2457 
2458 static inline void skb_frag_fill_page_desc(skb_frag_t *frag,
2459 					   struct page *page,
2460 					   int off, int size)
2461 {
2462 	skb_frag_fill_netmem_desc(frag, page_to_netmem(page), off, size);
2463 }
2464 
2465 static inline void __skb_fill_netmem_desc_noacc(struct skb_shared_info *shinfo,
2466 						int i, netmem_ref netmem,
2467 						int off, int size)
2468 {
2469 	skb_frag_t *frag = &shinfo->frags[i];
2470 
2471 	skb_frag_fill_netmem_desc(frag, netmem, off, size);
2472 }
2473 
2474 static inline void __skb_fill_page_desc_noacc(struct skb_shared_info *shinfo,
2475 					      int i, struct page *page,
2476 					      int off, int size)
2477 {
2478 	__skb_fill_netmem_desc_noacc(shinfo, i, page_to_netmem(page), off,
2479 				     size);
2480 }
2481 
2482 /**
2483  * skb_len_add - adds a number to len fields of skb
2484  * @skb: buffer to add len to
2485  * @delta: number of bytes to add
2486  */
2487 static inline void skb_len_add(struct sk_buff *skb, int delta)
2488 {
2489 	skb->len += delta;
2490 	skb->data_len += delta;
2491 	skb->truesize += delta;
2492 }
2493 
2494 /**
2495  * __skb_fill_netmem_desc - initialise a fragment in an skb
2496  * @skb: buffer containing fragment to be initialised
2497  * @i: fragment index to initialise
2498  * @netmem: the netmem to use for this fragment
2499  * @off: the offset to the data with @page
2500  * @size: the length of the data
2501  *
2502  * Initialises the @i'th fragment of @skb to point to &size bytes at
2503  * offset @off within @page.
2504  *
2505  * Does not take any additional reference on the fragment.
2506  */
2507 static inline void __skb_fill_netmem_desc(struct sk_buff *skb, int i,
2508 					  netmem_ref netmem, int off, int size)
2509 {
2510 	struct page *page = netmem_to_page(netmem);
2511 
2512 	__skb_fill_netmem_desc_noacc(skb_shinfo(skb), i, netmem, off, size);
2513 
2514 	/* Propagate page pfmemalloc to the skb if we can. The problem is
2515 	 * that not all callers have unique ownership of the page but rely
2516 	 * on page_is_pfmemalloc doing the right thing(tm).
2517 	 */
2518 	page = compound_head(page);
2519 	if (page_is_pfmemalloc(page))
2520 		skb->pfmemalloc = true;
2521 }
2522 
2523 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2524 					struct page *page, int off, int size)
2525 {
2526 	__skb_fill_netmem_desc(skb, i, page_to_netmem(page), off, size);
2527 }
2528 
2529 static inline void skb_fill_netmem_desc(struct sk_buff *skb, int i,
2530 					netmem_ref netmem, int off, int size)
2531 {
2532 	__skb_fill_netmem_desc(skb, i, netmem, off, size);
2533 	skb_shinfo(skb)->nr_frags = i + 1;
2534 }
2535 
2536 /**
2537  * skb_fill_page_desc - initialise a paged fragment in an skb
2538  * @skb: buffer containing fragment to be initialised
2539  * @i: paged fragment index to initialise
2540  * @page: the page to use for this fragment
2541  * @off: the offset to the data with @page
2542  * @size: the length of the data
2543  *
2544  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2545  * @skb to point to @size bytes at offset @off within @page. In
2546  * addition updates @skb such that @i is the last fragment.
2547  *
2548  * Does not take any additional reference on the fragment.
2549  */
2550 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2551 				      struct page *page, int off, int size)
2552 {
2553 	skb_fill_netmem_desc(skb, i, page_to_netmem(page), off, size);
2554 }
2555 
2556 /**
2557  * skb_fill_page_desc_noacc - initialise a paged fragment in an skb
2558  * @skb: buffer containing fragment to be initialised
2559  * @i: paged fragment index to initialise
2560  * @page: the page to use for this fragment
2561  * @off: the offset to the data with @page
2562  * @size: the length of the data
2563  *
2564  * Variant of skb_fill_page_desc() which does not deal with
2565  * pfmemalloc, if page is not owned by us.
2566  */
2567 static inline void skb_fill_page_desc_noacc(struct sk_buff *skb, int i,
2568 					    struct page *page, int off,
2569 					    int size)
2570 {
2571 	struct skb_shared_info *shinfo = skb_shinfo(skb);
2572 
2573 	__skb_fill_page_desc_noacc(shinfo, i, page, off, size);
2574 	shinfo->nr_frags = i + 1;
2575 }
2576 
2577 void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem,
2578 			    int off, int size, unsigned int truesize);
2579 
2580 static inline void skb_add_rx_frag(struct sk_buff *skb, int i,
2581 				   struct page *page, int off, int size,
2582 				   unsigned int truesize)
2583 {
2584 	skb_add_rx_frag_netmem(skb, i, page_to_netmem(page), off, size,
2585 			       truesize);
2586 }
2587 
2588 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2589 			  unsigned int truesize);
2590 
2591 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2592 
2593 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2594 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2595 {
2596 	return skb->head + skb->tail;
2597 }
2598 
2599 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2600 {
2601 	skb->tail = skb->data - skb->head;
2602 }
2603 
2604 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2605 {
2606 	skb_reset_tail_pointer(skb);
2607 	skb->tail += offset;
2608 }
2609 
2610 #else /* NET_SKBUFF_DATA_USES_OFFSET */
2611 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2612 {
2613 	return skb->tail;
2614 }
2615 
2616 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2617 {
2618 	skb->tail = skb->data;
2619 }
2620 
2621 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2622 {
2623 	skb->tail = skb->data + offset;
2624 }
2625 
2626 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2627 
2628 static inline void skb_assert_len(struct sk_buff *skb)
2629 {
2630 #ifdef CONFIG_DEBUG_NET
2631 	if (WARN_ONCE(!skb->len, "%s\n", __func__))
2632 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
2633 #endif /* CONFIG_DEBUG_NET */
2634 }
2635 
2636 /*
2637  *	Add data to an sk_buff
2638  */
2639 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2640 void *skb_put(struct sk_buff *skb, unsigned int len);
2641 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2642 {
2643 	void *tmp = skb_tail_pointer(skb);
2644 	SKB_LINEAR_ASSERT(skb);
2645 	skb->tail += len;
2646 	skb->len  += len;
2647 	return tmp;
2648 }
2649 
2650 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2651 {
2652 	void *tmp = __skb_put(skb, len);
2653 
2654 	memset(tmp, 0, len);
2655 	return tmp;
2656 }
2657 
2658 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2659 				   unsigned int len)
2660 {
2661 	void *tmp = __skb_put(skb, len);
2662 
2663 	memcpy(tmp, data, len);
2664 	return tmp;
2665 }
2666 
2667 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2668 {
2669 	*(u8 *)__skb_put(skb, 1) = val;
2670 }
2671 
2672 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2673 {
2674 	void *tmp = skb_put(skb, len);
2675 
2676 	memset(tmp, 0, len);
2677 
2678 	return tmp;
2679 }
2680 
2681 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2682 				 unsigned int len)
2683 {
2684 	void *tmp = skb_put(skb, len);
2685 
2686 	memcpy(tmp, data, len);
2687 
2688 	return tmp;
2689 }
2690 
2691 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2692 {
2693 	*(u8 *)skb_put(skb, 1) = val;
2694 }
2695 
2696 void *skb_push(struct sk_buff *skb, unsigned int len);
2697 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2698 {
2699 	DEBUG_NET_WARN_ON_ONCE(len > INT_MAX);
2700 
2701 	skb->data -= len;
2702 	skb->len  += len;
2703 	return skb->data;
2704 }
2705 
2706 void *skb_pull(struct sk_buff *skb, unsigned int len);
2707 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2708 {
2709 	DEBUG_NET_WARN_ON_ONCE(len > INT_MAX);
2710 
2711 	skb->len -= len;
2712 	if (unlikely(skb->len < skb->data_len)) {
2713 #if defined(CONFIG_DEBUG_NET)
2714 		skb->len += len;
2715 		pr_err("__skb_pull(len=%u)\n", len);
2716 		skb_dump(KERN_ERR, skb, false);
2717 #endif
2718 		BUG();
2719 	}
2720 	return skb->data += len;
2721 }
2722 
2723 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2724 {
2725 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2726 }
2727 
2728 void *skb_pull_data(struct sk_buff *skb, size_t len);
2729 
2730 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2731 
2732 static inline enum skb_drop_reason
2733 pskb_may_pull_reason(struct sk_buff *skb, unsigned int len)
2734 {
2735 	DEBUG_NET_WARN_ON_ONCE(len > INT_MAX);
2736 
2737 	if (likely(len <= skb_headlen(skb)))
2738 		return SKB_NOT_DROPPED_YET;
2739 
2740 	if (unlikely(len > skb->len))
2741 		return SKB_DROP_REASON_PKT_TOO_SMALL;
2742 
2743 	if (unlikely(!__pskb_pull_tail(skb, len - skb_headlen(skb))))
2744 		return SKB_DROP_REASON_NOMEM;
2745 
2746 	return SKB_NOT_DROPPED_YET;
2747 }
2748 
2749 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2750 {
2751 	return pskb_may_pull_reason(skb, len) == SKB_NOT_DROPPED_YET;
2752 }
2753 
2754 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2755 {
2756 	if (!pskb_may_pull(skb, len))
2757 		return NULL;
2758 
2759 	skb->len -= len;
2760 	return skb->data += len;
2761 }
2762 
2763 void skb_condense(struct sk_buff *skb);
2764 
2765 /**
2766  *	skb_headroom - bytes at buffer head
2767  *	@skb: buffer to check
2768  *
2769  *	Return the number of bytes of free space at the head of an &sk_buff.
2770  */
2771 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2772 {
2773 	return skb->data - skb->head;
2774 }
2775 
2776 /**
2777  *	skb_tailroom - bytes at buffer end
2778  *	@skb: buffer to check
2779  *
2780  *	Return the number of bytes of free space at the tail of an sk_buff
2781  */
2782 static inline int skb_tailroom(const struct sk_buff *skb)
2783 {
2784 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2785 }
2786 
2787 /**
2788  *	skb_availroom - bytes at buffer end
2789  *	@skb: buffer to check
2790  *
2791  *	Return the number of bytes of free space at the tail of an sk_buff
2792  *	allocated by sk_stream_alloc()
2793  */
2794 static inline int skb_availroom(const struct sk_buff *skb)
2795 {
2796 	if (skb_is_nonlinear(skb))
2797 		return 0;
2798 
2799 	return skb->end - skb->tail - skb->reserved_tailroom;
2800 }
2801 
2802 /**
2803  *	skb_reserve - adjust headroom
2804  *	@skb: buffer to alter
2805  *	@len: bytes to move
2806  *
2807  *	Increase the headroom of an empty &sk_buff by reducing the tail
2808  *	room. This is only allowed for an empty buffer.
2809  */
2810 static inline void skb_reserve(struct sk_buff *skb, int len)
2811 {
2812 	skb->data += len;
2813 	skb->tail += len;
2814 }
2815 
2816 /**
2817  *	skb_tailroom_reserve - adjust reserved_tailroom
2818  *	@skb: buffer to alter
2819  *	@mtu: maximum amount of headlen permitted
2820  *	@needed_tailroom: minimum amount of reserved_tailroom
2821  *
2822  *	Set reserved_tailroom so that headlen can be as large as possible but
2823  *	not larger than mtu and tailroom cannot be smaller than
2824  *	needed_tailroom.
2825  *	The required headroom should already have been reserved before using
2826  *	this function.
2827  */
2828 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2829 					unsigned int needed_tailroom)
2830 {
2831 	SKB_LINEAR_ASSERT(skb);
2832 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2833 		/* use at most mtu */
2834 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2835 	else
2836 		/* use up to all available space */
2837 		skb->reserved_tailroom = needed_tailroom;
2838 }
2839 
2840 #define ENCAP_TYPE_ETHER	0
2841 #define ENCAP_TYPE_IPPROTO	1
2842 
2843 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2844 					  __be16 protocol)
2845 {
2846 	skb->inner_protocol = protocol;
2847 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2848 }
2849 
2850 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2851 					 __u8 ipproto)
2852 {
2853 	skb->inner_ipproto = ipproto;
2854 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2855 }
2856 
2857 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2858 {
2859 	skb->inner_mac_header = skb->mac_header;
2860 	skb->inner_network_header = skb->network_header;
2861 	skb->inner_transport_header = skb->transport_header;
2862 }
2863 
2864 static inline void skb_reset_mac_len(struct sk_buff *skb)
2865 {
2866 	skb->mac_len = skb->network_header - skb->mac_header;
2867 }
2868 
2869 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2870 							*skb)
2871 {
2872 	return skb->head + skb->inner_transport_header;
2873 }
2874 
2875 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2876 {
2877 	return skb_inner_transport_header(skb) - skb->data;
2878 }
2879 
2880 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2881 {
2882 	skb->inner_transport_header = skb->data - skb->head;
2883 }
2884 
2885 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2886 						   const int offset)
2887 {
2888 	skb_reset_inner_transport_header(skb);
2889 	skb->inner_transport_header += offset;
2890 }
2891 
2892 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2893 {
2894 	return skb->head + skb->inner_network_header;
2895 }
2896 
2897 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2898 {
2899 	skb->inner_network_header = skb->data - skb->head;
2900 }
2901 
2902 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2903 						const int offset)
2904 {
2905 	skb_reset_inner_network_header(skb);
2906 	skb->inner_network_header += offset;
2907 }
2908 
2909 static inline bool skb_inner_network_header_was_set(const struct sk_buff *skb)
2910 {
2911 	return skb->inner_network_header > 0;
2912 }
2913 
2914 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2915 {
2916 	return skb->head + skb->inner_mac_header;
2917 }
2918 
2919 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2920 {
2921 	skb->inner_mac_header = skb->data - skb->head;
2922 }
2923 
2924 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2925 					    const int offset)
2926 {
2927 	skb_reset_inner_mac_header(skb);
2928 	skb->inner_mac_header += offset;
2929 }
2930 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2931 {
2932 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2933 }
2934 
2935 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2936 {
2937 	DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb));
2938 	return skb->head + skb->transport_header;
2939 }
2940 
2941 static inline void skb_reset_transport_header(struct sk_buff *skb)
2942 {
2943 	skb->transport_header = skb->data - skb->head;
2944 }
2945 
2946 static inline void skb_set_transport_header(struct sk_buff *skb,
2947 					    const int offset)
2948 {
2949 	skb_reset_transport_header(skb);
2950 	skb->transport_header += offset;
2951 }
2952 
2953 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2954 {
2955 	return skb->head + skb->network_header;
2956 }
2957 
2958 static inline void skb_reset_network_header(struct sk_buff *skb)
2959 {
2960 	skb->network_header = skb->data - skb->head;
2961 }
2962 
2963 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2964 {
2965 	skb_reset_network_header(skb);
2966 	skb->network_header += offset;
2967 }
2968 
2969 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2970 {
2971 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2972 }
2973 
2974 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2975 {
2976 	DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
2977 	return skb->head + skb->mac_header;
2978 }
2979 
2980 static inline int skb_mac_offset(const struct sk_buff *skb)
2981 {
2982 	return skb_mac_header(skb) - skb->data;
2983 }
2984 
2985 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2986 {
2987 	DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
2988 	return skb->network_header - skb->mac_header;
2989 }
2990 
2991 static inline void skb_unset_mac_header(struct sk_buff *skb)
2992 {
2993 	skb->mac_header = (typeof(skb->mac_header))~0U;
2994 }
2995 
2996 static inline void skb_reset_mac_header(struct sk_buff *skb)
2997 {
2998 	skb->mac_header = skb->data - skb->head;
2999 }
3000 
3001 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
3002 {
3003 	skb_reset_mac_header(skb);
3004 	skb->mac_header += offset;
3005 }
3006 
3007 static inline void skb_pop_mac_header(struct sk_buff *skb)
3008 {
3009 	skb->mac_header = skb->network_header;
3010 }
3011 
3012 static inline void skb_probe_transport_header(struct sk_buff *skb)
3013 {
3014 	struct flow_keys_basic keys;
3015 
3016 	if (skb_transport_header_was_set(skb))
3017 		return;
3018 
3019 	if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
3020 					     NULL, 0, 0, 0, 0))
3021 		skb_set_transport_header(skb, keys.control.thoff);
3022 }
3023 
3024 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
3025 {
3026 	if (skb_mac_header_was_set(skb)) {
3027 		const unsigned char *old_mac = skb_mac_header(skb);
3028 
3029 		skb_set_mac_header(skb, -skb->mac_len);
3030 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
3031 	}
3032 }
3033 
3034 /* Move the full mac header up to current network_header.
3035  * Leaves skb->data pointing at offset skb->mac_len into the mac_header.
3036  * Must be provided the complete mac header length.
3037  */
3038 static inline void skb_mac_header_rebuild_full(struct sk_buff *skb, u32 full_mac_len)
3039 {
3040 	if (skb_mac_header_was_set(skb)) {
3041 		const unsigned char *old_mac = skb_mac_header(skb);
3042 
3043 		skb_set_mac_header(skb, -full_mac_len);
3044 		memmove(skb_mac_header(skb), old_mac, full_mac_len);
3045 		__skb_push(skb, full_mac_len - skb->mac_len);
3046 	}
3047 }
3048 
3049 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
3050 {
3051 	return skb->csum_start - skb_headroom(skb);
3052 }
3053 
3054 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
3055 {
3056 	return skb->head + skb->csum_start;
3057 }
3058 
3059 static inline int skb_transport_offset(const struct sk_buff *skb)
3060 {
3061 	return skb_transport_header(skb) - skb->data;
3062 }
3063 
3064 static inline u32 skb_network_header_len(const struct sk_buff *skb)
3065 {
3066 	DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb));
3067 	return skb->transport_header - skb->network_header;
3068 }
3069 
3070 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
3071 {
3072 	return skb->inner_transport_header - skb->inner_network_header;
3073 }
3074 
3075 static inline int skb_network_offset(const struct sk_buff *skb)
3076 {
3077 	return skb_network_header(skb) - skb->data;
3078 }
3079 
3080 static inline int skb_inner_network_offset(const struct sk_buff *skb)
3081 {
3082 	return skb_inner_network_header(skb) - skb->data;
3083 }
3084 
3085 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
3086 {
3087 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
3088 }
3089 
3090 /*
3091  * CPUs often take a performance hit when accessing unaligned memory
3092  * locations. The actual performance hit varies, it can be small if the
3093  * hardware handles it or large if we have to take an exception and fix it
3094  * in software.
3095  *
3096  * Since an ethernet header is 14 bytes network drivers often end up with
3097  * the IP header at an unaligned offset. The IP header can be aligned by
3098  * shifting the start of the packet by 2 bytes. Drivers should do this
3099  * with:
3100  *
3101  * skb_reserve(skb, NET_IP_ALIGN);
3102  *
3103  * The downside to this alignment of the IP header is that the DMA is now
3104  * unaligned. On some architectures the cost of an unaligned DMA is high
3105  * and this cost outweighs the gains made by aligning the IP header.
3106  *
3107  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
3108  * to be overridden.
3109  */
3110 #ifndef NET_IP_ALIGN
3111 #define NET_IP_ALIGN	2
3112 #endif
3113 
3114 /*
3115  * The networking layer reserves some headroom in skb data (via
3116  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
3117  * the header has to grow. In the default case, if the header has to grow
3118  * 32 bytes or less we avoid the reallocation.
3119  *
3120  * Unfortunately this headroom changes the DMA alignment of the resulting
3121  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
3122  * on some architectures. An architecture can override this value,
3123  * perhaps setting it to a cacheline in size (since that will maintain
3124  * cacheline alignment of the DMA). It must be a power of 2.
3125  *
3126  * Various parts of the networking layer expect at least 32 bytes of
3127  * headroom, you should not reduce this.
3128  *
3129  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
3130  * to reduce average number of cache lines per packet.
3131  * get_rps_cpu() for example only access one 64 bytes aligned block :
3132  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
3133  */
3134 #ifndef NET_SKB_PAD
3135 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
3136 #endif
3137 
3138 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
3139 
3140 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
3141 {
3142 	if (WARN_ON(skb_is_nonlinear(skb)))
3143 		return;
3144 	skb->len = len;
3145 	skb_set_tail_pointer(skb, len);
3146 }
3147 
3148 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
3149 {
3150 	__skb_set_length(skb, len);
3151 }
3152 
3153 void skb_trim(struct sk_buff *skb, unsigned int len);
3154 
3155 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
3156 {
3157 	if (skb->data_len)
3158 		return ___pskb_trim(skb, len);
3159 	__skb_trim(skb, len);
3160 	return 0;
3161 }
3162 
3163 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
3164 {
3165 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
3166 }
3167 
3168 /**
3169  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
3170  *	@skb: buffer to alter
3171  *	@len: new length
3172  *
3173  *	This is identical to pskb_trim except that the caller knows that
3174  *	the skb is not cloned so we should never get an error due to out-
3175  *	of-memory.
3176  */
3177 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
3178 {
3179 	int err = pskb_trim(skb, len);
3180 	BUG_ON(err);
3181 }
3182 
3183 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
3184 {
3185 	unsigned int diff = len - skb->len;
3186 
3187 	if (skb_tailroom(skb) < diff) {
3188 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
3189 					   GFP_ATOMIC);
3190 		if (ret)
3191 			return ret;
3192 	}
3193 	__skb_set_length(skb, len);
3194 	return 0;
3195 }
3196 
3197 /**
3198  *	skb_orphan - orphan a buffer
3199  *	@skb: buffer to orphan
3200  *
3201  *	If a buffer currently has an owner then we call the owner's
3202  *	destructor function and make the @skb unowned. The buffer continues
3203  *	to exist but is no longer charged to its former owner.
3204  */
3205 static inline void skb_orphan(struct sk_buff *skb)
3206 {
3207 	if (skb->destructor) {
3208 		skb->destructor(skb);
3209 		skb->destructor = NULL;
3210 		skb->sk		= NULL;
3211 	} else {
3212 		BUG_ON(skb->sk);
3213 	}
3214 }
3215 
3216 /**
3217  *	skb_orphan_frags - orphan the frags contained in a buffer
3218  *	@skb: buffer to orphan frags from
3219  *	@gfp_mask: allocation mask for replacement pages
3220  *
3221  *	For each frag in the SKB which needs a destructor (i.e. has an
3222  *	owner) create a copy of that frag and release the original
3223  *	page by calling the destructor.
3224  */
3225 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
3226 {
3227 	if (likely(!skb_zcopy(skb)))
3228 		return 0;
3229 	if (skb_shinfo(skb)->flags & SKBFL_DONT_ORPHAN)
3230 		return 0;
3231 	return skb_copy_ubufs(skb, gfp_mask);
3232 }
3233 
3234 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
3235 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
3236 {
3237 	if (likely(!skb_zcopy(skb)))
3238 		return 0;
3239 	return skb_copy_ubufs(skb, gfp_mask);
3240 }
3241 
3242 /**
3243  *	__skb_queue_purge_reason - empty a list
3244  *	@list: list to empty
3245  *	@reason: drop reason
3246  *
3247  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3248  *	the list and one reference dropped. This function does not take the
3249  *	list lock and the caller must hold the relevant locks to use it.
3250  */
3251 static inline void __skb_queue_purge_reason(struct sk_buff_head *list,
3252 					    enum skb_drop_reason reason)
3253 {
3254 	struct sk_buff *skb;
3255 
3256 	while ((skb = __skb_dequeue(list)) != NULL)
3257 		kfree_skb_reason(skb, reason);
3258 }
3259 
3260 static inline void __skb_queue_purge(struct sk_buff_head *list)
3261 {
3262 	__skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE);
3263 }
3264 
3265 void skb_queue_purge_reason(struct sk_buff_head *list,
3266 			    enum skb_drop_reason reason);
3267 
3268 static inline void skb_queue_purge(struct sk_buff_head *list)
3269 {
3270 	skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE);
3271 }
3272 
3273 unsigned int skb_rbtree_purge(struct rb_root *root);
3274 void skb_errqueue_purge(struct sk_buff_head *list);
3275 
3276 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3277 
3278 /**
3279  * netdev_alloc_frag - allocate a page fragment
3280  * @fragsz: fragment size
3281  *
3282  * Allocates a frag from a page for receive buffer.
3283  * Uses GFP_ATOMIC allocations.
3284  */
3285 static inline void *netdev_alloc_frag(unsigned int fragsz)
3286 {
3287 	return __netdev_alloc_frag_align(fragsz, ~0u);
3288 }
3289 
3290 static inline void *netdev_alloc_frag_align(unsigned int fragsz,
3291 					    unsigned int align)
3292 {
3293 	WARN_ON_ONCE(!is_power_of_2(align));
3294 	return __netdev_alloc_frag_align(fragsz, -align);
3295 }
3296 
3297 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
3298 				   gfp_t gfp_mask);
3299 
3300 /**
3301  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
3302  *	@dev: network device to receive on
3303  *	@length: length to allocate
3304  *
3305  *	Allocate a new &sk_buff and assign it a usage count of one. The
3306  *	buffer has unspecified headroom built in. Users should allocate
3307  *	the headroom they think they need without accounting for the
3308  *	built in space. The built in space is used for optimisations.
3309  *
3310  *	%NULL is returned if there is no free memory. Although this function
3311  *	allocates memory it can be called from an interrupt.
3312  */
3313 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
3314 					       unsigned int length)
3315 {
3316 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
3317 }
3318 
3319 /* legacy helper around __netdev_alloc_skb() */
3320 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
3321 					      gfp_t gfp_mask)
3322 {
3323 	return __netdev_alloc_skb(NULL, length, gfp_mask);
3324 }
3325 
3326 /* legacy helper around netdev_alloc_skb() */
3327 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
3328 {
3329 	return netdev_alloc_skb(NULL, length);
3330 }
3331 
3332 
3333 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
3334 		unsigned int length, gfp_t gfp)
3335 {
3336 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
3337 
3338 	if (NET_IP_ALIGN && skb)
3339 		skb_reserve(skb, NET_IP_ALIGN);
3340 	return skb;
3341 }
3342 
3343 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
3344 		unsigned int length)
3345 {
3346 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
3347 }
3348 
3349 static inline void skb_free_frag(void *addr)
3350 {
3351 	page_frag_free(addr);
3352 }
3353 
3354 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3355 
3356 static inline void *napi_alloc_frag(unsigned int fragsz)
3357 {
3358 	return __napi_alloc_frag_align(fragsz, ~0u);
3359 }
3360 
3361 static inline void *napi_alloc_frag_align(unsigned int fragsz,
3362 					  unsigned int align)
3363 {
3364 	WARN_ON_ONCE(!is_power_of_2(align));
3365 	return __napi_alloc_frag_align(fragsz, -align);
3366 }
3367 
3368 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
3369 				 unsigned int length, gfp_t gfp_mask);
3370 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
3371 					     unsigned int length)
3372 {
3373 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
3374 }
3375 void napi_consume_skb(struct sk_buff *skb, int budget);
3376 
3377 void napi_skb_free_stolen_head(struct sk_buff *skb);
3378 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason);
3379 
3380 /**
3381  * __dev_alloc_pages - allocate page for network Rx
3382  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3383  * @order: size of the allocation
3384  *
3385  * Allocate a new page.
3386  *
3387  * %NULL is returned if there is no free memory.
3388 */
3389 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
3390 					     unsigned int order)
3391 {
3392 	/* This piece of code contains several assumptions.
3393 	 * 1.  This is for device Rx, therefore a cold page is preferred.
3394 	 * 2.  The expectation is the user wants a compound page.
3395 	 * 3.  If requesting a order 0 page it will not be compound
3396 	 *     due to the check to see if order has a value in prep_new_page
3397 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
3398 	 *     code in gfp_to_alloc_flags that should be enforcing this.
3399 	 */
3400 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
3401 
3402 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
3403 }
3404 
3405 static inline struct page *dev_alloc_pages(unsigned int order)
3406 {
3407 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
3408 }
3409 
3410 /**
3411  * __dev_alloc_page - allocate a page for network Rx
3412  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3413  *
3414  * Allocate a new page.
3415  *
3416  * %NULL is returned if there is no free memory.
3417  */
3418 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
3419 {
3420 	return __dev_alloc_pages(gfp_mask, 0);
3421 }
3422 
3423 static inline struct page *dev_alloc_page(void)
3424 {
3425 	return dev_alloc_pages(0);
3426 }
3427 
3428 /**
3429  * dev_page_is_reusable - check whether a page can be reused for network Rx
3430  * @page: the page to test
3431  *
3432  * A page shouldn't be considered for reusing/recycling if it was allocated
3433  * under memory pressure or at a distant memory node.
3434  *
3435  * Returns false if this page should be returned to page allocator, true
3436  * otherwise.
3437  */
3438 static inline bool dev_page_is_reusable(const struct page *page)
3439 {
3440 	return likely(page_to_nid(page) == numa_mem_id() &&
3441 		      !page_is_pfmemalloc(page));
3442 }
3443 
3444 /**
3445  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
3446  *	@page: The page that was allocated from skb_alloc_page
3447  *	@skb: The skb that may need pfmemalloc set
3448  */
3449 static inline void skb_propagate_pfmemalloc(const struct page *page,
3450 					    struct sk_buff *skb)
3451 {
3452 	if (page_is_pfmemalloc(page))
3453 		skb->pfmemalloc = true;
3454 }
3455 
3456 /**
3457  * skb_frag_off() - Returns the offset of a skb fragment
3458  * @frag: the paged fragment
3459  */
3460 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
3461 {
3462 	return frag->offset;
3463 }
3464 
3465 /**
3466  * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
3467  * @frag: skb fragment
3468  * @delta: value to add
3469  */
3470 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
3471 {
3472 	frag->offset += delta;
3473 }
3474 
3475 /**
3476  * skb_frag_off_set() - Sets the offset of a skb fragment
3477  * @frag: skb fragment
3478  * @offset: offset of fragment
3479  */
3480 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
3481 {
3482 	frag->offset = offset;
3483 }
3484 
3485 /**
3486  * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
3487  * @fragto: skb fragment where offset is set
3488  * @fragfrom: skb fragment offset is copied from
3489  */
3490 static inline void skb_frag_off_copy(skb_frag_t *fragto,
3491 				     const skb_frag_t *fragfrom)
3492 {
3493 	fragto->offset = fragfrom->offset;
3494 }
3495 
3496 /**
3497  * skb_frag_page - retrieve the page referred to by a paged fragment
3498  * @frag: the paged fragment
3499  *
3500  * Returns the &struct page associated with @frag.
3501  */
3502 static inline struct page *skb_frag_page(const skb_frag_t *frag)
3503 {
3504 	return netmem_to_page(frag->netmem);
3505 }
3506 
3507 /**
3508  * __skb_frag_ref - take an addition reference on a paged fragment.
3509  * @frag: the paged fragment
3510  *
3511  * Takes an additional reference on the paged fragment @frag.
3512  */
3513 static inline void __skb_frag_ref(skb_frag_t *frag)
3514 {
3515 	get_page(skb_frag_page(frag));
3516 }
3517 
3518 /**
3519  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
3520  * @skb: the buffer
3521  * @f: the fragment offset.
3522  *
3523  * Takes an additional reference on the @f'th paged fragment of @skb.
3524  */
3525 static inline void skb_frag_ref(struct sk_buff *skb, int f)
3526 {
3527 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
3528 }
3529 
3530 int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb,
3531 		    unsigned int headroom);
3532 int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb,
3533 			 struct bpf_prog *prog);
3534 bool napi_pp_put_page(struct page *page, bool napi_safe);
3535 
3536 static inline void
3537 skb_page_unref(const struct sk_buff *skb, struct page *page, bool napi_safe)
3538 {
3539 #ifdef CONFIG_PAGE_POOL
3540 	if (skb->pp_recycle && napi_pp_put_page(page, napi_safe))
3541 		return;
3542 #endif
3543 	put_page(page);
3544 }
3545 
3546 static inline void
3547 napi_frag_unref(skb_frag_t *frag, bool recycle, bool napi_safe)
3548 {
3549 	struct page *page = skb_frag_page(frag);
3550 
3551 #ifdef CONFIG_PAGE_POOL
3552 	if (recycle && napi_pp_put_page(page, napi_safe))
3553 		return;
3554 #endif
3555 	put_page(page);
3556 }
3557 
3558 /**
3559  * __skb_frag_unref - release a reference on a paged fragment.
3560  * @frag: the paged fragment
3561  * @recycle: recycle the page if allocated via page_pool
3562  *
3563  * Releases a reference on the paged fragment @frag
3564  * or recycles the page via the page_pool API.
3565  */
3566 static inline void __skb_frag_unref(skb_frag_t *frag, bool recycle)
3567 {
3568 	napi_frag_unref(frag, recycle, false);
3569 }
3570 
3571 /**
3572  * skb_frag_unref - release a reference on a paged fragment of an skb.
3573  * @skb: the buffer
3574  * @f: the fragment offset
3575  *
3576  * Releases a reference on the @f'th paged fragment of @skb.
3577  */
3578 static inline void skb_frag_unref(struct sk_buff *skb, int f)
3579 {
3580 	struct skb_shared_info *shinfo = skb_shinfo(skb);
3581 
3582 	if (!skb_zcopy_managed(skb))
3583 		__skb_frag_unref(&shinfo->frags[f], skb->pp_recycle);
3584 }
3585 
3586 /**
3587  * skb_frag_address - gets the address of the data contained in a paged fragment
3588  * @frag: the paged fragment buffer
3589  *
3590  * Returns the address of the data within @frag. The page must already
3591  * be mapped.
3592  */
3593 static inline void *skb_frag_address(const skb_frag_t *frag)
3594 {
3595 	return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3596 }
3597 
3598 /**
3599  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3600  * @frag: the paged fragment buffer
3601  *
3602  * Returns the address of the data within @frag. Checks that the page
3603  * is mapped and returns %NULL otherwise.
3604  */
3605 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3606 {
3607 	void *ptr = page_address(skb_frag_page(frag));
3608 	if (unlikely(!ptr))
3609 		return NULL;
3610 
3611 	return ptr + skb_frag_off(frag);
3612 }
3613 
3614 /**
3615  * skb_frag_page_copy() - sets the page in a fragment from another fragment
3616  * @fragto: skb fragment where page is set
3617  * @fragfrom: skb fragment page is copied from
3618  */
3619 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3620 				      const skb_frag_t *fragfrom)
3621 {
3622 	fragto->netmem = fragfrom->netmem;
3623 }
3624 
3625 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3626 
3627 /**
3628  * skb_frag_dma_map - maps a paged fragment via the DMA API
3629  * @dev: the device to map the fragment to
3630  * @frag: the paged fragment to map
3631  * @offset: the offset within the fragment (starting at the
3632  *          fragment's own offset)
3633  * @size: the number of bytes to map
3634  * @dir: the direction of the mapping (``PCI_DMA_*``)
3635  *
3636  * Maps the page associated with @frag to @device.
3637  */
3638 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3639 					  const skb_frag_t *frag,
3640 					  size_t offset, size_t size,
3641 					  enum dma_data_direction dir)
3642 {
3643 	return dma_map_page(dev, skb_frag_page(frag),
3644 			    skb_frag_off(frag) + offset, size, dir);
3645 }
3646 
3647 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3648 					gfp_t gfp_mask)
3649 {
3650 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3651 }
3652 
3653 
3654 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3655 						  gfp_t gfp_mask)
3656 {
3657 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3658 }
3659 
3660 
3661 /**
3662  *	skb_clone_writable - is the header of a clone writable
3663  *	@skb: buffer to check
3664  *	@len: length up to which to write
3665  *
3666  *	Returns true if modifying the header part of the cloned buffer
3667  *	does not requires the data to be copied.
3668  */
3669 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3670 {
3671 	return !skb_header_cloned(skb) &&
3672 	       skb_headroom(skb) + len <= skb->hdr_len;
3673 }
3674 
3675 static inline int skb_try_make_writable(struct sk_buff *skb,
3676 					unsigned int write_len)
3677 {
3678 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3679 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3680 }
3681 
3682 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3683 			    int cloned)
3684 {
3685 	int delta = 0;
3686 
3687 	if (headroom > skb_headroom(skb))
3688 		delta = headroom - skb_headroom(skb);
3689 
3690 	if (delta || cloned)
3691 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3692 					GFP_ATOMIC);
3693 	return 0;
3694 }
3695 
3696 /**
3697  *	skb_cow - copy header of skb when it is required
3698  *	@skb: buffer to cow
3699  *	@headroom: needed headroom
3700  *
3701  *	If the skb passed lacks sufficient headroom or its data part
3702  *	is shared, data is reallocated. If reallocation fails, an error
3703  *	is returned and original skb is not changed.
3704  *
3705  *	The result is skb with writable area skb->head...skb->tail
3706  *	and at least @headroom of space at head.
3707  */
3708 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3709 {
3710 	return __skb_cow(skb, headroom, skb_cloned(skb));
3711 }
3712 
3713 /**
3714  *	skb_cow_head - skb_cow but only making the head writable
3715  *	@skb: buffer to cow
3716  *	@headroom: needed headroom
3717  *
3718  *	This function is identical to skb_cow except that we replace the
3719  *	skb_cloned check by skb_header_cloned.  It should be used when
3720  *	you only need to push on some header and do not need to modify
3721  *	the data.
3722  */
3723 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3724 {
3725 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
3726 }
3727 
3728 /**
3729  *	skb_padto	- pad an skbuff up to a minimal size
3730  *	@skb: buffer to pad
3731  *	@len: minimal length
3732  *
3733  *	Pads up a buffer to ensure the trailing bytes exist and are
3734  *	blanked. If the buffer already contains sufficient data it
3735  *	is untouched. Otherwise it is extended. Returns zero on
3736  *	success. The skb is freed on error.
3737  */
3738 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3739 {
3740 	unsigned int size = skb->len;
3741 	if (likely(size >= len))
3742 		return 0;
3743 	return skb_pad(skb, len - size);
3744 }
3745 
3746 /**
3747  *	__skb_put_padto - increase size and pad an skbuff up to a minimal size
3748  *	@skb: buffer to pad
3749  *	@len: minimal length
3750  *	@free_on_error: free buffer on error
3751  *
3752  *	Pads up a buffer to ensure the trailing bytes exist and are
3753  *	blanked. If the buffer already contains sufficient data it
3754  *	is untouched. Otherwise it is extended. Returns zero on
3755  *	success. The skb is freed on error if @free_on_error is true.
3756  */
3757 static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3758 					       unsigned int len,
3759 					       bool free_on_error)
3760 {
3761 	unsigned int size = skb->len;
3762 
3763 	if (unlikely(size < len)) {
3764 		len -= size;
3765 		if (__skb_pad(skb, len, free_on_error))
3766 			return -ENOMEM;
3767 		__skb_put(skb, len);
3768 	}
3769 	return 0;
3770 }
3771 
3772 /**
3773  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3774  *	@skb: buffer to pad
3775  *	@len: minimal length
3776  *
3777  *	Pads up a buffer to ensure the trailing bytes exist and are
3778  *	blanked. If the buffer already contains sufficient data it
3779  *	is untouched. Otherwise it is extended. Returns zero on
3780  *	success. The skb is freed on error.
3781  */
3782 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3783 {
3784 	return __skb_put_padto(skb, len, true);
3785 }
3786 
3787 bool csum_and_copy_from_iter_full(void *addr, size_t bytes, __wsum *csum, struct iov_iter *i)
3788 	__must_check;
3789 
3790 static inline int skb_add_data(struct sk_buff *skb,
3791 			       struct iov_iter *from, int copy)
3792 {
3793 	const int off = skb->len;
3794 
3795 	if (skb->ip_summed == CHECKSUM_NONE) {
3796 		__wsum csum = 0;
3797 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3798 					         &csum, from)) {
3799 			skb->csum = csum_block_add(skb->csum, csum, off);
3800 			return 0;
3801 		}
3802 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3803 		return 0;
3804 
3805 	__skb_trim(skb, off);
3806 	return -EFAULT;
3807 }
3808 
3809 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3810 				    const struct page *page, int off)
3811 {
3812 	if (skb_zcopy(skb))
3813 		return false;
3814 	if (i) {
3815 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3816 
3817 		return page == skb_frag_page(frag) &&
3818 		       off == skb_frag_off(frag) + skb_frag_size(frag);
3819 	}
3820 	return false;
3821 }
3822 
3823 static inline int __skb_linearize(struct sk_buff *skb)
3824 {
3825 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3826 }
3827 
3828 /**
3829  *	skb_linearize - convert paged skb to linear one
3830  *	@skb: buffer to linarize
3831  *
3832  *	If there is no free memory -ENOMEM is returned, otherwise zero
3833  *	is returned and the old skb data released.
3834  */
3835 static inline int skb_linearize(struct sk_buff *skb)
3836 {
3837 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3838 }
3839 
3840 /**
3841  * skb_has_shared_frag - can any frag be overwritten
3842  * @skb: buffer to test
3843  *
3844  * Return true if the skb has at least one frag that might be modified
3845  * by an external entity (as in vmsplice()/sendfile())
3846  */
3847 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3848 {
3849 	return skb_is_nonlinear(skb) &&
3850 	       skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3851 }
3852 
3853 /**
3854  *	skb_linearize_cow - make sure skb is linear and writable
3855  *	@skb: buffer to process
3856  *
3857  *	If there is no free memory -ENOMEM is returned, otherwise zero
3858  *	is returned and the old skb data released.
3859  */
3860 static inline int skb_linearize_cow(struct sk_buff *skb)
3861 {
3862 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3863 	       __skb_linearize(skb) : 0;
3864 }
3865 
3866 static __always_inline void
3867 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3868 		     unsigned int off)
3869 {
3870 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3871 		skb->csum = csum_block_sub(skb->csum,
3872 					   csum_partial(start, len, 0), off);
3873 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3874 		 skb_checksum_start_offset(skb) < 0)
3875 		skb->ip_summed = CHECKSUM_NONE;
3876 }
3877 
3878 /**
3879  *	skb_postpull_rcsum - update checksum for received skb after pull
3880  *	@skb: buffer to update
3881  *	@start: start of data before pull
3882  *	@len: length of data pulled
3883  *
3884  *	After doing a pull on a received packet, you need to call this to
3885  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3886  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3887  */
3888 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3889 				      const void *start, unsigned int len)
3890 {
3891 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3892 		skb->csum = wsum_negate(csum_partial(start, len,
3893 						     wsum_negate(skb->csum)));
3894 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3895 		 skb_checksum_start_offset(skb) < 0)
3896 		skb->ip_summed = CHECKSUM_NONE;
3897 }
3898 
3899 static __always_inline void
3900 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3901 		     unsigned int off)
3902 {
3903 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3904 		skb->csum = csum_block_add(skb->csum,
3905 					   csum_partial(start, len, 0), off);
3906 }
3907 
3908 /**
3909  *	skb_postpush_rcsum - update checksum for received skb after push
3910  *	@skb: buffer to update
3911  *	@start: start of data after push
3912  *	@len: length of data pushed
3913  *
3914  *	After doing a push on a received packet, you need to call this to
3915  *	update the CHECKSUM_COMPLETE checksum.
3916  */
3917 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3918 				      const void *start, unsigned int len)
3919 {
3920 	__skb_postpush_rcsum(skb, start, len, 0);
3921 }
3922 
3923 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3924 
3925 /**
3926  *	skb_push_rcsum - push skb and update receive checksum
3927  *	@skb: buffer to update
3928  *	@len: length of data pulled
3929  *
3930  *	This function performs an skb_push on the packet and updates
3931  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3932  *	receive path processing instead of skb_push unless you know
3933  *	that the checksum difference is zero (e.g., a valid IP header)
3934  *	or you are setting ip_summed to CHECKSUM_NONE.
3935  */
3936 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3937 {
3938 	skb_push(skb, len);
3939 	skb_postpush_rcsum(skb, skb->data, len);
3940 	return skb->data;
3941 }
3942 
3943 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3944 /**
3945  *	pskb_trim_rcsum - trim received skb and update checksum
3946  *	@skb: buffer to trim
3947  *	@len: new length
3948  *
3949  *	This is exactly the same as pskb_trim except that it ensures the
3950  *	checksum of received packets are still valid after the operation.
3951  *	It can change skb pointers.
3952  */
3953 
3954 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3955 {
3956 	if (likely(len >= skb->len))
3957 		return 0;
3958 	return pskb_trim_rcsum_slow(skb, len);
3959 }
3960 
3961 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3962 {
3963 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3964 		skb->ip_summed = CHECKSUM_NONE;
3965 	__skb_trim(skb, len);
3966 	return 0;
3967 }
3968 
3969 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3970 {
3971 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3972 		skb->ip_summed = CHECKSUM_NONE;
3973 	return __skb_grow(skb, len);
3974 }
3975 
3976 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3977 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3978 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3979 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3980 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3981 
3982 #define skb_queue_walk(queue, skb) \
3983 		for (skb = (queue)->next;					\
3984 		     skb != (struct sk_buff *)(queue);				\
3985 		     skb = skb->next)
3986 
3987 #define skb_queue_walk_safe(queue, skb, tmp)					\
3988 		for (skb = (queue)->next, tmp = skb->next;			\
3989 		     skb != (struct sk_buff *)(queue);				\
3990 		     skb = tmp, tmp = skb->next)
3991 
3992 #define skb_queue_walk_from(queue, skb)						\
3993 		for (; skb != (struct sk_buff *)(queue);			\
3994 		     skb = skb->next)
3995 
3996 #define skb_rbtree_walk(skb, root)						\
3997 		for (skb = skb_rb_first(root); skb != NULL;			\
3998 		     skb = skb_rb_next(skb))
3999 
4000 #define skb_rbtree_walk_from(skb)						\
4001 		for (; skb != NULL;						\
4002 		     skb = skb_rb_next(skb))
4003 
4004 #define skb_rbtree_walk_from_safe(skb, tmp)					\
4005 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
4006 		     skb = tmp)
4007 
4008 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
4009 		for (tmp = skb->next;						\
4010 		     skb != (struct sk_buff *)(queue);				\
4011 		     skb = tmp, tmp = skb->next)
4012 
4013 #define skb_queue_reverse_walk(queue, skb) \
4014 		for (skb = (queue)->prev;					\
4015 		     skb != (struct sk_buff *)(queue);				\
4016 		     skb = skb->prev)
4017 
4018 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
4019 		for (skb = (queue)->prev, tmp = skb->prev;			\
4020 		     skb != (struct sk_buff *)(queue);				\
4021 		     skb = tmp, tmp = skb->prev)
4022 
4023 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
4024 		for (tmp = skb->prev;						\
4025 		     skb != (struct sk_buff *)(queue);				\
4026 		     skb = tmp, tmp = skb->prev)
4027 
4028 static inline bool skb_has_frag_list(const struct sk_buff *skb)
4029 {
4030 	return skb_shinfo(skb)->frag_list != NULL;
4031 }
4032 
4033 static inline void skb_frag_list_init(struct sk_buff *skb)
4034 {
4035 	skb_shinfo(skb)->frag_list = NULL;
4036 }
4037 
4038 #define skb_walk_frags(skb, iter)	\
4039 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
4040 
4041 
4042 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
4043 				int *err, long *timeo_p,
4044 				const struct sk_buff *skb);
4045 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
4046 					  struct sk_buff_head *queue,
4047 					  unsigned int flags,
4048 					  int *off, int *err,
4049 					  struct sk_buff **last);
4050 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
4051 					struct sk_buff_head *queue,
4052 					unsigned int flags, int *off, int *err,
4053 					struct sk_buff **last);
4054 struct sk_buff *__skb_recv_datagram(struct sock *sk,
4055 				    struct sk_buff_head *sk_queue,
4056 				    unsigned int flags, int *off, int *err);
4057 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err);
4058 __poll_t datagram_poll(struct file *file, struct socket *sock,
4059 			   struct poll_table_struct *wait);
4060 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
4061 			   struct iov_iter *to, int size);
4062 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
4063 					struct msghdr *msg, int size)
4064 {
4065 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
4066 }
4067 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
4068 				   struct msghdr *msg);
4069 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
4070 			   struct iov_iter *to, int len,
4071 			   struct ahash_request *hash);
4072 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
4073 				 struct iov_iter *from, int len);
4074 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
4075 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
4076 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
4077 static inline void skb_free_datagram_locked(struct sock *sk,
4078 					    struct sk_buff *skb)
4079 {
4080 	__skb_free_datagram_locked(sk, skb, 0);
4081 }
4082 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
4083 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
4084 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
4085 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
4086 			      int len);
4087 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
4088 		    struct pipe_inode_info *pipe, unsigned int len,
4089 		    unsigned int flags);
4090 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
4091 			 int len);
4092 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
4093 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
4094 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
4095 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
4096 		 int len, int hlen);
4097 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
4098 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
4099 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
4100 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
4101 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
4102 				 unsigned int offset);
4103 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
4104 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len);
4105 int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev);
4106 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
4107 int skb_vlan_pop(struct sk_buff *skb);
4108 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
4109 int skb_eth_pop(struct sk_buff *skb);
4110 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
4111 		 const unsigned char *src);
4112 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
4113 		  int mac_len, bool ethernet);
4114 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
4115 		 bool ethernet);
4116 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
4117 int skb_mpls_dec_ttl(struct sk_buff *skb);
4118 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
4119 			     gfp_t gfp);
4120 
4121 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
4122 {
4123 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
4124 }
4125 
4126 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
4127 {
4128 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
4129 }
4130 
4131 struct skb_checksum_ops {
4132 	__wsum (*update)(const void *mem, int len, __wsum wsum);
4133 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
4134 };
4135 
4136 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
4137 
4138 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
4139 		      __wsum csum, const struct skb_checksum_ops *ops);
4140 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
4141 		    __wsum csum);
4142 
4143 static inline void * __must_check
4144 __skb_header_pointer(const struct sk_buff *skb, int offset, int len,
4145 		     const void *data, int hlen, void *buffer)
4146 {
4147 	if (likely(hlen - offset >= len))
4148 		return (void *)data + offset;
4149 
4150 	if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0))
4151 		return NULL;
4152 
4153 	return buffer;
4154 }
4155 
4156 static inline void * __must_check
4157 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
4158 {
4159 	return __skb_header_pointer(skb, offset, len, skb->data,
4160 				    skb_headlen(skb), buffer);
4161 }
4162 
4163 static inline void * __must_check
4164 skb_pointer_if_linear(const struct sk_buff *skb, int offset, int len)
4165 {
4166 	if (likely(skb_headlen(skb) - offset >= len))
4167 		return skb->data + offset;
4168 	return NULL;
4169 }
4170 
4171 /**
4172  *	skb_needs_linearize - check if we need to linearize a given skb
4173  *			      depending on the given device features.
4174  *	@skb: socket buffer to check
4175  *	@features: net device features
4176  *
4177  *	Returns true if either:
4178  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
4179  *	2. skb is fragmented and the device does not support SG.
4180  */
4181 static inline bool skb_needs_linearize(struct sk_buff *skb,
4182 				       netdev_features_t features)
4183 {
4184 	return skb_is_nonlinear(skb) &&
4185 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
4186 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
4187 }
4188 
4189 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
4190 					     void *to,
4191 					     const unsigned int len)
4192 {
4193 	memcpy(to, skb->data, len);
4194 }
4195 
4196 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
4197 						    const int offset, void *to,
4198 						    const unsigned int len)
4199 {
4200 	memcpy(to, skb->data + offset, len);
4201 }
4202 
4203 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
4204 					   const void *from,
4205 					   const unsigned int len)
4206 {
4207 	memcpy(skb->data, from, len);
4208 }
4209 
4210 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
4211 						  const int offset,
4212 						  const void *from,
4213 						  const unsigned int len)
4214 {
4215 	memcpy(skb->data + offset, from, len);
4216 }
4217 
4218 void skb_init(void);
4219 
4220 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
4221 {
4222 	return skb->tstamp;
4223 }
4224 
4225 /**
4226  *	skb_get_timestamp - get timestamp from a skb
4227  *	@skb: skb to get stamp from
4228  *	@stamp: pointer to struct __kernel_old_timeval to store stamp in
4229  *
4230  *	Timestamps are stored in the skb as offsets to a base timestamp.
4231  *	This function converts the offset back to a struct timeval and stores
4232  *	it in stamp.
4233  */
4234 static inline void skb_get_timestamp(const struct sk_buff *skb,
4235 				     struct __kernel_old_timeval *stamp)
4236 {
4237 	*stamp = ns_to_kernel_old_timeval(skb->tstamp);
4238 }
4239 
4240 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
4241 					 struct __kernel_sock_timeval *stamp)
4242 {
4243 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4244 
4245 	stamp->tv_sec = ts.tv_sec;
4246 	stamp->tv_usec = ts.tv_nsec / 1000;
4247 }
4248 
4249 static inline void skb_get_timestampns(const struct sk_buff *skb,
4250 				       struct __kernel_old_timespec *stamp)
4251 {
4252 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4253 
4254 	stamp->tv_sec = ts.tv_sec;
4255 	stamp->tv_nsec = ts.tv_nsec;
4256 }
4257 
4258 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
4259 					   struct __kernel_timespec *stamp)
4260 {
4261 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4262 
4263 	stamp->tv_sec = ts.tv_sec;
4264 	stamp->tv_nsec = ts.tv_nsec;
4265 }
4266 
4267 static inline void __net_timestamp(struct sk_buff *skb)
4268 {
4269 	skb->tstamp = ktime_get_real();
4270 	skb->mono_delivery_time = 0;
4271 }
4272 
4273 static inline ktime_t net_timedelta(ktime_t t)
4274 {
4275 	return ktime_sub(ktime_get_real(), t);
4276 }
4277 
4278 static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt,
4279 					 bool mono)
4280 {
4281 	skb->tstamp = kt;
4282 	skb->mono_delivery_time = kt && mono;
4283 }
4284 
4285 DECLARE_STATIC_KEY_FALSE(netstamp_needed_key);
4286 
4287 /* It is used in the ingress path to clear the delivery_time.
4288  * If needed, set the skb->tstamp to the (rcv) timestamp.
4289  */
4290 static inline void skb_clear_delivery_time(struct sk_buff *skb)
4291 {
4292 	if (skb->mono_delivery_time) {
4293 		skb->mono_delivery_time = 0;
4294 		if (static_branch_unlikely(&netstamp_needed_key))
4295 			skb->tstamp = ktime_get_real();
4296 		else
4297 			skb->tstamp = 0;
4298 	}
4299 }
4300 
4301 static inline void skb_clear_tstamp(struct sk_buff *skb)
4302 {
4303 	if (skb->mono_delivery_time)
4304 		return;
4305 
4306 	skb->tstamp = 0;
4307 }
4308 
4309 static inline ktime_t skb_tstamp(const struct sk_buff *skb)
4310 {
4311 	if (skb->mono_delivery_time)
4312 		return 0;
4313 
4314 	return skb->tstamp;
4315 }
4316 
4317 static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond)
4318 {
4319 	if (!skb->mono_delivery_time && skb->tstamp)
4320 		return skb->tstamp;
4321 
4322 	if (static_branch_unlikely(&netstamp_needed_key) || cond)
4323 		return ktime_get_real();
4324 
4325 	return 0;
4326 }
4327 
4328 static inline u8 skb_metadata_len(const struct sk_buff *skb)
4329 {
4330 	return skb_shinfo(skb)->meta_len;
4331 }
4332 
4333 static inline void *skb_metadata_end(const struct sk_buff *skb)
4334 {
4335 	return skb_mac_header(skb);
4336 }
4337 
4338 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
4339 					  const struct sk_buff *skb_b,
4340 					  u8 meta_len)
4341 {
4342 	const void *a = skb_metadata_end(skb_a);
4343 	const void *b = skb_metadata_end(skb_b);
4344 	u64 diffs = 0;
4345 
4346 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) ||
4347 	    BITS_PER_LONG != 64)
4348 		goto slow;
4349 
4350 	/* Using more efficient variant than plain call to memcmp(). */
4351 	switch (meta_len) {
4352 #define __it(x, op) (x -= sizeof(u##op))
4353 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
4354 	case 32: diffs |= __it_diff(a, b, 64);
4355 		fallthrough;
4356 	case 24: diffs |= __it_diff(a, b, 64);
4357 		fallthrough;
4358 	case 16: diffs |= __it_diff(a, b, 64);
4359 		fallthrough;
4360 	case  8: diffs |= __it_diff(a, b, 64);
4361 		break;
4362 	case 28: diffs |= __it_diff(a, b, 64);
4363 		fallthrough;
4364 	case 20: diffs |= __it_diff(a, b, 64);
4365 		fallthrough;
4366 	case 12: diffs |= __it_diff(a, b, 64);
4367 		fallthrough;
4368 	case  4: diffs |= __it_diff(a, b, 32);
4369 		break;
4370 	default:
4371 slow:
4372 		return memcmp(a - meta_len, b - meta_len, meta_len);
4373 	}
4374 	return diffs;
4375 }
4376 
4377 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
4378 					const struct sk_buff *skb_b)
4379 {
4380 	u8 len_a = skb_metadata_len(skb_a);
4381 	u8 len_b = skb_metadata_len(skb_b);
4382 
4383 	if (!(len_a | len_b))
4384 		return false;
4385 
4386 	return len_a != len_b ?
4387 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
4388 }
4389 
4390 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
4391 {
4392 	skb_shinfo(skb)->meta_len = meta_len;
4393 }
4394 
4395 static inline void skb_metadata_clear(struct sk_buff *skb)
4396 {
4397 	skb_metadata_set(skb, 0);
4398 }
4399 
4400 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
4401 
4402 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
4403 
4404 void skb_clone_tx_timestamp(struct sk_buff *skb);
4405 bool skb_defer_rx_timestamp(struct sk_buff *skb);
4406 
4407 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
4408 
4409 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
4410 {
4411 }
4412 
4413 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
4414 {
4415 	return false;
4416 }
4417 
4418 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
4419 
4420 /**
4421  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
4422  *
4423  * PHY drivers may accept clones of transmitted packets for
4424  * timestamping via their phy_driver.txtstamp method. These drivers
4425  * must call this function to return the skb back to the stack with a
4426  * timestamp.
4427  *
4428  * @skb: clone of the original outgoing packet
4429  * @hwtstamps: hardware time stamps
4430  *
4431  */
4432 void skb_complete_tx_timestamp(struct sk_buff *skb,
4433 			       struct skb_shared_hwtstamps *hwtstamps);
4434 
4435 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb,
4436 		     struct skb_shared_hwtstamps *hwtstamps,
4437 		     struct sock *sk, int tstype);
4438 
4439 /**
4440  * skb_tstamp_tx - queue clone of skb with send time stamps
4441  * @orig_skb:	the original outgoing packet
4442  * @hwtstamps:	hardware time stamps, may be NULL if not available
4443  *
4444  * If the skb has a socket associated, then this function clones the
4445  * skb (thus sharing the actual data and optional structures), stores
4446  * the optional hardware time stamping information (if non NULL) or
4447  * generates a software time stamp (otherwise), then queues the clone
4448  * to the error queue of the socket.  Errors are silently ignored.
4449  */
4450 void skb_tstamp_tx(struct sk_buff *orig_skb,
4451 		   struct skb_shared_hwtstamps *hwtstamps);
4452 
4453 /**
4454  * skb_tx_timestamp() - Driver hook for transmit timestamping
4455  *
4456  * Ethernet MAC Drivers should call this function in their hard_xmit()
4457  * function immediately before giving the sk_buff to the MAC hardware.
4458  *
4459  * Specifically, one should make absolutely sure that this function is
4460  * called before TX completion of this packet can trigger.  Otherwise
4461  * the packet could potentially already be freed.
4462  *
4463  * @skb: A socket buffer.
4464  */
4465 static inline void skb_tx_timestamp(struct sk_buff *skb)
4466 {
4467 	skb_clone_tx_timestamp(skb);
4468 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
4469 		skb_tstamp_tx(skb, NULL);
4470 }
4471 
4472 /**
4473  * skb_complete_wifi_ack - deliver skb with wifi status
4474  *
4475  * @skb: the original outgoing packet
4476  * @acked: ack status
4477  *
4478  */
4479 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
4480 
4481 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
4482 __sum16 __skb_checksum_complete(struct sk_buff *skb);
4483 
4484 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
4485 {
4486 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
4487 		skb->csum_valid ||
4488 		(skb->ip_summed == CHECKSUM_PARTIAL &&
4489 		 skb_checksum_start_offset(skb) >= 0));
4490 }
4491 
4492 /**
4493  *	skb_checksum_complete - Calculate checksum of an entire packet
4494  *	@skb: packet to process
4495  *
4496  *	This function calculates the checksum over the entire packet plus
4497  *	the value of skb->csum.  The latter can be used to supply the
4498  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
4499  *	checksum.
4500  *
4501  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
4502  *	this function can be used to verify that checksum on received
4503  *	packets.  In that case the function should return zero if the
4504  *	checksum is correct.  In particular, this function will return zero
4505  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
4506  *	hardware has already verified the correctness of the checksum.
4507  */
4508 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
4509 {
4510 	return skb_csum_unnecessary(skb) ?
4511 	       0 : __skb_checksum_complete(skb);
4512 }
4513 
4514 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
4515 {
4516 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4517 		if (skb->csum_level == 0)
4518 			skb->ip_summed = CHECKSUM_NONE;
4519 		else
4520 			skb->csum_level--;
4521 	}
4522 }
4523 
4524 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
4525 {
4526 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4527 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
4528 			skb->csum_level++;
4529 	} else if (skb->ip_summed == CHECKSUM_NONE) {
4530 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4531 		skb->csum_level = 0;
4532 	}
4533 }
4534 
4535 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
4536 {
4537 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4538 		skb->ip_summed = CHECKSUM_NONE;
4539 		skb->csum_level = 0;
4540 	}
4541 }
4542 
4543 /* Check if we need to perform checksum complete validation.
4544  *
4545  * Returns true if checksum complete is needed, false otherwise
4546  * (either checksum is unnecessary or zero checksum is allowed).
4547  */
4548 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
4549 						  bool zero_okay,
4550 						  __sum16 check)
4551 {
4552 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
4553 		skb->csum_valid = 1;
4554 		__skb_decr_checksum_unnecessary(skb);
4555 		return false;
4556 	}
4557 
4558 	return true;
4559 }
4560 
4561 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
4562  * in checksum_init.
4563  */
4564 #define CHECKSUM_BREAK 76
4565 
4566 /* Unset checksum-complete
4567  *
4568  * Unset checksum complete can be done when packet is being modified
4569  * (uncompressed for instance) and checksum-complete value is
4570  * invalidated.
4571  */
4572 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
4573 {
4574 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4575 		skb->ip_summed = CHECKSUM_NONE;
4576 }
4577 
4578 /* Validate (init) checksum based on checksum complete.
4579  *
4580  * Return values:
4581  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
4582  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4583  *	checksum is stored in skb->csum for use in __skb_checksum_complete
4584  *   non-zero: value of invalid checksum
4585  *
4586  */
4587 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4588 						       bool complete,
4589 						       __wsum psum)
4590 {
4591 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
4592 		if (!csum_fold(csum_add(psum, skb->csum))) {
4593 			skb->csum_valid = 1;
4594 			return 0;
4595 		}
4596 	}
4597 
4598 	skb->csum = psum;
4599 
4600 	if (complete || skb->len <= CHECKSUM_BREAK) {
4601 		__sum16 csum;
4602 
4603 		csum = __skb_checksum_complete(skb);
4604 		skb->csum_valid = !csum;
4605 		return csum;
4606 	}
4607 
4608 	return 0;
4609 }
4610 
4611 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4612 {
4613 	return 0;
4614 }
4615 
4616 /* Perform checksum validate (init). Note that this is a macro since we only
4617  * want to calculate the pseudo header which is an input function if necessary.
4618  * First we try to validate without any computation (checksum unnecessary) and
4619  * then calculate based on checksum complete calling the function to compute
4620  * pseudo header.
4621  *
4622  * Return values:
4623  *   0: checksum is validated or try to in skb_checksum_complete
4624  *   non-zero: value of invalid checksum
4625  */
4626 #define __skb_checksum_validate(skb, proto, complete,			\
4627 				zero_okay, check, compute_pseudo)	\
4628 ({									\
4629 	__sum16 __ret = 0;						\
4630 	skb->csum_valid = 0;						\
4631 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
4632 		__ret = __skb_checksum_validate_complete(skb,		\
4633 				complete, compute_pseudo(skb, proto));	\
4634 	__ret;								\
4635 })
4636 
4637 #define skb_checksum_init(skb, proto, compute_pseudo)			\
4638 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4639 
4640 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
4641 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4642 
4643 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
4644 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4645 
4646 #define skb_checksum_validate_zero_check(skb, proto, check,		\
4647 					 compute_pseudo)		\
4648 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4649 
4650 #define skb_checksum_simple_validate(skb)				\
4651 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4652 
4653 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4654 {
4655 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4656 }
4657 
4658 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4659 {
4660 	skb->csum = ~pseudo;
4661 	skb->ip_summed = CHECKSUM_COMPLETE;
4662 }
4663 
4664 #define skb_checksum_try_convert(skb, proto, compute_pseudo)	\
4665 do {									\
4666 	if (__skb_checksum_convert_check(skb))				\
4667 		__skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4668 } while (0)
4669 
4670 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4671 					      u16 start, u16 offset)
4672 {
4673 	skb->ip_summed = CHECKSUM_PARTIAL;
4674 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4675 	skb->csum_offset = offset - start;
4676 }
4677 
4678 /* Update skbuf and packet to reflect the remote checksum offload operation.
4679  * When called, ptr indicates the starting point for skb->csum when
4680  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4681  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4682  */
4683 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4684 				       int start, int offset, bool nopartial)
4685 {
4686 	__wsum delta;
4687 
4688 	if (!nopartial) {
4689 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
4690 		return;
4691 	}
4692 
4693 	if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4694 		__skb_checksum_complete(skb);
4695 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4696 	}
4697 
4698 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
4699 
4700 	/* Adjust skb->csum since we changed the packet */
4701 	skb->csum = csum_add(skb->csum, delta);
4702 }
4703 
4704 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4705 {
4706 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4707 	return (void *)(skb->_nfct & NFCT_PTRMASK);
4708 #else
4709 	return NULL;
4710 #endif
4711 }
4712 
4713 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4714 {
4715 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4716 	return skb->_nfct;
4717 #else
4718 	return 0UL;
4719 #endif
4720 }
4721 
4722 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4723 {
4724 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4725 	skb->slow_gro |= !!nfct;
4726 	skb->_nfct = nfct;
4727 #endif
4728 }
4729 
4730 #ifdef CONFIG_SKB_EXTENSIONS
4731 enum skb_ext_id {
4732 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4733 	SKB_EXT_BRIDGE_NF,
4734 #endif
4735 #ifdef CONFIG_XFRM
4736 	SKB_EXT_SEC_PATH,
4737 #endif
4738 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4739 	TC_SKB_EXT,
4740 #endif
4741 #if IS_ENABLED(CONFIG_MPTCP)
4742 	SKB_EXT_MPTCP,
4743 #endif
4744 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4745 	SKB_EXT_MCTP,
4746 #endif
4747 	SKB_EXT_NUM, /* must be last */
4748 };
4749 
4750 /**
4751  *	struct skb_ext - sk_buff extensions
4752  *	@refcnt: 1 on allocation, deallocated on 0
4753  *	@offset: offset to add to @data to obtain extension address
4754  *	@chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4755  *	@data: start of extension data, variable sized
4756  *
4757  *	Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4758  *	to use 'u8' types while allowing up to 2kb worth of extension data.
4759  */
4760 struct skb_ext {
4761 	refcount_t refcnt;
4762 	u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4763 	u8 chunks;		/* same */
4764 	char data[] __aligned(8);
4765 };
4766 
4767 struct skb_ext *__skb_ext_alloc(gfp_t flags);
4768 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4769 		    struct skb_ext *ext);
4770 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4771 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4772 void __skb_ext_put(struct skb_ext *ext);
4773 
4774 static inline void skb_ext_put(struct sk_buff *skb)
4775 {
4776 	if (skb->active_extensions)
4777 		__skb_ext_put(skb->extensions);
4778 }
4779 
4780 static inline void __skb_ext_copy(struct sk_buff *dst,
4781 				  const struct sk_buff *src)
4782 {
4783 	dst->active_extensions = src->active_extensions;
4784 
4785 	if (src->active_extensions) {
4786 		struct skb_ext *ext = src->extensions;
4787 
4788 		refcount_inc(&ext->refcnt);
4789 		dst->extensions = ext;
4790 	}
4791 }
4792 
4793 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4794 {
4795 	skb_ext_put(dst);
4796 	__skb_ext_copy(dst, src);
4797 }
4798 
4799 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4800 {
4801 	return !!ext->offset[i];
4802 }
4803 
4804 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4805 {
4806 	return skb->active_extensions & (1 << id);
4807 }
4808 
4809 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4810 {
4811 	if (skb_ext_exist(skb, id))
4812 		__skb_ext_del(skb, id);
4813 }
4814 
4815 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4816 {
4817 	if (skb_ext_exist(skb, id)) {
4818 		struct skb_ext *ext = skb->extensions;
4819 
4820 		return (void *)ext + (ext->offset[id] << 3);
4821 	}
4822 
4823 	return NULL;
4824 }
4825 
4826 static inline void skb_ext_reset(struct sk_buff *skb)
4827 {
4828 	if (unlikely(skb->active_extensions)) {
4829 		__skb_ext_put(skb->extensions);
4830 		skb->active_extensions = 0;
4831 	}
4832 }
4833 
4834 static inline bool skb_has_extensions(struct sk_buff *skb)
4835 {
4836 	return unlikely(skb->active_extensions);
4837 }
4838 #else
4839 static inline void skb_ext_put(struct sk_buff *skb) {}
4840 static inline void skb_ext_reset(struct sk_buff *skb) {}
4841 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4842 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4843 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4844 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4845 #endif /* CONFIG_SKB_EXTENSIONS */
4846 
4847 static inline void nf_reset_ct(struct sk_buff *skb)
4848 {
4849 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4850 	nf_conntrack_put(skb_nfct(skb));
4851 	skb->_nfct = 0;
4852 #endif
4853 }
4854 
4855 static inline void nf_reset_trace(struct sk_buff *skb)
4856 {
4857 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
4858 	skb->nf_trace = 0;
4859 #endif
4860 }
4861 
4862 static inline void ipvs_reset(struct sk_buff *skb)
4863 {
4864 #if IS_ENABLED(CONFIG_IP_VS)
4865 	skb->ipvs_property = 0;
4866 #endif
4867 }
4868 
4869 /* Note: This doesn't put any conntrack info in dst. */
4870 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4871 			     bool copy)
4872 {
4873 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4874 	dst->_nfct = src->_nfct;
4875 	nf_conntrack_get(skb_nfct(src));
4876 #endif
4877 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
4878 	if (copy)
4879 		dst->nf_trace = src->nf_trace;
4880 #endif
4881 }
4882 
4883 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4884 {
4885 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4886 	nf_conntrack_put(skb_nfct(dst));
4887 #endif
4888 	dst->slow_gro = src->slow_gro;
4889 	__nf_copy(dst, src, true);
4890 }
4891 
4892 #ifdef CONFIG_NETWORK_SECMARK
4893 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4894 {
4895 	to->secmark = from->secmark;
4896 }
4897 
4898 static inline void skb_init_secmark(struct sk_buff *skb)
4899 {
4900 	skb->secmark = 0;
4901 }
4902 #else
4903 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4904 { }
4905 
4906 static inline void skb_init_secmark(struct sk_buff *skb)
4907 { }
4908 #endif
4909 
4910 static inline int secpath_exists(const struct sk_buff *skb)
4911 {
4912 #ifdef CONFIG_XFRM
4913 	return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4914 #else
4915 	return 0;
4916 #endif
4917 }
4918 
4919 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4920 {
4921 	return !skb->destructor &&
4922 		!secpath_exists(skb) &&
4923 		!skb_nfct(skb) &&
4924 		!skb->_skb_refdst &&
4925 		!skb_has_frag_list(skb);
4926 }
4927 
4928 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4929 {
4930 	skb->queue_mapping = queue_mapping;
4931 }
4932 
4933 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4934 {
4935 	return skb->queue_mapping;
4936 }
4937 
4938 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4939 {
4940 	to->queue_mapping = from->queue_mapping;
4941 }
4942 
4943 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4944 {
4945 	skb->queue_mapping = rx_queue + 1;
4946 }
4947 
4948 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4949 {
4950 	return skb->queue_mapping - 1;
4951 }
4952 
4953 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4954 {
4955 	return skb->queue_mapping != 0;
4956 }
4957 
4958 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4959 {
4960 	skb->dst_pending_confirm = val;
4961 }
4962 
4963 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4964 {
4965 	return skb->dst_pending_confirm != 0;
4966 }
4967 
4968 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4969 {
4970 #ifdef CONFIG_XFRM
4971 	return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4972 #else
4973 	return NULL;
4974 #endif
4975 }
4976 
4977 static inline bool skb_is_gso(const struct sk_buff *skb)
4978 {
4979 	return skb_shinfo(skb)->gso_size;
4980 }
4981 
4982 /* Note: Should be called only if skb_is_gso(skb) is true */
4983 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4984 {
4985 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4986 }
4987 
4988 /* Note: Should be called only if skb_is_gso(skb) is true */
4989 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4990 {
4991 	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4992 }
4993 
4994 /* Note: Should be called only if skb_is_gso(skb) is true */
4995 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4996 {
4997 	return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4998 }
4999 
5000 static inline void skb_gso_reset(struct sk_buff *skb)
5001 {
5002 	skb_shinfo(skb)->gso_size = 0;
5003 	skb_shinfo(skb)->gso_segs = 0;
5004 	skb_shinfo(skb)->gso_type = 0;
5005 }
5006 
5007 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
5008 					 u16 increment)
5009 {
5010 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
5011 		return;
5012 	shinfo->gso_size += increment;
5013 }
5014 
5015 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
5016 					 u16 decrement)
5017 {
5018 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
5019 		return;
5020 	shinfo->gso_size -= decrement;
5021 }
5022 
5023 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
5024 
5025 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
5026 {
5027 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
5028 	 * wanted then gso_type will be set. */
5029 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5030 
5031 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
5032 	    unlikely(shinfo->gso_type == 0)) {
5033 		__skb_warn_lro_forwarding(skb);
5034 		return true;
5035 	}
5036 	return false;
5037 }
5038 
5039 static inline void skb_forward_csum(struct sk_buff *skb)
5040 {
5041 	/* Unfortunately we don't support this one.  Any brave souls? */
5042 	if (skb->ip_summed == CHECKSUM_COMPLETE)
5043 		skb->ip_summed = CHECKSUM_NONE;
5044 }
5045 
5046 /**
5047  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
5048  * @skb: skb to check
5049  *
5050  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
5051  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
5052  * use this helper, to document places where we make this assertion.
5053  */
5054 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
5055 {
5056 	DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE);
5057 }
5058 
5059 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
5060 
5061 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
5062 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5063 				     unsigned int transport_len,
5064 				     __sum16(*skb_chkf)(struct sk_buff *skb));
5065 
5066 /**
5067  * skb_head_is_locked - Determine if the skb->head is locked down
5068  * @skb: skb to check
5069  *
5070  * The head on skbs build around a head frag can be removed if they are
5071  * not cloned.  This function returns true if the skb head is locked down
5072  * due to either being allocated via kmalloc, or by being a clone with
5073  * multiple references to the head.
5074  */
5075 static inline bool skb_head_is_locked(const struct sk_buff *skb)
5076 {
5077 	return !skb->head_frag || skb_cloned(skb);
5078 }
5079 
5080 /* Local Checksum Offload.
5081  * Compute outer checksum based on the assumption that the
5082  * inner checksum will be offloaded later.
5083  * See Documentation/networking/checksum-offloads.rst for
5084  * explanation of how this works.
5085  * Fill in outer checksum adjustment (e.g. with sum of outer
5086  * pseudo-header) before calling.
5087  * Also ensure that inner checksum is in linear data area.
5088  */
5089 static inline __wsum lco_csum(struct sk_buff *skb)
5090 {
5091 	unsigned char *csum_start = skb_checksum_start(skb);
5092 	unsigned char *l4_hdr = skb_transport_header(skb);
5093 	__wsum partial;
5094 
5095 	/* Start with complement of inner checksum adjustment */
5096 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
5097 						    skb->csum_offset));
5098 
5099 	/* Add in checksum of our headers (incl. outer checksum
5100 	 * adjustment filled in by caller) and return result.
5101 	 */
5102 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
5103 }
5104 
5105 static inline bool skb_is_redirected(const struct sk_buff *skb)
5106 {
5107 	return skb->redirected;
5108 }
5109 
5110 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
5111 {
5112 	skb->redirected = 1;
5113 #ifdef CONFIG_NET_REDIRECT
5114 	skb->from_ingress = from_ingress;
5115 	if (skb->from_ingress)
5116 		skb_clear_tstamp(skb);
5117 #endif
5118 }
5119 
5120 static inline void skb_reset_redirect(struct sk_buff *skb)
5121 {
5122 	skb->redirected = 0;
5123 }
5124 
5125 static inline void skb_set_redirected_noclear(struct sk_buff *skb,
5126 					      bool from_ingress)
5127 {
5128 	skb->redirected = 1;
5129 #ifdef CONFIG_NET_REDIRECT
5130 	skb->from_ingress = from_ingress;
5131 #endif
5132 }
5133 
5134 static inline bool skb_csum_is_sctp(struct sk_buff *skb)
5135 {
5136 #if IS_ENABLED(CONFIG_IP_SCTP)
5137 	return skb->csum_not_inet;
5138 #else
5139 	return 0;
5140 #endif
5141 }
5142 
5143 static inline void skb_reset_csum_not_inet(struct sk_buff *skb)
5144 {
5145 	skb->ip_summed = CHECKSUM_NONE;
5146 #if IS_ENABLED(CONFIG_IP_SCTP)
5147 	skb->csum_not_inet = 0;
5148 #endif
5149 }
5150 
5151 static inline void skb_set_kcov_handle(struct sk_buff *skb,
5152 				       const u64 kcov_handle)
5153 {
5154 #ifdef CONFIG_KCOV
5155 	skb->kcov_handle = kcov_handle;
5156 #endif
5157 }
5158 
5159 static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
5160 {
5161 #ifdef CONFIG_KCOV
5162 	return skb->kcov_handle;
5163 #else
5164 	return 0;
5165 #endif
5166 }
5167 
5168 static inline void skb_mark_for_recycle(struct sk_buff *skb)
5169 {
5170 #ifdef CONFIG_PAGE_POOL
5171 	skb->pp_recycle = 1;
5172 #endif
5173 }
5174 
5175 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter,
5176 			     ssize_t maxsize, gfp_t gfp);
5177 
5178 #endif	/* __KERNEL__ */
5179 #endif	/* _LINUX_SKBUFF_H */
5180