1 /* 2 * Definitions for the 'struct sk_buff' memory handlers. 3 * 4 * Authors: 5 * Alan Cox, <[email protected]> 6 * Florian La Roche, <[email protected]> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14 #ifndef _LINUX_SKBUFF_H 15 #define _LINUX_SKBUFF_H 16 17 #include <linux/kernel.h> 18 #include <linux/kmemcheck.h> 19 #include <linux/compiler.h> 20 #include <linux/time.h> 21 #include <linux/cache.h> 22 23 #include <asm/atomic.h> 24 #include <asm/types.h> 25 #include <linux/spinlock.h> 26 #include <linux/net.h> 27 #include <linux/textsearch.h> 28 #include <net/checksum.h> 29 #include <linux/rcupdate.h> 30 #include <linux/dmaengine.h> 31 #include <linux/hrtimer.h> 32 33 /* Don't change this without changing skb_csum_unnecessary! */ 34 #define CHECKSUM_NONE 0 35 #define CHECKSUM_UNNECESSARY 1 36 #define CHECKSUM_COMPLETE 2 37 #define CHECKSUM_PARTIAL 3 38 39 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \ 40 ~(SMP_CACHE_BYTES - 1)) 41 #define SKB_WITH_OVERHEAD(X) \ 42 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 43 #define SKB_MAX_ORDER(X, ORDER) \ 44 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 45 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 46 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 47 48 /* A. Checksumming of received packets by device. 49 * 50 * NONE: device failed to checksum this packet. 51 * skb->csum is undefined. 52 * 53 * UNNECESSARY: device parsed packet and wouldbe verified checksum. 54 * skb->csum is undefined. 55 * It is bad option, but, unfortunately, many of vendors do this. 56 * Apparently with secret goal to sell you new device, when you 57 * will add new protocol to your host. F.e. IPv6. 8) 58 * 59 * COMPLETE: the most generic way. Device supplied checksum of _all_ 60 * the packet as seen by netif_rx in skb->csum. 61 * NOTE: Even if device supports only some protocols, but 62 * is able to produce some skb->csum, it MUST use COMPLETE, 63 * not UNNECESSARY. 64 * 65 * PARTIAL: identical to the case for output below. This may occur 66 * on a packet received directly from another Linux OS, e.g., 67 * a virtualised Linux kernel on the same host. The packet can 68 * be treated in the same way as UNNECESSARY except that on 69 * output (i.e., forwarding) the checksum must be filled in 70 * by the OS or the hardware. 71 * 72 * B. Checksumming on output. 73 * 74 * NONE: skb is checksummed by protocol or csum is not required. 75 * 76 * PARTIAL: device is required to csum packet as seen by hard_start_xmit 77 * from skb->csum_start to the end and to record the checksum 78 * at skb->csum_start + skb->csum_offset. 79 * 80 * Device must show its capabilities in dev->features, set 81 * at device setup time. 82 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum 83 * everything. 84 * NETIF_F_NO_CSUM - loopback or reliable single hop media. 85 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only 86 * TCP/UDP over IPv4. Sigh. Vendors like this 87 * way by an unknown reason. Though, see comment above 88 * about CHECKSUM_UNNECESSARY. 8) 89 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead. 90 * 91 * Any questions? No questions, good. --ANK 92 */ 93 94 struct net_device; 95 struct scatterlist; 96 struct pipe_inode_info; 97 98 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 99 struct nf_conntrack { 100 atomic_t use; 101 }; 102 #endif 103 104 #ifdef CONFIG_BRIDGE_NETFILTER 105 struct nf_bridge_info { 106 atomic_t use; 107 struct net_device *physindev; 108 struct net_device *physoutdev; 109 unsigned int mask; 110 unsigned long data[32 / sizeof(unsigned long)]; 111 }; 112 #endif 113 114 struct sk_buff_head { 115 /* These two members must be first. */ 116 struct sk_buff *next; 117 struct sk_buff *prev; 118 119 __u32 qlen; 120 spinlock_t lock; 121 }; 122 123 struct sk_buff; 124 125 /* To allow 64K frame to be packed as single skb without frag_list */ 126 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2) 127 128 typedef struct skb_frag_struct skb_frag_t; 129 130 struct skb_frag_struct { 131 struct page *page; 132 __u32 page_offset; 133 __u32 size; 134 }; 135 136 #define HAVE_HW_TIME_STAMP 137 138 /** 139 * struct skb_shared_hwtstamps - hardware time stamps 140 * @hwtstamp: hardware time stamp transformed into duration 141 * since arbitrary point in time 142 * @syststamp: hwtstamp transformed to system time base 143 * 144 * Software time stamps generated by ktime_get_real() are stored in 145 * skb->tstamp. The relation between the different kinds of time 146 * stamps is as follows: 147 * 148 * syststamp and tstamp can be compared against each other in 149 * arbitrary combinations. The accuracy of a 150 * syststamp/tstamp/"syststamp from other device" comparison is 151 * limited by the accuracy of the transformation into system time 152 * base. This depends on the device driver and its underlying 153 * hardware. 154 * 155 * hwtstamps can only be compared against other hwtstamps from 156 * the same device. 157 * 158 * This structure is attached to packets as part of the 159 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 160 */ 161 struct skb_shared_hwtstamps { 162 ktime_t hwtstamp; 163 ktime_t syststamp; 164 }; 165 166 /** 167 * struct skb_shared_tx - instructions for time stamping of outgoing packets 168 * @hardware: generate hardware time stamp 169 * @software: generate software time stamp 170 * @in_progress: device driver is going to provide 171 * hardware time stamp 172 * @flags: all shared_tx flags 173 * 174 * These flags are attached to packets as part of the 175 * &skb_shared_info. Use skb_tx() to get a pointer. 176 */ 177 union skb_shared_tx { 178 struct { 179 __u8 hardware:1, 180 software:1, 181 in_progress:1; 182 }; 183 __u8 flags; 184 }; 185 186 /* This data is invariant across clones and lives at 187 * the end of the header data, ie. at skb->end. 188 */ 189 struct skb_shared_info { 190 atomic_t dataref; 191 unsigned short nr_frags; 192 unsigned short gso_size; 193 #ifdef CONFIG_HAS_DMA 194 dma_addr_t dma_head; 195 #endif 196 /* Warning: this field is not always filled in (UFO)! */ 197 unsigned short gso_segs; 198 unsigned short gso_type; 199 __be32 ip6_frag_id; 200 union skb_shared_tx tx_flags; 201 struct sk_buff *frag_list; 202 struct skb_shared_hwtstamps hwtstamps; 203 skb_frag_t frags[MAX_SKB_FRAGS]; 204 #ifdef CONFIG_HAS_DMA 205 dma_addr_t dma_maps[MAX_SKB_FRAGS]; 206 #endif 207 /* Intermediate layers must ensure that destructor_arg 208 * remains valid until skb destructor */ 209 void * destructor_arg; 210 }; 211 212 /* We divide dataref into two halves. The higher 16 bits hold references 213 * to the payload part of skb->data. The lower 16 bits hold references to 214 * the entire skb->data. A clone of a headerless skb holds the length of 215 * the header in skb->hdr_len. 216 * 217 * All users must obey the rule that the skb->data reference count must be 218 * greater than or equal to the payload reference count. 219 * 220 * Holding a reference to the payload part means that the user does not 221 * care about modifications to the header part of skb->data. 222 */ 223 #define SKB_DATAREF_SHIFT 16 224 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 225 226 227 enum { 228 SKB_FCLONE_UNAVAILABLE, 229 SKB_FCLONE_ORIG, 230 SKB_FCLONE_CLONE, 231 }; 232 233 enum { 234 SKB_GSO_TCPV4 = 1 << 0, 235 SKB_GSO_UDP = 1 << 1, 236 237 /* This indicates the skb is from an untrusted source. */ 238 SKB_GSO_DODGY = 1 << 2, 239 240 /* This indicates the tcp segment has CWR set. */ 241 SKB_GSO_TCP_ECN = 1 << 3, 242 243 SKB_GSO_TCPV6 = 1 << 4, 244 245 SKB_GSO_FCOE = 1 << 5, 246 }; 247 248 #if BITS_PER_LONG > 32 249 #define NET_SKBUFF_DATA_USES_OFFSET 1 250 #endif 251 252 #ifdef NET_SKBUFF_DATA_USES_OFFSET 253 typedef unsigned int sk_buff_data_t; 254 #else 255 typedef unsigned char *sk_buff_data_t; 256 #endif 257 258 /** 259 * struct sk_buff - socket buffer 260 * @next: Next buffer in list 261 * @prev: Previous buffer in list 262 * @sk: Socket we are owned by 263 * @tstamp: Time we arrived 264 * @dev: Device we arrived on/are leaving by 265 * @transport_header: Transport layer header 266 * @network_header: Network layer header 267 * @mac_header: Link layer header 268 * @_skb_dst: destination entry 269 * @sp: the security path, used for xfrm 270 * @cb: Control buffer. Free for use by every layer. Put private vars here 271 * @len: Length of actual data 272 * @data_len: Data length 273 * @mac_len: Length of link layer header 274 * @hdr_len: writable header length of cloned skb 275 * @csum: Checksum (must include start/offset pair) 276 * @csum_start: Offset from skb->head where checksumming should start 277 * @csum_offset: Offset from csum_start where checksum should be stored 278 * @local_df: allow local fragmentation 279 * @cloned: Head may be cloned (check refcnt to be sure) 280 * @nohdr: Payload reference only, must not modify header 281 * @pkt_type: Packet class 282 * @fclone: skbuff clone status 283 * @ip_summed: Driver fed us an IP checksum 284 * @priority: Packet queueing priority 285 * @users: User count - see {datagram,tcp}.c 286 * @protocol: Packet protocol from driver 287 * @truesize: Buffer size 288 * @head: Head of buffer 289 * @data: Data head pointer 290 * @tail: Tail pointer 291 * @end: End pointer 292 * @destructor: Destruct function 293 * @mark: Generic packet mark 294 * @nfct: Associated connection, if any 295 * @ipvs_property: skbuff is owned by ipvs 296 * @peeked: this packet has been seen already, so stats have been 297 * done for it, don't do them again 298 * @nf_trace: netfilter packet trace flag 299 * @nfctinfo: Relationship of this skb to the connection 300 * @nfct_reasm: netfilter conntrack re-assembly pointer 301 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 302 * @iif: ifindex of device we arrived on 303 * @queue_mapping: Queue mapping for multiqueue devices 304 * @tc_index: Traffic control index 305 * @tc_verd: traffic control verdict 306 * @ndisc_nodetype: router type (from link layer) 307 * @do_not_encrypt: set to prevent encryption of this frame 308 * @dma_cookie: a cookie to one of several possible DMA operations 309 * done by skb DMA functions 310 * @secmark: security marking 311 * @vlan_tci: vlan tag control information 312 */ 313 314 struct sk_buff { 315 /* These two members must be first. */ 316 struct sk_buff *next; 317 struct sk_buff *prev; 318 319 struct sock *sk; 320 ktime_t tstamp; 321 struct net_device *dev; 322 323 unsigned long _skb_dst; 324 #ifdef CONFIG_XFRM 325 struct sec_path *sp; 326 #endif 327 /* 328 * This is the control buffer. It is free to use for every 329 * layer. Please put your private variables there. If you 330 * want to keep them across layers you have to do a skb_clone() 331 * first. This is owned by whoever has the skb queued ATM. 332 */ 333 char cb[48]; 334 335 unsigned int len, 336 data_len; 337 __u16 mac_len, 338 hdr_len; 339 union { 340 __wsum csum; 341 struct { 342 __u16 csum_start; 343 __u16 csum_offset; 344 }; 345 }; 346 __u32 priority; 347 kmemcheck_bitfield_begin(flags1); 348 __u8 local_df:1, 349 cloned:1, 350 ip_summed:2, 351 nohdr:1, 352 nfctinfo:3; 353 __u8 pkt_type:3, 354 fclone:2, 355 ipvs_property:1, 356 peeked:1, 357 nf_trace:1; 358 kmemcheck_bitfield_end(flags1); 359 __be16 protocol; 360 361 void (*destructor)(struct sk_buff *skb); 362 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 363 struct nf_conntrack *nfct; 364 struct sk_buff *nfct_reasm; 365 #endif 366 #ifdef CONFIG_BRIDGE_NETFILTER 367 struct nf_bridge_info *nf_bridge; 368 #endif 369 370 int iif; 371 __u16 queue_mapping; 372 #ifdef CONFIG_NET_SCHED 373 __u16 tc_index; /* traffic control index */ 374 #ifdef CONFIG_NET_CLS_ACT 375 __u16 tc_verd; /* traffic control verdict */ 376 #endif 377 #endif 378 379 kmemcheck_bitfield_begin(flags2); 380 #ifdef CONFIG_IPV6_NDISC_NODETYPE 381 __u8 ndisc_nodetype:2; 382 #endif 383 #if defined(CONFIG_MAC80211) || defined(CONFIG_MAC80211_MODULE) 384 __u8 do_not_encrypt:1; 385 #endif 386 kmemcheck_bitfield_end(flags2); 387 388 /* 0/13/14 bit hole */ 389 390 #ifdef CONFIG_NET_DMA 391 dma_cookie_t dma_cookie; 392 #endif 393 #ifdef CONFIG_NETWORK_SECMARK 394 __u32 secmark; 395 #endif 396 397 __u32 mark; 398 399 __u16 vlan_tci; 400 401 sk_buff_data_t transport_header; 402 sk_buff_data_t network_header; 403 sk_buff_data_t mac_header; 404 /* These elements must be at the end, see alloc_skb() for details. */ 405 sk_buff_data_t tail; 406 sk_buff_data_t end; 407 unsigned char *head, 408 *data; 409 unsigned int truesize; 410 atomic_t users; 411 }; 412 413 #ifdef __KERNEL__ 414 /* 415 * Handling routines are only of interest to the kernel 416 */ 417 #include <linux/slab.h> 418 419 #include <asm/system.h> 420 421 #ifdef CONFIG_HAS_DMA 422 #include <linux/dma-mapping.h> 423 extern int skb_dma_map(struct device *dev, struct sk_buff *skb, 424 enum dma_data_direction dir); 425 extern void skb_dma_unmap(struct device *dev, struct sk_buff *skb, 426 enum dma_data_direction dir); 427 #endif 428 429 static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 430 { 431 return (struct dst_entry *)skb->_skb_dst; 432 } 433 434 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 435 { 436 skb->_skb_dst = (unsigned long)dst; 437 } 438 439 static inline struct rtable *skb_rtable(const struct sk_buff *skb) 440 { 441 return (struct rtable *)skb_dst(skb); 442 } 443 444 extern void kfree_skb(struct sk_buff *skb); 445 extern void consume_skb(struct sk_buff *skb); 446 extern void __kfree_skb(struct sk_buff *skb); 447 extern struct sk_buff *__alloc_skb(unsigned int size, 448 gfp_t priority, int fclone, int node); 449 static inline struct sk_buff *alloc_skb(unsigned int size, 450 gfp_t priority) 451 { 452 return __alloc_skb(size, priority, 0, -1); 453 } 454 455 static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 456 gfp_t priority) 457 { 458 return __alloc_skb(size, priority, 1, -1); 459 } 460 461 extern int skb_recycle_check(struct sk_buff *skb, int skb_size); 462 463 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 464 extern struct sk_buff *skb_clone(struct sk_buff *skb, 465 gfp_t priority); 466 extern struct sk_buff *skb_copy(const struct sk_buff *skb, 467 gfp_t priority); 468 extern struct sk_buff *pskb_copy(struct sk_buff *skb, 469 gfp_t gfp_mask); 470 extern int pskb_expand_head(struct sk_buff *skb, 471 int nhead, int ntail, 472 gfp_t gfp_mask); 473 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 474 unsigned int headroom); 475 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 476 int newheadroom, int newtailroom, 477 gfp_t priority); 478 extern int skb_to_sgvec(struct sk_buff *skb, 479 struct scatterlist *sg, int offset, 480 int len); 481 extern int skb_cow_data(struct sk_buff *skb, int tailbits, 482 struct sk_buff **trailer); 483 extern int skb_pad(struct sk_buff *skb, int pad); 484 #define dev_kfree_skb(a) consume_skb(a) 485 #define dev_consume_skb(a) kfree_skb_clean(a) 486 extern void skb_over_panic(struct sk_buff *skb, int len, 487 void *here); 488 extern void skb_under_panic(struct sk_buff *skb, int len, 489 void *here); 490 491 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 492 int getfrag(void *from, char *to, int offset, 493 int len,int odd, struct sk_buff *skb), 494 void *from, int length); 495 496 struct skb_seq_state 497 { 498 __u32 lower_offset; 499 __u32 upper_offset; 500 __u32 frag_idx; 501 __u32 stepped_offset; 502 struct sk_buff *root_skb; 503 struct sk_buff *cur_skb; 504 __u8 *frag_data; 505 }; 506 507 extern void skb_prepare_seq_read(struct sk_buff *skb, 508 unsigned int from, unsigned int to, 509 struct skb_seq_state *st); 510 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 511 struct skb_seq_state *st); 512 extern void skb_abort_seq_read(struct skb_seq_state *st); 513 514 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 515 unsigned int to, struct ts_config *config, 516 struct ts_state *state); 517 518 #ifdef NET_SKBUFF_DATA_USES_OFFSET 519 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 520 { 521 return skb->head + skb->end; 522 } 523 #else 524 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 525 { 526 return skb->end; 527 } 528 #endif 529 530 /* Internal */ 531 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 532 533 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 534 { 535 return &skb_shinfo(skb)->hwtstamps; 536 } 537 538 static inline union skb_shared_tx *skb_tx(struct sk_buff *skb) 539 { 540 return &skb_shinfo(skb)->tx_flags; 541 } 542 543 /** 544 * skb_queue_empty - check if a queue is empty 545 * @list: queue head 546 * 547 * Returns true if the queue is empty, false otherwise. 548 */ 549 static inline int skb_queue_empty(const struct sk_buff_head *list) 550 { 551 return list->next == (struct sk_buff *)list; 552 } 553 554 /** 555 * skb_queue_is_last - check if skb is the last entry in the queue 556 * @list: queue head 557 * @skb: buffer 558 * 559 * Returns true if @skb is the last buffer on the list. 560 */ 561 static inline bool skb_queue_is_last(const struct sk_buff_head *list, 562 const struct sk_buff *skb) 563 { 564 return (skb->next == (struct sk_buff *) list); 565 } 566 567 /** 568 * skb_queue_is_first - check if skb is the first entry in the queue 569 * @list: queue head 570 * @skb: buffer 571 * 572 * Returns true if @skb is the first buffer on the list. 573 */ 574 static inline bool skb_queue_is_first(const struct sk_buff_head *list, 575 const struct sk_buff *skb) 576 { 577 return (skb->prev == (struct sk_buff *) list); 578 } 579 580 /** 581 * skb_queue_next - return the next packet in the queue 582 * @list: queue head 583 * @skb: current buffer 584 * 585 * Return the next packet in @list after @skb. It is only valid to 586 * call this if skb_queue_is_last() evaluates to false. 587 */ 588 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 589 const struct sk_buff *skb) 590 { 591 /* This BUG_ON may seem severe, but if we just return then we 592 * are going to dereference garbage. 593 */ 594 BUG_ON(skb_queue_is_last(list, skb)); 595 return skb->next; 596 } 597 598 /** 599 * skb_queue_prev - return the prev packet in the queue 600 * @list: queue head 601 * @skb: current buffer 602 * 603 * Return the prev packet in @list before @skb. It is only valid to 604 * call this if skb_queue_is_first() evaluates to false. 605 */ 606 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 607 const struct sk_buff *skb) 608 { 609 /* This BUG_ON may seem severe, but if we just return then we 610 * are going to dereference garbage. 611 */ 612 BUG_ON(skb_queue_is_first(list, skb)); 613 return skb->prev; 614 } 615 616 /** 617 * skb_get - reference buffer 618 * @skb: buffer to reference 619 * 620 * Makes another reference to a socket buffer and returns a pointer 621 * to the buffer. 622 */ 623 static inline struct sk_buff *skb_get(struct sk_buff *skb) 624 { 625 atomic_inc(&skb->users); 626 return skb; 627 } 628 629 /* 630 * If users == 1, we are the only owner and are can avoid redundant 631 * atomic change. 632 */ 633 634 /** 635 * skb_cloned - is the buffer a clone 636 * @skb: buffer to check 637 * 638 * Returns true if the buffer was generated with skb_clone() and is 639 * one of multiple shared copies of the buffer. Cloned buffers are 640 * shared data so must not be written to under normal circumstances. 641 */ 642 static inline int skb_cloned(const struct sk_buff *skb) 643 { 644 return skb->cloned && 645 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 646 } 647 648 /** 649 * skb_header_cloned - is the header a clone 650 * @skb: buffer to check 651 * 652 * Returns true if modifying the header part of the buffer requires 653 * the data to be copied. 654 */ 655 static inline int skb_header_cloned(const struct sk_buff *skb) 656 { 657 int dataref; 658 659 if (!skb->cloned) 660 return 0; 661 662 dataref = atomic_read(&skb_shinfo(skb)->dataref); 663 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 664 return dataref != 1; 665 } 666 667 /** 668 * skb_header_release - release reference to header 669 * @skb: buffer to operate on 670 * 671 * Drop a reference to the header part of the buffer. This is done 672 * by acquiring a payload reference. You must not read from the header 673 * part of skb->data after this. 674 */ 675 static inline void skb_header_release(struct sk_buff *skb) 676 { 677 BUG_ON(skb->nohdr); 678 skb->nohdr = 1; 679 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref); 680 } 681 682 /** 683 * skb_shared - is the buffer shared 684 * @skb: buffer to check 685 * 686 * Returns true if more than one person has a reference to this 687 * buffer. 688 */ 689 static inline int skb_shared(const struct sk_buff *skb) 690 { 691 return atomic_read(&skb->users) != 1; 692 } 693 694 /** 695 * skb_share_check - check if buffer is shared and if so clone it 696 * @skb: buffer to check 697 * @pri: priority for memory allocation 698 * 699 * If the buffer is shared the buffer is cloned and the old copy 700 * drops a reference. A new clone with a single reference is returned. 701 * If the buffer is not shared the original buffer is returned. When 702 * being called from interrupt status or with spinlocks held pri must 703 * be GFP_ATOMIC. 704 * 705 * NULL is returned on a memory allocation failure. 706 */ 707 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, 708 gfp_t pri) 709 { 710 might_sleep_if(pri & __GFP_WAIT); 711 if (skb_shared(skb)) { 712 struct sk_buff *nskb = skb_clone(skb, pri); 713 kfree_skb(skb); 714 skb = nskb; 715 } 716 return skb; 717 } 718 719 /* 720 * Copy shared buffers into a new sk_buff. We effectively do COW on 721 * packets to handle cases where we have a local reader and forward 722 * and a couple of other messy ones. The normal one is tcpdumping 723 * a packet thats being forwarded. 724 */ 725 726 /** 727 * skb_unshare - make a copy of a shared buffer 728 * @skb: buffer to check 729 * @pri: priority for memory allocation 730 * 731 * If the socket buffer is a clone then this function creates a new 732 * copy of the data, drops a reference count on the old copy and returns 733 * the new copy with the reference count at 1. If the buffer is not a clone 734 * the original buffer is returned. When called with a spinlock held or 735 * from interrupt state @pri must be %GFP_ATOMIC 736 * 737 * %NULL is returned on a memory allocation failure. 738 */ 739 static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 740 gfp_t pri) 741 { 742 might_sleep_if(pri & __GFP_WAIT); 743 if (skb_cloned(skb)) { 744 struct sk_buff *nskb = skb_copy(skb, pri); 745 kfree_skb(skb); /* Free our shared copy */ 746 skb = nskb; 747 } 748 return skb; 749 } 750 751 /** 752 * skb_peek 753 * @list_: list to peek at 754 * 755 * Peek an &sk_buff. Unlike most other operations you _MUST_ 756 * be careful with this one. A peek leaves the buffer on the 757 * list and someone else may run off with it. You must hold 758 * the appropriate locks or have a private queue to do this. 759 * 760 * Returns %NULL for an empty list or a pointer to the head element. 761 * The reference count is not incremented and the reference is therefore 762 * volatile. Use with caution. 763 */ 764 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_) 765 { 766 struct sk_buff *list = ((struct sk_buff *)list_)->next; 767 if (list == (struct sk_buff *)list_) 768 list = NULL; 769 return list; 770 } 771 772 /** 773 * skb_peek_tail 774 * @list_: list to peek at 775 * 776 * Peek an &sk_buff. Unlike most other operations you _MUST_ 777 * be careful with this one. A peek leaves the buffer on the 778 * list and someone else may run off with it. You must hold 779 * the appropriate locks or have a private queue to do this. 780 * 781 * Returns %NULL for an empty list or a pointer to the tail element. 782 * The reference count is not incremented and the reference is therefore 783 * volatile. Use with caution. 784 */ 785 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_) 786 { 787 struct sk_buff *list = ((struct sk_buff *)list_)->prev; 788 if (list == (struct sk_buff *)list_) 789 list = NULL; 790 return list; 791 } 792 793 /** 794 * skb_queue_len - get queue length 795 * @list_: list to measure 796 * 797 * Return the length of an &sk_buff queue. 798 */ 799 static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 800 { 801 return list_->qlen; 802 } 803 804 /** 805 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 806 * @list: queue to initialize 807 * 808 * This initializes only the list and queue length aspects of 809 * an sk_buff_head object. This allows to initialize the list 810 * aspects of an sk_buff_head without reinitializing things like 811 * the spinlock. It can also be used for on-stack sk_buff_head 812 * objects where the spinlock is known to not be used. 813 */ 814 static inline void __skb_queue_head_init(struct sk_buff_head *list) 815 { 816 list->prev = list->next = (struct sk_buff *)list; 817 list->qlen = 0; 818 } 819 820 /* 821 * This function creates a split out lock class for each invocation; 822 * this is needed for now since a whole lot of users of the skb-queue 823 * infrastructure in drivers have different locking usage (in hardirq) 824 * than the networking core (in softirq only). In the long run either the 825 * network layer or drivers should need annotation to consolidate the 826 * main types of usage into 3 classes. 827 */ 828 static inline void skb_queue_head_init(struct sk_buff_head *list) 829 { 830 spin_lock_init(&list->lock); 831 __skb_queue_head_init(list); 832 } 833 834 static inline void skb_queue_head_init_class(struct sk_buff_head *list, 835 struct lock_class_key *class) 836 { 837 skb_queue_head_init(list); 838 lockdep_set_class(&list->lock, class); 839 } 840 841 /* 842 * Insert an sk_buff on a list. 843 * 844 * The "__skb_xxxx()" functions are the non-atomic ones that 845 * can only be called with interrupts disabled. 846 */ 847 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list); 848 static inline void __skb_insert(struct sk_buff *newsk, 849 struct sk_buff *prev, struct sk_buff *next, 850 struct sk_buff_head *list) 851 { 852 newsk->next = next; 853 newsk->prev = prev; 854 next->prev = prev->next = newsk; 855 list->qlen++; 856 } 857 858 static inline void __skb_queue_splice(const struct sk_buff_head *list, 859 struct sk_buff *prev, 860 struct sk_buff *next) 861 { 862 struct sk_buff *first = list->next; 863 struct sk_buff *last = list->prev; 864 865 first->prev = prev; 866 prev->next = first; 867 868 last->next = next; 869 next->prev = last; 870 } 871 872 /** 873 * skb_queue_splice - join two skb lists, this is designed for stacks 874 * @list: the new list to add 875 * @head: the place to add it in the first list 876 */ 877 static inline void skb_queue_splice(const struct sk_buff_head *list, 878 struct sk_buff_head *head) 879 { 880 if (!skb_queue_empty(list)) { 881 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 882 head->qlen += list->qlen; 883 } 884 } 885 886 /** 887 * skb_queue_splice - join two skb lists and reinitialise the emptied list 888 * @list: the new list to add 889 * @head: the place to add it in the first list 890 * 891 * The list at @list is reinitialised 892 */ 893 static inline void skb_queue_splice_init(struct sk_buff_head *list, 894 struct sk_buff_head *head) 895 { 896 if (!skb_queue_empty(list)) { 897 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 898 head->qlen += list->qlen; 899 __skb_queue_head_init(list); 900 } 901 } 902 903 /** 904 * skb_queue_splice_tail - join two skb lists, each list being a queue 905 * @list: the new list to add 906 * @head: the place to add it in the first list 907 */ 908 static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 909 struct sk_buff_head *head) 910 { 911 if (!skb_queue_empty(list)) { 912 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 913 head->qlen += list->qlen; 914 } 915 } 916 917 /** 918 * skb_queue_splice_tail - join two skb lists and reinitialise the emptied list 919 * @list: the new list to add 920 * @head: the place to add it in the first list 921 * 922 * Each of the lists is a queue. 923 * The list at @list is reinitialised 924 */ 925 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 926 struct sk_buff_head *head) 927 { 928 if (!skb_queue_empty(list)) { 929 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 930 head->qlen += list->qlen; 931 __skb_queue_head_init(list); 932 } 933 } 934 935 /** 936 * __skb_queue_after - queue a buffer at the list head 937 * @list: list to use 938 * @prev: place after this buffer 939 * @newsk: buffer to queue 940 * 941 * Queue a buffer int the middle of a list. This function takes no locks 942 * and you must therefore hold required locks before calling it. 943 * 944 * A buffer cannot be placed on two lists at the same time. 945 */ 946 static inline void __skb_queue_after(struct sk_buff_head *list, 947 struct sk_buff *prev, 948 struct sk_buff *newsk) 949 { 950 __skb_insert(newsk, prev, prev->next, list); 951 } 952 953 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, 954 struct sk_buff_head *list); 955 956 static inline void __skb_queue_before(struct sk_buff_head *list, 957 struct sk_buff *next, 958 struct sk_buff *newsk) 959 { 960 __skb_insert(newsk, next->prev, next, list); 961 } 962 963 /** 964 * __skb_queue_head - queue a buffer at the list head 965 * @list: list to use 966 * @newsk: buffer to queue 967 * 968 * Queue a buffer at the start of a list. This function takes no locks 969 * and you must therefore hold required locks before calling it. 970 * 971 * A buffer cannot be placed on two lists at the same time. 972 */ 973 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 974 static inline void __skb_queue_head(struct sk_buff_head *list, 975 struct sk_buff *newsk) 976 { 977 __skb_queue_after(list, (struct sk_buff *)list, newsk); 978 } 979 980 /** 981 * __skb_queue_tail - queue a buffer at the list tail 982 * @list: list to use 983 * @newsk: buffer to queue 984 * 985 * Queue a buffer at the end of a list. This function takes no locks 986 * and you must therefore hold required locks before calling it. 987 * 988 * A buffer cannot be placed on two lists at the same time. 989 */ 990 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 991 static inline void __skb_queue_tail(struct sk_buff_head *list, 992 struct sk_buff *newsk) 993 { 994 __skb_queue_before(list, (struct sk_buff *)list, newsk); 995 } 996 997 /* 998 * remove sk_buff from list. _Must_ be called atomically, and with 999 * the list known.. 1000 */ 1001 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 1002 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 1003 { 1004 struct sk_buff *next, *prev; 1005 1006 list->qlen--; 1007 next = skb->next; 1008 prev = skb->prev; 1009 skb->next = skb->prev = NULL; 1010 next->prev = prev; 1011 prev->next = next; 1012 } 1013 1014 /** 1015 * __skb_dequeue - remove from the head of the queue 1016 * @list: list to dequeue from 1017 * 1018 * Remove the head of the list. This function does not take any locks 1019 * so must be used with appropriate locks held only. The head item is 1020 * returned or %NULL if the list is empty. 1021 */ 1022 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list); 1023 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 1024 { 1025 struct sk_buff *skb = skb_peek(list); 1026 if (skb) 1027 __skb_unlink(skb, list); 1028 return skb; 1029 } 1030 1031 /** 1032 * __skb_dequeue_tail - remove from the tail of the queue 1033 * @list: list to dequeue from 1034 * 1035 * Remove the tail of the list. This function does not take any locks 1036 * so must be used with appropriate locks held only. The tail item is 1037 * returned or %NULL if the list is empty. 1038 */ 1039 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 1040 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 1041 { 1042 struct sk_buff *skb = skb_peek_tail(list); 1043 if (skb) 1044 __skb_unlink(skb, list); 1045 return skb; 1046 } 1047 1048 1049 static inline int skb_is_nonlinear(const struct sk_buff *skb) 1050 { 1051 return skb->data_len; 1052 } 1053 1054 static inline unsigned int skb_headlen(const struct sk_buff *skb) 1055 { 1056 return skb->len - skb->data_len; 1057 } 1058 1059 static inline int skb_pagelen(const struct sk_buff *skb) 1060 { 1061 int i, len = 0; 1062 1063 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--) 1064 len += skb_shinfo(skb)->frags[i].size; 1065 return len + skb_headlen(skb); 1066 } 1067 1068 static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 1069 struct page *page, int off, int size) 1070 { 1071 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1072 1073 frag->page = page; 1074 frag->page_offset = off; 1075 frag->size = size; 1076 skb_shinfo(skb)->nr_frags = i + 1; 1077 } 1078 1079 extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, 1080 int off, int size); 1081 1082 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags) 1083 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frags(skb)) 1084 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 1085 1086 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1087 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1088 { 1089 return skb->head + skb->tail; 1090 } 1091 1092 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1093 { 1094 skb->tail = skb->data - skb->head; 1095 } 1096 1097 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1098 { 1099 skb_reset_tail_pointer(skb); 1100 skb->tail += offset; 1101 } 1102 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 1103 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1104 { 1105 return skb->tail; 1106 } 1107 1108 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1109 { 1110 skb->tail = skb->data; 1111 } 1112 1113 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1114 { 1115 skb->tail = skb->data + offset; 1116 } 1117 1118 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1119 1120 /* 1121 * Add data to an sk_buff 1122 */ 1123 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len); 1124 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len) 1125 { 1126 unsigned char *tmp = skb_tail_pointer(skb); 1127 SKB_LINEAR_ASSERT(skb); 1128 skb->tail += len; 1129 skb->len += len; 1130 return tmp; 1131 } 1132 1133 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len); 1134 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len) 1135 { 1136 skb->data -= len; 1137 skb->len += len; 1138 return skb->data; 1139 } 1140 1141 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len); 1142 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len) 1143 { 1144 skb->len -= len; 1145 BUG_ON(skb->len < skb->data_len); 1146 return skb->data += len; 1147 } 1148 1149 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta); 1150 1151 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len) 1152 { 1153 if (len > skb_headlen(skb) && 1154 !__pskb_pull_tail(skb, len - skb_headlen(skb))) 1155 return NULL; 1156 skb->len -= len; 1157 return skb->data += len; 1158 } 1159 1160 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len) 1161 { 1162 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 1163 } 1164 1165 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) 1166 { 1167 if (likely(len <= skb_headlen(skb))) 1168 return 1; 1169 if (unlikely(len > skb->len)) 1170 return 0; 1171 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; 1172 } 1173 1174 /** 1175 * skb_headroom - bytes at buffer head 1176 * @skb: buffer to check 1177 * 1178 * Return the number of bytes of free space at the head of an &sk_buff. 1179 */ 1180 static inline unsigned int skb_headroom(const struct sk_buff *skb) 1181 { 1182 return skb->data - skb->head; 1183 } 1184 1185 /** 1186 * skb_tailroom - bytes at buffer end 1187 * @skb: buffer to check 1188 * 1189 * Return the number of bytes of free space at the tail of an sk_buff 1190 */ 1191 static inline int skb_tailroom(const struct sk_buff *skb) 1192 { 1193 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 1194 } 1195 1196 /** 1197 * skb_reserve - adjust headroom 1198 * @skb: buffer to alter 1199 * @len: bytes to move 1200 * 1201 * Increase the headroom of an empty &sk_buff by reducing the tail 1202 * room. This is only allowed for an empty buffer. 1203 */ 1204 static inline void skb_reserve(struct sk_buff *skb, int len) 1205 { 1206 skb->data += len; 1207 skb->tail += len; 1208 } 1209 1210 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1211 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 1212 { 1213 return skb->head + skb->transport_header; 1214 } 1215 1216 static inline void skb_reset_transport_header(struct sk_buff *skb) 1217 { 1218 skb->transport_header = skb->data - skb->head; 1219 } 1220 1221 static inline void skb_set_transport_header(struct sk_buff *skb, 1222 const int offset) 1223 { 1224 skb_reset_transport_header(skb); 1225 skb->transport_header += offset; 1226 } 1227 1228 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 1229 { 1230 return skb->head + skb->network_header; 1231 } 1232 1233 static inline void skb_reset_network_header(struct sk_buff *skb) 1234 { 1235 skb->network_header = skb->data - skb->head; 1236 } 1237 1238 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 1239 { 1240 skb_reset_network_header(skb); 1241 skb->network_header += offset; 1242 } 1243 1244 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 1245 { 1246 return skb->head + skb->mac_header; 1247 } 1248 1249 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 1250 { 1251 return skb->mac_header != ~0U; 1252 } 1253 1254 static inline void skb_reset_mac_header(struct sk_buff *skb) 1255 { 1256 skb->mac_header = skb->data - skb->head; 1257 } 1258 1259 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1260 { 1261 skb_reset_mac_header(skb); 1262 skb->mac_header += offset; 1263 } 1264 1265 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 1266 1267 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 1268 { 1269 return skb->transport_header; 1270 } 1271 1272 static inline void skb_reset_transport_header(struct sk_buff *skb) 1273 { 1274 skb->transport_header = skb->data; 1275 } 1276 1277 static inline void skb_set_transport_header(struct sk_buff *skb, 1278 const int offset) 1279 { 1280 skb->transport_header = skb->data + offset; 1281 } 1282 1283 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 1284 { 1285 return skb->network_header; 1286 } 1287 1288 static inline void skb_reset_network_header(struct sk_buff *skb) 1289 { 1290 skb->network_header = skb->data; 1291 } 1292 1293 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 1294 { 1295 skb->network_header = skb->data + offset; 1296 } 1297 1298 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 1299 { 1300 return skb->mac_header; 1301 } 1302 1303 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 1304 { 1305 return skb->mac_header != NULL; 1306 } 1307 1308 static inline void skb_reset_mac_header(struct sk_buff *skb) 1309 { 1310 skb->mac_header = skb->data; 1311 } 1312 1313 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1314 { 1315 skb->mac_header = skb->data + offset; 1316 } 1317 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1318 1319 static inline int skb_transport_offset(const struct sk_buff *skb) 1320 { 1321 return skb_transport_header(skb) - skb->data; 1322 } 1323 1324 static inline u32 skb_network_header_len(const struct sk_buff *skb) 1325 { 1326 return skb->transport_header - skb->network_header; 1327 } 1328 1329 static inline int skb_network_offset(const struct sk_buff *skb) 1330 { 1331 return skb_network_header(skb) - skb->data; 1332 } 1333 1334 /* 1335 * CPUs often take a performance hit when accessing unaligned memory 1336 * locations. The actual performance hit varies, it can be small if the 1337 * hardware handles it or large if we have to take an exception and fix it 1338 * in software. 1339 * 1340 * Since an ethernet header is 14 bytes network drivers often end up with 1341 * the IP header at an unaligned offset. The IP header can be aligned by 1342 * shifting the start of the packet by 2 bytes. Drivers should do this 1343 * with: 1344 * 1345 * skb_reserve(skb, NET_IP_ALIGN); 1346 * 1347 * The downside to this alignment of the IP header is that the DMA is now 1348 * unaligned. On some architectures the cost of an unaligned DMA is high 1349 * and this cost outweighs the gains made by aligning the IP header. 1350 * 1351 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 1352 * to be overridden. 1353 */ 1354 #ifndef NET_IP_ALIGN 1355 #define NET_IP_ALIGN 2 1356 #endif 1357 1358 /* 1359 * The networking layer reserves some headroom in skb data (via 1360 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 1361 * the header has to grow. In the default case, if the header has to grow 1362 * 32 bytes or less we avoid the reallocation. 1363 * 1364 * Unfortunately this headroom changes the DMA alignment of the resulting 1365 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 1366 * on some architectures. An architecture can override this value, 1367 * perhaps setting it to a cacheline in size (since that will maintain 1368 * cacheline alignment of the DMA). It must be a power of 2. 1369 * 1370 * Various parts of the networking layer expect at least 32 bytes of 1371 * headroom, you should not reduce this. 1372 */ 1373 #ifndef NET_SKB_PAD 1374 #define NET_SKB_PAD 32 1375 #endif 1376 1377 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len); 1378 1379 static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 1380 { 1381 if (unlikely(skb->data_len)) { 1382 WARN_ON(1); 1383 return; 1384 } 1385 skb->len = len; 1386 skb_set_tail_pointer(skb, len); 1387 } 1388 1389 extern void skb_trim(struct sk_buff *skb, unsigned int len); 1390 1391 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 1392 { 1393 if (skb->data_len) 1394 return ___pskb_trim(skb, len); 1395 __skb_trim(skb, len); 1396 return 0; 1397 } 1398 1399 static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 1400 { 1401 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 1402 } 1403 1404 /** 1405 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 1406 * @skb: buffer to alter 1407 * @len: new length 1408 * 1409 * This is identical to pskb_trim except that the caller knows that 1410 * the skb is not cloned so we should never get an error due to out- 1411 * of-memory. 1412 */ 1413 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 1414 { 1415 int err = pskb_trim(skb, len); 1416 BUG_ON(err); 1417 } 1418 1419 /** 1420 * skb_orphan - orphan a buffer 1421 * @skb: buffer to orphan 1422 * 1423 * If a buffer currently has an owner then we call the owner's 1424 * destructor function and make the @skb unowned. The buffer continues 1425 * to exist but is no longer charged to its former owner. 1426 */ 1427 static inline void skb_orphan(struct sk_buff *skb) 1428 { 1429 if (skb->destructor) 1430 skb->destructor(skb); 1431 skb->destructor = NULL; 1432 skb->sk = NULL; 1433 } 1434 1435 /** 1436 * __skb_queue_purge - empty a list 1437 * @list: list to empty 1438 * 1439 * Delete all buffers on an &sk_buff list. Each buffer is removed from 1440 * the list and one reference dropped. This function does not take the 1441 * list lock and the caller must hold the relevant locks to use it. 1442 */ 1443 extern void skb_queue_purge(struct sk_buff_head *list); 1444 static inline void __skb_queue_purge(struct sk_buff_head *list) 1445 { 1446 struct sk_buff *skb; 1447 while ((skb = __skb_dequeue(list)) != NULL) 1448 kfree_skb(skb); 1449 } 1450 1451 /** 1452 * __dev_alloc_skb - allocate an skbuff for receiving 1453 * @length: length to allocate 1454 * @gfp_mask: get_free_pages mask, passed to alloc_skb 1455 * 1456 * Allocate a new &sk_buff and assign it a usage count of one. The 1457 * buffer has unspecified headroom built in. Users should allocate 1458 * the headroom they think they need without accounting for the 1459 * built in space. The built in space is used for optimisations. 1460 * 1461 * %NULL is returned if there is no free memory. 1462 */ 1463 static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 1464 gfp_t gfp_mask) 1465 { 1466 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask); 1467 if (likely(skb)) 1468 skb_reserve(skb, NET_SKB_PAD); 1469 return skb; 1470 } 1471 1472 extern struct sk_buff *dev_alloc_skb(unsigned int length); 1473 1474 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev, 1475 unsigned int length, gfp_t gfp_mask); 1476 1477 /** 1478 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 1479 * @dev: network device to receive on 1480 * @length: length to allocate 1481 * 1482 * Allocate a new &sk_buff and assign it a usage count of one. The 1483 * buffer has unspecified headroom built in. Users should allocate 1484 * the headroom they think they need without accounting for the 1485 * built in space. The built in space is used for optimisations. 1486 * 1487 * %NULL is returned if there is no free memory. Although this function 1488 * allocates memory it can be called from an interrupt. 1489 */ 1490 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 1491 unsigned int length) 1492 { 1493 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 1494 } 1495 1496 extern struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask); 1497 1498 /** 1499 * netdev_alloc_page - allocate a page for ps-rx on a specific device 1500 * @dev: network device to receive on 1501 * 1502 * Allocate a new page node local to the specified device. 1503 * 1504 * %NULL is returned if there is no free memory. 1505 */ 1506 static inline struct page *netdev_alloc_page(struct net_device *dev) 1507 { 1508 return __netdev_alloc_page(dev, GFP_ATOMIC); 1509 } 1510 1511 static inline void netdev_free_page(struct net_device *dev, struct page *page) 1512 { 1513 __free_page(page); 1514 } 1515 1516 /** 1517 * skb_clone_writable - is the header of a clone writable 1518 * @skb: buffer to check 1519 * @len: length up to which to write 1520 * 1521 * Returns true if modifying the header part of the cloned buffer 1522 * does not requires the data to be copied. 1523 */ 1524 static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len) 1525 { 1526 return !skb_header_cloned(skb) && 1527 skb_headroom(skb) + len <= skb->hdr_len; 1528 } 1529 1530 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 1531 int cloned) 1532 { 1533 int delta = 0; 1534 1535 if (headroom < NET_SKB_PAD) 1536 headroom = NET_SKB_PAD; 1537 if (headroom > skb_headroom(skb)) 1538 delta = headroom - skb_headroom(skb); 1539 1540 if (delta || cloned) 1541 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 1542 GFP_ATOMIC); 1543 return 0; 1544 } 1545 1546 /** 1547 * skb_cow - copy header of skb when it is required 1548 * @skb: buffer to cow 1549 * @headroom: needed headroom 1550 * 1551 * If the skb passed lacks sufficient headroom or its data part 1552 * is shared, data is reallocated. If reallocation fails, an error 1553 * is returned and original skb is not changed. 1554 * 1555 * The result is skb with writable area skb->head...skb->tail 1556 * and at least @headroom of space at head. 1557 */ 1558 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 1559 { 1560 return __skb_cow(skb, headroom, skb_cloned(skb)); 1561 } 1562 1563 /** 1564 * skb_cow_head - skb_cow but only making the head writable 1565 * @skb: buffer to cow 1566 * @headroom: needed headroom 1567 * 1568 * This function is identical to skb_cow except that we replace the 1569 * skb_cloned check by skb_header_cloned. It should be used when 1570 * you only need to push on some header and do not need to modify 1571 * the data. 1572 */ 1573 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 1574 { 1575 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 1576 } 1577 1578 /** 1579 * skb_padto - pad an skbuff up to a minimal size 1580 * @skb: buffer to pad 1581 * @len: minimal length 1582 * 1583 * Pads up a buffer to ensure the trailing bytes exist and are 1584 * blanked. If the buffer already contains sufficient data it 1585 * is untouched. Otherwise it is extended. Returns zero on 1586 * success. The skb is freed on error. 1587 */ 1588 1589 static inline int skb_padto(struct sk_buff *skb, unsigned int len) 1590 { 1591 unsigned int size = skb->len; 1592 if (likely(size >= len)) 1593 return 0; 1594 return skb_pad(skb, len - size); 1595 } 1596 1597 static inline int skb_add_data(struct sk_buff *skb, 1598 char __user *from, int copy) 1599 { 1600 const int off = skb->len; 1601 1602 if (skb->ip_summed == CHECKSUM_NONE) { 1603 int err = 0; 1604 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy), 1605 copy, 0, &err); 1606 if (!err) { 1607 skb->csum = csum_block_add(skb->csum, csum, off); 1608 return 0; 1609 } 1610 } else if (!copy_from_user(skb_put(skb, copy), from, copy)) 1611 return 0; 1612 1613 __skb_trim(skb, off); 1614 return -EFAULT; 1615 } 1616 1617 static inline int skb_can_coalesce(struct sk_buff *skb, int i, 1618 struct page *page, int off) 1619 { 1620 if (i) { 1621 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 1622 1623 return page == frag->page && 1624 off == frag->page_offset + frag->size; 1625 } 1626 return 0; 1627 } 1628 1629 static inline int __skb_linearize(struct sk_buff *skb) 1630 { 1631 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 1632 } 1633 1634 /** 1635 * skb_linearize - convert paged skb to linear one 1636 * @skb: buffer to linarize 1637 * 1638 * If there is no free memory -ENOMEM is returned, otherwise zero 1639 * is returned and the old skb data released. 1640 */ 1641 static inline int skb_linearize(struct sk_buff *skb) 1642 { 1643 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 1644 } 1645 1646 /** 1647 * skb_linearize_cow - make sure skb is linear and writable 1648 * @skb: buffer to process 1649 * 1650 * If there is no free memory -ENOMEM is returned, otherwise zero 1651 * is returned and the old skb data released. 1652 */ 1653 static inline int skb_linearize_cow(struct sk_buff *skb) 1654 { 1655 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 1656 __skb_linearize(skb) : 0; 1657 } 1658 1659 /** 1660 * skb_postpull_rcsum - update checksum for received skb after pull 1661 * @skb: buffer to update 1662 * @start: start of data before pull 1663 * @len: length of data pulled 1664 * 1665 * After doing a pull on a received packet, you need to call this to 1666 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 1667 * CHECKSUM_NONE so that it can be recomputed from scratch. 1668 */ 1669 1670 static inline void skb_postpull_rcsum(struct sk_buff *skb, 1671 const void *start, unsigned int len) 1672 { 1673 if (skb->ip_summed == CHECKSUM_COMPLETE) 1674 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0)); 1675 } 1676 1677 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 1678 1679 /** 1680 * pskb_trim_rcsum - trim received skb and update checksum 1681 * @skb: buffer to trim 1682 * @len: new length 1683 * 1684 * This is exactly the same as pskb_trim except that it ensures the 1685 * checksum of received packets are still valid after the operation. 1686 */ 1687 1688 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 1689 { 1690 if (likely(len >= skb->len)) 1691 return 0; 1692 if (skb->ip_summed == CHECKSUM_COMPLETE) 1693 skb->ip_summed = CHECKSUM_NONE; 1694 return __pskb_trim(skb, len); 1695 } 1696 1697 #define skb_queue_walk(queue, skb) \ 1698 for (skb = (queue)->next; \ 1699 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \ 1700 skb = skb->next) 1701 1702 #define skb_queue_walk_safe(queue, skb, tmp) \ 1703 for (skb = (queue)->next, tmp = skb->next; \ 1704 skb != (struct sk_buff *)(queue); \ 1705 skb = tmp, tmp = skb->next) 1706 1707 #define skb_queue_walk_from(queue, skb) \ 1708 for (; prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \ 1709 skb = skb->next) 1710 1711 #define skb_queue_walk_from_safe(queue, skb, tmp) \ 1712 for (tmp = skb->next; \ 1713 skb != (struct sk_buff *)(queue); \ 1714 skb = tmp, tmp = skb->next) 1715 1716 #define skb_queue_reverse_walk(queue, skb) \ 1717 for (skb = (queue)->prev; \ 1718 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \ 1719 skb = skb->prev) 1720 1721 1722 static inline bool skb_has_frags(const struct sk_buff *skb) 1723 { 1724 return skb_shinfo(skb)->frag_list != NULL; 1725 } 1726 1727 static inline void skb_frag_list_init(struct sk_buff *skb) 1728 { 1729 skb_shinfo(skb)->frag_list = NULL; 1730 } 1731 1732 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag) 1733 { 1734 frag->next = skb_shinfo(skb)->frag_list; 1735 skb_shinfo(skb)->frag_list = frag; 1736 } 1737 1738 #define skb_walk_frags(skb, iter) \ 1739 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 1740 1741 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags, 1742 int *peeked, int *err); 1743 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, 1744 int noblock, int *err); 1745 extern unsigned int datagram_poll(struct file *file, struct socket *sock, 1746 struct poll_table_struct *wait); 1747 extern int skb_copy_datagram_iovec(const struct sk_buff *from, 1748 int offset, struct iovec *to, 1749 int size); 1750 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb, 1751 int hlen, 1752 struct iovec *iov); 1753 extern int skb_copy_datagram_from_iovec(struct sk_buff *skb, 1754 int offset, 1755 const struct iovec *from, 1756 int from_offset, 1757 int len); 1758 extern int skb_copy_datagram_const_iovec(const struct sk_buff *from, 1759 int offset, 1760 const struct iovec *to, 1761 int to_offset, 1762 int size); 1763 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 1764 extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, 1765 unsigned int flags); 1766 extern __wsum skb_checksum(const struct sk_buff *skb, int offset, 1767 int len, __wsum csum); 1768 extern int skb_copy_bits(const struct sk_buff *skb, int offset, 1769 void *to, int len); 1770 extern int skb_store_bits(struct sk_buff *skb, int offset, 1771 const void *from, int len); 1772 extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, 1773 int offset, u8 *to, int len, 1774 __wsum csum); 1775 extern int skb_splice_bits(struct sk_buff *skb, 1776 unsigned int offset, 1777 struct pipe_inode_info *pipe, 1778 unsigned int len, 1779 unsigned int flags); 1780 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 1781 extern void skb_split(struct sk_buff *skb, 1782 struct sk_buff *skb1, const u32 len); 1783 extern int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, 1784 int shiftlen); 1785 1786 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features); 1787 1788 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset, 1789 int len, void *buffer) 1790 { 1791 int hlen = skb_headlen(skb); 1792 1793 if (hlen - offset >= len) 1794 return skb->data + offset; 1795 1796 if (skb_copy_bits(skb, offset, buffer, len) < 0) 1797 return NULL; 1798 1799 return buffer; 1800 } 1801 1802 static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 1803 void *to, 1804 const unsigned int len) 1805 { 1806 memcpy(to, skb->data, len); 1807 } 1808 1809 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 1810 const int offset, void *to, 1811 const unsigned int len) 1812 { 1813 memcpy(to, skb->data + offset, len); 1814 } 1815 1816 static inline void skb_copy_to_linear_data(struct sk_buff *skb, 1817 const void *from, 1818 const unsigned int len) 1819 { 1820 memcpy(skb->data, from, len); 1821 } 1822 1823 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 1824 const int offset, 1825 const void *from, 1826 const unsigned int len) 1827 { 1828 memcpy(skb->data + offset, from, len); 1829 } 1830 1831 extern void skb_init(void); 1832 1833 static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 1834 { 1835 return skb->tstamp; 1836 } 1837 1838 /** 1839 * skb_get_timestamp - get timestamp from a skb 1840 * @skb: skb to get stamp from 1841 * @stamp: pointer to struct timeval to store stamp in 1842 * 1843 * Timestamps are stored in the skb as offsets to a base timestamp. 1844 * This function converts the offset back to a struct timeval and stores 1845 * it in stamp. 1846 */ 1847 static inline void skb_get_timestamp(const struct sk_buff *skb, 1848 struct timeval *stamp) 1849 { 1850 *stamp = ktime_to_timeval(skb->tstamp); 1851 } 1852 1853 static inline void skb_get_timestampns(const struct sk_buff *skb, 1854 struct timespec *stamp) 1855 { 1856 *stamp = ktime_to_timespec(skb->tstamp); 1857 } 1858 1859 static inline void __net_timestamp(struct sk_buff *skb) 1860 { 1861 skb->tstamp = ktime_get_real(); 1862 } 1863 1864 static inline ktime_t net_timedelta(ktime_t t) 1865 { 1866 return ktime_sub(ktime_get_real(), t); 1867 } 1868 1869 static inline ktime_t net_invalid_timestamp(void) 1870 { 1871 return ktime_set(0, 0); 1872 } 1873 1874 /** 1875 * skb_tstamp_tx - queue clone of skb with send time stamps 1876 * @orig_skb: the original outgoing packet 1877 * @hwtstamps: hardware time stamps, may be NULL if not available 1878 * 1879 * If the skb has a socket associated, then this function clones the 1880 * skb (thus sharing the actual data and optional structures), stores 1881 * the optional hardware time stamping information (if non NULL) or 1882 * generates a software time stamp (otherwise), then queues the clone 1883 * to the error queue of the socket. Errors are silently ignored. 1884 */ 1885 extern void skb_tstamp_tx(struct sk_buff *orig_skb, 1886 struct skb_shared_hwtstamps *hwtstamps); 1887 1888 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 1889 extern __sum16 __skb_checksum_complete(struct sk_buff *skb); 1890 1891 static inline int skb_csum_unnecessary(const struct sk_buff *skb) 1892 { 1893 return skb->ip_summed & CHECKSUM_UNNECESSARY; 1894 } 1895 1896 /** 1897 * skb_checksum_complete - Calculate checksum of an entire packet 1898 * @skb: packet to process 1899 * 1900 * This function calculates the checksum over the entire packet plus 1901 * the value of skb->csum. The latter can be used to supply the 1902 * checksum of a pseudo header as used by TCP/UDP. It returns the 1903 * checksum. 1904 * 1905 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 1906 * this function can be used to verify that checksum on received 1907 * packets. In that case the function should return zero if the 1908 * checksum is correct. In particular, this function will return zero 1909 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 1910 * hardware has already verified the correctness of the checksum. 1911 */ 1912 static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 1913 { 1914 return skb_csum_unnecessary(skb) ? 1915 0 : __skb_checksum_complete(skb); 1916 } 1917 1918 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 1919 extern void nf_conntrack_destroy(struct nf_conntrack *nfct); 1920 static inline void nf_conntrack_put(struct nf_conntrack *nfct) 1921 { 1922 if (nfct && atomic_dec_and_test(&nfct->use)) 1923 nf_conntrack_destroy(nfct); 1924 } 1925 static inline void nf_conntrack_get(struct nf_conntrack *nfct) 1926 { 1927 if (nfct) 1928 atomic_inc(&nfct->use); 1929 } 1930 static inline void nf_conntrack_get_reasm(struct sk_buff *skb) 1931 { 1932 if (skb) 1933 atomic_inc(&skb->users); 1934 } 1935 static inline void nf_conntrack_put_reasm(struct sk_buff *skb) 1936 { 1937 if (skb) 1938 kfree_skb(skb); 1939 } 1940 #endif 1941 #ifdef CONFIG_BRIDGE_NETFILTER 1942 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge) 1943 { 1944 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use)) 1945 kfree(nf_bridge); 1946 } 1947 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge) 1948 { 1949 if (nf_bridge) 1950 atomic_inc(&nf_bridge->use); 1951 } 1952 #endif /* CONFIG_BRIDGE_NETFILTER */ 1953 static inline void nf_reset(struct sk_buff *skb) 1954 { 1955 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 1956 nf_conntrack_put(skb->nfct); 1957 skb->nfct = NULL; 1958 nf_conntrack_put_reasm(skb->nfct_reasm); 1959 skb->nfct_reasm = NULL; 1960 #endif 1961 #ifdef CONFIG_BRIDGE_NETFILTER 1962 nf_bridge_put(skb->nf_bridge); 1963 skb->nf_bridge = NULL; 1964 #endif 1965 } 1966 1967 /* Note: This doesn't put any conntrack and bridge info in dst. */ 1968 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src) 1969 { 1970 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 1971 dst->nfct = src->nfct; 1972 nf_conntrack_get(src->nfct); 1973 dst->nfctinfo = src->nfctinfo; 1974 dst->nfct_reasm = src->nfct_reasm; 1975 nf_conntrack_get_reasm(src->nfct_reasm); 1976 #endif 1977 #ifdef CONFIG_BRIDGE_NETFILTER 1978 dst->nf_bridge = src->nf_bridge; 1979 nf_bridge_get(src->nf_bridge); 1980 #endif 1981 } 1982 1983 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 1984 { 1985 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 1986 nf_conntrack_put(dst->nfct); 1987 nf_conntrack_put_reasm(dst->nfct_reasm); 1988 #endif 1989 #ifdef CONFIG_BRIDGE_NETFILTER 1990 nf_bridge_put(dst->nf_bridge); 1991 #endif 1992 __nf_copy(dst, src); 1993 } 1994 1995 #ifdef CONFIG_NETWORK_SECMARK 1996 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 1997 { 1998 to->secmark = from->secmark; 1999 } 2000 2001 static inline void skb_init_secmark(struct sk_buff *skb) 2002 { 2003 skb->secmark = 0; 2004 } 2005 #else 2006 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 2007 { } 2008 2009 static inline void skb_init_secmark(struct sk_buff *skb) 2010 { } 2011 #endif 2012 2013 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 2014 { 2015 skb->queue_mapping = queue_mapping; 2016 } 2017 2018 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 2019 { 2020 return skb->queue_mapping; 2021 } 2022 2023 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 2024 { 2025 to->queue_mapping = from->queue_mapping; 2026 } 2027 2028 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 2029 { 2030 skb->queue_mapping = rx_queue + 1; 2031 } 2032 2033 static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 2034 { 2035 return skb->queue_mapping - 1; 2036 } 2037 2038 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 2039 { 2040 return (skb->queue_mapping != 0); 2041 } 2042 2043 extern u16 skb_tx_hash(const struct net_device *dev, 2044 const struct sk_buff *skb); 2045 2046 #ifdef CONFIG_XFRM 2047 static inline struct sec_path *skb_sec_path(struct sk_buff *skb) 2048 { 2049 return skb->sp; 2050 } 2051 #else 2052 static inline struct sec_path *skb_sec_path(struct sk_buff *skb) 2053 { 2054 return NULL; 2055 } 2056 #endif 2057 2058 static inline int skb_is_gso(const struct sk_buff *skb) 2059 { 2060 return skb_shinfo(skb)->gso_size; 2061 } 2062 2063 static inline int skb_is_gso_v6(const struct sk_buff *skb) 2064 { 2065 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 2066 } 2067 2068 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb); 2069 2070 static inline bool skb_warn_if_lro(const struct sk_buff *skb) 2071 { 2072 /* LRO sets gso_size but not gso_type, whereas if GSO is really 2073 * wanted then gso_type will be set. */ 2074 struct skb_shared_info *shinfo = skb_shinfo(skb); 2075 if (shinfo->gso_size != 0 && unlikely(shinfo->gso_type == 0)) { 2076 __skb_warn_lro_forwarding(skb); 2077 return true; 2078 } 2079 return false; 2080 } 2081 2082 static inline void skb_forward_csum(struct sk_buff *skb) 2083 { 2084 /* Unfortunately we don't support this one. Any brave souls? */ 2085 if (skb->ip_summed == CHECKSUM_COMPLETE) 2086 skb->ip_summed = CHECKSUM_NONE; 2087 } 2088 2089 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 2090 #endif /* __KERNEL__ */ 2091 #endif /* _LINUX_SKBUFF_H */ 2092