xref: /linux-6.15/include/linux/skbuff.h (revision dfff0fa6)
1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <[email protected]>
6  *		Florian La Roche, <[email protected]>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/cache.h>
22 
23 #include <asm/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/dmaengine.h>
31 #include <linux/hrtimer.h>
32 
33 /* Don't change this without changing skb_csum_unnecessary! */
34 #define CHECKSUM_NONE 0
35 #define CHECKSUM_UNNECESSARY 1
36 #define CHECKSUM_COMPLETE 2
37 #define CHECKSUM_PARTIAL 3
38 
39 #define SKB_DATA_ALIGN(X)	(((X) + (SMP_CACHE_BYTES - 1)) & \
40 				 ~(SMP_CACHE_BYTES - 1))
41 #define SKB_WITH_OVERHEAD(X)	\
42 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
43 #define SKB_MAX_ORDER(X, ORDER) \
44 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
45 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
46 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
47 
48 /* A. Checksumming of received packets by device.
49  *
50  *	NONE: device failed to checksum this packet.
51  *		skb->csum is undefined.
52  *
53  *	UNNECESSARY: device parsed packet and wouldbe verified checksum.
54  *		skb->csum is undefined.
55  *	      It is bad option, but, unfortunately, many of vendors do this.
56  *	      Apparently with secret goal to sell you new device, when you
57  *	      will add new protocol to your host. F.e. IPv6. 8)
58  *
59  *	COMPLETE: the most generic way. Device supplied checksum of _all_
60  *	    the packet as seen by netif_rx in skb->csum.
61  *	    NOTE: Even if device supports only some protocols, but
62  *	    is able to produce some skb->csum, it MUST use COMPLETE,
63  *	    not UNNECESSARY.
64  *
65  *	PARTIAL: identical to the case for output below.  This may occur
66  *	    on a packet received directly from another Linux OS, e.g.,
67  *	    a virtualised Linux kernel on the same host.  The packet can
68  *	    be treated in the same way as UNNECESSARY except that on
69  *	    output (i.e., forwarding) the checksum must be filled in
70  *	    by the OS or the hardware.
71  *
72  * B. Checksumming on output.
73  *
74  *	NONE: skb is checksummed by protocol or csum is not required.
75  *
76  *	PARTIAL: device is required to csum packet as seen by hard_start_xmit
77  *	from skb->csum_start to the end and to record the checksum
78  *	at skb->csum_start + skb->csum_offset.
79  *
80  *	Device must show its capabilities in dev->features, set
81  *	at device setup time.
82  *	NETIF_F_HW_CSUM	- it is clever device, it is able to checksum
83  *			  everything.
84  *	NETIF_F_NO_CSUM - loopback or reliable single hop media.
85  *	NETIF_F_IP_CSUM - device is dumb. It is able to csum only
86  *			  TCP/UDP over IPv4. Sigh. Vendors like this
87  *			  way by an unknown reason. Though, see comment above
88  *			  about CHECKSUM_UNNECESSARY. 8)
89  *	NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
90  *
91  *	Any questions? No questions, good. 		--ANK
92  */
93 
94 struct net_device;
95 struct scatterlist;
96 struct pipe_inode_info;
97 
98 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
99 struct nf_conntrack {
100 	atomic_t use;
101 };
102 #endif
103 
104 #ifdef CONFIG_BRIDGE_NETFILTER
105 struct nf_bridge_info {
106 	atomic_t use;
107 	struct net_device *physindev;
108 	struct net_device *physoutdev;
109 	unsigned int mask;
110 	unsigned long data[32 / sizeof(unsigned long)];
111 };
112 #endif
113 
114 struct sk_buff_head {
115 	/* These two members must be first. */
116 	struct sk_buff	*next;
117 	struct sk_buff	*prev;
118 
119 	__u32		qlen;
120 	spinlock_t	lock;
121 };
122 
123 struct sk_buff;
124 
125 /* To allow 64K frame to be packed as single skb without frag_list */
126 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
127 
128 typedef struct skb_frag_struct skb_frag_t;
129 
130 struct skb_frag_struct {
131 	struct page *page;
132 	__u32 page_offset;
133 	__u32 size;
134 };
135 
136 #define HAVE_HW_TIME_STAMP
137 
138 /**
139  * struct skb_shared_hwtstamps - hardware time stamps
140  * @hwtstamp:	hardware time stamp transformed into duration
141  *		since arbitrary point in time
142  * @syststamp:	hwtstamp transformed to system time base
143  *
144  * Software time stamps generated by ktime_get_real() are stored in
145  * skb->tstamp. The relation between the different kinds of time
146  * stamps is as follows:
147  *
148  * syststamp and tstamp can be compared against each other in
149  * arbitrary combinations.  The accuracy of a
150  * syststamp/tstamp/"syststamp from other device" comparison is
151  * limited by the accuracy of the transformation into system time
152  * base. This depends on the device driver and its underlying
153  * hardware.
154  *
155  * hwtstamps can only be compared against other hwtstamps from
156  * the same device.
157  *
158  * This structure is attached to packets as part of the
159  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
160  */
161 struct skb_shared_hwtstamps {
162 	ktime_t	hwtstamp;
163 	ktime_t	syststamp;
164 };
165 
166 /**
167  * struct skb_shared_tx - instructions for time stamping of outgoing packets
168  * @hardware:		generate hardware time stamp
169  * @software:		generate software time stamp
170  * @in_progress:	device driver is going to provide
171  *			hardware time stamp
172  * @flags:		all shared_tx flags
173  *
174  * These flags are attached to packets as part of the
175  * &skb_shared_info. Use skb_tx() to get a pointer.
176  */
177 union skb_shared_tx {
178 	struct {
179 		__u8	hardware:1,
180 			software:1,
181 			in_progress:1;
182 	};
183 	__u8 flags;
184 };
185 
186 /* This data is invariant across clones and lives at
187  * the end of the header data, ie. at skb->end.
188  */
189 struct skb_shared_info {
190 	atomic_t	dataref;
191 	unsigned short	nr_frags;
192 	unsigned short	gso_size;
193 #ifdef CONFIG_HAS_DMA
194 	dma_addr_t	dma_head;
195 #endif
196 	/* Warning: this field is not always filled in (UFO)! */
197 	unsigned short	gso_segs;
198 	unsigned short  gso_type;
199 	__be32          ip6_frag_id;
200 	union skb_shared_tx tx_flags;
201 	struct sk_buff	*frag_list;
202 	struct skb_shared_hwtstamps hwtstamps;
203 	skb_frag_t	frags[MAX_SKB_FRAGS];
204 #ifdef CONFIG_HAS_DMA
205 	dma_addr_t	dma_maps[MAX_SKB_FRAGS];
206 #endif
207 	/* Intermediate layers must ensure that destructor_arg
208 	 * remains valid until skb destructor */
209 	void *		destructor_arg;
210 };
211 
212 /* We divide dataref into two halves.  The higher 16 bits hold references
213  * to the payload part of skb->data.  The lower 16 bits hold references to
214  * the entire skb->data.  A clone of a headerless skb holds the length of
215  * the header in skb->hdr_len.
216  *
217  * All users must obey the rule that the skb->data reference count must be
218  * greater than or equal to the payload reference count.
219  *
220  * Holding a reference to the payload part means that the user does not
221  * care about modifications to the header part of skb->data.
222  */
223 #define SKB_DATAREF_SHIFT 16
224 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
225 
226 
227 enum {
228 	SKB_FCLONE_UNAVAILABLE,
229 	SKB_FCLONE_ORIG,
230 	SKB_FCLONE_CLONE,
231 };
232 
233 enum {
234 	SKB_GSO_TCPV4 = 1 << 0,
235 	SKB_GSO_UDP = 1 << 1,
236 
237 	/* This indicates the skb is from an untrusted source. */
238 	SKB_GSO_DODGY = 1 << 2,
239 
240 	/* This indicates the tcp segment has CWR set. */
241 	SKB_GSO_TCP_ECN = 1 << 3,
242 
243 	SKB_GSO_TCPV6 = 1 << 4,
244 
245 	SKB_GSO_FCOE = 1 << 5,
246 };
247 
248 #if BITS_PER_LONG > 32
249 #define NET_SKBUFF_DATA_USES_OFFSET 1
250 #endif
251 
252 #ifdef NET_SKBUFF_DATA_USES_OFFSET
253 typedef unsigned int sk_buff_data_t;
254 #else
255 typedef unsigned char *sk_buff_data_t;
256 #endif
257 
258 /**
259  *	struct sk_buff - socket buffer
260  *	@next: Next buffer in list
261  *	@prev: Previous buffer in list
262  *	@sk: Socket we are owned by
263  *	@tstamp: Time we arrived
264  *	@dev: Device we arrived on/are leaving by
265  *	@transport_header: Transport layer header
266  *	@network_header: Network layer header
267  *	@mac_header: Link layer header
268  *	@_skb_dst: destination entry
269  *	@sp: the security path, used for xfrm
270  *	@cb: Control buffer. Free for use by every layer. Put private vars here
271  *	@len: Length of actual data
272  *	@data_len: Data length
273  *	@mac_len: Length of link layer header
274  *	@hdr_len: writable header length of cloned skb
275  *	@csum: Checksum (must include start/offset pair)
276  *	@csum_start: Offset from skb->head where checksumming should start
277  *	@csum_offset: Offset from csum_start where checksum should be stored
278  *	@local_df: allow local fragmentation
279  *	@cloned: Head may be cloned (check refcnt to be sure)
280  *	@nohdr: Payload reference only, must not modify header
281  *	@pkt_type: Packet class
282  *	@fclone: skbuff clone status
283  *	@ip_summed: Driver fed us an IP checksum
284  *	@priority: Packet queueing priority
285  *	@users: User count - see {datagram,tcp}.c
286  *	@protocol: Packet protocol from driver
287  *	@truesize: Buffer size
288  *	@head: Head of buffer
289  *	@data: Data head pointer
290  *	@tail: Tail pointer
291  *	@end: End pointer
292  *	@destructor: Destruct function
293  *	@mark: Generic packet mark
294  *	@nfct: Associated connection, if any
295  *	@ipvs_property: skbuff is owned by ipvs
296  *	@peeked: this packet has been seen already, so stats have been
297  *		done for it, don't do them again
298  *	@nf_trace: netfilter packet trace flag
299  *	@nfctinfo: Relationship of this skb to the connection
300  *	@nfct_reasm: netfilter conntrack re-assembly pointer
301  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
302  *	@iif: ifindex of device we arrived on
303  *	@queue_mapping: Queue mapping for multiqueue devices
304  *	@tc_index: Traffic control index
305  *	@tc_verd: traffic control verdict
306  *	@ndisc_nodetype: router type (from link layer)
307  *	@do_not_encrypt: set to prevent encryption of this frame
308  *	@dma_cookie: a cookie to one of several possible DMA operations
309  *		done by skb DMA functions
310  *	@secmark: security marking
311  *	@vlan_tci: vlan tag control information
312  */
313 
314 struct sk_buff {
315 	/* These two members must be first. */
316 	struct sk_buff		*next;
317 	struct sk_buff		*prev;
318 
319 	struct sock		*sk;
320 	ktime_t			tstamp;
321 	struct net_device	*dev;
322 
323 	unsigned long		_skb_dst;
324 #ifdef CONFIG_XFRM
325 	struct	sec_path	*sp;
326 #endif
327 	/*
328 	 * This is the control buffer. It is free to use for every
329 	 * layer. Please put your private variables there. If you
330 	 * want to keep them across layers you have to do a skb_clone()
331 	 * first. This is owned by whoever has the skb queued ATM.
332 	 */
333 	char			cb[48];
334 
335 	unsigned int		len,
336 				data_len;
337 	__u16			mac_len,
338 				hdr_len;
339 	union {
340 		__wsum		csum;
341 		struct {
342 			__u16	csum_start;
343 			__u16	csum_offset;
344 		};
345 	};
346 	__u32			priority;
347 	kmemcheck_bitfield_begin(flags1);
348 	__u8			local_df:1,
349 				cloned:1,
350 				ip_summed:2,
351 				nohdr:1,
352 				nfctinfo:3;
353 	__u8			pkt_type:3,
354 				fclone:2,
355 				ipvs_property:1,
356 				peeked:1,
357 				nf_trace:1;
358 	kmemcheck_bitfield_end(flags1);
359 	__be16			protocol;
360 
361 	void			(*destructor)(struct sk_buff *skb);
362 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
363 	struct nf_conntrack	*nfct;
364 	struct sk_buff		*nfct_reasm;
365 #endif
366 #ifdef CONFIG_BRIDGE_NETFILTER
367 	struct nf_bridge_info	*nf_bridge;
368 #endif
369 
370 	int			iif;
371 	__u16			queue_mapping;
372 #ifdef CONFIG_NET_SCHED
373 	__u16			tc_index;	/* traffic control index */
374 #ifdef CONFIG_NET_CLS_ACT
375 	__u16			tc_verd;	/* traffic control verdict */
376 #endif
377 #endif
378 
379 	kmemcheck_bitfield_begin(flags2);
380 #ifdef CONFIG_IPV6_NDISC_NODETYPE
381 	__u8			ndisc_nodetype:2;
382 #endif
383 #if defined(CONFIG_MAC80211) || defined(CONFIG_MAC80211_MODULE)
384 	__u8			do_not_encrypt:1;
385 #endif
386 	kmemcheck_bitfield_end(flags2);
387 
388 	/* 0/13/14 bit hole */
389 
390 #ifdef CONFIG_NET_DMA
391 	dma_cookie_t		dma_cookie;
392 #endif
393 #ifdef CONFIG_NETWORK_SECMARK
394 	__u32			secmark;
395 #endif
396 
397 	__u32			mark;
398 
399 	__u16			vlan_tci;
400 
401 	sk_buff_data_t		transport_header;
402 	sk_buff_data_t		network_header;
403 	sk_buff_data_t		mac_header;
404 	/* These elements must be at the end, see alloc_skb() for details.  */
405 	sk_buff_data_t		tail;
406 	sk_buff_data_t		end;
407 	unsigned char		*head,
408 				*data;
409 	unsigned int		truesize;
410 	atomic_t		users;
411 };
412 
413 #ifdef __KERNEL__
414 /*
415  *	Handling routines are only of interest to the kernel
416  */
417 #include <linux/slab.h>
418 
419 #include <asm/system.h>
420 
421 #ifdef CONFIG_HAS_DMA
422 #include <linux/dma-mapping.h>
423 extern int skb_dma_map(struct device *dev, struct sk_buff *skb,
424 		       enum dma_data_direction dir);
425 extern void skb_dma_unmap(struct device *dev, struct sk_buff *skb,
426 			  enum dma_data_direction dir);
427 #endif
428 
429 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
430 {
431 	return (struct dst_entry *)skb->_skb_dst;
432 }
433 
434 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
435 {
436 	skb->_skb_dst = (unsigned long)dst;
437 }
438 
439 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
440 {
441 	return (struct rtable *)skb_dst(skb);
442 }
443 
444 extern void kfree_skb(struct sk_buff *skb);
445 extern void consume_skb(struct sk_buff *skb);
446 extern void	       __kfree_skb(struct sk_buff *skb);
447 extern struct sk_buff *__alloc_skb(unsigned int size,
448 				   gfp_t priority, int fclone, int node);
449 static inline struct sk_buff *alloc_skb(unsigned int size,
450 					gfp_t priority)
451 {
452 	return __alloc_skb(size, priority, 0, -1);
453 }
454 
455 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
456 					       gfp_t priority)
457 {
458 	return __alloc_skb(size, priority, 1, -1);
459 }
460 
461 extern int skb_recycle_check(struct sk_buff *skb, int skb_size);
462 
463 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
464 extern struct sk_buff *skb_clone(struct sk_buff *skb,
465 				 gfp_t priority);
466 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
467 				gfp_t priority);
468 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
469 				 gfp_t gfp_mask);
470 extern int	       pskb_expand_head(struct sk_buff *skb,
471 					int nhead, int ntail,
472 					gfp_t gfp_mask);
473 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
474 					    unsigned int headroom);
475 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
476 				       int newheadroom, int newtailroom,
477 				       gfp_t priority);
478 extern int	       skb_to_sgvec(struct sk_buff *skb,
479 				    struct scatterlist *sg, int offset,
480 				    int len);
481 extern int	       skb_cow_data(struct sk_buff *skb, int tailbits,
482 				    struct sk_buff **trailer);
483 extern int	       skb_pad(struct sk_buff *skb, int pad);
484 #define dev_kfree_skb(a)	consume_skb(a)
485 #define dev_consume_skb(a)	kfree_skb_clean(a)
486 extern void	      skb_over_panic(struct sk_buff *skb, int len,
487 				     void *here);
488 extern void	      skb_under_panic(struct sk_buff *skb, int len,
489 				      void *here);
490 
491 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
492 			int getfrag(void *from, char *to, int offset,
493 			int len,int odd, struct sk_buff *skb),
494 			void *from, int length);
495 
496 struct skb_seq_state
497 {
498 	__u32		lower_offset;
499 	__u32		upper_offset;
500 	__u32		frag_idx;
501 	__u32		stepped_offset;
502 	struct sk_buff	*root_skb;
503 	struct sk_buff	*cur_skb;
504 	__u8		*frag_data;
505 };
506 
507 extern void	      skb_prepare_seq_read(struct sk_buff *skb,
508 					   unsigned int from, unsigned int to,
509 					   struct skb_seq_state *st);
510 extern unsigned int   skb_seq_read(unsigned int consumed, const u8 **data,
511 				   struct skb_seq_state *st);
512 extern void	      skb_abort_seq_read(struct skb_seq_state *st);
513 
514 extern unsigned int   skb_find_text(struct sk_buff *skb, unsigned int from,
515 				    unsigned int to, struct ts_config *config,
516 				    struct ts_state *state);
517 
518 #ifdef NET_SKBUFF_DATA_USES_OFFSET
519 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
520 {
521 	return skb->head + skb->end;
522 }
523 #else
524 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
525 {
526 	return skb->end;
527 }
528 #endif
529 
530 /* Internal */
531 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
532 
533 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
534 {
535 	return &skb_shinfo(skb)->hwtstamps;
536 }
537 
538 static inline union skb_shared_tx *skb_tx(struct sk_buff *skb)
539 {
540 	return &skb_shinfo(skb)->tx_flags;
541 }
542 
543 /**
544  *	skb_queue_empty - check if a queue is empty
545  *	@list: queue head
546  *
547  *	Returns true if the queue is empty, false otherwise.
548  */
549 static inline int skb_queue_empty(const struct sk_buff_head *list)
550 {
551 	return list->next == (struct sk_buff *)list;
552 }
553 
554 /**
555  *	skb_queue_is_last - check if skb is the last entry in the queue
556  *	@list: queue head
557  *	@skb: buffer
558  *
559  *	Returns true if @skb is the last buffer on the list.
560  */
561 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
562 				     const struct sk_buff *skb)
563 {
564 	return (skb->next == (struct sk_buff *) list);
565 }
566 
567 /**
568  *	skb_queue_is_first - check if skb is the first entry in the queue
569  *	@list: queue head
570  *	@skb: buffer
571  *
572  *	Returns true if @skb is the first buffer on the list.
573  */
574 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
575 				      const struct sk_buff *skb)
576 {
577 	return (skb->prev == (struct sk_buff *) list);
578 }
579 
580 /**
581  *	skb_queue_next - return the next packet in the queue
582  *	@list: queue head
583  *	@skb: current buffer
584  *
585  *	Return the next packet in @list after @skb.  It is only valid to
586  *	call this if skb_queue_is_last() evaluates to false.
587  */
588 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
589 					     const struct sk_buff *skb)
590 {
591 	/* This BUG_ON may seem severe, but if we just return then we
592 	 * are going to dereference garbage.
593 	 */
594 	BUG_ON(skb_queue_is_last(list, skb));
595 	return skb->next;
596 }
597 
598 /**
599  *	skb_queue_prev - return the prev packet in the queue
600  *	@list: queue head
601  *	@skb: current buffer
602  *
603  *	Return the prev packet in @list before @skb.  It is only valid to
604  *	call this if skb_queue_is_first() evaluates to false.
605  */
606 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
607 					     const struct sk_buff *skb)
608 {
609 	/* This BUG_ON may seem severe, but if we just return then we
610 	 * are going to dereference garbage.
611 	 */
612 	BUG_ON(skb_queue_is_first(list, skb));
613 	return skb->prev;
614 }
615 
616 /**
617  *	skb_get - reference buffer
618  *	@skb: buffer to reference
619  *
620  *	Makes another reference to a socket buffer and returns a pointer
621  *	to the buffer.
622  */
623 static inline struct sk_buff *skb_get(struct sk_buff *skb)
624 {
625 	atomic_inc(&skb->users);
626 	return skb;
627 }
628 
629 /*
630  * If users == 1, we are the only owner and are can avoid redundant
631  * atomic change.
632  */
633 
634 /**
635  *	skb_cloned - is the buffer a clone
636  *	@skb: buffer to check
637  *
638  *	Returns true if the buffer was generated with skb_clone() and is
639  *	one of multiple shared copies of the buffer. Cloned buffers are
640  *	shared data so must not be written to under normal circumstances.
641  */
642 static inline int skb_cloned(const struct sk_buff *skb)
643 {
644 	return skb->cloned &&
645 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
646 }
647 
648 /**
649  *	skb_header_cloned - is the header a clone
650  *	@skb: buffer to check
651  *
652  *	Returns true if modifying the header part of the buffer requires
653  *	the data to be copied.
654  */
655 static inline int skb_header_cloned(const struct sk_buff *skb)
656 {
657 	int dataref;
658 
659 	if (!skb->cloned)
660 		return 0;
661 
662 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
663 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
664 	return dataref != 1;
665 }
666 
667 /**
668  *	skb_header_release - release reference to header
669  *	@skb: buffer to operate on
670  *
671  *	Drop a reference to the header part of the buffer.  This is done
672  *	by acquiring a payload reference.  You must not read from the header
673  *	part of skb->data after this.
674  */
675 static inline void skb_header_release(struct sk_buff *skb)
676 {
677 	BUG_ON(skb->nohdr);
678 	skb->nohdr = 1;
679 	atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
680 }
681 
682 /**
683  *	skb_shared - is the buffer shared
684  *	@skb: buffer to check
685  *
686  *	Returns true if more than one person has a reference to this
687  *	buffer.
688  */
689 static inline int skb_shared(const struct sk_buff *skb)
690 {
691 	return atomic_read(&skb->users) != 1;
692 }
693 
694 /**
695  *	skb_share_check - check if buffer is shared and if so clone it
696  *	@skb: buffer to check
697  *	@pri: priority for memory allocation
698  *
699  *	If the buffer is shared the buffer is cloned and the old copy
700  *	drops a reference. A new clone with a single reference is returned.
701  *	If the buffer is not shared the original buffer is returned. When
702  *	being called from interrupt status or with spinlocks held pri must
703  *	be GFP_ATOMIC.
704  *
705  *	NULL is returned on a memory allocation failure.
706  */
707 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
708 					      gfp_t pri)
709 {
710 	might_sleep_if(pri & __GFP_WAIT);
711 	if (skb_shared(skb)) {
712 		struct sk_buff *nskb = skb_clone(skb, pri);
713 		kfree_skb(skb);
714 		skb = nskb;
715 	}
716 	return skb;
717 }
718 
719 /*
720  *	Copy shared buffers into a new sk_buff. We effectively do COW on
721  *	packets to handle cases where we have a local reader and forward
722  *	and a couple of other messy ones. The normal one is tcpdumping
723  *	a packet thats being forwarded.
724  */
725 
726 /**
727  *	skb_unshare - make a copy of a shared buffer
728  *	@skb: buffer to check
729  *	@pri: priority for memory allocation
730  *
731  *	If the socket buffer is a clone then this function creates a new
732  *	copy of the data, drops a reference count on the old copy and returns
733  *	the new copy with the reference count at 1. If the buffer is not a clone
734  *	the original buffer is returned. When called with a spinlock held or
735  *	from interrupt state @pri must be %GFP_ATOMIC
736  *
737  *	%NULL is returned on a memory allocation failure.
738  */
739 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
740 					  gfp_t pri)
741 {
742 	might_sleep_if(pri & __GFP_WAIT);
743 	if (skb_cloned(skb)) {
744 		struct sk_buff *nskb = skb_copy(skb, pri);
745 		kfree_skb(skb);	/* Free our shared copy */
746 		skb = nskb;
747 	}
748 	return skb;
749 }
750 
751 /**
752  *	skb_peek
753  *	@list_: list to peek at
754  *
755  *	Peek an &sk_buff. Unlike most other operations you _MUST_
756  *	be careful with this one. A peek leaves the buffer on the
757  *	list and someone else may run off with it. You must hold
758  *	the appropriate locks or have a private queue to do this.
759  *
760  *	Returns %NULL for an empty list or a pointer to the head element.
761  *	The reference count is not incremented and the reference is therefore
762  *	volatile. Use with caution.
763  */
764 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
765 {
766 	struct sk_buff *list = ((struct sk_buff *)list_)->next;
767 	if (list == (struct sk_buff *)list_)
768 		list = NULL;
769 	return list;
770 }
771 
772 /**
773  *	skb_peek_tail
774  *	@list_: list to peek at
775  *
776  *	Peek an &sk_buff. Unlike most other operations you _MUST_
777  *	be careful with this one. A peek leaves the buffer on the
778  *	list and someone else may run off with it. You must hold
779  *	the appropriate locks or have a private queue to do this.
780  *
781  *	Returns %NULL for an empty list or a pointer to the tail element.
782  *	The reference count is not incremented and the reference is therefore
783  *	volatile. Use with caution.
784  */
785 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
786 {
787 	struct sk_buff *list = ((struct sk_buff *)list_)->prev;
788 	if (list == (struct sk_buff *)list_)
789 		list = NULL;
790 	return list;
791 }
792 
793 /**
794  *	skb_queue_len	- get queue length
795  *	@list_: list to measure
796  *
797  *	Return the length of an &sk_buff queue.
798  */
799 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
800 {
801 	return list_->qlen;
802 }
803 
804 /**
805  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
806  *	@list: queue to initialize
807  *
808  *	This initializes only the list and queue length aspects of
809  *	an sk_buff_head object.  This allows to initialize the list
810  *	aspects of an sk_buff_head without reinitializing things like
811  *	the spinlock.  It can also be used for on-stack sk_buff_head
812  *	objects where the spinlock is known to not be used.
813  */
814 static inline void __skb_queue_head_init(struct sk_buff_head *list)
815 {
816 	list->prev = list->next = (struct sk_buff *)list;
817 	list->qlen = 0;
818 }
819 
820 /*
821  * This function creates a split out lock class for each invocation;
822  * this is needed for now since a whole lot of users of the skb-queue
823  * infrastructure in drivers have different locking usage (in hardirq)
824  * than the networking core (in softirq only). In the long run either the
825  * network layer or drivers should need annotation to consolidate the
826  * main types of usage into 3 classes.
827  */
828 static inline void skb_queue_head_init(struct sk_buff_head *list)
829 {
830 	spin_lock_init(&list->lock);
831 	__skb_queue_head_init(list);
832 }
833 
834 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
835 		struct lock_class_key *class)
836 {
837 	skb_queue_head_init(list);
838 	lockdep_set_class(&list->lock, class);
839 }
840 
841 /*
842  *	Insert an sk_buff on a list.
843  *
844  *	The "__skb_xxxx()" functions are the non-atomic ones that
845  *	can only be called with interrupts disabled.
846  */
847 extern void        skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
848 static inline void __skb_insert(struct sk_buff *newsk,
849 				struct sk_buff *prev, struct sk_buff *next,
850 				struct sk_buff_head *list)
851 {
852 	newsk->next = next;
853 	newsk->prev = prev;
854 	next->prev  = prev->next = newsk;
855 	list->qlen++;
856 }
857 
858 static inline void __skb_queue_splice(const struct sk_buff_head *list,
859 				      struct sk_buff *prev,
860 				      struct sk_buff *next)
861 {
862 	struct sk_buff *first = list->next;
863 	struct sk_buff *last = list->prev;
864 
865 	first->prev = prev;
866 	prev->next = first;
867 
868 	last->next = next;
869 	next->prev = last;
870 }
871 
872 /**
873  *	skb_queue_splice - join two skb lists, this is designed for stacks
874  *	@list: the new list to add
875  *	@head: the place to add it in the first list
876  */
877 static inline void skb_queue_splice(const struct sk_buff_head *list,
878 				    struct sk_buff_head *head)
879 {
880 	if (!skb_queue_empty(list)) {
881 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
882 		head->qlen += list->qlen;
883 	}
884 }
885 
886 /**
887  *	skb_queue_splice - join two skb lists and reinitialise the emptied list
888  *	@list: the new list to add
889  *	@head: the place to add it in the first list
890  *
891  *	The list at @list is reinitialised
892  */
893 static inline void skb_queue_splice_init(struct sk_buff_head *list,
894 					 struct sk_buff_head *head)
895 {
896 	if (!skb_queue_empty(list)) {
897 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
898 		head->qlen += list->qlen;
899 		__skb_queue_head_init(list);
900 	}
901 }
902 
903 /**
904  *	skb_queue_splice_tail - join two skb lists, each list being a queue
905  *	@list: the new list to add
906  *	@head: the place to add it in the first list
907  */
908 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
909 					 struct sk_buff_head *head)
910 {
911 	if (!skb_queue_empty(list)) {
912 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
913 		head->qlen += list->qlen;
914 	}
915 }
916 
917 /**
918  *	skb_queue_splice_tail - join two skb lists and reinitialise the emptied list
919  *	@list: the new list to add
920  *	@head: the place to add it in the first list
921  *
922  *	Each of the lists is a queue.
923  *	The list at @list is reinitialised
924  */
925 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
926 					      struct sk_buff_head *head)
927 {
928 	if (!skb_queue_empty(list)) {
929 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
930 		head->qlen += list->qlen;
931 		__skb_queue_head_init(list);
932 	}
933 }
934 
935 /**
936  *	__skb_queue_after - queue a buffer at the list head
937  *	@list: list to use
938  *	@prev: place after this buffer
939  *	@newsk: buffer to queue
940  *
941  *	Queue a buffer int the middle of a list. This function takes no locks
942  *	and you must therefore hold required locks before calling it.
943  *
944  *	A buffer cannot be placed on two lists at the same time.
945  */
946 static inline void __skb_queue_after(struct sk_buff_head *list,
947 				     struct sk_buff *prev,
948 				     struct sk_buff *newsk)
949 {
950 	__skb_insert(newsk, prev, prev->next, list);
951 }
952 
953 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
954 		       struct sk_buff_head *list);
955 
956 static inline void __skb_queue_before(struct sk_buff_head *list,
957 				      struct sk_buff *next,
958 				      struct sk_buff *newsk)
959 {
960 	__skb_insert(newsk, next->prev, next, list);
961 }
962 
963 /**
964  *	__skb_queue_head - queue a buffer at the list head
965  *	@list: list to use
966  *	@newsk: buffer to queue
967  *
968  *	Queue a buffer at the start of a list. This function takes no locks
969  *	and you must therefore hold required locks before calling it.
970  *
971  *	A buffer cannot be placed on two lists at the same time.
972  */
973 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
974 static inline void __skb_queue_head(struct sk_buff_head *list,
975 				    struct sk_buff *newsk)
976 {
977 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
978 }
979 
980 /**
981  *	__skb_queue_tail - queue a buffer at the list tail
982  *	@list: list to use
983  *	@newsk: buffer to queue
984  *
985  *	Queue a buffer at the end of a list. This function takes no locks
986  *	and you must therefore hold required locks before calling it.
987  *
988  *	A buffer cannot be placed on two lists at the same time.
989  */
990 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
991 static inline void __skb_queue_tail(struct sk_buff_head *list,
992 				   struct sk_buff *newsk)
993 {
994 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
995 }
996 
997 /*
998  * remove sk_buff from list. _Must_ be called atomically, and with
999  * the list known..
1000  */
1001 extern void	   skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1002 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1003 {
1004 	struct sk_buff *next, *prev;
1005 
1006 	list->qlen--;
1007 	next	   = skb->next;
1008 	prev	   = skb->prev;
1009 	skb->next  = skb->prev = NULL;
1010 	next->prev = prev;
1011 	prev->next = next;
1012 }
1013 
1014 /**
1015  *	__skb_dequeue - remove from the head of the queue
1016  *	@list: list to dequeue from
1017  *
1018  *	Remove the head of the list. This function does not take any locks
1019  *	so must be used with appropriate locks held only. The head item is
1020  *	returned or %NULL if the list is empty.
1021  */
1022 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1023 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1024 {
1025 	struct sk_buff *skb = skb_peek(list);
1026 	if (skb)
1027 		__skb_unlink(skb, list);
1028 	return skb;
1029 }
1030 
1031 /**
1032  *	__skb_dequeue_tail - remove from the tail of the queue
1033  *	@list: list to dequeue from
1034  *
1035  *	Remove the tail of the list. This function does not take any locks
1036  *	so must be used with appropriate locks held only. The tail item is
1037  *	returned or %NULL if the list is empty.
1038  */
1039 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1040 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1041 {
1042 	struct sk_buff *skb = skb_peek_tail(list);
1043 	if (skb)
1044 		__skb_unlink(skb, list);
1045 	return skb;
1046 }
1047 
1048 
1049 static inline int skb_is_nonlinear(const struct sk_buff *skb)
1050 {
1051 	return skb->data_len;
1052 }
1053 
1054 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1055 {
1056 	return skb->len - skb->data_len;
1057 }
1058 
1059 static inline int skb_pagelen(const struct sk_buff *skb)
1060 {
1061 	int i, len = 0;
1062 
1063 	for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1064 		len += skb_shinfo(skb)->frags[i].size;
1065 	return len + skb_headlen(skb);
1066 }
1067 
1068 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1069 				      struct page *page, int off, int size)
1070 {
1071 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1072 
1073 	frag->page		  = page;
1074 	frag->page_offset	  = off;
1075 	frag->size		  = size;
1076 	skb_shinfo(skb)->nr_frags = i + 1;
1077 }
1078 
1079 extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
1080 			    int off, int size);
1081 
1082 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
1083 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_has_frags(skb))
1084 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
1085 
1086 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1087 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1088 {
1089 	return skb->head + skb->tail;
1090 }
1091 
1092 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1093 {
1094 	skb->tail = skb->data - skb->head;
1095 }
1096 
1097 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1098 {
1099 	skb_reset_tail_pointer(skb);
1100 	skb->tail += offset;
1101 }
1102 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1103 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1104 {
1105 	return skb->tail;
1106 }
1107 
1108 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1109 {
1110 	skb->tail = skb->data;
1111 }
1112 
1113 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1114 {
1115 	skb->tail = skb->data + offset;
1116 }
1117 
1118 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1119 
1120 /*
1121  *	Add data to an sk_buff
1122  */
1123 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1124 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1125 {
1126 	unsigned char *tmp = skb_tail_pointer(skb);
1127 	SKB_LINEAR_ASSERT(skb);
1128 	skb->tail += len;
1129 	skb->len  += len;
1130 	return tmp;
1131 }
1132 
1133 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1134 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1135 {
1136 	skb->data -= len;
1137 	skb->len  += len;
1138 	return skb->data;
1139 }
1140 
1141 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1142 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1143 {
1144 	skb->len -= len;
1145 	BUG_ON(skb->len < skb->data_len);
1146 	return skb->data += len;
1147 }
1148 
1149 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1150 
1151 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1152 {
1153 	if (len > skb_headlen(skb) &&
1154 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1155 		return NULL;
1156 	skb->len -= len;
1157 	return skb->data += len;
1158 }
1159 
1160 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1161 {
1162 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1163 }
1164 
1165 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1166 {
1167 	if (likely(len <= skb_headlen(skb)))
1168 		return 1;
1169 	if (unlikely(len > skb->len))
1170 		return 0;
1171 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1172 }
1173 
1174 /**
1175  *	skb_headroom - bytes at buffer head
1176  *	@skb: buffer to check
1177  *
1178  *	Return the number of bytes of free space at the head of an &sk_buff.
1179  */
1180 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1181 {
1182 	return skb->data - skb->head;
1183 }
1184 
1185 /**
1186  *	skb_tailroom - bytes at buffer end
1187  *	@skb: buffer to check
1188  *
1189  *	Return the number of bytes of free space at the tail of an sk_buff
1190  */
1191 static inline int skb_tailroom(const struct sk_buff *skb)
1192 {
1193 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1194 }
1195 
1196 /**
1197  *	skb_reserve - adjust headroom
1198  *	@skb: buffer to alter
1199  *	@len: bytes to move
1200  *
1201  *	Increase the headroom of an empty &sk_buff by reducing the tail
1202  *	room. This is only allowed for an empty buffer.
1203  */
1204 static inline void skb_reserve(struct sk_buff *skb, int len)
1205 {
1206 	skb->data += len;
1207 	skb->tail += len;
1208 }
1209 
1210 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1211 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1212 {
1213 	return skb->head + skb->transport_header;
1214 }
1215 
1216 static inline void skb_reset_transport_header(struct sk_buff *skb)
1217 {
1218 	skb->transport_header = skb->data - skb->head;
1219 }
1220 
1221 static inline void skb_set_transport_header(struct sk_buff *skb,
1222 					    const int offset)
1223 {
1224 	skb_reset_transport_header(skb);
1225 	skb->transport_header += offset;
1226 }
1227 
1228 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1229 {
1230 	return skb->head + skb->network_header;
1231 }
1232 
1233 static inline void skb_reset_network_header(struct sk_buff *skb)
1234 {
1235 	skb->network_header = skb->data - skb->head;
1236 }
1237 
1238 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1239 {
1240 	skb_reset_network_header(skb);
1241 	skb->network_header += offset;
1242 }
1243 
1244 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1245 {
1246 	return skb->head + skb->mac_header;
1247 }
1248 
1249 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1250 {
1251 	return skb->mac_header != ~0U;
1252 }
1253 
1254 static inline void skb_reset_mac_header(struct sk_buff *skb)
1255 {
1256 	skb->mac_header = skb->data - skb->head;
1257 }
1258 
1259 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1260 {
1261 	skb_reset_mac_header(skb);
1262 	skb->mac_header += offset;
1263 }
1264 
1265 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1266 
1267 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1268 {
1269 	return skb->transport_header;
1270 }
1271 
1272 static inline void skb_reset_transport_header(struct sk_buff *skb)
1273 {
1274 	skb->transport_header = skb->data;
1275 }
1276 
1277 static inline void skb_set_transport_header(struct sk_buff *skb,
1278 					    const int offset)
1279 {
1280 	skb->transport_header = skb->data + offset;
1281 }
1282 
1283 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1284 {
1285 	return skb->network_header;
1286 }
1287 
1288 static inline void skb_reset_network_header(struct sk_buff *skb)
1289 {
1290 	skb->network_header = skb->data;
1291 }
1292 
1293 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1294 {
1295 	skb->network_header = skb->data + offset;
1296 }
1297 
1298 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1299 {
1300 	return skb->mac_header;
1301 }
1302 
1303 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1304 {
1305 	return skb->mac_header != NULL;
1306 }
1307 
1308 static inline void skb_reset_mac_header(struct sk_buff *skb)
1309 {
1310 	skb->mac_header = skb->data;
1311 }
1312 
1313 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1314 {
1315 	skb->mac_header = skb->data + offset;
1316 }
1317 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1318 
1319 static inline int skb_transport_offset(const struct sk_buff *skb)
1320 {
1321 	return skb_transport_header(skb) - skb->data;
1322 }
1323 
1324 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1325 {
1326 	return skb->transport_header - skb->network_header;
1327 }
1328 
1329 static inline int skb_network_offset(const struct sk_buff *skb)
1330 {
1331 	return skb_network_header(skb) - skb->data;
1332 }
1333 
1334 /*
1335  * CPUs often take a performance hit when accessing unaligned memory
1336  * locations. The actual performance hit varies, it can be small if the
1337  * hardware handles it or large if we have to take an exception and fix it
1338  * in software.
1339  *
1340  * Since an ethernet header is 14 bytes network drivers often end up with
1341  * the IP header at an unaligned offset. The IP header can be aligned by
1342  * shifting the start of the packet by 2 bytes. Drivers should do this
1343  * with:
1344  *
1345  * skb_reserve(skb, NET_IP_ALIGN);
1346  *
1347  * The downside to this alignment of the IP header is that the DMA is now
1348  * unaligned. On some architectures the cost of an unaligned DMA is high
1349  * and this cost outweighs the gains made by aligning the IP header.
1350  *
1351  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1352  * to be overridden.
1353  */
1354 #ifndef NET_IP_ALIGN
1355 #define NET_IP_ALIGN	2
1356 #endif
1357 
1358 /*
1359  * The networking layer reserves some headroom in skb data (via
1360  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1361  * the header has to grow. In the default case, if the header has to grow
1362  * 32 bytes or less we avoid the reallocation.
1363  *
1364  * Unfortunately this headroom changes the DMA alignment of the resulting
1365  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1366  * on some architectures. An architecture can override this value,
1367  * perhaps setting it to a cacheline in size (since that will maintain
1368  * cacheline alignment of the DMA). It must be a power of 2.
1369  *
1370  * Various parts of the networking layer expect at least 32 bytes of
1371  * headroom, you should not reduce this.
1372  */
1373 #ifndef NET_SKB_PAD
1374 #define NET_SKB_PAD	32
1375 #endif
1376 
1377 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1378 
1379 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1380 {
1381 	if (unlikely(skb->data_len)) {
1382 		WARN_ON(1);
1383 		return;
1384 	}
1385 	skb->len = len;
1386 	skb_set_tail_pointer(skb, len);
1387 }
1388 
1389 extern void skb_trim(struct sk_buff *skb, unsigned int len);
1390 
1391 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1392 {
1393 	if (skb->data_len)
1394 		return ___pskb_trim(skb, len);
1395 	__skb_trim(skb, len);
1396 	return 0;
1397 }
1398 
1399 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1400 {
1401 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1402 }
1403 
1404 /**
1405  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1406  *	@skb: buffer to alter
1407  *	@len: new length
1408  *
1409  *	This is identical to pskb_trim except that the caller knows that
1410  *	the skb is not cloned so we should never get an error due to out-
1411  *	of-memory.
1412  */
1413 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1414 {
1415 	int err = pskb_trim(skb, len);
1416 	BUG_ON(err);
1417 }
1418 
1419 /**
1420  *	skb_orphan - orphan a buffer
1421  *	@skb: buffer to orphan
1422  *
1423  *	If a buffer currently has an owner then we call the owner's
1424  *	destructor function and make the @skb unowned. The buffer continues
1425  *	to exist but is no longer charged to its former owner.
1426  */
1427 static inline void skb_orphan(struct sk_buff *skb)
1428 {
1429 	if (skb->destructor)
1430 		skb->destructor(skb);
1431 	skb->destructor = NULL;
1432 	skb->sk		= NULL;
1433 }
1434 
1435 /**
1436  *	__skb_queue_purge - empty a list
1437  *	@list: list to empty
1438  *
1439  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
1440  *	the list and one reference dropped. This function does not take the
1441  *	list lock and the caller must hold the relevant locks to use it.
1442  */
1443 extern void skb_queue_purge(struct sk_buff_head *list);
1444 static inline void __skb_queue_purge(struct sk_buff_head *list)
1445 {
1446 	struct sk_buff *skb;
1447 	while ((skb = __skb_dequeue(list)) != NULL)
1448 		kfree_skb(skb);
1449 }
1450 
1451 /**
1452  *	__dev_alloc_skb - allocate an skbuff for receiving
1453  *	@length: length to allocate
1454  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
1455  *
1456  *	Allocate a new &sk_buff and assign it a usage count of one. The
1457  *	buffer has unspecified headroom built in. Users should allocate
1458  *	the headroom they think they need without accounting for the
1459  *	built in space. The built in space is used for optimisations.
1460  *
1461  *	%NULL is returned if there is no free memory.
1462  */
1463 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1464 					      gfp_t gfp_mask)
1465 {
1466 	struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1467 	if (likely(skb))
1468 		skb_reserve(skb, NET_SKB_PAD);
1469 	return skb;
1470 }
1471 
1472 extern struct sk_buff *dev_alloc_skb(unsigned int length);
1473 
1474 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1475 		unsigned int length, gfp_t gfp_mask);
1476 
1477 /**
1478  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
1479  *	@dev: network device to receive on
1480  *	@length: length to allocate
1481  *
1482  *	Allocate a new &sk_buff and assign it a usage count of one. The
1483  *	buffer has unspecified headroom built in. Users should allocate
1484  *	the headroom they think they need without accounting for the
1485  *	built in space. The built in space is used for optimisations.
1486  *
1487  *	%NULL is returned if there is no free memory. Although this function
1488  *	allocates memory it can be called from an interrupt.
1489  */
1490 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1491 		unsigned int length)
1492 {
1493 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1494 }
1495 
1496 extern struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask);
1497 
1498 /**
1499  *	netdev_alloc_page - allocate a page for ps-rx on a specific device
1500  *	@dev: network device to receive on
1501  *
1502  * 	Allocate a new page node local to the specified device.
1503  *
1504  * 	%NULL is returned if there is no free memory.
1505  */
1506 static inline struct page *netdev_alloc_page(struct net_device *dev)
1507 {
1508 	return __netdev_alloc_page(dev, GFP_ATOMIC);
1509 }
1510 
1511 static inline void netdev_free_page(struct net_device *dev, struct page *page)
1512 {
1513 	__free_page(page);
1514 }
1515 
1516 /**
1517  *	skb_clone_writable - is the header of a clone writable
1518  *	@skb: buffer to check
1519  *	@len: length up to which to write
1520  *
1521  *	Returns true if modifying the header part of the cloned buffer
1522  *	does not requires the data to be copied.
1523  */
1524 static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len)
1525 {
1526 	return !skb_header_cloned(skb) &&
1527 	       skb_headroom(skb) + len <= skb->hdr_len;
1528 }
1529 
1530 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1531 			    int cloned)
1532 {
1533 	int delta = 0;
1534 
1535 	if (headroom < NET_SKB_PAD)
1536 		headroom = NET_SKB_PAD;
1537 	if (headroom > skb_headroom(skb))
1538 		delta = headroom - skb_headroom(skb);
1539 
1540 	if (delta || cloned)
1541 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1542 					GFP_ATOMIC);
1543 	return 0;
1544 }
1545 
1546 /**
1547  *	skb_cow - copy header of skb when it is required
1548  *	@skb: buffer to cow
1549  *	@headroom: needed headroom
1550  *
1551  *	If the skb passed lacks sufficient headroom or its data part
1552  *	is shared, data is reallocated. If reallocation fails, an error
1553  *	is returned and original skb is not changed.
1554  *
1555  *	The result is skb with writable area skb->head...skb->tail
1556  *	and at least @headroom of space at head.
1557  */
1558 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1559 {
1560 	return __skb_cow(skb, headroom, skb_cloned(skb));
1561 }
1562 
1563 /**
1564  *	skb_cow_head - skb_cow but only making the head writable
1565  *	@skb: buffer to cow
1566  *	@headroom: needed headroom
1567  *
1568  *	This function is identical to skb_cow except that we replace the
1569  *	skb_cloned check by skb_header_cloned.  It should be used when
1570  *	you only need to push on some header and do not need to modify
1571  *	the data.
1572  */
1573 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1574 {
1575 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
1576 }
1577 
1578 /**
1579  *	skb_padto	- pad an skbuff up to a minimal size
1580  *	@skb: buffer to pad
1581  *	@len: minimal length
1582  *
1583  *	Pads up a buffer to ensure the trailing bytes exist and are
1584  *	blanked. If the buffer already contains sufficient data it
1585  *	is untouched. Otherwise it is extended. Returns zero on
1586  *	success. The skb is freed on error.
1587  */
1588 
1589 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1590 {
1591 	unsigned int size = skb->len;
1592 	if (likely(size >= len))
1593 		return 0;
1594 	return skb_pad(skb, len - size);
1595 }
1596 
1597 static inline int skb_add_data(struct sk_buff *skb,
1598 			       char __user *from, int copy)
1599 {
1600 	const int off = skb->len;
1601 
1602 	if (skb->ip_summed == CHECKSUM_NONE) {
1603 		int err = 0;
1604 		__wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1605 							    copy, 0, &err);
1606 		if (!err) {
1607 			skb->csum = csum_block_add(skb->csum, csum, off);
1608 			return 0;
1609 		}
1610 	} else if (!copy_from_user(skb_put(skb, copy), from, copy))
1611 		return 0;
1612 
1613 	__skb_trim(skb, off);
1614 	return -EFAULT;
1615 }
1616 
1617 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1618 				   struct page *page, int off)
1619 {
1620 	if (i) {
1621 		struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1622 
1623 		return page == frag->page &&
1624 		       off == frag->page_offset + frag->size;
1625 	}
1626 	return 0;
1627 }
1628 
1629 static inline int __skb_linearize(struct sk_buff *skb)
1630 {
1631 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1632 }
1633 
1634 /**
1635  *	skb_linearize - convert paged skb to linear one
1636  *	@skb: buffer to linarize
1637  *
1638  *	If there is no free memory -ENOMEM is returned, otherwise zero
1639  *	is returned and the old skb data released.
1640  */
1641 static inline int skb_linearize(struct sk_buff *skb)
1642 {
1643 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1644 }
1645 
1646 /**
1647  *	skb_linearize_cow - make sure skb is linear and writable
1648  *	@skb: buffer to process
1649  *
1650  *	If there is no free memory -ENOMEM is returned, otherwise zero
1651  *	is returned and the old skb data released.
1652  */
1653 static inline int skb_linearize_cow(struct sk_buff *skb)
1654 {
1655 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1656 	       __skb_linearize(skb) : 0;
1657 }
1658 
1659 /**
1660  *	skb_postpull_rcsum - update checksum for received skb after pull
1661  *	@skb: buffer to update
1662  *	@start: start of data before pull
1663  *	@len: length of data pulled
1664  *
1665  *	After doing a pull on a received packet, you need to call this to
1666  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1667  *	CHECKSUM_NONE so that it can be recomputed from scratch.
1668  */
1669 
1670 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1671 				      const void *start, unsigned int len)
1672 {
1673 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1674 		skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1675 }
1676 
1677 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1678 
1679 /**
1680  *	pskb_trim_rcsum - trim received skb and update checksum
1681  *	@skb: buffer to trim
1682  *	@len: new length
1683  *
1684  *	This is exactly the same as pskb_trim except that it ensures the
1685  *	checksum of received packets are still valid after the operation.
1686  */
1687 
1688 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1689 {
1690 	if (likely(len >= skb->len))
1691 		return 0;
1692 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1693 		skb->ip_summed = CHECKSUM_NONE;
1694 	return __pskb_trim(skb, len);
1695 }
1696 
1697 #define skb_queue_walk(queue, skb) \
1698 		for (skb = (queue)->next;					\
1699 		     prefetch(skb->next), (skb != (struct sk_buff *)(queue));	\
1700 		     skb = skb->next)
1701 
1702 #define skb_queue_walk_safe(queue, skb, tmp)					\
1703 		for (skb = (queue)->next, tmp = skb->next;			\
1704 		     skb != (struct sk_buff *)(queue);				\
1705 		     skb = tmp, tmp = skb->next)
1706 
1707 #define skb_queue_walk_from(queue, skb)						\
1708 		for (; prefetch(skb->next), (skb != (struct sk_buff *)(queue));	\
1709 		     skb = skb->next)
1710 
1711 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
1712 		for (tmp = skb->next;						\
1713 		     skb != (struct sk_buff *)(queue);				\
1714 		     skb = tmp, tmp = skb->next)
1715 
1716 #define skb_queue_reverse_walk(queue, skb) \
1717 		for (skb = (queue)->prev;					\
1718 		     prefetch(skb->prev), (skb != (struct sk_buff *)(queue));	\
1719 		     skb = skb->prev)
1720 
1721 
1722 static inline bool skb_has_frags(const struct sk_buff *skb)
1723 {
1724 	return skb_shinfo(skb)->frag_list != NULL;
1725 }
1726 
1727 static inline void skb_frag_list_init(struct sk_buff *skb)
1728 {
1729 	skb_shinfo(skb)->frag_list = NULL;
1730 }
1731 
1732 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
1733 {
1734 	frag->next = skb_shinfo(skb)->frag_list;
1735 	skb_shinfo(skb)->frag_list = frag;
1736 }
1737 
1738 #define skb_walk_frags(skb, iter)	\
1739 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
1740 
1741 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
1742 					   int *peeked, int *err);
1743 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1744 					 int noblock, int *err);
1745 extern unsigned int    datagram_poll(struct file *file, struct socket *sock,
1746 				     struct poll_table_struct *wait);
1747 extern int	       skb_copy_datagram_iovec(const struct sk_buff *from,
1748 					       int offset, struct iovec *to,
1749 					       int size);
1750 extern int	       skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1751 							int hlen,
1752 							struct iovec *iov);
1753 extern int	       skb_copy_datagram_from_iovec(struct sk_buff *skb,
1754 						    int offset,
1755 						    const struct iovec *from,
1756 						    int from_offset,
1757 						    int len);
1758 extern int	       skb_copy_datagram_const_iovec(const struct sk_buff *from,
1759 						     int offset,
1760 						     const struct iovec *to,
1761 						     int to_offset,
1762 						     int size);
1763 extern void	       skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1764 extern int	       skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1765 					 unsigned int flags);
1766 extern __wsum	       skb_checksum(const struct sk_buff *skb, int offset,
1767 				    int len, __wsum csum);
1768 extern int	       skb_copy_bits(const struct sk_buff *skb, int offset,
1769 				     void *to, int len);
1770 extern int	       skb_store_bits(struct sk_buff *skb, int offset,
1771 				      const void *from, int len);
1772 extern __wsum	       skb_copy_and_csum_bits(const struct sk_buff *skb,
1773 					      int offset, u8 *to, int len,
1774 					      __wsum csum);
1775 extern int             skb_splice_bits(struct sk_buff *skb,
1776 						unsigned int offset,
1777 						struct pipe_inode_info *pipe,
1778 						unsigned int len,
1779 						unsigned int flags);
1780 extern void	       skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1781 extern void	       skb_split(struct sk_buff *skb,
1782 				 struct sk_buff *skb1, const u32 len);
1783 extern int	       skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
1784 				 int shiftlen);
1785 
1786 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
1787 
1788 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1789 				       int len, void *buffer)
1790 {
1791 	int hlen = skb_headlen(skb);
1792 
1793 	if (hlen - offset >= len)
1794 		return skb->data + offset;
1795 
1796 	if (skb_copy_bits(skb, offset, buffer, len) < 0)
1797 		return NULL;
1798 
1799 	return buffer;
1800 }
1801 
1802 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
1803 					     void *to,
1804 					     const unsigned int len)
1805 {
1806 	memcpy(to, skb->data, len);
1807 }
1808 
1809 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
1810 						    const int offset, void *to,
1811 						    const unsigned int len)
1812 {
1813 	memcpy(to, skb->data + offset, len);
1814 }
1815 
1816 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
1817 					   const void *from,
1818 					   const unsigned int len)
1819 {
1820 	memcpy(skb->data, from, len);
1821 }
1822 
1823 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
1824 						  const int offset,
1825 						  const void *from,
1826 						  const unsigned int len)
1827 {
1828 	memcpy(skb->data + offset, from, len);
1829 }
1830 
1831 extern void skb_init(void);
1832 
1833 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
1834 {
1835 	return skb->tstamp;
1836 }
1837 
1838 /**
1839  *	skb_get_timestamp - get timestamp from a skb
1840  *	@skb: skb to get stamp from
1841  *	@stamp: pointer to struct timeval to store stamp in
1842  *
1843  *	Timestamps are stored in the skb as offsets to a base timestamp.
1844  *	This function converts the offset back to a struct timeval and stores
1845  *	it in stamp.
1846  */
1847 static inline void skb_get_timestamp(const struct sk_buff *skb,
1848 				     struct timeval *stamp)
1849 {
1850 	*stamp = ktime_to_timeval(skb->tstamp);
1851 }
1852 
1853 static inline void skb_get_timestampns(const struct sk_buff *skb,
1854 				       struct timespec *stamp)
1855 {
1856 	*stamp = ktime_to_timespec(skb->tstamp);
1857 }
1858 
1859 static inline void __net_timestamp(struct sk_buff *skb)
1860 {
1861 	skb->tstamp = ktime_get_real();
1862 }
1863 
1864 static inline ktime_t net_timedelta(ktime_t t)
1865 {
1866 	return ktime_sub(ktime_get_real(), t);
1867 }
1868 
1869 static inline ktime_t net_invalid_timestamp(void)
1870 {
1871 	return ktime_set(0, 0);
1872 }
1873 
1874 /**
1875  * skb_tstamp_tx - queue clone of skb with send time stamps
1876  * @orig_skb:	the original outgoing packet
1877  * @hwtstamps:	hardware time stamps, may be NULL if not available
1878  *
1879  * If the skb has a socket associated, then this function clones the
1880  * skb (thus sharing the actual data and optional structures), stores
1881  * the optional hardware time stamping information (if non NULL) or
1882  * generates a software time stamp (otherwise), then queues the clone
1883  * to the error queue of the socket.  Errors are silently ignored.
1884  */
1885 extern void skb_tstamp_tx(struct sk_buff *orig_skb,
1886 			struct skb_shared_hwtstamps *hwtstamps);
1887 
1888 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
1889 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
1890 
1891 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
1892 {
1893 	return skb->ip_summed & CHECKSUM_UNNECESSARY;
1894 }
1895 
1896 /**
1897  *	skb_checksum_complete - Calculate checksum of an entire packet
1898  *	@skb: packet to process
1899  *
1900  *	This function calculates the checksum over the entire packet plus
1901  *	the value of skb->csum.  The latter can be used to supply the
1902  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
1903  *	checksum.
1904  *
1905  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
1906  *	this function can be used to verify that checksum on received
1907  *	packets.  In that case the function should return zero if the
1908  *	checksum is correct.  In particular, this function will return zero
1909  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1910  *	hardware has already verified the correctness of the checksum.
1911  */
1912 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
1913 {
1914 	return skb_csum_unnecessary(skb) ?
1915 	       0 : __skb_checksum_complete(skb);
1916 }
1917 
1918 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1919 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
1920 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1921 {
1922 	if (nfct && atomic_dec_and_test(&nfct->use))
1923 		nf_conntrack_destroy(nfct);
1924 }
1925 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1926 {
1927 	if (nfct)
1928 		atomic_inc(&nfct->use);
1929 }
1930 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
1931 {
1932 	if (skb)
1933 		atomic_inc(&skb->users);
1934 }
1935 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
1936 {
1937 	if (skb)
1938 		kfree_skb(skb);
1939 }
1940 #endif
1941 #ifdef CONFIG_BRIDGE_NETFILTER
1942 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1943 {
1944 	if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1945 		kfree(nf_bridge);
1946 }
1947 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1948 {
1949 	if (nf_bridge)
1950 		atomic_inc(&nf_bridge->use);
1951 }
1952 #endif /* CONFIG_BRIDGE_NETFILTER */
1953 static inline void nf_reset(struct sk_buff *skb)
1954 {
1955 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1956 	nf_conntrack_put(skb->nfct);
1957 	skb->nfct = NULL;
1958 	nf_conntrack_put_reasm(skb->nfct_reasm);
1959 	skb->nfct_reasm = NULL;
1960 #endif
1961 #ifdef CONFIG_BRIDGE_NETFILTER
1962 	nf_bridge_put(skb->nf_bridge);
1963 	skb->nf_bridge = NULL;
1964 #endif
1965 }
1966 
1967 /* Note: This doesn't put any conntrack and bridge info in dst. */
1968 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1969 {
1970 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1971 	dst->nfct = src->nfct;
1972 	nf_conntrack_get(src->nfct);
1973 	dst->nfctinfo = src->nfctinfo;
1974 	dst->nfct_reasm = src->nfct_reasm;
1975 	nf_conntrack_get_reasm(src->nfct_reasm);
1976 #endif
1977 #ifdef CONFIG_BRIDGE_NETFILTER
1978 	dst->nf_bridge  = src->nf_bridge;
1979 	nf_bridge_get(src->nf_bridge);
1980 #endif
1981 }
1982 
1983 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1984 {
1985 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1986 	nf_conntrack_put(dst->nfct);
1987 	nf_conntrack_put_reasm(dst->nfct_reasm);
1988 #endif
1989 #ifdef CONFIG_BRIDGE_NETFILTER
1990 	nf_bridge_put(dst->nf_bridge);
1991 #endif
1992 	__nf_copy(dst, src);
1993 }
1994 
1995 #ifdef CONFIG_NETWORK_SECMARK
1996 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1997 {
1998 	to->secmark = from->secmark;
1999 }
2000 
2001 static inline void skb_init_secmark(struct sk_buff *skb)
2002 {
2003 	skb->secmark = 0;
2004 }
2005 #else
2006 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2007 { }
2008 
2009 static inline void skb_init_secmark(struct sk_buff *skb)
2010 { }
2011 #endif
2012 
2013 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
2014 {
2015 	skb->queue_mapping = queue_mapping;
2016 }
2017 
2018 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
2019 {
2020 	return skb->queue_mapping;
2021 }
2022 
2023 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
2024 {
2025 	to->queue_mapping = from->queue_mapping;
2026 }
2027 
2028 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
2029 {
2030 	skb->queue_mapping = rx_queue + 1;
2031 }
2032 
2033 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
2034 {
2035 	return skb->queue_mapping - 1;
2036 }
2037 
2038 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
2039 {
2040 	return (skb->queue_mapping != 0);
2041 }
2042 
2043 extern u16 skb_tx_hash(const struct net_device *dev,
2044 		       const struct sk_buff *skb);
2045 
2046 #ifdef CONFIG_XFRM
2047 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2048 {
2049 	return skb->sp;
2050 }
2051 #else
2052 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2053 {
2054 	return NULL;
2055 }
2056 #endif
2057 
2058 static inline int skb_is_gso(const struct sk_buff *skb)
2059 {
2060 	return skb_shinfo(skb)->gso_size;
2061 }
2062 
2063 static inline int skb_is_gso_v6(const struct sk_buff *skb)
2064 {
2065 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
2066 }
2067 
2068 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
2069 
2070 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
2071 {
2072 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
2073 	 * wanted then gso_type will be set. */
2074 	struct skb_shared_info *shinfo = skb_shinfo(skb);
2075 	if (shinfo->gso_size != 0 && unlikely(shinfo->gso_type == 0)) {
2076 		__skb_warn_lro_forwarding(skb);
2077 		return true;
2078 	}
2079 	return false;
2080 }
2081 
2082 static inline void skb_forward_csum(struct sk_buff *skb)
2083 {
2084 	/* Unfortunately we don't support this one.  Any brave souls? */
2085 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2086 		skb->ip_summed = CHECKSUM_NONE;
2087 }
2088 
2089 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
2090 #endif	/* __KERNEL__ */
2091 #endif	/* _LINUX_SKBUFF_H */
2092