xref: /linux-6.15/include/linux/skbuff.h (revision dfd32cad)
1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <[email protected]>
6  *		Florian La Roche, <[email protected]>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/bug.h>
21 #include <linux/cache.h>
22 #include <linux/rbtree.h>
23 #include <linux/socket.h>
24 #include <linux/refcount.h>
25 
26 #include <linux/atomic.h>
27 #include <asm/types.h>
28 #include <linux/spinlock.h>
29 #include <linux/net.h>
30 #include <linux/textsearch.h>
31 #include <net/checksum.h>
32 #include <linux/rcupdate.h>
33 #include <linux/hrtimer.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/netdev_features.h>
36 #include <linux/sched.h>
37 #include <linux/sched/clock.h>
38 #include <net/flow_dissector.h>
39 #include <linux/splice.h>
40 #include <linux/in6.h>
41 #include <linux/if_packet.h>
42 #include <net/flow.h>
43 
44 /* The interface for checksum offload between the stack and networking drivers
45  * is as follows...
46  *
47  * A. IP checksum related features
48  *
49  * Drivers advertise checksum offload capabilities in the features of a device.
50  * From the stack's point of view these are capabilities offered by the driver,
51  * a driver typically only advertises features that it is capable of offloading
52  * to its device.
53  *
54  * The checksum related features are:
55  *
56  *	NETIF_F_HW_CSUM	- The driver (or its device) is able to compute one
57  *			  IP (one's complement) checksum for any combination
58  *			  of protocols or protocol layering. The checksum is
59  *			  computed and set in a packet per the CHECKSUM_PARTIAL
60  *			  interface (see below).
61  *
62  *	NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
63  *			  TCP or UDP packets over IPv4. These are specifically
64  *			  unencapsulated packets of the form IPv4|TCP or
65  *			  IPv4|UDP where the Protocol field in the IPv4 header
66  *			  is TCP or UDP. The IPv4 header may contain IP options
67  *			  This feature cannot be set in features for a device
68  *			  with NETIF_F_HW_CSUM also set. This feature is being
69  *			  DEPRECATED (see below).
70  *
71  *	NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
72  *			  TCP or UDP packets over IPv6. These are specifically
73  *			  unencapsulated packets of the form IPv6|TCP or
74  *			  IPv4|UDP where the Next Header field in the IPv6
75  *			  header is either TCP or UDP. IPv6 extension headers
76  *			  are not supported with this feature. This feature
77  *			  cannot be set in features for a device with
78  *			  NETIF_F_HW_CSUM also set. This feature is being
79  *			  DEPRECATED (see below).
80  *
81  *	NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
82  *			 This flag is used only used to disable the RX checksum
83  *			 feature for a device. The stack will accept receive
84  *			 checksum indication in packets received on a device
85  *			 regardless of whether NETIF_F_RXCSUM is set.
86  *
87  * B. Checksumming of received packets by device. Indication of checksum
88  *    verification is in set skb->ip_summed. Possible values are:
89  *
90  * CHECKSUM_NONE:
91  *
92  *   Device did not checksum this packet e.g. due to lack of capabilities.
93  *   The packet contains full (though not verified) checksum in packet but
94  *   not in skb->csum. Thus, skb->csum is undefined in this case.
95  *
96  * CHECKSUM_UNNECESSARY:
97  *
98  *   The hardware you're dealing with doesn't calculate the full checksum
99  *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
100  *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
101  *   if their checksums are okay. skb->csum is still undefined in this case
102  *   though. A driver or device must never modify the checksum field in the
103  *   packet even if checksum is verified.
104  *
105  *   CHECKSUM_UNNECESSARY is applicable to following protocols:
106  *     TCP: IPv6 and IPv4.
107  *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
108  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
109  *       may perform further validation in this case.
110  *     GRE: only if the checksum is present in the header.
111  *     SCTP: indicates the CRC in SCTP header has been validated.
112  *     FCOE: indicates the CRC in FC frame has been validated.
113  *
114  *   skb->csum_level indicates the number of consecutive checksums found in
115  *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
116  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
117  *   and a device is able to verify the checksums for UDP (possibly zero),
118  *   GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
119  *   two. If the device were only able to verify the UDP checksum and not
120  *   GRE, either because it doesn't support GRE checksum of because GRE
121  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
122  *   not considered in this case).
123  *
124  * CHECKSUM_COMPLETE:
125  *
126  *   This is the most generic way. The device supplied checksum of the _whole_
127  *   packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
128  *   hardware doesn't need to parse L3/L4 headers to implement this.
129  *
130  *   Notes:
131  *   - Even if device supports only some protocols, but is able to produce
132  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
133  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
134  *
135  * CHECKSUM_PARTIAL:
136  *
137  *   A checksum is set up to be offloaded to a device as described in the
138  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
139  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
140  *   on the same host, or it may be set in the input path in GRO or remote
141  *   checksum offload. For the purposes of checksum verification, the checksum
142  *   referred to by skb->csum_start + skb->csum_offset and any preceding
143  *   checksums in the packet are considered verified. Any checksums in the
144  *   packet that are after the checksum being offloaded are not considered to
145  *   be verified.
146  *
147  * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
148  *    in the skb->ip_summed for a packet. Values are:
149  *
150  * CHECKSUM_PARTIAL:
151  *
152  *   The driver is required to checksum the packet as seen by hard_start_xmit()
153  *   from skb->csum_start up to the end, and to record/write the checksum at
154  *   offset skb->csum_start + skb->csum_offset. A driver may verify that the
155  *   csum_start and csum_offset values are valid values given the length and
156  *   offset of the packet, however they should not attempt to validate that the
157  *   checksum refers to a legitimate transport layer checksum-- it is the
158  *   purview of the stack to validate that csum_start and csum_offset are set
159  *   correctly.
160  *
161  *   When the stack requests checksum offload for a packet, the driver MUST
162  *   ensure that the checksum is set correctly. A driver can either offload the
163  *   checksum calculation to the device, or call skb_checksum_help (in the case
164  *   that the device does not support offload for a particular checksum).
165  *
166  *   NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
167  *   NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
168  *   checksum offload capability.
169  *   skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
170  *   on network device checksumming capabilities: if a packet does not match
171  *   them, skb_checksum_help or skb_crc32c_help (depending on the value of
172  *   csum_not_inet, see item D.) is called to resolve the checksum.
173  *
174  * CHECKSUM_NONE:
175  *
176  *   The skb was already checksummed by the protocol, or a checksum is not
177  *   required.
178  *
179  * CHECKSUM_UNNECESSARY:
180  *
181  *   This has the same meaning on as CHECKSUM_NONE for checksum offload on
182  *   output.
183  *
184  * CHECKSUM_COMPLETE:
185  *   Not used in checksum output. If a driver observes a packet with this value
186  *   set in skbuff, if should treat as CHECKSUM_NONE being set.
187  *
188  * D. Non-IP checksum (CRC) offloads
189  *
190  *   NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
191  *     offloading the SCTP CRC in a packet. To perform this offload the stack
192  *     will set set csum_start and csum_offset accordingly, set ip_summed to
193  *     CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
194  *     the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
195  *     A driver that supports both IP checksum offload and SCTP CRC32c offload
196  *     must verify which offload is configured for a packet by testing the
197  *     value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
198  *     CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
199  *
200  *   NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
201  *     offloading the FCOE CRC in a packet. To perform this offload the stack
202  *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
203  *     accordingly. Note the there is no indication in the skbuff that the
204  *     CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
205  *     both IP checksum offload and FCOE CRC offload must verify which offload
206  *     is configured for a packet presumably by inspecting packet headers.
207  *
208  * E. Checksumming on output with GSO.
209  *
210  * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
211  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
212  * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
213  * part of the GSO operation is implied. If a checksum is being offloaded
214  * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
215  * are set to refer to the outermost checksum being offload (two offloaded
216  * checksums are possible with UDP encapsulation).
217  */
218 
219 /* Don't change this without changing skb_csum_unnecessary! */
220 #define CHECKSUM_NONE		0
221 #define CHECKSUM_UNNECESSARY	1
222 #define CHECKSUM_COMPLETE	2
223 #define CHECKSUM_PARTIAL	3
224 
225 /* Maximum value in skb->csum_level */
226 #define SKB_MAX_CSUM_LEVEL	3
227 
228 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
229 #define SKB_WITH_OVERHEAD(X)	\
230 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
231 #define SKB_MAX_ORDER(X, ORDER) \
232 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
233 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
234 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
235 
236 /* return minimum truesize of one skb containing X bytes of data */
237 #define SKB_TRUESIZE(X) ((X) +						\
238 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
239 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
240 
241 struct net_device;
242 struct scatterlist;
243 struct pipe_inode_info;
244 struct iov_iter;
245 struct napi_struct;
246 struct bpf_prog;
247 union bpf_attr;
248 struct skb_ext;
249 
250 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
251 struct nf_conntrack {
252 	atomic_t use;
253 };
254 #endif
255 
256 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
257 struct nf_bridge_info {
258 	enum {
259 		BRNF_PROTO_UNCHANGED,
260 		BRNF_PROTO_8021Q,
261 		BRNF_PROTO_PPPOE
262 	} orig_proto:8;
263 	u8			pkt_otherhost:1;
264 	u8			in_prerouting:1;
265 	u8			bridged_dnat:1;
266 	__u16			frag_max_size;
267 	struct net_device	*physindev;
268 
269 	/* always valid & non-NULL from FORWARD on, for physdev match */
270 	struct net_device	*physoutdev;
271 	union {
272 		/* prerouting: detect dnat in orig/reply direction */
273 		__be32          ipv4_daddr;
274 		struct in6_addr ipv6_daddr;
275 
276 		/* after prerouting + nat detected: store original source
277 		 * mac since neigh resolution overwrites it, only used while
278 		 * skb is out in neigh layer.
279 		 */
280 		char neigh_header[8];
281 	};
282 };
283 #endif
284 
285 struct sk_buff_head {
286 	/* These two members must be first. */
287 	struct sk_buff	*next;
288 	struct sk_buff	*prev;
289 
290 	__u32		qlen;
291 	spinlock_t	lock;
292 };
293 
294 struct sk_buff;
295 
296 /* To allow 64K frame to be packed as single skb without frag_list we
297  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
298  * buffers which do not start on a page boundary.
299  *
300  * Since GRO uses frags we allocate at least 16 regardless of page
301  * size.
302  */
303 #if (65536/PAGE_SIZE + 1) < 16
304 #define MAX_SKB_FRAGS 16UL
305 #else
306 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
307 #endif
308 extern int sysctl_max_skb_frags;
309 
310 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
311  * segment using its current segmentation instead.
312  */
313 #define GSO_BY_FRAGS	0xFFFF
314 
315 typedef struct skb_frag_struct skb_frag_t;
316 
317 struct skb_frag_struct {
318 	struct {
319 		struct page *p;
320 	} page;
321 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
322 	__u32 page_offset;
323 	__u32 size;
324 #else
325 	__u16 page_offset;
326 	__u16 size;
327 #endif
328 };
329 
330 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
331 {
332 	return frag->size;
333 }
334 
335 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
336 {
337 	frag->size = size;
338 }
339 
340 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
341 {
342 	frag->size += delta;
343 }
344 
345 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
346 {
347 	frag->size -= delta;
348 }
349 
350 static inline bool skb_frag_must_loop(struct page *p)
351 {
352 #if defined(CONFIG_HIGHMEM)
353 	if (PageHighMem(p))
354 		return true;
355 #endif
356 	return false;
357 }
358 
359 /**
360  *	skb_frag_foreach_page - loop over pages in a fragment
361  *
362  *	@f:		skb frag to operate on
363  *	@f_off:		offset from start of f->page.p
364  *	@f_len:		length from f_off to loop over
365  *	@p:		(temp var) current page
366  *	@p_off:		(temp var) offset from start of current page,
367  *	                           non-zero only on first page.
368  *	@p_len:		(temp var) length in current page,
369  *				   < PAGE_SIZE only on first and last page.
370  *	@copied:	(temp var) length so far, excluding current p_len.
371  *
372  *	A fragment can hold a compound page, in which case per-page
373  *	operations, notably kmap_atomic, must be called for each
374  *	regular page.
375  */
376 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
377 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
378 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
379 	     p_len = skb_frag_must_loop(p) ?				\
380 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
381 	     copied = 0;						\
382 	     copied < f_len;						\
383 	     copied += p_len, p++, p_off = 0,				\
384 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
385 
386 #define HAVE_HW_TIME_STAMP
387 
388 /**
389  * struct skb_shared_hwtstamps - hardware time stamps
390  * @hwtstamp:	hardware time stamp transformed into duration
391  *		since arbitrary point in time
392  *
393  * Software time stamps generated by ktime_get_real() are stored in
394  * skb->tstamp.
395  *
396  * hwtstamps can only be compared against other hwtstamps from
397  * the same device.
398  *
399  * This structure is attached to packets as part of the
400  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
401  */
402 struct skb_shared_hwtstamps {
403 	ktime_t	hwtstamp;
404 };
405 
406 /* Definitions for tx_flags in struct skb_shared_info */
407 enum {
408 	/* generate hardware time stamp */
409 	SKBTX_HW_TSTAMP = 1 << 0,
410 
411 	/* generate software time stamp when queueing packet to NIC */
412 	SKBTX_SW_TSTAMP = 1 << 1,
413 
414 	/* device driver is going to provide hardware time stamp */
415 	SKBTX_IN_PROGRESS = 1 << 2,
416 
417 	/* device driver supports TX zero-copy buffers */
418 	SKBTX_DEV_ZEROCOPY = 1 << 3,
419 
420 	/* generate wifi status information (where possible) */
421 	SKBTX_WIFI_STATUS = 1 << 4,
422 
423 	/* This indicates at least one fragment might be overwritten
424 	 * (as in vmsplice(), sendfile() ...)
425 	 * If we need to compute a TX checksum, we'll need to copy
426 	 * all frags to avoid possible bad checksum
427 	 */
428 	SKBTX_SHARED_FRAG = 1 << 5,
429 
430 	/* generate software time stamp when entering packet scheduling */
431 	SKBTX_SCHED_TSTAMP = 1 << 6,
432 };
433 
434 #define SKBTX_ZEROCOPY_FRAG	(SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG)
435 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
436 				 SKBTX_SCHED_TSTAMP)
437 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
438 
439 /*
440  * The callback notifies userspace to release buffers when skb DMA is done in
441  * lower device, the skb last reference should be 0 when calling this.
442  * The zerocopy_success argument is true if zero copy transmit occurred,
443  * false on data copy or out of memory error caused by data copy attempt.
444  * The ctx field is used to track device context.
445  * The desc field is used to track userspace buffer index.
446  */
447 struct ubuf_info {
448 	void (*callback)(struct ubuf_info *, bool zerocopy_success);
449 	union {
450 		struct {
451 			unsigned long desc;
452 			void *ctx;
453 		};
454 		struct {
455 			u32 id;
456 			u16 len;
457 			u16 zerocopy:1;
458 			u32 bytelen;
459 		};
460 	};
461 	refcount_t refcnt;
462 
463 	struct mmpin {
464 		struct user_struct *user;
465 		unsigned int num_pg;
466 	} mmp;
467 };
468 
469 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
470 
471 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
472 void mm_unaccount_pinned_pages(struct mmpin *mmp);
473 
474 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size);
475 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
476 					struct ubuf_info *uarg);
477 
478 static inline void sock_zerocopy_get(struct ubuf_info *uarg)
479 {
480 	refcount_inc(&uarg->refcnt);
481 }
482 
483 void sock_zerocopy_put(struct ubuf_info *uarg);
484 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
485 
486 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success);
487 
488 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len);
489 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
490 			     struct msghdr *msg, int len,
491 			     struct ubuf_info *uarg);
492 
493 /* This data is invariant across clones and lives at
494  * the end of the header data, ie. at skb->end.
495  */
496 struct skb_shared_info {
497 	__u8		__unused;
498 	__u8		meta_len;
499 	__u8		nr_frags;
500 	__u8		tx_flags;
501 	unsigned short	gso_size;
502 	/* Warning: this field is not always filled in (UFO)! */
503 	unsigned short	gso_segs;
504 	struct sk_buff	*frag_list;
505 	struct skb_shared_hwtstamps hwtstamps;
506 	unsigned int	gso_type;
507 	u32		tskey;
508 
509 	/*
510 	 * Warning : all fields before dataref are cleared in __alloc_skb()
511 	 */
512 	atomic_t	dataref;
513 
514 	/* Intermediate layers must ensure that destructor_arg
515 	 * remains valid until skb destructor */
516 	void *		destructor_arg;
517 
518 	/* must be last field, see pskb_expand_head() */
519 	skb_frag_t	frags[MAX_SKB_FRAGS];
520 };
521 
522 /* We divide dataref into two halves.  The higher 16 bits hold references
523  * to the payload part of skb->data.  The lower 16 bits hold references to
524  * the entire skb->data.  A clone of a headerless skb holds the length of
525  * the header in skb->hdr_len.
526  *
527  * All users must obey the rule that the skb->data reference count must be
528  * greater than or equal to the payload reference count.
529  *
530  * Holding a reference to the payload part means that the user does not
531  * care about modifications to the header part of skb->data.
532  */
533 #define SKB_DATAREF_SHIFT 16
534 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
535 
536 
537 enum {
538 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
539 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
540 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
541 };
542 
543 enum {
544 	SKB_GSO_TCPV4 = 1 << 0,
545 
546 	/* This indicates the skb is from an untrusted source. */
547 	SKB_GSO_DODGY = 1 << 1,
548 
549 	/* This indicates the tcp segment has CWR set. */
550 	SKB_GSO_TCP_ECN = 1 << 2,
551 
552 	SKB_GSO_TCP_FIXEDID = 1 << 3,
553 
554 	SKB_GSO_TCPV6 = 1 << 4,
555 
556 	SKB_GSO_FCOE = 1 << 5,
557 
558 	SKB_GSO_GRE = 1 << 6,
559 
560 	SKB_GSO_GRE_CSUM = 1 << 7,
561 
562 	SKB_GSO_IPXIP4 = 1 << 8,
563 
564 	SKB_GSO_IPXIP6 = 1 << 9,
565 
566 	SKB_GSO_UDP_TUNNEL = 1 << 10,
567 
568 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
569 
570 	SKB_GSO_PARTIAL = 1 << 12,
571 
572 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
573 
574 	SKB_GSO_SCTP = 1 << 14,
575 
576 	SKB_GSO_ESP = 1 << 15,
577 
578 	SKB_GSO_UDP = 1 << 16,
579 
580 	SKB_GSO_UDP_L4 = 1 << 17,
581 };
582 
583 #if BITS_PER_LONG > 32
584 #define NET_SKBUFF_DATA_USES_OFFSET 1
585 #endif
586 
587 #ifdef NET_SKBUFF_DATA_USES_OFFSET
588 typedef unsigned int sk_buff_data_t;
589 #else
590 typedef unsigned char *sk_buff_data_t;
591 #endif
592 
593 /**
594  *	struct sk_buff - socket buffer
595  *	@next: Next buffer in list
596  *	@prev: Previous buffer in list
597  *	@tstamp: Time we arrived/left
598  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
599  *	@sk: Socket we are owned by
600  *	@dev: Device we arrived on/are leaving by
601  *	@cb: Control buffer. Free for use by every layer. Put private vars here
602  *	@_skb_refdst: destination entry (with norefcount bit)
603  *	@sp: the security path, used for xfrm
604  *	@len: Length of actual data
605  *	@data_len: Data length
606  *	@mac_len: Length of link layer header
607  *	@hdr_len: writable header length of cloned skb
608  *	@csum: Checksum (must include start/offset pair)
609  *	@csum_start: Offset from skb->head where checksumming should start
610  *	@csum_offset: Offset from csum_start where checksum should be stored
611  *	@priority: Packet queueing priority
612  *	@ignore_df: allow local fragmentation
613  *	@cloned: Head may be cloned (check refcnt to be sure)
614  *	@ip_summed: Driver fed us an IP checksum
615  *	@nohdr: Payload reference only, must not modify header
616  *	@pkt_type: Packet class
617  *	@fclone: skbuff clone status
618  *	@ipvs_property: skbuff is owned by ipvs
619  *	@offload_fwd_mark: Packet was L2-forwarded in hardware
620  *	@offload_l3_fwd_mark: Packet was L3-forwarded in hardware
621  *	@tc_skip_classify: do not classify packet. set by IFB device
622  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
623  *	@tc_redirected: packet was redirected by a tc action
624  *	@tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect
625  *	@peeked: this packet has been seen already, so stats have been
626  *		done for it, don't do them again
627  *	@nf_trace: netfilter packet trace flag
628  *	@protocol: Packet protocol from driver
629  *	@destructor: Destruct function
630  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
631  *	@_nfct: Associated connection, if any (with nfctinfo bits)
632  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
633  *	@skb_iif: ifindex of device we arrived on
634  *	@tc_index: Traffic control index
635  *	@hash: the packet hash
636  *	@queue_mapping: Queue mapping for multiqueue devices
637  *	@xmit_more: More SKBs are pending for this queue
638  *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
639  *	@active_extensions: active extensions (skb_ext_id types)
640  *	@ndisc_nodetype: router type (from link layer)
641  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
642  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
643  *		ports.
644  *	@sw_hash: indicates hash was computed in software stack
645  *	@wifi_acked_valid: wifi_acked was set
646  *	@wifi_acked: whether frame was acked on wifi or not
647  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
648  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
649  *	@dst_pending_confirm: need to confirm neighbour
650  *	@decrypted: Decrypted SKB
651   *	@napi_id: id of the NAPI struct this skb came from
652  *	@secmark: security marking
653  *	@mark: Generic packet mark
654  *	@vlan_proto: vlan encapsulation protocol
655  *	@vlan_tci: vlan tag control information
656  *	@inner_protocol: Protocol (encapsulation)
657  *	@inner_transport_header: Inner transport layer header (encapsulation)
658  *	@inner_network_header: Network layer header (encapsulation)
659  *	@inner_mac_header: Link layer header (encapsulation)
660  *	@transport_header: Transport layer header
661  *	@network_header: Network layer header
662  *	@mac_header: Link layer header
663  *	@tail: Tail pointer
664  *	@end: End pointer
665  *	@head: Head of buffer
666  *	@data: Data head pointer
667  *	@truesize: Buffer size
668  *	@users: User count - see {datagram,tcp}.c
669  *	@extensions: allocated extensions, valid if active_extensions is nonzero
670  */
671 
672 struct sk_buff {
673 	union {
674 		struct {
675 			/* These two members must be first. */
676 			struct sk_buff		*next;
677 			struct sk_buff		*prev;
678 
679 			union {
680 				struct net_device	*dev;
681 				/* Some protocols might use this space to store information,
682 				 * while device pointer would be NULL.
683 				 * UDP receive path is one user.
684 				 */
685 				unsigned long		dev_scratch;
686 			};
687 		};
688 		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
689 		struct list_head	list;
690 	};
691 
692 	union {
693 		struct sock		*sk;
694 		int			ip_defrag_offset;
695 	};
696 
697 	union {
698 		ktime_t		tstamp;
699 		u64		skb_mstamp_ns; /* earliest departure time */
700 	};
701 	/*
702 	 * This is the control buffer. It is free to use for every
703 	 * layer. Please put your private variables there. If you
704 	 * want to keep them across layers you have to do a skb_clone()
705 	 * first. This is owned by whoever has the skb queued ATM.
706 	 */
707 	char			cb[48] __aligned(8);
708 
709 	union {
710 		struct {
711 			unsigned long	_skb_refdst;
712 			void		(*destructor)(struct sk_buff *skb);
713 		};
714 		struct list_head	tcp_tsorted_anchor;
715 	};
716 
717 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
718 	unsigned long		 _nfct;
719 #endif
720 	unsigned int		len,
721 				data_len;
722 	__u16			mac_len,
723 				hdr_len;
724 
725 	/* Following fields are _not_ copied in __copy_skb_header()
726 	 * Note that queue_mapping is here mostly to fill a hole.
727 	 */
728 	__u16			queue_mapping;
729 
730 /* if you move cloned around you also must adapt those constants */
731 #ifdef __BIG_ENDIAN_BITFIELD
732 #define CLONED_MASK	(1 << 7)
733 #else
734 #define CLONED_MASK	1
735 #endif
736 #define CLONED_OFFSET()		offsetof(struct sk_buff, __cloned_offset)
737 
738 	__u8			__cloned_offset[0];
739 	__u8			cloned:1,
740 				nohdr:1,
741 				fclone:2,
742 				peeked:1,
743 				head_frag:1,
744 				xmit_more:1,
745 				pfmemalloc:1;
746 #ifdef CONFIG_SKB_EXTENSIONS
747 	__u8			active_extensions;
748 #endif
749 	/* fields enclosed in headers_start/headers_end are copied
750 	 * using a single memcpy() in __copy_skb_header()
751 	 */
752 	/* private: */
753 	__u32			headers_start[0];
754 	/* public: */
755 
756 /* if you move pkt_type around you also must adapt those constants */
757 #ifdef __BIG_ENDIAN_BITFIELD
758 #define PKT_TYPE_MAX	(7 << 5)
759 #else
760 #define PKT_TYPE_MAX	7
761 #endif
762 #define PKT_TYPE_OFFSET()	offsetof(struct sk_buff, __pkt_type_offset)
763 
764 	__u8			__pkt_type_offset[0];
765 	__u8			pkt_type:3;
766 	__u8			ignore_df:1;
767 	__u8			nf_trace:1;
768 	__u8			ip_summed:2;
769 	__u8			ooo_okay:1;
770 
771 	__u8			l4_hash:1;
772 	__u8			sw_hash:1;
773 	__u8			wifi_acked_valid:1;
774 	__u8			wifi_acked:1;
775 	__u8			no_fcs:1;
776 	/* Indicates the inner headers are valid in the skbuff. */
777 	__u8			encapsulation:1;
778 	__u8			encap_hdr_csum:1;
779 	__u8			csum_valid:1;
780 
781 #ifdef __BIG_ENDIAN_BITFIELD
782 #define PKT_VLAN_PRESENT_BIT	7
783 #else
784 #define PKT_VLAN_PRESENT_BIT	0
785 #endif
786 #define PKT_VLAN_PRESENT_OFFSET()	offsetof(struct sk_buff, __pkt_vlan_present_offset)
787 	__u8			__pkt_vlan_present_offset[0];
788 	__u8			vlan_present:1;
789 	__u8			csum_complete_sw:1;
790 	__u8			csum_level:2;
791 	__u8			csum_not_inet:1;
792 	__u8			dst_pending_confirm:1;
793 #ifdef CONFIG_IPV6_NDISC_NODETYPE
794 	__u8			ndisc_nodetype:2;
795 #endif
796 
797 	__u8			ipvs_property:1;
798 	__u8			inner_protocol_type:1;
799 	__u8			remcsum_offload:1;
800 #ifdef CONFIG_NET_SWITCHDEV
801 	__u8			offload_fwd_mark:1;
802 	__u8			offload_l3_fwd_mark:1;
803 #endif
804 #ifdef CONFIG_NET_CLS_ACT
805 	__u8			tc_skip_classify:1;
806 	__u8			tc_at_ingress:1;
807 	__u8			tc_redirected:1;
808 	__u8			tc_from_ingress:1;
809 #endif
810 #ifdef CONFIG_TLS_DEVICE
811 	__u8			decrypted:1;
812 #endif
813 
814 #ifdef CONFIG_NET_SCHED
815 	__u16			tc_index;	/* traffic control index */
816 #endif
817 
818 	union {
819 		__wsum		csum;
820 		struct {
821 			__u16	csum_start;
822 			__u16	csum_offset;
823 		};
824 	};
825 	__u32			priority;
826 	int			skb_iif;
827 	__u32			hash;
828 	__be16			vlan_proto;
829 	__u16			vlan_tci;
830 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
831 	union {
832 		unsigned int	napi_id;
833 		unsigned int	sender_cpu;
834 	};
835 #endif
836 #ifdef CONFIG_NETWORK_SECMARK
837 	__u32		secmark;
838 #endif
839 
840 	union {
841 		__u32		mark;
842 		__u32		reserved_tailroom;
843 	};
844 
845 	union {
846 		__be16		inner_protocol;
847 		__u8		inner_ipproto;
848 	};
849 
850 	__u16			inner_transport_header;
851 	__u16			inner_network_header;
852 	__u16			inner_mac_header;
853 
854 	__be16			protocol;
855 	__u16			transport_header;
856 	__u16			network_header;
857 	__u16			mac_header;
858 
859 	/* private: */
860 	__u32			headers_end[0];
861 	/* public: */
862 
863 	/* These elements must be at the end, see alloc_skb() for details.  */
864 	sk_buff_data_t		tail;
865 	sk_buff_data_t		end;
866 	unsigned char		*head,
867 				*data;
868 	unsigned int		truesize;
869 	refcount_t		users;
870 
871 #ifdef CONFIG_SKB_EXTENSIONS
872 	/* only useable after checking ->active_extensions != 0 */
873 	struct skb_ext		*extensions;
874 #endif
875 };
876 
877 #ifdef __KERNEL__
878 /*
879  *	Handling routines are only of interest to the kernel
880  */
881 
882 #define SKB_ALLOC_FCLONE	0x01
883 #define SKB_ALLOC_RX		0x02
884 #define SKB_ALLOC_NAPI		0x04
885 
886 /* Returns true if the skb was allocated from PFMEMALLOC reserves */
887 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
888 {
889 	return unlikely(skb->pfmemalloc);
890 }
891 
892 /*
893  * skb might have a dst pointer attached, refcounted or not.
894  * _skb_refdst low order bit is set if refcount was _not_ taken
895  */
896 #define SKB_DST_NOREF	1UL
897 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
898 
899 #define SKB_NFCT_PTRMASK	~(7UL)
900 /**
901  * skb_dst - returns skb dst_entry
902  * @skb: buffer
903  *
904  * Returns skb dst_entry, regardless of reference taken or not.
905  */
906 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
907 {
908 	/* If refdst was not refcounted, check we still are in a
909 	 * rcu_read_lock section
910 	 */
911 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
912 		!rcu_read_lock_held() &&
913 		!rcu_read_lock_bh_held());
914 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
915 }
916 
917 /**
918  * skb_dst_set - sets skb dst
919  * @skb: buffer
920  * @dst: dst entry
921  *
922  * Sets skb dst, assuming a reference was taken on dst and should
923  * be released by skb_dst_drop()
924  */
925 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
926 {
927 	skb->_skb_refdst = (unsigned long)dst;
928 }
929 
930 /**
931  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
932  * @skb: buffer
933  * @dst: dst entry
934  *
935  * Sets skb dst, assuming a reference was not taken on dst.
936  * If dst entry is cached, we do not take reference and dst_release
937  * will be avoided by refdst_drop. If dst entry is not cached, we take
938  * reference, so that last dst_release can destroy the dst immediately.
939  */
940 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
941 {
942 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
943 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
944 }
945 
946 /**
947  * skb_dst_is_noref - Test if skb dst isn't refcounted
948  * @skb: buffer
949  */
950 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
951 {
952 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
953 }
954 
955 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
956 {
957 	return (struct rtable *)skb_dst(skb);
958 }
959 
960 /* For mangling skb->pkt_type from user space side from applications
961  * such as nft, tc, etc, we only allow a conservative subset of
962  * possible pkt_types to be set.
963 */
964 static inline bool skb_pkt_type_ok(u32 ptype)
965 {
966 	return ptype <= PACKET_OTHERHOST;
967 }
968 
969 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
970 {
971 #ifdef CONFIG_NET_RX_BUSY_POLL
972 	return skb->napi_id;
973 #else
974 	return 0;
975 #endif
976 }
977 
978 /* decrement the reference count and return true if we can free the skb */
979 static inline bool skb_unref(struct sk_buff *skb)
980 {
981 	if (unlikely(!skb))
982 		return false;
983 	if (likely(refcount_read(&skb->users) == 1))
984 		smp_rmb();
985 	else if (likely(!refcount_dec_and_test(&skb->users)))
986 		return false;
987 
988 	return true;
989 }
990 
991 void skb_release_head_state(struct sk_buff *skb);
992 void kfree_skb(struct sk_buff *skb);
993 void kfree_skb_list(struct sk_buff *segs);
994 void skb_tx_error(struct sk_buff *skb);
995 void consume_skb(struct sk_buff *skb);
996 void __consume_stateless_skb(struct sk_buff *skb);
997 void  __kfree_skb(struct sk_buff *skb);
998 extern struct kmem_cache *skbuff_head_cache;
999 
1000 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1001 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1002 		      bool *fragstolen, int *delta_truesize);
1003 
1004 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1005 			    int node);
1006 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1007 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1008 static inline struct sk_buff *alloc_skb(unsigned int size,
1009 					gfp_t priority)
1010 {
1011 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1012 }
1013 
1014 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1015 				     unsigned long data_len,
1016 				     int max_page_order,
1017 				     int *errcode,
1018 				     gfp_t gfp_mask);
1019 
1020 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1021 struct sk_buff_fclones {
1022 	struct sk_buff	skb1;
1023 
1024 	struct sk_buff	skb2;
1025 
1026 	refcount_t	fclone_ref;
1027 };
1028 
1029 /**
1030  *	skb_fclone_busy - check if fclone is busy
1031  *	@sk: socket
1032  *	@skb: buffer
1033  *
1034  * Returns true if skb is a fast clone, and its clone is not freed.
1035  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1036  * so we also check that this didnt happen.
1037  */
1038 static inline bool skb_fclone_busy(const struct sock *sk,
1039 				   const struct sk_buff *skb)
1040 {
1041 	const struct sk_buff_fclones *fclones;
1042 
1043 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1044 
1045 	return skb->fclone == SKB_FCLONE_ORIG &&
1046 	       refcount_read(&fclones->fclone_ref) > 1 &&
1047 	       fclones->skb2.sk == sk;
1048 }
1049 
1050 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1051 					       gfp_t priority)
1052 {
1053 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1054 }
1055 
1056 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1057 void skb_headers_offset_update(struct sk_buff *skb, int off);
1058 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1059 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1060 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1061 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1062 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1063 				   gfp_t gfp_mask, bool fclone);
1064 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1065 					  gfp_t gfp_mask)
1066 {
1067 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1068 }
1069 
1070 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1071 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1072 				     unsigned int headroom);
1073 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1074 				int newtailroom, gfp_t priority);
1075 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1076 				     int offset, int len);
1077 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1078 			      int offset, int len);
1079 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1080 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1081 
1082 /**
1083  *	skb_pad			-	zero pad the tail of an skb
1084  *	@skb: buffer to pad
1085  *	@pad: space to pad
1086  *
1087  *	Ensure that a buffer is followed by a padding area that is zero
1088  *	filled. Used by network drivers which may DMA or transfer data
1089  *	beyond the buffer end onto the wire.
1090  *
1091  *	May return error in out of memory cases. The skb is freed on error.
1092  */
1093 static inline int skb_pad(struct sk_buff *skb, int pad)
1094 {
1095 	return __skb_pad(skb, pad, true);
1096 }
1097 #define dev_kfree_skb(a)	consume_skb(a)
1098 
1099 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1100 			 int offset, size_t size);
1101 
1102 struct skb_seq_state {
1103 	__u32		lower_offset;
1104 	__u32		upper_offset;
1105 	__u32		frag_idx;
1106 	__u32		stepped_offset;
1107 	struct sk_buff	*root_skb;
1108 	struct sk_buff	*cur_skb;
1109 	__u8		*frag_data;
1110 };
1111 
1112 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1113 			  unsigned int to, struct skb_seq_state *st);
1114 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1115 			  struct skb_seq_state *st);
1116 void skb_abort_seq_read(struct skb_seq_state *st);
1117 
1118 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1119 			   unsigned int to, struct ts_config *config);
1120 
1121 /*
1122  * Packet hash types specify the type of hash in skb_set_hash.
1123  *
1124  * Hash types refer to the protocol layer addresses which are used to
1125  * construct a packet's hash. The hashes are used to differentiate or identify
1126  * flows of the protocol layer for the hash type. Hash types are either
1127  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1128  *
1129  * Properties of hashes:
1130  *
1131  * 1) Two packets in different flows have different hash values
1132  * 2) Two packets in the same flow should have the same hash value
1133  *
1134  * A hash at a higher layer is considered to be more specific. A driver should
1135  * set the most specific hash possible.
1136  *
1137  * A driver cannot indicate a more specific hash than the layer at which a hash
1138  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1139  *
1140  * A driver may indicate a hash level which is less specific than the
1141  * actual layer the hash was computed on. For instance, a hash computed
1142  * at L4 may be considered an L3 hash. This should only be done if the
1143  * driver can't unambiguously determine that the HW computed the hash at
1144  * the higher layer. Note that the "should" in the second property above
1145  * permits this.
1146  */
1147 enum pkt_hash_types {
1148 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1149 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1150 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1151 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1152 };
1153 
1154 static inline void skb_clear_hash(struct sk_buff *skb)
1155 {
1156 	skb->hash = 0;
1157 	skb->sw_hash = 0;
1158 	skb->l4_hash = 0;
1159 }
1160 
1161 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1162 {
1163 	if (!skb->l4_hash)
1164 		skb_clear_hash(skb);
1165 }
1166 
1167 static inline void
1168 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1169 {
1170 	skb->l4_hash = is_l4;
1171 	skb->sw_hash = is_sw;
1172 	skb->hash = hash;
1173 }
1174 
1175 static inline void
1176 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1177 {
1178 	/* Used by drivers to set hash from HW */
1179 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1180 }
1181 
1182 static inline void
1183 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1184 {
1185 	__skb_set_hash(skb, hash, true, is_l4);
1186 }
1187 
1188 void __skb_get_hash(struct sk_buff *skb);
1189 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1190 u32 skb_get_poff(const struct sk_buff *skb);
1191 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1192 		   const struct flow_keys_basic *keys, int hlen);
1193 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1194 			    void *data, int hlen_proto);
1195 
1196 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1197 					int thoff, u8 ip_proto)
1198 {
1199 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1200 }
1201 
1202 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1203 			     const struct flow_dissector_key *key,
1204 			     unsigned int key_count);
1205 
1206 #ifdef CONFIG_NET
1207 int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr,
1208 				       struct bpf_prog *prog);
1209 
1210 int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr);
1211 #else
1212 static inline int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr,
1213 						     struct bpf_prog *prog)
1214 {
1215 	return -EOPNOTSUPP;
1216 }
1217 
1218 static inline int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr)
1219 {
1220 	return -EOPNOTSUPP;
1221 }
1222 #endif
1223 
1224 bool __skb_flow_dissect(const struct sk_buff *skb,
1225 			struct flow_dissector *flow_dissector,
1226 			void *target_container,
1227 			void *data, __be16 proto, int nhoff, int hlen,
1228 			unsigned int flags);
1229 
1230 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1231 				    struct flow_dissector *flow_dissector,
1232 				    void *target_container, unsigned int flags)
1233 {
1234 	return __skb_flow_dissect(skb, flow_dissector, target_container,
1235 				  NULL, 0, 0, 0, flags);
1236 }
1237 
1238 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1239 					      struct flow_keys *flow,
1240 					      unsigned int flags)
1241 {
1242 	memset(flow, 0, sizeof(*flow));
1243 	return __skb_flow_dissect(skb, &flow_keys_dissector, flow,
1244 				  NULL, 0, 0, 0, flags);
1245 }
1246 
1247 static inline bool
1248 skb_flow_dissect_flow_keys_basic(const struct sk_buff *skb,
1249 				 struct flow_keys_basic *flow, void *data,
1250 				 __be16 proto, int nhoff, int hlen,
1251 				 unsigned int flags)
1252 {
1253 	memset(flow, 0, sizeof(*flow));
1254 	return __skb_flow_dissect(skb, &flow_keys_basic_dissector, flow,
1255 				  data, proto, nhoff, hlen, flags);
1256 }
1257 
1258 void
1259 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1260 			     struct flow_dissector *flow_dissector,
1261 			     void *target_container);
1262 
1263 static inline __u32 skb_get_hash(struct sk_buff *skb)
1264 {
1265 	if (!skb->l4_hash && !skb->sw_hash)
1266 		__skb_get_hash(skb);
1267 
1268 	return skb->hash;
1269 }
1270 
1271 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1272 {
1273 	if (!skb->l4_hash && !skb->sw_hash) {
1274 		struct flow_keys keys;
1275 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1276 
1277 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1278 	}
1279 
1280 	return skb->hash;
1281 }
1282 
1283 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);
1284 
1285 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1286 {
1287 	return skb->hash;
1288 }
1289 
1290 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1291 {
1292 	to->hash = from->hash;
1293 	to->sw_hash = from->sw_hash;
1294 	to->l4_hash = from->l4_hash;
1295 };
1296 
1297 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1298 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1299 {
1300 	return skb->head + skb->end;
1301 }
1302 
1303 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1304 {
1305 	return skb->end;
1306 }
1307 #else
1308 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1309 {
1310 	return skb->end;
1311 }
1312 
1313 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1314 {
1315 	return skb->end - skb->head;
1316 }
1317 #endif
1318 
1319 /* Internal */
1320 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1321 
1322 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1323 {
1324 	return &skb_shinfo(skb)->hwtstamps;
1325 }
1326 
1327 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1328 {
1329 	bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY;
1330 
1331 	return is_zcopy ? skb_uarg(skb) : NULL;
1332 }
1333 
1334 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1335 				 bool *have_ref)
1336 {
1337 	if (skb && uarg && !skb_zcopy(skb)) {
1338 		if (unlikely(have_ref && *have_ref))
1339 			*have_ref = false;
1340 		else
1341 			sock_zerocopy_get(uarg);
1342 		skb_shinfo(skb)->destructor_arg = uarg;
1343 		skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1344 	}
1345 }
1346 
1347 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1348 {
1349 	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1350 	skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1351 }
1352 
1353 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1354 {
1355 	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1356 }
1357 
1358 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1359 {
1360 	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1361 }
1362 
1363 /* Release a reference on a zerocopy structure */
1364 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy)
1365 {
1366 	struct ubuf_info *uarg = skb_zcopy(skb);
1367 
1368 	if (uarg) {
1369 		if (uarg->callback == sock_zerocopy_callback) {
1370 			uarg->zerocopy = uarg->zerocopy && zerocopy;
1371 			sock_zerocopy_put(uarg);
1372 		} else if (!skb_zcopy_is_nouarg(skb)) {
1373 			uarg->callback(uarg, zerocopy);
1374 		}
1375 
1376 		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1377 	}
1378 }
1379 
1380 /* Abort a zerocopy operation and revert zckey on error in send syscall */
1381 static inline void skb_zcopy_abort(struct sk_buff *skb)
1382 {
1383 	struct ubuf_info *uarg = skb_zcopy(skb);
1384 
1385 	if (uarg) {
1386 		sock_zerocopy_put_abort(uarg, false);
1387 		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1388 	}
1389 }
1390 
1391 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1392 {
1393 	skb->next = NULL;
1394 }
1395 
1396 static inline void skb_list_del_init(struct sk_buff *skb)
1397 {
1398 	__list_del_entry(&skb->list);
1399 	skb_mark_not_on_list(skb);
1400 }
1401 
1402 /**
1403  *	skb_queue_empty - check if a queue is empty
1404  *	@list: queue head
1405  *
1406  *	Returns true if the queue is empty, false otherwise.
1407  */
1408 static inline int skb_queue_empty(const struct sk_buff_head *list)
1409 {
1410 	return list->next == (const struct sk_buff *) list;
1411 }
1412 
1413 /**
1414  *	skb_queue_is_last - check if skb is the last entry in the queue
1415  *	@list: queue head
1416  *	@skb: buffer
1417  *
1418  *	Returns true if @skb is the last buffer on the list.
1419  */
1420 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1421 				     const struct sk_buff *skb)
1422 {
1423 	return skb->next == (const struct sk_buff *) list;
1424 }
1425 
1426 /**
1427  *	skb_queue_is_first - check if skb is the first entry in the queue
1428  *	@list: queue head
1429  *	@skb: buffer
1430  *
1431  *	Returns true if @skb is the first buffer on the list.
1432  */
1433 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1434 				      const struct sk_buff *skb)
1435 {
1436 	return skb->prev == (const struct sk_buff *) list;
1437 }
1438 
1439 /**
1440  *	skb_queue_next - return the next packet in the queue
1441  *	@list: queue head
1442  *	@skb: current buffer
1443  *
1444  *	Return the next packet in @list after @skb.  It is only valid to
1445  *	call this if skb_queue_is_last() evaluates to false.
1446  */
1447 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1448 					     const struct sk_buff *skb)
1449 {
1450 	/* This BUG_ON may seem severe, but if we just return then we
1451 	 * are going to dereference garbage.
1452 	 */
1453 	BUG_ON(skb_queue_is_last(list, skb));
1454 	return skb->next;
1455 }
1456 
1457 /**
1458  *	skb_queue_prev - return the prev packet in the queue
1459  *	@list: queue head
1460  *	@skb: current buffer
1461  *
1462  *	Return the prev packet in @list before @skb.  It is only valid to
1463  *	call this if skb_queue_is_first() evaluates to false.
1464  */
1465 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1466 					     const struct sk_buff *skb)
1467 {
1468 	/* This BUG_ON may seem severe, but if we just return then we
1469 	 * are going to dereference garbage.
1470 	 */
1471 	BUG_ON(skb_queue_is_first(list, skb));
1472 	return skb->prev;
1473 }
1474 
1475 /**
1476  *	skb_get - reference buffer
1477  *	@skb: buffer to reference
1478  *
1479  *	Makes another reference to a socket buffer and returns a pointer
1480  *	to the buffer.
1481  */
1482 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1483 {
1484 	refcount_inc(&skb->users);
1485 	return skb;
1486 }
1487 
1488 /*
1489  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1490  */
1491 
1492 /**
1493  *	skb_cloned - is the buffer a clone
1494  *	@skb: buffer to check
1495  *
1496  *	Returns true if the buffer was generated with skb_clone() and is
1497  *	one of multiple shared copies of the buffer. Cloned buffers are
1498  *	shared data so must not be written to under normal circumstances.
1499  */
1500 static inline int skb_cloned(const struct sk_buff *skb)
1501 {
1502 	return skb->cloned &&
1503 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1504 }
1505 
1506 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1507 {
1508 	might_sleep_if(gfpflags_allow_blocking(pri));
1509 
1510 	if (skb_cloned(skb))
1511 		return pskb_expand_head(skb, 0, 0, pri);
1512 
1513 	return 0;
1514 }
1515 
1516 /**
1517  *	skb_header_cloned - is the header a clone
1518  *	@skb: buffer to check
1519  *
1520  *	Returns true if modifying the header part of the buffer requires
1521  *	the data to be copied.
1522  */
1523 static inline int skb_header_cloned(const struct sk_buff *skb)
1524 {
1525 	int dataref;
1526 
1527 	if (!skb->cloned)
1528 		return 0;
1529 
1530 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1531 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1532 	return dataref != 1;
1533 }
1534 
1535 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1536 {
1537 	might_sleep_if(gfpflags_allow_blocking(pri));
1538 
1539 	if (skb_header_cloned(skb))
1540 		return pskb_expand_head(skb, 0, 0, pri);
1541 
1542 	return 0;
1543 }
1544 
1545 /**
1546  *	__skb_header_release - release reference to header
1547  *	@skb: buffer to operate on
1548  */
1549 static inline void __skb_header_release(struct sk_buff *skb)
1550 {
1551 	skb->nohdr = 1;
1552 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1553 }
1554 
1555 
1556 /**
1557  *	skb_shared - is the buffer shared
1558  *	@skb: buffer to check
1559  *
1560  *	Returns true if more than one person has a reference to this
1561  *	buffer.
1562  */
1563 static inline int skb_shared(const struct sk_buff *skb)
1564 {
1565 	return refcount_read(&skb->users) != 1;
1566 }
1567 
1568 /**
1569  *	skb_share_check - check if buffer is shared and if so clone it
1570  *	@skb: buffer to check
1571  *	@pri: priority for memory allocation
1572  *
1573  *	If the buffer is shared the buffer is cloned and the old copy
1574  *	drops a reference. A new clone with a single reference is returned.
1575  *	If the buffer is not shared the original buffer is returned. When
1576  *	being called from interrupt status or with spinlocks held pri must
1577  *	be GFP_ATOMIC.
1578  *
1579  *	NULL is returned on a memory allocation failure.
1580  */
1581 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1582 {
1583 	might_sleep_if(gfpflags_allow_blocking(pri));
1584 	if (skb_shared(skb)) {
1585 		struct sk_buff *nskb = skb_clone(skb, pri);
1586 
1587 		if (likely(nskb))
1588 			consume_skb(skb);
1589 		else
1590 			kfree_skb(skb);
1591 		skb = nskb;
1592 	}
1593 	return skb;
1594 }
1595 
1596 /*
1597  *	Copy shared buffers into a new sk_buff. We effectively do COW on
1598  *	packets to handle cases where we have a local reader and forward
1599  *	and a couple of other messy ones. The normal one is tcpdumping
1600  *	a packet thats being forwarded.
1601  */
1602 
1603 /**
1604  *	skb_unshare - make a copy of a shared buffer
1605  *	@skb: buffer to check
1606  *	@pri: priority for memory allocation
1607  *
1608  *	If the socket buffer is a clone then this function creates a new
1609  *	copy of the data, drops a reference count on the old copy and returns
1610  *	the new copy with the reference count at 1. If the buffer is not a clone
1611  *	the original buffer is returned. When called with a spinlock held or
1612  *	from interrupt state @pri must be %GFP_ATOMIC
1613  *
1614  *	%NULL is returned on a memory allocation failure.
1615  */
1616 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1617 					  gfp_t pri)
1618 {
1619 	might_sleep_if(gfpflags_allow_blocking(pri));
1620 	if (skb_cloned(skb)) {
1621 		struct sk_buff *nskb = skb_copy(skb, pri);
1622 
1623 		/* Free our shared copy */
1624 		if (likely(nskb))
1625 			consume_skb(skb);
1626 		else
1627 			kfree_skb(skb);
1628 		skb = nskb;
1629 	}
1630 	return skb;
1631 }
1632 
1633 /**
1634  *	skb_peek - peek at the head of an &sk_buff_head
1635  *	@list_: list to peek at
1636  *
1637  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1638  *	be careful with this one. A peek leaves the buffer on the
1639  *	list and someone else may run off with it. You must hold
1640  *	the appropriate locks or have a private queue to do this.
1641  *
1642  *	Returns %NULL for an empty list or a pointer to the head element.
1643  *	The reference count is not incremented and the reference is therefore
1644  *	volatile. Use with caution.
1645  */
1646 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1647 {
1648 	struct sk_buff *skb = list_->next;
1649 
1650 	if (skb == (struct sk_buff *)list_)
1651 		skb = NULL;
1652 	return skb;
1653 }
1654 
1655 /**
1656  *	__skb_peek - peek at the head of a non-empty &sk_buff_head
1657  *	@list_: list to peek at
1658  *
1659  *	Like skb_peek(), but the caller knows that the list is not empty.
1660  */
1661 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
1662 {
1663 	return list_->next;
1664 }
1665 
1666 /**
1667  *	skb_peek_next - peek skb following the given one from a queue
1668  *	@skb: skb to start from
1669  *	@list_: list to peek at
1670  *
1671  *	Returns %NULL when the end of the list is met or a pointer to the
1672  *	next element. The reference count is not incremented and the
1673  *	reference is therefore volatile. Use with caution.
1674  */
1675 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1676 		const struct sk_buff_head *list_)
1677 {
1678 	struct sk_buff *next = skb->next;
1679 
1680 	if (next == (struct sk_buff *)list_)
1681 		next = NULL;
1682 	return next;
1683 }
1684 
1685 /**
1686  *	skb_peek_tail - peek at the tail of an &sk_buff_head
1687  *	@list_: list to peek at
1688  *
1689  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1690  *	be careful with this one. A peek leaves the buffer on the
1691  *	list and someone else may run off with it. You must hold
1692  *	the appropriate locks or have a private queue to do this.
1693  *
1694  *	Returns %NULL for an empty list or a pointer to the tail element.
1695  *	The reference count is not incremented and the reference is therefore
1696  *	volatile. Use with caution.
1697  */
1698 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1699 {
1700 	struct sk_buff *skb = list_->prev;
1701 
1702 	if (skb == (struct sk_buff *)list_)
1703 		skb = NULL;
1704 	return skb;
1705 
1706 }
1707 
1708 /**
1709  *	skb_queue_len	- get queue length
1710  *	@list_: list to measure
1711  *
1712  *	Return the length of an &sk_buff queue.
1713  */
1714 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1715 {
1716 	return list_->qlen;
1717 }
1718 
1719 /**
1720  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1721  *	@list: queue to initialize
1722  *
1723  *	This initializes only the list and queue length aspects of
1724  *	an sk_buff_head object.  This allows to initialize the list
1725  *	aspects of an sk_buff_head without reinitializing things like
1726  *	the spinlock.  It can also be used for on-stack sk_buff_head
1727  *	objects where the spinlock is known to not be used.
1728  */
1729 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1730 {
1731 	list->prev = list->next = (struct sk_buff *)list;
1732 	list->qlen = 0;
1733 }
1734 
1735 /*
1736  * This function creates a split out lock class for each invocation;
1737  * this is needed for now since a whole lot of users of the skb-queue
1738  * infrastructure in drivers have different locking usage (in hardirq)
1739  * than the networking core (in softirq only). In the long run either the
1740  * network layer or drivers should need annotation to consolidate the
1741  * main types of usage into 3 classes.
1742  */
1743 static inline void skb_queue_head_init(struct sk_buff_head *list)
1744 {
1745 	spin_lock_init(&list->lock);
1746 	__skb_queue_head_init(list);
1747 }
1748 
1749 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1750 		struct lock_class_key *class)
1751 {
1752 	skb_queue_head_init(list);
1753 	lockdep_set_class(&list->lock, class);
1754 }
1755 
1756 /*
1757  *	Insert an sk_buff on a list.
1758  *
1759  *	The "__skb_xxxx()" functions are the non-atomic ones that
1760  *	can only be called with interrupts disabled.
1761  */
1762 static inline void __skb_insert(struct sk_buff *newsk,
1763 				struct sk_buff *prev, struct sk_buff *next,
1764 				struct sk_buff_head *list)
1765 {
1766 	newsk->next = next;
1767 	newsk->prev = prev;
1768 	next->prev  = prev->next = newsk;
1769 	list->qlen++;
1770 }
1771 
1772 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1773 				      struct sk_buff *prev,
1774 				      struct sk_buff *next)
1775 {
1776 	struct sk_buff *first = list->next;
1777 	struct sk_buff *last = list->prev;
1778 
1779 	first->prev = prev;
1780 	prev->next = first;
1781 
1782 	last->next = next;
1783 	next->prev = last;
1784 }
1785 
1786 /**
1787  *	skb_queue_splice - join two skb lists, this is designed for stacks
1788  *	@list: the new list to add
1789  *	@head: the place to add it in the first list
1790  */
1791 static inline void skb_queue_splice(const struct sk_buff_head *list,
1792 				    struct sk_buff_head *head)
1793 {
1794 	if (!skb_queue_empty(list)) {
1795 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1796 		head->qlen += list->qlen;
1797 	}
1798 }
1799 
1800 /**
1801  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1802  *	@list: the new list to add
1803  *	@head: the place to add it in the first list
1804  *
1805  *	The list at @list is reinitialised
1806  */
1807 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1808 					 struct sk_buff_head *head)
1809 {
1810 	if (!skb_queue_empty(list)) {
1811 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1812 		head->qlen += list->qlen;
1813 		__skb_queue_head_init(list);
1814 	}
1815 }
1816 
1817 /**
1818  *	skb_queue_splice_tail - join two skb lists, each list being a queue
1819  *	@list: the new list to add
1820  *	@head: the place to add it in the first list
1821  */
1822 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1823 					 struct sk_buff_head *head)
1824 {
1825 	if (!skb_queue_empty(list)) {
1826 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1827 		head->qlen += list->qlen;
1828 	}
1829 }
1830 
1831 /**
1832  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1833  *	@list: the new list to add
1834  *	@head: the place to add it in the first list
1835  *
1836  *	Each of the lists is a queue.
1837  *	The list at @list is reinitialised
1838  */
1839 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1840 					      struct sk_buff_head *head)
1841 {
1842 	if (!skb_queue_empty(list)) {
1843 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1844 		head->qlen += list->qlen;
1845 		__skb_queue_head_init(list);
1846 	}
1847 }
1848 
1849 /**
1850  *	__skb_queue_after - queue a buffer at the list head
1851  *	@list: list to use
1852  *	@prev: place after this buffer
1853  *	@newsk: buffer to queue
1854  *
1855  *	Queue a buffer int the middle of a list. This function takes no locks
1856  *	and you must therefore hold required locks before calling it.
1857  *
1858  *	A buffer cannot be placed on two lists at the same time.
1859  */
1860 static inline void __skb_queue_after(struct sk_buff_head *list,
1861 				     struct sk_buff *prev,
1862 				     struct sk_buff *newsk)
1863 {
1864 	__skb_insert(newsk, prev, prev->next, list);
1865 }
1866 
1867 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1868 		struct sk_buff_head *list);
1869 
1870 static inline void __skb_queue_before(struct sk_buff_head *list,
1871 				      struct sk_buff *next,
1872 				      struct sk_buff *newsk)
1873 {
1874 	__skb_insert(newsk, next->prev, next, list);
1875 }
1876 
1877 /**
1878  *	__skb_queue_head - queue a buffer at the list head
1879  *	@list: list to use
1880  *	@newsk: buffer to queue
1881  *
1882  *	Queue a buffer at the start of a list. This function takes no locks
1883  *	and you must therefore hold required locks before calling it.
1884  *
1885  *	A buffer cannot be placed on two lists at the same time.
1886  */
1887 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1888 static inline void __skb_queue_head(struct sk_buff_head *list,
1889 				    struct sk_buff *newsk)
1890 {
1891 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
1892 }
1893 
1894 /**
1895  *	__skb_queue_tail - queue a buffer at the list tail
1896  *	@list: list to use
1897  *	@newsk: buffer to queue
1898  *
1899  *	Queue a buffer at the end of a list. This function takes no locks
1900  *	and you must therefore hold required locks before calling it.
1901  *
1902  *	A buffer cannot be placed on two lists at the same time.
1903  */
1904 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1905 static inline void __skb_queue_tail(struct sk_buff_head *list,
1906 				   struct sk_buff *newsk)
1907 {
1908 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
1909 }
1910 
1911 /*
1912  * remove sk_buff from list. _Must_ be called atomically, and with
1913  * the list known..
1914  */
1915 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1916 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1917 {
1918 	struct sk_buff *next, *prev;
1919 
1920 	list->qlen--;
1921 	next	   = skb->next;
1922 	prev	   = skb->prev;
1923 	skb->next  = skb->prev = NULL;
1924 	next->prev = prev;
1925 	prev->next = next;
1926 }
1927 
1928 /**
1929  *	__skb_dequeue - remove from the head of the queue
1930  *	@list: list to dequeue from
1931  *
1932  *	Remove the head of the list. This function does not take any locks
1933  *	so must be used with appropriate locks held only. The head item is
1934  *	returned or %NULL if the list is empty.
1935  */
1936 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1937 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1938 {
1939 	struct sk_buff *skb = skb_peek(list);
1940 	if (skb)
1941 		__skb_unlink(skb, list);
1942 	return skb;
1943 }
1944 
1945 /**
1946  *	__skb_dequeue_tail - remove from the tail of the queue
1947  *	@list: list to dequeue from
1948  *
1949  *	Remove the tail of the list. This function does not take any locks
1950  *	so must be used with appropriate locks held only. The tail item is
1951  *	returned or %NULL if the list is empty.
1952  */
1953 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1954 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1955 {
1956 	struct sk_buff *skb = skb_peek_tail(list);
1957 	if (skb)
1958 		__skb_unlink(skb, list);
1959 	return skb;
1960 }
1961 
1962 
1963 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1964 {
1965 	return skb->data_len;
1966 }
1967 
1968 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1969 {
1970 	return skb->len - skb->data_len;
1971 }
1972 
1973 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
1974 {
1975 	unsigned int i, len = 0;
1976 
1977 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
1978 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1979 	return len;
1980 }
1981 
1982 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
1983 {
1984 	return skb_headlen(skb) + __skb_pagelen(skb);
1985 }
1986 
1987 /**
1988  * __skb_fill_page_desc - initialise a paged fragment in an skb
1989  * @skb: buffer containing fragment to be initialised
1990  * @i: paged fragment index to initialise
1991  * @page: the page to use for this fragment
1992  * @off: the offset to the data with @page
1993  * @size: the length of the data
1994  *
1995  * Initialises the @i'th fragment of @skb to point to &size bytes at
1996  * offset @off within @page.
1997  *
1998  * Does not take any additional reference on the fragment.
1999  */
2000 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2001 					struct page *page, int off, int size)
2002 {
2003 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2004 
2005 	/*
2006 	 * Propagate page pfmemalloc to the skb if we can. The problem is
2007 	 * that not all callers have unique ownership of the page but rely
2008 	 * on page_is_pfmemalloc doing the right thing(tm).
2009 	 */
2010 	frag->page.p		  = page;
2011 	frag->page_offset	  = off;
2012 	skb_frag_size_set(frag, size);
2013 
2014 	page = compound_head(page);
2015 	if (page_is_pfmemalloc(page))
2016 		skb->pfmemalloc	= true;
2017 }
2018 
2019 /**
2020  * skb_fill_page_desc - initialise a paged fragment in an skb
2021  * @skb: buffer containing fragment to be initialised
2022  * @i: paged fragment index to initialise
2023  * @page: the page to use for this fragment
2024  * @off: the offset to the data with @page
2025  * @size: the length of the data
2026  *
2027  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2028  * @skb to point to @size bytes at offset @off within @page. In
2029  * addition updates @skb such that @i is the last fragment.
2030  *
2031  * Does not take any additional reference on the fragment.
2032  */
2033 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2034 				      struct page *page, int off, int size)
2035 {
2036 	__skb_fill_page_desc(skb, i, page, off, size);
2037 	skb_shinfo(skb)->nr_frags = i + 1;
2038 }
2039 
2040 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2041 		     int size, unsigned int truesize);
2042 
2043 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2044 			  unsigned int truesize);
2045 
2046 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
2047 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_has_frag_list(skb))
2048 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2049 
2050 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2051 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2052 {
2053 	return skb->head + skb->tail;
2054 }
2055 
2056 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2057 {
2058 	skb->tail = skb->data - skb->head;
2059 }
2060 
2061 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2062 {
2063 	skb_reset_tail_pointer(skb);
2064 	skb->tail += offset;
2065 }
2066 
2067 #else /* NET_SKBUFF_DATA_USES_OFFSET */
2068 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2069 {
2070 	return skb->tail;
2071 }
2072 
2073 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2074 {
2075 	skb->tail = skb->data;
2076 }
2077 
2078 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2079 {
2080 	skb->tail = skb->data + offset;
2081 }
2082 
2083 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2084 
2085 /*
2086  *	Add data to an sk_buff
2087  */
2088 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2089 void *skb_put(struct sk_buff *skb, unsigned int len);
2090 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2091 {
2092 	void *tmp = skb_tail_pointer(skb);
2093 	SKB_LINEAR_ASSERT(skb);
2094 	skb->tail += len;
2095 	skb->len  += len;
2096 	return tmp;
2097 }
2098 
2099 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2100 {
2101 	void *tmp = __skb_put(skb, len);
2102 
2103 	memset(tmp, 0, len);
2104 	return tmp;
2105 }
2106 
2107 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2108 				   unsigned int len)
2109 {
2110 	void *tmp = __skb_put(skb, len);
2111 
2112 	memcpy(tmp, data, len);
2113 	return tmp;
2114 }
2115 
2116 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2117 {
2118 	*(u8 *)__skb_put(skb, 1) = val;
2119 }
2120 
2121 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2122 {
2123 	void *tmp = skb_put(skb, len);
2124 
2125 	memset(tmp, 0, len);
2126 
2127 	return tmp;
2128 }
2129 
2130 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2131 				 unsigned int len)
2132 {
2133 	void *tmp = skb_put(skb, len);
2134 
2135 	memcpy(tmp, data, len);
2136 
2137 	return tmp;
2138 }
2139 
2140 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2141 {
2142 	*(u8 *)skb_put(skb, 1) = val;
2143 }
2144 
2145 void *skb_push(struct sk_buff *skb, unsigned int len);
2146 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2147 {
2148 	skb->data -= len;
2149 	skb->len  += len;
2150 	return skb->data;
2151 }
2152 
2153 void *skb_pull(struct sk_buff *skb, unsigned int len);
2154 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2155 {
2156 	skb->len -= len;
2157 	BUG_ON(skb->len < skb->data_len);
2158 	return skb->data += len;
2159 }
2160 
2161 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2162 {
2163 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2164 }
2165 
2166 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2167 
2168 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2169 {
2170 	if (len > skb_headlen(skb) &&
2171 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2172 		return NULL;
2173 	skb->len -= len;
2174 	return skb->data += len;
2175 }
2176 
2177 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2178 {
2179 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2180 }
2181 
2182 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
2183 {
2184 	if (likely(len <= skb_headlen(skb)))
2185 		return 1;
2186 	if (unlikely(len > skb->len))
2187 		return 0;
2188 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2189 }
2190 
2191 void skb_condense(struct sk_buff *skb);
2192 
2193 /**
2194  *	skb_headroom - bytes at buffer head
2195  *	@skb: buffer to check
2196  *
2197  *	Return the number of bytes of free space at the head of an &sk_buff.
2198  */
2199 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2200 {
2201 	return skb->data - skb->head;
2202 }
2203 
2204 /**
2205  *	skb_tailroom - bytes at buffer end
2206  *	@skb: buffer to check
2207  *
2208  *	Return the number of bytes of free space at the tail of an sk_buff
2209  */
2210 static inline int skb_tailroom(const struct sk_buff *skb)
2211 {
2212 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2213 }
2214 
2215 /**
2216  *	skb_availroom - bytes at buffer end
2217  *	@skb: buffer to check
2218  *
2219  *	Return the number of bytes of free space at the tail of an sk_buff
2220  *	allocated by sk_stream_alloc()
2221  */
2222 static inline int skb_availroom(const struct sk_buff *skb)
2223 {
2224 	if (skb_is_nonlinear(skb))
2225 		return 0;
2226 
2227 	return skb->end - skb->tail - skb->reserved_tailroom;
2228 }
2229 
2230 /**
2231  *	skb_reserve - adjust headroom
2232  *	@skb: buffer to alter
2233  *	@len: bytes to move
2234  *
2235  *	Increase the headroom of an empty &sk_buff by reducing the tail
2236  *	room. This is only allowed for an empty buffer.
2237  */
2238 static inline void skb_reserve(struct sk_buff *skb, int len)
2239 {
2240 	skb->data += len;
2241 	skb->tail += len;
2242 }
2243 
2244 /**
2245  *	skb_tailroom_reserve - adjust reserved_tailroom
2246  *	@skb: buffer to alter
2247  *	@mtu: maximum amount of headlen permitted
2248  *	@needed_tailroom: minimum amount of reserved_tailroom
2249  *
2250  *	Set reserved_tailroom so that headlen can be as large as possible but
2251  *	not larger than mtu and tailroom cannot be smaller than
2252  *	needed_tailroom.
2253  *	The required headroom should already have been reserved before using
2254  *	this function.
2255  */
2256 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2257 					unsigned int needed_tailroom)
2258 {
2259 	SKB_LINEAR_ASSERT(skb);
2260 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2261 		/* use at most mtu */
2262 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2263 	else
2264 		/* use up to all available space */
2265 		skb->reserved_tailroom = needed_tailroom;
2266 }
2267 
2268 #define ENCAP_TYPE_ETHER	0
2269 #define ENCAP_TYPE_IPPROTO	1
2270 
2271 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2272 					  __be16 protocol)
2273 {
2274 	skb->inner_protocol = protocol;
2275 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2276 }
2277 
2278 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2279 					 __u8 ipproto)
2280 {
2281 	skb->inner_ipproto = ipproto;
2282 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2283 }
2284 
2285 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2286 {
2287 	skb->inner_mac_header = skb->mac_header;
2288 	skb->inner_network_header = skb->network_header;
2289 	skb->inner_transport_header = skb->transport_header;
2290 }
2291 
2292 static inline void skb_reset_mac_len(struct sk_buff *skb)
2293 {
2294 	skb->mac_len = skb->network_header - skb->mac_header;
2295 }
2296 
2297 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2298 							*skb)
2299 {
2300 	return skb->head + skb->inner_transport_header;
2301 }
2302 
2303 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2304 {
2305 	return skb_inner_transport_header(skb) - skb->data;
2306 }
2307 
2308 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2309 {
2310 	skb->inner_transport_header = skb->data - skb->head;
2311 }
2312 
2313 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2314 						   const int offset)
2315 {
2316 	skb_reset_inner_transport_header(skb);
2317 	skb->inner_transport_header += offset;
2318 }
2319 
2320 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2321 {
2322 	return skb->head + skb->inner_network_header;
2323 }
2324 
2325 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2326 {
2327 	skb->inner_network_header = skb->data - skb->head;
2328 }
2329 
2330 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2331 						const int offset)
2332 {
2333 	skb_reset_inner_network_header(skb);
2334 	skb->inner_network_header += offset;
2335 }
2336 
2337 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2338 {
2339 	return skb->head + skb->inner_mac_header;
2340 }
2341 
2342 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2343 {
2344 	skb->inner_mac_header = skb->data - skb->head;
2345 }
2346 
2347 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2348 					    const int offset)
2349 {
2350 	skb_reset_inner_mac_header(skb);
2351 	skb->inner_mac_header += offset;
2352 }
2353 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2354 {
2355 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2356 }
2357 
2358 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2359 {
2360 	return skb->head + skb->transport_header;
2361 }
2362 
2363 static inline void skb_reset_transport_header(struct sk_buff *skb)
2364 {
2365 	skb->transport_header = skb->data - skb->head;
2366 }
2367 
2368 static inline void skb_set_transport_header(struct sk_buff *skb,
2369 					    const int offset)
2370 {
2371 	skb_reset_transport_header(skb);
2372 	skb->transport_header += offset;
2373 }
2374 
2375 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2376 {
2377 	return skb->head + skb->network_header;
2378 }
2379 
2380 static inline void skb_reset_network_header(struct sk_buff *skb)
2381 {
2382 	skb->network_header = skb->data - skb->head;
2383 }
2384 
2385 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2386 {
2387 	skb_reset_network_header(skb);
2388 	skb->network_header += offset;
2389 }
2390 
2391 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2392 {
2393 	return skb->head + skb->mac_header;
2394 }
2395 
2396 static inline int skb_mac_offset(const struct sk_buff *skb)
2397 {
2398 	return skb_mac_header(skb) - skb->data;
2399 }
2400 
2401 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2402 {
2403 	return skb->network_header - skb->mac_header;
2404 }
2405 
2406 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2407 {
2408 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2409 }
2410 
2411 static inline void skb_reset_mac_header(struct sk_buff *skb)
2412 {
2413 	skb->mac_header = skb->data - skb->head;
2414 }
2415 
2416 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2417 {
2418 	skb_reset_mac_header(skb);
2419 	skb->mac_header += offset;
2420 }
2421 
2422 static inline void skb_pop_mac_header(struct sk_buff *skb)
2423 {
2424 	skb->mac_header = skb->network_header;
2425 }
2426 
2427 static inline void skb_probe_transport_header(struct sk_buff *skb,
2428 					      const int offset_hint)
2429 {
2430 	struct flow_keys_basic keys;
2431 
2432 	if (skb_transport_header_was_set(skb))
2433 		return;
2434 
2435 	if (skb_flow_dissect_flow_keys_basic(skb, &keys, NULL, 0, 0, 0, 0))
2436 		skb_set_transport_header(skb, keys.control.thoff);
2437 	else
2438 		skb_set_transport_header(skb, offset_hint);
2439 }
2440 
2441 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2442 {
2443 	if (skb_mac_header_was_set(skb)) {
2444 		const unsigned char *old_mac = skb_mac_header(skb);
2445 
2446 		skb_set_mac_header(skb, -skb->mac_len);
2447 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2448 	}
2449 }
2450 
2451 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2452 {
2453 	return skb->csum_start - skb_headroom(skb);
2454 }
2455 
2456 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2457 {
2458 	return skb->head + skb->csum_start;
2459 }
2460 
2461 static inline int skb_transport_offset(const struct sk_buff *skb)
2462 {
2463 	return skb_transport_header(skb) - skb->data;
2464 }
2465 
2466 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2467 {
2468 	return skb->transport_header - skb->network_header;
2469 }
2470 
2471 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2472 {
2473 	return skb->inner_transport_header - skb->inner_network_header;
2474 }
2475 
2476 static inline int skb_network_offset(const struct sk_buff *skb)
2477 {
2478 	return skb_network_header(skb) - skb->data;
2479 }
2480 
2481 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2482 {
2483 	return skb_inner_network_header(skb) - skb->data;
2484 }
2485 
2486 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2487 {
2488 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
2489 }
2490 
2491 /*
2492  * CPUs often take a performance hit when accessing unaligned memory
2493  * locations. The actual performance hit varies, it can be small if the
2494  * hardware handles it or large if we have to take an exception and fix it
2495  * in software.
2496  *
2497  * Since an ethernet header is 14 bytes network drivers often end up with
2498  * the IP header at an unaligned offset. The IP header can be aligned by
2499  * shifting the start of the packet by 2 bytes. Drivers should do this
2500  * with:
2501  *
2502  * skb_reserve(skb, NET_IP_ALIGN);
2503  *
2504  * The downside to this alignment of the IP header is that the DMA is now
2505  * unaligned. On some architectures the cost of an unaligned DMA is high
2506  * and this cost outweighs the gains made by aligning the IP header.
2507  *
2508  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2509  * to be overridden.
2510  */
2511 #ifndef NET_IP_ALIGN
2512 #define NET_IP_ALIGN	2
2513 #endif
2514 
2515 /*
2516  * The networking layer reserves some headroom in skb data (via
2517  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2518  * the header has to grow. In the default case, if the header has to grow
2519  * 32 bytes or less we avoid the reallocation.
2520  *
2521  * Unfortunately this headroom changes the DMA alignment of the resulting
2522  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2523  * on some architectures. An architecture can override this value,
2524  * perhaps setting it to a cacheline in size (since that will maintain
2525  * cacheline alignment of the DMA). It must be a power of 2.
2526  *
2527  * Various parts of the networking layer expect at least 32 bytes of
2528  * headroom, you should not reduce this.
2529  *
2530  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2531  * to reduce average number of cache lines per packet.
2532  * get_rps_cpus() for example only access one 64 bytes aligned block :
2533  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2534  */
2535 #ifndef NET_SKB_PAD
2536 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2537 #endif
2538 
2539 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2540 
2541 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2542 {
2543 	if (WARN_ON(skb_is_nonlinear(skb)))
2544 		return;
2545 	skb->len = len;
2546 	skb_set_tail_pointer(skb, len);
2547 }
2548 
2549 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2550 {
2551 	__skb_set_length(skb, len);
2552 }
2553 
2554 void skb_trim(struct sk_buff *skb, unsigned int len);
2555 
2556 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2557 {
2558 	if (skb->data_len)
2559 		return ___pskb_trim(skb, len);
2560 	__skb_trim(skb, len);
2561 	return 0;
2562 }
2563 
2564 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2565 {
2566 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2567 }
2568 
2569 /**
2570  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2571  *	@skb: buffer to alter
2572  *	@len: new length
2573  *
2574  *	This is identical to pskb_trim except that the caller knows that
2575  *	the skb is not cloned so we should never get an error due to out-
2576  *	of-memory.
2577  */
2578 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2579 {
2580 	int err = pskb_trim(skb, len);
2581 	BUG_ON(err);
2582 }
2583 
2584 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2585 {
2586 	unsigned int diff = len - skb->len;
2587 
2588 	if (skb_tailroom(skb) < diff) {
2589 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2590 					   GFP_ATOMIC);
2591 		if (ret)
2592 			return ret;
2593 	}
2594 	__skb_set_length(skb, len);
2595 	return 0;
2596 }
2597 
2598 /**
2599  *	skb_orphan - orphan a buffer
2600  *	@skb: buffer to orphan
2601  *
2602  *	If a buffer currently has an owner then we call the owner's
2603  *	destructor function and make the @skb unowned. The buffer continues
2604  *	to exist but is no longer charged to its former owner.
2605  */
2606 static inline void skb_orphan(struct sk_buff *skb)
2607 {
2608 	if (skb->destructor) {
2609 		skb->destructor(skb);
2610 		skb->destructor = NULL;
2611 		skb->sk		= NULL;
2612 	} else {
2613 		BUG_ON(skb->sk);
2614 	}
2615 }
2616 
2617 /**
2618  *	skb_orphan_frags - orphan the frags contained in a buffer
2619  *	@skb: buffer to orphan frags from
2620  *	@gfp_mask: allocation mask for replacement pages
2621  *
2622  *	For each frag in the SKB which needs a destructor (i.e. has an
2623  *	owner) create a copy of that frag and release the original
2624  *	page by calling the destructor.
2625  */
2626 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2627 {
2628 	if (likely(!skb_zcopy(skb)))
2629 		return 0;
2630 	if (skb_uarg(skb)->callback == sock_zerocopy_callback)
2631 		return 0;
2632 	return skb_copy_ubufs(skb, gfp_mask);
2633 }
2634 
2635 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
2636 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2637 {
2638 	if (likely(!skb_zcopy(skb)))
2639 		return 0;
2640 	return skb_copy_ubufs(skb, gfp_mask);
2641 }
2642 
2643 /**
2644  *	__skb_queue_purge - empty a list
2645  *	@list: list to empty
2646  *
2647  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2648  *	the list and one reference dropped. This function does not take the
2649  *	list lock and the caller must hold the relevant locks to use it.
2650  */
2651 void skb_queue_purge(struct sk_buff_head *list);
2652 static inline void __skb_queue_purge(struct sk_buff_head *list)
2653 {
2654 	struct sk_buff *skb;
2655 	while ((skb = __skb_dequeue(list)) != NULL)
2656 		kfree_skb(skb);
2657 }
2658 
2659 unsigned int skb_rbtree_purge(struct rb_root *root);
2660 
2661 void *netdev_alloc_frag(unsigned int fragsz);
2662 
2663 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2664 				   gfp_t gfp_mask);
2665 
2666 /**
2667  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
2668  *	@dev: network device to receive on
2669  *	@length: length to allocate
2670  *
2671  *	Allocate a new &sk_buff and assign it a usage count of one. The
2672  *	buffer has unspecified headroom built in. Users should allocate
2673  *	the headroom they think they need without accounting for the
2674  *	built in space. The built in space is used for optimisations.
2675  *
2676  *	%NULL is returned if there is no free memory. Although this function
2677  *	allocates memory it can be called from an interrupt.
2678  */
2679 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2680 					       unsigned int length)
2681 {
2682 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2683 }
2684 
2685 /* legacy helper around __netdev_alloc_skb() */
2686 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2687 					      gfp_t gfp_mask)
2688 {
2689 	return __netdev_alloc_skb(NULL, length, gfp_mask);
2690 }
2691 
2692 /* legacy helper around netdev_alloc_skb() */
2693 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2694 {
2695 	return netdev_alloc_skb(NULL, length);
2696 }
2697 
2698 
2699 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2700 		unsigned int length, gfp_t gfp)
2701 {
2702 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2703 
2704 	if (NET_IP_ALIGN && skb)
2705 		skb_reserve(skb, NET_IP_ALIGN);
2706 	return skb;
2707 }
2708 
2709 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2710 		unsigned int length)
2711 {
2712 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2713 }
2714 
2715 static inline void skb_free_frag(void *addr)
2716 {
2717 	page_frag_free(addr);
2718 }
2719 
2720 void *napi_alloc_frag(unsigned int fragsz);
2721 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2722 				 unsigned int length, gfp_t gfp_mask);
2723 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2724 					     unsigned int length)
2725 {
2726 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2727 }
2728 void napi_consume_skb(struct sk_buff *skb, int budget);
2729 
2730 void __kfree_skb_flush(void);
2731 void __kfree_skb_defer(struct sk_buff *skb);
2732 
2733 /**
2734  * __dev_alloc_pages - allocate page for network Rx
2735  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2736  * @order: size of the allocation
2737  *
2738  * Allocate a new page.
2739  *
2740  * %NULL is returned if there is no free memory.
2741 */
2742 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2743 					     unsigned int order)
2744 {
2745 	/* This piece of code contains several assumptions.
2746 	 * 1.  This is for device Rx, therefor a cold page is preferred.
2747 	 * 2.  The expectation is the user wants a compound page.
2748 	 * 3.  If requesting a order 0 page it will not be compound
2749 	 *     due to the check to see if order has a value in prep_new_page
2750 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2751 	 *     code in gfp_to_alloc_flags that should be enforcing this.
2752 	 */
2753 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
2754 
2755 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2756 }
2757 
2758 static inline struct page *dev_alloc_pages(unsigned int order)
2759 {
2760 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2761 }
2762 
2763 /**
2764  * __dev_alloc_page - allocate a page for network Rx
2765  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2766  *
2767  * Allocate a new page.
2768  *
2769  * %NULL is returned if there is no free memory.
2770  */
2771 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2772 {
2773 	return __dev_alloc_pages(gfp_mask, 0);
2774 }
2775 
2776 static inline struct page *dev_alloc_page(void)
2777 {
2778 	return dev_alloc_pages(0);
2779 }
2780 
2781 /**
2782  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2783  *	@page: The page that was allocated from skb_alloc_page
2784  *	@skb: The skb that may need pfmemalloc set
2785  */
2786 static inline void skb_propagate_pfmemalloc(struct page *page,
2787 					     struct sk_buff *skb)
2788 {
2789 	if (page_is_pfmemalloc(page))
2790 		skb->pfmemalloc = true;
2791 }
2792 
2793 /**
2794  * skb_frag_page - retrieve the page referred to by a paged fragment
2795  * @frag: the paged fragment
2796  *
2797  * Returns the &struct page associated with @frag.
2798  */
2799 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2800 {
2801 	return frag->page.p;
2802 }
2803 
2804 /**
2805  * __skb_frag_ref - take an addition reference on a paged fragment.
2806  * @frag: the paged fragment
2807  *
2808  * Takes an additional reference on the paged fragment @frag.
2809  */
2810 static inline void __skb_frag_ref(skb_frag_t *frag)
2811 {
2812 	get_page(skb_frag_page(frag));
2813 }
2814 
2815 /**
2816  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2817  * @skb: the buffer
2818  * @f: the fragment offset.
2819  *
2820  * Takes an additional reference on the @f'th paged fragment of @skb.
2821  */
2822 static inline void skb_frag_ref(struct sk_buff *skb, int f)
2823 {
2824 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2825 }
2826 
2827 /**
2828  * __skb_frag_unref - release a reference on a paged fragment.
2829  * @frag: the paged fragment
2830  *
2831  * Releases a reference on the paged fragment @frag.
2832  */
2833 static inline void __skb_frag_unref(skb_frag_t *frag)
2834 {
2835 	put_page(skb_frag_page(frag));
2836 }
2837 
2838 /**
2839  * skb_frag_unref - release a reference on a paged fragment of an skb.
2840  * @skb: the buffer
2841  * @f: the fragment offset
2842  *
2843  * Releases a reference on the @f'th paged fragment of @skb.
2844  */
2845 static inline void skb_frag_unref(struct sk_buff *skb, int f)
2846 {
2847 	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2848 }
2849 
2850 /**
2851  * skb_frag_address - gets the address of the data contained in a paged fragment
2852  * @frag: the paged fragment buffer
2853  *
2854  * Returns the address of the data within @frag. The page must already
2855  * be mapped.
2856  */
2857 static inline void *skb_frag_address(const skb_frag_t *frag)
2858 {
2859 	return page_address(skb_frag_page(frag)) + frag->page_offset;
2860 }
2861 
2862 /**
2863  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2864  * @frag: the paged fragment buffer
2865  *
2866  * Returns the address of the data within @frag. Checks that the page
2867  * is mapped and returns %NULL otherwise.
2868  */
2869 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2870 {
2871 	void *ptr = page_address(skb_frag_page(frag));
2872 	if (unlikely(!ptr))
2873 		return NULL;
2874 
2875 	return ptr + frag->page_offset;
2876 }
2877 
2878 /**
2879  * __skb_frag_set_page - sets the page contained in a paged fragment
2880  * @frag: the paged fragment
2881  * @page: the page to set
2882  *
2883  * Sets the fragment @frag to contain @page.
2884  */
2885 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2886 {
2887 	frag->page.p = page;
2888 }
2889 
2890 /**
2891  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2892  * @skb: the buffer
2893  * @f: the fragment offset
2894  * @page: the page to set
2895  *
2896  * Sets the @f'th fragment of @skb to contain @page.
2897  */
2898 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2899 				     struct page *page)
2900 {
2901 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2902 }
2903 
2904 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2905 
2906 /**
2907  * skb_frag_dma_map - maps a paged fragment via the DMA API
2908  * @dev: the device to map the fragment to
2909  * @frag: the paged fragment to map
2910  * @offset: the offset within the fragment (starting at the
2911  *          fragment's own offset)
2912  * @size: the number of bytes to map
2913  * @dir: the direction of the mapping (``PCI_DMA_*``)
2914  *
2915  * Maps the page associated with @frag to @device.
2916  */
2917 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2918 					  const skb_frag_t *frag,
2919 					  size_t offset, size_t size,
2920 					  enum dma_data_direction dir)
2921 {
2922 	return dma_map_page(dev, skb_frag_page(frag),
2923 			    frag->page_offset + offset, size, dir);
2924 }
2925 
2926 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2927 					gfp_t gfp_mask)
2928 {
2929 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2930 }
2931 
2932 
2933 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2934 						  gfp_t gfp_mask)
2935 {
2936 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2937 }
2938 
2939 
2940 /**
2941  *	skb_clone_writable - is the header of a clone writable
2942  *	@skb: buffer to check
2943  *	@len: length up to which to write
2944  *
2945  *	Returns true if modifying the header part of the cloned buffer
2946  *	does not requires the data to be copied.
2947  */
2948 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2949 {
2950 	return !skb_header_cloned(skb) &&
2951 	       skb_headroom(skb) + len <= skb->hdr_len;
2952 }
2953 
2954 static inline int skb_try_make_writable(struct sk_buff *skb,
2955 					unsigned int write_len)
2956 {
2957 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
2958 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2959 }
2960 
2961 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2962 			    int cloned)
2963 {
2964 	int delta = 0;
2965 
2966 	if (headroom > skb_headroom(skb))
2967 		delta = headroom - skb_headroom(skb);
2968 
2969 	if (delta || cloned)
2970 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2971 					GFP_ATOMIC);
2972 	return 0;
2973 }
2974 
2975 /**
2976  *	skb_cow - copy header of skb when it is required
2977  *	@skb: buffer to cow
2978  *	@headroom: needed headroom
2979  *
2980  *	If the skb passed lacks sufficient headroom or its data part
2981  *	is shared, data is reallocated. If reallocation fails, an error
2982  *	is returned and original skb is not changed.
2983  *
2984  *	The result is skb with writable area skb->head...skb->tail
2985  *	and at least @headroom of space at head.
2986  */
2987 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2988 {
2989 	return __skb_cow(skb, headroom, skb_cloned(skb));
2990 }
2991 
2992 /**
2993  *	skb_cow_head - skb_cow but only making the head writable
2994  *	@skb: buffer to cow
2995  *	@headroom: needed headroom
2996  *
2997  *	This function is identical to skb_cow except that we replace the
2998  *	skb_cloned check by skb_header_cloned.  It should be used when
2999  *	you only need to push on some header and do not need to modify
3000  *	the data.
3001  */
3002 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3003 {
3004 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
3005 }
3006 
3007 /**
3008  *	skb_padto	- pad an skbuff up to a minimal size
3009  *	@skb: buffer to pad
3010  *	@len: minimal length
3011  *
3012  *	Pads up a buffer to ensure the trailing bytes exist and are
3013  *	blanked. If the buffer already contains sufficient data it
3014  *	is untouched. Otherwise it is extended. Returns zero on
3015  *	success. The skb is freed on error.
3016  */
3017 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3018 {
3019 	unsigned int size = skb->len;
3020 	if (likely(size >= len))
3021 		return 0;
3022 	return skb_pad(skb, len - size);
3023 }
3024 
3025 /**
3026  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3027  *	@skb: buffer to pad
3028  *	@len: minimal length
3029  *	@free_on_error: free buffer on error
3030  *
3031  *	Pads up a buffer to ensure the trailing bytes exist and are
3032  *	blanked. If the buffer already contains sufficient data it
3033  *	is untouched. Otherwise it is extended. Returns zero on
3034  *	success. The skb is freed on error if @free_on_error is true.
3035  */
3036 static inline int __skb_put_padto(struct sk_buff *skb, unsigned int len,
3037 				  bool free_on_error)
3038 {
3039 	unsigned int size = skb->len;
3040 
3041 	if (unlikely(size < len)) {
3042 		len -= size;
3043 		if (__skb_pad(skb, len, free_on_error))
3044 			return -ENOMEM;
3045 		__skb_put(skb, len);
3046 	}
3047 	return 0;
3048 }
3049 
3050 /**
3051  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3052  *	@skb: buffer to pad
3053  *	@len: minimal length
3054  *
3055  *	Pads up a buffer to ensure the trailing bytes exist and are
3056  *	blanked. If the buffer already contains sufficient data it
3057  *	is untouched. Otherwise it is extended. Returns zero on
3058  *	success. The skb is freed on error.
3059  */
3060 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
3061 {
3062 	return __skb_put_padto(skb, len, true);
3063 }
3064 
3065 static inline int skb_add_data(struct sk_buff *skb,
3066 			       struct iov_iter *from, int copy)
3067 {
3068 	const int off = skb->len;
3069 
3070 	if (skb->ip_summed == CHECKSUM_NONE) {
3071 		__wsum csum = 0;
3072 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3073 					         &csum, from)) {
3074 			skb->csum = csum_block_add(skb->csum, csum, off);
3075 			return 0;
3076 		}
3077 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3078 		return 0;
3079 
3080 	__skb_trim(skb, off);
3081 	return -EFAULT;
3082 }
3083 
3084 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3085 				    const struct page *page, int off)
3086 {
3087 	if (skb_zcopy(skb))
3088 		return false;
3089 	if (i) {
3090 		const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
3091 
3092 		return page == skb_frag_page(frag) &&
3093 		       off == frag->page_offset + skb_frag_size(frag);
3094 	}
3095 	return false;
3096 }
3097 
3098 static inline int __skb_linearize(struct sk_buff *skb)
3099 {
3100 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3101 }
3102 
3103 /**
3104  *	skb_linearize - convert paged skb to linear one
3105  *	@skb: buffer to linarize
3106  *
3107  *	If there is no free memory -ENOMEM is returned, otherwise zero
3108  *	is returned and the old skb data released.
3109  */
3110 static inline int skb_linearize(struct sk_buff *skb)
3111 {
3112 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3113 }
3114 
3115 /**
3116  * skb_has_shared_frag - can any frag be overwritten
3117  * @skb: buffer to test
3118  *
3119  * Return true if the skb has at least one frag that might be modified
3120  * by an external entity (as in vmsplice()/sendfile())
3121  */
3122 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3123 {
3124 	return skb_is_nonlinear(skb) &&
3125 	       skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
3126 }
3127 
3128 /**
3129  *	skb_linearize_cow - make sure skb is linear and writable
3130  *	@skb: buffer to process
3131  *
3132  *	If there is no free memory -ENOMEM is returned, otherwise zero
3133  *	is returned and the old skb data released.
3134  */
3135 static inline int skb_linearize_cow(struct sk_buff *skb)
3136 {
3137 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3138 	       __skb_linearize(skb) : 0;
3139 }
3140 
3141 static __always_inline void
3142 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3143 		     unsigned int off)
3144 {
3145 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3146 		skb->csum = csum_block_sub(skb->csum,
3147 					   csum_partial(start, len, 0), off);
3148 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3149 		 skb_checksum_start_offset(skb) < 0)
3150 		skb->ip_summed = CHECKSUM_NONE;
3151 }
3152 
3153 /**
3154  *	skb_postpull_rcsum - update checksum for received skb after pull
3155  *	@skb: buffer to update
3156  *	@start: start of data before pull
3157  *	@len: length of data pulled
3158  *
3159  *	After doing a pull on a received packet, you need to call this to
3160  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3161  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3162  */
3163 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3164 				      const void *start, unsigned int len)
3165 {
3166 	__skb_postpull_rcsum(skb, start, len, 0);
3167 }
3168 
3169 static __always_inline void
3170 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3171 		     unsigned int off)
3172 {
3173 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3174 		skb->csum = csum_block_add(skb->csum,
3175 					   csum_partial(start, len, 0), off);
3176 }
3177 
3178 /**
3179  *	skb_postpush_rcsum - update checksum for received skb after push
3180  *	@skb: buffer to update
3181  *	@start: start of data after push
3182  *	@len: length of data pushed
3183  *
3184  *	After doing a push on a received packet, you need to call this to
3185  *	update the CHECKSUM_COMPLETE checksum.
3186  */
3187 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3188 				      const void *start, unsigned int len)
3189 {
3190 	__skb_postpush_rcsum(skb, start, len, 0);
3191 }
3192 
3193 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3194 
3195 /**
3196  *	skb_push_rcsum - push skb and update receive checksum
3197  *	@skb: buffer to update
3198  *	@len: length of data pulled
3199  *
3200  *	This function performs an skb_push on the packet and updates
3201  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3202  *	receive path processing instead of skb_push unless you know
3203  *	that the checksum difference is zero (e.g., a valid IP header)
3204  *	or you are setting ip_summed to CHECKSUM_NONE.
3205  */
3206 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3207 {
3208 	skb_push(skb, len);
3209 	skb_postpush_rcsum(skb, skb->data, len);
3210 	return skb->data;
3211 }
3212 
3213 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3214 /**
3215  *	pskb_trim_rcsum - trim received skb and update checksum
3216  *	@skb: buffer to trim
3217  *	@len: new length
3218  *
3219  *	This is exactly the same as pskb_trim except that it ensures the
3220  *	checksum of received packets are still valid after the operation.
3221  */
3222 
3223 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3224 {
3225 	if (likely(len >= skb->len))
3226 		return 0;
3227 	return pskb_trim_rcsum_slow(skb, len);
3228 }
3229 
3230 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3231 {
3232 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3233 		skb->ip_summed = CHECKSUM_NONE;
3234 	__skb_trim(skb, len);
3235 	return 0;
3236 }
3237 
3238 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3239 {
3240 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3241 		skb->ip_summed = CHECKSUM_NONE;
3242 	return __skb_grow(skb, len);
3243 }
3244 
3245 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3246 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3247 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3248 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3249 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3250 
3251 #define skb_queue_walk(queue, skb) \
3252 		for (skb = (queue)->next;					\
3253 		     skb != (struct sk_buff *)(queue);				\
3254 		     skb = skb->next)
3255 
3256 #define skb_queue_walk_safe(queue, skb, tmp)					\
3257 		for (skb = (queue)->next, tmp = skb->next;			\
3258 		     skb != (struct sk_buff *)(queue);				\
3259 		     skb = tmp, tmp = skb->next)
3260 
3261 #define skb_queue_walk_from(queue, skb)						\
3262 		for (; skb != (struct sk_buff *)(queue);			\
3263 		     skb = skb->next)
3264 
3265 #define skb_rbtree_walk(skb, root)						\
3266 		for (skb = skb_rb_first(root); skb != NULL;			\
3267 		     skb = skb_rb_next(skb))
3268 
3269 #define skb_rbtree_walk_from(skb)						\
3270 		for (; skb != NULL;						\
3271 		     skb = skb_rb_next(skb))
3272 
3273 #define skb_rbtree_walk_from_safe(skb, tmp)					\
3274 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
3275 		     skb = tmp)
3276 
3277 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3278 		for (tmp = skb->next;						\
3279 		     skb != (struct sk_buff *)(queue);				\
3280 		     skb = tmp, tmp = skb->next)
3281 
3282 #define skb_queue_reverse_walk(queue, skb) \
3283 		for (skb = (queue)->prev;					\
3284 		     skb != (struct sk_buff *)(queue);				\
3285 		     skb = skb->prev)
3286 
3287 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3288 		for (skb = (queue)->prev, tmp = skb->prev;			\
3289 		     skb != (struct sk_buff *)(queue);				\
3290 		     skb = tmp, tmp = skb->prev)
3291 
3292 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3293 		for (tmp = skb->prev;						\
3294 		     skb != (struct sk_buff *)(queue);				\
3295 		     skb = tmp, tmp = skb->prev)
3296 
3297 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3298 {
3299 	return skb_shinfo(skb)->frag_list != NULL;
3300 }
3301 
3302 static inline void skb_frag_list_init(struct sk_buff *skb)
3303 {
3304 	skb_shinfo(skb)->frag_list = NULL;
3305 }
3306 
3307 #define skb_walk_frags(skb, iter)	\
3308 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3309 
3310 
3311 int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
3312 				const struct sk_buff *skb);
3313 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3314 					  struct sk_buff_head *queue,
3315 					  unsigned int flags,
3316 					  void (*destructor)(struct sock *sk,
3317 							   struct sk_buff *skb),
3318 					  int *peeked, int *off, int *err,
3319 					  struct sk_buff **last);
3320 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
3321 					void (*destructor)(struct sock *sk,
3322 							   struct sk_buff *skb),
3323 					int *peeked, int *off, int *err,
3324 					struct sk_buff **last);
3325 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
3326 				    void (*destructor)(struct sock *sk,
3327 						       struct sk_buff *skb),
3328 				    int *peeked, int *off, int *err);
3329 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3330 				  int *err);
3331 __poll_t datagram_poll(struct file *file, struct socket *sock,
3332 			   struct poll_table_struct *wait);
3333 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3334 			   struct iov_iter *to, int size);
3335 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3336 					struct msghdr *msg, int size)
3337 {
3338 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3339 }
3340 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3341 				   struct msghdr *msg);
3342 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3343 			   struct iov_iter *to, int len,
3344 			   struct ahash_request *hash);
3345 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3346 				 struct iov_iter *from, int len);
3347 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3348 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3349 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3350 static inline void skb_free_datagram_locked(struct sock *sk,
3351 					    struct sk_buff *skb)
3352 {
3353 	__skb_free_datagram_locked(sk, skb, 0);
3354 }
3355 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3356 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3357 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3358 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3359 			      int len, __wsum csum);
3360 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3361 		    struct pipe_inode_info *pipe, unsigned int len,
3362 		    unsigned int flags);
3363 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3364 			 int len);
3365 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3366 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3367 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3368 		 int len, int hlen);
3369 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3370 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3371 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3372 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3373 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3374 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3375 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3376 int skb_ensure_writable(struct sk_buff *skb, int write_len);
3377 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3378 int skb_vlan_pop(struct sk_buff *skb);
3379 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3380 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3381 			     gfp_t gfp);
3382 
3383 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3384 {
3385 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3386 }
3387 
3388 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3389 {
3390 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3391 }
3392 
3393 struct skb_checksum_ops {
3394 	__wsum (*update)(const void *mem, int len, __wsum wsum);
3395 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3396 };
3397 
3398 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3399 
3400 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3401 		      __wsum csum, const struct skb_checksum_ops *ops);
3402 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3403 		    __wsum csum);
3404 
3405 static inline void * __must_check
3406 __skb_header_pointer(const struct sk_buff *skb, int offset,
3407 		     int len, void *data, int hlen, void *buffer)
3408 {
3409 	if (hlen - offset >= len)
3410 		return data + offset;
3411 
3412 	if (!skb ||
3413 	    skb_copy_bits(skb, offset, buffer, len) < 0)
3414 		return NULL;
3415 
3416 	return buffer;
3417 }
3418 
3419 static inline void * __must_check
3420 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3421 {
3422 	return __skb_header_pointer(skb, offset, len, skb->data,
3423 				    skb_headlen(skb), buffer);
3424 }
3425 
3426 /**
3427  *	skb_needs_linearize - check if we need to linearize a given skb
3428  *			      depending on the given device features.
3429  *	@skb: socket buffer to check
3430  *	@features: net device features
3431  *
3432  *	Returns true if either:
3433  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
3434  *	2. skb is fragmented and the device does not support SG.
3435  */
3436 static inline bool skb_needs_linearize(struct sk_buff *skb,
3437 				       netdev_features_t features)
3438 {
3439 	return skb_is_nonlinear(skb) &&
3440 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3441 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3442 }
3443 
3444 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3445 					     void *to,
3446 					     const unsigned int len)
3447 {
3448 	memcpy(to, skb->data, len);
3449 }
3450 
3451 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3452 						    const int offset, void *to,
3453 						    const unsigned int len)
3454 {
3455 	memcpy(to, skb->data + offset, len);
3456 }
3457 
3458 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3459 					   const void *from,
3460 					   const unsigned int len)
3461 {
3462 	memcpy(skb->data, from, len);
3463 }
3464 
3465 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3466 						  const int offset,
3467 						  const void *from,
3468 						  const unsigned int len)
3469 {
3470 	memcpy(skb->data + offset, from, len);
3471 }
3472 
3473 void skb_init(void);
3474 
3475 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3476 {
3477 	return skb->tstamp;
3478 }
3479 
3480 /**
3481  *	skb_get_timestamp - get timestamp from a skb
3482  *	@skb: skb to get stamp from
3483  *	@stamp: pointer to struct timeval to store stamp in
3484  *
3485  *	Timestamps are stored in the skb as offsets to a base timestamp.
3486  *	This function converts the offset back to a struct timeval and stores
3487  *	it in stamp.
3488  */
3489 static inline void skb_get_timestamp(const struct sk_buff *skb,
3490 				     struct timeval *stamp)
3491 {
3492 	*stamp = ktime_to_timeval(skb->tstamp);
3493 }
3494 
3495 static inline void skb_get_timestampns(const struct sk_buff *skb,
3496 				       struct timespec *stamp)
3497 {
3498 	*stamp = ktime_to_timespec(skb->tstamp);
3499 }
3500 
3501 static inline void __net_timestamp(struct sk_buff *skb)
3502 {
3503 	skb->tstamp = ktime_get_real();
3504 }
3505 
3506 static inline ktime_t net_timedelta(ktime_t t)
3507 {
3508 	return ktime_sub(ktime_get_real(), t);
3509 }
3510 
3511 static inline ktime_t net_invalid_timestamp(void)
3512 {
3513 	return 0;
3514 }
3515 
3516 static inline u8 skb_metadata_len(const struct sk_buff *skb)
3517 {
3518 	return skb_shinfo(skb)->meta_len;
3519 }
3520 
3521 static inline void *skb_metadata_end(const struct sk_buff *skb)
3522 {
3523 	return skb_mac_header(skb);
3524 }
3525 
3526 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3527 					  const struct sk_buff *skb_b,
3528 					  u8 meta_len)
3529 {
3530 	const void *a = skb_metadata_end(skb_a);
3531 	const void *b = skb_metadata_end(skb_b);
3532 	/* Using more efficient varaiant than plain call to memcmp(). */
3533 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3534 	u64 diffs = 0;
3535 
3536 	switch (meta_len) {
3537 #define __it(x, op) (x -= sizeof(u##op))
3538 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3539 	case 32: diffs |= __it_diff(a, b, 64);
3540 		 /* fall through */
3541 	case 24: diffs |= __it_diff(a, b, 64);
3542 		 /* fall through */
3543 	case 16: diffs |= __it_diff(a, b, 64);
3544 		 /* fall through */
3545 	case  8: diffs |= __it_diff(a, b, 64);
3546 		break;
3547 	case 28: diffs |= __it_diff(a, b, 64);
3548 		 /* fall through */
3549 	case 20: diffs |= __it_diff(a, b, 64);
3550 		 /* fall through */
3551 	case 12: diffs |= __it_diff(a, b, 64);
3552 		 /* fall through */
3553 	case  4: diffs |= __it_diff(a, b, 32);
3554 		break;
3555 	}
3556 	return diffs;
3557 #else
3558 	return memcmp(a - meta_len, b - meta_len, meta_len);
3559 #endif
3560 }
3561 
3562 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3563 					const struct sk_buff *skb_b)
3564 {
3565 	u8 len_a = skb_metadata_len(skb_a);
3566 	u8 len_b = skb_metadata_len(skb_b);
3567 
3568 	if (!(len_a | len_b))
3569 		return false;
3570 
3571 	return len_a != len_b ?
3572 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
3573 }
3574 
3575 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3576 {
3577 	skb_shinfo(skb)->meta_len = meta_len;
3578 }
3579 
3580 static inline void skb_metadata_clear(struct sk_buff *skb)
3581 {
3582 	skb_metadata_set(skb, 0);
3583 }
3584 
3585 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3586 
3587 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3588 
3589 void skb_clone_tx_timestamp(struct sk_buff *skb);
3590 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3591 
3592 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3593 
3594 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3595 {
3596 }
3597 
3598 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3599 {
3600 	return false;
3601 }
3602 
3603 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3604 
3605 /**
3606  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3607  *
3608  * PHY drivers may accept clones of transmitted packets for
3609  * timestamping via their phy_driver.txtstamp method. These drivers
3610  * must call this function to return the skb back to the stack with a
3611  * timestamp.
3612  *
3613  * @skb: clone of the the original outgoing packet
3614  * @hwtstamps: hardware time stamps
3615  *
3616  */
3617 void skb_complete_tx_timestamp(struct sk_buff *skb,
3618 			       struct skb_shared_hwtstamps *hwtstamps);
3619 
3620 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3621 		     struct skb_shared_hwtstamps *hwtstamps,
3622 		     struct sock *sk, int tstype);
3623 
3624 /**
3625  * skb_tstamp_tx - queue clone of skb with send time stamps
3626  * @orig_skb:	the original outgoing packet
3627  * @hwtstamps:	hardware time stamps, may be NULL if not available
3628  *
3629  * If the skb has a socket associated, then this function clones the
3630  * skb (thus sharing the actual data and optional structures), stores
3631  * the optional hardware time stamping information (if non NULL) or
3632  * generates a software time stamp (otherwise), then queues the clone
3633  * to the error queue of the socket.  Errors are silently ignored.
3634  */
3635 void skb_tstamp_tx(struct sk_buff *orig_skb,
3636 		   struct skb_shared_hwtstamps *hwtstamps);
3637 
3638 /**
3639  * skb_tx_timestamp() - Driver hook for transmit timestamping
3640  *
3641  * Ethernet MAC Drivers should call this function in their hard_xmit()
3642  * function immediately before giving the sk_buff to the MAC hardware.
3643  *
3644  * Specifically, one should make absolutely sure that this function is
3645  * called before TX completion of this packet can trigger.  Otherwise
3646  * the packet could potentially already be freed.
3647  *
3648  * @skb: A socket buffer.
3649  */
3650 static inline void skb_tx_timestamp(struct sk_buff *skb)
3651 {
3652 	skb_clone_tx_timestamp(skb);
3653 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3654 		skb_tstamp_tx(skb, NULL);
3655 }
3656 
3657 /**
3658  * skb_complete_wifi_ack - deliver skb with wifi status
3659  *
3660  * @skb: the original outgoing packet
3661  * @acked: ack status
3662  *
3663  */
3664 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3665 
3666 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3667 __sum16 __skb_checksum_complete(struct sk_buff *skb);
3668 
3669 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3670 {
3671 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3672 		skb->csum_valid ||
3673 		(skb->ip_summed == CHECKSUM_PARTIAL &&
3674 		 skb_checksum_start_offset(skb) >= 0));
3675 }
3676 
3677 /**
3678  *	skb_checksum_complete - Calculate checksum of an entire packet
3679  *	@skb: packet to process
3680  *
3681  *	This function calculates the checksum over the entire packet plus
3682  *	the value of skb->csum.  The latter can be used to supply the
3683  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
3684  *	checksum.
3685  *
3686  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
3687  *	this function can be used to verify that checksum on received
3688  *	packets.  In that case the function should return zero if the
3689  *	checksum is correct.  In particular, this function will return zero
3690  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3691  *	hardware has already verified the correctness of the checksum.
3692  */
3693 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3694 {
3695 	return skb_csum_unnecessary(skb) ?
3696 	       0 : __skb_checksum_complete(skb);
3697 }
3698 
3699 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3700 {
3701 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3702 		if (skb->csum_level == 0)
3703 			skb->ip_summed = CHECKSUM_NONE;
3704 		else
3705 			skb->csum_level--;
3706 	}
3707 }
3708 
3709 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3710 {
3711 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3712 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3713 			skb->csum_level++;
3714 	} else if (skb->ip_summed == CHECKSUM_NONE) {
3715 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3716 		skb->csum_level = 0;
3717 	}
3718 }
3719 
3720 /* Check if we need to perform checksum complete validation.
3721  *
3722  * Returns true if checksum complete is needed, false otherwise
3723  * (either checksum is unnecessary or zero checksum is allowed).
3724  */
3725 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3726 						  bool zero_okay,
3727 						  __sum16 check)
3728 {
3729 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3730 		skb->csum_valid = 1;
3731 		__skb_decr_checksum_unnecessary(skb);
3732 		return false;
3733 	}
3734 
3735 	return true;
3736 }
3737 
3738 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
3739  * in checksum_init.
3740  */
3741 #define CHECKSUM_BREAK 76
3742 
3743 /* Unset checksum-complete
3744  *
3745  * Unset checksum complete can be done when packet is being modified
3746  * (uncompressed for instance) and checksum-complete value is
3747  * invalidated.
3748  */
3749 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3750 {
3751 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3752 		skb->ip_summed = CHECKSUM_NONE;
3753 }
3754 
3755 /* Validate (init) checksum based on checksum complete.
3756  *
3757  * Return values:
3758  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
3759  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3760  *	checksum is stored in skb->csum for use in __skb_checksum_complete
3761  *   non-zero: value of invalid checksum
3762  *
3763  */
3764 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3765 						       bool complete,
3766 						       __wsum psum)
3767 {
3768 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
3769 		if (!csum_fold(csum_add(psum, skb->csum))) {
3770 			skb->csum_valid = 1;
3771 			return 0;
3772 		}
3773 	}
3774 
3775 	skb->csum = psum;
3776 
3777 	if (complete || skb->len <= CHECKSUM_BREAK) {
3778 		__sum16 csum;
3779 
3780 		csum = __skb_checksum_complete(skb);
3781 		skb->csum_valid = !csum;
3782 		return csum;
3783 	}
3784 
3785 	return 0;
3786 }
3787 
3788 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3789 {
3790 	return 0;
3791 }
3792 
3793 /* Perform checksum validate (init). Note that this is a macro since we only
3794  * want to calculate the pseudo header which is an input function if necessary.
3795  * First we try to validate without any computation (checksum unnecessary) and
3796  * then calculate based on checksum complete calling the function to compute
3797  * pseudo header.
3798  *
3799  * Return values:
3800  *   0: checksum is validated or try to in skb_checksum_complete
3801  *   non-zero: value of invalid checksum
3802  */
3803 #define __skb_checksum_validate(skb, proto, complete,			\
3804 				zero_okay, check, compute_pseudo)	\
3805 ({									\
3806 	__sum16 __ret = 0;						\
3807 	skb->csum_valid = 0;						\
3808 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
3809 		__ret = __skb_checksum_validate_complete(skb,		\
3810 				complete, compute_pseudo(skb, proto));	\
3811 	__ret;								\
3812 })
3813 
3814 #define skb_checksum_init(skb, proto, compute_pseudo)			\
3815 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3816 
3817 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
3818 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3819 
3820 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
3821 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3822 
3823 #define skb_checksum_validate_zero_check(skb, proto, check,		\
3824 					 compute_pseudo)		\
3825 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
3826 
3827 #define skb_checksum_simple_validate(skb)				\
3828 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3829 
3830 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3831 {
3832 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
3833 }
3834 
3835 static inline void __skb_checksum_convert(struct sk_buff *skb,
3836 					  __sum16 check, __wsum pseudo)
3837 {
3838 	skb->csum = ~pseudo;
3839 	skb->ip_summed = CHECKSUM_COMPLETE;
3840 }
3841 
3842 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo)	\
3843 do {									\
3844 	if (__skb_checksum_convert_check(skb))				\
3845 		__skb_checksum_convert(skb, check,			\
3846 				       compute_pseudo(skb, proto));	\
3847 } while (0)
3848 
3849 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3850 					      u16 start, u16 offset)
3851 {
3852 	skb->ip_summed = CHECKSUM_PARTIAL;
3853 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3854 	skb->csum_offset = offset - start;
3855 }
3856 
3857 /* Update skbuf and packet to reflect the remote checksum offload operation.
3858  * When called, ptr indicates the starting point for skb->csum when
3859  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3860  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3861  */
3862 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
3863 				       int start, int offset, bool nopartial)
3864 {
3865 	__wsum delta;
3866 
3867 	if (!nopartial) {
3868 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
3869 		return;
3870 	}
3871 
3872 	 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3873 		__skb_checksum_complete(skb);
3874 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3875 	}
3876 
3877 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
3878 
3879 	/* Adjust skb->csum since we changed the packet */
3880 	skb->csum = csum_add(skb->csum, delta);
3881 }
3882 
3883 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
3884 {
3885 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
3886 	return (void *)(skb->_nfct & SKB_NFCT_PTRMASK);
3887 #else
3888 	return NULL;
3889 #endif
3890 }
3891 
3892 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3893 void nf_conntrack_destroy(struct nf_conntrack *nfct);
3894 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3895 {
3896 	if (nfct && atomic_dec_and_test(&nfct->use))
3897 		nf_conntrack_destroy(nfct);
3898 }
3899 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3900 {
3901 	if (nfct)
3902 		atomic_inc(&nfct->use);
3903 }
3904 #endif
3905 
3906 #ifdef CONFIG_SKB_EXTENSIONS
3907 enum skb_ext_id {
3908 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3909 	SKB_EXT_BRIDGE_NF,
3910 #endif
3911 #ifdef CONFIG_XFRM
3912 	SKB_EXT_SEC_PATH,
3913 #endif
3914 	SKB_EXT_NUM, /* must be last */
3915 };
3916 
3917 /**
3918  *	struct skb_ext - sk_buff extensions
3919  *	@refcnt: 1 on allocation, deallocated on 0
3920  *	@offset: offset to add to @data to obtain extension address
3921  *	@chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
3922  *	@data: start of extension data, variable sized
3923  *
3924  *	Note: offsets/lengths are stored in chunks of 8 bytes, this allows
3925  *	to use 'u8' types while allowing up to 2kb worth of extension data.
3926  */
3927 struct skb_ext {
3928 	refcount_t refcnt;
3929 	u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
3930 	u8 chunks;		/* same */
3931 	char data[0] __aligned(8);
3932 };
3933 
3934 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
3935 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
3936 void __skb_ext_put(struct skb_ext *ext);
3937 
3938 static inline void skb_ext_put(struct sk_buff *skb)
3939 {
3940 	if (skb->active_extensions)
3941 		__skb_ext_put(skb->extensions);
3942 }
3943 
3944 static inline void __skb_ext_copy(struct sk_buff *dst,
3945 				  const struct sk_buff *src)
3946 {
3947 	dst->active_extensions = src->active_extensions;
3948 
3949 	if (src->active_extensions) {
3950 		struct skb_ext *ext = src->extensions;
3951 
3952 		refcount_inc(&ext->refcnt);
3953 		dst->extensions = ext;
3954 	}
3955 }
3956 
3957 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
3958 {
3959 	skb_ext_put(dst);
3960 	__skb_ext_copy(dst, src);
3961 }
3962 
3963 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
3964 {
3965 	return !!ext->offset[i];
3966 }
3967 
3968 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
3969 {
3970 	return skb->active_extensions & (1 << id);
3971 }
3972 
3973 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
3974 {
3975 	if (skb_ext_exist(skb, id))
3976 		__skb_ext_del(skb, id);
3977 }
3978 
3979 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
3980 {
3981 	if (skb_ext_exist(skb, id)) {
3982 		struct skb_ext *ext = skb->extensions;
3983 
3984 		return (void *)ext + (ext->offset[id] << 3);
3985 	}
3986 
3987 	return NULL;
3988 }
3989 #else
3990 static inline void skb_ext_put(struct sk_buff *skb) {}
3991 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
3992 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
3993 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
3994 #endif /* CONFIG_SKB_EXTENSIONS */
3995 
3996 static inline void nf_reset(struct sk_buff *skb)
3997 {
3998 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3999 	nf_conntrack_put(skb_nfct(skb));
4000 	skb->_nfct = 0;
4001 #endif
4002 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4003 	skb_ext_del(skb, SKB_EXT_BRIDGE_NF);
4004 #endif
4005 }
4006 
4007 static inline void nf_reset_trace(struct sk_buff *skb)
4008 {
4009 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4010 	skb->nf_trace = 0;
4011 #endif
4012 }
4013 
4014 static inline void ipvs_reset(struct sk_buff *skb)
4015 {
4016 #if IS_ENABLED(CONFIG_IP_VS)
4017 	skb->ipvs_property = 0;
4018 #endif
4019 }
4020 
4021 /* Note: This doesn't put any conntrack info in dst. */
4022 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4023 			     bool copy)
4024 {
4025 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4026 	dst->_nfct = src->_nfct;
4027 	nf_conntrack_get(skb_nfct(src));
4028 #endif
4029 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4030 	if (copy)
4031 		dst->nf_trace = src->nf_trace;
4032 #endif
4033 }
4034 
4035 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4036 {
4037 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4038 	nf_conntrack_put(skb_nfct(dst));
4039 #endif
4040 	__nf_copy(dst, src, true);
4041 }
4042 
4043 #ifdef CONFIG_NETWORK_SECMARK
4044 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4045 {
4046 	to->secmark = from->secmark;
4047 }
4048 
4049 static inline void skb_init_secmark(struct sk_buff *skb)
4050 {
4051 	skb->secmark = 0;
4052 }
4053 #else
4054 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4055 { }
4056 
4057 static inline void skb_init_secmark(struct sk_buff *skb)
4058 { }
4059 #endif
4060 
4061 static inline int secpath_exists(const struct sk_buff *skb)
4062 {
4063 #ifdef CONFIG_XFRM
4064 	return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4065 #else
4066 	return 0;
4067 #endif
4068 }
4069 
4070 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4071 {
4072 	return !skb->destructor &&
4073 		!secpath_exists(skb) &&
4074 		!skb_nfct(skb) &&
4075 		!skb->_skb_refdst &&
4076 		!skb_has_frag_list(skb);
4077 }
4078 
4079 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4080 {
4081 	skb->queue_mapping = queue_mapping;
4082 }
4083 
4084 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4085 {
4086 	return skb->queue_mapping;
4087 }
4088 
4089 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4090 {
4091 	to->queue_mapping = from->queue_mapping;
4092 }
4093 
4094 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4095 {
4096 	skb->queue_mapping = rx_queue + 1;
4097 }
4098 
4099 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4100 {
4101 	return skb->queue_mapping - 1;
4102 }
4103 
4104 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4105 {
4106 	return skb->queue_mapping != 0;
4107 }
4108 
4109 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4110 {
4111 	skb->dst_pending_confirm = val;
4112 }
4113 
4114 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4115 {
4116 	return skb->dst_pending_confirm != 0;
4117 }
4118 
4119 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4120 {
4121 #ifdef CONFIG_XFRM
4122 	return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4123 #else
4124 	return NULL;
4125 #endif
4126 }
4127 
4128 /* Keeps track of mac header offset relative to skb->head.
4129  * It is useful for TSO of Tunneling protocol. e.g. GRE.
4130  * For non-tunnel skb it points to skb_mac_header() and for
4131  * tunnel skb it points to outer mac header.
4132  * Keeps track of level of encapsulation of network headers.
4133  */
4134 struct skb_gso_cb {
4135 	union {
4136 		int	mac_offset;
4137 		int	data_offset;
4138 	};
4139 	int	encap_level;
4140 	__wsum	csum;
4141 	__u16	csum_start;
4142 };
4143 #define SKB_SGO_CB_OFFSET	32
4144 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
4145 
4146 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4147 {
4148 	return (skb_mac_header(inner_skb) - inner_skb->head) -
4149 		SKB_GSO_CB(inner_skb)->mac_offset;
4150 }
4151 
4152 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4153 {
4154 	int new_headroom, headroom;
4155 	int ret;
4156 
4157 	headroom = skb_headroom(skb);
4158 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4159 	if (ret)
4160 		return ret;
4161 
4162 	new_headroom = skb_headroom(skb);
4163 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4164 	return 0;
4165 }
4166 
4167 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4168 {
4169 	/* Do not update partial checksums if remote checksum is enabled. */
4170 	if (skb->remcsum_offload)
4171 		return;
4172 
4173 	SKB_GSO_CB(skb)->csum = res;
4174 	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4175 }
4176 
4177 /* Compute the checksum for a gso segment. First compute the checksum value
4178  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4179  * then add in skb->csum (checksum from csum_start to end of packet).
4180  * skb->csum and csum_start are then updated to reflect the checksum of the
4181  * resultant packet starting from the transport header-- the resultant checksum
4182  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4183  * header.
4184  */
4185 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4186 {
4187 	unsigned char *csum_start = skb_transport_header(skb);
4188 	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4189 	__wsum partial = SKB_GSO_CB(skb)->csum;
4190 
4191 	SKB_GSO_CB(skb)->csum = res;
4192 	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4193 
4194 	return csum_fold(csum_partial(csum_start, plen, partial));
4195 }
4196 
4197 static inline bool skb_is_gso(const struct sk_buff *skb)
4198 {
4199 	return skb_shinfo(skb)->gso_size;
4200 }
4201 
4202 /* Note: Should be called only if skb_is_gso(skb) is true */
4203 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4204 {
4205 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4206 }
4207 
4208 /* Note: Should be called only if skb_is_gso(skb) is true */
4209 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4210 {
4211 	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4212 }
4213 
4214 static inline void skb_gso_reset(struct sk_buff *skb)
4215 {
4216 	skb_shinfo(skb)->gso_size = 0;
4217 	skb_shinfo(skb)->gso_segs = 0;
4218 	skb_shinfo(skb)->gso_type = 0;
4219 }
4220 
4221 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4222 					 u16 increment)
4223 {
4224 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4225 		return;
4226 	shinfo->gso_size += increment;
4227 }
4228 
4229 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4230 					 u16 decrement)
4231 {
4232 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4233 		return;
4234 	shinfo->gso_size -= decrement;
4235 }
4236 
4237 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4238 
4239 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4240 {
4241 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
4242 	 * wanted then gso_type will be set. */
4243 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4244 
4245 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4246 	    unlikely(shinfo->gso_type == 0)) {
4247 		__skb_warn_lro_forwarding(skb);
4248 		return true;
4249 	}
4250 	return false;
4251 }
4252 
4253 static inline void skb_forward_csum(struct sk_buff *skb)
4254 {
4255 	/* Unfortunately we don't support this one.  Any brave souls? */
4256 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4257 		skb->ip_summed = CHECKSUM_NONE;
4258 }
4259 
4260 /**
4261  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4262  * @skb: skb to check
4263  *
4264  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4265  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4266  * use this helper, to document places where we make this assertion.
4267  */
4268 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4269 {
4270 #ifdef DEBUG
4271 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4272 #endif
4273 }
4274 
4275 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4276 
4277 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4278 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4279 				     unsigned int transport_len,
4280 				     __sum16(*skb_chkf)(struct sk_buff *skb));
4281 
4282 /**
4283  * skb_head_is_locked - Determine if the skb->head is locked down
4284  * @skb: skb to check
4285  *
4286  * The head on skbs build around a head frag can be removed if they are
4287  * not cloned.  This function returns true if the skb head is locked down
4288  * due to either being allocated via kmalloc, or by being a clone with
4289  * multiple references to the head.
4290  */
4291 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4292 {
4293 	return !skb->head_frag || skb_cloned(skb);
4294 }
4295 
4296 /* Local Checksum Offload.
4297  * Compute outer checksum based on the assumption that the
4298  * inner checksum will be offloaded later.
4299  * See Documentation/networking/checksum-offloads.txt for
4300  * explanation of how this works.
4301  * Fill in outer checksum adjustment (e.g. with sum of outer
4302  * pseudo-header) before calling.
4303  * Also ensure that inner checksum is in linear data area.
4304  */
4305 static inline __wsum lco_csum(struct sk_buff *skb)
4306 {
4307 	unsigned char *csum_start = skb_checksum_start(skb);
4308 	unsigned char *l4_hdr = skb_transport_header(skb);
4309 	__wsum partial;
4310 
4311 	/* Start with complement of inner checksum adjustment */
4312 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4313 						    skb->csum_offset));
4314 
4315 	/* Add in checksum of our headers (incl. outer checksum
4316 	 * adjustment filled in by caller) and return result.
4317 	 */
4318 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4319 }
4320 
4321 #endif	/* __KERNEL__ */
4322 #endif	/* _LINUX_SKBUFF_H */
4323