1 /* 2 * Definitions for the 'struct sk_buff' memory handlers. 3 * 4 * Authors: 5 * Alan Cox, <[email protected]> 6 * Florian La Roche, <[email protected]> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14 #ifndef _LINUX_SKBUFF_H 15 #define _LINUX_SKBUFF_H 16 17 #include <linux/kernel.h> 18 #include <linux/kmemcheck.h> 19 #include <linux/compiler.h> 20 #include <linux/time.h> 21 #include <linux/cache.h> 22 23 #include <asm/atomic.h> 24 #include <asm/types.h> 25 #include <linux/spinlock.h> 26 #include <linux/net.h> 27 #include <linux/textsearch.h> 28 #include <net/checksum.h> 29 #include <linux/rcupdate.h> 30 #include <linux/dmaengine.h> 31 #include <linux/hrtimer.h> 32 33 /* Don't change this without changing skb_csum_unnecessary! */ 34 #define CHECKSUM_NONE 0 35 #define CHECKSUM_UNNECESSARY 1 36 #define CHECKSUM_COMPLETE 2 37 #define CHECKSUM_PARTIAL 3 38 39 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \ 40 ~(SMP_CACHE_BYTES - 1)) 41 #define SKB_WITH_OVERHEAD(X) \ 42 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 43 #define SKB_MAX_ORDER(X, ORDER) \ 44 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 45 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 46 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 47 48 /* A. Checksumming of received packets by device. 49 * 50 * NONE: device failed to checksum this packet. 51 * skb->csum is undefined. 52 * 53 * UNNECESSARY: device parsed packet and wouldbe verified checksum. 54 * skb->csum is undefined. 55 * It is bad option, but, unfortunately, many of vendors do this. 56 * Apparently with secret goal to sell you new device, when you 57 * will add new protocol to your host. F.e. IPv6. 8) 58 * 59 * COMPLETE: the most generic way. Device supplied checksum of _all_ 60 * the packet as seen by netif_rx in skb->csum. 61 * NOTE: Even if device supports only some protocols, but 62 * is able to produce some skb->csum, it MUST use COMPLETE, 63 * not UNNECESSARY. 64 * 65 * PARTIAL: identical to the case for output below. This may occur 66 * on a packet received directly from another Linux OS, e.g., 67 * a virtualised Linux kernel on the same host. The packet can 68 * be treated in the same way as UNNECESSARY except that on 69 * output (i.e., forwarding) the checksum must be filled in 70 * by the OS or the hardware. 71 * 72 * B. Checksumming on output. 73 * 74 * NONE: skb is checksummed by protocol or csum is not required. 75 * 76 * PARTIAL: device is required to csum packet as seen by hard_start_xmit 77 * from skb->csum_start to the end and to record the checksum 78 * at skb->csum_start + skb->csum_offset. 79 * 80 * Device must show its capabilities in dev->features, set 81 * at device setup time. 82 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum 83 * everything. 84 * NETIF_F_NO_CSUM - loopback or reliable single hop media. 85 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only 86 * TCP/UDP over IPv4. Sigh. Vendors like this 87 * way by an unknown reason. Though, see comment above 88 * about CHECKSUM_UNNECESSARY. 8) 89 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead. 90 * 91 * Any questions? No questions, good. --ANK 92 */ 93 94 struct net_device; 95 struct scatterlist; 96 struct pipe_inode_info; 97 98 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 99 struct nf_conntrack { 100 atomic_t use; 101 }; 102 #endif 103 104 #ifdef CONFIG_BRIDGE_NETFILTER 105 struct nf_bridge_info { 106 atomic_t use; 107 struct net_device *physindev; 108 struct net_device *physoutdev; 109 unsigned int mask; 110 unsigned long data[32 / sizeof(unsigned long)]; 111 }; 112 #endif 113 114 struct sk_buff_head { 115 /* These two members must be first. */ 116 struct sk_buff *next; 117 struct sk_buff *prev; 118 119 __u32 qlen; 120 spinlock_t lock; 121 }; 122 123 struct sk_buff; 124 125 /* To allow 64K frame to be packed as single skb without frag_list */ 126 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2) 127 128 typedef struct skb_frag_struct skb_frag_t; 129 130 struct skb_frag_struct { 131 struct page *page; 132 __u32 page_offset; 133 __u32 size; 134 }; 135 136 #define HAVE_HW_TIME_STAMP 137 138 /** 139 * struct skb_shared_hwtstamps - hardware time stamps 140 * @hwtstamp: hardware time stamp transformed into duration 141 * since arbitrary point in time 142 * @syststamp: hwtstamp transformed to system time base 143 * 144 * Software time stamps generated by ktime_get_real() are stored in 145 * skb->tstamp. The relation between the different kinds of time 146 * stamps is as follows: 147 * 148 * syststamp and tstamp can be compared against each other in 149 * arbitrary combinations. The accuracy of a 150 * syststamp/tstamp/"syststamp from other device" comparison is 151 * limited by the accuracy of the transformation into system time 152 * base. This depends on the device driver and its underlying 153 * hardware. 154 * 155 * hwtstamps can only be compared against other hwtstamps from 156 * the same device. 157 * 158 * This structure is attached to packets as part of the 159 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 160 */ 161 struct skb_shared_hwtstamps { 162 ktime_t hwtstamp; 163 ktime_t syststamp; 164 }; 165 166 /** 167 * struct skb_shared_tx - instructions for time stamping of outgoing packets 168 * @hardware: generate hardware time stamp 169 * @software: generate software time stamp 170 * @in_progress: device driver is going to provide 171 * hardware time stamp 172 * @flags: all shared_tx flags 173 * 174 * These flags are attached to packets as part of the 175 * &skb_shared_info. Use skb_tx() to get a pointer. 176 */ 177 union skb_shared_tx { 178 struct { 179 __u8 hardware:1, 180 software:1, 181 in_progress:1; 182 }; 183 __u8 flags; 184 }; 185 186 /* This data is invariant across clones and lives at 187 * the end of the header data, ie. at skb->end. 188 */ 189 struct skb_shared_info { 190 unsigned short nr_frags; 191 unsigned short gso_size; 192 /* Warning: this field is not always filled in (UFO)! */ 193 unsigned short gso_segs; 194 unsigned short gso_type; 195 __be32 ip6_frag_id; 196 union skb_shared_tx tx_flags; 197 struct sk_buff *frag_list; 198 struct skb_shared_hwtstamps hwtstamps; 199 200 /* 201 * Warning : all fields before dataref are cleared in __alloc_skb() 202 */ 203 atomic_t dataref; 204 205 skb_frag_t frags[MAX_SKB_FRAGS]; 206 /* Intermediate layers must ensure that destructor_arg 207 * remains valid until skb destructor */ 208 void * destructor_arg; 209 }; 210 211 /* We divide dataref into two halves. The higher 16 bits hold references 212 * to the payload part of skb->data. The lower 16 bits hold references to 213 * the entire skb->data. A clone of a headerless skb holds the length of 214 * the header in skb->hdr_len. 215 * 216 * All users must obey the rule that the skb->data reference count must be 217 * greater than or equal to the payload reference count. 218 * 219 * Holding a reference to the payload part means that the user does not 220 * care about modifications to the header part of skb->data. 221 */ 222 #define SKB_DATAREF_SHIFT 16 223 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 224 225 226 enum { 227 SKB_FCLONE_UNAVAILABLE, 228 SKB_FCLONE_ORIG, 229 SKB_FCLONE_CLONE, 230 }; 231 232 enum { 233 SKB_GSO_TCPV4 = 1 << 0, 234 SKB_GSO_UDP = 1 << 1, 235 236 /* This indicates the skb is from an untrusted source. */ 237 SKB_GSO_DODGY = 1 << 2, 238 239 /* This indicates the tcp segment has CWR set. */ 240 SKB_GSO_TCP_ECN = 1 << 3, 241 242 SKB_GSO_TCPV6 = 1 << 4, 243 244 SKB_GSO_FCOE = 1 << 5, 245 }; 246 247 #if BITS_PER_LONG > 32 248 #define NET_SKBUFF_DATA_USES_OFFSET 1 249 #endif 250 251 #ifdef NET_SKBUFF_DATA_USES_OFFSET 252 typedef unsigned int sk_buff_data_t; 253 #else 254 typedef unsigned char *sk_buff_data_t; 255 #endif 256 257 /** 258 * struct sk_buff - socket buffer 259 * @next: Next buffer in list 260 * @prev: Previous buffer in list 261 * @sk: Socket we are owned by 262 * @tstamp: Time we arrived 263 * @dev: Device we arrived on/are leaving by 264 * @transport_header: Transport layer header 265 * @network_header: Network layer header 266 * @mac_header: Link layer header 267 * @_skb_refdst: destination entry (with norefcount bit) 268 * @sp: the security path, used for xfrm 269 * @cb: Control buffer. Free for use by every layer. Put private vars here 270 * @len: Length of actual data 271 * @data_len: Data length 272 * @mac_len: Length of link layer header 273 * @hdr_len: writable header length of cloned skb 274 * @csum: Checksum (must include start/offset pair) 275 * @csum_start: Offset from skb->head where checksumming should start 276 * @csum_offset: Offset from csum_start where checksum should be stored 277 * @local_df: allow local fragmentation 278 * @cloned: Head may be cloned (check refcnt to be sure) 279 * @nohdr: Payload reference only, must not modify header 280 * @pkt_type: Packet class 281 * @fclone: skbuff clone status 282 * @ip_summed: Driver fed us an IP checksum 283 * @priority: Packet queueing priority 284 * @users: User count - see {datagram,tcp}.c 285 * @protocol: Packet protocol from driver 286 * @truesize: Buffer size 287 * @head: Head of buffer 288 * @data: Data head pointer 289 * @tail: Tail pointer 290 * @end: End pointer 291 * @destructor: Destruct function 292 * @mark: Generic packet mark 293 * @nfct: Associated connection, if any 294 * @ipvs_property: skbuff is owned by ipvs 295 * @peeked: this packet has been seen already, so stats have been 296 * done for it, don't do them again 297 * @nf_trace: netfilter packet trace flag 298 * @nfctinfo: Relationship of this skb to the connection 299 * @nfct_reasm: netfilter conntrack re-assembly pointer 300 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 301 * @skb_iif: ifindex of device we arrived on 302 * @rxhash: the packet hash computed on receive 303 * @queue_mapping: Queue mapping for multiqueue devices 304 * @tc_index: Traffic control index 305 * @tc_verd: traffic control verdict 306 * @ndisc_nodetype: router type (from link layer) 307 * @dma_cookie: a cookie to one of several possible DMA operations 308 * done by skb DMA functions 309 * @secmark: security marking 310 * @vlan_tci: vlan tag control information 311 */ 312 313 struct sk_buff { 314 /* These two members must be first. */ 315 struct sk_buff *next; 316 struct sk_buff *prev; 317 318 ktime_t tstamp; 319 320 struct sock *sk; 321 struct net_device *dev; 322 323 /* 324 * This is the control buffer. It is free to use for every 325 * layer. Please put your private variables there. If you 326 * want to keep them across layers you have to do a skb_clone() 327 * first. This is owned by whoever has the skb queued ATM. 328 */ 329 char cb[48] __aligned(8); 330 331 unsigned long _skb_refdst; 332 #ifdef CONFIG_XFRM 333 struct sec_path *sp; 334 #endif 335 unsigned int len, 336 data_len; 337 __u16 mac_len, 338 hdr_len; 339 union { 340 __wsum csum; 341 struct { 342 __u16 csum_start; 343 __u16 csum_offset; 344 }; 345 }; 346 __u32 priority; 347 kmemcheck_bitfield_begin(flags1); 348 __u8 local_df:1, 349 cloned:1, 350 ip_summed:2, 351 nohdr:1, 352 nfctinfo:3; 353 __u8 pkt_type:3, 354 fclone:2, 355 ipvs_property:1, 356 peeked:1, 357 nf_trace:1; 358 kmemcheck_bitfield_end(flags1); 359 __be16 protocol; 360 361 void (*destructor)(struct sk_buff *skb); 362 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 363 struct nf_conntrack *nfct; 364 struct sk_buff *nfct_reasm; 365 #endif 366 #ifdef CONFIG_BRIDGE_NETFILTER 367 struct nf_bridge_info *nf_bridge; 368 #endif 369 370 int skb_iif; 371 #ifdef CONFIG_NET_SCHED 372 __u16 tc_index; /* traffic control index */ 373 #ifdef CONFIG_NET_CLS_ACT 374 __u16 tc_verd; /* traffic control verdict */ 375 #endif 376 #endif 377 378 __u32 rxhash; 379 380 kmemcheck_bitfield_begin(flags2); 381 __u16 queue_mapping:16; 382 #ifdef CONFIG_IPV6_NDISC_NODETYPE 383 __u8 ndisc_nodetype:2, 384 deliver_no_wcard:1; 385 #else 386 __u8 deliver_no_wcard:1; 387 #endif 388 kmemcheck_bitfield_end(flags2); 389 390 /* 0/14 bit hole */ 391 392 #ifdef CONFIG_NET_DMA 393 dma_cookie_t dma_cookie; 394 #endif 395 #ifdef CONFIG_NETWORK_SECMARK 396 __u32 secmark; 397 #endif 398 union { 399 __u32 mark; 400 __u32 dropcount; 401 }; 402 403 __u16 vlan_tci; 404 405 sk_buff_data_t transport_header; 406 sk_buff_data_t network_header; 407 sk_buff_data_t mac_header; 408 /* These elements must be at the end, see alloc_skb() for details. */ 409 sk_buff_data_t tail; 410 sk_buff_data_t end; 411 unsigned char *head, 412 *data; 413 unsigned int truesize; 414 atomic_t users; 415 }; 416 417 #ifdef __KERNEL__ 418 /* 419 * Handling routines are only of interest to the kernel 420 */ 421 #include <linux/slab.h> 422 423 #include <asm/system.h> 424 425 /* 426 * skb might have a dst pointer attached, refcounted or not. 427 * _skb_refdst low order bit is set if refcount was _not_ taken 428 */ 429 #define SKB_DST_NOREF 1UL 430 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 431 432 /** 433 * skb_dst - returns skb dst_entry 434 * @skb: buffer 435 * 436 * Returns skb dst_entry, regardless of reference taken or not. 437 */ 438 static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 439 { 440 /* If refdst was not refcounted, check we still are in a 441 * rcu_read_lock section 442 */ 443 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 444 !rcu_read_lock_held() && 445 !rcu_read_lock_bh_held()); 446 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 447 } 448 449 /** 450 * skb_dst_set - sets skb dst 451 * @skb: buffer 452 * @dst: dst entry 453 * 454 * Sets skb dst, assuming a reference was taken on dst and should 455 * be released by skb_dst_drop() 456 */ 457 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 458 { 459 skb->_skb_refdst = (unsigned long)dst; 460 } 461 462 /** 463 * skb_dst_set_noref - sets skb dst, without a reference 464 * @skb: buffer 465 * @dst: dst entry 466 * 467 * Sets skb dst, assuming a reference was not taken on dst 468 * skb_dst_drop() should not dst_release() this dst 469 */ 470 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) 471 { 472 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 473 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF; 474 } 475 476 /** 477 * skb_dst_is_noref - Test if skb dst isnt refcounted 478 * @skb: buffer 479 */ 480 static inline bool skb_dst_is_noref(const struct sk_buff *skb) 481 { 482 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 483 } 484 485 static inline struct rtable *skb_rtable(const struct sk_buff *skb) 486 { 487 return (struct rtable *)skb_dst(skb); 488 } 489 490 extern void kfree_skb(struct sk_buff *skb); 491 extern void consume_skb(struct sk_buff *skb); 492 extern void __kfree_skb(struct sk_buff *skb); 493 extern struct sk_buff *__alloc_skb(unsigned int size, 494 gfp_t priority, int fclone, int node); 495 static inline struct sk_buff *alloc_skb(unsigned int size, 496 gfp_t priority) 497 { 498 return __alloc_skb(size, priority, 0, -1); 499 } 500 501 static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 502 gfp_t priority) 503 { 504 return __alloc_skb(size, priority, 1, -1); 505 } 506 507 extern bool skb_recycle_check(struct sk_buff *skb, int skb_size); 508 509 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 510 extern struct sk_buff *skb_clone(struct sk_buff *skb, 511 gfp_t priority); 512 extern struct sk_buff *skb_copy(const struct sk_buff *skb, 513 gfp_t priority); 514 extern struct sk_buff *pskb_copy(struct sk_buff *skb, 515 gfp_t gfp_mask); 516 extern int pskb_expand_head(struct sk_buff *skb, 517 int nhead, int ntail, 518 gfp_t gfp_mask); 519 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 520 unsigned int headroom); 521 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 522 int newheadroom, int newtailroom, 523 gfp_t priority); 524 extern int skb_to_sgvec(struct sk_buff *skb, 525 struct scatterlist *sg, int offset, 526 int len); 527 extern int skb_cow_data(struct sk_buff *skb, int tailbits, 528 struct sk_buff **trailer); 529 extern int skb_pad(struct sk_buff *skb, int pad); 530 #define dev_kfree_skb(a) consume_skb(a) 531 532 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 533 int getfrag(void *from, char *to, int offset, 534 int len,int odd, struct sk_buff *skb), 535 void *from, int length); 536 537 struct skb_seq_state { 538 __u32 lower_offset; 539 __u32 upper_offset; 540 __u32 frag_idx; 541 __u32 stepped_offset; 542 struct sk_buff *root_skb; 543 struct sk_buff *cur_skb; 544 __u8 *frag_data; 545 }; 546 547 extern void skb_prepare_seq_read(struct sk_buff *skb, 548 unsigned int from, unsigned int to, 549 struct skb_seq_state *st); 550 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 551 struct skb_seq_state *st); 552 extern void skb_abort_seq_read(struct skb_seq_state *st); 553 554 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 555 unsigned int to, struct ts_config *config, 556 struct ts_state *state); 557 558 #ifdef NET_SKBUFF_DATA_USES_OFFSET 559 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 560 { 561 return skb->head + skb->end; 562 } 563 #else 564 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 565 { 566 return skb->end; 567 } 568 #endif 569 570 /* Internal */ 571 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 572 573 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 574 { 575 return &skb_shinfo(skb)->hwtstamps; 576 } 577 578 static inline union skb_shared_tx *skb_tx(struct sk_buff *skb) 579 { 580 return &skb_shinfo(skb)->tx_flags; 581 } 582 583 /** 584 * skb_queue_empty - check if a queue is empty 585 * @list: queue head 586 * 587 * Returns true if the queue is empty, false otherwise. 588 */ 589 static inline int skb_queue_empty(const struct sk_buff_head *list) 590 { 591 return list->next == (struct sk_buff *)list; 592 } 593 594 /** 595 * skb_queue_is_last - check if skb is the last entry in the queue 596 * @list: queue head 597 * @skb: buffer 598 * 599 * Returns true if @skb is the last buffer on the list. 600 */ 601 static inline bool skb_queue_is_last(const struct sk_buff_head *list, 602 const struct sk_buff *skb) 603 { 604 return (skb->next == (struct sk_buff *) list); 605 } 606 607 /** 608 * skb_queue_is_first - check if skb is the first entry in the queue 609 * @list: queue head 610 * @skb: buffer 611 * 612 * Returns true if @skb is the first buffer on the list. 613 */ 614 static inline bool skb_queue_is_first(const struct sk_buff_head *list, 615 const struct sk_buff *skb) 616 { 617 return (skb->prev == (struct sk_buff *) list); 618 } 619 620 /** 621 * skb_queue_next - return the next packet in the queue 622 * @list: queue head 623 * @skb: current buffer 624 * 625 * Return the next packet in @list after @skb. It is only valid to 626 * call this if skb_queue_is_last() evaluates to false. 627 */ 628 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 629 const struct sk_buff *skb) 630 { 631 /* This BUG_ON may seem severe, but if we just return then we 632 * are going to dereference garbage. 633 */ 634 BUG_ON(skb_queue_is_last(list, skb)); 635 return skb->next; 636 } 637 638 /** 639 * skb_queue_prev - return the prev packet in the queue 640 * @list: queue head 641 * @skb: current buffer 642 * 643 * Return the prev packet in @list before @skb. It is only valid to 644 * call this if skb_queue_is_first() evaluates to false. 645 */ 646 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 647 const struct sk_buff *skb) 648 { 649 /* This BUG_ON may seem severe, but if we just return then we 650 * are going to dereference garbage. 651 */ 652 BUG_ON(skb_queue_is_first(list, skb)); 653 return skb->prev; 654 } 655 656 /** 657 * skb_get - reference buffer 658 * @skb: buffer to reference 659 * 660 * Makes another reference to a socket buffer and returns a pointer 661 * to the buffer. 662 */ 663 static inline struct sk_buff *skb_get(struct sk_buff *skb) 664 { 665 atomic_inc(&skb->users); 666 return skb; 667 } 668 669 /* 670 * If users == 1, we are the only owner and are can avoid redundant 671 * atomic change. 672 */ 673 674 /** 675 * skb_cloned - is the buffer a clone 676 * @skb: buffer to check 677 * 678 * Returns true if the buffer was generated with skb_clone() and is 679 * one of multiple shared copies of the buffer. Cloned buffers are 680 * shared data so must not be written to under normal circumstances. 681 */ 682 static inline int skb_cloned(const struct sk_buff *skb) 683 { 684 return skb->cloned && 685 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 686 } 687 688 /** 689 * skb_header_cloned - is the header a clone 690 * @skb: buffer to check 691 * 692 * Returns true if modifying the header part of the buffer requires 693 * the data to be copied. 694 */ 695 static inline int skb_header_cloned(const struct sk_buff *skb) 696 { 697 int dataref; 698 699 if (!skb->cloned) 700 return 0; 701 702 dataref = atomic_read(&skb_shinfo(skb)->dataref); 703 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 704 return dataref != 1; 705 } 706 707 /** 708 * skb_header_release - release reference to header 709 * @skb: buffer to operate on 710 * 711 * Drop a reference to the header part of the buffer. This is done 712 * by acquiring a payload reference. You must not read from the header 713 * part of skb->data after this. 714 */ 715 static inline void skb_header_release(struct sk_buff *skb) 716 { 717 BUG_ON(skb->nohdr); 718 skb->nohdr = 1; 719 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref); 720 } 721 722 /** 723 * skb_shared - is the buffer shared 724 * @skb: buffer to check 725 * 726 * Returns true if more than one person has a reference to this 727 * buffer. 728 */ 729 static inline int skb_shared(const struct sk_buff *skb) 730 { 731 return atomic_read(&skb->users) != 1; 732 } 733 734 /** 735 * skb_share_check - check if buffer is shared and if so clone it 736 * @skb: buffer to check 737 * @pri: priority for memory allocation 738 * 739 * If the buffer is shared the buffer is cloned and the old copy 740 * drops a reference. A new clone with a single reference is returned. 741 * If the buffer is not shared the original buffer is returned. When 742 * being called from interrupt status or with spinlocks held pri must 743 * be GFP_ATOMIC. 744 * 745 * NULL is returned on a memory allocation failure. 746 */ 747 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, 748 gfp_t pri) 749 { 750 might_sleep_if(pri & __GFP_WAIT); 751 if (skb_shared(skb)) { 752 struct sk_buff *nskb = skb_clone(skb, pri); 753 kfree_skb(skb); 754 skb = nskb; 755 } 756 return skb; 757 } 758 759 /* 760 * Copy shared buffers into a new sk_buff. We effectively do COW on 761 * packets to handle cases where we have a local reader and forward 762 * and a couple of other messy ones. The normal one is tcpdumping 763 * a packet thats being forwarded. 764 */ 765 766 /** 767 * skb_unshare - make a copy of a shared buffer 768 * @skb: buffer to check 769 * @pri: priority for memory allocation 770 * 771 * If the socket buffer is a clone then this function creates a new 772 * copy of the data, drops a reference count on the old copy and returns 773 * the new copy with the reference count at 1. If the buffer is not a clone 774 * the original buffer is returned. When called with a spinlock held or 775 * from interrupt state @pri must be %GFP_ATOMIC 776 * 777 * %NULL is returned on a memory allocation failure. 778 */ 779 static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 780 gfp_t pri) 781 { 782 might_sleep_if(pri & __GFP_WAIT); 783 if (skb_cloned(skb)) { 784 struct sk_buff *nskb = skb_copy(skb, pri); 785 kfree_skb(skb); /* Free our shared copy */ 786 skb = nskb; 787 } 788 return skb; 789 } 790 791 /** 792 * skb_peek - peek at the head of an &sk_buff_head 793 * @list_: list to peek at 794 * 795 * Peek an &sk_buff. Unlike most other operations you _MUST_ 796 * be careful with this one. A peek leaves the buffer on the 797 * list and someone else may run off with it. You must hold 798 * the appropriate locks or have a private queue to do this. 799 * 800 * Returns %NULL for an empty list or a pointer to the head element. 801 * The reference count is not incremented and the reference is therefore 802 * volatile. Use with caution. 803 */ 804 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_) 805 { 806 struct sk_buff *list = ((struct sk_buff *)list_)->next; 807 if (list == (struct sk_buff *)list_) 808 list = NULL; 809 return list; 810 } 811 812 /** 813 * skb_peek_tail - peek at the tail of an &sk_buff_head 814 * @list_: list to peek at 815 * 816 * Peek an &sk_buff. Unlike most other operations you _MUST_ 817 * be careful with this one. A peek leaves the buffer on the 818 * list and someone else may run off with it. You must hold 819 * the appropriate locks or have a private queue to do this. 820 * 821 * Returns %NULL for an empty list or a pointer to the tail element. 822 * The reference count is not incremented and the reference is therefore 823 * volatile. Use with caution. 824 */ 825 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_) 826 { 827 struct sk_buff *list = ((struct sk_buff *)list_)->prev; 828 if (list == (struct sk_buff *)list_) 829 list = NULL; 830 return list; 831 } 832 833 /** 834 * skb_queue_len - get queue length 835 * @list_: list to measure 836 * 837 * Return the length of an &sk_buff queue. 838 */ 839 static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 840 { 841 return list_->qlen; 842 } 843 844 /** 845 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 846 * @list: queue to initialize 847 * 848 * This initializes only the list and queue length aspects of 849 * an sk_buff_head object. This allows to initialize the list 850 * aspects of an sk_buff_head without reinitializing things like 851 * the spinlock. It can also be used for on-stack sk_buff_head 852 * objects where the spinlock is known to not be used. 853 */ 854 static inline void __skb_queue_head_init(struct sk_buff_head *list) 855 { 856 list->prev = list->next = (struct sk_buff *)list; 857 list->qlen = 0; 858 } 859 860 /* 861 * This function creates a split out lock class for each invocation; 862 * this is needed for now since a whole lot of users of the skb-queue 863 * infrastructure in drivers have different locking usage (in hardirq) 864 * than the networking core (in softirq only). In the long run either the 865 * network layer or drivers should need annotation to consolidate the 866 * main types of usage into 3 classes. 867 */ 868 static inline void skb_queue_head_init(struct sk_buff_head *list) 869 { 870 spin_lock_init(&list->lock); 871 __skb_queue_head_init(list); 872 } 873 874 static inline void skb_queue_head_init_class(struct sk_buff_head *list, 875 struct lock_class_key *class) 876 { 877 skb_queue_head_init(list); 878 lockdep_set_class(&list->lock, class); 879 } 880 881 /* 882 * Insert an sk_buff on a list. 883 * 884 * The "__skb_xxxx()" functions are the non-atomic ones that 885 * can only be called with interrupts disabled. 886 */ 887 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list); 888 static inline void __skb_insert(struct sk_buff *newsk, 889 struct sk_buff *prev, struct sk_buff *next, 890 struct sk_buff_head *list) 891 { 892 newsk->next = next; 893 newsk->prev = prev; 894 next->prev = prev->next = newsk; 895 list->qlen++; 896 } 897 898 static inline void __skb_queue_splice(const struct sk_buff_head *list, 899 struct sk_buff *prev, 900 struct sk_buff *next) 901 { 902 struct sk_buff *first = list->next; 903 struct sk_buff *last = list->prev; 904 905 first->prev = prev; 906 prev->next = first; 907 908 last->next = next; 909 next->prev = last; 910 } 911 912 /** 913 * skb_queue_splice - join two skb lists, this is designed for stacks 914 * @list: the new list to add 915 * @head: the place to add it in the first list 916 */ 917 static inline void skb_queue_splice(const struct sk_buff_head *list, 918 struct sk_buff_head *head) 919 { 920 if (!skb_queue_empty(list)) { 921 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 922 head->qlen += list->qlen; 923 } 924 } 925 926 /** 927 * skb_queue_splice - join two skb lists and reinitialise the emptied list 928 * @list: the new list to add 929 * @head: the place to add it in the first list 930 * 931 * The list at @list is reinitialised 932 */ 933 static inline void skb_queue_splice_init(struct sk_buff_head *list, 934 struct sk_buff_head *head) 935 { 936 if (!skb_queue_empty(list)) { 937 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 938 head->qlen += list->qlen; 939 __skb_queue_head_init(list); 940 } 941 } 942 943 /** 944 * skb_queue_splice_tail - join two skb lists, each list being a queue 945 * @list: the new list to add 946 * @head: the place to add it in the first list 947 */ 948 static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 949 struct sk_buff_head *head) 950 { 951 if (!skb_queue_empty(list)) { 952 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 953 head->qlen += list->qlen; 954 } 955 } 956 957 /** 958 * skb_queue_splice_tail - join two skb lists and reinitialise the emptied list 959 * @list: the new list to add 960 * @head: the place to add it in the first list 961 * 962 * Each of the lists is a queue. 963 * The list at @list is reinitialised 964 */ 965 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 966 struct sk_buff_head *head) 967 { 968 if (!skb_queue_empty(list)) { 969 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 970 head->qlen += list->qlen; 971 __skb_queue_head_init(list); 972 } 973 } 974 975 /** 976 * __skb_queue_after - queue a buffer at the list head 977 * @list: list to use 978 * @prev: place after this buffer 979 * @newsk: buffer to queue 980 * 981 * Queue a buffer int the middle of a list. This function takes no locks 982 * and you must therefore hold required locks before calling it. 983 * 984 * A buffer cannot be placed on two lists at the same time. 985 */ 986 static inline void __skb_queue_after(struct sk_buff_head *list, 987 struct sk_buff *prev, 988 struct sk_buff *newsk) 989 { 990 __skb_insert(newsk, prev, prev->next, list); 991 } 992 993 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, 994 struct sk_buff_head *list); 995 996 static inline void __skb_queue_before(struct sk_buff_head *list, 997 struct sk_buff *next, 998 struct sk_buff *newsk) 999 { 1000 __skb_insert(newsk, next->prev, next, list); 1001 } 1002 1003 /** 1004 * __skb_queue_head - queue a buffer at the list head 1005 * @list: list to use 1006 * @newsk: buffer to queue 1007 * 1008 * Queue a buffer at the start of a list. This function takes no locks 1009 * and you must therefore hold required locks before calling it. 1010 * 1011 * A buffer cannot be placed on two lists at the same time. 1012 */ 1013 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 1014 static inline void __skb_queue_head(struct sk_buff_head *list, 1015 struct sk_buff *newsk) 1016 { 1017 __skb_queue_after(list, (struct sk_buff *)list, newsk); 1018 } 1019 1020 /** 1021 * __skb_queue_tail - queue a buffer at the list tail 1022 * @list: list to use 1023 * @newsk: buffer to queue 1024 * 1025 * Queue a buffer at the end of a list. This function takes no locks 1026 * and you must therefore hold required locks before calling it. 1027 * 1028 * A buffer cannot be placed on two lists at the same time. 1029 */ 1030 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 1031 static inline void __skb_queue_tail(struct sk_buff_head *list, 1032 struct sk_buff *newsk) 1033 { 1034 __skb_queue_before(list, (struct sk_buff *)list, newsk); 1035 } 1036 1037 /* 1038 * remove sk_buff from list. _Must_ be called atomically, and with 1039 * the list known.. 1040 */ 1041 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 1042 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 1043 { 1044 struct sk_buff *next, *prev; 1045 1046 list->qlen--; 1047 next = skb->next; 1048 prev = skb->prev; 1049 skb->next = skb->prev = NULL; 1050 next->prev = prev; 1051 prev->next = next; 1052 } 1053 1054 /** 1055 * __skb_dequeue - remove from the head of the queue 1056 * @list: list to dequeue from 1057 * 1058 * Remove the head of the list. This function does not take any locks 1059 * so must be used with appropriate locks held only. The head item is 1060 * returned or %NULL if the list is empty. 1061 */ 1062 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list); 1063 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 1064 { 1065 struct sk_buff *skb = skb_peek(list); 1066 if (skb) 1067 __skb_unlink(skb, list); 1068 return skb; 1069 } 1070 1071 /** 1072 * __skb_dequeue_tail - remove from the tail of the queue 1073 * @list: list to dequeue from 1074 * 1075 * Remove the tail of the list. This function does not take any locks 1076 * so must be used with appropriate locks held only. The tail item is 1077 * returned or %NULL if the list is empty. 1078 */ 1079 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 1080 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 1081 { 1082 struct sk_buff *skb = skb_peek_tail(list); 1083 if (skb) 1084 __skb_unlink(skb, list); 1085 return skb; 1086 } 1087 1088 1089 static inline int skb_is_nonlinear(const struct sk_buff *skb) 1090 { 1091 return skb->data_len; 1092 } 1093 1094 static inline unsigned int skb_headlen(const struct sk_buff *skb) 1095 { 1096 return skb->len - skb->data_len; 1097 } 1098 1099 static inline int skb_pagelen(const struct sk_buff *skb) 1100 { 1101 int i, len = 0; 1102 1103 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--) 1104 len += skb_shinfo(skb)->frags[i].size; 1105 return len + skb_headlen(skb); 1106 } 1107 1108 static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 1109 struct page *page, int off, int size) 1110 { 1111 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1112 1113 frag->page = page; 1114 frag->page_offset = off; 1115 frag->size = size; 1116 skb_shinfo(skb)->nr_frags = i + 1; 1117 } 1118 1119 extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, 1120 int off, int size); 1121 1122 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags) 1123 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frags(skb)) 1124 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 1125 1126 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1127 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1128 { 1129 return skb->head + skb->tail; 1130 } 1131 1132 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1133 { 1134 skb->tail = skb->data - skb->head; 1135 } 1136 1137 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1138 { 1139 skb_reset_tail_pointer(skb); 1140 skb->tail += offset; 1141 } 1142 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 1143 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1144 { 1145 return skb->tail; 1146 } 1147 1148 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1149 { 1150 skb->tail = skb->data; 1151 } 1152 1153 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1154 { 1155 skb->tail = skb->data + offset; 1156 } 1157 1158 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1159 1160 /* 1161 * Add data to an sk_buff 1162 */ 1163 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len); 1164 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len) 1165 { 1166 unsigned char *tmp = skb_tail_pointer(skb); 1167 SKB_LINEAR_ASSERT(skb); 1168 skb->tail += len; 1169 skb->len += len; 1170 return tmp; 1171 } 1172 1173 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len); 1174 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len) 1175 { 1176 skb->data -= len; 1177 skb->len += len; 1178 return skb->data; 1179 } 1180 1181 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len); 1182 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len) 1183 { 1184 skb->len -= len; 1185 BUG_ON(skb->len < skb->data_len); 1186 return skb->data += len; 1187 } 1188 1189 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len) 1190 { 1191 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 1192 } 1193 1194 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta); 1195 1196 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len) 1197 { 1198 if (len > skb_headlen(skb) && 1199 !__pskb_pull_tail(skb, len - skb_headlen(skb))) 1200 return NULL; 1201 skb->len -= len; 1202 return skb->data += len; 1203 } 1204 1205 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len) 1206 { 1207 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 1208 } 1209 1210 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) 1211 { 1212 if (likely(len <= skb_headlen(skb))) 1213 return 1; 1214 if (unlikely(len > skb->len)) 1215 return 0; 1216 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; 1217 } 1218 1219 /** 1220 * skb_headroom - bytes at buffer head 1221 * @skb: buffer to check 1222 * 1223 * Return the number of bytes of free space at the head of an &sk_buff. 1224 */ 1225 static inline unsigned int skb_headroom(const struct sk_buff *skb) 1226 { 1227 return skb->data - skb->head; 1228 } 1229 1230 /** 1231 * skb_tailroom - bytes at buffer end 1232 * @skb: buffer to check 1233 * 1234 * Return the number of bytes of free space at the tail of an sk_buff 1235 */ 1236 static inline int skb_tailroom(const struct sk_buff *skb) 1237 { 1238 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 1239 } 1240 1241 /** 1242 * skb_reserve - adjust headroom 1243 * @skb: buffer to alter 1244 * @len: bytes to move 1245 * 1246 * Increase the headroom of an empty &sk_buff by reducing the tail 1247 * room. This is only allowed for an empty buffer. 1248 */ 1249 static inline void skb_reserve(struct sk_buff *skb, int len) 1250 { 1251 skb->data += len; 1252 skb->tail += len; 1253 } 1254 1255 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1256 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 1257 { 1258 return skb->head + skb->transport_header; 1259 } 1260 1261 static inline void skb_reset_transport_header(struct sk_buff *skb) 1262 { 1263 skb->transport_header = skb->data - skb->head; 1264 } 1265 1266 static inline void skb_set_transport_header(struct sk_buff *skb, 1267 const int offset) 1268 { 1269 skb_reset_transport_header(skb); 1270 skb->transport_header += offset; 1271 } 1272 1273 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 1274 { 1275 return skb->head + skb->network_header; 1276 } 1277 1278 static inline void skb_reset_network_header(struct sk_buff *skb) 1279 { 1280 skb->network_header = skb->data - skb->head; 1281 } 1282 1283 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 1284 { 1285 skb_reset_network_header(skb); 1286 skb->network_header += offset; 1287 } 1288 1289 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 1290 { 1291 return skb->head + skb->mac_header; 1292 } 1293 1294 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 1295 { 1296 return skb->mac_header != ~0U; 1297 } 1298 1299 static inline void skb_reset_mac_header(struct sk_buff *skb) 1300 { 1301 skb->mac_header = skb->data - skb->head; 1302 } 1303 1304 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1305 { 1306 skb_reset_mac_header(skb); 1307 skb->mac_header += offset; 1308 } 1309 1310 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 1311 1312 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 1313 { 1314 return skb->transport_header; 1315 } 1316 1317 static inline void skb_reset_transport_header(struct sk_buff *skb) 1318 { 1319 skb->transport_header = skb->data; 1320 } 1321 1322 static inline void skb_set_transport_header(struct sk_buff *skb, 1323 const int offset) 1324 { 1325 skb->transport_header = skb->data + offset; 1326 } 1327 1328 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 1329 { 1330 return skb->network_header; 1331 } 1332 1333 static inline void skb_reset_network_header(struct sk_buff *skb) 1334 { 1335 skb->network_header = skb->data; 1336 } 1337 1338 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 1339 { 1340 skb->network_header = skb->data + offset; 1341 } 1342 1343 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 1344 { 1345 return skb->mac_header; 1346 } 1347 1348 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 1349 { 1350 return skb->mac_header != NULL; 1351 } 1352 1353 static inline void skb_reset_mac_header(struct sk_buff *skb) 1354 { 1355 skb->mac_header = skb->data; 1356 } 1357 1358 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1359 { 1360 skb->mac_header = skb->data + offset; 1361 } 1362 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1363 1364 static inline int skb_transport_offset(const struct sk_buff *skb) 1365 { 1366 return skb_transport_header(skb) - skb->data; 1367 } 1368 1369 static inline u32 skb_network_header_len(const struct sk_buff *skb) 1370 { 1371 return skb->transport_header - skb->network_header; 1372 } 1373 1374 static inline int skb_network_offset(const struct sk_buff *skb) 1375 { 1376 return skb_network_header(skb) - skb->data; 1377 } 1378 1379 /* 1380 * CPUs often take a performance hit when accessing unaligned memory 1381 * locations. The actual performance hit varies, it can be small if the 1382 * hardware handles it or large if we have to take an exception and fix it 1383 * in software. 1384 * 1385 * Since an ethernet header is 14 bytes network drivers often end up with 1386 * the IP header at an unaligned offset. The IP header can be aligned by 1387 * shifting the start of the packet by 2 bytes. Drivers should do this 1388 * with: 1389 * 1390 * skb_reserve(skb, NET_IP_ALIGN); 1391 * 1392 * The downside to this alignment of the IP header is that the DMA is now 1393 * unaligned. On some architectures the cost of an unaligned DMA is high 1394 * and this cost outweighs the gains made by aligning the IP header. 1395 * 1396 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 1397 * to be overridden. 1398 */ 1399 #ifndef NET_IP_ALIGN 1400 #define NET_IP_ALIGN 2 1401 #endif 1402 1403 /* 1404 * The networking layer reserves some headroom in skb data (via 1405 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 1406 * the header has to grow. In the default case, if the header has to grow 1407 * 32 bytes or less we avoid the reallocation. 1408 * 1409 * Unfortunately this headroom changes the DMA alignment of the resulting 1410 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 1411 * on some architectures. An architecture can override this value, 1412 * perhaps setting it to a cacheline in size (since that will maintain 1413 * cacheline alignment of the DMA). It must be a power of 2. 1414 * 1415 * Various parts of the networking layer expect at least 32 bytes of 1416 * headroom, you should not reduce this. 1417 * With RPS, we raised NET_SKB_PAD to 64 so that get_rps_cpus() fetches span 1418 * a 64 bytes aligned block to fit modern (>= 64 bytes) cache line sizes 1419 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 1420 */ 1421 #ifndef NET_SKB_PAD 1422 #define NET_SKB_PAD 64 1423 #endif 1424 1425 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len); 1426 1427 static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 1428 { 1429 if (unlikely(skb->data_len)) { 1430 WARN_ON(1); 1431 return; 1432 } 1433 skb->len = len; 1434 skb_set_tail_pointer(skb, len); 1435 } 1436 1437 extern void skb_trim(struct sk_buff *skb, unsigned int len); 1438 1439 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 1440 { 1441 if (skb->data_len) 1442 return ___pskb_trim(skb, len); 1443 __skb_trim(skb, len); 1444 return 0; 1445 } 1446 1447 static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 1448 { 1449 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 1450 } 1451 1452 /** 1453 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 1454 * @skb: buffer to alter 1455 * @len: new length 1456 * 1457 * This is identical to pskb_trim except that the caller knows that 1458 * the skb is not cloned so we should never get an error due to out- 1459 * of-memory. 1460 */ 1461 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 1462 { 1463 int err = pskb_trim(skb, len); 1464 BUG_ON(err); 1465 } 1466 1467 /** 1468 * skb_orphan - orphan a buffer 1469 * @skb: buffer to orphan 1470 * 1471 * If a buffer currently has an owner then we call the owner's 1472 * destructor function and make the @skb unowned. The buffer continues 1473 * to exist but is no longer charged to its former owner. 1474 */ 1475 static inline void skb_orphan(struct sk_buff *skb) 1476 { 1477 if (skb->destructor) 1478 skb->destructor(skb); 1479 skb->destructor = NULL; 1480 skb->sk = NULL; 1481 } 1482 1483 /** 1484 * __skb_queue_purge - empty a list 1485 * @list: list to empty 1486 * 1487 * Delete all buffers on an &sk_buff list. Each buffer is removed from 1488 * the list and one reference dropped. This function does not take the 1489 * list lock and the caller must hold the relevant locks to use it. 1490 */ 1491 extern void skb_queue_purge(struct sk_buff_head *list); 1492 static inline void __skb_queue_purge(struct sk_buff_head *list) 1493 { 1494 struct sk_buff *skb; 1495 while ((skb = __skb_dequeue(list)) != NULL) 1496 kfree_skb(skb); 1497 } 1498 1499 /** 1500 * __dev_alloc_skb - allocate an skbuff for receiving 1501 * @length: length to allocate 1502 * @gfp_mask: get_free_pages mask, passed to alloc_skb 1503 * 1504 * Allocate a new &sk_buff and assign it a usage count of one. The 1505 * buffer has unspecified headroom built in. Users should allocate 1506 * the headroom they think they need without accounting for the 1507 * built in space. The built in space is used for optimisations. 1508 * 1509 * %NULL is returned if there is no free memory. 1510 */ 1511 static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 1512 gfp_t gfp_mask) 1513 { 1514 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask); 1515 if (likely(skb)) 1516 skb_reserve(skb, NET_SKB_PAD); 1517 return skb; 1518 } 1519 1520 extern struct sk_buff *dev_alloc_skb(unsigned int length); 1521 1522 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev, 1523 unsigned int length, gfp_t gfp_mask); 1524 1525 /** 1526 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 1527 * @dev: network device to receive on 1528 * @length: length to allocate 1529 * 1530 * Allocate a new &sk_buff and assign it a usage count of one. The 1531 * buffer has unspecified headroom built in. Users should allocate 1532 * the headroom they think they need without accounting for the 1533 * built in space. The built in space is used for optimisations. 1534 * 1535 * %NULL is returned if there is no free memory. Although this function 1536 * allocates memory it can be called from an interrupt. 1537 */ 1538 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 1539 unsigned int length) 1540 { 1541 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 1542 } 1543 1544 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 1545 unsigned int length) 1546 { 1547 struct sk_buff *skb = netdev_alloc_skb(dev, length + NET_IP_ALIGN); 1548 1549 if (NET_IP_ALIGN && skb) 1550 skb_reserve(skb, NET_IP_ALIGN); 1551 return skb; 1552 } 1553 1554 extern struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask); 1555 1556 /** 1557 * netdev_alloc_page - allocate a page for ps-rx on a specific device 1558 * @dev: network device to receive on 1559 * 1560 * Allocate a new page node local to the specified device. 1561 * 1562 * %NULL is returned if there is no free memory. 1563 */ 1564 static inline struct page *netdev_alloc_page(struct net_device *dev) 1565 { 1566 return __netdev_alloc_page(dev, GFP_ATOMIC); 1567 } 1568 1569 static inline void netdev_free_page(struct net_device *dev, struct page *page) 1570 { 1571 __free_page(page); 1572 } 1573 1574 /** 1575 * skb_clone_writable - is the header of a clone writable 1576 * @skb: buffer to check 1577 * @len: length up to which to write 1578 * 1579 * Returns true if modifying the header part of the cloned buffer 1580 * does not requires the data to be copied. 1581 */ 1582 static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len) 1583 { 1584 return !skb_header_cloned(skb) && 1585 skb_headroom(skb) + len <= skb->hdr_len; 1586 } 1587 1588 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 1589 int cloned) 1590 { 1591 int delta = 0; 1592 1593 if (headroom < NET_SKB_PAD) 1594 headroom = NET_SKB_PAD; 1595 if (headroom > skb_headroom(skb)) 1596 delta = headroom - skb_headroom(skb); 1597 1598 if (delta || cloned) 1599 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 1600 GFP_ATOMIC); 1601 return 0; 1602 } 1603 1604 /** 1605 * skb_cow - copy header of skb when it is required 1606 * @skb: buffer to cow 1607 * @headroom: needed headroom 1608 * 1609 * If the skb passed lacks sufficient headroom or its data part 1610 * is shared, data is reallocated. If reallocation fails, an error 1611 * is returned and original skb is not changed. 1612 * 1613 * The result is skb with writable area skb->head...skb->tail 1614 * and at least @headroom of space at head. 1615 */ 1616 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 1617 { 1618 return __skb_cow(skb, headroom, skb_cloned(skb)); 1619 } 1620 1621 /** 1622 * skb_cow_head - skb_cow but only making the head writable 1623 * @skb: buffer to cow 1624 * @headroom: needed headroom 1625 * 1626 * This function is identical to skb_cow except that we replace the 1627 * skb_cloned check by skb_header_cloned. It should be used when 1628 * you only need to push on some header and do not need to modify 1629 * the data. 1630 */ 1631 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 1632 { 1633 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 1634 } 1635 1636 /** 1637 * skb_padto - pad an skbuff up to a minimal size 1638 * @skb: buffer to pad 1639 * @len: minimal length 1640 * 1641 * Pads up a buffer to ensure the trailing bytes exist and are 1642 * blanked. If the buffer already contains sufficient data it 1643 * is untouched. Otherwise it is extended. Returns zero on 1644 * success. The skb is freed on error. 1645 */ 1646 1647 static inline int skb_padto(struct sk_buff *skb, unsigned int len) 1648 { 1649 unsigned int size = skb->len; 1650 if (likely(size >= len)) 1651 return 0; 1652 return skb_pad(skb, len - size); 1653 } 1654 1655 static inline int skb_add_data(struct sk_buff *skb, 1656 char __user *from, int copy) 1657 { 1658 const int off = skb->len; 1659 1660 if (skb->ip_summed == CHECKSUM_NONE) { 1661 int err = 0; 1662 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy), 1663 copy, 0, &err); 1664 if (!err) { 1665 skb->csum = csum_block_add(skb->csum, csum, off); 1666 return 0; 1667 } 1668 } else if (!copy_from_user(skb_put(skb, copy), from, copy)) 1669 return 0; 1670 1671 __skb_trim(skb, off); 1672 return -EFAULT; 1673 } 1674 1675 static inline int skb_can_coalesce(struct sk_buff *skb, int i, 1676 struct page *page, int off) 1677 { 1678 if (i) { 1679 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 1680 1681 return page == frag->page && 1682 off == frag->page_offset + frag->size; 1683 } 1684 return 0; 1685 } 1686 1687 static inline int __skb_linearize(struct sk_buff *skb) 1688 { 1689 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 1690 } 1691 1692 /** 1693 * skb_linearize - convert paged skb to linear one 1694 * @skb: buffer to linarize 1695 * 1696 * If there is no free memory -ENOMEM is returned, otherwise zero 1697 * is returned and the old skb data released. 1698 */ 1699 static inline int skb_linearize(struct sk_buff *skb) 1700 { 1701 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 1702 } 1703 1704 /** 1705 * skb_linearize_cow - make sure skb is linear and writable 1706 * @skb: buffer to process 1707 * 1708 * If there is no free memory -ENOMEM is returned, otherwise zero 1709 * is returned and the old skb data released. 1710 */ 1711 static inline int skb_linearize_cow(struct sk_buff *skb) 1712 { 1713 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 1714 __skb_linearize(skb) : 0; 1715 } 1716 1717 /** 1718 * skb_postpull_rcsum - update checksum for received skb after pull 1719 * @skb: buffer to update 1720 * @start: start of data before pull 1721 * @len: length of data pulled 1722 * 1723 * After doing a pull on a received packet, you need to call this to 1724 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 1725 * CHECKSUM_NONE so that it can be recomputed from scratch. 1726 */ 1727 1728 static inline void skb_postpull_rcsum(struct sk_buff *skb, 1729 const void *start, unsigned int len) 1730 { 1731 if (skb->ip_summed == CHECKSUM_COMPLETE) 1732 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0)); 1733 } 1734 1735 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 1736 1737 /** 1738 * pskb_trim_rcsum - trim received skb and update checksum 1739 * @skb: buffer to trim 1740 * @len: new length 1741 * 1742 * This is exactly the same as pskb_trim except that it ensures the 1743 * checksum of received packets are still valid after the operation. 1744 */ 1745 1746 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 1747 { 1748 if (likely(len >= skb->len)) 1749 return 0; 1750 if (skb->ip_summed == CHECKSUM_COMPLETE) 1751 skb->ip_summed = CHECKSUM_NONE; 1752 return __pskb_trim(skb, len); 1753 } 1754 1755 #define skb_queue_walk(queue, skb) \ 1756 for (skb = (queue)->next; \ 1757 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \ 1758 skb = skb->next) 1759 1760 #define skb_queue_walk_safe(queue, skb, tmp) \ 1761 for (skb = (queue)->next, tmp = skb->next; \ 1762 skb != (struct sk_buff *)(queue); \ 1763 skb = tmp, tmp = skb->next) 1764 1765 #define skb_queue_walk_from(queue, skb) \ 1766 for (; prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \ 1767 skb = skb->next) 1768 1769 #define skb_queue_walk_from_safe(queue, skb, tmp) \ 1770 for (tmp = skb->next; \ 1771 skb != (struct sk_buff *)(queue); \ 1772 skb = tmp, tmp = skb->next) 1773 1774 #define skb_queue_reverse_walk(queue, skb) \ 1775 for (skb = (queue)->prev; \ 1776 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \ 1777 skb = skb->prev) 1778 1779 1780 static inline bool skb_has_frags(const struct sk_buff *skb) 1781 { 1782 return skb_shinfo(skb)->frag_list != NULL; 1783 } 1784 1785 static inline void skb_frag_list_init(struct sk_buff *skb) 1786 { 1787 skb_shinfo(skb)->frag_list = NULL; 1788 } 1789 1790 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag) 1791 { 1792 frag->next = skb_shinfo(skb)->frag_list; 1793 skb_shinfo(skb)->frag_list = frag; 1794 } 1795 1796 #define skb_walk_frags(skb, iter) \ 1797 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 1798 1799 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags, 1800 int *peeked, int *err); 1801 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, 1802 int noblock, int *err); 1803 extern unsigned int datagram_poll(struct file *file, struct socket *sock, 1804 struct poll_table_struct *wait); 1805 extern int skb_copy_datagram_iovec(const struct sk_buff *from, 1806 int offset, struct iovec *to, 1807 int size); 1808 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb, 1809 int hlen, 1810 struct iovec *iov); 1811 extern int skb_copy_datagram_from_iovec(struct sk_buff *skb, 1812 int offset, 1813 const struct iovec *from, 1814 int from_offset, 1815 int len); 1816 extern int skb_copy_datagram_const_iovec(const struct sk_buff *from, 1817 int offset, 1818 const struct iovec *to, 1819 int to_offset, 1820 int size); 1821 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 1822 extern void skb_free_datagram_locked(struct sock *sk, 1823 struct sk_buff *skb); 1824 extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, 1825 unsigned int flags); 1826 extern __wsum skb_checksum(const struct sk_buff *skb, int offset, 1827 int len, __wsum csum); 1828 extern int skb_copy_bits(const struct sk_buff *skb, int offset, 1829 void *to, int len); 1830 extern int skb_store_bits(struct sk_buff *skb, int offset, 1831 const void *from, int len); 1832 extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, 1833 int offset, u8 *to, int len, 1834 __wsum csum); 1835 extern int skb_splice_bits(struct sk_buff *skb, 1836 unsigned int offset, 1837 struct pipe_inode_info *pipe, 1838 unsigned int len, 1839 unsigned int flags); 1840 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 1841 extern void skb_split(struct sk_buff *skb, 1842 struct sk_buff *skb1, const u32 len); 1843 extern int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, 1844 int shiftlen); 1845 1846 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features); 1847 1848 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset, 1849 int len, void *buffer) 1850 { 1851 int hlen = skb_headlen(skb); 1852 1853 if (hlen - offset >= len) 1854 return skb->data + offset; 1855 1856 if (skb_copy_bits(skb, offset, buffer, len) < 0) 1857 return NULL; 1858 1859 return buffer; 1860 } 1861 1862 static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 1863 void *to, 1864 const unsigned int len) 1865 { 1866 memcpy(to, skb->data, len); 1867 } 1868 1869 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 1870 const int offset, void *to, 1871 const unsigned int len) 1872 { 1873 memcpy(to, skb->data + offset, len); 1874 } 1875 1876 static inline void skb_copy_to_linear_data(struct sk_buff *skb, 1877 const void *from, 1878 const unsigned int len) 1879 { 1880 memcpy(skb->data, from, len); 1881 } 1882 1883 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 1884 const int offset, 1885 const void *from, 1886 const unsigned int len) 1887 { 1888 memcpy(skb->data + offset, from, len); 1889 } 1890 1891 extern void skb_init(void); 1892 1893 static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 1894 { 1895 return skb->tstamp; 1896 } 1897 1898 /** 1899 * skb_get_timestamp - get timestamp from a skb 1900 * @skb: skb to get stamp from 1901 * @stamp: pointer to struct timeval to store stamp in 1902 * 1903 * Timestamps are stored in the skb as offsets to a base timestamp. 1904 * This function converts the offset back to a struct timeval and stores 1905 * it in stamp. 1906 */ 1907 static inline void skb_get_timestamp(const struct sk_buff *skb, 1908 struct timeval *stamp) 1909 { 1910 *stamp = ktime_to_timeval(skb->tstamp); 1911 } 1912 1913 static inline void skb_get_timestampns(const struct sk_buff *skb, 1914 struct timespec *stamp) 1915 { 1916 *stamp = ktime_to_timespec(skb->tstamp); 1917 } 1918 1919 static inline void __net_timestamp(struct sk_buff *skb) 1920 { 1921 skb->tstamp = ktime_get_real(); 1922 } 1923 1924 static inline ktime_t net_timedelta(ktime_t t) 1925 { 1926 return ktime_sub(ktime_get_real(), t); 1927 } 1928 1929 static inline ktime_t net_invalid_timestamp(void) 1930 { 1931 return ktime_set(0, 0); 1932 } 1933 1934 /** 1935 * skb_tstamp_tx - queue clone of skb with send time stamps 1936 * @orig_skb: the original outgoing packet 1937 * @hwtstamps: hardware time stamps, may be NULL if not available 1938 * 1939 * If the skb has a socket associated, then this function clones the 1940 * skb (thus sharing the actual data and optional structures), stores 1941 * the optional hardware time stamping information (if non NULL) or 1942 * generates a software time stamp (otherwise), then queues the clone 1943 * to the error queue of the socket. Errors are silently ignored. 1944 */ 1945 extern void skb_tstamp_tx(struct sk_buff *orig_skb, 1946 struct skb_shared_hwtstamps *hwtstamps); 1947 1948 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 1949 extern __sum16 __skb_checksum_complete(struct sk_buff *skb); 1950 1951 static inline int skb_csum_unnecessary(const struct sk_buff *skb) 1952 { 1953 return skb->ip_summed & CHECKSUM_UNNECESSARY; 1954 } 1955 1956 /** 1957 * skb_checksum_complete - Calculate checksum of an entire packet 1958 * @skb: packet to process 1959 * 1960 * This function calculates the checksum over the entire packet plus 1961 * the value of skb->csum. The latter can be used to supply the 1962 * checksum of a pseudo header as used by TCP/UDP. It returns the 1963 * checksum. 1964 * 1965 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 1966 * this function can be used to verify that checksum on received 1967 * packets. In that case the function should return zero if the 1968 * checksum is correct. In particular, this function will return zero 1969 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 1970 * hardware has already verified the correctness of the checksum. 1971 */ 1972 static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 1973 { 1974 return skb_csum_unnecessary(skb) ? 1975 0 : __skb_checksum_complete(skb); 1976 } 1977 1978 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 1979 extern void nf_conntrack_destroy(struct nf_conntrack *nfct); 1980 static inline void nf_conntrack_put(struct nf_conntrack *nfct) 1981 { 1982 if (nfct && atomic_dec_and_test(&nfct->use)) 1983 nf_conntrack_destroy(nfct); 1984 } 1985 static inline void nf_conntrack_get(struct nf_conntrack *nfct) 1986 { 1987 if (nfct) 1988 atomic_inc(&nfct->use); 1989 } 1990 static inline void nf_conntrack_get_reasm(struct sk_buff *skb) 1991 { 1992 if (skb) 1993 atomic_inc(&skb->users); 1994 } 1995 static inline void nf_conntrack_put_reasm(struct sk_buff *skb) 1996 { 1997 if (skb) 1998 kfree_skb(skb); 1999 } 2000 #endif 2001 #ifdef CONFIG_BRIDGE_NETFILTER 2002 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge) 2003 { 2004 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use)) 2005 kfree(nf_bridge); 2006 } 2007 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge) 2008 { 2009 if (nf_bridge) 2010 atomic_inc(&nf_bridge->use); 2011 } 2012 #endif /* CONFIG_BRIDGE_NETFILTER */ 2013 static inline void nf_reset(struct sk_buff *skb) 2014 { 2015 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2016 nf_conntrack_put(skb->nfct); 2017 skb->nfct = NULL; 2018 nf_conntrack_put_reasm(skb->nfct_reasm); 2019 skb->nfct_reasm = NULL; 2020 #endif 2021 #ifdef CONFIG_BRIDGE_NETFILTER 2022 nf_bridge_put(skb->nf_bridge); 2023 skb->nf_bridge = NULL; 2024 #endif 2025 } 2026 2027 /* Note: This doesn't put any conntrack and bridge info in dst. */ 2028 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src) 2029 { 2030 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2031 dst->nfct = src->nfct; 2032 nf_conntrack_get(src->nfct); 2033 dst->nfctinfo = src->nfctinfo; 2034 dst->nfct_reasm = src->nfct_reasm; 2035 nf_conntrack_get_reasm(src->nfct_reasm); 2036 #endif 2037 #ifdef CONFIG_BRIDGE_NETFILTER 2038 dst->nf_bridge = src->nf_bridge; 2039 nf_bridge_get(src->nf_bridge); 2040 #endif 2041 } 2042 2043 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 2044 { 2045 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2046 nf_conntrack_put(dst->nfct); 2047 nf_conntrack_put_reasm(dst->nfct_reasm); 2048 #endif 2049 #ifdef CONFIG_BRIDGE_NETFILTER 2050 nf_bridge_put(dst->nf_bridge); 2051 #endif 2052 __nf_copy(dst, src); 2053 } 2054 2055 #ifdef CONFIG_NETWORK_SECMARK 2056 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 2057 { 2058 to->secmark = from->secmark; 2059 } 2060 2061 static inline void skb_init_secmark(struct sk_buff *skb) 2062 { 2063 skb->secmark = 0; 2064 } 2065 #else 2066 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 2067 { } 2068 2069 static inline void skb_init_secmark(struct sk_buff *skb) 2070 { } 2071 #endif 2072 2073 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 2074 { 2075 skb->queue_mapping = queue_mapping; 2076 } 2077 2078 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 2079 { 2080 return skb->queue_mapping; 2081 } 2082 2083 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 2084 { 2085 to->queue_mapping = from->queue_mapping; 2086 } 2087 2088 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 2089 { 2090 skb->queue_mapping = rx_queue + 1; 2091 } 2092 2093 static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 2094 { 2095 return skb->queue_mapping - 1; 2096 } 2097 2098 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 2099 { 2100 return (skb->queue_mapping != 0); 2101 } 2102 2103 extern u16 skb_tx_hash(const struct net_device *dev, 2104 const struct sk_buff *skb); 2105 2106 #ifdef CONFIG_XFRM 2107 static inline struct sec_path *skb_sec_path(struct sk_buff *skb) 2108 { 2109 return skb->sp; 2110 } 2111 #else 2112 static inline struct sec_path *skb_sec_path(struct sk_buff *skb) 2113 { 2114 return NULL; 2115 } 2116 #endif 2117 2118 static inline int skb_is_gso(const struct sk_buff *skb) 2119 { 2120 return skb_shinfo(skb)->gso_size; 2121 } 2122 2123 static inline int skb_is_gso_v6(const struct sk_buff *skb) 2124 { 2125 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 2126 } 2127 2128 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb); 2129 2130 static inline bool skb_warn_if_lro(const struct sk_buff *skb) 2131 { 2132 /* LRO sets gso_size but not gso_type, whereas if GSO is really 2133 * wanted then gso_type will be set. */ 2134 struct skb_shared_info *shinfo = skb_shinfo(skb); 2135 if (shinfo->gso_size != 0 && unlikely(shinfo->gso_type == 0)) { 2136 __skb_warn_lro_forwarding(skb); 2137 return true; 2138 } 2139 return false; 2140 } 2141 2142 static inline void skb_forward_csum(struct sk_buff *skb) 2143 { 2144 /* Unfortunately we don't support this one. Any brave souls? */ 2145 if (skb->ip_summed == CHECKSUM_COMPLETE) 2146 skb->ip_summed = CHECKSUM_NONE; 2147 } 2148 2149 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 2150 #endif /* __KERNEL__ */ 2151 #endif /* _LINUX_SKBUFF_H */ 2152