1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * Definitions for the 'struct sk_buff' memory handlers. 4 * 5 * Authors: 6 * Alan Cox, <[email protected]> 7 * Florian La Roche, <[email protected]> 8 */ 9 10 #ifndef _LINUX_SKBUFF_H 11 #define _LINUX_SKBUFF_H 12 13 #include <linux/kernel.h> 14 #include <linux/compiler.h> 15 #include <linux/time.h> 16 #include <linux/bug.h> 17 #include <linux/bvec.h> 18 #include <linux/cache.h> 19 #include <linux/rbtree.h> 20 #include <linux/socket.h> 21 #include <linux/refcount.h> 22 23 #include <linux/atomic.h> 24 #include <asm/types.h> 25 #include <linux/spinlock.h> 26 #include <net/checksum.h> 27 #include <linux/rcupdate.h> 28 #include <linux/dma-mapping.h> 29 #include <linux/netdev_features.h> 30 #include <net/flow_dissector.h> 31 #include <linux/in6.h> 32 #include <linux/if_packet.h> 33 #include <linux/llist.h> 34 #include <net/flow.h> 35 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 36 #include <linux/netfilter/nf_conntrack_common.h> 37 #endif 38 #include <net/net_debug.h> 39 #include <net/dropreason-core.h> 40 #include <net/netmem.h> 41 42 /** 43 * DOC: skb checksums 44 * 45 * The interface for checksum offload between the stack and networking drivers 46 * is as follows... 47 * 48 * IP checksum related features 49 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 50 * 51 * Drivers advertise checksum offload capabilities in the features of a device. 52 * From the stack's point of view these are capabilities offered by the driver. 53 * A driver typically only advertises features that it is capable of offloading 54 * to its device. 55 * 56 * .. flat-table:: Checksum related device features 57 * :widths: 1 10 58 * 59 * * - %NETIF_F_HW_CSUM 60 * - The driver (or its device) is able to compute one 61 * IP (one's complement) checksum for any combination 62 * of protocols or protocol layering. The checksum is 63 * computed and set in a packet per the CHECKSUM_PARTIAL 64 * interface (see below). 65 * 66 * * - %NETIF_F_IP_CSUM 67 * - Driver (device) is only able to checksum plain 68 * TCP or UDP packets over IPv4. These are specifically 69 * unencapsulated packets of the form IPv4|TCP or 70 * IPv4|UDP where the Protocol field in the IPv4 header 71 * is TCP or UDP. The IPv4 header may contain IP options. 72 * This feature cannot be set in features for a device 73 * with NETIF_F_HW_CSUM also set. This feature is being 74 * DEPRECATED (see below). 75 * 76 * * - %NETIF_F_IPV6_CSUM 77 * - Driver (device) is only able to checksum plain 78 * TCP or UDP packets over IPv6. These are specifically 79 * unencapsulated packets of the form IPv6|TCP or 80 * IPv6|UDP where the Next Header field in the IPv6 81 * header is either TCP or UDP. IPv6 extension headers 82 * are not supported with this feature. This feature 83 * cannot be set in features for a device with 84 * NETIF_F_HW_CSUM also set. This feature is being 85 * DEPRECATED (see below). 86 * 87 * * - %NETIF_F_RXCSUM 88 * - Driver (device) performs receive checksum offload. 89 * This flag is only used to disable the RX checksum 90 * feature for a device. The stack will accept receive 91 * checksum indication in packets received on a device 92 * regardless of whether NETIF_F_RXCSUM is set. 93 * 94 * Checksumming of received packets by device 95 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 96 * 97 * Indication of checksum verification is set in &sk_buff.ip_summed. 98 * Possible values are: 99 * 100 * - %CHECKSUM_NONE 101 * 102 * Device did not checksum this packet e.g. due to lack of capabilities. 103 * The packet contains full (though not verified) checksum in packet but 104 * not in skb->csum. Thus, skb->csum is undefined in this case. 105 * 106 * - %CHECKSUM_UNNECESSARY 107 * 108 * The hardware you're dealing with doesn't calculate the full checksum 109 * (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums 110 * for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY 111 * if their checksums are okay. &sk_buff.csum is still undefined in this case 112 * though. A driver or device must never modify the checksum field in the 113 * packet even if checksum is verified. 114 * 115 * %CHECKSUM_UNNECESSARY is applicable to following protocols: 116 * 117 * - TCP: IPv6 and IPv4. 118 * - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a 119 * zero UDP checksum for either IPv4 or IPv6, the networking stack 120 * may perform further validation in this case. 121 * - GRE: only if the checksum is present in the header. 122 * - SCTP: indicates the CRC in SCTP header has been validated. 123 * - FCOE: indicates the CRC in FC frame has been validated. 124 * 125 * &sk_buff.csum_level indicates the number of consecutive checksums found in 126 * the packet minus one that have been verified as %CHECKSUM_UNNECESSARY. 127 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet 128 * and a device is able to verify the checksums for UDP (possibly zero), 129 * GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to 130 * two. If the device were only able to verify the UDP checksum and not 131 * GRE, either because it doesn't support GRE checksum or because GRE 132 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is 133 * not considered in this case). 134 * 135 * - %CHECKSUM_COMPLETE 136 * 137 * This is the most generic way. The device supplied checksum of the _whole_ 138 * packet as seen by netif_rx() and fills in &sk_buff.csum. This means the 139 * hardware doesn't need to parse L3/L4 headers to implement this. 140 * 141 * Notes: 142 * 143 * - Even if device supports only some protocols, but is able to produce 144 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY. 145 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols. 146 * 147 * - %CHECKSUM_PARTIAL 148 * 149 * A checksum is set up to be offloaded to a device as described in the 150 * output description for CHECKSUM_PARTIAL. This may occur on a packet 151 * received directly from another Linux OS, e.g., a virtualized Linux kernel 152 * on the same host, or it may be set in the input path in GRO or remote 153 * checksum offload. For the purposes of checksum verification, the checksum 154 * referred to by skb->csum_start + skb->csum_offset and any preceding 155 * checksums in the packet are considered verified. Any checksums in the 156 * packet that are after the checksum being offloaded are not considered to 157 * be verified. 158 * 159 * Checksumming on transmit for non-GSO 160 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 161 * 162 * The stack requests checksum offload in the &sk_buff.ip_summed for a packet. 163 * Values are: 164 * 165 * - %CHECKSUM_PARTIAL 166 * 167 * The driver is required to checksum the packet as seen by hard_start_xmit() 168 * from &sk_buff.csum_start up to the end, and to record/write the checksum at 169 * offset &sk_buff.csum_start + &sk_buff.csum_offset. 170 * A driver may verify that the 171 * csum_start and csum_offset values are valid values given the length and 172 * offset of the packet, but it should not attempt to validate that the 173 * checksum refers to a legitimate transport layer checksum -- it is the 174 * purview of the stack to validate that csum_start and csum_offset are set 175 * correctly. 176 * 177 * When the stack requests checksum offload for a packet, the driver MUST 178 * ensure that the checksum is set correctly. A driver can either offload the 179 * checksum calculation to the device, or call skb_checksum_help (in the case 180 * that the device does not support offload for a particular checksum). 181 * 182 * %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of 183 * %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate 184 * checksum offload capability. 185 * skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based 186 * on network device checksumming capabilities: if a packet does not match 187 * them, skb_checksum_help() or skb_crc32c_help() (depending on the value of 188 * &sk_buff.csum_not_inet, see :ref:`crc`) 189 * is called to resolve the checksum. 190 * 191 * - %CHECKSUM_NONE 192 * 193 * The skb was already checksummed by the protocol, or a checksum is not 194 * required. 195 * 196 * - %CHECKSUM_UNNECESSARY 197 * 198 * This has the same meaning as CHECKSUM_NONE for checksum offload on 199 * output. 200 * 201 * - %CHECKSUM_COMPLETE 202 * 203 * Not used in checksum output. If a driver observes a packet with this value 204 * set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set. 205 * 206 * .. _crc: 207 * 208 * Non-IP checksum (CRC) offloads 209 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 210 * 211 * .. flat-table:: 212 * :widths: 1 10 213 * 214 * * - %NETIF_F_SCTP_CRC 215 * - This feature indicates that a device is capable of 216 * offloading the SCTP CRC in a packet. To perform this offload the stack 217 * will set csum_start and csum_offset accordingly, set ip_summed to 218 * %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication 219 * in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c. 220 * A driver that supports both IP checksum offload and SCTP CRC32c offload 221 * must verify which offload is configured for a packet by testing the 222 * value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to 223 * resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1. 224 * 225 * * - %NETIF_F_FCOE_CRC 226 * - This feature indicates that a device is capable of offloading the FCOE 227 * CRC in a packet. To perform this offload the stack will set ip_summed 228 * to %CHECKSUM_PARTIAL and set csum_start and csum_offset 229 * accordingly. Note that there is no indication in the skbuff that the 230 * %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports 231 * both IP checksum offload and FCOE CRC offload must verify which offload 232 * is configured for a packet, presumably by inspecting packet headers. 233 * 234 * Checksumming on output with GSO 235 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 236 * 237 * In the case of a GSO packet (skb_is_gso() is true), checksum offload 238 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the 239 * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as 240 * part of the GSO operation is implied. If a checksum is being offloaded 241 * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and 242 * csum_offset are set to refer to the outermost checksum being offloaded 243 * (two offloaded checksums are possible with UDP encapsulation). 244 */ 245 246 /* Don't change this without changing skb_csum_unnecessary! */ 247 #define CHECKSUM_NONE 0 248 #define CHECKSUM_UNNECESSARY 1 249 #define CHECKSUM_COMPLETE 2 250 #define CHECKSUM_PARTIAL 3 251 252 /* Maximum value in skb->csum_level */ 253 #define SKB_MAX_CSUM_LEVEL 3 254 255 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES) 256 #define SKB_WITH_OVERHEAD(X) \ 257 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 258 259 /* For X bytes available in skb->head, what is the minimal 260 * allocation needed, knowing struct skb_shared_info needs 261 * to be aligned. 262 */ 263 #define SKB_HEAD_ALIGN(X) (SKB_DATA_ALIGN(X) + \ 264 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 265 266 #define SKB_MAX_ORDER(X, ORDER) \ 267 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 268 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 269 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 270 271 /* return minimum truesize of one skb containing X bytes of data */ 272 #define SKB_TRUESIZE(X) ((X) + \ 273 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ 274 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 275 276 struct ahash_request; 277 struct net_device; 278 struct scatterlist; 279 struct pipe_inode_info; 280 struct iov_iter; 281 struct napi_struct; 282 struct bpf_prog; 283 union bpf_attr; 284 struct skb_ext; 285 struct ts_config; 286 287 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 288 struct nf_bridge_info { 289 enum { 290 BRNF_PROTO_UNCHANGED, 291 BRNF_PROTO_8021Q, 292 BRNF_PROTO_PPPOE 293 } orig_proto:8; 294 u8 pkt_otherhost:1; 295 u8 in_prerouting:1; 296 u8 bridged_dnat:1; 297 u8 sabotage_in_done:1; 298 __u16 frag_max_size; 299 int physinif; 300 301 /* always valid & non-NULL from FORWARD on, for physdev match */ 302 struct net_device *physoutdev; 303 union { 304 /* prerouting: detect dnat in orig/reply direction */ 305 __be32 ipv4_daddr; 306 struct in6_addr ipv6_daddr; 307 308 /* after prerouting + nat detected: store original source 309 * mac since neigh resolution overwrites it, only used while 310 * skb is out in neigh layer. 311 */ 312 char neigh_header[8]; 313 }; 314 }; 315 #endif 316 317 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 318 /* Chain in tc_skb_ext will be used to share the tc chain with 319 * ovs recirc_id. It will be set to the current chain by tc 320 * and read by ovs to recirc_id. 321 */ 322 struct tc_skb_ext { 323 union { 324 u64 act_miss_cookie; 325 __u32 chain; 326 }; 327 __u16 mru; 328 __u16 zone; 329 u8 post_ct:1; 330 u8 post_ct_snat:1; 331 u8 post_ct_dnat:1; 332 u8 act_miss:1; /* Set if act_miss_cookie is used */ 333 u8 l2_miss:1; /* Set by bridge upon FDB or MDB miss */ 334 }; 335 #endif 336 337 struct sk_buff_head { 338 /* These two members must be first to match sk_buff. */ 339 struct_group_tagged(sk_buff_list, list, 340 struct sk_buff *next; 341 struct sk_buff *prev; 342 ); 343 344 __u32 qlen; 345 spinlock_t lock; 346 }; 347 348 struct sk_buff; 349 350 #ifndef CONFIG_MAX_SKB_FRAGS 351 # define CONFIG_MAX_SKB_FRAGS 17 352 #endif 353 354 #define MAX_SKB_FRAGS CONFIG_MAX_SKB_FRAGS 355 356 extern int sysctl_max_skb_frags; 357 358 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to 359 * segment using its current segmentation instead. 360 */ 361 #define GSO_BY_FRAGS 0xFFFF 362 363 typedef struct skb_frag { 364 netmem_ref netmem; 365 unsigned int len; 366 unsigned int offset; 367 } skb_frag_t; 368 369 /** 370 * skb_frag_size() - Returns the size of a skb fragment 371 * @frag: skb fragment 372 */ 373 static inline unsigned int skb_frag_size(const skb_frag_t *frag) 374 { 375 return frag->len; 376 } 377 378 /** 379 * skb_frag_size_set() - Sets the size of a skb fragment 380 * @frag: skb fragment 381 * @size: size of fragment 382 */ 383 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) 384 { 385 frag->len = size; 386 } 387 388 /** 389 * skb_frag_size_add() - Increments the size of a skb fragment by @delta 390 * @frag: skb fragment 391 * @delta: value to add 392 */ 393 static inline void skb_frag_size_add(skb_frag_t *frag, int delta) 394 { 395 frag->len += delta; 396 } 397 398 /** 399 * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta 400 * @frag: skb fragment 401 * @delta: value to subtract 402 */ 403 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) 404 { 405 frag->len -= delta; 406 } 407 408 /** 409 * skb_frag_must_loop - Test if %p is a high memory page 410 * @p: fragment's page 411 */ 412 static inline bool skb_frag_must_loop(struct page *p) 413 { 414 #if defined(CONFIG_HIGHMEM) 415 if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p)) 416 return true; 417 #endif 418 return false; 419 } 420 421 /** 422 * skb_frag_foreach_page - loop over pages in a fragment 423 * 424 * @f: skb frag to operate on 425 * @f_off: offset from start of f->netmem 426 * @f_len: length from f_off to loop over 427 * @p: (temp var) current page 428 * @p_off: (temp var) offset from start of current page, 429 * non-zero only on first page. 430 * @p_len: (temp var) length in current page, 431 * < PAGE_SIZE only on first and last page. 432 * @copied: (temp var) length so far, excluding current p_len. 433 * 434 * A fragment can hold a compound page, in which case per-page 435 * operations, notably kmap_atomic, must be called for each 436 * regular page. 437 */ 438 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \ 439 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \ 440 p_off = (f_off) & (PAGE_SIZE - 1), \ 441 p_len = skb_frag_must_loop(p) ? \ 442 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \ 443 copied = 0; \ 444 copied < f_len; \ 445 copied += p_len, p++, p_off = 0, \ 446 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \ 447 448 /** 449 * struct skb_shared_hwtstamps - hardware time stamps 450 * @hwtstamp: hardware time stamp transformed into duration 451 * since arbitrary point in time 452 * @netdev_data: address/cookie of network device driver used as 453 * reference to actual hardware time stamp 454 * 455 * Software time stamps generated by ktime_get_real() are stored in 456 * skb->tstamp. 457 * 458 * hwtstamps can only be compared against other hwtstamps from 459 * the same device. 460 * 461 * This structure is attached to packets as part of the 462 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 463 */ 464 struct skb_shared_hwtstamps { 465 union { 466 ktime_t hwtstamp; 467 void *netdev_data; 468 }; 469 }; 470 471 /* Definitions for tx_flags in struct skb_shared_info */ 472 enum { 473 /* generate hardware time stamp */ 474 SKBTX_HW_TSTAMP = 1 << 0, 475 476 /* generate software time stamp when queueing packet to NIC */ 477 SKBTX_SW_TSTAMP = 1 << 1, 478 479 /* device driver is going to provide hardware time stamp */ 480 SKBTX_IN_PROGRESS = 1 << 2, 481 482 /* generate hardware time stamp based on cycles if supported */ 483 SKBTX_HW_TSTAMP_USE_CYCLES = 1 << 3, 484 485 /* generate wifi status information (where possible) */ 486 SKBTX_WIFI_STATUS = 1 << 4, 487 488 /* determine hardware time stamp based on time or cycles */ 489 SKBTX_HW_TSTAMP_NETDEV = 1 << 5, 490 491 /* generate software time stamp when entering packet scheduling */ 492 SKBTX_SCHED_TSTAMP = 1 << 6, 493 }; 494 495 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \ 496 SKBTX_SCHED_TSTAMP) 497 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | \ 498 SKBTX_HW_TSTAMP_USE_CYCLES | \ 499 SKBTX_ANY_SW_TSTAMP) 500 501 /* Definitions for flags in struct skb_shared_info */ 502 enum { 503 /* use zcopy routines */ 504 SKBFL_ZEROCOPY_ENABLE = BIT(0), 505 506 /* This indicates at least one fragment might be overwritten 507 * (as in vmsplice(), sendfile() ...) 508 * If we need to compute a TX checksum, we'll need to copy 509 * all frags to avoid possible bad checksum 510 */ 511 SKBFL_SHARED_FRAG = BIT(1), 512 513 /* segment contains only zerocopy data and should not be 514 * charged to the kernel memory. 515 */ 516 SKBFL_PURE_ZEROCOPY = BIT(2), 517 518 SKBFL_DONT_ORPHAN = BIT(3), 519 520 /* page references are managed by the ubuf_info, so it's safe to 521 * use frags only up until ubuf_info is released 522 */ 523 SKBFL_MANAGED_FRAG_REFS = BIT(4), 524 }; 525 526 #define SKBFL_ZEROCOPY_FRAG (SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG) 527 #define SKBFL_ALL_ZEROCOPY (SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY | \ 528 SKBFL_DONT_ORPHAN | SKBFL_MANAGED_FRAG_REFS) 529 530 /* 531 * The callback notifies userspace to release buffers when skb DMA is done in 532 * lower device, the skb last reference should be 0 when calling this. 533 * The zerocopy_success argument is true if zero copy transmit occurred, 534 * false on data copy or out of memory error caused by data copy attempt. 535 * The ctx field is used to track device context. 536 * The desc field is used to track userspace buffer index. 537 */ 538 struct ubuf_info { 539 void (*callback)(struct sk_buff *, struct ubuf_info *, 540 bool zerocopy_success); 541 refcount_t refcnt; 542 u8 flags; 543 }; 544 545 struct ubuf_info_msgzc { 546 struct ubuf_info ubuf; 547 548 union { 549 struct { 550 unsigned long desc; 551 void *ctx; 552 }; 553 struct { 554 u32 id; 555 u16 len; 556 u16 zerocopy:1; 557 u32 bytelen; 558 }; 559 }; 560 561 struct mmpin { 562 struct user_struct *user; 563 unsigned int num_pg; 564 } mmp; 565 }; 566 567 #define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg)) 568 #define uarg_to_msgzc(ubuf_ptr) container_of((ubuf_ptr), struct ubuf_info_msgzc, \ 569 ubuf) 570 571 int mm_account_pinned_pages(struct mmpin *mmp, size_t size); 572 void mm_unaccount_pinned_pages(struct mmpin *mmp); 573 574 /* Preserve some data across TX submission and completion. 575 * 576 * Note, this state is stored in the driver. Extending the layout 577 * might need some special care. 578 */ 579 struct xsk_tx_metadata_compl { 580 __u64 *tx_timestamp; 581 }; 582 583 /* This data is invariant across clones and lives at 584 * the end of the header data, ie. at skb->end. 585 */ 586 struct skb_shared_info { 587 __u8 flags; 588 __u8 meta_len; 589 __u8 nr_frags; 590 __u8 tx_flags; 591 unsigned short gso_size; 592 /* Warning: this field is not always filled in (UFO)! */ 593 unsigned short gso_segs; 594 struct sk_buff *frag_list; 595 union { 596 struct skb_shared_hwtstamps hwtstamps; 597 struct xsk_tx_metadata_compl xsk_meta; 598 }; 599 unsigned int gso_type; 600 u32 tskey; 601 602 /* 603 * Warning : all fields before dataref are cleared in __alloc_skb() 604 */ 605 atomic_t dataref; 606 unsigned int xdp_frags_size; 607 608 /* Intermediate layers must ensure that destructor_arg 609 * remains valid until skb destructor */ 610 void * destructor_arg; 611 612 /* must be last field, see pskb_expand_head() */ 613 skb_frag_t frags[MAX_SKB_FRAGS]; 614 }; 615 616 /** 617 * DOC: dataref and headerless skbs 618 * 619 * Transport layers send out clones of payload skbs they hold for 620 * retransmissions. To allow lower layers of the stack to prepend their headers 621 * we split &skb_shared_info.dataref into two halves. 622 * The lower 16 bits count the overall number of references. 623 * The higher 16 bits indicate how many of the references are payload-only. 624 * skb_header_cloned() checks if skb is allowed to add / write the headers. 625 * 626 * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr 627 * (via __skb_header_release()). Any clone created from marked skb will get 628 * &sk_buff.hdr_len populated with the available headroom. 629 * If there's the only clone in existence it's able to modify the headroom 630 * at will. The sequence of calls inside the transport layer is:: 631 * 632 * <alloc skb> 633 * skb_reserve() 634 * __skb_header_release() 635 * skb_clone() 636 * // send the clone down the stack 637 * 638 * This is not a very generic construct and it depends on the transport layers 639 * doing the right thing. In practice there's usually only one payload-only skb. 640 * Having multiple payload-only skbs with different lengths of hdr_len is not 641 * possible. The payload-only skbs should never leave their owner. 642 */ 643 #define SKB_DATAREF_SHIFT 16 644 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 645 646 647 enum { 648 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */ 649 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */ 650 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */ 651 }; 652 653 enum { 654 SKB_GSO_TCPV4 = 1 << 0, 655 656 /* This indicates the skb is from an untrusted source. */ 657 SKB_GSO_DODGY = 1 << 1, 658 659 /* This indicates the tcp segment has CWR set. */ 660 SKB_GSO_TCP_ECN = 1 << 2, 661 662 SKB_GSO_TCP_FIXEDID = 1 << 3, 663 664 SKB_GSO_TCPV6 = 1 << 4, 665 666 SKB_GSO_FCOE = 1 << 5, 667 668 SKB_GSO_GRE = 1 << 6, 669 670 SKB_GSO_GRE_CSUM = 1 << 7, 671 672 SKB_GSO_IPXIP4 = 1 << 8, 673 674 SKB_GSO_IPXIP6 = 1 << 9, 675 676 SKB_GSO_UDP_TUNNEL = 1 << 10, 677 678 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11, 679 680 SKB_GSO_PARTIAL = 1 << 12, 681 682 SKB_GSO_TUNNEL_REMCSUM = 1 << 13, 683 684 SKB_GSO_SCTP = 1 << 14, 685 686 SKB_GSO_ESP = 1 << 15, 687 688 SKB_GSO_UDP = 1 << 16, 689 690 SKB_GSO_UDP_L4 = 1 << 17, 691 692 SKB_GSO_FRAGLIST = 1 << 18, 693 }; 694 695 #if BITS_PER_LONG > 32 696 #define NET_SKBUFF_DATA_USES_OFFSET 1 697 #endif 698 699 #ifdef NET_SKBUFF_DATA_USES_OFFSET 700 typedef unsigned int sk_buff_data_t; 701 #else 702 typedef unsigned char *sk_buff_data_t; 703 #endif 704 705 /** 706 * DOC: Basic sk_buff geometry 707 * 708 * struct sk_buff itself is a metadata structure and does not hold any packet 709 * data. All the data is held in associated buffers. 710 * 711 * &sk_buff.head points to the main "head" buffer. The head buffer is divided 712 * into two parts: 713 * 714 * - data buffer, containing headers and sometimes payload; 715 * this is the part of the skb operated on by the common helpers 716 * such as skb_put() or skb_pull(); 717 * - shared info (struct skb_shared_info) which holds an array of pointers 718 * to read-only data in the (page, offset, length) format. 719 * 720 * Optionally &skb_shared_info.frag_list may point to another skb. 721 * 722 * Basic diagram may look like this:: 723 * 724 * --------------- 725 * | sk_buff | 726 * --------------- 727 * ,--------------------------- + head 728 * / ,----------------- + data 729 * / / ,----------- + tail 730 * | | | , + end 731 * | | | | 732 * v v v v 733 * ----------------------------------------------- 734 * | headroom | data | tailroom | skb_shared_info | 735 * ----------------------------------------------- 736 * + [page frag] 737 * + [page frag] 738 * + [page frag] 739 * + [page frag] --------- 740 * + frag_list --> | sk_buff | 741 * --------- 742 * 743 */ 744 745 /** 746 * struct sk_buff - socket buffer 747 * @next: Next buffer in list 748 * @prev: Previous buffer in list 749 * @tstamp: Time we arrived/left 750 * @skb_mstamp_ns: (aka @tstamp) earliest departure time; start point 751 * for retransmit timer 752 * @rbnode: RB tree node, alternative to next/prev for netem/tcp 753 * @list: queue head 754 * @ll_node: anchor in an llist (eg socket defer_list) 755 * @sk: Socket we are owned by 756 * @dev: Device we arrived on/are leaving by 757 * @dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL 758 * @cb: Control buffer. Free for use by every layer. Put private vars here 759 * @_skb_refdst: destination entry (with norefcount bit) 760 * @len: Length of actual data 761 * @data_len: Data length 762 * @mac_len: Length of link layer header 763 * @hdr_len: writable header length of cloned skb 764 * @csum: Checksum (must include start/offset pair) 765 * @csum_start: Offset from skb->head where checksumming should start 766 * @csum_offset: Offset from csum_start where checksum should be stored 767 * @priority: Packet queueing priority 768 * @ignore_df: allow local fragmentation 769 * @cloned: Head may be cloned (check refcnt to be sure) 770 * @ip_summed: Driver fed us an IP checksum 771 * @nohdr: Payload reference only, must not modify header 772 * @pkt_type: Packet class 773 * @fclone: skbuff clone status 774 * @ipvs_property: skbuff is owned by ipvs 775 * @inner_protocol_type: whether the inner protocol is 776 * ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO 777 * @remcsum_offload: remote checksum offload is enabled 778 * @offload_fwd_mark: Packet was L2-forwarded in hardware 779 * @offload_l3_fwd_mark: Packet was L3-forwarded in hardware 780 * @tc_skip_classify: do not classify packet. set by IFB device 781 * @tc_at_ingress: used within tc_classify to distinguish in/egress 782 * @redirected: packet was redirected by packet classifier 783 * @from_ingress: packet was redirected from the ingress path 784 * @nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h 785 * @peeked: this packet has been seen already, so stats have been 786 * done for it, don't do them again 787 * @nf_trace: netfilter packet trace flag 788 * @protocol: Packet protocol from driver 789 * @destructor: Destruct function 790 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue) 791 * @_sk_redir: socket redirection information for skmsg 792 * @_nfct: Associated connection, if any (with nfctinfo bits) 793 * @skb_iif: ifindex of device we arrived on 794 * @tc_index: Traffic control index 795 * @hash: the packet hash 796 * @queue_mapping: Queue mapping for multiqueue devices 797 * @head_frag: skb was allocated from page fragments, 798 * not allocated by kmalloc() or vmalloc(). 799 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves 800 * @pp_recycle: mark the packet for recycling instead of freeing (implies 801 * page_pool support on driver) 802 * @active_extensions: active extensions (skb_ext_id types) 803 * @ndisc_nodetype: router type (from link layer) 804 * @ooo_okay: allow the mapping of a socket to a queue to be changed 805 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport 806 * ports. 807 * @sw_hash: indicates hash was computed in software stack 808 * @wifi_acked_valid: wifi_acked was set 809 * @wifi_acked: whether frame was acked on wifi or not 810 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS 811 * @encapsulation: indicates the inner headers in the skbuff are valid 812 * @encap_hdr_csum: software checksum is needed 813 * @csum_valid: checksum is already valid 814 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL 815 * @csum_complete_sw: checksum was completed by software 816 * @csum_level: indicates the number of consecutive checksums found in 817 * the packet minus one that have been verified as 818 * CHECKSUM_UNNECESSARY (max 3) 819 * @dst_pending_confirm: need to confirm neighbour 820 * @decrypted: Decrypted SKB 821 * @slow_gro: state present at GRO time, slower prepare step required 822 * @mono_delivery_time: When set, skb->tstamp has the 823 * delivery_time in mono clock base (i.e. EDT). Otherwise, the 824 * skb->tstamp has the (rcv) timestamp at ingress and 825 * delivery_time at egress. 826 * @napi_id: id of the NAPI struct this skb came from 827 * @sender_cpu: (aka @napi_id) source CPU in XPS 828 * @alloc_cpu: CPU which did the skb allocation. 829 * @secmark: security marking 830 * @mark: Generic packet mark 831 * @reserved_tailroom: (aka @mark) number of bytes of free space available 832 * at the tail of an sk_buff 833 * @vlan_all: vlan fields (proto & tci) 834 * @vlan_proto: vlan encapsulation protocol 835 * @vlan_tci: vlan tag control information 836 * @inner_protocol: Protocol (encapsulation) 837 * @inner_ipproto: (aka @inner_protocol) stores ipproto when 838 * skb->inner_protocol_type == ENCAP_TYPE_IPPROTO; 839 * @inner_transport_header: Inner transport layer header (encapsulation) 840 * @inner_network_header: Network layer header (encapsulation) 841 * @inner_mac_header: Link layer header (encapsulation) 842 * @transport_header: Transport layer header 843 * @network_header: Network layer header 844 * @mac_header: Link layer header 845 * @kcov_handle: KCOV remote handle for remote coverage collection 846 * @tail: Tail pointer 847 * @end: End pointer 848 * @head: Head of buffer 849 * @data: Data head pointer 850 * @truesize: Buffer size 851 * @users: User count - see {datagram,tcp}.c 852 * @extensions: allocated extensions, valid if active_extensions is nonzero 853 */ 854 855 struct sk_buff { 856 union { 857 struct { 858 /* These two members must be first to match sk_buff_head. */ 859 struct sk_buff *next; 860 struct sk_buff *prev; 861 862 union { 863 struct net_device *dev; 864 /* Some protocols might use this space to store information, 865 * while device pointer would be NULL. 866 * UDP receive path is one user. 867 */ 868 unsigned long dev_scratch; 869 }; 870 }; 871 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */ 872 struct list_head list; 873 struct llist_node ll_node; 874 }; 875 876 struct sock *sk; 877 878 union { 879 ktime_t tstamp; 880 u64 skb_mstamp_ns; /* earliest departure time */ 881 }; 882 /* 883 * This is the control buffer. It is free to use for every 884 * layer. Please put your private variables there. If you 885 * want to keep them across layers you have to do a skb_clone() 886 * first. This is owned by whoever has the skb queued ATM. 887 */ 888 char cb[48] __aligned(8); 889 890 union { 891 struct { 892 unsigned long _skb_refdst; 893 void (*destructor)(struct sk_buff *skb); 894 }; 895 struct list_head tcp_tsorted_anchor; 896 #ifdef CONFIG_NET_SOCK_MSG 897 unsigned long _sk_redir; 898 #endif 899 }; 900 901 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 902 unsigned long _nfct; 903 #endif 904 unsigned int len, 905 data_len; 906 __u16 mac_len, 907 hdr_len; 908 909 /* Following fields are _not_ copied in __copy_skb_header() 910 * Note that queue_mapping is here mostly to fill a hole. 911 */ 912 __u16 queue_mapping; 913 914 /* if you move cloned around you also must adapt those constants */ 915 #ifdef __BIG_ENDIAN_BITFIELD 916 #define CLONED_MASK (1 << 7) 917 #else 918 #define CLONED_MASK 1 919 #endif 920 #define CLONED_OFFSET offsetof(struct sk_buff, __cloned_offset) 921 922 /* private: */ 923 __u8 __cloned_offset[0]; 924 /* public: */ 925 __u8 cloned:1, 926 nohdr:1, 927 fclone:2, 928 peeked:1, 929 head_frag:1, 930 pfmemalloc:1, 931 pp_recycle:1; /* page_pool recycle indicator */ 932 #ifdef CONFIG_SKB_EXTENSIONS 933 __u8 active_extensions; 934 #endif 935 936 /* Fields enclosed in headers group are copied 937 * using a single memcpy() in __copy_skb_header() 938 */ 939 struct_group(headers, 940 941 /* private: */ 942 __u8 __pkt_type_offset[0]; 943 /* public: */ 944 __u8 pkt_type:3; /* see PKT_TYPE_MAX */ 945 __u8 ignore_df:1; 946 __u8 dst_pending_confirm:1; 947 __u8 ip_summed:2; 948 __u8 ooo_okay:1; 949 950 /* private: */ 951 __u8 __mono_tc_offset[0]; 952 /* public: */ 953 __u8 mono_delivery_time:1; /* See SKB_MONO_DELIVERY_TIME_MASK */ 954 #ifdef CONFIG_NET_XGRESS 955 __u8 tc_at_ingress:1; /* See TC_AT_INGRESS_MASK */ 956 __u8 tc_skip_classify:1; 957 #endif 958 __u8 remcsum_offload:1; 959 __u8 csum_complete_sw:1; 960 __u8 csum_level:2; 961 __u8 inner_protocol_type:1; 962 963 __u8 l4_hash:1; 964 __u8 sw_hash:1; 965 #ifdef CONFIG_WIRELESS 966 __u8 wifi_acked_valid:1; 967 __u8 wifi_acked:1; 968 #endif 969 __u8 no_fcs:1; 970 /* Indicates the inner headers are valid in the skbuff. */ 971 __u8 encapsulation:1; 972 __u8 encap_hdr_csum:1; 973 __u8 csum_valid:1; 974 #ifdef CONFIG_IPV6_NDISC_NODETYPE 975 __u8 ndisc_nodetype:2; 976 #endif 977 978 #if IS_ENABLED(CONFIG_IP_VS) 979 __u8 ipvs_property:1; 980 #endif 981 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES) 982 __u8 nf_trace:1; 983 #endif 984 #ifdef CONFIG_NET_SWITCHDEV 985 __u8 offload_fwd_mark:1; 986 __u8 offload_l3_fwd_mark:1; 987 #endif 988 __u8 redirected:1; 989 #ifdef CONFIG_NET_REDIRECT 990 __u8 from_ingress:1; 991 #endif 992 #ifdef CONFIG_NETFILTER_SKIP_EGRESS 993 __u8 nf_skip_egress:1; 994 #endif 995 #ifdef CONFIG_TLS_DEVICE 996 __u8 decrypted:1; 997 #endif 998 __u8 slow_gro:1; 999 #if IS_ENABLED(CONFIG_IP_SCTP) 1000 __u8 csum_not_inet:1; 1001 #endif 1002 1003 #if defined(CONFIG_NET_SCHED) || defined(CONFIG_NET_XGRESS) 1004 __u16 tc_index; /* traffic control index */ 1005 #endif 1006 1007 u16 alloc_cpu; 1008 1009 union { 1010 __wsum csum; 1011 struct { 1012 __u16 csum_start; 1013 __u16 csum_offset; 1014 }; 1015 }; 1016 __u32 priority; 1017 int skb_iif; 1018 __u32 hash; 1019 union { 1020 u32 vlan_all; 1021 struct { 1022 __be16 vlan_proto; 1023 __u16 vlan_tci; 1024 }; 1025 }; 1026 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS) 1027 union { 1028 unsigned int napi_id; 1029 unsigned int sender_cpu; 1030 }; 1031 #endif 1032 #ifdef CONFIG_NETWORK_SECMARK 1033 __u32 secmark; 1034 #endif 1035 1036 union { 1037 __u32 mark; 1038 __u32 reserved_tailroom; 1039 }; 1040 1041 union { 1042 __be16 inner_protocol; 1043 __u8 inner_ipproto; 1044 }; 1045 1046 __u16 inner_transport_header; 1047 __u16 inner_network_header; 1048 __u16 inner_mac_header; 1049 1050 __be16 protocol; 1051 __u16 transport_header; 1052 __u16 network_header; 1053 __u16 mac_header; 1054 1055 #ifdef CONFIG_KCOV 1056 u64 kcov_handle; 1057 #endif 1058 1059 ); /* end headers group */ 1060 1061 /* These elements must be at the end, see alloc_skb() for details. */ 1062 sk_buff_data_t tail; 1063 sk_buff_data_t end; 1064 unsigned char *head, 1065 *data; 1066 unsigned int truesize; 1067 refcount_t users; 1068 1069 #ifdef CONFIG_SKB_EXTENSIONS 1070 /* only usable after checking ->active_extensions != 0 */ 1071 struct skb_ext *extensions; 1072 #endif 1073 }; 1074 1075 /* if you move pkt_type around you also must adapt those constants */ 1076 #ifdef __BIG_ENDIAN_BITFIELD 1077 #define PKT_TYPE_MAX (7 << 5) 1078 #else 1079 #define PKT_TYPE_MAX 7 1080 #endif 1081 #define PKT_TYPE_OFFSET offsetof(struct sk_buff, __pkt_type_offset) 1082 1083 /* if you move tc_at_ingress or mono_delivery_time 1084 * around, you also must adapt these constants. 1085 */ 1086 #ifdef __BIG_ENDIAN_BITFIELD 1087 #define SKB_MONO_DELIVERY_TIME_MASK (1 << 7) 1088 #define TC_AT_INGRESS_MASK (1 << 6) 1089 #else 1090 #define SKB_MONO_DELIVERY_TIME_MASK (1 << 0) 1091 #define TC_AT_INGRESS_MASK (1 << 1) 1092 #endif 1093 #define SKB_BF_MONO_TC_OFFSET offsetof(struct sk_buff, __mono_tc_offset) 1094 1095 #ifdef __KERNEL__ 1096 /* 1097 * Handling routines are only of interest to the kernel 1098 */ 1099 1100 #define SKB_ALLOC_FCLONE 0x01 1101 #define SKB_ALLOC_RX 0x02 1102 #define SKB_ALLOC_NAPI 0x04 1103 1104 /** 1105 * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves 1106 * @skb: buffer 1107 */ 1108 static inline bool skb_pfmemalloc(const struct sk_buff *skb) 1109 { 1110 return unlikely(skb->pfmemalloc); 1111 } 1112 1113 /* 1114 * skb might have a dst pointer attached, refcounted or not. 1115 * _skb_refdst low order bit is set if refcount was _not_ taken 1116 */ 1117 #define SKB_DST_NOREF 1UL 1118 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 1119 1120 /** 1121 * skb_dst - returns skb dst_entry 1122 * @skb: buffer 1123 * 1124 * Returns skb dst_entry, regardless of reference taken or not. 1125 */ 1126 static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 1127 { 1128 /* If refdst was not refcounted, check we still are in a 1129 * rcu_read_lock section 1130 */ 1131 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 1132 !rcu_read_lock_held() && 1133 !rcu_read_lock_bh_held()); 1134 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 1135 } 1136 1137 /** 1138 * skb_dst_set - sets skb dst 1139 * @skb: buffer 1140 * @dst: dst entry 1141 * 1142 * Sets skb dst, assuming a reference was taken on dst and should 1143 * be released by skb_dst_drop() 1144 */ 1145 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 1146 { 1147 skb->slow_gro |= !!dst; 1148 skb->_skb_refdst = (unsigned long)dst; 1149 } 1150 1151 /** 1152 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference 1153 * @skb: buffer 1154 * @dst: dst entry 1155 * 1156 * Sets skb dst, assuming a reference was not taken on dst. 1157 * If dst entry is cached, we do not take reference and dst_release 1158 * will be avoided by refdst_drop. If dst entry is not cached, we take 1159 * reference, so that last dst_release can destroy the dst immediately. 1160 */ 1161 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) 1162 { 1163 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 1164 skb->slow_gro |= !!dst; 1165 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF; 1166 } 1167 1168 /** 1169 * skb_dst_is_noref - Test if skb dst isn't refcounted 1170 * @skb: buffer 1171 */ 1172 static inline bool skb_dst_is_noref(const struct sk_buff *skb) 1173 { 1174 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 1175 } 1176 1177 /** 1178 * skb_rtable - Returns the skb &rtable 1179 * @skb: buffer 1180 */ 1181 static inline struct rtable *skb_rtable(const struct sk_buff *skb) 1182 { 1183 return (struct rtable *)skb_dst(skb); 1184 } 1185 1186 /* For mangling skb->pkt_type from user space side from applications 1187 * such as nft, tc, etc, we only allow a conservative subset of 1188 * possible pkt_types to be set. 1189 */ 1190 static inline bool skb_pkt_type_ok(u32 ptype) 1191 { 1192 return ptype <= PACKET_OTHERHOST; 1193 } 1194 1195 /** 1196 * skb_napi_id - Returns the skb's NAPI id 1197 * @skb: buffer 1198 */ 1199 static inline unsigned int skb_napi_id(const struct sk_buff *skb) 1200 { 1201 #ifdef CONFIG_NET_RX_BUSY_POLL 1202 return skb->napi_id; 1203 #else 1204 return 0; 1205 #endif 1206 } 1207 1208 static inline bool skb_wifi_acked_valid(const struct sk_buff *skb) 1209 { 1210 #ifdef CONFIG_WIRELESS 1211 return skb->wifi_acked_valid; 1212 #else 1213 return 0; 1214 #endif 1215 } 1216 1217 /** 1218 * skb_unref - decrement the skb's reference count 1219 * @skb: buffer 1220 * 1221 * Returns true if we can free the skb. 1222 */ 1223 static inline bool skb_unref(struct sk_buff *skb) 1224 { 1225 if (unlikely(!skb)) 1226 return false; 1227 if (likely(refcount_read(&skb->users) == 1)) 1228 smp_rmb(); 1229 else if (likely(!refcount_dec_and_test(&skb->users))) 1230 return false; 1231 1232 return true; 1233 } 1234 1235 static inline bool skb_data_unref(const struct sk_buff *skb, 1236 struct skb_shared_info *shinfo) 1237 { 1238 int bias; 1239 1240 if (!skb->cloned) 1241 return true; 1242 1243 bias = skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1; 1244 1245 if (atomic_read(&shinfo->dataref) == bias) 1246 smp_rmb(); 1247 else if (atomic_sub_return(bias, &shinfo->dataref)) 1248 return false; 1249 1250 return true; 1251 } 1252 1253 void __fix_address 1254 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason); 1255 1256 /** 1257 * kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason 1258 * @skb: buffer to free 1259 */ 1260 static inline void kfree_skb(struct sk_buff *skb) 1261 { 1262 kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 1263 } 1264 1265 void skb_release_head_state(struct sk_buff *skb); 1266 void kfree_skb_list_reason(struct sk_buff *segs, 1267 enum skb_drop_reason reason); 1268 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt); 1269 void skb_tx_error(struct sk_buff *skb); 1270 1271 static inline void kfree_skb_list(struct sk_buff *segs) 1272 { 1273 kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED); 1274 } 1275 1276 #ifdef CONFIG_TRACEPOINTS 1277 void consume_skb(struct sk_buff *skb); 1278 #else 1279 static inline void consume_skb(struct sk_buff *skb) 1280 { 1281 return kfree_skb(skb); 1282 } 1283 #endif 1284 1285 void __consume_stateless_skb(struct sk_buff *skb); 1286 void __kfree_skb(struct sk_buff *skb); 1287 1288 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); 1289 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 1290 bool *fragstolen, int *delta_truesize); 1291 1292 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags, 1293 int node); 1294 struct sk_buff *__build_skb(void *data, unsigned int frag_size); 1295 struct sk_buff *build_skb(void *data, unsigned int frag_size); 1296 struct sk_buff *build_skb_around(struct sk_buff *skb, 1297 void *data, unsigned int frag_size); 1298 void skb_attempt_defer_free(struct sk_buff *skb); 1299 1300 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size); 1301 struct sk_buff *slab_build_skb(void *data); 1302 1303 /** 1304 * alloc_skb - allocate a network buffer 1305 * @size: size to allocate 1306 * @priority: allocation mask 1307 * 1308 * This function is a convenient wrapper around __alloc_skb(). 1309 */ 1310 static inline struct sk_buff *alloc_skb(unsigned int size, 1311 gfp_t priority) 1312 { 1313 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 1314 } 1315 1316 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 1317 unsigned long data_len, 1318 int max_page_order, 1319 int *errcode, 1320 gfp_t gfp_mask); 1321 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first); 1322 1323 /* Layout of fast clones : [skb1][skb2][fclone_ref] */ 1324 struct sk_buff_fclones { 1325 struct sk_buff skb1; 1326 1327 struct sk_buff skb2; 1328 1329 refcount_t fclone_ref; 1330 }; 1331 1332 /** 1333 * skb_fclone_busy - check if fclone is busy 1334 * @sk: socket 1335 * @skb: buffer 1336 * 1337 * Returns true if skb is a fast clone, and its clone is not freed. 1338 * Some drivers call skb_orphan() in their ndo_start_xmit(), 1339 * so we also check that didn't happen. 1340 */ 1341 static inline bool skb_fclone_busy(const struct sock *sk, 1342 const struct sk_buff *skb) 1343 { 1344 const struct sk_buff_fclones *fclones; 1345 1346 fclones = container_of(skb, struct sk_buff_fclones, skb1); 1347 1348 return skb->fclone == SKB_FCLONE_ORIG && 1349 refcount_read(&fclones->fclone_ref) > 1 && 1350 READ_ONCE(fclones->skb2.sk) == sk; 1351 } 1352 1353 /** 1354 * alloc_skb_fclone - allocate a network buffer from fclone cache 1355 * @size: size to allocate 1356 * @priority: allocation mask 1357 * 1358 * This function is a convenient wrapper around __alloc_skb(). 1359 */ 1360 static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 1361 gfp_t priority) 1362 { 1363 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); 1364 } 1365 1366 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 1367 void skb_headers_offset_update(struct sk_buff *skb, int off); 1368 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); 1369 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority); 1370 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old); 1371 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority); 1372 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1373 gfp_t gfp_mask, bool fclone); 1374 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, 1375 gfp_t gfp_mask) 1376 { 1377 return __pskb_copy_fclone(skb, headroom, gfp_mask, false); 1378 } 1379 1380 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask); 1381 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 1382 unsigned int headroom); 1383 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom); 1384 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, 1385 int newtailroom, gfp_t priority); 1386 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 1387 int offset, int len); 1388 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, 1389 int offset, int len); 1390 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer); 1391 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error); 1392 1393 /** 1394 * skb_pad - zero pad the tail of an skb 1395 * @skb: buffer to pad 1396 * @pad: space to pad 1397 * 1398 * Ensure that a buffer is followed by a padding area that is zero 1399 * filled. Used by network drivers which may DMA or transfer data 1400 * beyond the buffer end onto the wire. 1401 * 1402 * May return error in out of memory cases. The skb is freed on error. 1403 */ 1404 static inline int skb_pad(struct sk_buff *skb, int pad) 1405 { 1406 return __skb_pad(skb, pad, true); 1407 } 1408 #define dev_kfree_skb(a) consume_skb(a) 1409 1410 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 1411 int offset, size_t size, size_t max_frags); 1412 1413 struct skb_seq_state { 1414 __u32 lower_offset; 1415 __u32 upper_offset; 1416 __u32 frag_idx; 1417 __u32 stepped_offset; 1418 struct sk_buff *root_skb; 1419 struct sk_buff *cur_skb; 1420 __u8 *frag_data; 1421 __u32 frag_off; 1422 }; 1423 1424 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 1425 unsigned int to, struct skb_seq_state *st); 1426 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 1427 struct skb_seq_state *st); 1428 void skb_abort_seq_read(struct skb_seq_state *st); 1429 1430 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 1431 unsigned int to, struct ts_config *config); 1432 1433 /* 1434 * Packet hash types specify the type of hash in skb_set_hash. 1435 * 1436 * Hash types refer to the protocol layer addresses which are used to 1437 * construct a packet's hash. The hashes are used to differentiate or identify 1438 * flows of the protocol layer for the hash type. Hash types are either 1439 * layer-2 (L2), layer-3 (L3), or layer-4 (L4). 1440 * 1441 * Properties of hashes: 1442 * 1443 * 1) Two packets in different flows have different hash values 1444 * 2) Two packets in the same flow should have the same hash value 1445 * 1446 * A hash at a higher layer is considered to be more specific. A driver should 1447 * set the most specific hash possible. 1448 * 1449 * A driver cannot indicate a more specific hash than the layer at which a hash 1450 * was computed. For instance an L3 hash cannot be set as an L4 hash. 1451 * 1452 * A driver may indicate a hash level which is less specific than the 1453 * actual layer the hash was computed on. For instance, a hash computed 1454 * at L4 may be considered an L3 hash. This should only be done if the 1455 * driver can't unambiguously determine that the HW computed the hash at 1456 * the higher layer. Note that the "should" in the second property above 1457 * permits this. 1458 */ 1459 enum pkt_hash_types { 1460 PKT_HASH_TYPE_NONE, /* Undefined type */ 1461 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */ 1462 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */ 1463 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */ 1464 }; 1465 1466 static inline void skb_clear_hash(struct sk_buff *skb) 1467 { 1468 skb->hash = 0; 1469 skb->sw_hash = 0; 1470 skb->l4_hash = 0; 1471 } 1472 1473 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb) 1474 { 1475 if (!skb->l4_hash) 1476 skb_clear_hash(skb); 1477 } 1478 1479 static inline void 1480 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4) 1481 { 1482 skb->l4_hash = is_l4; 1483 skb->sw_hash = is_sw; 1484 skb->hash = hash; 1485 } 1486 1487 static inline void 1488 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type) 1489 { 1490 /* Used by drivers to set hash from HW */ 1491 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4); 1492 } 1493 1494 static inline void 1495 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4) 1496 { 1497 __skb_set_hash(skb, hash, true, is_l4); 1498 } 1499 1500 void __skb_get_hash(struct sk_buff *skb); 1501 u32 __skb_get_hash_symmetric(const struct sk_buff *skb); 1502 u32 skb_get_poff(const struct sk_buff *skb); 1503 u32 __skb_get_poff(const struct sk_buff *skb, const void *data, 1504 const struct flow_keys_basic *keys, int hlen); 1505 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto, 1506 const void *data, int hlen_proto); 1507 1508 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb, 1509 int thoff, u8 ip_proto) 1510 { 1511 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0); 1512 } 1513 1514 void skb_flow_dissector_init(struct flow_dissector *flow_dissector, 1515 const struct flow_dissector_key *key, 1516 unsigned int key_count); 1517 1518 struct bpf_flow_dissector; 1519 u32 bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx, 1520 __be16 proto, int nhoff, int hlen, unsigned int flags); 1521 1522 bool __skb_flow_dissect(const struct net *net, 1523 const struct sk_buff *skb, 1524 struct flow_dissector *flow_dissector, 1525 void *target_container, const void *data, 1526 __be16 proto, int nhoff, int hlen, unsigned int flags); 1527 1528 static inline bool skb_flow_dissect(const struct sk_buff *skb, 1529 struct flow_dissector *flow_dissector, 1530 void *target_container, unsigned int flags) 1531 { 1532 return __skb_flow_dissect(NULL, skb, flow_dissector, 1533 target_container, NULL, 0, 0, 0, flags); 1534 } 1535 1536 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb, 1537 struct flow_keys *flow, 1538 unsigned int flags) 1539 { 1540 memset(flow, 0, sizeof(*flow)); 1541 return __skb_flow_dissect(NULL, skb, &flow_keys_dissector, 1542 flow, NULL, 0, 0, 0, flags); 1543 } 1544 1545 static inline bool 1546 skb_flow_dissect_flow_keys_basic(const struct net *net, 1547 const struct sk_buff *skb, 1548 struct flow_keys_basic *flow, 1549 const void *data, __be16 proto, 1550 int nhoff, int hlen, unsigned int flags) 1551 { 1552 memset(flow, 0, sizeof(*flow)); 1553 return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow, 1554 data, proto, nhoff, hlen, flags); 1555 } 1556 1557 void skb_flow_dissect_meta(const struct sk_buff *skb, 1558 struct flow_dissector *flow_dissector, 1559 void *target_container); 1560 1561 /* Gets a skb connection tracking info, ctinfo map should be a 1562 * map of mapsize to translate enum ip_conntrack_info states 1563 * to user states. 1564 */ 1565 void 1566 skb_flow_dissect_ct(const struct sk_buff *skb, 1567 struct flow_dissector *flow_dissector, 1568 void *target_container, 1569 u16 *ctinfo_map, size_t mapsize, 1570 bool post_ct, u16 zone); 1571 void 1572 skb_flow_dissect_tunnel_info(const struct sk_buff *skb, 1573 struct flow_dissector *flow_dissector, 1574 void *target_container); 1575 1576 void skb_flow_dissect_hash(const struct sk_buff *skb, 1577 struct flow_dissector *flow_dissector, 1578 void *target_container); 1579 1580 static inline __u32 skb_get_hash(struct sk_buff *skb) 1581 { 1582 if (!skb->l4_hash && !skb->sw_hash) 1583 __skb_get_hash(skb); 1584 1585 return skb->hash; 1586 } 1587 1588 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6) 1589 { 1590 if (!skb->l4_hash && !skb->sw_hash) { 1591 struct flow_keys keys; 1592 __u32 hash = __get_hash_from_flowi6(fl6, &keys); 1593 1594 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys)); 1595 } 1596 1597 return skb->hash; 1598 } 1599 1600 __u32 skb_get_hash_perturb(const struct sk_buff *skb, 1601 const siphash_key_t *perturb); 1602 1603 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb) 1604 { 1605 return skb->hash; 1606 } 1607 1608 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from) 1609 { 1610 to->hash = from->hash; 1611 to->sw_hash = from->sw_hash; 1612 to->l4_hash = from->l4_hash; 1613 }; 1614 1615 static inline int skb_cmp_decrypted(const struct sk_buff *skb1, 1616 const struct sk_buff *skb2) 1617 { 1618 #ifdef CONFIG_TLS_DEVICE 1619 return skb2->decrypted - skb1->decrypted; 1620 #else 1621 return 0; 1622 #endif 1623 } 1624 1625 static inline void skb_copy_decrypted(struct sk_buff *to, 1626 const struct sk_buff *from) 1627 { 1628 #ifdef CONFIG_TLS_DEVICE 1629 to->decrypted = from->decrypted; 1630 #endif 1631 } 1632 1633 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1634 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1635 { 1636 return skb->head + skb->end; 1637 } 1638 1639 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1640 { 1641 return skb->end; 1642 } 1643 1644 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset) 1645 { 1646 skb->end = offset; 1647 } 1648 #else 1649 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1650 { 1651 return skb->end; 1652 } 1653 1654 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1655 { 1656 return skb->end - skb->head; 1657 } 1658 1659 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset) 1660 { 1661 skb->end = skb->head + offset; 1662 } 1663 #endif 1664 1665 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, 1666 struct ubuf_info *uarg); 1667 1668 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref); 1669 1670 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg, 1671 bool success); 1672 1673 int __zerocopy_sg_from_iter(struct msghdr *msg, struct sock *sk, 1674 struct sk_buff *skb, struct iov_iter *from, 1675 size_t length); 1676 1677 static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb, 1678 struct msghdr *msg, int len) 1679 { 1680 return __zerocopy_sg_from_iter(msg, skb->sk, skb, &msg->msg_iter, len); 1681 } 1682 1683 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1684 struct msghdr *msg, int len, 1685 struct ubuf_info *uarg); 1686 1687 /* Internal */ 1688 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 1689 1690 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 1691 { 1692 return &skb_shinfo(skb)->hwtstamps; 1693 } 1694 1695 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb) 1696 { 1697 bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE; 1698 1699 return is_zcopy ? skb_uarg(skb) : NULL; 1700 } 1701 1702 static inline bool skb_zcopy_pure(const struct sk_buff *skb) 1703 { 1704 return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY; 1705 } 1706 1707 static inline bool skb_zcopy_managed(const struct sk_buff *skb) 1708 { 1709 return skb_shinfo(skb)->flags & SKBFL_MANAGED_FRAG_REFS; 1710 } 1711 1712 static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1, 1713 const struct sk_buff *skb2) 1714 { 1715 return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2); 1716 } 1717 1718 static inline void net_zcopy_get(struct ubuf_info *uarg) 1719 { 1720 refcount_inc(&uarg->refcnt); 1721 } 1722 1723 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg) 1724 { 1725 skb_shinfo(skb)->destructor_arg = uarg; 1726 skb_shinfo(skb)->flags |= uarg->flags; 1727 } 1728 1729 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg, 1730 bool *have_ref) 1731 { 1732 if (skb && uarg && !skb_zcopy(skb)) { 1733 if (unlikely(have_ref && *have_ref)) 1734 *have_ref = false; 1735 else 1736 net_zcopy_get(uarg); 1737 skb_zcopy_init(skb, uarg); 1738 } 1739 } 1740 1741 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val) 1742 { 1743 skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL); 1744 skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG; 1745 } 1746 1747 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb) 1748 { 1749 return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL; 1750 } 1751 1752 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb) 1753 { 1754 return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL); 1755 } 1756 1757 static inline void net_zcopy_put(struct ubuf_info *uarg) 1758 { 1759 if (uarg) 1760 uarg->callback(NULL, uarg, true); 1761 } 1762 1763 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1764 { 1765 if (uarg) { 1766 if (uarg->callback == msg_zerocopy_callback) 1767 msg_zerocopy_put_abort(uarg, have_uref); 1768 else if (have_uref) 1769 net_zcopy_put(uarg); 1770 } 1771 } 1772 1773 /* Release a reference on a zerocopy structure */ 1774 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success) 1775 { 1776 struct ubuf_info *uarg = skb_zcopy(skb); 1777 1778 if (uarg) { 1779 if (!skb_zcopy_is_nouarg(skb)) 1780 uarg->callback(skb, uarg, zerocopy_success); 1781 1782 skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY; 1783 } 1784 } 1785 1786 void __skb_zcopy_downgrade_managed(struct sk_buff *skb); 1787 1788 static inline void skb_zcopy_downgrade_managed(struct sk_buff *skb) 1789 { 1790 if (unlikely(skb_zcopy_managed(skb))) 1791 __skb_zcopy_downgrade_managed(skb); 1792 } 1793 1794 static inline void skb_mark_not_on_list(struct sk_buff *skb) 1795 { 1796 skb->next = NULL; 1797 } 1798 1799 static inline void skb_poison_list(struct sk_buff *skb) 1800 { 1801 #ifdef CONFIG_DEBUG_NET 1802 skb->next = SKB_LIST_POISON_NEXT; 1803 #endif 1804 } 1805 1806 /* Iterate through singly-linked GSO fragments of an skb. */ 1807 #define skb_list_walk_safe(first, skb, next_skb) \ 1808 for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb); \ 1809 (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL) 1810 1811 static inline void skb_list_del_init(struct sk_buff *skb) 1812 { 1813 __list_del_entry(&skb->list); 1814 skb_mark_not_on_list(skb); 1815 } 1816 1817 /** 1818 * skb_queue_empty - check if a queue is empty 1819 * @list: queue head 1820 * 1821 * Returns true if the queue is empty, false otherwise. 1822 */ 1823 static inline int skb_queue_empty(const struct sk_buff_head *list) 1824 { 1825 return list->next == (const struct sk_buff *) list; 1826 } 1827 1828 /** 1829 * skb_queue_empty_lockless - check if a queue is empty 1830 * @list: queue head 1831 * 1832 * Returns true if the queue is empty, false otherwise. 1833 * This variant can be used in lockless contexts. 1834 */ 1835 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list) 1836 { 1837 return READ_ONCE(list->next) == (const struct sk_buff *) list; 1838 } 1839 1840 1841 /** 1842 * skb_queue_is_last - check if skb is the last entry in the queue 1843 * @list: queue head 1844 * @skb: buffer 1845 * 1846 * Returns true if @skb is the last buffer on the list. 1847 */ 1848 static inline bool skb_queue_is_last(const struct sk_buff_head *list, 1849 const struct sk_buff *skb) 1850 { 1851 return skb->next == (const struct sk_buff *) list; 1852 } 1853 1854 /** 1855 * skb_queue_is_first - check if skb is the first entry in the queue 1856 * @list: queue head 1857 * @skb: buffer 1858 * 1859 * Returns true if @skb is the first buffer on the list. 1860 */ 1861 static inline bool skb_queue_is_first(const struct sk_buff_head *list, 1862 const struct sk_buff *skb) 1863 { 1864 return skb->prev == (const struct sk_buff *) list; 1865 } 1866 1867 /** 1868 * skb_queue_next - return the next packet in the queue 1869 * @list: queue head 1870 * @skb: current buffer 1871 * 1872 * Return the next packet in @list after @skb. It is only valid to 1873 * call this if skb_queue_is_last() evaluates to false. 1874 */ 1875 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 1876 const struct sk_buff *skb) 1877 { 1878 /* This BUG_ON may seem severe, but if we just return then we 1879 * are going to dereference garbage. 1880 */ 1881 BUG_ON(skb_queue_is_last(list, skb)); 1882 return skb->next; 1883 } 1884 1885 /** 1886 * skb_queue_prev - return the prev packet in the queue 1887 * @list: queue head 1888 * @skb: current buffer 1889 * 1890 * Return the prev packet in @list before @skb. It is only valid to 1891 * call this if skb_queue_is_first() evaluates to false. 1892 */ 1893 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 1894 const struct sk_buff *skb) 1895 { 1896 /* This BUG_ON may seem severe, but if we just return then we 1897 * are going to dereference garbage. 1898 */ 1899 BUG_ON(skb_queue_is_first(list, skb)); 1900 return skb->prev; 1901 } 1902 1903 /** 1904 * skb_get - reference buffer 1905 * @skb: buffer to reference 1906 * 1907 * Makes another reference to a socket buffer and returns a pointer 1908 * to the buffer. 1909 */ 1910 static inline struct sk_buff *skb_get(struct sk_buff *skb) 1911 { 1912 refcount_inc(&skb->users); 1913 return skb; 1914 } 1915 1916 /* 1917 * If users == 1, we are the only owner and can avoid redundant atomic changes. 1918 */ 1919 1920 /** 1921 * skb_cloned - is the buffer a clone 1922 * @skb: buffer to check 1923 * 1924 * Returns true if the buffer was generated with skb_clone() and is 1925 * one of multiple shared copies of the buffer. Cloned buffers are 1926 * shared data so must not be written to under normal circumstances. 1927 */ 1928 static inline int skb_cloned(const struct sk_buff *skb) 1929 { 1930 return skb->cloned && 1931 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 1932 } 1933 1934 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) 1935 { 1936 might_sleep_if(gfpflags_allow_blocking(pri)); 1937 1938 if (skb_cloned(skb)) 1939 return pskb_expand_head(skb, 0, 0, pri); 1940 1941 return 0; 1942 } 1943 1944 /* This variant of skb_unclone() makes sure skb->truesize 1945 * and skb_end_offset() are not changed, whenever a new skb->head is needed. 1946 * 1947 * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X)) 1948 * when various debugging features are in place. 1949 */ 1950 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri); 1951 static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri) 1952 { 1953 might_sleep_if(gfpflags_allow_blocking(pri)); 1954 1955 if (skb_cloned(skb)) 1956 return __skb_unclone_keeptruesize(skb, pri); 1957 return 0; 1958 } 1959 1960 /** 1961 * skb_header_cloned - is the header a clone 1962 * @skb: buffer to check 1963 * 1964 * Returns true if modifying the header part of the buffer requires 1965 * the data to be copied. 1966 */ 1967 static inline int skb_header_cloned(const struct sk_buff *skb) 1968 { 1969 int dataref; 1970 1971 if (!skb->cloned) 1972 return 0; 1973 1974 dataref = atomic_read(&skb_shinfo(skb)->dataref); 1975 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 1976 return dataref != 1; 1977 } 1978 1979 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri) 1980 { 1981 might_sleep_if(gfpflags_allow_blocking(pri)); 1982 1983 if (skb_header_cloned(skb)) 1984 return pskb_expand_head(skb, 0, 0, pri); 1985 1986 return 0; 1987 } 1988 1989 /** 1990 * __skb_header_release() - allow clones to use the headroom 1991 * @skb: buffer to operate on 1992 * 1993 * See "DOC: dataref and headerless skbs". 1994 */ 1995 static inline void __skb_header_release(struct sk_buff *skb) 1996 { 1997 skb->nohdr = 1; 1998 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT)); 1999 } 2000 2001 2002 /** 2003 * skb_shared - is the buffer shared 2004 * @skb: buffer to check 2005 * 2006 * Returns true if more than one person has a reference to this 2007 * buffer. 2008 */ 2009 static inline int skb_shared(const struct sk_buff *skb) 2010 { 2011 return refcount_read(&skb->users) != 1; 2012 } 2013 2014 /** 2015 * skb_share_check - check if buffer is shared and if so clone it 2016 * @skb: buffer to check 2017 * @pri: priority for memory allocation 2018 * 2019 * If the buffer is shared the buffer is cloned and the old copy 2020 * drops a reference. A new clone with a single reference is returned. 2021 * If the buffer is not shared the original buffer is returned. When 2022 * being called from interrupt status or with spinlocks held pri must 2023 * be GFP_ATOMIC. 2024 * 2025 * NULL is returned on a memory allocation failure. 2026 */ 2027 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) 2028 { 2029 might_sleep_if(gfpflags_allow_blocking(pri)); 2030 if (skb_shared(skb)) { 2031 struct sk_buff *nskb = skb_clone(skb, pri); 2032 2033 if (likely(nskb)) 2034 consume_skb(skb); 2035 else 2036 kfree_skb(skb); 2037 skb = nskb; 2038 } 2039 return skb; 2040 } 2041 2042 /* 2043 * Copy shared buffers into a new sk_buff. We effectively do COW on 2044 * packets to handle cases where we have a local reader and forward 2045 * and a couple of other messy ones. The normal one is tcpdumping 2046 * a packet that's being forwarded. 2047 */ 2048 2049 /** 2050 * skb_unshare - make a copy of a shared buffer 2051 * @skb: buffer to check 2052 * @pri: priority for memory allocation 2053 * 2054 * If the socket buffer is a clone then this function creates a new 2055 * copy of the data, drops a reference count on the old copy and returns 2056 * the new copy with the reference count at 1. If the buffer is not a clone 2057 * the original buffer is returned. When called with a spinlock held or 2058 * from interrupt state @pri must be %GFP_ATOMIC 2059 * 2060 * %NULL is returned on a memory allocation failure. 2061 */ 2062 static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 2063 gfp_t pri) 2064 { 2065 might_sleep_if(gfpflags_allow_blocking(pri)); 2066 if (skb_cloned(skb)) { 2067 struct sk_buff *nskb = skb_copy(skb, pri); 2068 2069 /* Free our shared copy */ 2070 if (likely(nskb)) 2071 consume_skb(skb); 2072 else 2073 kfree_skb(skb); 2074 skb = nskb; 2075 } 2076 return skb; 2077 } 2078 2079 /** 2080 * skb_peek - peek at the head of an &sk_buff_head 2081 * @list_: list to peek at 2082 * 2083 * Peek an &sk_buff. Unlike most other operations you _MUST_ 2084 * be careful with this one. A peek leaves the buffer on the 2085 * list and someone else may run off with it. You must hold 2086 * the appropriate locks or have a private queue to do this. 2087 * 2088 * Returns %NULL for an empty list or a pointer to the head element. 2089 * The reference count is not incremented and the reference is therefore 2090 * volatile. Use with caution. 2091 */ 2092 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) 2093 { 2094 struct sk_buff *skb = list_->next; 2095 2096 if (skb == (struct sk_buff *)list_) 2097 skb = NULL; 2098 return skb; 2099 } 2100 2101 /** 2102 * __skb_peek - peek at the head of a non-empty &sk_buff_head 2103 * @list_: list to peek at 2104 * 2105 * Like skb_peek(), but the caller knows that the list is not empty. 2106 */ 2107 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_) 2108 { 2109 return list_->next; 2110 } 2111 2112 /** 2113 * skb_peek_next - peek skb following the given one from a queue 2114 * @skb: skb to start from 2115 * @list_: list to peek at 2116 * 2117 * Returns %NULL when the end of the list is met or a pointer to the 2118 * next element. The reference count is not incremented and the 2119 * reference is therefore volatile. Use with caution. 2120 */ 2121 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, 2122 const struct sk_buff_head *list_) 2123 { 2124 struct sk_buff *next = skb->next; 2125 2126 if (next == (struct sk_buff *)list_) 2127 next = NULL; 2128 return next; 2129 } 2130 2131 /** 2132 * skb_peek_tail - peek at the tail of an &sk_buff_head 2133 * @list_: list to peek at 2134 * 2135 * Peek an &sk_buff. Unlike most other operations you _MUST_ 2136 * be careful with this one. A peek leaves the buffer on the 2137 * list and someone else may run off with it. You must hold 2138 * the appropriate locks or have a private queue to do this. 2139 * 2140 * Returns %NULL for an empty list or a pointer to the tail element. 2141 * The reference count is not incremented and the reference is therefore 2142 * volatile. Use with caution. 2143 */ 2144 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) 2145 { 2146 struct sk_buff *skb = READ_ONCE(list_->prev); 2147 2148 if (skb == (struct sk_buff *)list_) 2149 skb = NULL; 2150 return skb; 2151 2152 } 2153 2154 /** 2155 * skb_queue_len - get queue length 2156 * @list_: list to measure 2157 * 2158 * Return the length of an &sk_buff queue. 2159 */ 2160 static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 2161 { 2162 return list_->qlen; 2163 } 2164 2165 /** 2166 * skb_queue_len_lockless - get queue length 2167 * @list_: list to measure 2168 * 2169 * Return the length of an &sk_buff queue. 2170 * This variant can be used in lockless contexts. 2171 */ 2172 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_) 2173 { 2174 return READ_ONCE(list_->qlen); 2175 } 2176 2177 /** 2178 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 2179 * @list: queue to initialize 2180 * 2181 * This initializes only the list and queue length aspects of 2182 * an sk_buff_head object. This allows to initialize the list 2183 * aspects of an sk_buff_head without reinitializing things like 2184 * the spinlock. It can also be used for on-stack sk_buff_head 2185 * objects where the spinlock is known to not be used. 2186 */ 2187 static inline void __skb_queue_head_init(struct sk_buff_head *list) 2188 { 2189 list->prev = list->next = (struct sk_buff *)list; 2190 list->qlen = 0; 2191 } 2192 2193 /* 2194 * This function creates a split out lock class for each invocation; 2195 * this is needed for now since a whole lot of users of the skb-queue 2196 * infrastructure in drivers have different locking usage (in hardirq) 2197 * than the networking core (in softirq only). In the long run either the 2198 * network layer or drivers should need annotation to consolidate the 2199 * main types of usage into 3 classes. 2200 */ 2201 static inline void skb_queue_head_init(struct sk_buff_head *list) 2202 { 2203 spin_lock_init(&list->lock); 2204 __skb_queue_head_init(list); 2205 } 2206 2207 static inline void skb_queue_head_init_class(struct sk_buff_head *list, 2208 struct lock_class_key *class) 2209 { 2210 skb_queue_head_init(list); 2211 lockdep_set_class(&list->lock, class); 2212 } 2213 2214 /* 2215 * Insert an sk_buff on a list. 2216 * 2217 * The "__skb_xxxx()" functions are the non-atomic ones that 2218 * can only be called with interrupts disabled. 2219 */ 2220 static inline void __skb_insert(struct sk_buff *newsk, 2221 struct sk_buff *prev, struct sk_buff *next, 2222 struct sk_buff_head *list) 2223 { 2224 /* See skb_queue_empty_lockless() and skb_peek_tail() 2225 * for the opposite READ_ONCE() 2226 */ 2227 WRITE_ONCE(newsk->next, next); 2228 WRITE_ONCE(newsk->prev, prev); 2229 WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk); 2230 WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk); 2231 WRITE_ONCE(list->qlen, list->qlen + 1); 2232 } 2233 2234 static inline void __skb_queue_splice(const struct sk_buff_head *list, 2235 struct sk_buff *prev, 2236 struct sk_buff *next) 2237 { 2238 struct sk_buff *first = list->next; 2239 struct sk_buff *last = list->prev; 2240 2241 WRITE_ONCE(first->prev, prev); 2242 WRITE_ONCE(prev->next, first); 2243 2244 WRITE_ONCE(last->next, next); 2245 WRITE_ONCE(next->prev, last); 2246 } 2247 2248 /** 2249 * skb_queue_splice - join two skb lists, this is designed for stacks 2250 * @list: the new list to add 2251 * @head: the place to add it in the first list 2252 */ 2253 static inline void skb_queue_splice(const struct sk_buff_head *list, 2254 struct sk_buff_head *head) 2255 { 2256 if (!skb_queue_empty(list)) { 2257 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 2258 head->qlen += list->qlen; 2259 } 2260 } 2261 2262 /** 2263 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list 2264 * @list: the new list to add 2265 * @head: the place to add it in the first list 2266 * 2267 * The list at @list is reinitialised 2268 */ 2269 static inline void skb_queue_splice_init(struct sk_buff_head *list, 2270 struct sk_buff_head *head) 2271 { 2272 if (!skb_queue_empty(list)) { 2273 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 2274 head->qlen += list->qlen; 2275 __skb_queue_head_init(list); 2276 } 2277 } 2278 2279 /** 2280 * skb_queue_splice_tail - join two skb lists, each list being a queue 2281 * @list: the new list to add 2282 * @head: the place to add it in the first list 2283 */ 2284 static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 2285 struct sk_buff_head *head) 2286 { 2287 if (!skb_queue_empty(list)) { 2288 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 2289 head->qlen += list->qlen; 2290 } 2291 } 2292 2293 /** 2294 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list 2295 * @list: the new list to add 2296 * @head: the place to add it in the first list 2297 * 2298 * Each of the lists is a queue. 2299 * The list at @list is reinitialised 2300 */ 2301 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 2302 struct sk_buff_head *head) 2303 { 2304 if (!skb_queue_empty(list)) { 2305 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 2306 head->qlen += list->qlen; 2307 __skb_queue_head_init(list); 2308 } 2309 } 2310 2311 /** 2312 * __skb_queue_after - queue a buffer at the list head 2313 * @list: list to use 2314 * @prev: place after this buffer 2315 * @newsk: buffer to queue 2316 * 2317 * Queue a buffer int the middle of a list. This function takes no locks 2318 * and you must therefore hold required locks before calling it. 2319 * 2320 * A buffer cannot be placed on two lists at the same time. 2321 */ 2322 static inline void __skb_queue_after(struct sk_buff_head *list, 2323 struct sk_buff *prev, 2324 struct sk_buff *newsk) 2325 { 2326 __skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list); 2327 } 2328 2329 void skb_append(struct sk_buff *old, struct sk_buff *newsk, 2330 struct sk_buff_head *list); 2331 2332 static inline void __skb_queue_before(struct sk_buff_head *list, 2333 struct sk_buff *next, 2334 struct sk_buff *newsk) 2335 { 2336 __skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list); 2337 } 2338 2339 /** 2340 * __skb_queue_head - queue a buffer at the list head 2341 * @list: list to use 2342 * @newsk: buffer to queue 2343 * 2344 * Queue a buffer at the start of a list. This function takes no locks 2345 * and you must therefore hold required locks before calling it. 2346 * 2347 * A buffer cannot be placed on two lists at the same time. 2348 */ 2349 static inline void __skb_queue_head(struct sk_buff_head *list, 2350 struct sk_buff *newsk) 2351 { 2352 __skb_queue_after(list, (struct sk_buff *)list, newsk); 2353 } 2354 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 2355 2356 /** 2357 * __skb_queue_tail - queue a buffer at the list tail 2358 * @list: list to use 2359 * @newsk: buffer to queue 2360 * 2361 * Queue a buffer at the end of a list. This function takes no locks 2362 * and you must therefore hold required locks before calling it. 2363 * 2364 * A buffer cannot be placed on two lists at the same time. 2365 */ 2366 static inline void __skb_queue_tail(struct sk_buff_head *list, 2367 struct sk_buff *newsk) 2368 { 2369 __skb_queue_before(list, (struct sk_buff *)list, newsk); 2370 } 2371 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 2372 2373 /* 2374 * remove sk_buff from list. _Must_ be called atomically, and with 2375 * the list known.. 2376 */ 2377 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 2378 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 2379 { 2380 struct sk_buff *next, *prev; 2381 2382 WRITE_ONCE(list->qlen, list->qlen - 1); 2383 next = skb->next; 2384 prev = skb->prev; 2385 skb->next = skb->prev = NULL; 2386 WRITE_ONCE(next->prev, prev); 2387 WRITE_ONCE(prev->next, next); 2388 } 2389 2390 /** 2391 * __skb_dequeue - remove from the head of the queue 2392 * @list: list to dequeue from 2393 * 2394 * Remove the head of the list. This function does not take any locks 2395 * so must be used with appropriate locks held only. The head item is 2396 * returned or %NULL if the list is empty. 2397 */ 2398 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 2399 { 2400 struct sk_buff *skb = skb_peek(list); 2401 if (skb) 2402 __skb_unlink(skb, list); 2403 return skb; 2404 } 2405 struct sk_buff *skb_dequeue(struct sk_buff_head *list); 2406 2407 /** 2408 * __skb_dequeue_tail - remove from the tail of the queue 2409 * @list: list to dequeue from 2410 * 2411 * Remove the tail of the list. This function does not take any locks 2412 * so must be used with appropriate locks held only. The tail item is 2413 * returned or %NULL if the list is empty. 2414 */ 2415 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 2416 { 2417 struct sk_buff *skb = skb_peek_tail(list); 2418 if (skb) 2419 __skb_unlink(skb, list); 2420 return skb; 2421 } 2422 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 2423 2424 2425 static inline bool skb_is_nonlinear(const struct sk_buff *skb) 2426 { 2427 return skb->data_len; 2428 } 2429 2430 static inline unsigned int skb_headlen(const struct sk_buff *skb) 2431 { 2432 return skb->len - skb->data_len; 2433 } 2434 2435 static inline unsigned int __skb_pagelen(const struct sk_buff *skb) 2436 { 2437 unsigned int i, len = 0; 2438 2439 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--) 2440 len += skb_frag_size(&skb_shinfo(skb)->frags[i]); 2441 return len; 2442 } 2443 2444 static inline unsigned int skb_pagelen(const struct sk_buff *skb) 2445 { 2446 return skb_headlen(skb) + __skb_pagelen(skb); 2447 } 2448 2449 static inline void skb_frag_fill_netmem_desc(skb_frag_t *frag, 2450 netmem_ref netmem, int off, 2451 int size) 2452 { 2453 frag->netmem = netmem; 2454 frag->offset = off; 2455 skb_frag_size_set(frag, size); 2456 } 2457 2458 static inline void skb_frag_fill_page_desc(skb_frag_t *frag, 2459 struct page *page, 2460 int off, int size) 2461 { 2462 skb_frag_fill_netmem_desc(frag, page_to_netmem(page), off, size); 2463 } 2464 2465 static inline void __skb_fill_netmem_desc_noacc(struct skb_shared_info *shinfo, 2466 int i, netmem_ref netmem, 2467 int off, int size) 2468 { 2469 skb_frag_t *frag = &shinfo->frags[i]; 2470 2471 skb_frag_fill_netmem_desc(frag, netmem, off, size); 2472 } 2473 2474 static inline void __skb_fill_page_desc_noacc(struct skb_shared_info *shinfo, 2475 int i, struct page *page, 2476 int off, int size) 2477 { 2478 __skb_fill_netmem_desc_noacc(shinfo, i, page_to_netmem(page), off, 2479 size); 2480 } 2481 2482 /** 2483 * skb_len_add - adds a number to len fields of skb 2484 * @skb: buffer to add len to 2485 * @delta: number of bytes to add 2486 */ 2487 static inline void skb_len_add(struct sk_buff *skb, int delta) 2488 { 2489 skb->len += delta; 2490 skb->data_len += delta; 2491 skb->truesize += delta; 2492 } 2493 2494 /** 2495 * __skb_fill_netmem_desc - initialise a fragment in an skb 2496 * @skb: buffer containing fragment to be initialised 2497 * @i: fragment index to initialise 2498 * @netmem: the netmem to use for this fragment 2499 * @off: the offset to the data with @page 2500 * @size: the length of the data 2501 * 2502 * Initialises the @i'th fragment of @skb to point to &size bytes at 2503 * offset @off within @page. 2504 * 2505 * Does not take any additional reference on the fragment. 2506 */ 2507 static inline void __skb_fill_netmem_desc(struct sk_buff *skb, int i, 2508 netmem_ref netmem, int off, int size) 2509 { 2510 struct page *page = netmem_to_page(netmem); 2511 2512 __skb_fill_netmem_desc_noacc(skb_shinfo(skb), i, netmem, off, size); 2513 2514 /* Propagate page pfmemalloc to the skb if we can. The problem is 2515 * that not all callers have unique ownership of the page but rely 2516 * on page_is_pfmemalloc doing the right thing(tm). 2517 */ 2518 page = compound_head(page); 2519 if (page_is_pfmemalloc(page)) 2520 skb->pfmemalloc = true; 2521 } 2522 2523 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, 2524 struct page *page, int off, int size) 2525 { 2526 __skb_fill_netmem_desc(skb, i, page_to_netmem(page), off, size); 2527 } 2528 2529 static inline void skb_fill_netmem_desc(struct sk_buff *skb, int i, 2530 netmem_ref netmem, int off, int size) 2531 { 2532 __skb_fill_netmem_desc(skb, i, netmem, off, size); 2533 skb_shinfo(skb)->nr_frags = i + 1; 2534 } 2535 2536 /** 2537 * skb_fill_page_desc - initialise a paged fragment in an skb 2538 * @skb: buffer containing fragment to be initialised 2539 * @i: paged fragment index to initialise 2540 * @page: the page to use for this fragment 2541 * @off: the offset to the data with @page 2542 * @size: the length of the data 2543 * 2544 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of 2545 * @skb to point to @size bytes at offset @off within @page. In 2546 * addition updates @skb such that @i is the last fragment. 2547 * 2548 * Does not take any additional reference on the fragment. 2549 */ 2550 static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 2551 struct page *page, int off, int size) 2552 { 2553 skb_fill_netmem_desc(skb, i, page_to_netmem(page), off, size); 2554 } 2555 2556 /** 2557 * skb_fill_page_desc_noacc - initialise a paged fragment in an skb 2558 * @skb: buffer containing fragment to be initialised 2559 * @i: paged fragment index to initialise 2560 * @page: the page to use for this fragment 2561 * @off: the offset to the data with @page 2562 * @size: the length of the data 2563 * 2564 * Variant of skb_fill_page_desc() which does not deal with 2565 * pfmemalloc, if page is not owned by us. 2566 */ 2567 static inline void skb_fill_page_desc_noacc(struct sk_buff *skb, int i, 2568 struct page *page, int off, 2569 int size) 2570 { 2571 struct skb_shared_info *shinfo = skb_shinfo(skb); 2572 2573 __skb_fill_page_desc_noacc(shinfo, i, page, off, size); 2574 shinfo->nr_frags = i + 1; 2575 } 2576 2577 void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem, 2578 int off, int size, unsigned int truesize); 2579 2580 static inline void skb_add_rx_frag(struct sk_buff *skb, int i, 2581 struct page *page, int off, int size, 2582 unsigned int truesize) 2583 { 2584 skb_add_rx_frag_netmem(skb, i, page_to_netmem(page), off, size, 2585 truesize); 2586 } 2587 2588 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 2589 unsigned int truesize); 2590 2591 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 2592 2593 #ifdef NET_SKBUFF_DATA_USES_OFFSET 2594 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 2595 { 2596 return skb->head + skb->tail; 2597 } 2598 2599 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2600 { 2601 skb->tail = skb->data - skb->head; 2602 } 2603 2604 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2605 { 2606 skb_reset_tail_pointer(skb); 2607 skb->tail += offset; 2608 } 2609 2610 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 2611 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 2612 { 2613 return skb->tail; 2614 } 2615 2616 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2617 { 2618 skb->tail = skb->data; 2619 } 2620 2621 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2622 { 2623 skb->tail = skb->data + offset; 2624 } 2625 2626 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 2627 2628 static inline void skb_assert_len(struct sk_buff *skb) 2629 { 2630 #ifdef CONFIG_DEBUG_NET 2631 if (WARN_ONCE(!skb->len, "%s\n", __func__)) 2632 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 2633 #endif /* CONFIG_DEBUG_NET */ 2634 } 2635 2636 /* 2637 * Add data to an sk_buff 2638 */ 2639 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len); 2640 void *skb_put(struct sk_buff *skb, unsigned int len); 2641 static inline void *__skb_put(struct sk_buff *skb, unsigned int len) 2642 { 2643 void *tmp = skb_tail_pointer(skb); 2644 SKB_LINEAR_ASSERT(skb); 2645 skb->tail += len; 2646 skb->len += len; 2647 return tmp; 2648 } 2649 2650 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len) 2651 { 2652 void *tmp = __skb_put(skb, len); 2653 2654 memset(tmp, 0, len); 2655 return tmp; 2656 } 2657 2658 static inline void *__skb_put_data(struct sk_buff *skb, const void *data, 2659 unsigned int len) 2660 { 2661 void *tmp = __skb_put(skb, len); 2662 2663 memcpy(tmp, data, len); 2664 return tmp; 2665 } 2666 2667 static inline void __skb_put_u8(struct sk_buff *skb, u8 val) 2668 { 2669 *(u8 *)__skb_put(skb, 1) = val; 2670 } 2671 2672 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len) 2673 { 2674 void *tmp = skb_put(skb, len); 2675 2676 memset(tmp, 0, len); 2677 2678 return tmp; 2679 } 2680 2681 static inline void *skb_put_data(struct sk_buff *skb, const void *data, 2682 unsigned int len) 2683 { 2684 void *tmp = skb_put(skb, len); 2685 2686 memcpy(tmp, data, len); 2687 2688 return tmp; 2689 } 2690 2691 static inline void skb_put_u8(struct sk_buff *skb, u8 val) 2692 { 2693 *(u8 *)skb_put(skb, 1) = val; 2694 } 2695 2696 void *skb_push(struct sk_buff *skb, unsigned int len); 2697 static inline void *__skb_push(struct sk_buff *skb, unsigned int len) 2698 { 2699 DEBUG_NET_WARN_ON_ONCE(len > INT_MAX); 2700 2701 skb->data -= len; 2702 skb->len += len; 2703 return skb->data; 2704 } 2705 2706 void *skb_pull(struct sk_buff *skb, unsigned int len); 2707 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len) 2708 { 2709 DEBUG_NET_WARN_ON_ONCE(len > INT_MAX); 2710 2711 skb->len -= len; 2712 if (unlikely(skb->len < skb->data_len)) { 2713 #if defined(CONFIG_DEBUG_NET) 2714 skb->len += len; 2715 pr_err("__skb_pull(len=%u)\n", len); 2716 skb_dump(KERN_ERR, skb, false); 2717 #endif 2718 BUG(); 2719 } 2720 return skb->data += len; 2721 } 2722 2723 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len) 2724 { 2725 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 2726 } 2727 2728 void *skb_pull_data(struct sk_buff *skb, size_t len); 2729 2730 void *__pskb_pull_tail(struct sk_buff *skb, int delta); 2731 2732 static inline enum skb_drop_reason 2733 pskb_may_pull_reason(struct sk_buff *skb, unsigned int len) 2734 { 2735 DEBUG_NET_WARN_ON_ONCE(len > INT_MAX); 2736 2737 if (likely(len <= skb_headlen(skb))) 2738 return SKB_NOT_DROPPED_YET; 2739 2740 if (unlikely(len > skb->len)) 2741 return SKB_DROP_REASON_PKT_TOO_SMALL; 2742 2743 if (unlikely(!__pskb_pull_tail(skb, len - skb_headlen(skb)))) 2744 return SKB_DROP_REASON_NOMEM; 2745 2746 return SKB_NOT_DROPPED_YET; 2747 } 2748 2749 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len) 2750 { 2751 return pskb_may_pull_reason(skb, len) == SKB_NOT_DROPPED_YET; 2752 } 2753 2754 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len) 2755 { 2756 if (!pskb_may_pull(skb, len)) 2757 return NULL; 2758 2759 skb->len -= len; 2760 return skb->data += len; 2761 } 2762 2763 void skb_condense(struct sk_buff *skb); 2764 2765 /** 2766 * skb_headroom - bytes at buffer head 2767 * @skb: buffer to check 2768 * 2769 * Return the number of bytes of free space at the head of an &sk_buff. 2770 */ 2771 static inline unsigned int skb_headroom(const struct sk_buff *skb) 2772 { 2773 return skb->data - skb->head; 2774 } 2775 2776 /** 2777 * skb_tailroom - bytes at buffer end 2778 * @skb: buffer to check 2779 * 2780 * Return the number of bytes of free space at the tail of an sk_buff 2781 */ 2782 static inline int skb_tailroom(const struct sk_buff *skb) 2783 { 2784 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 2785 } 2786 2787 /** 2788 * skb_availroom - bytes at buffer end 2789 * @skb: buffer to check 2790 * 2791 * Return the number of bytes of free space at the tail of an sk_buff 2792 * allocated by sk_stream_alloc() 2793 */ 2794 static inline int skb_availroom(const struct sk_buff *skb) 2795 { 2796 if (skb_is_nonlinear(skb)) 2797 return 0; 2798 2799 return skb->end - skb->tail - skb->reserved_tailroom; 2800 } 2801 2802 /** 2803 * skb_reserve - adjust headroom 2804 * @skb: buffer to alter 2805 * @len: bytes to move 2806 * 2807 * Increase the headroom of an empty &sk_buff by reducing the tail 2808 * room. This is only allowed for an empty buffer. 2809 */ 2810 static inline void skb_reserve(struct sk_buff *skb, int len) 2811 { 2812 skb->data += len; 2813 skb->tail += len; 2814 } 2815 2816 /** 2817 * skb_tailroom_reserve - adjust reserved_tailroom 2818 * @skb: buffer to alter 2819 * @mtu: maximum amount of headlen permitted 2820 * @needed_tailroom: minimum amount of reserved_tailroom 2821 * 2822 * Set reserved_tailroom so that headlen can be as large as possible but 2823 * not larger than mtu and tailroom cannot be smaller than 2824 * needed_tailroom. 2825 * The required headroom should already have been reserved before using 2826 * this function. 2827 */ 2828 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu, 2829 unsigned int needed_tailroom) 2830 { 2831 SKB_LINEAR_ASSERT(skb); 2832 if (mtu < skb_tailroom(skb) - needed_tailroom) 2833 /* use at most mtu */ 2834 skb->reserved_tailroom = skb_tailroom(skb) - mtu; 2835 else 2836 /* use up to all available space */ 2837 skb->reserved_tailroom = needed_tailroom; 2838 } 2839 2840 #define ENCAP_TYPE_ETHER 0 2841 #define ENCAP_TYPE_IPPROTO 1 2842 2843 static inline void skb_set_inner_protocol(struct sk_buff *skb, 2844 __be16 protocol) 2845 { 2846 skb->inner_protocol = protocol; 2847 skb->inner_protocol_type = ENCAP_TYPE_ETHER; 2848 } 2849 2850 static inline void skb_set_inner_ipproto(struct sk_buff *skb, 2851 __u8 ipproto) 2852 { 2853 skb->inner_ipproto = ipproto; 2854 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO; 2855 } 2856 2857 static inline void skb_reset_inner_headers(struct sk_buff *skb) 2858 { 2859 skb->inner_mac_header = skb->mac_header; 2860 skb->inner_network_header = skb->network_header; 2861 skb->inner_transport_header = skb->transport_header; 2862 } 2863 2864 static inline void skb_reset_mac_len(struct sk_buff *skb) 2865 { 2866 skb->mac_len = skb->network_header - skb->mac_header; 2867 } 2868 2869 static inline unsigned char *skb_inner_transport_header(const struct sk_buff 2870 *skb) 2871 { 2872 return skb->head + skb->inner_transport_header; 2873 } 2874 2875 static inline int skb_inner_transport_offset(const struct sk_buff *skb) 2876 { 2877 return skb_inner_transport_header(skb) - skb->data; 2878 } 2879 2880 static inline void skb_reset_inner_transport_header(struct sk_buff *skb) 2881 { 2882 skb->inner_transport_header = skb->data - skb->head; 2883 } 2884 2885 static inline void skb_set_inner_transport_header(struct sk_buff *skb, 2886 const int offset) 2887 { 2888 skb_reset_inner_transport_header(skb); 2889 skb->inner_transport_header += offset; 2890 } 2891 2892 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) 2893 { 2894 return skb->head + skb->inner_network_header; 2895 } 2896 2897 static inline void skb_reset_inner_network_header(struct sk_buff *skb) 2898 { 2899 skb->inner_network_header = skb->data - skb->head; 2900 } 2901 2902 static inline void skb_set_inner_network_header(struct sk_buff *skb, 2903 const int offset) 2904 { 2905 skb_reset_inner_network_header(skb); 2906 skb->inner_network_header += offset; 2907 } 2908 2909 static inline bool skb_inner_network_header_was_set(const struct sk_buff *skb) 2910 { 2911 return skb->inner_network_header > 0; 2912 } 2913 2914 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) 2915 { 2916 return skb->head + skb->inner_mac_header; 2917 } 2918 2919 static inline void skb_reset_inner_mac_header(struct sk_buff *skb) 2920 { 2921 skb->inner_mac_header = skb->data - skb->head; 2922 } 2923 2924 static inline void skb_set_inner_mac_header(struct sk_buff *skb, 2925 const int offset) 2926 { 2927 skb_reset_inner_mac_header(skb); 2928 skb->inner_mac_header += offset; 2929 } 2930 static inline bool skb_transport_header_was_set(const struct sk_buff *skb) 2931 { 2932 return skb->transport_header != (typeof(skb->transport_header))~0U; 2933 } 2934 2935 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 2936 { 2937 DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb)); 2938 return skb->head + skb->transport_header; 2939 } 2940 2941 static inline void skb_reset_transport_header(struct sk_buff *skb) 2942 { 2943 skb->transport_header = skb->data - skb->head; 2944 } 2945 2946 static inline void skb_set_transport_header(struct sk_buff *skb, 2947 const int offset) 2948 { 2949 skb_reset_transport_header(skb); 2950 skb->transport_header += offset; 2951 } 2952 2953 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 2954 { 2955 return skb->head + skb->network_header; 2956 } 2957 2958 static inline void skb_reset_network_header(struct sk_buff *skb) 2959 { 2960 skb->network_header = skb->data - skb->head; 2961 } 2962 2963 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 2964 { 2965 skb_reset_network_header(skb); 2966 skb->network_header += offset; 2967 } 2968 2969 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 2970 { 2971 return skb->mac_header != (typeof(skb->mac_header))~0U; 2972 } 2973 2974 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 2975 { 2976 DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb)); 2977 return skb->head + skb->mac_header; 2978 } 2979 2980 static inline int skb_mac_offset(const struct sk_buff *skb) 2981 { 2982 return skb_mac_header(skb) - skb->data; 2983 } 2984 2985 static inline u32 skb_mac_header_len(const struct sk_buff *skb) 2986 { 2987 DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb)); 2988 return skb->network_header - skb->mac_header; 2989 } 2990 2991 static inline void skb_unset_mac_header(struct sk_buff *skb) 2992 { 2993 skb->mac_header = (typeof(skb->mac_header))~0U; 2994 } 2995 2996 static inline void skb_reset_mac_header(struct sk_buff *skb) 2997 { 2998 skb->mac_header = skb->data - skb->head; 2999 } 3000 3001 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 3002 { 3003 skb_reset_mac_header(skb); 3004 skb->mac_header += offset; 3005 } 3006 3007 static inline void skb_pop_mac_header(struct sk_buff *skb) 3008 { 3009 skb->mac_header = skb->network_header; 3010 } 3011 3012 static inline void skb_probe_transport_header(struct sk_buff *skb) 3013 { 3014 struct flow_keys_basic keys; 3015 3016 if (skb_transport_header_was_set(skb)) 3017 return; 3018 3019 if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys, 3020 NULL, 0, 0, 0, 0)) 3021 skb_set_transport_header(skb, keys.control.thoff); 3022 } 3023 3024 static inline void skb_mac_header_rebuild(struct sk_buff *skb) 3025 { 3026 if (skb_mac_header_was_set(skb)) { 3027 const unsigned char *old_mac = skb_mac_header(skb); 3028 3029 skb_set_mac_header(skb, -skb->mac_len); 3030 memmove(skb_mac_header(skb), old_mac, skb->mac_len); 3031 } 3032 } 3033 3034 static inline int skb_checksum_start_offset(const struct sk_buff *skb) 3035 { 3036 return skb->csum_start - skb_headroom(skb); 3037 } 3038 3039 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb) 3040 { 3041 return skb->head + skb->csum_start; 3042 } 3043 3044 static inline int skb_transport_offset(const struct sk_buff *skb) 3045 { 3046 return skb_transport_header(skb) - skb->data; 3047 } 3048 3049 static inline u32 skb_network_header_len(const struct sk_buff *skb) 3050 { 3051 DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb)); 3052 return skb->transport_header - skb->network_header; 3053 } 3054 3055 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) 3056 { 3057 return skb->inner_transport_header - skb->inner_network_header; 3058 } 3059 3060 static inline int skb_network_offset(const struct sk_buff *skb) 3061 { 3062 return skb_network_header(skb) - skb->data; 3063 } 3064 3065 static inline int skb_inner_network_offset(const struct sk_buff *skb) 3066 { 3067 return skb_inner_network_header(skb) - skb->data; 3068 } 3069 3070 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 3071 { 3072 return pskb_may_pull(skb, skb_network_offset(skb) + len); 3073 } 3074 3075 /* 3076 * CPUs often take a performance hit when accessing unaligned memory 3077 * locations. The actual performance hit varies, it can be small if the 3078 * hardware handles it or large if we have to take an exception and fix it 3079 * in software. 3080 * 3081 * Since an ethernet header is 14 bytes network drivers often end up with 3082 * the IP header at an unaligned offset. The IP header can be aligned by 3083 * shifting the start of the packet by 2 bytes. Drivers should do this 3084 * with: 3085 * 3086 * skb_reserve(skb, NET_IP_ALIGN); 3087 * 3088 * The downside to this alignment of the IP header is that the DMA is now 3089 * unaligned. On some architectures the cost of an unaligned DMA is high 3090 * and this cost outweighs the gains made by aligning the IP header. 3091 * 3092 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 3093 * to be overridden. 3094 */ 3095 #ifndef NET_IP_ALIGN 3096 #define NET_IP_ALIGN 2 3097 #endif 3098 3099 /* 3100 * The networking layer reserves some headroom in skb data (via 3101 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 3102 * the header has to grow. In the default case, if the header has to grow 3103 * 32 bytes or less we avoid the reallocation. 3104 * 3105 * Unfortunately this headroom changes the DMA alignment of the resulting 3106 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 3107 * on some architectures. An architecture can override this value, 3108 * perhaps setting it to a cacheline in size (since that will maintain 3109 * cacheline alignment of the DMA). It must be a power of 2. 3110 * 3111 * Various parts of the networking layer expect at least 32 bytes of 3112 * headroom, you should not reduce this. 3113 * 3114 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 3115 * to reduce average number of cache lines per packet. 3116 * get_rps_cpu() for example only access one 64 bytes aligned block : 3117 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 3118 */ 3119 #ifndef NET_SKB_PAD 3120 #define NET_SKB_PAD max(32, L1_CACHE_BYTES) 3121 #endif 3122 3123 int ___pskb_trim(struct sk_buff *skb, unsigned int len); 3124 3125 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len) 3126 { 3127 if (WARN_ON(skb_is_nonlinear(skb))) 3128 return; 3129 skb->len = len; 3130 skb_set_tail_pointer(skb, len); 3131 } 3132 3133 static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 3134 { 3135 __skb_set_length(skb, len); 3136 } 3137 3138 void skb_trim(struct sk_buff *skb, unsigned int len); 3139 3140 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 3141 { 3142 if (skb->data_len) 3143 return ___pskb_trim(skb, len); 3144 __skb_trim(skb, len); 3145 return 0; 3146 } 3147 3148 static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 3149 { 3150 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 3151 } 3152 3153 /** 3154 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 3155 * @skb: buffer to alter 3156 * @len: new length 3157 * 3158 * This is identical to pskb_trim except that the caller knows that 3159 * the skb is not cloned so we should never get an error due to out- 3160 * of-memory. 3161 */ 3162 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 3163 { 3164 int err = pskb_trim(skb, len); 3165 BUG_ON(err); 3166 } 3167 3168 static inline int __skb_grow(struct sk_buff *skb, unsigned int len) 3169 { 3170 unsigned int diff = len - skb->len; 3171 3172 if (skb_tailroom(skb) < diff) { 3173 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb), 3174 GFP_ATOMIC); 3175 if (ret) 3176 return ret; 3177 } 3178 __skb_set_length(skb, len); 3179 return 0; 3180 } 3181 3182 /** 3183 * skb_orphan - orphan a buffer 3184 * @skb: buffer to orphan 3185 * 3186 * If a buffer currently has an owner then we call the owner's 3187 * destructor function and make the @skb unowned. The buffer continues 3188 * to exist but is no longer charged to its former owner. 3189 */ 3190 static inline void skb_orphan(struct sk_buff *skb) 3191 { 3192 if (skb->destructor) { 3193 skb->destructor(skb); 3194 skb->destructor = NULL; 3195 skb->sk = NULL; 3196 } else { 3197 BUG_ON(skb->sk); 3198 } 3199 } 3200 3201 /** 3202 * skb_orphan_frags - orphan the frags contained in a buffer 3203 * @skb: buffer to orphan frags from 3204 * @gfp_mask: allocation mask for replacement pages 3205 * 3206 * For each frag in the SKB which needs a destructor (i.e. has an 3207 * owner) create a copy of that frag and release the original 3208 * page by calling the destructor. 3209 */ 3210 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) 3211 { 3212 if (likely(!skb_zcopy(skb))) 3213 return 0; 3214 if (skb_shinfo(skb)->flags & SKBFL_DONT_ORPHAN) 3215 return 0; 3216 return skb_copy_ubufs(skb, gfp_mask); 3217 } 3218 3219 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */ 3220 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask) 3221 { 3222 if (likely(!skb_zcopy(skb))) 3223 return 0; 3224 return skb_copy_ubufs(skb, gfp_mask); 3225 } 3226 3227 /** 3228 * __skb_queue_purge_reason - empty a list 3229 * @list: list to empty 3230 * @reason: drop reason 3231 * 3232 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3233 * the list and one reference dropped. This function does not take the 3234 * list lock and the caller must hold the relevant locks to use it. 3235 */ 3236 static inline void __skb_queue_purge_reason(struct sk_buff_head *list, 3237 enum skb_drop_reason reason) 3238 { 3239 struct sk_buff *skb; 3240 3241 while ((skb = __skb_dequeue(list)) != NULL) 3242 kfree_skb_reason(skb, reason); 3243 } 3244 3245 static inline void __skb_queue_purge(struct sk_buff_head *list) 3246 { 3247 __skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE); 3248 } 3249 3250 void skb_queue_purge_reason(struct sk_buff_head *list, 3251 enum skb_drop_reason reason); 3252 3253 static inline void skb_queue_purge(struct sk_buff_head *list) 3254 { 3255 skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE); 3256 } 3257 3258 unsigned int skb_rbtree_purge(struct rb_root *root); 3259 void skb_errqueue_purge(struct sk_buff_head *list); 3260 3261 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask); 3262 3263 /** 3264 * netdev_alloc_frag - allocate a page fragment 3265 * @fragsz: fragment size 3266 * 3267 * Allocates a frag from a page for receive buffer. 3268 * Uses GFP_ATOMIC allocations. 3269 */ 3270 static inline void *netdev_alloc_frag(unsigned int fragsz) 3271 { 3272 return __netdev_alloc_frag_align(fragsz, ~0u); 3273 } 3274 3275 static inline void *netdev_alloc_frag_align(unsigned int fragsz, 3276 unsigned int align) 3277 { 3278 WARN_ON_ONCE(!is_power_of_2(align)); 3279 return __netdev_alloc_frag_align(fragsz, -align); 3280 } 3281 3282 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length, 3283 gfp_t gfp_mask); 3284 3285 /** 3286 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 3287 * @dev: network device to receive on 3288 * @length: length to allocate 3289 * 3290 * Allocate a new &sk_buff and assign it a usage count of one. The 3291 * buffer has unspecified headroom built in. Users should allocate 3292 * the headroom they think they need without accounting for the 3293 * built in space. The built in space is used for optimisations. 3294 * 3295 * %NULL is returned if there is no free memory. Although this function 3296 * allocates memory it can be called from an interrupt. 3297 */ 3298 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 3299 unsigned int length) 3300 { 3301 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 3302 } 3303 3304 /* legacy helper around __netdev_alloc_skb() */ 3305 static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 3306 gfp_t gfp_mask) 3307 { 3308 return __netdev_alloc_skb(NULL, length, gfp_mask); 3309 } 3310 3311 /* legacy helper around netdev_alloc_skb() */ 3312 static inline struct sk_buff *dev_alloc_skb(unsigned int length) 3313 { 3314 return netdev_alloc_skb(NULL, length); 3315 } 3316 3317 3318 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, 3319 unsigned int length, gfp_t gfp) 3320 { 3321 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); 3322 3323 if (NET_IP_ALIGN && skb) 3324 skb_reserve(skb, NET_IP_ALIGN); 3325 return skb; 3326 } 3327 3328 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 3329 unsigned int length) 3330 { 3331 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); 3332 } 3333 3334 static inline void skb_free_frag(void *addr) 3335 { 3336 page_frag_free(addr); 3337 } 3338 3339 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask); 3340 3341 static inline void *napi_alloc_frag(unsigned int fragsz) 3342 { 3343 return __napi_alloc_frag_align(fragsz, ~0u); 3344 } 3345 3346 static inline void *napi_alloc_frag_align(unsigned int fragsz, 3347 unsigned int align) 3348 { 3349 WARN_ON_ONCE(!is_power_of_2(align)); 3350 return __napi_alloc_frag_align(fragsz, -align); 3351 } 3352 3353 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, 3354 unsigned int length, gfp_t gfp_mask); 3355 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi, 3356 unsigned int length) 3357 { 3358 return __napi_alloc_skb(napi, length, GFP_ATOMIC); 3359 } 3360 void napi_consume_skb(struct sk_buff *skb, int budget); 3361 3362 void napi_skb_free_stolen_head(struct sk_buff *skb); 3363 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason); 3364 3365 /** 3366 * __dev_alloc_pages - allocate page for network Rx 3367 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 3368 * @order: size of the allocation 3369 * 3370 * Allocate a new page. 3371 * 3372 * %NULL is returned if there is no free memory. 3373 */ 3374 static inline struct page *__dev_alloc_pages_noprof(gfp_t gfp_mask, 3375 unsigned int order) 3376 { 3377 /* This piece of code contains several assumptions. 3378 * 1. This is for device Rx, therefore a cold page is preferred. 3379 * 2. The expectation is the user wants a compound page. 3380 * 3. If requesting a order 0 page it will not be compound 3381 * due to the check to see if order has a value in prep_new_page 3382 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to 3383 * code in gfp_to_alloc_flags that should be enforcing this. 3384 */ 3385 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC; 3386 3387 return alloc_pages_node_noprof(NUMA_NO_NODE, gfp_mask, order); 3388 } 3389 #define __dev_alloc_pages(...) alloc_hooks(__dev_alloc_pages_noprof(__VA_ARGS__)) 3390 3391 #define dev_alloc_pages(_order) __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, _order) 3392 3393 /** 3394 * __dev_alloc_page - allocate a page for network Rx 3395 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 3396 * 3397 * Allocate a new page. 3398 * 3399 * %NULL is returned if there is no free memory. 3400 */ 3401 static inline struct page *__dev_alloc_page_noprof(gfp_t gfp_mask) 3402 { 3403 return __dev_alloc_pages_noprof(gfp_mask, 0); 3404 } 3405 #define __dev_alloc_page(...) alloc_hooks(__dev_alloc_page_noprof(__VA_ARGS__)) 3406 3407 #define dev_alloc_page() dev_alloc_pages(0) 3408 3409 /** 3410 * dev_page_is_reusable - check whether a page can be reused for network Rx 3411 * @page: the page to test 3412 * 3413 * A page shouldn't be considered for reusing/recycling if it was allocated 3414 * under memory pressure or at a distant memory node. 3415 * 3416 * Returns false if this page should be returned to page allocator, true 3417 * otherwise. 3418 */ 3419 static inline bool dev_page_is_reusable(const struct page *page) 3420 { 3421 return likely(page_to_nid(page) == numa_mem_id() && 3422 !page_is_pfmemalloc(page)); 3423 } 3424 3425 /** 3426 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page 3427 * @page: The page that was allocated from skb_alloc_page 3428 * @skb: The skb that may need pfmemalloc set 3429 */ 3430 static inline void skb_propagate_pfmemalloc(const struct page *page, 3431 struct sk_buff *skb) 3432 { 3433 if (page_is_pfmemalloc(page)) 3434 skb->pfmemalloc = true; 3435 } 3436 3437 /** 3438 * skb_frag_off() - Returns the offset of a skb fragment 3439 * @frag: the paged fragment 3440 */ 3441 static inline unsigned int skb_frag_off(const skb_frag_t *frag) 3442 { 3443 return frag->offset; 3444 } 3445 3446 /** 3447 * skb_frag_off_add() - Increments the offset of a skb fragment by @delta 3448 * @frag: skb fragment 3449 * @delta: value to add 3450 */ 3451 static inline void skb_frag_off_add(skb_frag_t *frag, int delta) 3452 { 3453 frag->offset += delta; 3454 } 3455 3456 /** 3457 * skb_frag_off_set() - Sets the offset of a skb fragment 3458 * @frag: skb fragment 3459 * @offset: offset of fragment 3460 */ 3461 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset) 3462 { 3463 frag->offset = offset; 3464 } 3465 3466 /** 3467 * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment 3468 * @fragto: skb fragment where offset is set 3469 * @fragfrom: skb fragment offset is copied from 3470 */ 3471 static inline void skb_frag_off_copy(skb_frag_t *fragto, 3472 const skb_frag_t *fragfrom) 3473 { 3474 fragto->offset = fragfrom->offset; 3475 } 3476 3477 /** 3478 * skb_frag_page - retrieve the page referred to by a paged fragment 3479 * @frag: the paged fragment 3480 * 3481 * Returns the &struct page associated with @frag. 3482 */ 3483 static inline struct page *skb_frag_page(const skb_frag_t *frag) 3484 { 3485 return netmem_to_page(frag->netmem); 3486 } 3487 3488 /** 3489 * __skb_frag_ref - take an addition reference on a paged fragment. 3490 * @frag: the paged fragment 3491 * 3492 * Takes an additional reference on the paged fragment @frag. 3493 */ 3494 static inline void __skb_frag_ref(skb_frag_t *frag) 3495 { 3496 get_page(skb_frag_page(frag)); 3497 } 3498 3499 /** 3500 * skb_frag_ref - take an addition reference on a paged fragment of an skb. 3501 * @skb: the buffer 3502 * @f: the fragment offset. 3503 * 3504 * Takes an additional reference on the @f'th paged fragment of @skb. 3505 */ 3506 static inline void skb_frag_ref(struct sk_buff *skb, int f) 3507 { 3508 __skb_frag_ref(&skb_shinfo(skb)->frags[f]); 3509 } 3510 3511 int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb, 3512 unsigned int headroom); 3513 int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb, 3514 struct bpf_prog *prog); 3515 bool napi_pp_put_page(struct page *page, bool napi_safe); 3516 3517 static inline void 3518 skb_page_unref(const struct sk_buff *skb, struct page *page, bool napi_safe) 3519 { 3520 #ifdef CONFIG_PAGE_POOL 3521 if (skb->pp_recycle && napi_pp_put_page(page, napi_safe)) 3522 return; 3523 #endif 3524 put_page(page); 3525 } 3526 3527 static inline void 3528 napi_frag_unref(skb_frag_t *frag, bool recycle, bool napi_safe) 3529 { 3530 struct page *page = skb_frag_page(frag); 3531 3532 #ifdef CONFIG_PAGE_POOL 3533 if (recycle && napi_pp_put_page(page, napi_safe)) 3534 return; 3535 #endif 3536 put_page(page); 3537 } 3538 3539 /** 3540 * __skb_frag_unref - release a reference on a paged fragment. 3541 * @frag: the paged fragment 3542 * @recycle: recycle the page if allocated via page_pool 3543 * 3544 * Releases a reference on the paged fragment @frag 3545 * or recycles the page via the page_pool API. 3546 */ 3547 static inline void __skb_frag_unref(skb_frag_t *frag, bool recycle) 3548 { 3549 napi_frag_unref(frag, recycle, false); 3550 } 3551 3552 /** 3553 * skb_frag_unref - release a reference on a paged fragment of an skb. 3554 * @skb: the buffer 3555 * @f: the fragment offset 3556 * 3557 * Releases a reference on the @f'th paged fragment of @skb. 3558 */ 3559 static inline void skb_frag_unref(struct sk_buff *skb, int f) 3560 { 3561 struct skb_shared_info *shinfo = skb_shinfo(skb); 3562 3563 if (!skb_zcopy_managed(skb)) 3564 __skb_frag_unref(&shinfo->frags[f], skb->pp_recycle); 3565 } 3566 3567 /** 3568 * skb_frag_address - gets the address of the data contained in a paged fragment 3569 * @frag: the paged fragment buffer 3570 * 3571 * Returns the address of the data within @frag. The page must already 3572 * be mapped. 3573 */ 3574 static inline void *skb_frag_address(const skb_frag_t *frag) 3575 { 3576 return page_address(skb_frag_page(frag)) + skb_frag_off(frag); 3577 } 3578 3579 /** 3580 * skb_frag_address_safe - gets the address of the data contained in a paged fragment 3581 * @frag: the paged fragment buffer 3582 * 3583 * Returns the address of the data within @frag. Checks that the page 3584 * is mapped and returns %NULL otherwise. 3585 */ 3586 static inline void *skb_frag_address_safe(const skb_frag_t *frag) 3587 { 3588 void *ptr = page_address(skb_frag_page(frag)); 3589 if (unlikely(!ptr)) 3590 return NULL; 3591 3592 return ptr + skb_frag_off(frag); 3593 } 3594 3595 /** 3596 * skb_frag_page_copy() - sets the page in a fragment from another fragment 3597 * @fragto: skb fragment where page is set 3598 * @fragfrom: skb fragment page is copied from 3599 */ 3600 static inline void skb_frag_page_copy(skb_frag_t *fragto, 3601 const skb_frag_t *fragfrom) 3602 { 3603 fragto->netmem = fragfrom->netmem; 3604 } 3605 3606 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio); 3607 3608 /** 3609 * skb_frag_dma_map - maps a paged fragment via the DMA API 3610 * @dev: the device to map the fragment to 3611 * @frag: the paged fragment to map 3612 * @offset: the offset within the fragment (starting at the 3613 * fragment's own offset) 3614 * @size: the number of bytes to map 3615 * @dir: the direction of the mapping (``PCI_DMA_*``) 3616 * 3617 * Maps the page associated with @frag to @device. 3618 */ 3619 static inline dma_addr_t skb_frag_dma_map(struct device *dev, 3620 const skb_frag_t *frag, 3621 size_t offset, size_t size, 3622 enum dma_data_direction dir) 3623 { 3624 return dma_map_page(dev, skb_frag_page(frag), 3625 skb_frag_off(frag) + offset, size, dir); 3626 } 3627 3628 static inline struct sk_buff *pskb_copy(struct sk_buff *skb, 3629 gfp_t gfp_mask) 3630 { 3631 return __pskb_copy(skb, skb_headroom(skb), gfp_mask); 3632 } 3633 3634 3635 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb, 3636 gfp_t gfp_mask) 3637 { 3638 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true); 3639 } 3640 3641 3642 /** 3643 * skb_clone_writable - is the header of a clone writable 3644 * @skb: buffer to check 3645 * @len: length up to which to write 3646 * 3647 * Returns true if modifying the header part of the cloned buffer 3648 * does not requires the data to be copied. 3649 */ 3650 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) 3651 { 3652 return !skb_header_cloned(skb) && 3653 skb_headroom(skb) + len <= skb->hdr_len; 3654 } 3655 3656 static inline int skb_try_make_writable(struct sk_buff *skb, 3657 unsigned int write_len) 3658 { 3659 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) && 3660 pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 3661 } 3662 3663 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 3664 int cloned) 3665 { 3666 int delta = 0; 3667 3668 if (headroom > skb_headroom(skb)) 3669 delta = headroom - skb_headroom(skb); 3670 3671 if (delta || cloned) 3672 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 3673 GFP_ATOMIC); 3674 return 0; 3675 } 3676 3677 /** 3678 * skb_cow - copy header of skb when it is required 3679 * @skb: buffer to cow 3680 * @headroom: needed headroom 3681 * 3682 * If the skb passed lacks sufficient headroom or its data part 3683 * is shared, data is reallocated. If reallocation fails, an error 3684 * is returned and original skb is not changed. 3685 * 3686 * The result is skb with writable area skb->head...skb->tail 3687 * and at least @headroom of space at head. 3688 */ 3689 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 3690 { 3691 return __skb_cow(skb, headroom, skb_cloned(skb)); 3692 } 3693 3694 /** 3695 * skb_cow_head - skb_cow but only making the head writable 3696 * @skb: buffer to cow 3697 * @headroom: needed headroom 3698 * 3699 * This function is identical to skb_cow except that we replace the 3700 * skb_cloned check by skb_header_cloned. It should be used when 3701 * you only need to push on some header and do not need to modify 3702 * the data. 3703 */ 3704 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 3705 { 3706 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 3707 } 3708 3709 /** 3710 * skb_padto - pad an skbuff up to a minimal size 3711 * @skb: buffer to pad 3712 * @len: minimal length 3713 * 3714 * Pads up a buffer to ensure the trailing bytes exist and are 3715 * blanked. If the buffer already contains sufficient data it 3716 * is untouched. Otherwise it is extended. Returns zero on 3717 * success. The skb is freed on error. 3718 */ 3719 static inline int skb_padto(struct sk_buff *skb, unsigned int len) 3720 { 3721 unsigned int size = skb->len; 3722 if (likely(size >= len)) 3723 return 0; 3724 return skb_pad(skb, len - size); 3725 } 3726 3727 /** 3728 * __skb_put_padto - increase size and pad an skbuff up to a minimal size 3729 * @skb: buffer to pad 3730 * @len: minimal length 3731 * @free_on_error: free buffer on error 3732 * 3733 * Pads up a buffer to ensure the trailing bytes exist and are 3734 * blanked. If the buffer already contains sufficient data it 3735 * is untouched. Otherwise it is extended. Returns zero on 3736 * success. The skb is freed on error if @free_on_error is true. 3737 */ 3738 static inline int __must_check __skb_put_padto(struct sk_buff *skb, 3739 unsigned int len, 3740 bool free_on_error) 3741 { 3742 unsigned int size = skb->len; 3743 3744 if (unlikely(size < len)) { 3745 len -= size; 3746 if (__skb_pad(skb, len, free_on_error)) 3747 return -ENOMEM; 3748 __skb_put(skb, len); 3749 } 3750 return 0; 3751 } 3752 3753 /** 3754 * skb_put_padto - increase size and pad an skbuff up to a minimal size 3755 * @skb: buffer to pad 3756 * @len: minimal length 3757 * 3758 * Pads up a buffer to ensure the trailing bytes exist and are 3759 * blanked. If the buffer already contains sufficient data it 3760 * is untouched. Otherwise it is extended. Returns zero on 3761 * success. The skb is freed on error. 3762 */ 3763 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len) 3764 { 3765 return __skb_put_padto(skb, len, true); 3766 } 3767 3768 bool csum_and_copy_from_iter_full(void *addr, size_t bytes, __wsum *csum, struct iov_iter *i) 3769 __must_check; 3770 3771 static inline int skb_add_data(struct sk_buff *skb, 3772 struct iov_iter *from, int copy) 3773 { 3774 const int off = skb->len; 3775 3776 if (skb->ip_summed == CHECKSUM_NONE) { 3777 __wsum csum = 0; 3778 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy, 3779 &csum, from)) { 3780 skb->csum = csum_block_add(skb->csum, csum, off); 3781 return 0; 3782 } 3783 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from)) 3784 return 0; 3785 3786 __skb_trim(skb, off); 3787 return -EFAULT; 3788 } 3789 3790 static inline bool skb_can_coalesce(struct sk_buff *skb, int i, 3791 const struct page *page, int off) 3792 { 3793 if (skb_zcopy(skb)) 3794 return false; 3795 if (i) { 3796 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1]; 3797 3798 return page == skb_frag_page(frag) && 3799 off == skb_frag_off(frag) + skb_frag_size(frag); 3800 } 3801 return false; 3802 } 3803 3804 static inline int __skb_linearize(struct sk_buff *skb) 3805 { 3806 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 3807 } 3808 3809 /** 3810 * skb_linearize - convert paged skb to linear one 3811 * @skb: buffer to linarize 3812 * 3813 * If there is no free memory -ENOMEM is returned, otherwise zero 3814 * is returned and the old skb data released. 3815 */ 3816 static inline int skb_linearize(struct sk_buff *skb) 3817 { 3818 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 3819 } 3820 3821 /** 3822 * skb_has_shared_frag - can any frag be overwritten 3823 * @skb: buffer to test 3824 * 3825 * Return true if the skb has at least one frag that might be modified 3826 * by an external entity (as in vmsplice()/sendfile()) 3827 */ 3828 static inline bool skb_has_shared_frag(const struct sk_buff *skb) 3829 { 3830 return skb_is_nonlinear(skb) && 3831 skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG; 3832 } 3833 3834 /** 3835 * skb_linearize_cow - make sure skb is linear and writable 3836 * @skb: buffer to process 3837 * 3838 * If there is no free memory -ENOMEM is returned, otherwise zero 3839 * is returned and the old skb data released. 3840 */ 3841 static inline int skb_linearize_cow(struct sk_buff *skb) 3842 { 3843 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 3844 __skb_linearize(skb) : 0; 3845 } 3846 3847 static __always_inline void 3848 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3849 unsigned int off) 3850 { 3851 if (skb->ip_summed == CHECKSUM_COMPLETE) 3852 skb->csum = csum_block_sub(skb->csum, 3853 csum_partial(start, len, 0), off); 3854 else if (skb->ip_summed == CHECKSUM_PARTIAL && 3855 skb_checksum_start_offset(skb) < 0) 3856 skb->ip_summed = CHECKSUM_NONE; 3857 } 3858 3859 /** 3860 * skb_postpull_rcsum - update checksum for received skb after pull 3861 * @skb: buffer to update 3862 * @start: start of data before pull 3863 * @len: length of data pulled 3864 * 3865 * After doing a pull on a received packet, you need to call this to 3866 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 3867 * CHECKSUM_NONE so that it can be recomputed from scratch. 3868 */ 3869 static inline void skb_postpull_rcsum(struct sk_buff *skb, 3870 const void *start, unsigned int len) 3871 { 3872 if (skb->ip_summed == CHECKSUM_COMPLETE) 3873 skb->csum = wsum_negate(csum_partial(start, len, 3874 wsum_negate(skb->csum))); 3875 else if (skb->ip_summed == CHECKSUM_PARTIAL && 3876 skb_checksum_start_offset(skb) < 0) 3877 skb->ip_summed = CHECKSUM_NONE; 3878 } 3879 3880 static __always_inline void 3881 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3882 unsigned int off) 3883 { 3884 if (skb->ip_summed == CHECKSUM_COMPLETE) 3885 skb->csum = csum_block_add(skb->csum, 3886 csum_partial(start, len, 0), off); 3887 } 3888 3889 /** 3890 * skb_postpush_rcsum - update checksum for received skb after push 3891 * @skb: buffer to update 3892 * @start: start of data after push 3893 * @len: length of data pushed 3894 * 3895 * After doing a push on a received packet, you need to call this to 3896 * update the CHECKSUM_COMPLETE checksum. 3897 */ 3898 static inline void skb_postpush_rcsum(struct sk_buff *skb, 3899 const void *start, unsigned int len) 3900 { 3901 __skb_postpush_rcsum(skb, start, len, 0); 3902 } 3903 3904 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 3905 3906 /** 3907 * skb_push_rcsum - push skb and update receive checksum 3908 * @skb: buffer to update 3909 * @len: length of data pulled 3910 * 3911 * This function performs an skb_push on the packet and updates 3912 * the CHECKSUM_COMPLETE checksum. It should be used on 3913 * receive path processing instead of skb_push unless you know 3914 * that the checksum difference is zero (e.g., a valid IP header) 3915 * or you are setting ip_summed to CHECKSUM_NONE. 3916 */ 3917 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len) 3918 { 3919 skb_push(skb, len); 3920 skb_postpush_rcsum(skb, skb->data, len); 3921 return skb->data; 3922 } 3923 3924 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len); 3925 /** 3926 * pskb_trim_rcsum - trim received skb and update checksum 3927 * @skb: buffer to trim 3928 * @len: new length 3929 * 3930 * This is exactly the same as pskb_trim except that it ensures the 3931 * checksum of received packets are still valid after the operation. 3932 * It can change skb pointers. 3933 */ 3934 3935 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3936 { 3937 if (likely(len >= skb->len)) 3938 return 0; 3939 return pskb_trim_rcsum_slow(skb, len); 3940 } 3941 3942 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3943 { 3944 if (skb->ip_summed == CHECKSUM_COMPLETE) 3945 skb->ip_summed = CHECKSUM_NONE; 3946 __skb_trim(skb, len); 3947 return 0; 3948 } 3949 3950 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len) 3951 { 3952 if (skb->ip_summed == CHECKSUM_COMPLETE) 3953 skb->ip_summed = CHECKSUM_NONE; 3954 return __skb_grow(skb, len); 3955 } 3956 3957 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode) 3958 #define skb_rb_first(root) rb_to_skb(rb_first(root)) 3959 #define skb_rb_last(root) rb_to_skb(rb_last(root)) 3960 #define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode)) 3961 #define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode)) 3962 3963 #define skb_queue_walk(queue, skb) \ 3964 for (skb = (queue)->next; \ 3965 skb != (struct sk_buff *)(queue); \ 3966 skb = skb->next) 3967 3968 #define skb_queue_walk_safe(queue, skb, tmp) \ 3969 for (skb = (queue)->next, tmp = skb->next; \ 3970 skb != (struct sk_buff *)(queue); \ 3971 skb = tmp, tmp = skb->next) 3972 3973 #define skb_queue_walk_from(queue, skb) \ 3974 for (; skb != (struct sk_buff *)(queue); \ 3975 skb = skb->next) 3976 3977 #define skb_rbtree_walk(skb, root) \ 3978 for (skb = skb_rb_first(root); skb != NULL; \ 3979 skb = skb_rb_next(skb)) 3980 3981 #define skb_rbtree_walk_from(skb) \ 3982 for (; skb != NULL; \ 3983 skb = skb_rb_next(skb)) 3984 3985 #define skb_rbtree_walk_from_safe(skb, tmp) \ 3986 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \ 3987 skb = tmp) 3988 3989 #define skb_queue_walk_from_safe(queue, skb, tmp) \ 3990 for (tmp = skb->next; \ 3991 skb != (struct sk_buff *)(queue); \ 3992 skb = tmp, tmp = skb->next) 3993 3994 #define skb_queue_reverse_walk(queue, skb) \ 3995 for (skb = (queue)->prev; \ 3996 skb != (struct sk_buff *)(queue); \ 3997 skb = skb->prev) 3998 3999 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \ 4000 for (skb = (queue)->prev, tmp = skb->prev; \ 4001 skb != (struct sk_buff *)(queue); \ 4002 skb = tmp, tmp = skb->prev) 4003 4004 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ 4005 for (tmp = skb->prev; \ 4006 skb != (struct sk_buff *)(queue); \ 4007 skb = tmp, tmp = skb->prev) 4008 4009 static inline bool skb_has_frag_list(const struct sk_buff *skb) 4010 { 4011 return skb_shinfo(skb)->frag_list != NULL; 4012 } 4013 4014 static inline void skb_frag_list_init(struct sk_buff *skb) 4015 { 4016 skb_shinfo(skb)->frag_list = NULL; 4017 } 4018 4019 #define skb_walk_frags(skb, iter) \ 4020 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 4021 4022 4023 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue, 4024 int *err, long *timeo_p, 4025 const struct sk_buff *skb); 4026 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk, 4027 struct sk_buff_head *queue, 4028 unsigned int flags, 4029 int *off, int *err, 4030 struct sk_buff **last); 4031 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, 4032 struct sk_buff_head *queue, 4033 unsigned int flags, int *off, int *err, 4034 struct sk_buff **last); 4035 struct sk_buff *__skb_recv_datagram(struct sock *sk, 4036 struct sk_buff_head *sk_queue, 4037 unsigned int flags, int *off, int *err); 4038 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err); 4039 __poll_t datagram_poll(struct file *file, struct socket *sock, 4040 struct poll_table_struct *wait); 4041 int skb_copy_datagram_iter(const struct sk_buff *from, int offset, 4042 struct iov_iter *to, int size); 4043 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset, 4044 struct msghdr *msg, int size) 4045 { 4046 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size); 4047 } 4048 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen, 4049 struct msghdr *msg); 4050 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset, 4051 struct iov_iter *to, int len, 4052 struct ahash_request *hash); 4053 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset, 4054 struct iov_iter *from, int len); 4055 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm); 4056 void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 4057 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len); 4058 static inline void skb_free_datagram_locked(struct sock *sk, 4059 struct sk_buff *skb) 4060 { 4061 __skb_free_datagram_locked(sk, skb, 0); 4062 } 4063 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags); 4064 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len); 4065 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len); 4066 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, 4067 int len); 4068 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 4069 struct pipe_inode_info *pipe, unsigned int len, 4070 unsigned int flags); 4071 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 4072 int len); 4073 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len); 4074 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 4075 unsigned int skb_zerocopy_headlen(const struct sk_buff *from); 4076 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from, 4077 int len, int hlen); 4078 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len); 4079 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen); 4080 void skb_scrub_packet(struct sk_buff *skb, bool xnet); 4081 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features); 4082 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features, 4083 unsigned int offset); 4084 struct sk_buff *skb_vlan_untag(struct sk_buff *skb); 4085 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len); 4086 int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev); 4087 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci); 4088 int skb_vlan_pop(struct sk_buff *skb); 4089 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci); 4090 int skb_eth_pop(struct sk_buff *skb); 4091 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 4092 const unsigned char *src); 4093 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 4094 int mac_len, bool ethernet); 4095 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 4096 bool ethernet); 4097 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse); 4098 int skb_mpls_dec_ttl(struct sk_buff *skb); 4099 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy, 4100 gfp_t gfp); 4101 4102 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len) 4103 { 4104 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT; 4105 } 4106 4107 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len) 4108 { 4109 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT; 4110 } 4111 4112 struct skb_checksum_ops { 4113 __wsum (*update)(const void *mem, int len, __wsum wsum); 4114 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len); 4115 }; 4116 4117 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly; 4118 4119 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 4120 __wsum csum, const struct skb_checksum_ops *ops); 4121 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len, 4122 __wsum csum); 4123 4124 static inline void * __must_check 4125 __skb_header_pointer(const struct sk_buff *skb, int offset, int len, 4126 const void *data, int hlen, void *buffer) 4127 { 4128 if (likely(hlen - offset >= len)) 4129 return (void *)data + offset; 4130 4131 if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0)) 4132 return NULL; 4133 4134 return buffer; 4135 } 4136 4137 static inline void * __must_check 4138 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer) 4139 { 4140 return __skb_header_pointer(skb, offset, len, skb->data, 4141 skb_headlen(skb), buffer); 4142 } 4143 4144 static inline void * __must_check 4145 skb_pointer_if_linear(const struct sk_buff *skb, int offset, int len) 4146 { 4147 if (likely(skb_headlen(skb) - offset >= len)) 4148 return skb->data + offset; 4149 return NULL; 4150 } 4151 4152 /** 4153 * skb_needs_linearize - check if we need to linearize a given skb 4154 * depending on the given device features. 4155 * @skb: socket buffer to check 4156 * @features: net device features 4157 * 4158 * Returns true if either: 4159 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 4160 * 2. skb is fragmented and the device does not support SG. 4161 */ 4162 static inline bool skb_needs_linearize(struct sk_buff *skb, 4163 netdev_features_t features) 4164 { 4165 return skb_is_nonlinear(skb) && 4166 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) || 4167 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG))); 4168 } 4169 4170 static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 4171 void *to, 4172 const unsigned int len) 4173 { 4174 memcpy(to, skb->data, len); 4175 } 4176 4177 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 4178 const int offset, void *to, 4179 const unsigned int len) 4180 { 4181 memcpy(to, skb->data + offset, len); 4182 } 4183 4184 static inline void skb_copy_to_linear_data(struct sk_buff *skb, 4185 const void *from, 4186 const unsigned int len) 4187 { 4188 memcpy(skb->data, from, len); 4189 } 4190 4191 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 4192 const int offset, 4193 const void *from, 4194 const unsigned int len) 4195 { 4196 memcpy(skb->data + offset, from, len); 4197 } 4198 4199 void skb_init(void); 4200 4201 static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 4202 { 4203 return skb->tstamp; 4204 } 4205 4206 /** 4207 * skb_get_timestamp - get timestamp from a skb 4208 * @skb: skb to get stamp from 4209 * @stamp: pointer to struct __kernel_old_timeval to store stamp in 4210 * 4211 * Timestamps are stored in the skb as offsets to a base timestamp. 4212 * This function converts the offset back to a struct timeval and stores 4213 * it in stamp. 4214 */ 4215 static inline void skb_get_timestamp(const struct sk_buff *skb, 4216 struct __kernel_old_timeval *stamp) 4217 { 4218 *stamp = ns_to_kernel_old_timeval(skb->tstamp); 4219 } 4220 4221 static inline void skb_get_new_timestamp(const struct sk_buff *skb, 4222 struct __kernel_sock_timeval *stamp) 4223 { 4224 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 4225 4226 stamp->tv_sec = ts.tv_sec; 4227 stamp->tv_usec = ts.tv_nsec / 1000; 4228 } 4229 4230 static inline void skb_get_timestampns(const struct sk_buff *skb, 4231 struct __kernel_old_timespec *stamp) 4232 { 4233 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 4234 4235 stamp->tv_sec = ts.tv_sec; 4236 stamp->tv_nsec = ts.tv_nsec; 4237 } 4238 4239 static inline void skb_get_new_timestampns(const struct sk_buff *skb, 4240 struct __kernel_timespec *stamp) 4241 { 4242 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 4243 4244 stamp->tv_sec = ts.tv_sec; 4245 stamp->tv_nsec = ts.tv_nsec; 4246 } 4247 4248 static inline void __net_timestamp(struct sk_buff *skb) 4249 { 4250 skb->tstamp = ktime_get_real(); 4251 skb->mono_delivery_time = 0; 4252 } 4253 4254 static inline ktime_t net_timedelta(ktime_t t) 4255 { 4256 return ktime_sub(ktime_get_real(), t); 4257 } 4258 4259 static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt, 4260 bool mono) 4261 { 4262 skb->tstamp = kt; 4263 skb->mono_delivery_time = kt && mono; 4264 } 4265 4266 DECLARE_STATIC_KEY_FALSE(netstamp_needed_key); 4267 4268 /* It is used in the ingress path to clear the delivery_time. 4269 * If needed, set the skb->tstamp to the (rcv) timestamp. 4270 */ 4271 static inline void skb_clear_delivery_time(struct sk_buff *skb) 4272 { 4273 if (skb->mono_delivery_time) { 4274 skb->mono_delivery_time = 0; 4275 if (static_branch_unlikely(&netstamp_needed_key)) 4276 skb->tstamp = ktime_get_real(); 4277 else 4278 skb->tstamp = 0; 4279 } 4280 } 4281 4282 static inline void skb_clear_tstamp(struct sk_buff *skb) 4283 { 4284 if (skb->mono_delivery_time) 4285 return; 4286 4287 skb->tstamp = 0; 4288 } 4289 4290 static inline ktime_t skb_tstamp(const struct sk_buff *skb) 4291 { 4292 if (skb->mono_delivery_time) 4293 return 0; 4294 4295 return skb->tstamp; 4296 } 4297 4298 static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond) 4299 { 4300 if (!skb->mono_delivery_time && skb->tstamp) 4301 return skb->tstamp; 4302 4303 if (static_branch_unlikely(&netstamp_needed_key) || cond) 4304 return ktime_get_real(); 4305 4306 return 0; 4307 } 4308 4309 static inline u8 skb_metadata_len(const struct sk_buff *skb) 4310 { 4311 return skb_shinfo(skb)->meta_len; 4312 } 4313 4314 static inline void *skb_metadata_end(const struct sk_buff *skb) 4315 { 4316 return skb_mac_header(skb); 4317 } 4318 4319 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a, 4320 const struct sk_buff *skb_b, 4321 u8 meta_len) 4322 { 4323 const void *a = skb_metadata_end(skb_a); 4324 const void *b = skb_metadata_end(skb_b); 4325 u64 diffs = 0; 4326 4327 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) || 4328 BITS_PER_LONG != 64) 4329 goto slow; 4330 4331 /* Using more efficient variant than plain call to memcmp(). */ 4332 switch (meta_len) { 4333 #define __it(x, op) (x -= sizeof(u##op)) 4334 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op)) 4335 case 32: diffs |= __it_diff(a, b, 64); 4336 fallthrough; 4337 case 24: diffs |= __it_diff(a, b, 64); 4338 fallthrough; 4339 case 16: diffs |= __it_diff(a, b, 64); 4340 fallthrough; 4341 case 8: diffs |= __it_diff(a, b, 64); 4342 break; 4343 case 28: diffs |= __it_diff(a, b, 64); 4344 fallthrough; 4345 case 20: diffs |= __it_diff(a, b, 64); 4346 fallthrough; 4347 case 12: diffs |= __it_diff(a, b, 64); 4348 fallthrough; 4349 case 4: diffs |= __it_diff(a, b, 32); 4350 break; 4351 default: 4352 slow: 4353 return memcmp(a - meta_len, b - meta_len, meta_len); 4354 } 4355 return diffs; 4356 } 4357 4358 static inline bool skb_metadata_differs(const struct sk_buff *skb_a, 4359 const struct sk_buff *skb_b) 4360 { 4361 u8 len_a = skb_metadata_len(skb_a); 4362 u8 len_b = skb_metadata_len(skb_b); 4363 4364 if (!(len_a | len_b)) 4365 return false; 4366 4367 return len_a != len_b ? 4368 true : __skb_metadata_differs(skb_a, skb_b, len_a); 4369 } 4370 4371 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len) 4372 { 4373 skb_shinfo(skb)->meta_len = meta_len; 4374 } 4375 4376 static inline void skb_metadata_clear(struct sk_buff *skb) 4377 { 4378 skb_metadata_set(skb, 0); 4379 } 4380 4381 struct sk_buff *skb_clone_sk(struct sk_buff *skb); 4382 4383 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 4384 4385 void skb_clone_tx_timestamp(struct sk_buff *skb); 4386 bool skb_defer_rx_timestamp(struct sk_buff *skb); 4387 4388 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 4389 4390 static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 4391 { 4392 } 4393 4394 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 4395 { 4396 return false; 4397 } 4398 4399 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 4400 4401 /** 4402 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 4403 * 4404 * PHY drivers may accept clones of transmitted packets for 4405 * timestamping via their phy_driver.txtstamp method. These drivers 4406 * must call this function to return the skb back to the stack with a 4407 * timestamp. 4408 * 4409 * @skb: clone of the original outgoing packet 4410 * @hwtstamps: hardware time stamps 4411 * 4412 */ 4413 void skb_complete_tx_timestamp(struct sk_buff *skb, 4414 struct skb_shared_hwtstamps *hwtstamps); 4415 4416 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb, 4417 struct skb_shared_hwtstamps *hwtstamps, 4418 struct sock *sk, int tstype); 4419 4420 /** 4421 * skb_tstamp_tx - queue clone of skb with send time stamps 4422 * @orig_skb: the original outgoing packet 4423 * @hwtstamps: hardware time stamps, may be NULL if not available 4424 * 4425 * If the skb has a socket associated, then this function clones the 4426 * skb (thus sharing the actual data and optional structures), stores 4427 * the optional hardware time stamping information (if non NULL) or 4428 * generates a software time stamp (otherwise), then queues the clone 4429 * to the error queue of the socket. Errors are silently ignored. 4430 */ 4431 void skb_tstamp_tx(struct sk_buff *orig_skb, 4432 struct skb_shared_hwtstamps *hwtstamps); 4433 4434 /** 4435 * skb_tx_timestamp() - Driver hook for transmit timestamping 4436 * 4437 * Ethernet MAC Drivers should call this function in their hard_xmit() 4438 * function immediately before giving the sk_buff to the MAC hardware. 4439 * 4440 * Specifically, one should make absolutely sure that this function is 4441 * called before TX completion of this packet can trigger. Otherwise 4442 * the packet could potentially already be freed. 4443 * 4444 * @skb: A socket buffer. 4445 */ 4446 static inline void skb_tx_timestamp(struct sk_buff *skb) 4447 { 4448 skb_clone_tx_timestamp(skb); 4449 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP) 4450 skb_tstamp_tx(skb, NULL); 4451 } 4452 4453 /** 4454 * skb_complete_wifi_ack - deliver skb with wifi status 4455 * 4456 * @skb: the original outgoing packet 4457 * @acked: ack status 4458 * 4459 */ 4460 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); 4461 4462 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 4463 __sum16 __skb_checksum_complete(struct sk_buff *skb); 4464 4465 static inline int skb_csum_unnecessary(const struct sk_buff *skb) 4466 { 4467 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) || 4468 skb->csum_valid || 4469 (skb->ip_summed == CHECKSUM_PARTIAL && 4470 skb_checksum_start_offset(skb) >= 0)); 4471 } 4472 4473 /** 4474 * skb_checksum_complete - Calculate checksum of an entire packet 4475 * @skb: packet to process 4476 * 4477 * This function calculates the checksum over the entire packet plus 4478 * the value of skb->csum. The latter can be used to supply the 4479 * checksum of a pseudo header as used by TCP/UDP. It returns the 4480 * checksum. 4481 * 4482 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 4483 * this function can be used to verify that checksum on received 4484 * packets. In that case the function should return zero if the 4485 * checksum is correct. In particular, this function will return zero 4486 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 4487 * hardware has already verified the correctness of the checksum. 4488 */ 4489 static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 4490 { 4491 return skb_csum_unnecessary(skb) ? 4492 0 : __skb_checksum_complete(skb); 4493 } 4494 4495 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb) 4496 { 4497 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4498 if (skb->csum_level == 0) 4499 skb->ip_summed = CHECKSUM_NONE; 4500 else 4501 skb->csum_level--; 4502 } 4503 } 4504 4505 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb) 4506 { 4507 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4508 if (skb->csum_level < SKB_MAX_CSUM_LEVEL) 4509 skb->csum_level++; 4510 } else if (skb->ip_summed == CHECKSUM_NONE) { 4511 skb->ip_summed = CHECKSUM_UNNECESSARY; 4512 skb->csum_level = 0; 4513 } 4514 } 4515 4516 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb) 4517 { 4518 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4519 skb->ip_summed = CHECKSUM_NONE; 4520 skb->csum_level = 0; 4521 } 4522 } 4523 4524 /* Check if we need to perform checksum complete validation. 4525 * 4526 * Returns true if checksum complete is needed, false otherwise 4527 * (either checksum is unnecessary or zero checksum is allowed). 4528 */ 4529 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb, 4530 bool zero_okay, 4531 __sum16 check) 4532 { 4533 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) { 4534 skb->csum_valid = 1; 4535 __skb_decr_checksum_unnecessary(skb); 4536 return false; 4537 } 4538 4539 return true; 4540 } 4541 4542 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly 4543 * in checksum_init. 4544 */ 4545 #define CHECKSUM_BREAK 76 4546 4547 /* Unset checksum-complete 4548 * 4549 * Unset checksum complete can be done when packet is being modified 4550 * (uncompressed for instance) and checksum-complete value is 4551 * invalidated. 4552 */ 4553 static inline void skb_checksum_complete_unset(struct sk_buff *skb) 4554 { 4555 if (skb->ip_summed == CHECKSUM_COMPLETE) 4556 skb->ip_summed = CHECKSUM_NONE; 4557 } 4558 4559 /* Validate (init) checksum based on checksum complete. 4560 * 4561 * Return values: 4562 * 0: checksum is validated or try to in skb_checksum_complete. In the latter 4563 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo 4564 * checksum is stored in skb->csum for use in __skb_checksum_complete 4565 * non-zero: value of invalid checksum 4566 * 4567 */ 4568 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb, 4569 bool complete, 4570 __wsum psum) 4571 { 4572 if (skb->ip_summed == CHECKSUM_COMPLETE) { 4573 if (!csum_fold(csum_add(psum, skb->csum))) { 4574 skb->csum_valid = 1; 4575 return 0; 4576 } 4577 } 4578 4579 skb->csum = psum; 4580 4581 if (complete || skb->len <= CHECKSUM_BREAK) { 4582 __sum16 csum; 4583 4584 csum = __skb_checksum_complete(skb); 4585 skb->csum_valid = !csum; 4586 return csum; 4587 } 4588 4589 return 0; 4590 } 4591 4592 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto) 4593 { 4594 return 0; 4595 } 4596 4597 /* Perform checksum validate (init). Note that this is a macro since we only 4598 * want to calculate the pseudo header which is an input function if necessary. 4599 * First we try to validate without any computation (checksum unnecessary) and 4600 * then calculate based on checksum complete calling the function to compute 4601 * pseudo header. 4602 * 4603 * Return values: 4604 * 0: checksum is validated or try to in skb_checksum_complete 4605 * non-zero: value of invalid checksum 4606 */ 4607 #define __skb_checksum_validate(skb, proto, complete, \ 4608 zero_okay, check, compute_pseudo) \ 4609 ({ \ 4610 __sum16 __ret = 0; \ 4611 skb->csum_valid = 0; \ 4612 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \ 4613 __ret = __skb_checksum_validate_complete(skb, \ 4614 complete, compute_pseudo(skb, proto)); \ 4615 __ret; \ 4616 }) 4617 4618 #define skb_checksum_init(skb, proto, compute_pseudo) \ 4619 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo) 4620 4621 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \ 4622 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo) 4623 4624 #define skb_checksum_validate(skb, proto, compute_pseudo) \ 4625 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo) 4626 4627 #define skb_checksum_validate_zero_check(skb, proto, check, \ 4628 compute_pseudo) \ 4629 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo) 4630 4631 #define skb_checksum_simple_validate(skb) \ 4632 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo) 4633 4634 static inline bool __skb_checksum_convert_check(struct sk_buff *skb) 4635 { 4636 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid); 4637 } 4638 4639 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo) 4640 { 4641 skb->csum = ~pseudo; 4642 skb->ip_summed = CHECKSUM_COMPLETE; 4643 } 4644 4645 #define skb_checksum_try_convert(skb, proto, compute_pseudo) \ 4646 do { \ 4647 if (__skb_checksum_convert_check(skb)) \ 4648 __skb_checksum_convert(skb, compute_pseudo(skb, proto)); \ 4649 } while (0) 4650 4651 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr, 4652 u16 start, u16 offset) 4653 { 4654 skb->ip_summed = CHECKSUM_PARTIAL; 4655 skb->csum_start = ((unsigned char *)ptr + start) - skb->head; 4656 skb->csum_offset = offset - start; 4657 } 4658 4659 /* Update skbuf and packet to reflect the remote checksum offload operation. 4660 * When called, ptr indicates the starting point for skb->csum when 4661 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete 4662 * here, skb_postpull_rcsum is done so skb->csum start is ptr. 4663 */ 4664 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr, 4665 int start, int offset, bool nopartial) 4666 { 4667 __wsum delta; 4668 4669 if (!nopartial) { 4670 skb_remcsum_adjust_partial(skb, ptr, start, offset); 4671 return; 4672 } 4673 4674 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) { 4675 __skb_checksum_complete(skb); 4676 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data); 4677 } 4678 4679 delta = remcsum_adjust(ptr, skb->csum, start, offset); 4680 4681 /* Adjust skb->csum since we changed the packet */ 4682 skb->csum = csum_add(skb->csum, delta); 4683 } 4684 4685 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb) 4686 { 4687 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 4688 return (void *)(skb->_nfct & NFCT_PTRMASK); 4689 #else 4690 return NULL; 4691 #endif 4692 } 4693 4694 static inline unsigned long skb_get_nfct(const struct sk_buff *skb) 4695 { 4696 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 4697 return skb->_nfct; 4698 #else 4699 return 0UL; 4700 #endif 4701 } 4702 4703 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct) 4704 { 4705 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 4706 skb->slow_gro |= !!nfct; 4707 skb->_nfct = nfct; 4708 #endif 4709 } 4710 4711 #ifdef CONFIG_SKB_EXTENSIONS 4712 enum skb_ext_id { 4713 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4714 SKB_EXT_BRIDGE_NF, 4715 #endif 4716 #ifdef CONFIG_XFRM 4717 SKB_EXT_SEC_PATH, 4718 #endif 4719 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4720 TC_SKB_EXT, 4721 #endif 4722 #if IS_ENABLED(CONFIG_MPTCP) 4723 SKB_EXT_MPTCP, 4724 #endif 4725 #if IS_ENABLED(CONFIG_MCTP_FLOWS) 4726 SKB_EXT_MCTP, 4727 #endif 4728 SKB_EXT_NUM, /* must be last */ 4729 }; 4730 4731 /** 4732 * struct skb_ext - sk_buff extensions 4733 * @refcnt: 1 on allocation, deallocated on 0 4734 * @offset: offset to add to @data to obtain extension address 4735 * @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units 4736 * @data: start of extension data, variable sized 4737 * 4738 * Note: offsets/lengths are stored in chunks of 8 bytes, this allows 4739 * to use 'u8' types while allowing up to 2kb worth of extension data. 4740 */ 4741 struct skb_ext { 4742 refcount_t refcnt; 4743 u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */ 4744 u8 chunks; /* same */ 4745 char data[] __aligned(8); 4746 }; 4747 4748 struct skb_ext *__skb_ext_alloc(gfp_t flags); 4749 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 4750 struct skb_ext *ext); 4751 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id); 4752 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id); 4753 void __skb_ext_put(struct skb_ext *ext); 4754 4755 static inline void skb_ext_put(struct sk_buff *skb) 4756 { 4757 if (skb->active_extensions) 4758 __skb_ext_put(skb->extensions); 4759 } 4760 4761 static inline void __skb_ext_copy(struct sk_buff *dst, 4762 const struct sk_buff *src) 4763 { 4764 dst->active_extensions = src->active_extensions; 4765 4766 if (src->active_extensions) { 4767 struct skb_ext *ext = src->extensions; 4768 4769 refcount_inc(&ext->refcnt); 4770 dst->extensions = ext; 4771 } 4772 } 4773 4774 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src) 4775 { 4776 skb_ext_put(dst); 4777 __skb_ext_copy(dst, src); 4778 } 4779 4780 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i) 4781 { 4782 return !!ext->offset[i]; 4783 } 4784 4785 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id) 4786 { 4787 return skb->active_extensions & (1 << id); 4788 } 4789 4790 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 4791 { 4792 if (skb_ext_exist(skb, id)) 4793 __skb_ext_del(skb, id); 4794 } 4795 4796 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id) 4797 { 4798 if (skb_ext_exist(skb, id)) { 4799 struct skb_ext *ext = skb->extensions; 4800 4801 return (void *)ext + (ext->offset[id] << 3); 4802 } 4803 4804 return NULL; 4805 } 4806 4807 static inline void skb_ext_reset(struct sk_buff *skb) 4808 { 4809 if (unlikely(skb->active_extensions)) { 4810 __skb_ext_put(skb->extensions); 4811 skb->active_extensions = 0; 4812 } 4813 } 4814 4815 static inline bool skb_has_extensions(struct sk_buff *skb) 4816 { 4817 return unlikely(skb->active_extensions); 4818 } 4819 #else 4820 static inline void skb_ext_put(struct sk_buff *skb) {} 4821 static inline void skb_ext_reset(struct sk_buff *skb) {} 4822 static inline void skb_ext_del(struct sk_buff *skb, int unused) {} 4823 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {} 4824 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {} 4825 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; } 4826 #endif /* CONFIG_SKB_EXTENSIONS */ 4827 4828 static inline void nf_reset_ct(struct sk_buff *skb) 4829 { 4830 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4831 nf_conntrack_put(skb_nfct(skb)); 4832 skb->_nfct = 0; 4833 #endif 4834 } 4835 4836 static inline void nf_reset_trace(struct sk_buff *skb) 4837 { 4838 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES) 4839 skb->nf_trace = 0; 4840 #endif 4841 } 4842 4843 static inline void ipvs_reset(struct sk_buff *skb) 4844 { 4845 #if IS_ENABLED(CONFIG_IP_VS) 4846 skb->ipvs_property = 0; 4847 #endif 4848 } 4849 4850 /* Note: This doesn't put any conntrack info in dst. */ 4851 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src, 4852 bool copy) 4853 { 4854 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4855 dst->_nfct = src->_nfct; 4856 nf_conntrack_get(skb_nfct(src)); 4857 #endif 4858 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES) 4859 if (copy) 4860 dst->nf_trace = src->nf_trace; 4861 #endif 4862 } 4863 4864 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 4865 { 4866 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4867 nf_conntrack_put(skb_nfct(dst)); 4868 #endif 4869 dst->slow_gro = src->slow_gro; 4870 __nf_copy(dst, src, true); 4871 } 4872 4873 #ifdef CONFIG_NETWORK_SECMARK 4874 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 4875 { 4876 to->secmark = from->secmark; 4877 } 4878 4879 static inline void skb_init_secmark(struct sk_buff *skb) 4880 { 4881 skb->secmark = 0; 4882 } 4883 #else 4884 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 4885 { } 4886 4887 static inline void skb_init_secmark(struct sk_buff *skb) 4888 { } 4889 #endif 4890 4891 static inline int secpath_exists(const struct sk_buff *skb) 4892 { 4893 #ifdef CONFIG_XFRM 4894 return skb_ext_exist(skb, SKB_EXT_SEC_PATH); 4895 #else 4896 return 0; 4897 #endif 4898 } 4899 4900 static inline bool skb_irq_freeable(const struct sk_buff *skb) 4901 { 4902 return !skb->destructor && 4903 !secpath_exists(skb) && 4904 !skb_nfct(skb) && 4905 !skb->_skb_refdst && 4906 !skb_has_frag_list(skb); 4907 } 4908 4909 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 4910 { 4911 skb->queue_mapping = queue_mapping; 4912 } 4913 4914 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 4915 { 4916 return skb->queue_mapping; 4917 } 4918 4919 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 4920 { 4921 to->queue_mapping = from->queue_mapping; 4922 } 4923 4924 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 4925 { 4926 skb->queue_mapping = rx_queue + 1; 4927 } 4928 4929 static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 4930 { 4931 return skb->queue_mapping - 1; 4932 } 4933 4934 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 4935 { 4936 return skb->queue_mapping != 0; 4937 } 4938 4939 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val) 4940 { 4941 skb->dst_pending_confirm = val; 4942 } 4943 4944 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb) 4945 { 4946 return skb->dst_pending_confirm != 0; 4947 } 4948 4949 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb) 4950 { 4951 #ifdef CONFIG_XFRM 4952 return skb_ext_find(skb, SKB_EXT_SEC_PATH); 4953 #else 4954 return NULL; 4955 #endif 4956 } 4957 4958 static inline bool skb_is_gso(const struct sk_buff *skb) 4959 { 4960 return skb_shinfo(skb)->gso_size; 4961 } 4962 4963 /* Note: Should be called only if skb_is_gso(skb) is true */ 4964 static inline bool skb_is_gso_v6(const struct sk_buff *skb) 4965 { 4966 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 4967 } 4968 4969 /* Note: Should be called only if skb_is_gso(skb) is true */ 4970 static inline bool skb_is_gso_sctp(const struct sk_buff *skb) 4971 { 4972 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP; 4973 } 4974 4975 /* Note: Should be called only if skb_is_gso(skb) is true */ 4976 static inline bool skb_is_gso_tcp(const struct sk_buff *skb) 4977 { 4978 return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6); 4979 } 4980 4981 static inline void skb_gso_reset(struct sk_buff *skb) 4982 { 4983 skb_shinfo(skb)->gso_size = 0; 4984 skb_shinfo(skb)->gso_segs = 0; 4985 skb_shinfo(skb)->gso_type = 0; 4986 } 4987 4988 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo, 4989 u16 increment) 4990 { 4991 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 4992 return; 4993 shinfo->gso_size += increment; 4994 } 4995 4996 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo, 4997 u16 decrement) 4998 { 4999 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 5000 return; 5001 shinfo->gso_size -= decrement; 5002 } 5003 5004 void __skb_warn_lro_forwarding(const struct sk_buff *skb); 5005 5006 static inline bool skb_warn_if_lro(const struct sk_buff *skb) 5007 { 5008 /* LRO sets gso_size but not gso_type, whereas if GSO is really 5009 * wanted then gso_type will be set. */ 5010 const struct skb_shared_info *shinfo = skb_shinfo(skb); 5011 5012 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 5013 unlikely(shinfo->gso_type == 0)) { 5014 __skb_warn_lro_forwarding(skb); 5015 return true; 5016 } 5017 return false; 5018 } 5019 5020 static inline void skb_forward_csum(struct sk_buff *skb) 5021 { 5022 /* Unfortunately we don't support this one. Any brave souls? */ 5023 if (skb->ip_summed == CHECKSUM_COMPLETE) 5024 skb->ip_summed = CHECKSUM_NONE; 5025 } 5026 5027 /** 5028 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 5029 * @skb: skb to check 5030 * 5031 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 5032 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 5033 * use this helper, to document places where we make this assertion. 5034 */ 5035 static inline void skb_checksum_none_assert(const struct sk_buff *skb) 5036 { 5037 DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE); 5038 } 5039 5040 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 5041 5042 int skb_checksum_setup(struct sk_buff *skb, bool recalculate); 5043 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 5044 unsigned int transport_len, 5045 __sum16(*skb_chkf)(struct sk_buff *skb)); 5046 5047 /** 5048 * skb_head_is_locked - Determine if the skb->head is locked down 5049 * @skb: skb to check 5050 * 5051 * The head on skbs build around a head frag can be removed if they are 5052 * not cloned. This function returns true if the skb head is locked down 5053 * due to either being allocated via kmalloc, or by being a clone with 5054 * multiple references to the head. 5055 */ 5056 static inline bool skb_head_is_locked(const struct sk_buff *skb) 5057 { 5058 return !skb->head_frag || skb_cloned(skb); 5059 } 5060 5061 /* Local Checksum Offload. 5062 * Compute outer checksum based on the assumption that the 5063 * inner checksum will be offloaded later. 5064 * See Documentation/networking/checksum-offloads.rst for 5065 * explanation of how this works. 5066 * Fill in outer checksum adjustment (e.g. with sum of outer 5067 * pseudo-header) before calling. 5068 * Also ensure that inner checksum is in linear data area. 5069 */ 5070 static inline __wsum lco_csum(struct sk_buff *skb) 5071 { 5072 unsigned char *csum_start = skb_checksum_start(skb); 5073 unsigned char *l4_hdr = skb_transport_header(skb); 5074 __wsum partial; 5075 5076 /* Start with complement of inner checksum adjustment */ 5077 partial = ~csum_unfold(*(__force __sum16 *)(csum_start + 5078 skb->csum_offset)); 5079 5080 /* Add in checksum of our headers (incl. outer checksum 5081 * adjustment filled in by caller) and return result. 5082 */ 5083 return csum_partial(l4_hdr, csum_start - l4_hdr, partial); 5084 } 5085 5086 static inline bool skb_is_redirected(const struct sk_buff *skb) 5087 { 5088 return skb->redirected; 5089 } 5090 5091 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress) 5092 { 5093 skb->redirected = 1; 5094 #ifdef CONFIG_NET_REDIRECT 5095 skb->from_ingress = from_ingress; 5096 if (skb->from_ingress) 5097 skb_clear_tstamp(skb); 5098 #endif 5099 } 5100 5101 static inline void skb_reset_redirect(struct sk_buff *skb) 5102 { 5103 skb->redirected = 0; 5104 } 5105 5106 static inline void skb_set_redirected_noclear(struct sk_buff *skb, 5107 bool from_ingress) 5108 { 5109 skb->redirected = 1; 5110 #ifdef CONFIG_NET_REDIRECT 5111 skb->from_ingress = from_ingress; 5112 #endif 5113 } 5114 5115 static inline bool skb_csum_is_sctp(struct sk_buff *skb) 5116 { 5117 #if IS_ENABLED(CONFIG_IP_SCTP) 5118 return skb->csum_not_inet; 5119 #else 5120 return 0; 5121 #endif 5122 } 5123 5124 static inline void skb_reset_csum_not_inet(struct sk_buff *skb) 5125 { 5126 skb->ip_summed = CHECKSUM_NONE; 5127 #if IS_ENABLED(CONFIG_IP_SCTP) 5128 skb->csum_not_inet = 0; 5129 #endif 5130 } 5131 5132 static inline void skb_set_kcov_handle(struct sk_buff *skb, 5133 const u64 kcov_handle) 5134 { 5135 #ifdef CONFIG_KCOV 5136 skb->kcov_handle = kcov_handle; 5137 #endif 5138 } 5139 5140 static inline u64 skb_get_kcov_handle(struct sk_buff *skb) 5141 { 5142 #ifdef CONFIG_KCOV 5143 return skb->kcov_handle; 5144 #else 5145 return 0; 5146 #endif 5147 } 5148 5149 static inline void skb_mark_for_recycle(struct sk_buff *skb) 5150 { 5151 #ifdef CONFIG_PAGE_POOL 5152 skb->pp_recycle = 1; 5153 #endif 5154 } 5155 5156 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter, 5157 ssize_t maxsize, gfp_t gfp); 5158 5159 #endif /* __KERNEL__ */ 5160 #endif /* _LINUX_SKBUFF_H */ 5161