xref: /linux-6.15/include/linux/skbuff.h (revision de2fe5e0)
1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <[email protected]>
6  *		Florian La Roche, <[email protected]>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/config.h>
18 #include <linux/kernel.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/cache.h>
22 
23 #include <asm/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/poll.h>
29 #include <linux/net.h>
30 #include <linux/textsearch.h>
31 #include <net/checksum.h>
32 
33 #define HAVE_ALLOC_SKB		/* For the drivers to know */
34 #define HAVE_ALIGNABLE_SKB	/* Ditto 8)		   */
35 
36 #define CHECKSUM_NONE 0
37 #define CHECKSUM_HW 1
38 #define CHECKSUM_UNNECESSARY 2
39 
40 #define SKB_DATA_ALIGN(X)	(((X) + (SMP_CACHE_BYTES - 1)) & \
41 				 ~(SMP_CACHE_BYTES - 1))
42 #define SKB_MAX_ORDER(X, ORDER)	(((PAGE_SIZE << (ORDER)) - (X) - \
43 				  sizeof(struct skb_shared_info)) & \
44 				  ~(SMP_CACHE_BYTES - 1))
45 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
46 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
47 
48 /* A. Checksumming of received packets by device.
49  *
50  *	NONE: device failed to checksum this packet.
51  *		skb->csum is undefined.
52  *
53  *	UNNECESSARY: device parsed packet and wouldbe verified checksum.
54  *		skb->csum is undefined.
55  *	      It is bad option, but, unfortunately, many of vendors do this.
56  *	      Apparently with secret goal to sell you new device, when you
57  *	      will add new protocol to your host. F.e. IPv6. 8)
58  *
59  *	HW: the most generic way. Device supplied checksum of _all_
60  *	    the packet as seen by netif_rx in skb->csum.
61  *	    NOTE: Even if device supports only some protocols, but
62  *	    is able to produce some skb->csum, it MUST use HW,
63  *	    not UNNECESSARY.
64  *
65  * B. Checksumming on output.
66  *
67  *	NONE: skb is checksummed by protocol or csum is not required.
68  *
69  *	HW: device is required to csum packet as seen by hard_start_xmit
70  *	from skb->h.raw to the end and to record the checksum
71  *	at skb->h.raw+skb->csum.
72  *
73  *	Device must show its capabilities in dev->features, set
74  *	at device setup time.
75  *	NETIF_F_HW_CSUM	- it is clever device, it is able to checksum
76  *			  everything.
77  *	NETIF_F_NO_CSUM - loopback or reliable single hop media.
78  *	NETIF_F_IP_CSUM - device is dumb. It is able to csum only
79  *			  TCP/UDP over IPv4. Sigh. Vendors like this
80  *			  way by an unknown reason. Though, see comment above
81  *			  about CHECKSUM_UNNECESSARY. 8)
82  *
83  *	Any questions? No questions, good. 		--ANK
84  */
85 
86 struct net_device;
87 
88 #ifdef CONFIG_NETFILTER
89 struct nf_conntrack {
90 	atomic_t use;
91 	void (*destroy)(struct nf_conntrack *);
92 };
93 
94 #ifdef CONFIG_BRIDGE_NETFILTER
95 struct nf_bridge_info {
96 	atomic_t use;
97 	struct net_device *physindev;
98 	struct net_device *physoutdev;
99 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
100 	struct net_device *netoutdev;
101 #endif
102 	unsigned int mask;
103 	unsigned long data[32 / sizeof(unsigned long)];
104 };
105 #endif
106 
107 #endif
108 
109 struct sk_buff_head {
110 	/* These two members must be first. */
111 	struct sk_buff	*next;
112 	struct sk_buff	*prev;
113 
114 	__u32		qlen;
115 	spinlock_t	lock;
116 };
117 
118 struct sk_buff;
119 
120 /* To allow 64K frame to be packed as single skb without frag_list */
121 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
122 
123 typedef struct skb_frag_struct skb_frag_t;
124 
125 struct skb_frag_struct {
126 	struct page *page;
127 	__u16 page_offset;
128 	__u16 size;
129 };
130 
131 /* This data is invariant across clones and lives at
132  * the end of the header data, ie. at skb->end.
133  */
134 struct skb_shared_info {
135 	atomic_t	dataref;
136 	unsigned short	nr_frags;
137 	unsigned short	tso_size;
138 	unsigned short	tso_segs;
139 	unsigned short  ufo_size;
140 	unsigned int    ip6_frag_id;
141 	struct sk_buff	*frag_list;
142 	skb_frag_t	frags[MAX_SKB_FRAGS];
143 };
144 
145 /* We divide dataref into two halves.  The higher 16 bits hold references
146  * to the payload part of skb->data.  The lower 16 bits hold references to
147  * the entire skb->data.  It is up to the users of the skb to agree on
148  * where the payload starts.
149  *
150  * All users must obey the rule that the skb->data reference count must be
151  * greater than or equal to the payload reference count.
152  *
153  * Holding a reference to the payload part means that the user does not
154  * care about modifications to the header part of skb->data.
155  */
156 #define SKB_DATAREF_SHIFT 16
157 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
158 
159 struct skb_timeval {
160 	u32	off_sec;
161 	u32	off_usec;
162 };
163 
164 
165 enum {
166 	SKB_FCLONE_UNAVAILABLE,
167 	SKB_FCLONE_ORIG,
168 	SKB_FCLONE_CLONE,
169 };
170 
171 /**
172  *	struct sk_buff - socket buffer
173  *	@next: Next buffer in list
174  *	@prev: Previous buffer in list
175  *	@sk: Socket we are owned by
176  *	@tstamp: Time we arrived
177  *	@dev: Device we arrived on/are leaving by
178  *	@input_dev: Device we arrived on
179  *	@h: Transport layer header
180  *	@nh: Network layer header
181  *	@mac: Link layer header
182  *	@dst: destination entry
183  *	@sp: the security path, used for xfrm
184  *	@cb: Control buffer. Free for use by every layer. Put private vars here
185  *	@len: Length of actual data
186  *	@data_len: Data length
187  *	@mac_len: Length of link layer header
188  *	@csum: Checksum
189  *	@local_df: allow local fragmentation
190  *	@cloned: Head may be cloned (check refcnt to be sure)
191  *	@nohdr: Payload reference only, must not modify header
192  *	@pkt_type: Packet class
193  *	@fclone: skbuff clone status
194  *	@ip_summed: Driver fed us an IP checksum
195  *	@priority: Packet queueing priority
196  *	@users: User count - see {datagram,tcp}.c
197  *	@protocol: Packet protocol from driver
198  *	@truesize: Buffer size
199  *	@head: Head of buffer
200  *	@data: Data head pointer
201  *	@tail: Tail pointer
202  *	@end: End pointer
203  *	@destructor: Destruct function
204  *	@nfmark: Can be used for communication between hooks
205  *	@nfct: Associated connection, if any
206  *	@ipvs_property: skbuff is owned by ipvs
207  *	@nfctinfo: Relationship of this skb to the connection
208  *	@nfct_reasm: netfilter conntrack re-assembly pointer
209  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
210  *	@tc_index: Traffic control index
211  *	@tc_verd: traffic control verdict
212  */
213 
214 struct sk_buff {
215 	/* These two members must be first. */
216 	struct sk_buff		*next;
217 	struct sk_buff		*prev;
218 
219 	struct sock		*sk;
220 	struct skb_timeval	tstamp;
221 	struct net_device	*dev;
222 	struct net_device	*input_dev;
223 
224 	union {
225 		struct tcphdr	*th;
226 		struct udphdr	*uh;
227 		struct icmphdr	*icmph;
228 		struct igmphdr	*igmph;
229 		struct iphdr	*ipiph;
230 		struct ipv6hdr	*ipv6h;
231 		unsigned char	*raw;
232 	} h;
233 
234 	union {
235 		struct iphdr	*iph;
236 		struct ipv6hdr	*ipv6h;
237 		struct arphdr	*arph;
238 		unsigned char	*raw;
239 	} nh;
240 
241 	union {
242 	  	unsigned char 	*raw;
243 	} mac;
244 
245 	struct  dst_entry	*dst;
246 	struct	sec_path	*sp;
247 
248 	/*
249 	 * This is the control buffer. It is free to use for every
250 	 * layer. Please put your private variables there. If you
251 	 * want to keep them across layers you have to do a skb_clone()
252 	 * first. This is owned by whoever has the skb queued ATM.
253 	 */
254 	char			cb[48];
255 
256 	unsigned int		len,
257 				data_len,
258 				mac_len,
259 				csum;
260 	__u32			priority;
261 	__u8			local_df:1,
262 				cloned:1,
263 				ip_summed:2,
264 				nohdr:1,
265 				nfctinfo:3;
266 	__u8			pkt_type:3,
267 				fclone:2,
268 				ipvs_property:1;
269 	__be16			protocol;
270 
271 	void			(*destructor)(struct sk_buff *skb);
272 #ifdef CONFIG_NETFILTER
273 	struct nf_conntrack	*nfct;
274 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
275 	struct sk_buff		*nfct_reasm;
276 #endif
277 #ifdef CONFIG_BRIDGE_NETFILTER
278 	struct nf_bridge_info	*nf_bridge;
279 #endif
280 	__u32			nfmark;
281 #endif /* CONFIG_NETFILTER */
282 #ifdef CONFIG_NET_SCHED
283 	__u16			tc_index;	/* traffic control index */
284 #ifdef CONFIG_NET_CLS_ACT
285 	__u16			tc_verd;	/* traffic control verdict */
286 #endif
287 #endif
288 
289 
290 	/* These elements must be at the end, see alloc_skb() for details.  */
291 	unsigned int		truesize;
292 	atomic_t		users;
293 	unsigned char		*head,
294 				*data,
295 				*tail,
296 				*end;
297 };
298 
299 #ifdef __KERNEL__
300 /*
301  *	Handling routines are only of interest to the kernel
302  */
303 #include <linux/slab.h>
304 
305 #include <asm/system.h>
306 
307 extern void kfree_skb(struct sk_buff *skb);
308 extern void	       __kfree_skb(struct sk_buff *skb);
309 extern struct sk_buff *__alloc_skb(unsigned int size,
310 				   gfp_t priority, int fclone);
311 static inline struct sk_buff *alloc_skb(unsigned int size,
312 					gfp_t priority)
313 {
314 	return __alloc_skb(size, priority, 0);
315 }
316 
317 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
318 					       gfp_t priority)
319 {
320 	return __alloc_skb(size, priority, 1);
321 }
322 
323 extern struct sk_buff *alloc_skb_from_cache(kmem_cache_t *cp,
324 					    unsigned int size,
325 					    gfp_t priority);
326 extern void	       kfree_skbmem(struct sk_buff *skb);
327 extern struct sk_buff *skb_clone(struct sk_buff *skb,
328 				 gfp_t priority);
329 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
330 				gfp_t priority);
331 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
332 				 gfp_t gfp_mask);
333 extern int	       pskb_expand_head(struct sk_buff *skb,
334 					int nhead, int ntail,
335 					gfp_t gfp_mask);
336 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
337 					    unsigned int headroom);
338 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
339 				       int newheadroom, int newtailroom,
340 				       gfp_t priority);
341 extern struct sk_buff *		skb_pad(struct sk_buff *skb, int pad);
342 #define dev_kfree_skb(a)	kfree_skb(a)
343 extern void	      skb_over_panic(struct sk_buff *skb, int len,
344 				     void *here);
345 extern void	      skb_under_panic(struct sk_buff *skb, int len,
346 				      void *here);
347 
348 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
349 			int getfrag(void *from, char *to, int offset,
350 			int len,int odd, struct sk_buff *skb),
351 			void *from, int length);
352 
353 struct skb_seq_state
354 {
355 	__u32		lower_offset;
356 	__u32		upper_offset;
357 	__u32		frag_idx;
358 	__u32		stepped_offset;
359 	struct sk_buff	*root_skb;
360 	struct sk_buff	*cur_skb;
361 	__u8		*frag_data;
362 };
363 
364 extern void	      skb_prepare_seq_read(struct sk_buff *skb,
365 					   unsigned int from, unsigned int to,
366 					   struct skb_seq_state *st);
367 extern unsigned int   skb_seq_read(unsigned int consumed, const u8 **data,
368 				   struct skb_seq_state *st);
369 extern void	      skb_abort_seq_read(struct skb_seq_state *st);
370 
371 extern unsigned int   skb_find_text(struct sk_buff *skb, unsigned int from,
372 				    unsigned int to, struct ts_config *config,
373 				    struct ts_state *state);
374 
375 /* Internal */
376 #define skb_shinfo(SKB)		((struct skb_shared_info *)((SKB)->end))
377 
378 /**
379  *	skb_queue_empty - check if a queue is empty
380  *	@list: queue head
381  *
382  *	Returns true if the queue is empty, false otherwise.
383  */
384 static inline int skb_queue_empty(const struct sk_buff_head *list)
385 {
386 	return list->next == (struct sk_buff *)list;
387 }
388 
389 /**
390  *	skb_get - reference buffer
391  *	@skb: buffer to reference
392  *
393  *	Makes another reference to a socket buffer and returns a pointer
394  *	to the buffer.
395  */
396 static inline struct sk_buff *skb_get(struct sk_buff *skb)
397 {
398 	atomic_inc(&skb->users);
399 	return skb;
400 }
401 
402 /*
403  * If users == 1, we are the only owner and are can avoid redundant
404  * atomic change.
405  */
406 
407 /**
408  *	skb_cloned - is the buffer a clone
409  *	@skb: buffer to check
410  *
411  *	Returns true if the buffer was generated with skb_clone() and is
412  *	one of multiple shared copies of the buffer. Cloned buffers are
413  *	shared data so must not be written to under normal circumstances.
414  */
415 static inline int skb_cloned(const struct sk_buff *skb)
416 {
417 	return skb->cloned &&
418 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
419 }
420 
421 /**
422  *	skb_header_cloned - is the header a clone
423  *	@skb: buffer to check
424  *
425  *	Returns true if modifying the header part of the buffer requires
426  *	the data to be copied.
427  */
428 static inline int skb_header_cloned(const struct sk_buff *skb)
429 {
430 	int dataref;
431 
432 	if (!skb->cloned)
433 		return 0;
434 
435 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
436 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
437 	return dataref != 1;
438 }
439 
440 /**
441  *	skb_header_release - release reference to header
442  *	@skb: buffer to operate on
443  *
444  *	Drop a reference to the header part of the buffer.  This is done
445  *	by acquiring a payload reference.  You must not read from the header
446  *	part of skb->data after this.
447  */
448 static inline void skb_header_release(struct sk_buff *skb)
449 {
450 	BUG_ON(skb->nohdr);
451 	skb->nohdr = 1;
452 	atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
453 }
454 
455 /**
456  *	skb_shared - is the buffer shared
457  *	@skb: buffer to check
458  *
459  *	Returns true if more than one person has a reference to this
460  *	buffer.
461  */
462 static inline int skb_shared(const struct sk_buff *skb)
463 {
464 	return atomic_read(&skb->users) != 1;
465 }
466 
467 /**
468  *	skb_share_check - check if buffer is shared and if so clone it
469  *	@skb: buffer to check
470  *	@pri: priority for memory allocation
471  *
472  *	If the buffer is shared the buffer is cloned and the old copy
473  *	drops a reference. A new clone with a single reference is returned.
474  *	If the buffer is not shared the original buffer is returned. When
475  *	being called from interrupt status or with spinlocks held pri must
476  *	be GFP_ATOMIC.
477  *
478  *	NULL is returned on a memory allocation failure.
479  */
480 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
481 					      gfp_t pri)
482 {
483 	might_sleep_if(pri & __GFP_WAIT);
484 	if (skb_shared(skb)) {
485 		struct sk_buff *nskb = skb_clone(skb, pri);
486 		kfree_skb(skb);
487 		skb = nskb;
488 	}
489 	return skb;
490 }
491 
492 /*
493  *	Copy shared buffers into a new sk_buff. We effectively do COW on
494  *	packets to handle cases where we have a local reader and forward
495  *	and a couple of other messy ones. The normal one is tcpdumping
496  *	a packet thats being forwarded.
497  */
498 
499 /**
500  *	skb_unshare - make a copy of a shared buffer
501  *	@skb: buffer to check
502  *	@pri: priority for memory allocation
503  *
504  *	If the socket buffer is a clone then this function creates a new
505  *	copy of the data, drops a reference count on the old copy and returns
506  *	the new copy with the reference count at 1. If the buffer is not a clone
507  *	the original buffer is returned. When called with a spinlock held or
508  *	from interrupt state @pri must be %GFP_ATOMIC
509  *
510  *	%NULL is returned on a memory allocation failure.
511  */
512 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
513 					  gfp_t pri)
514 {
515 	might_sleep_if(pri & __GFP_WAIT);
516 	if (skb_cloned(skb)) {
517 		struct sk_buff *nskb = skb_copy(skb, pri);
518 		kfree_skb(skb);	/* Free our shared copy */
519 		skb = nskb;
520 	}
521 	return skb;
522 }
523 
524 /**
525  *	skb_peek
526  *	@list_: list to peek at
527  *
528  *	Peek an &sk_buff. Unlike most other operations you _MUST_
529  *	be careful with this one. A peek leaves the buffer on the
530  *	list and someone else may run off with it. You must hold
531  *	the appropriate locks or have a private queue to do this.
532  *
533  *	Returns %NULL for an empty list or a pointer to the head element.
534  *	The reference count is not incremented and the reference is therefore
535  *	volatile. Use with caution.
536  */
537 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
538 {
539 	struct sk_buff *list = ((struct sk_buff *)list_)->next;
540 	if (list == (struct sk_buff *)list_)
541 		list = NULL;
542 	return list;
543 }
544 
545 /**
546  *	skb_peek_tail
547  *	@list_: list to peek at
548  *
549  *	Peek an &sk_buff. Unlike most other operations you _MUST_
550  *	be careful with this one. A peek leaves the buffer on the
551  *	list and someone else may run off with it. You must hold
552  *	the appropriate locks or have a private queue to do this.
553  *
554  *	Returns %NULL for an empty list or a pointer to the tail element.
555  *	The reference count is not incremented and the reference is therefore
556  *	volatile. Use with caution.
557  */
558 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
559 {
560 	struct sk_buff *list = ((struct sk_buff *)list_)->prev;
561 	if (list == (struct sk_buff *)list_)
562 		list = NULL;
563 	return list;
564 }
565 
566 /**
567  *	skb_queue_len	- get queue length
568  *	@list_: list to measure
569  *
570  *	Return the length of an &sk_buff queue.
571  */
572 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
573 {
574 	return list_->qlen;
575 }
576 
577 static inline void skb_queue_head_init(struct sk_buff_head *list)
578 {
579 	spin_lock_init(&list->lock);
580 	list->prev = list->next = (struct sk_buff *)list;
581 	list->qlen = 0;
582 }
583 
584 /*
585  *	Insert an sk_buff at the start of a list.
586  *
587  *	The "__skb_xxxx()" functions are the non-atomic ones that
588  *	can only be called with interrupts disabled.
589  */
590 
591 /**
592  *	__skb_queue_after - queue a buffer at the list head
593  *	@list: list to use
594  *	@prev: place after this buffer
595  *	@newsk: buffer to queue
596  *
597  *	Queue a buffer int the middle of a list. This function takes no locks
598  *	and you must therefore hold required locks before calling it.
599  *
600  *	A buffer cannot be placed on two lists at the same time.
601  */
602 static inline void __skb_queue_after(struct sk_buff_head *list,
603 				     struct sk_buff *prev,
604 				     struct sk_buff *newsk)
605 {
606 	struct sk_buff *next;
607 	list->qlen++;
608 
609 	next = prev->next;
610 	newsk->next = next;
611 	newsk->prev = prev;
612 	next->prev  = prev->next = newsk;
613 }
614 
615 /**
616  *	__skb_queue_head - queue a buffer at the list head
617  *	@list: list to use
618  *	@newsk: buffer to queue
619  *
620  *	Queue a buffer at the start of a list. This function takes no locks
621  *	and you must therefore hold required locks before calling it.
622  *
623  *	A buffer cannot be placed on two lists at the same time.
624  */
625 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
626 static inline void __skb_queue_head(struct sk_buff_head *list,
627 				    struct sk_buff *newsk)
628 {
629 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
630 }
631 
632 /**
633  *	__skb_queue_tail - queue a buffer at the list tail
634  *	@list: list to use
635  *	@newsk: buffer to queue
636  *
637  *	Queue a buffer at the end of a list. This function takes no locks
638  *	and you must therefore hold required locks before calling it.
639  *
640  *	A buffer cannot be placed on two lists at the same time.
641  */
642 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
643 static inline void __skb_queue_tail(struct sk_buff_head *list,
644 				   struct sk_buff *newsk)
645 {
646 	struct sk_buff *prev, *next;
647 
648 	list->qlen++;
649 	next = (struct sk_buff *)list;
650 	prev = next->prev;
651 	newsk->next = next;
652 	newsk->prev = prev;
653 	next->prev  = prev->next = newsk;
654 }
655 
656 
657 /**
658  *	__skb_dequeue - remove from the head of the queue
659  *	@list: list to dequeue from
660  *
661  *	Remove the head of the list. This function does not take any locks
662  *	so must be used with appropriate locks held only. The head item is
663  *	returned or %NULL if the list is empty.
664  */
665 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
666 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
667 {
668 	struct sk_buff *next, *prev, *result;
669 
670 	prev = (struct sk_buff *) list;
671 	next = prev->next;
672 	result = NULL;
673 	if (next != prev) {
674 		result	     = next;
675 		next	     = next->next;
676 		list->qlen--;
677 		next->prev   = prev;
678 		prev->next   = next;
679 		result->next = result->prev = NULL;
680 	}
681 	return result;
682 }
683 
684 
685 /*
686  *	Insert a packet on a list.
687  */
688 extern void        skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
689 static inline void __skb_insert(struct sk_buff *newsk,
690 				struct sk_buff *prev, struct sk_buff *next,
691 				struct sk_buff_head *list)
692 {
693 	newsk->next = next;
694 	newsk->prev = prev;
695 	next->prev  = prev->next = newsk;
696 	list->qlen++;
697 }
698 
699 /*
700  *	Place a packet after a given packet in a list.
701  */
702 extern void	   skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
703 static inline void __skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
704 {
705 	__skb_insert(newsk, old, old->next, list);
706 }
707 
708 /*
709  * remove sk_buff from list. _Must_ be called atomically, and with
710  * the list known..
711  */
712 extern void	   skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
713 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
714 {
715 	struct sk_buff *next, *prev;
716 
717 	list->qlen--;
718 	next	   = skb->next;
719 	prev	   = skb->prev;
720 	skb->next  = skb->prev = NULL;
721 	next->prev = prev;
722 	prev->next = next;
723 }
724 
725 
726 /* XXX: more streamlined implementation */
727 
728 /**
729  *	__skb_dequeue_tail - remove from the tail of the queue
730  *	@list: list to dequeue from
731  *
732  *	Remove the tail of the list. This function does not take any locks
733  *	so must be used with appropriate locks held only. The tail item is
734  *	returned or %NULL if the list is empty.
735  */
736 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
737 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
738 {
739 	struct sk_buff *skb = skb_peek_tail(list);
740 	if (skb)
741 		__skb_unlink(skb, list);
742 	return skb;
743 }
744 
745 
746 static inline int skb_is_nonlinear(const struct sk_buff *skb)
747 {
748 	return skb->data_len;
749 }
750 
751 static inline unsigned int skb_headlen(const struct sk_buff *skb)
752 {
753 	return skb->len - skb->data_len;
754 }
755 
756 static inline int skb_pagelen(const struct sk_buff *skb)
757 {
758 	int i, len = 0;
759 
760 	for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
761 		len += skb_shinfo(skb)->frags[i].size;
762 	return len + skb_headlen(skb);
763 }
764 
765 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
766 				      struct page *page, int off, int size)
767 {
768 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
769 
770 	frag->page		  = page;
771 	frag->page_offset	  = off;
772 	frag->size		  = size;
773 	skb_shinfo(skb)->nr_frags = i + 1;
774 }
775 
776 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
777 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->frag_list)
778 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
779 
780 /*
781  *	Add data to an sk_buff
782  */
783 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
784 {
785 	unsigned char *tmp = skb->tail;
786 	SKB_LINEAR_ASSERT(skb);
787 	skb->tail += len;
788 	skb->len  += len;
789 	return tmp;
790 }
791 
792 /**
793  *	skb_put - add data to a buffer
794  *	@skb: buffer to use
795  *	@len: amount of data to add
796  *
797  *	This function extends the used data area of the buffer. If this would
798  *	exceed the total buffer size the kernel will panic. A pointer to the
799  *	first byte of the extra data is returned.
800  */
801 static inline unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
802 {
803 	unsigned char *tmp = skb->tail;
804 	SKB_LINEAR_ASSERT(skb);
805 	skb->tail += len;
806 	skb->len  += len;
807 	if (unlikely(skb->tail>skb->end))
808 		skb_over_panic(skb, len, current_text_addr());
809 	return tmp;
810 }
811 
812 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
813 {
814 	skb->data -= len;
815 	skb->len  += len;
816 	return skb->data;
817 }
818 
819 /**
820  *	skb_push - add data to the start of a buffer
821  *	@skb: buffer to use
822  *	@len: amount of data to add
823  *
824  *	This function extends the used data area of the buffer at the buffer
825  *	start. If this would exceed the total buffer headroom the kernel will
826  *	panic. A pointer to the first byte of the extra data is returned.
827  */
828 static inline unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
829 {
830 	skb->data -= len;
831 	skb->len  += len;
832 	if (unlikely(skb->data<skb->head))
833 		skb_under_panic(skb, len, current_text_addr());
834 	return skb->data;
835 }
836 
837 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
838 {
839 	skb->len -= len;
840 	BUG_ON(skb->len < skb->data_len);
841 	return skb->data += len;
842 }
843 
844 /**
845  *	skb_pull - remove data from the start of a buffer
846  *	@skb: buffer to use
847  *	@len: amount of data to remove
848  *
849  *	This function removes data from the start of a buffer, returning
850  *	the memory to the headroom. A pointer to the next data in the buffer
851  *	is returned. Once the data has been pulled future pushes will overwrite
852  *	the old data.
853  */
854 static inline unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
855 {
856 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
857 }
858 
859 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
860 
861 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
862 {
863 	if (len > skb_headlen(skb) &&
864 	    !__pskb_pull_tail(skb, len-skb_headlen(skb)))
865 		return NULL;
866 	skb->len -= len;
867 	return skb->data += len;
868 }
869 
870 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
871 {
872 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
873 }
874 
875 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
876 {
877 	if (likely(len <= skb_headlen(skb)))
878 		return 1;
879 	if (unlikely(len > skb->len))
880 		return 0;
881 	return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL;
882 }
883 
884 /**
885  *	skb_headroom - bytes at buffer head
886  *	@skb: buffer to check
887  *
888  *	Return the number of bytes of free space at the head of an &sk_buff.
889  */
890 static inline int skb_headroom(const struct sk_buff *skb)
891 {
892 	return skb->data - skb->head;
893 }
894 
895 /**
896  *	skb_tailroom - bytes at buffer end
897  *	@skb: buffer to check
898  *
899  *	Return the number of bytes of free space at the tail of an sk_buff
900  */
901 static inline int skb_tailroom(const struct sk_buff *skb)
902 {
903 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
904 }
905 
906 /**
907  *	skb_reserve - adjust headroom
908  *	@skb: buffer to alter
909  *	@len: bytes to move
910  *
911  *	Increase the headroom of an empty &sk_buff by reducing the tail
912  *	room. This is only allowed for an empty buffer.
913  */
914 static inline void skb_reserve(struct sk_buff *skb, int len)
915 {
916 	skb->data += len;
917 	skb->tail += len;
918 }
919 
920 /*
921  * CPUs often take a performance hit when accessing unaligned memory
922  * locations. The actual performance hit varies, it can be small if the
923  * hardware handles it or large if we have to take an exception and fix it
924  * in software.
925  *
926  * Since an ethernet header is 14 bytes network drivers often end up with
927  * the IP header at an unaligned offset. The IP header can be aligned by
928  * shifting the start of the packet by 2 bytes. Drivers should do this
929  * with:
930  *
931  * skb_reserve(NET_IP_ALIGN);
932  *
933  * The downside to this alignment of the IP header is that the DMA is now
934  * unaligned. On some architectures the cost of an unaligned DMA is high
935  * and this cost outweighs the gains made by aligning the IP header.
936  *
937  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
938  * to be overridden.
939  */
940 #ifndef NET_IP_ALIGN
941 #define NET_IP_ALIGN	2
942 #endif
943 
944 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len, int realloc);
945 
946 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
947 {
948 	if (!skb->data_len) {
949 		skb->len  = len;
950 		skb->tail = skb->data + len;
951 	} else
952 		___pskb_trim(skb, len, 0);
953 }
954 
955 /**
956  *	skb_trim - remove end from a buffer
957  *	@skb: buffer to alter
958  *	@len: new length
959  *
960  *	Cut the length of a buffer down by removing data from the tail. If
961  *	the buffer is already under the length specified it is not modified.
962  */
963 static inline void skb_trim(struct sk_buff *skb, unsigned int len)
964 {
965 	if (skb->len > len)
966 		__skb_trim(skb, len);
967 }
968 
969 
970 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
971 {
972 	if (!skb->data_len) {
973 		skb->len  = len;
974 		skb->tail = skb->data+len;
975 		return 0;
976 	}
977 	return ___pskb_trim(skb, len, 1);
978 }
979 
980 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
981 {
982 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
983 }
984 
985 /**
986  *	skb_orphan - orphan a buffer
987  *	@skb: buffer to orphan
988  *
989  *	If a buffer currently has an owner then we call the owner's
990  *	destructor function and make the @skb unowned. The buffer continues
991  *	to exist but is no longer charged to its former owner.
992  */
993 static inline void skb_orphan(struct sk_buff *skb)
994 {
995 	if (skb->destructor)
996 		skb->destructor(skb);
997 	skb->destructor = NULL;
998 	skb->sk		= NULL;
999 }
1000 
1001 /**
1002  *	__skb_queue_purge - empty a list
1003  *	@list: list to empty
1004  *
1005  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
1006  *	the list and one reference dropped. This function does not take the
1007  *	list lock and the caller must hold the relevant locks to use it.
1008  */
1009 extern void skb_queue_purge(struct sk_buff_head *list);
1010 static inline void __skb_queue_purge(struct sk_buff_head *list)
1011 {
1012 	struct sk_buff *skb;
1013 	while ((skb = __skb_dequeue(list)) != NULL)
1014 		kfree_skb(skb);
1015 }
1016 
1017 #ifndef CONFIG_HAVE_ARCH_DEV_ALLOC_SKB
1018 /**
1019  *	__dev_alloc_skb - allocate an skbuff for sending
1020  *	@length: length to allocate
1021  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
1022  *
1023  *	Allocate a new &sk_buff and assign it a usage count of one. The
1024  *	buffer has unspecified headroom built in. Users should allocate
1025  *	the headroom they think they need without accounting for the
1026  *	built in space. The built in space is used for optimisations.
1027  *
1028  *	%NULL is returned in there is no free memory.
1029  */
1030 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1031 					      gfp_t gfp_mask)
1032 {
1033 	struct sk_buff *skb = alloc_skb(length + 16, gfp_mask);
1034 	if (likely(skb))
1035 		skb_reserve(skb, 16);
1036 	return skb;
1037 }
1038 #else
1039 extern struct sk_buff *__dev_alloc_skb(unsigned int length, int gfp_mask);
1040 #endif
1041 
1042 /**
1043  *	dev_alloc_skb - allocate an skbuff for sending
1044  *	@length: length to allocate
1045  *
1046  *	Allocate a new &sk_buff and assign it a usage count of one. The
1047  *	buffer has unspecified headroom built in. Users should allocate
1048  *	the headroom they think they need without accounting for the
1049  *	built in space. The built in space is used for optimisations.
1050  *
1051  *	%NULL is returned in there is no free memory. Although this function
1052  *	allocates memory it can be called from an interrupt.
1053  */
1054 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
1055 {
1056 	return __dev_alloc_skb(length, GFP_ATOMIC);
1057 }
1058 
1059 /**
1060  *	skb_cow - copy header of skb when it is required
1061  *	@skb: buffer to cow
1062  *	@headroom: needed headroom
1063  *
1064  *	If the skb passed lacks sufficient headroom or its data part
1065  *	is shared, data is reallocated. If reallocation fails, an error
1066  *	is returned and original skb is not changed.
1067  *
1068  *	The result is skb with writable area skb->head...skb->tail
1069  *	and at least @headroom of space at head.
1070  */
1071 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1072 {
1073 	int delta = (headroom > 16 ? headroom : 16) - skb_headroom(skb);
1074 
1075 	if (delta < 0)
1076 		delta = 0;
1077 
1078 	if (delta || skb_cloned(skb))
1079 		return pskb_expand_head(skb, (delta + 15) & ~15, 0, GFP_ATOMIC);
1080 	return 0;
1081 }
1082 
1083 /**
1084  *	skb_padto	- pad an skbuff up to a minimal size
1085  *	@skb: buffer to pad
1086  *	@len: minimal length
1087  *
1088  *	Pads up a buffer to ensure the trailing bytes exist and are
1089  *	blanked. If the buffer already contains sufficient data it
1090  *	is untouched. Returns the buffer, which may be a replacement
1091  *	for the original, or NULL for out of memory - in which case
1092  *	the original buffer is still freed.
1093  */
1094 
1095 static inline struct sk_buff *skb_padto(struct sk_buff *skb, unsigned int len)
1096 {
1097 	unsigned int size = skb->len;
1098 	if (likely(size >= len))
1099 		return skb;
1100 	return skb_pad(skb, len-size);
1101 }
1102 
1103 static inline int skb_add_data(struct sk_buff *skb,
1104 			       char __user *from, int copy)
1105 {
1106 	const int off = skb->len;
1107 
1108 	if (skb->ip_summed == CHECKSUM_NONE) {
1109 		int err = 0;
1110 		unsigned int csum = csum_and_copy_from_user(from,
1111 							    skb_put(skb, copy),
1112 							    copy, 0, &err);
1113 		if (!err) {
1114 			skb->csum = csum_block_add(skb->csum, csum, off);
1115 			return 0;
1116 		}
1117 	} else if (!copy_from_user(skb_put(skb, copy), from, copy))
1118 		return 0;
1119 
1120 	__skb_trim(skb, off);
1121 	return -EFAULT;
1122 }
1123 
1124 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1125 				   struct page *page, int off)
1126 {
1127 	if (i) {
1128 		struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1129 
1130 		return page == frag->page &&
1131 		       off == frag->page_offset + frag->size;
1132 	}
1133 	return 0;
1134 }
1135 
1136 /**
1137  *	skb_linearize - convert paged skb to linear one
1138  *	@skb: buffer to linarize
1139  *	@gfp: allocation mode
1140  *
1141  *	If there is no free memory -ENOMEM is returned, otherwise zero
1142  *	is returned and the old skb data released.
1143  */
1144 extern int __skb_linearize(struct sk_buff *skb, gfp_t gfp);
1145 static inline int skb_linearize(struct sk_buff *skb, gfp_t gfp)
1146 {
1147 	return __skb_linearize(skb, gfp);
1148 }
1149 
1150 /**
1151  *	skb_postpull_rcsum - update checksum for received skb after pull
1152  *	@skb: buffer to update
1153  *	@start: start of data before pull
1154  *	@len: length of data pulled
1155  *
1156  *	After doing a pull on a received packet, you need to call this to
1157  *	update the CHECKSUM_HW checksum, or set ip_summed to CHECKSUM_NONE
1158  *	so that it can be recomputed from scratch.
1159  */
1160 
1161 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1162 				      const void *start, unsigned int len)
1163 {
1164 	if (skb->ip_summed == CHECKSUM_HW)
1165 		skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1166 }
1167 
1168 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1169 
1170 /**
1171  *	pskb_trim_rcsum - trim received skb and update checksum
1172  *	@skb: buffer to trim
1173  *	@len: new length
1174  *
1175  *	This is exactly the same as pskb_trim except that it ensures the
1176  *	checksum of received packets are still valid after the operation.
1177  */
1178 
1179 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1180 {
1181 	if (likely(len >= skb->len))
1182 		return 0;
1183 	if (skb->ip_summed == CHECKSUM_HW)
1184 		skb->ip_summed = CHECKSUM_NONE;
1185 	return __pskb_trim(skb, len);
1186 }
1187 
1188 static inline void *kmap_skb_frag(const skb_frag_t *frag)
1189 {
1190 #ifdef CONFIG_HIGHMEM
1191 	BUG_ON(in_irq());
1192 
1193 	local_bh_disable();
1194 #endif
1195 	return kmap_atomic(frag->page, KM_SKB_DATA_SOFTIRQ);
1196 }
1197 
1198 static inline void kunmap_skb_frag(void *vaddr)
1199 {
1200 	kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
1201 #ifdef CONFIG_HIGHMEM
1202 	local_bh_enable();
1203 #endif
1204 }
1205 
1206 #define skb_queue_walk(queue, skb) \
1207 		for (skb = (queue)->next;					\
1208 		     prefetch(skb->next), (skb != (struct sk_buff *)(queue));	\
1209 		     skb = skb->next)
1210 
1211 #define skb_queue_reverse_walk(queue, skb) \
1212 		for (skb = (queue)->prev;					\
1213 		     prefetch(skb->prev), (skb != (struct sk_buff *)(queue));	\
1214 		     skb = skb->prev)
1215 
1216 
1217 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1218 					 int noblock, int *err);
1219 extern unsigned int    datagram_poll(struct file *file, struct socket *sock,
1220 				     struct poll_table_struct *wait);
1221 extern int	       skb_copy_datagram_iovec(const struct sk_buff *from,
1222 					       int offset, struct iovec *to,
1223 					       int size);
1224 extern int	       skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1225 							int hlen,
1226 							struct iovec *iov);
1227 extern void	       skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1228 extern void	       skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1229 					 unsigned int flags);
1230 extern unsigned int    skb_checksum(const struct sk_buff *skb, int offset,
1231 				    int len, unsigned int csum);
1232 extern int	       skb_copy_bits(const struct sk_buff *skb, int offset,
1233 				     void *to, int len);
1234 extern int	       skb_store_bits(const struct sk_buff *skb, int offset,
1235 				      void *from, int len);
1236 extern unsigned int    skb_copy_and_csum_bits(const struct sk_buff *skb,
1237 					      int offset, u8 *to, int len,
1238 					      unsigned int csum);
1239 extern void	       skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1240 extern void	       skb_split(struct sk_buff *skb,
1241 				 struct sk_buff *skb1, const u32 len);
1242 
1243 extern void	       skb_release_data(struct sk_buff *skb);
1244 
1245 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1246 				       int len, void *buffer)
1247 {
1248 	int hlen = skb_headlen(skb);
1249 
1250 	if (hlen - offset >= len)
1251 		return skb->data + offset;
1252 
1253 	if (skb_copy_bits(skb, offset, buffer, len) < 0)
1254 		return NULL;
1255 
1256 	return buffer;
1257 }
1258 
1259 extern void skb_init(void);
1260 extern void skb_add_mtu(int mtu);
1261 
1262 /**
1263  *	skb_get_timestamp - get timestamp from a skb
1264  *	@skb: skb to get stamp from
1265  *	@stamp: pointer to struct timeval to store stamp in
1266  *
1267  *	Timestamps are stored in the skb as offsets to a base timestamp.
1268  *	This function converts the offset back to a struct timeval and stores
1269  *	it in stamp.
1270  */
1271 static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp)
1272 {
1273 	stamp->tv_sec  = skb->tstamp.off_sec;
1274 	stamp->tv_usec = skb->tstamp.off_usec;
1275 }
1276 
1277 /**
1278  * 	skb_set_timestamp - set timestamp of a skb
1279  *	@skb: skb to set stamp of
1280  *	@stamp: pointer to struct timeval to get stamp from
1281  *
1282  *	Timestamps are stored in the skb as offsets to a base timestamp.
1283  *	This function converts a struct timeval to an offset and stores
1284  *	it in the skb.
1285  */
1286 static inline void skb_set_timestamp(struct sk_buff *skb, const struct timeval *stamp)
1287 {
1288 	skb->tstamp.off_sec  = stamp->tv_sec;
1289 	skb->tstamp.off_usec = stamp->tv_usec;
1290 }
1291 
1292 extern void __net_timestamp(struct sk_buff *skb);
1293 
1294 extern unsigned int __skb_checksum_complete(struct sk_buff *skb);
1295 
1296 /**
1297  *	skb_checksum_complete - Calculate checksum of an entire packet
1298  *	@skb: packet to process
1299  *
1300  *	This function calculates the checksum over the entire packet plus
1301  *	the value of skb->csum.  The latter can be used to supply the
1302  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
1303  *	checksum.
1304  *
1305  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
1306  *	this function can be used to verify that checksum on received
1307  *	packets.  In that case the function should return zero if the
1308  *	checksum is correct.  In particular, this function will return zero
1309  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1310  *	hardware has already verified the correctness of the checksum.
1311  */
1312 static inline unsigned int skb_checksum_complete(struct sk_buff *skb)
1313 {
1314 	return skb->ip_summed != CHECKSUM_UNNECESSARY &&
1315 		__skb_checksum_complete(skb);
1316 }
1317 
1318 #ifdef CONFIG_NETFILTER
1319 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1320 {
1321 	if (nfct && atomic_dec_and_test(&nfct->use))
1322 		nfct->destroy(nfct);
1323 }
1324 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1325 {
1326 	if (nfct)
1327 		atomic_inc(&nfct->use);
1328 }
1329 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1330 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
1331 {
1332 	if (skb)
1333 		atomic_inc(&skb->users);
1334 }
1335 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
1336 {
1337 	if (skb)
1338 		kfree_skb(skb);
1339 }
1340 #endif
1341 #ifdef CONFIG_BRIDGE_NETFILTER
1342 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1343 {
1344 	if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1345 		kfree(nf_bridge);
1346 }
1347 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1348 {
1349 	if (nf_bridge)
1350 		atomic_inc(&nf_bridge->use);
1351 }
1352 #endif /* CONFIG_BRIDGE_NETFILTER */
1353 static inline void nf_reset(struct sk_buff *skb)
1354 {
1355 	nf_conntrack_put(skb->nfct);
1356 	skb->nfct = NULL;
1357 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1358 	nf_conntrack_put_reasm(skb->nfct_reasm);
1359 	skb->nfct_reasm = NULL;
1360 #endif
1361 #ifdef CONFIG_BRIDGE_NETFILTER
1362 	nf_bridge_put(skb->nf_bridge);
1363 	skb->nf_bridge = NULL;
1364 #endif
1365 }
1366 
1367 #else /* CONFIG_NETFILTER */
1368 static inline void nf_reset(struct sk_buff *skb) {}
1369 #endif /* CONFIG_NETFILTER */
1370 
1371 #endif	/* __KERNEL__ */
1372 #endif	/* _LINUX_SKBUFF_H */
1373