xref: /linux-6.15/include/linux/skbuff.h (revision dbcfe5ec)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  *	Definitions for the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:
6  *		Alan Cox, <[email protected]>
7  *		Florian La Roche, <[email protected]>
8  */
9 
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12 
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
22 
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/hrtimer.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/netdev_features.h>
33 #include <linux/sched.h>
34 #include <linux/sched/clock.h>
35 #include <net/flow_dissector.h>
36 #include <linux/splice.h>
37 #include <linux/in6.h>
38 #include <linux/if_packet.h>
39 #include <linux/llist.h>
40 #include <net/flow.h>
41 #include <net/page_pool.h>
42 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
43 #include <linux/netfilter/nf_conntrack_common.h>
44 #endif
45 #include <net/net_debug.h>
46 #include <net/dropreason.h>
47 
48 /**
49  * DOC: skb checksums
50  *
51  * The interface for checksum offload between the stack and networking drivers
52  * is as follows...
53  *
54  * IP checksum related features
55  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
56  *
57  * Drivers advertise checksum offload capabilities in the features of a device.
58  * From the stack's point of view these are capabilities offered by the driver.
59  * A driver typically only advertises features that it is capable of offloading
60  * to its device.
61  *
62  * .. flat-table:: Checksum related device features
63  *   :widths: 1 10
64  *
65  *   * - %NETIF_F_HW_CSUM
66  *     - The driver (or its device) is able to compute one
67  *	 IP (one's complement) checksum for any combination
68  *	 of protocols or protocol layering. The checksum is
69  *	 computed and set in a packet per the CHECKSUM_PARTIAL
70  *	 interface (see below).
71  *
72  *   * - %NETIF_F_IP_CSUM
73  *     - Driver (device) is only able to checksum plain
74  *	 TCP or UDP packets over IPv4. These are specifically
75  *	 unencapsulated packets of the form IPv4|TCP or
76  *	 IPv4|UDP where the Protocol field in the IPv4 header
77  *	 is TCP or UDP. The IPv4 header may contain IP options.
78  *	 This feature cannot be set in features for a device
79  *	 with NETIF_F_HW_CSUM also set. This feature is being
80  *	 DEPRECATED (see below).
81  *
82  *   * - %NETIF_F_IPV6_CSUM
83  *     - Driver (device) is only able to checksum plain
84  *	 TCP or UDP packets over IPv6. These are specifically
85  *	 unencapsulated packets of the form IPv6|TCP or
86  *	 IPv6|UDP where the Next Header field in the IPv6
87  *	 header is either TCP or UDP. IPv6 extension headers
88  *	 are not supported with this feature. This feature
89  *	 cannot be set in features for a device with
90  *	 NETIF_F_HW_CSUM also set. This feature is being
91  *	 DEPRECATED (see below).
92  *
93  *   * - %NETIF_F_RXCSUM
94  *     - Driver (device) performs receive checksum offload.
95  *	 This flag is only used to disable the RX checksum
96  *	 feature for a device. The stack will accept receive
97  *	 checksum indication in packets received on a device
98  *	 regardless of whether NETIF_F_RXCSUM is set.
99  *
100  * Checksumming of received packets by device
101  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
102  *
103  * Indication of checksum verification is set in &sk_buff.ip_summed.
104  * Possible values are:
105  *
106  * - %CHECKSUM_NONE
107  *
108  *   Device did not checksum this packet e.g. due to lack of capabilities.
109  *   The packet contains full (though not verified) checksum in packet but
110  *   not in skb->csum. Thus, skb->csum is undefined in this case.
111  *
112  * - %CHECKSUM_UNNECESSARY
113  *
114  *   The hardware you're dealing with doesn't calculate the full checksum
115  *   (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums
116  *   for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY
117  *   if their checksums are okay. &sk_buff.csum is still undefined in this case
118  *   though. A driver or device must never modify the checksum field in the
119  *   packet even if checksum is verified.
120  *
121  *   %CHECKSUM_UNNECESSARY is applicable to following protocols:
122  *
123  *     - TCP: IPv6 and IPv4.
124  *     - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
125  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
126  *       may perform further validation in this case.
127  *     - GRE: only if the checksum is present in the header.
128  *     - SCTP: indicates the CRC in SCTP header has been validated.
129  *     - FCOE: indicates the CRC in FC frame has been validated.
130  *
131  *   &sk_buff.csum_level indicates the number of consecutive checksums found in
132  *   the packet minus one that have been verified as %CHECKSUM_UNNECESSARY.
133  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
134  *   and a device is able to verify the checksums for UDP (possibly zero),
135  *   GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to
136  *   two. If the device were only able to verify the UDP checksum and not
137  *   GRE, either because it doesn't support GRE checksum or because GRE
138  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
139  *   not considered in this case).
140  *
141  * - %CHECKSUM_COMPLETE
142  *
143  *   This is the most generic way. The device supplied checksum of the _whole_
144  *   packet as seen by netif_rx() and fills in &sk_buff.csum. This means the
145  *   hardware doesn't need to parse L3/L4 headers to implement this.
146  *
147  *   Notes:
148  *
149  *   - Even if device supports only some protocols, but is able to produce
150  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
151  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
152  *
153  * - %CHECKSUM_PARTIAL
154  *
155  *   A checksum is set up to be offloaded to a device as described in the
156  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
157  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
158  *   on the same host, or it may be set in the input path in GRO or remote
159  *   checksum offload. For the purposes of checksum verification, the checksum
160  *   referred to by skb->csum_start + skb->csum_offset and any preceding
161  *   checksums in the packet are considered verified. Any checksums in the
162  *   packet that are after the checksum being offloaded are not considered to
163  *   be verified.
164  *
165  * Checksumming on transmit for non-GSO
166  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
167  *
168  * The stack requests checksum offload in the &sk_buff.ip_summed for a packet.
169  * Values are:
170  *
171  * - %CHECKSUM_PARTIAL
172  *
173  *   The driver is required to checksum the packet as seen by hard_start_xmit()
174  *   from &sk_buff.csum_start up to the end, and to record/write the checksum at
175  *   offset &sk_buff.csum_start + &sk_buff.csum_offset.
176  *   A driver may verify that the
177  *   csum_start and csum_offset values are valid values given the length and
178  *   offset of the packet, but it should not attempt to validate that the
179  *   checksum refers to a legitimate transport layer checksum -- it is the
180  *   purview of the stack to validate that csum_start and csum_offset are set
181  *   correctly.
182  *
183  *   When the stack requests checksum offload for a packet, the driver MUST
184  *   ensure that the checksum is set correctly. A driver can either offload the
185  *   checksum calculation to the device, or call skb_checksum_help (in the case
186  *   that the device does not support offload for a particular checksum).
187  *
188  *   %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of
189  *   %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate
190  *   checksum offload capability.
191  *   skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based
192  *   on network device checksumming capabilities: if a packet does not match
193  *   them, skb_checksum_help() or skb_crc32c_help() (depending on the value of
194  *   &sk_buff.csum_not_inet, see :ref:`crc`)
195  *   is called to resolve the checksum.
196  *
197  * - %CHECKSUM_NONE
198  *
199  *   The skb was already checksummed by the protocol, or a checksum is not
200  *   required.
201  *
202  * - %CHECKSUM_UNNECESSARY
203  *
204  *   This has the same meaning as CHECKSUM_NONE for checksum offload on
205  *   output.
206  *
207  * - %CHECKSUM_COMPLETE
208  *
209  *   Not used in checksum output. If a driver observes a packet with this value
210  *   set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set.
211  *
212  * .. _crc:
213  *
214  * Non-IP checksum (CRC) offloads
215  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
216  *
217  * .. flat-table::
218  *   :widths: 1 10
219  *
220  *   * - %NETIF_F_SCTP_CRC
221  *     - This feature indicates that a device is capable of
222  *	 offloading the SCTP CRC in a packet. To perform this offload the stack
223  *	 will set csum_start and csum_offset accordingly, set ip_summed to
224  *	 %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication
225  *	 in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c.
226  *	 A driver that supports both IP checksum offload and SCTP CRC32c offload
227  *	 must verify which offload is configured for a packet by testing the
228  *	 value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to
229  *	 resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
230  *
231  *   * - %NETIF_F_FCOE_CRC
232  *     - This feature indicates that a device is capable of offloading the FCOE
233  *	 CRC in a packet. To perform this offload the stack will set ip_summed
234  *	 to %CHECKSUM_PARTIAL and set csum_start and csum_offset
235  *	 accordingly. Note that there is no indication in the skbuff that the
236  *	 %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
237  *	 both IP checksum offload and FCOE CRC offload must verify which offload
238  *	 is configured for a packet, presumably by inspecting packet headers.
239  *
240  * Checksumming on output with GSO
241  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
242  *
243  * In the case of a GSO packet (skb_is_gso() is true), checksum offload
244  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
245  * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as
246  * part of the GSO operation is implied. If a checksum is being offloaded
247  * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and
248  * csum_offset are set to refer to the outermost checksum being offloaded
249  * (two offloaded checksums are possible with UDP encapsulation).
250  */
251 
252 /* Don't change this without changing skb_csum_unnecessary! */
253 #define CHECKSUM_NONE		0
254 #define CHECKSUM_UNNECESSARY	1
255 #define CHECKSUM_COMPLETE	2
256 #define CHECKSUM_PARTIAL	3
257 
258 /* Maximum value in skb->csum_level */
259 #define SKB_MAX_CSUM_LEVEL	3
260 
261 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
262 #define SKB_WITH_OVERHEAD(X)	\
263 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
264 #define SKB_MAX_ORDER(X, ORDER) \
265 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
266 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
267 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
268 
269 /* return minimum truesize of one skb containing X bytes of data */
270 #define SKB_TRUESIZE(X) ((X) +						\
271 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
272 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
273 
274 struct ahash_request;
275 struct net_device;
276 struct scatterlist;
277 struct pipe_inode_info;
278 struct iov_iter;
279 struct napi_struct;
280 struct bpf_prog;
281 union bpf_attr;
282 struct skb_ext;
283 
284 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
285 struct nf_bridge_info {
286 	enum {
287 		BRNF_PROTO_UNCHANGED,
288 		BRNF_PROTO_8021Q,
289 		BRNF_PROTO_PPPOE
290 	} orig_proto:8;
291 	u8			pkt_otherhost:1;
292 	u8			in_prerouting:1;
293 	u8			bridged_dnat:1;
294 	__u16			frag_max_size;
295 	struct net_device	*physindev;
296 
297 	/* always valid & non-NULL from FORWARD on, for physdev match */
298 	struct net_device	*physoutdev;
299 	union {
300 		/* prerouting: detect dnat in orig/reply direction */
301 		__be32          ipv4_daddr;
302 		struct in6_addr ipv6_daddr;
303 
304 		/* after prerouting + nat detected: store original source
305 		 * mac since neigh resolution overwrites it, only used while
306 		 * skb is out in neigh layer.
307 		 */
308 		char neigh_header[8];
309 	};
310 };
311 #endif
312 
313 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
314 /* Chain in tc_skb_ext will be used to share the tc chain with
315  * ovs recirc_id. It will be set to the current chain by tc
316  * and read by ovs to recirc_id.
317  */
318 struct tc_skb_ext {
319 	__u32 chain;
320 	__u16 mru;
321 	__u16 zone;
322 	u8 post_ct:1;
323 	u8 post_ct_snat:1;
324 	u8 post_ct_dnat:1;
325 };
326 #endif
327 
328 struct sk_buff_head {
329 	/* These two members must be first to match sk_buff. */
330 	struct_group_tagged(sk_buff_list, list,
331 		struct sk_buff	*next;
332 		struct sk_buff	*prev;
333 	);
334 
335 	__u32		qlen;
336 	spinlock_t	lock;
337 };
338 
339 struct sk_buff;
340 
341 /* To allow 64K frame to be packed as single skb without frag_list we
342  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
343  * buffers which do not start on a page boundary.
344  *
345  * Since GRO uses frags we allocate at least 16 regardless of page
346  * size.
347  */
348 #if (65536/PAGE_SIZE + 1) < 16
349 #define MAX_SKB_FRAGS 16UL
350 #else
351 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
352 #endif
353 extern int sysctl_max_skb_frags;
354 
355 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
356  * segment using its current segmentation instead.
357  */
358 #define GSO_BY_FRAGS	0xFFFF
359 
360 typedef struct bio_vec skb_frag_t;
361 
362 /**
363  * skb_frag_size() - Returns the size of a skb fragment
364  * @frag: skb fragment
365  */
366 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
367 {
368 	return frag->bv_len;
369 }
370 
371 /**
372  * skb_frag_size_set() - Sets the size of a skb fragment
373  * @frag: skb fragment
374  * @size: size of fragment
375  */
376 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
377 {
378 	frag->bv_len = size;
379 }
380 
381 /**
382  * skb_frag_size_add() - Increments the size of a skb fragment by @delta
383  * @frag: skb fragment
384  * @delta: value to add
385  */
386 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
387 {
388 	frag->bv_len += delta;
389 }
390 
391 /**
392  * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
393  * @frag: skb fragment
394  * @delta: value to subtract
395  */
396 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
397 {
398 	frag->bv_len -= delta;
399 }
400 
401 /**
402  * skb_frag_must_loop - Test if %p is a high memory page
403  * @p: fragment's page
404  */
405 static inline bool skb_frag_must_loop(struct page *p)
406 {
407 #if defined(CONFIG_HIGHMEM)
408 	if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p))
409 		return true;
410 #endif
411 	return false;
412 }
413 
414 /**
415  *	skb_frag_foreach_page - loop over pages in a fragment
416  *
417  *	@f:		skb frag to operate on
418  *	@f_off:		offset from start of f->bv_page
419  *	@f_len:		length from f_off to loop over
420  *	@p:		(temp var) current page
421  *	@p_off:		(temp var) offset from start of current page,
422  *	                           non-zero only on first page.
423  *	@p_len:		(temp var) length in current page,
424  *				   < PAGE_SIZE only on first and last page.
425  *	@copied:	(temp var) length so far, excluding current p_len.
426  *
427  *	A fragment can hold a compound page, in which case per-page
428  *	operations, notably kmap_atomic, must be called for each
429  *	regular page.
430  */
431 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
432 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
433 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
434 	     p_len = skb_frag_must_loop(p) ?				\
435 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
436 	     copied = 0;						\
437 	     copied < f_len;						\
438 	     copied += p_len, p++, p_off = 0,				\
439 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
440 
441 #define HAVE_HW_TIME_STAMP
442 
443 /**
444  * struct skb_shared_hwtstamps - hardware time stamps
445  * @hwtstamp:		hardware time stamp transformed into duration
446  *			since arbitrary point in time
447  * @netdev_data:	address/cookie of network device driver used as
448  *			reference to actual hardware time stamp
449  *
450  * Software time stamps generated by ktime_get_real() are stored in
451  * skb->tstamp.
452  *
453  * hwtstamps can only be compared against other hwtstamps from
454  * the same device.
455  *
456  * This structure is attached to packets as part of the
457  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
458  */
459 struct skb_shared_hwtstamps {
460 	union {
461 		ktime_t	hwtstamp;
462 		void *netdev_data;
463 	};
464 };
465 
466 /* Definitions for tx_flags in struct skb_shared_info */
467 enum {
468 	/* generate hardware time stamp */
469 	SKBTX_HW_TSTAMP = 1 << 0,
470 
471 	/* generate software time stamp when queueing packet to NIC */
472 	SKBTX_SW_TSTAMP = 1 << 1,
473 
474 	/* device driver is going to provide hardware time stamp */
475 	SKBTX_IN_PROGRESS = 1 << 2,
476 
477 	/* generate hardware time stamp based on cycles if supported */
478 	SKBTX_HW_TSTAMP_USE_CYCLES = 1 << 3,
479 
480 	/* generate wifi status information (where possible) */
481 	SKBTX_WIFI_STATUS = 1 << 4,
482 
483 	/* determine hardware time stamp based on time or cycles */
484 	SKBTX_HW_TSTAMP_NETDEV = 1 << 5,
485 
486 	/* generate software time stamp when entering packet scheduling */
487 	SKBTX_SCHED_TSTAMP = 1 << 6,
488 };
489 
490 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
491 				 SKBTX_SCHED_TSTAMP)
492 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | \
493 				 SKBTX_HW_TSTAMP_USE_CYCLES | \
494 				 SKBTX_ANY_SW_TSTAMP)
495 
496 /* Definitions for flags in struct skb_shared_info */
497 enum {
498 	/* use zcopy routines */
499 	SKBFL_ZEROCOPY_ENABLE = BIT(0),
500 
501 	/* This indicates at least one fragment might be overwritten
502 	 * (as in vmsplice(), sendfile() ...)
503 	 * If we need to compute a TX checksum, we'll need to copy
504 	 * all frags to avoid possible bad checksum
505 	 */
506 	SKBFL_SHARED_FRAG = BIT(1),
507 
508 	/* segment contains only zerocopy data and should not be
509 	 * charged to the kernel memory.
510 	 */
511 	SKBFL_PURE_ZEROCOPY = BIT(2),
512 
513 	SKBFL_DONT_ORPHAN = BIT(3),
514 
515 	/* page references are managed by the ubuf_info, so it's safe to
516 	 * use frags only up until ubuf_info is released
517 	 */
518 	SKBFL_MANAGED_FRAG_REFS = BIT(4),
519 };
520 
521 #define SKBFL_ZEROCOPY_FRAG	(SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG)
522 #define SKBFL_ALL_ZEROCOPY	(SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY | \
523 				 SKBFL_DONT_ORPHAN | SKBFL_MANAGED_FRAG_REFS)
524 
525 /*
526  * The callback notifies userspace to release buffers when skb DMA is done in
527  * lower device, the skb last reference should be 0 when calling this.
528  * The zerocopy_success argument is true if zero copy transmit occurred,
529  * false on data copy or out of memory error caused by data copy attempt.
530  * The ctx field is used to track device context.
531  * The desc field is used to track userspace buffer index.
532  */
533 struct ubuf_info {
534 	void (*callback)(struct sk_buff *, struct ubuf_info *,
535 			 bool zerocopy_success);
536 	union {
537 		struct {
538 			unsigned long desc;
539 			void *ctx;
540 		};
541 		struct {
542 			u32 id;
543 			u16 len;
544 			u16 zerocopy:1;
545 			u32 bytelen;
546 		};
547 	};
548 	refcount_t refcnt;
549 	u8 flags;
550 
551 	struct mmpin {
552 		struct user_struct *user;
553 		unsigned int num_pg;
554 	} mmp;
555 };
556 
557 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
558 
559 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
560 void mm_unaccount_pinned_pages(struct mmpin *mmp);
561 
562 /* This data is invariant across clones and lives at
563  * the end of the header data, ie. at skb->end.
564  */
565 struct skb_shared_info {
566 	__u8		flags;
567 	__u8		meta_len;
568 	__u8		nr_frags;
569 	__u8		tx_flags;
570 	unsigned short	gso_size;
571 	/* Warning: this field is not always filled in (UFO)! */
572 	unsigned short	gso_segs;
573 	struct sk_buff	*frag_list;
574 	struct skb_shared_hwtstamps hwtstamps;
575 	unsigned int	gso_type;
576 	u32		tskey;
577 
578 	/*
579 	 * Warning : all fields before dataref are cleared in __alloc_skb()
580 	 */
581 	atomic_t	dataref;
582 	unsigned int	xdp_frags_size;
583 
584 	/* Intermediate layers must ensure that destructor_arg
585 	 * remains valid until skb destructor */
586 	void *		destructor_arg;
587 
588 	/* must be last field, see pskb_expand_head() */
589 	skb_frag_t	frags[MAX_SKB_FRAGS];
590 };
591 
592 /**
593  * DOC: dataref and headerless skbs
594  *
595  * Transport layers send out clones of payload skbs they hold for
596  * retransmissions. To allow lower layers of the stack to prepend their headers
597  * we split &skb_shared_info.dataref into two halves.
598  * The lower 16 bits count the overall number of references.
599  * The higher 16 bits indicate how many of the references are payload-only.
600  * skb_header_cloned() checks if skb is allowed to add / write the headers.
601  *
602  * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr
603  * (via __skb_header_release()). Any clone created from marked skb will get
604  * &sk_buff.hdr_len populated with the available headroom.
605  * If there's the only clone in existence it's able to modify the headroom
606  * at will. The sequence of calls inside the transport layer is::
607  *
608  *  <alloc skb>
609  *  skb_reserve()
610  *  __skb_header_release()
611  *  skb_clone()
612  *  // send the clone down the stack
613  *
614  * This is not a very generic construct and it depends on the transport layers
615  * doing the right thing. In practice there's usually only one payload-only skb.
616  * Having multiple payload-only skbs with different lengths of hdr_len is not
617  * possible. The payload-only skbs should never leave their owner.
618  */
619 #define SKB_DATAREF_SHIFT 16
620 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
621 
622 
623 enum {
624 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
625 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
626 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
627 };
628 
629 enum {
630 	SKB_GSO_TCPV4 = 1 << 0,
631 
632 	/* This indicates the skb is from an untrusted source. */
633 	SKB_GSO_DODGY = 1 << 1,
634 
635 	/* This indicates the tcp segment has CWR set. */
636 	SKB_GSO_TCP_ECN = 1 << 2,
637 
638 	SKB_GSO_TCP_FIXEDID = 1 << 3,
639 
640 	SKB_GSO_TCPV6 = 1 << 4,
641 
642 	SKB_GSO_FCOE = 1 << 5,
643 
644 	SKB_GSO_GRE = 1 << 6,
645 
646 	SKB_GSO_GRE_CSUM = 1 << 7,
647 
648 	SKB_GSO_IPXIP4 = 1 << 8,
649 
650 	SKB_GSO_IPXIP6 = 1 << 9,
651 
652 	SKB_GSO_UDP_TUNNEL = 1 << 10,
653 
654 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
655 
656 	SKB_GSO_PARTIAL = 1 << 12,
657 
658 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
659 
660 	SKB_GSO_SCTP = 1 << 14,
661 
662 	SKB_GSO_ESP = 1 << 15,
663 
664 	SKB_GSO_UDP = 1 << 16,
665 
666 	SKB_GSO_UDP_L4 = 1 << 17,
667 
668 	SKB_GSO_FRAGLIST = 1 << 18,
669 };
670 
671 #if BITS_PER_LONG > 32
672 #define NET_SKBUFF_DATA_USES_OFFSET 1
673 #endif
674 
675 #ifdef NET_SKBUFF_DATA_USES_OFFSET
676 typedef unsigned int sk_buff_data_t;
677 #else
678 typedef unsigned char *sk_buff_data_t;
679 #endif
680 
681 /**
682  * DOC: Basic sk_buff geometry
683  *
684  * struct sk_buff itself is a metadata structure and does not hold any packet
685  * data. All the data is held in associated buffers.
686  *
687  * &sk_buff.head points to the main "head" buffer. The head buffer is divided
688  * into two parts:
689  *
690  *  - data buffer, containing headers and sometimes payload;
691  *    this is the part of the skb operated on by the common helpers
692  *    such as skb_put() or skb_pull();
693  *  - shared info (struct skb_shared_info) which holds an array of pointers
694  *    to read-only data in the (page, offset, length) format.
695  *
696  * Optionally &skb_shared_info.frag_list may point to another skb.
697  *
698  * Basic diagram may look like this::
699  *
700  *                                  ---------------
701  *                                 | sk_buff       |
702  *                                  ---------------
703  *     ,---------------------------  + head
704  *    /          ,-----------------  + data
705  *   /          /      ,-----------  + tail
706  *  |          |      |            , + end
707  *  |          |      |           |
708  *  v          v      v           v
709  *   -----------------------------------------------
710  *  | headroom | data |  tailroom | skb_shared_info |
711  *   -----------------------------------------------
712  *                                 + [page frag]
713  *                                 + [page frag]
714  *                                 + [page frag]
715  *                                 + [page frag]       ---------
716  *                                 + frag_list    --> | sk_buff |
717  *                                                     ---------
718  *
719  */
720 
721 /**
722  *	struct sk_buff - socket buffer
723  *	@next: Next buffer in list
724  *	@prev: Previous buffer in list
725  *	@tstamp: Time we arrived/left
726  *	@skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
727  *		for retransmit timer
728  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
729  *	@list: queue head
730  *	@ll_node: anchor in an llist (eg socket defer_list)
731  *	@sk: Socket we are owned by
732  *	@ip_defrag_offset: (aka @sk) alternate use of @sk, used in
733  *		fragmentation management
734  *	@dev: Device we arrived on/are leaving by
735  *	@dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
736  *	@cb: Control buffer. Free for use by every layer. Put private vars here
737  *	@_skb_refdst: destination entry (with norefcount bit)
738  *	@sp: the security path, used for xfrm
739  *	@len: Length of actual data
740  *	@data_len: Data length
741  *	@mac_len: Length of link layer header
742  *	@hdr_len: writable header length of cloned skb
743  *	@csum: Checksum (must include start/offset pair)
744  *	@csum_start: Offset from skb->head where checksumming should start
745  *	@csum_offset: Offset from csum_start where checksum should be stored
746  *	@priority: Packet queueing priority
747  *	@ignore_df: allow local fragmentation
748  *	@cloned: Head may be cloned (check refcnt to be sure)
749  *	@ip_summed: Driver fed us an IP checksum
750  *	@nohdr: Payload reference only, must not modify header
751  *	@pkt_type: Packet class
752  *	@fclone: skbuff clone status
753  *	@ipvs_property: skbuff is owned by ipvs
754  *	@inner_protocol_type: whether the inner protocol is
755  *		ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
756  *	@remcsum_offload: remote checksum offload is enabled
757  *	@offload_fwd_mark: Packet was L2-forwarded in hardware
758  *	@offload_l3_fwd_mark: Packet was L3-forwarded in hardware
759  *	@tc_skip_classify: do not classify packet. set by IFB device
760  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
761  *	@redirected: packet was redirected by packet classifier
762  *	@from_ingress: packet was redirected from the ingress path
763  *	@nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h
764  *	@peeked: this packet has been seen already, so stats have been
765  *		done for it, don't do them again
766  *	@nf_trace: netfilter packet trace flag
767  *	@protocol: Packet protocol from driver
768  *	@destructor: Destruct function
769  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
770  *	@_sk_redir: socket redirection information for skmsg
771  *	@_nfct: Associated connection, if any (with nfctinfo bits)
772  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
773  *	@skb_iif: ifindex of device we arrived on
774  *	@tc_index: Traffic control index
775  *	@hash: the packet hash
776  *	@queue_mapping: Queue mapping for multiqueue devices
777  *	@head_frag: skb was allocated from page fragments,
778  *		not allocated by kmalloc() or vmalloc().
779  *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
780  *	@pp_recycle: mark the packet for recycling instead of freeing (implies
781  *		page_pool support on driver)
782  *	@active_extensions: active extensions (skb_ext_id types)
783  *	@ndisc_nodetype: router type (from link layer)
784  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
785  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
786  *		ports.
787  *	@sw_hash: indicates hash was computed in software stack
788  *	@wifi_acked_valid: wifi_acked was set
789  *	@wifi_acked: whether frame was acked on wifi or not
790  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
791  *	@encapsulation: indicates the inner headers in the skbuff are valid
792  *	@encap_hdr_csum: software checksum is needed
793  *	@csum_valid: checksum is already valid
794  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
795  *	@csum_complete_sw: checksum was completed by software
796  *	@csum_level: indicates the number of consecutive checksums found in
797  *		the packet minus one that have been verified as
798  *		CHECKSUM_UNNECESSARY (max 3)
799  *	@dst_pending_confirm: need to confirm neighbour
800  *	@decrypted: Decrypted SKB
801  *	@slow_gro: state present at GRO time, slower prepare step required
802  *	@mono_delivery_time: When set, skb->tstamp has the
803  *		delivery_time in mono clock base (i.e. EDT).  Otherwise, the
804  *		skb->tstamp has the (rcv) timestamp at ingress and
805  *		delivery_time at egress.
806  *	@napi_id: id of the NAPI struct this skb came from
807  *	@sender_cpu: (aka @napi_id) source CPU in XPS
808  *	@alloc_cpu: CPU which did the skb allocation.
809  *	@secmark: security marking
810  *	@mark: Generic packet mark
811  *	@reserved_tailroom: (aka @mark) number of bytes of free space available
812  *		at the tail of an sk_buff
813  *	@vlan_present: VLAN tag is present
814  *	@vlan_proto: vlan encapsulation protocol
815  *	@vlan_tci: vlan tag control information
816  *	@inner_protocol: Protocol (encapsulation)
817  *	@inner_ipproto: (aka @inner_protocol) stores ipproto when
818  *		skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
819  *	@inner_transport_header: Inner transport layer header (encapsulation)
820  *	@inner_network_header: Network layer header (encapsulation)
821  *	@inner_mac_header: Link layer header (encapsulation)
822  *	@transport_header: Transport layer header
823  *	@network_header: Network layer header
824  *	@mac_header: Link layer header
825  *	@kcov_handle: KCOV remote handle for remote coverage collection
826  *	@tail: Tail pointer
827  *	@end: End pointer
828  *	@head: Head of buffer
829  *	@data: Data head pointer
830  *	@truesize: Buffer size
831  *	@users: User count - see {datagram,tcp}.c
832  *	@extensions: allocated extensions, valid if active_extensions is nonzero
833  */
834 
835 struct sk_buff {
836 	union {
837 		struct {
838 			/* These two members must be first to match sk_buff_head. */
839 			struct sk_buff		*next;
840 			struct sk_buff		*prev;
841 
842 			union {
843 				struct net_device	*dev;
844 				/* Some protocols might use this space to store information,
845 				 * while device pointer would be NULL.
846 				 * UDP receive path is one user.
847 				 */
848 				unsigned long		dev_scratch;
849 			};
850 		};
851 		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
852 		struct list_head	list;
853 		struct llist_node	ll_node;
854 	};
855 
856 	union {
857 		struct sock		*sk;
858 		int			ip_defrag_offset;
859 	};
860 
861 	union {
862 		ktime_t		tstamp;
863 		u64		skb_mstamp_ns; /* earliest departure time */
864 	};
865 	/*
866 	 * This is the control buffer. It is free to use for every
867 	 * layer. Please put your private variables there. If you
868 	 * want to keep them across layers you have to do a skb_clone()
869 	 * first. This is owned by whoever has the skb queued ATM.
870 	 */
871 	char			cb[48] __aligned(8);
872 
873 	union {
874 		struct {
875 			unsigned long	_skb_refdst;
876 			void		(*destructor)(struct sk_buff *skb);
877 		};
878 		struct list_head	tcp_tsorted_anchor;
879 #ifdef CONFIG_NET_SOCK_MSG
880 		unsigned long		_sk_redir;
881 #endif
882 	};
883 
884 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
885 	unsigned long		 _nfct;
886 #endif
887 	unsigned int		len,
888 				data_len;
889 	__u16			mac_len,
890 				hdr_len;
891 
892 	/* Following fields are _not_ copied in __copy_skb_header()
893 	 * Note that queue_mapping is here mostly to fill a hole.
894 	 */
895 	__u16			queue_mapping;
896 
897 /* if you move cloned around you also must adapt those constants */
898 #ifdef __BIG_ENDIAN_BITFIELD
899 #define CLONED_MASK	(1 << 7)
900 #else
901 #define CLONED_MASK	1
902 #endif
903 #define CLONED_OFFSET		offsetof(struct sk_buff, __cloned_offset)
904 
905 	/* private: */
906 	__u8			__cloned_offset[0];
907 	/* public: */
908 	__u8			cloned:1,
909 				nohdr:1,
910 				fclone:2,
911 				peeked:1,
912 				head_frag:1,
913 				pfmemalloc:1,
914 				pp_recycle:1; /* page_pool recycle indicator */
915 #ifdef CONFIG_SKB_EXTENSIONS
916 	__u8			active_extensions;
917 #endif
918 
919 	/* Fields enclosed in headers group are copied
920 	 * using a single memcpy() in __copy_skb_header()
921 	 */
922 	struct_group(headers,
923 
924 	/* private: */
925 	__u8			__pkt_type_offset[0];
926 	/* public: */
927 	__u8			pkt_type:3; /* see PKT_TYPE_MAX */
928 	__u8			ignore_df:1;
929 	__u8			nf_trace:1;
930 	__u8			ip_summed:2;
931 	__u8			ooo_okay:1;
932 
933 	__u8			l4_hash:1;
934 	__u8			sw_hash:1;
935 	__u8			wifi_acked_valid:1;
936 	__u8			wifi_acked:1;
937 	__u8			no_fcs:1;
938 	/* Indicates the inner headers are valid in the skbuff. */
939 	__u8			encapsulation:1;
940 	__u8			encap_hdr_csum:1;
941 	__u8			csum_valid:1;
942 
943 	/* private: */
944 	__u8			__pkt_vlan_present_offset[0];
945 	/* public: */
946 	__u8			vlan_present:1;	/* See PKT_VLAN_PRESENT_BIT */
947 	__u8			csum_complete_sw:1;
948 	__u8			csum_level:2;
949 	__u8			dst_pending_confirm:1;
950 	__u8			mono_delivery_time:1;	/* See SKB_MONO_DELIVERY_TIME_MASK */
951 #ifdef CONFIG_NET_CLS_ACT
952 	__u8			tc_skip_classify:1;
953 	__u8			tc_at_ingress:1;	/* See TC_AT_INGRESS_MASK */
954 #endif
955 #ifdef CONFIG_IPV6_NDISC_NODETYPE
956 	__u8			ndisc_nodetype:2;
957 #endif
958 
959 	__u8			ipvs_property:1;
960 	__u8			inner_protocol_type:1;
961 	__u8			remcsum_offload:1;
962 #ifdef CONFIG_NET_SWITCHDEV
963 	__u8			offload_fwd_mark:1;
964 	__u8			offload_l3_fwd_mark:1;
965 #endif
966 	__u8			redirected:1;
967 #ifdef CONFIG_NET_REDIRECT
968 	__u8			from_ingress:1;
969 #endif
970 #ifdef CONFIG_NETFILTER_SKIP_EGRESS
971 	__u8			nf_skip_egress:1;
972 #endif
973 #ifdef CONFIG_TLS_DEVICE
974 	__u8			decrypted:1;
975 #endif
976 	__u8			slow_gro:1;
977 	__u8			csum_not_inet:1;
978 
979 #ifdef CONFIG_NET_SCHED
980 	__u16			tc_index;	/* traffic control index */
981 #endif
982 
983 	union {
984 		__wsum		csum;
985 		struct {
986 			__u16	csum_start;
987 			__u16	csum_offset;
988 		};
989 	};
990 	__u32			priority;
991 	int			skb_iif;
992 	__u32			hash;
993 	__be16			vlan_proto;
994 	__u16			vlan_tci;
995 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
996 	union {
997 		unsigned int	napi_id;
998 		unsigned int	sender_cpu;
999 	};
1000 #endif
1001 	u16			alloc_cpu;
1002 #ifdef CONFIG_NETWORK_SECMARK
1003 	__u32		secmark;
1004 #endif
1005 
1006 	union {
1007 		__u32		mark;
1008 		__u32		reserved_tailroom;
1009 	};
1010 
1011 	union {
1012 		__be16		inner_protocol;
1013 		__u8		inner_ipproto;
1014 	};
1015 
1016 	__u16			inner_transport_header;
1017 	__u16			inner_network_header;
1018 	__u16			inner_mac_header;
1019 
1020 	__be16			protocol;
1021 	__u16			transport_header;
1022 	__u16			network_header;
1023 	__u16			mac_header;
1024 
1025 #ifdef CONFIG_KCOV
1026 	u64			kcov_handle;
1027 #endif
1028 
1029 	); /* end headers group */
1030 
1031 	/* These elements must be at the end, see alloc_skb() for details.  */
1032 	sk_buff_data_t		tail;
1033 	sk_buff_data_t		end;
1034 	unsigned char		*head,
1035 				*data;
1036 	unsigned int		truesize;
1037 	refcount_t		users;
1038 
1039 #ifdef CONFIG_SKB_EXTENSIONS
1040 	/* only useable after checking ->active_extensions != 0 */
1041 	struct skb_ext		*extensions;
1042 #endif
1043 };
1044 
1045 /* if you move pkt_type around you also must adapt those constants */
1046 #ifdef __BIG_ENDIAN_BITFIELD
1047 #define PKT_TYPE_MAX	(7 << 5)
1048 #else
1049 #define PKT_TYPE_MAX	7
1050 #endif
1051 #define PKT_TYPE_OFFSET		offsetof(struct sk_buff, __pkt_type_offset)
1052 
1053 /* if you move pkt_vlan_present, tc_at_ingress, or mono_delivery_time
1054  * around, you also must adapt these constants.
1055  */
1056 #ifdef __BIG_ENDIAN_BITFIELD
1057 #define PKT_VLAN_PRESENT_BIT	7
1058 #define TC_AT_INGRESS_MASK		(1 << 0)
1059 #define SKB_MONO_DELIVERY_TIME_MASK	(1 << 2)
1060 #else
1061 #define PKT_VLAN_PRESENT_BIT	0
1062 #define TC_AT_INGRESS_MASK		(1 << 7)
1063 #define SKB_MONO_DELIVERY_TIME_MASK	(1 << 5)
1064 #endif
1065 #define PKT_VLAN_PRESENT_OFFSET	offsetof(struct sk_buff, __pkt_vlan_present_offset)
1066 
1067 #ifdef __KERNEL__
1068 /*
1069  *	Handling routines are only of interest to the kernel
1070  */
1071 
1072 #define SKB_ALLOC_FCLONE	0x01
1073 #define SKB_ALLOC_RX		0x02
1074 #define SKB_ALLOC_NAPI		0x04
1075 
1076 /**
1077  * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
1078  * @skb: buffer
1079  */
1080 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
1081 {
1082 	return unlikely(skb->pfmemalloc);
1083 }
1084 
1085 /*
1086  * skb might have a dst pointer attached, refcounted or not.
1087  * _skb_refdst low order bit is set if refcount was _not_ taken
1088  */
1089 #define SKB_DST_NOREF	1UL
1090 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
1091 
1092 /**
1093  * skb_dst - returns skb dst_entry
1094  * @skb: buffer
1095  *
1096  * Returns skb dst_entry, regardless of reference taken or not.
1097  */
1098 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
1099 {
1100 	/* If refdst was not refcounted, check we still are in a
1101 	 * rcu_read_lock section
1102 	 */
1103 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
1104 		!rcu_read_lock_held() &&
1105 		!rcu_read_lock_bh_held());
1106 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
1107 }
1108 
1109 /**
1110  * skb_dst_set - sets skb dst
1111  * @skb: buffer
1112  * @dst: dst entry
1113  *
1114  * Sets skb dst, assuming a reference was taken on dst and should
1115  * be released by skb_dst_drop()
1116  */
1117 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
1118 {
1119 	skb->slow_gro |= !!dst;
1120 	skb->_skb_refdst = (unsigned long)dst;
1121 }
1122 
1123 /**
1124  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
1125  * @skb: buffer
1126  * @dst: dst entry
1127  *
1128  * Sets skb dst, assuming a reference was not taken on dst.
1129  * If dst entry is cached, we do not take reference and dst_release
1130  * will be avoided by refdst_drop. If dst entry is not cached, we take
1131  * reference, so that last dst_release can destroy the dst immediately.
1132  */
1133 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
1134 {
1135 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
1136 	skb->slow_gro |= !!dst;
1137 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
1138 }
1139 
1140 /**
1141  * skb_dst_is_noref - Test if skb dst isn't refcounted
1142  * @skb: buffer
1143  */
1144 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1145 {
1146 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1147 }
1148 
1149 /**
1150  * skb_rtable - Returns the skb &rtable
1151  * @skb: buffer
1152  */
1153 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
1154 {
1155 	return (struct rtable *)skb_dst(skb);
1156 }
1157 
1158 /* For mangling skb->pkt_type from user space side from applications
1159  * such as nft, tc, etc, we only allow a conservative subset of
1160  * possible pkt_types to be set.
1161 */
1162 static inline bool skb_pkt_type_ok(u32 ptype)
1163 {
1164 	return ptype <= PACKET_OTHERHOST;
1165 }
1166 
1167 /**
1168  * skb_napi_id - Returns the skb's NAPI id
1169  * @skb: buffer
1170  */
1171 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1172 {
1173 #ifdef CONFIG_NET_RX_BUSY_POLL
1174 	return skb->napi_id;
1175 #else
1176 	return 0;
1177 #endif
1178 }
1179 
1180 /**
1181  * skb_unref - decrement the skb's reference count
1182  * @skb: buffer
1183  *
1184  * Returns true if we can free the skb.
1185  */
1186 static inline bool skb_unref(struct sk_buff *skb)
1187 {
1188 	if (unlikely(!skb))
1189 		return false;
1190 	if (likely(refcount_read(&skb->users) == 1))
1191 		smp_rmb();
1192 	else if (likely(!refcount_dec_and_test(&skb->users)))
1193 		return false;
1194 
1195 	return true;
1196 }
1197 
1198 void kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason);
1199 
1200 /**
1201  *	kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason
1202  *	@skb: buffer to free
1203  */
1204 static inline void kfree_skb(struct sk_buff *skb)
1205 {
1206 	kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1207 }
1208 
1209 void skb_release_head_state(struct sk_buff *skb);
1210 void kfree_skb_list_reason(struct sk_buff *segs,
1211 			   enum skb_drop_reason reason);
1212 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1213 void skb_tx_error(struct sk_buff *skb);
1214 
1215 static inline void kfree_skb_list(struct sk_buff *segs)
1216 {
1217 	kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED);
1218 }
1219 
1220 #ifdef CONFIG_TRACEPOINTS
1221 void consume_skb(struct sk_buff *skb);
1222 #else
1223 static inline void consume_skb(struct sk_buff *skb)
1224 {
1225 	return kfree_skb(skb);
1226 }
1227 #endif
1228 
1229 void __consume_stateless_skb(struct sk_buff *skb);
1230 void  __kfree_skb(struct sk_buff *skb);
1231 extern struct kmem_cache *skbuff_head_cache;
1232 
1233 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1234 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1235 		      bool *fragstolen, int *delta_truesize);
1236 
1237 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1238 			    int node);
1239 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1240 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1241 struct sk_buff *build_skb_around(struct sk_buff *skb,
1242 				 void *data, unsigned int frag_size);
1243 void skb_attempt_defer_free(struct sk_buff *skb);
1244 
1245 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size);
1246 
1247 /**
1248  * alloc_skb - allocate a network buffer
1249  * @size: size to allocate
1250  * @priority: allocation mask
1251  *
1252  * This function is a convenient wrapper around __alloc_skb().
1253  */
1254 static inline struct sk_buff *alloc_skb(unsigned int size,
1255 					gfp_t priority)
1256 {
1257 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1258 }
1259 
1260 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1261 				     unsigned long data_len,
1262 				     int max_page_order,
1263 				     int *errcode,
1264 				     gfp_t gfp_mask);
1265 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1266 
1267 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1268 struct sk_buff_fclones {
1269 	struct sk_buff	skb1;
1270 
1271 	struct sk_buff	skb2;
1272 
1273 	refcount_t	fclone_ref;
1274 };
1275 
1276 /**
1277  *	skb_fclone_busy - check if fclone is busy
1278  *	@sk: socket
1279  *	@skb: buffer
1280  *
1281  * Returns true if skb is a fast clone, and its clone is not freed.
1282  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1283  * so we also check that this didnt happen.
1284  */
1285 static inline bool skb_fclone_busy(const struct sock *sk,
1286 				   const struct sk_buff *skb)
1287 {
1288 	const struct sk_buff_fclones *fclones;
1289 
1290 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1291 
1292 	return skb->fclone == SKB_FCLONE_ORIG &&
1293 	       refcount_read(&fclones->fclone_ref) > 1 &&
1294 	       READ_ONCE(fclones->skb2.sk) == sk;
1295 }
1296 
1297 /**
1298  * alloc_skb_fclone - allocate a network buffer from fclone cache
1299  * @size: size to allocate
1300  * @priority: allocation mask
1301  *
1302  * This function is a convenient wrapper around __alloc_skb().
1303  */
1304 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1305 					       gfp_t priority)
1306 {
1307 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1308 }
1309 
1310 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1311 void skb_headers_offset_update(struct sk_buff *skb, int off);
1312 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1313 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1314 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1315 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1316 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1317 				   gfp_t gfp_mask, bool fclone);
1318 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1319 					  gfp_t gfp_mask)
1320 {
1321 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1322 }
1323 
1324 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1325 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1326 				     unsigned int headroom);
1327 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom);
1328 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1329 				int newtailroom, gfp_t priority);
1330 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1331 				     int offset, int len);
1332 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1333 			      int offset, int len);
1334 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1335 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1336 
1337 /**
1338  *	skb_pad			-	zero pad the tail of an skb
1339  *	@skb: buffer to pad
1340  *	@pad: space to pad
1341  *
1342  *	Ensure that a buffer is followed by a padding area that is zero
1343  *	filled. Used by network drivers which may DMA or transfer data
1344  *	beyond the buffer end onto the wire.
1345  *
1346  *	May return error in out of memory cases. The skb is freed on error.
1347  */
1348 static inline int skb_pad(struct sk_buff *skb, int pad)
1349 {
1350 	return __skb_pad(skb, pad, true);
1351 }
1352 #define dev_kfree_skb(a)	consume_skb(a)
1353 
1354 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1355 			 int offset, size_t size);
1356 
1357 struct skb_seq_state {
1358 	__u32		lower_offset;
1359 	__u32		upper_offset;
1360 	__u32		frag_idx;
1361 	__u32		stepped_offset;
1362 	struct sk_buff	*root_skb;
1363 	struct sk_buff	*cur_skb;
1364 	__u8		*frag_data;
1365 	__u32		frag_off;
1366 };
1367 
1368 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1369 			  unsigned int to, struct skb_seq_state *st);
1370 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1371 			  struct skb_seq_state *st);
1372 void skb_abort_seq_read(struct skb_seq_state *st);
1373 
1374 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1375 			   unsigned int to, struct ts_config *config);
1376 
1377 /*
1378  * Packet hash types specify the type of hash in skb_set_hash.
1379  *
1380  * Hash types refer to the protocol layer addresses which are used to
1381  * construct a packet's hash. The hashes are used to differentiate or identify
1382  * flows of the protocol layer for the hash type. Hash types are either
1383  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1384  *
1385  * Properties of hashes:
1386  *
1387  * 1) Two packets in different flows have different hash values
1388  * 2) Two packets in the same flow should have the same hash value
1389  *
1390  * A hash at a higher layer is considered to be more specific. A driver should
1391  * set the most specific hash possible.
1392  *
1393  * A driver cannot indicate a more specific hash than the layer at which a hash
1394  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1395  *
1396  * A driver may indicate a hash level which is less specific than the
1397  * actual layer the hash was computed on. For instance, a hash computed
1398  * at L4 may be considered an L3 hash. This should only be done if the
1399  * driver can't unambiguously determine that the HW computed the hash at
1400  * the higher layer. Note that the "should" in the second property above
1401  * permits this.
1402  */
1403 enum pkt_hash_types {
1404 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1405 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1406 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1407 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1408 };
1409 
1410 static inline void skb_clear_hash(struct sk_buff *skb)
1411 {
1412 	skb->hash = 0;
1413 	skb->sw_hash = 0;
1414 	skb->l4_hash = 0;
1415 }
1416 
1417 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1418 {
1419 	if (!skb->l4_hash)
1420 		skb_clear_hash(skb);
1421 }
1422 
1423 static inline void
1424 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1425 {
1426 	skb->l4_hash = is_l4;
1427 	skb->sw_hash = is_sw;
1428 	skb->hash = hash;
1429 }
1430 
1431 static inline void
1432 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1433 {
1434 	/* Used by drivers to set hash from HW */
1435 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1436 }
1437 
1438 static inline void
1439 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1440 {
1441 	__skb_set_hash(skb, hash, true, is_l4);
1442 }
1443 
1444 void __skb_get_hash(struct sk_buff *skb);
1445 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1446 u32 skb_get_poff(const struct sk_buff *skb);
1447 u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
1448 		   const struct flow_keys_basic *keys, int hlen);
1449 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1450 			    const void *data, int hlen_proto);
1451 
1452 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1453 					int thoff, u8 ip_proto)
1454 {
1455 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1456 }
1457 
1458 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1459 			     const struct flow_dissector_key *key,
1460 			     unsigned int key_count);
1461 
1462 struct bpf_flow_dissector;
1463 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1464 		      __be16 proto, int nhoff, int hlen, unsigned int flags);
1465 
1466 bool __skb_flow_dissect(const struct net *net,
1467 			const struct sk_buff *skb,
1468 			struct flow_dissector *flow_dissector,
1469 			void *target_container, const void *data,
1470 			__be16 proto, int nhoff, int hlen, unsigned int flags);
1471 
1472 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1473 				    struct flow_dissector *flow_dissector,
1474 				    void *target_container, unsigned int flags)
1475 {
1476 	return __skb_flow_dissect(NULL, skb, flow_dissector,
1477 				  target_container, NULL, 0, 0, 0, flags);
1478 }
1479 
1480 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1481 					      struct flow_keys *flow,
1482 					      unsigned int flags)
1483 {
1484 	memset(flow, 0, sizeof(*flow));
1485 	return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1486 				  flow, NULL, 0, 0, 0, flags);
1487 }
1488 
1489 static inline bool
1490 skb_flow_dissect_flow_keys_basic(const struct net *net,
1491 				 const struct sk_buff *skb,
1492 				 struct flow_keys_basic *flow,
1493 				 const void *data, __be16 proto,
1494 				 int nhoff, int hlen, unsigned int flags)
1495 {
1496 	memset(flow, 0, sizeof(*flow));
1497 	return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1498 				  data, proto, nhoff, hlen, flags);
1499 }
1500 
1501 void skb_flow_dissect_meta(const struct sk_buff *skb,
1502 			   struct flow_dissector *flow_dissector,
1503 			   void *target_container);
1504 
1505 /* Gets a skb connection tracking info, ctinfo map should be a
1506  * map of mapsize to translate enum ip_conntrack_info states
1507  * to user states.
1508  */
1509 void
1510 skb_flow_dissect_ct(const struct sk_buff *skb,
1511 		    struct flow_dissector *flow_dissector,
1512 		    void *target_container,
1513 		    u16 *ctinfo_map, size_t mapsize,
1514 		    bool post_ct, u16 zone);
1515 void
1516 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1517 			     struct flow_dissector *flow_dissector,
1518 			     void *target_container);
1519 
1520 void skb_flow_dissect_hash(const struct sk_buff *skb,
1521 			   struct flow_dissector *flow_dissector,
1522 			   void *target_container);
1523 
1524 static inline __u32 skb_get_hash(struct sk_buff *skb)
1525 {
1526 	if (!skb->l4_hash && !skb->sw_hash)
1527 		__skb_get_hash(skb);
1528 
1529 	return skb->hash;
1530 }
1531 
1532 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1533 {
1534 	if (!skb->l4_hash && !skb->sw_hash) {
1535 		struct flow_keys keys;
1536 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1537 
1538 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1539 	}
1540 
1541 	return skb->hash;
1542 }
1543 
1544 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1545 			   const siphash_key_t *perturb);
1546 
1547 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1548 {
1549 	return skb->hash;
1550 }
1551 
1552 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1553 {
1554 	to->hash = from->hash;
1555 	to->sw_hash = from->sw_hash;
1556 	to->l4_hash = from->l4_hash;
1557 };
1558 
1559 static inline void skb_copy_decrypted(struct sk_buff *to,
1560 				      const struct sk_buff *from)
1561 {
1562 #ifdef CONFIG_TLS_DEVICE
1563 	to->decrypted = from->decrypted;
1564 #endif
1565 }
1566 
1567 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1568 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1569 {
1570 	return skb->head + skb->end;
1571 }
1572 
1573 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1574 {
1575 	return skb->end;
1576 }
1577 
1578 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1579 {
1580 	skb->end = offset;
1581 }
1582 #else
1583 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1584 {
1585 	return skb->end;
1586 }
1587 
1588 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1589 {
1590 	return skb->end - skb->head;
1591 }
1592 
1593 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1594 {
1595 	skb->end = skb->head + offset;
1596 }
1597 #endif
1598 
1599 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1600 				       struct ubuf_info *uarg);
1601 
1602 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
1603 
1604 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1605 			   bool success);
1606 
1607 int __zerocopy_sg_from_iter(struct msghdr *msg, struct sock *sk,
1608 			    struct sk_buff *skb, struct iov_iter *from,
1609 			    size_t length);
1610 
1611 static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb,
1612 					  struct msghdr *msg, int len)
1613 {
1614 	return __zerocopy_sg_from_iter(msg, skb->sk, skb, &msg->msg_iter, len);
1615 }
1616 
1617 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1618 			     struct msghdr *msg, int len,
1619 			     struct ubuf_info *uarg);
1620 
1621 /* Internal */
1622 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1623 
1624 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1625 {
1626 	return &skb_shinfo(skb)->hwtstamps;
1627 }
1628 
1629 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1630 {
1631 	bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE;
1632 
1633 	return is_zcopy ? skb_uarg(skb) : NULL;
1634 }
1635 
1636 static inline bool skb_zcopy_pure(const struct sk_buff *skb)
1637 {
1638 	return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY;
1639 }
1640 
1641 static inline bool skb_zcopy_managed(const struct sk_buff *skb)
1642 {
1643 	return skb_shinfo(skb)->flags & SKBFL_MANAGED_FRAG_REFS;
1644 }
1645 
1646 static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1,
1647 				       const struct sk_buff *skb2)
1648 {
1649 	return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2);
1650 }
1651 
1652 static inline void net_zcopy_get(struct ubuf_info *uarg)
1653 {
1654 	refcount_inc(&uarg->refcnt);
1655 }
1656 
1657 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg)
1658 {
1659 	skb_shinfo(skb)->destructor_arg = uarg;
1660 	skb_shinfo(skb)->flags |= uarg->flags;
1661 }
1662 
1663 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1664 				 bool *have_ref)
1665 {
1666 	if (skb && uarg && !skb_zcopy(skb)) {
1667 		if (unlikely(have_ref && *have_ref))
1668 			*have_ref = false;
1669 		else
1670 			net_zcopy_get(uarg);
1671 		skb_zcopy_init(skb, uarg);
1672 	}
1673 }
1674 
1675 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1676 {
1677 	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1678 	skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG;
1679 }
1680 
1681 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1682 {
1683 	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1684 }
1685 
1686 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1687 {
1688 	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1689 }
1690 
1691 static inline void net_zcopy_put(struct ubuf_info *uarg)
1692 {
1693 	if (uarg)
1694 		uarg->callback(NULL, uarg, true);
1695 }
1696 
1697 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1698 {
1699 	if (uarg) {
1700 		if (uarg->callback == msg_zerocopy_callback)
1701 			msg_zerocopy_put_abort(uarg, have_uref);
1702 		else if (have_uref)
1703 			net_zcopy_put(uarg);
1704 	}
1705 }
1706 
1707 /* Release a reference on a zerocopy structure */
1708 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success)
1709 {
1710 	struct ubuf_info *uarg = skb_zcopy(skb);
1711 
1712 	if (uarg) {
1713 		if (!skb_zcopy_is_nouarg(skb))
1714 			uarg->callback(skb, uarg, zerocopy_success);
1715 
1716 		skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY;
1717 	}
1718 }
1719 
1720 void __skb_zcopy_downgrade_managed(struct sk_buff *skb);
1721 
1722 static inline void skb_zcopy_downgrade_managed(struct sk_buff *skb)
1723 {
1724 	if (unlikely(skb_zcopy_managed(skb)))
1725 		__skb_zcopy_downgrade_managed(skb);
1726 }
1727 
1728 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1729 {
1730 	skb->next = NULL;
1731 }
1732 
1733 /* Iterate through singly-linked GSO fragments of an skb. */
1734 #define skb_list_walk_safe(first, skb, next_skb)                               \
1735 	for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb);  \
1736 	     (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1737 
1738 static inline void skb_list_del_init(struct sk_buff *skb)
1739 {
1740 	__list_del_entry(&skb->list);
1741 	skb_mark_not_on_list(skb);
1742 }
1743 
1744 /**
1745  *	skb_queue_empty - check if a queue is empty
1746  *	@list: queue head
1747  *
1748  *	Returns true if the queue is empty, false otherwise.
1749  */
1750 static inline int skb_queue_empty(const struct sk_buff_head *list)
1751 {
1752 	return list->next == (const struct sk_buff *) list;
1753 }
1754 
1755 /**
1756  *	skb_queue_empty_lockless - check if a queue is empty
1757  *	@list: queue head
1758  *
1759  *	Returns true if the queue is empty, false otherwise.
1760  *	This variant can be used in lockless contexts.
1761  */
1762 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1763 {
1764 	return READ_ONCE(list->next) == (const struct sk_buff *) list;
1765 }
1766 
1767 
1768 /**
1769  *	skb_queue_is_last - check if skb is the last entry in the queue
1770  *	@list: queue head
1771  *	@skb: buffer
1772  *
1773  *	Returns true if @skb is the last buffer on the list.
1774  */
1775 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1776 				     const struct sk_buff *skb)
1777 {
1778 	return skb->next == (const struct sk_buff *) list;
1779 }
1780 
1781 /**
1782  *	skb_queue_is_first - check if skb is the first entry in the queue
1783  *	@list: queue head
1784  *	@skb: buffer
1785  *
1786  *	Returns true if @skb is the first buffer on the list.
1787  */
1788 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1789 				      const struct sk_buff *skb)
1790 {
1791 	return skb->prev == (const struct sk_buff *) list;
1792 }
1793 
1794 /**
1795  *	skb_queue_next - return the next packet in the queue
1796  *	@list: queue head
1797  *	@skb: current buffer
1798  *
1799  *	Return the next packet in @list after @skb.  It is only valid to
1800  *	call this if skb_queue_is_last() evaluates to false.
1801  */
1802 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1803 					     const struct sk_buff *skb)
1804 {
1805 	/* This BUG_ON may seem severe, but if we just return then we
1806 	 * are going to dereference garbage.
1807 	 */
1808 	BUG_ON(skb_queue_is_last(list, skb));
1809 	return skb->next;
1810 }
1811 
1812 /**
1813  *	skb_queue_prev - return the prev packet in the queue
1814  *	@list: queue head
1815  *	@skb: current buffer
1816  *
1817  *	Return the prev packet in @list before @skb.  It is only valid to
1818  *	call this if skb_queue_is_first() evaluates to false.
1819  */
1820 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1821 					     const struct sk_buff *skb)
1822 {
1823 	/* This BUG_ON may seem severe, but if we just return then we
1824 	 * are going to dereference garbage.
1825 	 */
1826 	BUG_ON(skb_queue_is_first(list, skb));
1827 	return skb->prev;
1828 }
1829 
1830 /**
1831  *	skb_get - reference buffer
1832  *	@skb: buffer to reference
1833  *
1834  *	Makes another reference to a socket buffer and returns a pointer
1835  *	to the buffer.
1836  */
1837 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1838 {
1839 	refcount_inc(&skb->users);
1840 	return skb;
1841 }
1842 
1843 /*
1844  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1845  */
1846 
1847 /**
1848  *	skb_cloned - is the buffer a clone
1849  *	@skb: buffer to check
1850  *
1851  *	Returns true if the buffer was generated with skb_clone() and is
1852  *	one of multiple shared copies of the buffer. Cloned buffers are
1853  *	shared data so must not be written to under normal circumstances.
1854  */
1855 static inline int skb_cloned(const struct sk_buff *skb)
1856 {
1857 	return skb->cloned &&
1858 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1859 }
1860 
1861 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1862 {
1863 	might_sleep_if(gfpflags_allow_blocking(pri));
1864 
1865 	if (skb_cloned(skb))
1866 		return pskb_expand_head(skb, 0, 0, pri);
1867 
1868 	return 0;
1869 }
1870 
1871 /* This variant of skb_unclone() makes sure skb->truesize
1872  * and skb_end_offset() are not changed, whenever a new skb->head is needed.
1873  *
1874  * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X))
1875  * when various debugging features are in place.
1876  */
1877 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri);
1878 static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1879 {
1880 	might_sleep_if(gfpflags_allow_blocking(pri));
1881 
1882 	if (skb_cloned(skb))
1883 		return __skb_unclone_keeptruesize(skb, pri);
1884 	return 0;
1885 }
1886 
1887 /**
1888  *	skb_header_cloned - is the header a clone
1889  *	@skb: buffer to check
1890  *
1891  *	Returns true if modifying the header part of the buffer requires
1892  *	the data to be copied.
1893  */
1894 static inline int skb_header_cloned(const struct sk_buff *skb)
1895 {
1896 	int dataref;
1897 
1898 	if (!skb->cloned)
1899 		return 0;
1900 
1901 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1902 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1903 	return dataref != 1;
1904 }
1905 
1906 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1907 {
1908 	might_sleep_if(gfpflags_allow_blocking(pri));
1909 
1910 	if (skb_header_cloned(skb))
1911 		return pskb_expand_head(skb, 0, 0, pri);
1912 
1913 	return 0;
1914 }
1915 
1916 /**
1917  * __skb_header_release() - allow clones to use the headroom
1918  * @skb: buffer to operate on
1919  *
1920  * See "DOC: dataref and headerless skbs".
1921  */
1922 static inline void __skb_header_release(struct sk_buff *skb)
1923 {
1924 	skb->nohdr = 1;
1925 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1926 }
1927 
1928 
1929 /**
1930  *	skb_shared - is the buffer shared
1931  *	@skb: buffer to check
1932  *
1933  *	Returns true if more than one person has a reference to this
1934  *	buffer.
1935  */
1936 static inline int skb_shared(const struct sk_buff *skb)
1937 {
1938 	return refcount_read(&skb->users) != 1;
1939 }
1940 
1941 /**
1942  *	skb_share_check - check if buffer is shared and if so clone it
1943  *	@skb: buffer to check
1944  *	@pri: priority for memory allocation
1945  *
1946  *	If the buffer is shared the buffer is cloned and the old copy
1947  *	drops a reference. A new clone with a single reference is returned.
1948  *	If the buffer is not shared the original buffer is returned. When
1949  *	being called from interrupt status or with spinlocks held pri must
1950  *	be GFP_ATOMIC.
1951  *
1952  *	NULL is returned on a memory allocation failure.
1953  */
1954 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1955 {
1956 	might_sleep_if(gfpflags_allow_blocking(pri));
1957 	if (skb_shared(skb)) {
1958 		struct sk_buff *nskb = skb_clone(skb, pri);
1959 
1960 		if (likely(nskb))
1961 			consume_skb(skb);
1962 		else
1963 			kfree_skb(skb);
1964 		skb = nskb;
1965 	}
1966 	return skb;
1967 }
1968 
1969 /*
1970  *	Copy shared buffers into a new sk_buff. We effectively do COW on
1971  *	packets to handle cases where we have a local reader and forward
1972  *	and a couple of other messy ones. The normal one is tcpdumping
1973  *	a packet thats being forwarded.
1974  */
1975 
1976 /**
1977  *	skb_unshare - make a copy of a shared buffer
1978  *	@skb: buffer to check
1979  *	@pri: priority for memory allocation
1980  *
1981  *	If the socket buffer is a clone then this function creates a new
1982  *	copy of the data, drops a reference count on the old copy and returns
1983  *	the new copy with the reference count at 1. If the buffer is not a clone
1984  *	the original buffer is returned. When called with a spinlock held or
1985  *	from interrupt state @pri must be %GFP_ATOMIC
1986  *
1987  *	%NULL is returned on a memory allocation failure.
1988  */
1989 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1990 					  gfp_t pri)
1991 {
1992 	might_sleep_if(gfpflags_allow_blocking(pri));
1993 	if (skb_cloned(skb)) {
1994 		struct sk_buff *nskb = skb_copy(skb, pri);
1995 
1996 		/* Free our shared copy */
1997 		if (likely(nskb))
1998 			consume_skb(skb);
1999 		else
2000 			kfree_skb(skb);
2001 		skb = nskb;
2002 	}
2003 	return skb;
2004 }
2005 
2006 /**
2007  *	skb_peek - peek at the head of an &sk_buff_head
2008  *	@list_: list to peek at
2009  *
2010  *	Peek an &sk_buff. Unlike most other operations you _MUST_
2011  *	be careful with this one. A peek leaves the buffer on the
2012  *	list and someone else may run off with it. You must hold
2013  *	the appropriate locks or have a private queue to do this.
2014  *
2015  *	Returns %NULL for an empty list or a pointer to the head element.
2016  *	The reference count is not incremented and the reference is therefore
2017  *	volatile. Use with caution.
2018  */
2019 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
2020 {
2021 	struct sk_buff *skb = list_->next;
2022 
2023 	if (skb == (struct sk_buff *)list_)
2024 		skb = NULL;
2025 	return skb;
2026 }
2027 
2028 /**
2029  *	__skb_peek - peek at the head of a non-empty &sk_buff_head
2030  *	@list_: list to peek at
2031  *
2032  *	Like skb_peek(), but the caller knows that the list is not empty.
2033  */
2034 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
2035 {
2036 	return list_->next;
2037 }
2038 
2039 /**
2040  *	skb_peek_next - peek skb following the given one from a queue
2041  *	@skb: skb to start from
2042  *	@list_: list to peek at
2043  *
2044  *	Returns %NULL when the end of the list is met or a pointer to the
2045  *	next element. The reference count is not incremented and the
2046  *	reference is therefore volatile. Use with caution.
2047  */
2048 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
2049 		const struct sk_buff_head *list_)
2050 {
2051 	struct sk_buff *next = skb->next;
2052 
2053 	if (next == (struct sk_buff *)list_)
2054 		next = NULL;
2055 	return next;
2056 }
2057 
2058 /**
2059  *	skb_peek_tail - peek at the tail of an &sk_buff_head
2060  *	@list_: list to peek at
2061  *
2062  *	Peek an &sk_buff. Unlike most other operations you _MUST_
2063  *	be careful with this one. A peek leaves the buffer on the
2064  *	list and someone else may run off with it. You must hold
2065  *	the appropriate locks or have a private queue to do this.
2066  *
2067  *	Returns %NULL for an empty list or a pointer to the tail element.
2068  *	The reference count is not incremented and the reference is therefore
2069  *	volatile. Use with caution.
2070  */
2071 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
2072 {
2073 	struct sk_buff *skb = READ_ONCE(list_->prev);
2074 
2075 	if (skb == (struct sk_buff *)list_)
2076 		skb = NULL;
2077 	return skb;
2078 
2079 }
2080 
2081 /**
2082  *	skb_queue_len	- get queue length
2083  *	@list_: list to measure
2084  *
2085  *	Return the length of an &sk_buff queue.
2086  */
2087 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
2088 {
2089 	return list_->qlen;
2090 }
2091 
2092 /**
2093  *	skb_queue_len_lockless	- get queue length
2094  *	@list_: list to measure
2095  *
2096  *	Return the length of an &sk_buff queue.
2097  *	This variant can be used in lockless contexts.
2098  */
2099 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
2100 {
2101 	return READ_ONCE(list_->qlen);
2102 }
2103 
2104 /**
2105  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
2106  *	@list: queue to initialize
2107  *
2108  *	This initializes only the list and queue length aspects of
2109  *	an sk_buff_head object.  This allows to initialize the list
2110  *	aspects of an sk_buff_head without reinitializing things like
2111  *	the spinlock.  It can also be used for on-stack sk_buff_head
2112  *	objects where the spinlock is known to not be used.
2113  */
2114 static inline void __skb_queue_head_init(struct sk_buff_head *list)
2115 {
2116 	list->prev = list->next = (struct sk_buff *)list;
2117 	list->qlen = 0;
2118 }
2119 
2120 /*
2121  * This function creates a split out lock class for each invocation;
2122  * this is needed for now since a whole lot of users of the skb-queue
2123  * infrastructure in drivers have different locking usage (in hardirq)
2124  * than the networking core (in softirq only). In the long run either the
2125  * network layer or drivers should need annotation to consolidate the
2126  * main types of usage into 3 classes.
2127  */
2128 static inline void skb_queue_head_init(struct sk_buff_head *list)
2129 {
2130 	spin_lock_init(&list->lock);
2131 	__skb_queue_head_init(list);
2132 }
2133 
2134 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
2135 		struct lock_class_key *class)
2136 {
2137 	skb_queue_head_init(list);
2138 	lockdep_set_class(&list->lock, class);
2139 }
2140 
2141 /*
2142  *	Insert an sk_buff on a list.
2143  *
2144  *	The "__skb_xxxx()" functions are the non-atomic ones that
2145  *	can only be called with interrupts disabled.
2146  */
2147 static inline void __skb_insert(struct sk_buff *newsk,
2148 				struct sk_buff *prev, struct sk_buff *next,
2149 				struct sk_buff_head *list)
2150 {
2151 	/* See skb_queue_empty_lockless() and skb_peek_tail()
2152 	 * for the opposite READ_ONCE()
2153 	 */
2154 	WRITE_ONCE(newsk->next, next);
2155 	WRITE_ONCE(newsk->prev, prev);
2156 	WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk);
2157 	WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk);
2158 	WRITE_ONCE(list->qlen, list->qlen + 1);
2159 }
2160 
2161 static inline void __skb_queue_splice(const struct sk_buff_head *list,
2162 				      struct sk_buff *prev,
2163 				      struct sk_buff *next)
2164 {
2165 	struct sk_buff *first = list->next;
2166 	struct sk_buff *last = list->prev;
2167 
2168 	WRITE_ONCE(first->prev, prev);
2169 	WRITE_ONCE(prev->next, first);
2170 
2171 	WRITE_ONCE(last->next, next);
2172 	WRITE_ONCE(next->prev, last);
2173 }
2174 
2175 /**
2176  *	skb_queue_splice - join two skb lists, this is designed for stacks
2177  *	@list: the new list to add
2178  *	@head: the place to add it in the first list
2179  */
2180 static inline void skb_queue_splice(const struct sk_buff_head *list,
2181 				    struct sk_buff_head *head)
2182 {
2183 	if (!skb_queue_empty(list)) {
2184 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2185 		head->qlen += list->qlen;
2186 	}
2187 }
2188 
2189 /**
2190  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
2191  *	@list: the new list to add
2192  *	@head: the place to add it in the first list
2193  *
2194  *	The list at @list is reinitialised
2195  */
2196 static inline void skb_queue_splice_init(struct sk_buff_head *list,
2197 					 struct sk_buff_head *head)
2198 {
2199 	if (!skb_queue_empty(list)) {
2200 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2201 		head->qlen += list->qlen;
2202 		__skb_queue_head_init(list);
2203 	}
2204 }
2205 
2206 /**
2207  *	skb_queue_splice_tail - join two skb lists, each list being a queue
2208  *	@list: the new list to add
2209  *	@head: the place to add it in the first list
2210  */
2211 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
2212 					 struct sk_buff_head *head)
2213 {
2214 	if (!skb_queue_empty(list)) {
2215 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2216 		head->qlen += list->qlen;
2217 	}
2218 }
2219 
2220 /**
2221  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
2222  *	@list: the new list to add
2223  *	@head: the place to add it in the first list
2224  *
2225  *	Each of the lists is a queue.
2226  *	The list at @list is reinitialised
2227  */
2228 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
2229 					      struct sk_buff_head *head)
2230 {
2231 	if (!skb_queue_empty(list)) {
2232 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2233 		head->qlen += list->qlen;
2234 		__skb_queue_head_init(list);
2235 	}
2236 }
2237 
2238 /**
2239  *	__skb_queue_after - queue a buffer at the list head
2240  *	@list: list to use
2241  *	@prev: place after this buffer
2242  *	@newsk: buffer to queue
2243  *
2244  *	Queue a buffer int the middle of a list. This function takes no locks
2245  *	and you must therefore hold required locks before calling it.
2246  *
2247  *	A buffer cannot be placed on two lists at the same time.
2248  */
2249 static inline void __skb_queue_after(struct sk_buff_head *list,
2250 				     struct sk_buff *prev,
2251 				     struct sk_buff *newsk)
2252 {
2253 	__skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list);
2254 }
2255 
2256 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2257 		struct sk_buff_head *list);
2258 
2259 static inline void __skb_queue_before(struct sk_buff_head *list,
2260 				      struct sk_buff *next,
2261 				      struct sk_buff *newsk)
2262 {
2263 	__skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list);
2264 }
2265 
2266 /**
2267  *	__skb_queue_head - queue a buffer at the list head
2268  *	@list: list to use
2269  *	@newsk: buffer to queue
2270  *
2271  *	Queue a buffer at the start of a list. This function takes no locks
2272  *	and you must therefore hold required locks before calling it.
2273  *
2274  *	A buffer cannot be placed on two lists at the same time.
2275  */
2276 static inline void __skb_queue_head(struct sk_buff_head *list,
2277 				    struct sk_buff *newsk)
2278 {
2279 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
2280 }
2281 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2282 
2283 /**
2284  *	__skb_queue_tail - queue a buffer at the list tail
2285  *	@list: list to use
2286  *	@newsk: buffer to queue
2287  *
2288  *	Queue a buffer at the end of a list. This function takes no locks
2289  *	and you must therefore hold required locks before calling it.
2290  *
2291  *	A buffer cannot be placed on two lists at the same time.
2292  */
2293 static inline void __skb_queue_tail(struct sk_buff_head *list,
2294 				   struct sk_buff *newsk)
2295 {
2296 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
2297 }
2298 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2299 
2300 /*
2301  * remove sk_buff from list. _Must_ be called atomically, and with
2302  * the list known..
2303  */
2304 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
2305 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2306 {
2307 	struct sk_buff *next, *prev;
2308 
2309 	WRITE_ONCE(list->qlen, list->qlen - 1);
2310 	next	   = skb->next;
2311 	prev	   = skb->prev;
2312 	skb->next  = skb->prev = NULL;
2313 	WRITE_ONCE(next->prev, prev);
2314 	WRITE_ONCE(prev->next, next);
2315 }
2316 
2317 /**
2318  *	__skb_dequeue - remove from the head of the queue
2319  *	@list: list to dequeue from
2320  *
2321  *	Remove the head of the list. This function does not take any locks
2322  *	so must be used with appropriate locks held only. The head item is
2323  *	returned or %NULL if the list is empty.
2324  */
2325 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2326 {
2327 	struct sk_buff *skb = skb_peek(list);
2328 	if (skb)
2329 		__skb_unlink(skb, list);
2330 	return skb;
2331 }
2332 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2333 
2334 /**
2335  *	__skb_dequeue_tail - remove from the tail of the queue
2336  *	@list: list to dequeue from
2337  *
2338  *	Remove the tail of the list. This function does not take any locks
2339  *	so must be used with appropriate locks held only. The tail item is
2340  *	returned or %NULL if the list is empty.
2341  */
2342 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2343 {
2344 	struct sk_buff *skb = skb_peek_tail(list);
2345 	if (skb)
2346 		__skb_unlink(skb, list);
2347 	return skb;
2348 }
2349 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2350 
2351 
2352 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2353 {
2354 	return skb->data_len;
2355 }
2356 
2357 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2358 {
2359 	return skb->len - skb->data_len;
2360 }
2361 
2362 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2363 {
2364 	unsigned int i, len = 0;
2365 
2366 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2367 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2368 	return len;
2369 }
2370 
2371 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2372 {
2373 	return skb_headlen(skb) + __skb_pagelen(skb);
2374 }
2375 
2376 static inline void __skb_fill_page_desc_noacc(struct skb_shared_info *shinfo,
2377 					      int i, struct page *page,
2378 					      int off, int size)
2379 {
2380 	skb_frag_t *frag = &shinfo->frags[i];
2381 
2382 	/*
2383 	 * Propagate page pfmemalloc to the skb if we can. The problem is
2384 	 * that not all callers have unique ownership of the page but rely
2385 	 * on page_is_pfmemalloc doing the right thing(tm).
2386 	 */
2387 	frag->bv_page		  = page;
2388 	frag->bv_offset		  = off;
2389 	skb_frag_size_set(frag, size);
2390 }
2391 
2392 /**
2393  * skb_len_add - adds a number to len fields of skb
2394  * @skb: buffer to add len to
2395  * @delta: number of bytes to add
2396  */
2397 static inline void skb_len_add(struct sk_buff *skb, int delta)
2398 {
2399 	skb->len += delta;
2400 	skb->data_len += delta;
2401 	skb->truesize += delta;
2402 }
2403 
2404 /**
2405  * __skb_fill_page_desc - initialise a paged fragment in an skb
2406  * @skb: buffer containing fragment to be initialised
2407  * @i: paged fragment index to initialise
2408  * @page: the page to use for this fragment
2409  * @off: the offset to the data with @page
2410  * @size: the length of the data
2411  *
2412  * Initialises the @i'th fragment of @skb to point to &size bytes at
2413  * offset @off within @page.
2414  *
2415  * Does not take any additional reference on the fragment.
2416  */
2417 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2418 					struct page *page, int off, int size)
2419 {
2420 	__skb_fill_page_desc_noacc(skb_shinfo(skb), i, page, off, size);
2421 	page = compound_head(page);
2422 	if (page_is_pfmemalloc(page))
2423 		skb->pfmemalloc	= true;
2424 }
2425 
2426 /**
2427  * skb_fill_page_desc - initialise a paged fragment in an skb
2428  * @skb: buffer containing fragment to be initialised
2429  * @i: paged fragment index to initialise
2430  * @page: the page to use for this fragment
2431  * @off: the offset to the data with @page
2432  * @size: the length of the data
2433  *
2434  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2435  * @skb to point to @size bytes at offset @off within @page. In
2436  * addition updates @skb such that @i is the last fragment.
2437  *
2438  * Does not take any additional reference on the fragment.
2439  */
2440 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2441 				      struct page *page, int off, int size)
2442 {
2443 	__skb_fill_page_desc(skb, i, page, off, size);
2444 	skb_shinfo(skb)->nr_frags = i + 1;
2445 }
2446 
2447 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2448 		     int size, unsigned int truesize);
2449 
2450 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2451 			  unsigned int truesize);
2452 
2453 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2454 
2455 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2456 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2457 {
2458 	return skb->head + skb->tail;
2459 }
2460 
2461 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2462 {
2463 	skb->tail = skb->data - skb->head;
2464 }
2465 
2466 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2467 {
2468 	skb_reset_tail_pointer(skb);
2469 	skb->tail += offset;
2470 }
2471 
2472 #else /* NET_SKBUFF_DATA_USES_OFFSET */
2473 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2474 {
2475 	return skb->tail;
2476 }
2477 
2478 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2479 {
2480 	skb->tail = skb->data;
2481 }
2482 
2483 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2484 {
2485 	skb->tail = skb->data + offset;
2486 }
2487 
2488 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2489 
2490 static inline void skb_assert_len(struct sk_buff *skb)
2491 {
2492 #ifdef CONFIG_DEBUG_NET
2493 	if (WARN_ONCE(!skb->len, "%s\n", __func__))
2494 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
2495 #endif /* CONFIG_DEBUG_NET */
2496 }
2497 
2498 /*
2499  *	Add data to an sk_buff
2500  */
2501 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2502 void *skb_put(struct sk_buff *skb, unsigned int len);
2503 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2504 {
2505 	void *tmp = skb_tail_pointer(skb);
2506 	SKB_LINEAR_ASSERT(skb);
2507 	skb->tail += len;
2508 	skb->len  += len;
2509 	return tmp;
2510 }
2511 
2512 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2513 {
2514 	void *tmp = __skb_put(skb, len);
2515 
2516 	memset(tmp, 0, len);
2517 	return tmp;
2518 }
2519 
2520 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2521 				   unsigned int len)
2522 {
2523 	void *tmp = __skb_put(skb, len);
2524 
2525 	memcpy(tmp, data, len);
2526 	return tmp;
2527 }
2528 
2529 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2530 {
2531 	*(u8 *)__skb_put(skb, 1) = val;
2532 }
2533 
2534 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2535 {
2536 	void *tmp = skb_put(skb, len);
2537 
2538 	memset(tmp, 0, len);
2539 
2540 	return tmp;
2541 }
2542 
2543 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2544 				 unsigned int len)
2545 {
2546 	void *tmp = skb_put(skb, len);
2547 
2548 	memcpy(tmp, data, len);
2549 
2550 	return tmp;
2551 }
2552 
2553 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2554 {
2555 	*(u8 *)skb_put(skb, 1) = val;
2556 }
2557 
2558 void *skb_push(struct sk_buff *skb, unsigned int len);
2559 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2560 {
2561 	skb->data -= len;
2562 	skb->len  += len;
2563 	return skb->data;
2564 }
2565 
2566 void *skb_pull(struct sk_buff *skb, unsigned int len);
2567 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2568 {
2569 	skb->len -= len;
2570 	if (unlikely(skb->len < skb->data_len)) {
2571 #if defined(CONFIG_DEBUG_NET)
2572 		skb->len += len;
2573 		pr_err("__skb_pull(len=%u)\n", len);
2574 		skb_dump(KERN_ERR, skb, false);
2575 #endif
2576 		BUG();
2577 	}
2578 	return skb->data += len;
2579 }
2580 
2581 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2582 {
2583 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2584 }
2585 
2586 void *skb_pull_data(struct sk_buff *skb, size_t len);
2587 
2588 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2589 
2590 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2591 {
2592 	if (len > skb_headlen(skb) &&
2593 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2594 		return NULL;
2595 	skb->len -= len;
2596 	return skb->data += len;
2597 }
2598 
2599 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2600 {
2601 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2602 }
2603 
2604 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2605 {
2606 	if (likely(len <= skb_headlen(skb)))
2607 		return true;
2608 	if (unlikely(len > skb->len))
2609 		return false;
2610 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2611 }
2612 
2613 void skb_condense(struct sk_buff *skb);
2614 
2615 /**
2616  *	skb_headroom - bytes at buffer head
2617  *	@skb: buffer to check
2618  *
2619  *	Return the number of bytes of free space at the head of an &sk_buff.
2620  */
2621 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2622 {
2623 	return skb->data - skb->head;
2624 }
2625 
2626 /**
2627  *	skb_tailroom - bytes at buffer end
2628  *	@skb: buffer to check
2629  *
2630  *	Return the number of bytes of free space at the tail of an sk_buff
2631  */
2632 static inline int skb_tailroom(const struct sk_buff *skb)
2633 {
2634 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2635 }
2636 
2637 /**
2638  *	skb_availroom - bytes at buffer end
2639  *	@skb: buffer to check
2640  *
2641  *	Return the number of bytes of free space at the tail of an sk_buff
2642  *	allocated by sk_stream_alloc()
2643  */
2644 static inline int skb_availroom(const struct sk_buff *skb)
2645 {
2646 	if (skb_is_nonlinear(skb))
2647 		return 0;
2648 
2649 	return skb->end - skb->tail - skb->reserved_tailroom;
2650 }
2651 
2652 /**
2653  *	skb_reserve - adjust headroom
2654  *	@skb: buffer to alter
2655  *	@len: bytes to move
2656  *
2657  *	Increase the headroom of an empty &sk_buff by reducing the tail
2658  *	room. This is only allowed for an empty buffer.
2659  */
2660 static inline void skb_reserve(struct sk_buff *skb, int len)
2661 {
2662 	skb->data += len;
2663 	skb->tail += len;
2664 }
2665 
2666 /**
2667  *	skb_tailroom_reserve - adjust reserved_tailroom
2668  *	@skb: buffer to alter
2669  *	@mtu: maximum amount of headlen permitted
2670  *	@needed_tailroom: minimum amount of reserved_tailroom
2671  *
2672  *	Set reserved_tailroom so that headlen can be as large as possible but
2673  *	not larger than mtu and tailroom cannot be smaller than
2674  *	needed_tailroom.
2675  *	The required headroom should already have been reserved before using
2676  *	this function.
2677  */
2678 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2679 					unsigned int needed_tailroom)
2680 {
2681 	SKB_LINEAR_ASSERT(skb);
2682 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2683 		/* use at most mtu */
2684 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2685 	else
2686 		/* use up to all available space */
2687 		skb->reserved_tailroom = needed_tailroom;
2688 }
2689 
2690 #define ENCAP_TYPE_ETHER	0
2691 #define ENCAP_TYPE_IPPROTO	1
2692 
2693 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2694 					  __be16 protocol)
2695 {
2696 	skb->inner_protocol = protocol;
2697 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2698 }
2699 
2700 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2701 					 __u8 ipproto)
2702 {
2703 	skb->inner_ipproto = ipproto;
2704 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2705 }
2706 
2707 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2708 {
2709 	skb->inner_mac_header = skb->mac_header;
2710 	skb->inner_network_header = skb->network_header;
2711 	skb->inner_transport_header = skb->transport_header;
2712 }
2713 
2714 static inline void skb_reset_mac_len(struct sk_buff *skb)
2715 {
2716 	skb->mac_len = skb->network_header - skb->mac_header;
2717 }
2718 
2719 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2720 							*skb)
2721 {
2722 	return skb->head + skb->inner_transport_header;
2723 }
2724 
2725 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2726 {
2727 	return skb_inner_transport_header(skb) - skb->data;
2728 }
2729 
2730 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2731 {
2732 	skb->inner_transport_header = skb->data - skb->head;
2733 }
2734 
2735 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2736 						   const int offset)
2737 {
2738 	skb_reset_inner_transport_header(skb);
2739 	skb->inner_transport_header += offset;
2740 }
2741 
2742 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2743 {
2744 	return skb->head + skb->inner_network_header;
2745 }
2746 
2747 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2748 {
2749 	skb->inner_network_header = skb->data - skb->head;
2750 }
2751 
2752 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2753 						const int offset)
2754 {
2755 	skb_reset_inner_network_header(skb);
2756 	skb->inner_network_header += offset;
2757 }
2758 
2759 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2760 {
2761 	return skb->head + skb->inner_mac_header;
2762 }
2763 
2764 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2765 {
2766 	skb->inner_mac_header = skb->data - skb->head;
2767 }
2768 
2769 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2770 					    const int offset)
2771 {
2772 	skb_reset_inner_mac_header(skb);
2773 	skb->inner_mac_header += offset;
2774 }
2775 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2776 {
2777 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2778 }
2779 
2780 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2781 {
2782 	DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb));
2783 	return skb->head + skb->transport_header;
2784 }
2785 
2786 static inline void skb_reset_transport_header(struct sk_buff *skb)
2787 {
2788 	skb->transport_header = skb->data - skb->head;
2789 }
2790 
2791 static inline void skb_set_transport_header(struct sk_buff *skb,
2792 					    const int offset)
2793 {
2794 	skb_reset_transport_header(skb);
2795 	skb->transport_header += offset;
2796 }
2797 
2798 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2799 {
2800 	return skb->head + skb->network_header;
2801 }
2802 
2803 static inline void skb_reset_network_header(struct sk_buff *skb)
2804 {
2805 	skb->network_header = skb->data - skb->head;
2806 }
2807 
2808 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2809 {
2810 	skb_reset_network_header(skb);
2811 	skb->network_header += offset;
2812 }
2813 
2814 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2815 {
2816 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2817 }
2818 
2819 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2820 {
2821 	DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
2822 	return skb->head + skb->mac_header;
2823 }
2824 
2825 static inline int skb_mac_offset(const struct sk_buff *skb)
2826 {
2827 	return skb_mac_header(skb) - skb->data;
2828 }
2829 
2830 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2831 {
2832 	DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
2833 	return skb->network_header - skb->mac_header;
2834 }
2835 
2836 static inline void skb_unset_mac_header(struct sk_buff *skb)
2837 {
2838 	skb->mac_header = (typeof(skb->mac_header))~0U;
2839 }
2840 
2841 static inline void skb_reset_mac_header(struct sk_buff *skb)
2842 {
2843 	skb->mac_header = skb->data - skb->head;
2844 }
2845 
2846 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2847 {
2848 	skb_reset_mac_header(skb);
2849 	skb->mac_header += offset;
2850 }
2851 
2852 static inline void skb_pop_mac_header(struct sk_buff *skb)
2853 {
2854 	skb->mac_header = skb->network_header;
2855 }
2856 
2857 static inline void skb_probe_transport_header(struct sk_buff *skb)
2858 {
2859 	struct flow_keys_basic keys;
2860 
2861 	if (skb_transport_header_was_set(skb))
2862 		return;
2863 
2864 	if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2865 					     NULL, 0, 0, 0, 0))
2866 		skb_set_transport_header(skb, keys.control.thoff);
2867 }
2868 
2869 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2870 {
2871 	if (skb_mac_header_was_set(skb)) {
2872 		const unsigned char *old_mac = skb_mac_header(skb);
2873 
2874 		skb_set_mac_header(skb, -skb->mac_len);
2875 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2876 	}
2877 }
2878 
2879 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2880 {
2881 	return skb->csum_start - skb_headroom(skb);
2882 }
2883 
2884 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2885 {
2886 	return skb->head + skb->csum_start;
2887 }
2888 
2889 static inline int skb_transport_offset(const struct sk_buff *skb)
2890 {
2891 	return skb_transport_header(skb) - skb->data;
2892 }
2893 
2894 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2895 {
2896 	return skb->transport_header - skb->network_header;
2897 }
2898 
2899 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2900 {
2901 	return skb->inner_transport_header - skb->inner_network_header;
2902 }
2903 
2904 static inline int skb_network_offset(const struct sk_buff *skb)
2905 {
2906 	return skb_network_header(skb) - skb->data;
2907 }
2908 
2909 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2910 {
2911 	return skb_inner_network_header(skb) - skb->data;
2912 }
2913 
2914 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2915 {
2916 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
2917 }
2918 
2919 /*
2920  * CPUs often take a performance hit when accessing unaligned memory
2921  * locations. The actual performance hit varies, it can be small if the
2922  * hardware handles it or large if we have to take an exception and fix it
2923  * in software.
2924  *
2925  * Since an ethernet header is 14 bytes network drivers often end up with
2926  * the IP header at an unaligned offset. The IP header can be aligned by
2927  * shifting the start of the packet by 2 bytes. Drivers should do this
2928  * with:
2929  *
2930  * skb_reserve(skb, NET_IP_ALIGN);
2931  *
2932  * The downside to this alignment of the IP header is that the DMA is now
2933  * unaligned. On some architectures the cost of an unaligned DMA is high
2934  * and this cost outweighs the gains made by aligning the IP header.
2935  *
2936  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2937  * to be overridden.
2938  */
2939 #ifndef NET_IP_ALIGN
2940 #define NET_IP_ALIGN	2
2941 #endif
2942 
2943 /*
2944  * The networking layer reserves some headroom in skb data (via
2945  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2946  * the header has to grow. In the default case, if the header has to grow
2947  * 32 bytes or less we avoid the reallocation.
2948  *
2949  * Unfortunately this headroom changes the DMA alignment of the resulting
2950  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2951  * on some architectures. An architecture can override this value,
2952  * perhaps setting it to a cacheline in size (since that will maintain
2953  * cacheline alignment of the DMA). It must be a power of 2.
2954  *
2955  * Various parts of the networking layer expect at least 32 bytes of
2956  * headroom, you should not reduce this.
2957  *
2958  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2959  * to reduce average number of cache lines per packet.
2960  * get_rps_cpu() for example only access one 64 bytes aligned block :
2961  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2962  */
2963 #ifndef NET_SKB_PAD
2964 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2965 #endif
2966 
2967 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2968 
2969 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2970 {
2971 	if (WARN_ON(skb_is_nonlinear(skb)))
2972 		return;
2973 	skb->len = len;
2974 	skb_set_tail_pointer(skb, len);
2975 }
2976 
2977 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2978 {
2979 	__skb_set_length(skb, len);
2980 }
2981 
2982 void skb_trim(struct sk_buff *skb, unsigned int len);
2983 
2984 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2985 {
2986 	if (skb->data_len)
2987 		return ___pskb_trim(skb, len);
2988 	__skb_trim(skb, len);
2989 	return 0;
2990 }
2991 
2992 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2993 {
2994 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2995 }
2996 
2997 /**
2998  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2999  *	@skb: buffer to alter
3000  *	@len: new length
3001  *
3002  *	This is identical to pskb_trim except that the caller knows that
3003  *	the skb is not cloned so we should never get an error due to out-
3004  *	of-memory.
3005  */
3006 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
3007 {
3008 	int err = pskb_trim(skb, len);
3009 	BUG_ON(err);
3010 }
3011 
3012 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
3013 {
3014 	unsigned int diff = len - skb->len;
3015 
3016 	if (skb_tailroom(skb) < diff) {
3017 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
3018 					   GFP_ATOMIC);
3019 		if (ret)
3020 			return ret;
3021 	}
3022 	__skb_set_length(skb, len);
3023 	return 0;
3024 }
3025 
3026 /**
3027  *	skb_orphan - orphan a buffer
3028  *	@skb: buffer to orphan
3029  *
3030  *	If a buffer currently has an owner then we call the owner's
3031  *	destructor function and make the @skb unowned. The buffer continues
3032  *	to exist but is no longer charged to its former owner.
3033  */
3034 static inline void skb_orphan(struct sk_buff *skb)
3035 {
3036 	if (skb->destructor) {
3037 		skb->destructor(skb);
3038 		skb->destructor = NULL;
3039 		skb->sk		= NULL;
3040 	} else {
3041 		BUG_ON(skb->sk);
3042 	}
3043 }
3044 
3045 /**
3046  *	skb_orphan_frags - orphan the frags contained in a buffer
3047  *	@skb: buffer to orphan frags from
3048  *	@gfp_mask: allocation mask for replacement pages
3049  *
3050  *	For each frag in the SKB which needs a destructor (i.e. has an
3051  *	owner) create a copy of that frag and release the original
3052  *	page by calling the destructor.
3053  */
3054 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
3055 {
3056 	if (likely(!skb_zcopy(skb)))
3057 		return 0;
3058 	if (skb_shinfo(skb)->flags & SKBFL_DONT_ORPHAN)
3059 		return 0;
3060 	return skb_copy_ubufs(skb, gfp_mask);
3061 }
3062 
3063 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
3064 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
3065 {
3066 	if (likely(!skb_zcopy(skb)))
3067 		return 0;
3068 	return skb_copy_ubufs(skb, gfp_mask);
3069 }
3070 
3071 /**
3072  *	__skb_queue_purge - empty a list
3073  *	@list: list to empty
3074  *
3075  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3076  *	the list and one reference dropped. This function does not take the
3077  *	list lock and the caller must hold the relevant locks to use it.
3078  */
3079 static inline void __skb_queue_purge(struct sk_buff_head *list)
3080 {
3081 	struct sk_buff *skb;
3082 	while ((skb = __skb_dequeue(list)) != NULL)
3083 		kfree_skb(skb);
3084 }
3085 void skb_queue_purge(struct sk_buff_head *list);
3086 
3087 unsigned int skb_rbtree_purge(struct rb_root *root);
3088 
3089 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3090 
3091 /**
3092  * netdev_alloc_frag - allocate a page fragment
3093  * @fragsz: fragment size
3094  *
3095  * Allocates a frag from a page for receive buffer.
3096  * Uses GFP_ATOMIC allocations.
3097  */
3098 static inline void *netdev_alloc_frag(unsigned int fragsz)
3099 {
3100 	return __netdev_alloc_frag_align(fragsz, ~0u);
3101 }
3102 
3103 static inline void *netdev_alloc_frag_align(unsigned int fragsz,
3104 					    unsigned int align)
3105 {
3106 	WARN_ON_ONCE(!is_power_of_2(align));
3107 	return __netdev_alloc_frag_align(fragsz, -align);
3108 }
3109 
3110 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
3111 				   gfp_t gfp_mask);
3112 
3113 /**
3114  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
3115  *	@dev: network device to receive on
3116  *	@length: length to allocate
3117  *
3118  *	Allocate a new &sk_buff and assign it a usage count of one. The
3119  *	buffer has unspecified headroom built in. Users should allocate
3120  *	the headroom they think they need without accounting for the
3121  *	built in space. The built in space is used for optimisations.
3122  *
3123  *	%NULL is returned if there is no free memory. Although this function
3124  *	allocates memory it can be called from an interrupt.
3125  */
3126 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
3127 					       unsigned int length)
3128 {
3129 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
3130 }
3131 
3132 /* legacy helper around __netdev_alloc_skb() */
3133 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
3134 					      gfp_t gfp_mask)
3135 {
3136 	return __netdev_alloc_skb(NULL, length, gfp_mask);
3137 }
3138 
3139 /* legacy helper around netdev_alloc_skb() */
3140 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
3141 {
3142 	return netdev_alloc_skb(NULL, length);
3143 }
3144 
3145 
3146 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
3147 		unsigned int length, gfp_t gfp)
3148 {
3149 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
3150 
3151 	if (NET_IP_ALIGN && skb)
3152 		skb_reserve(skb, NET_IP_ALIGN);
3153 	return skb;
3154 }
3155 
3156 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
3157 		unsigned int length)
3158 {
3159 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
3160 }
3161 
3162 static inline void skb_free_frag(void *addr)
3163 {
3164 	page_frag_free(addr);
3165 }
3166 
3167 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3168 
3169 static inline void *napi_alloc_frag(unsigned int fragsz)
3170 {
3171 	return __napi_alloc_frag_align(fragsz, ~0u);
3172 }
3173 
3174 static inline void *napi_alloc_frag_align(unsigned int fragsz,
3175 					  unsigned int align)
3176 {
3177 	WARN_ON_ONCE(!is_power_of_2(align));
3178 	return __napi_alloc_frag_align(fragsz, -align);
3179 }
3180 
3181 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
3182 				 unsigned int length, gfp_t gfp_mask);
3183 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
3184 					     unsigned int length)
3185 {
3186 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
3187 }
3188 void napi_consume_skb(struct sk_buff *skb, int budget);
3189 
3190 void napi_skb_free_stolen_head(struct sk_buff *skb);
3191 void __kfree_skb_defer(struct sk_buff *skb);
3192 
3193 /**
3194  * __dev_alloc_pages - allocate page for network Rx
3195  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3196  * @order: size of the allocation
3197  *
3198  * Allocate a new page.
3199  *
3200  * %NULL is returned if there is no free memory.
3201 */
3202 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
3203 					     unsigned int order)
3204 {
3205 	/* This piece of code contains several assumptions.
3206 	 * 1.  This is for device Rx, therefor a cold page is preferred.
3207 	 * 2.  The expectation is the user wants a compound page.
3208 	 * 3.  If requesting a order 0 page it will not be compound
3209 	 *     due to the check to see if order has a value in prep_new_page
3210 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
3211 	 *     code in gfp_to_alloc_flags that should be enforcing this.
3212 	 */
3213 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
3214 
3215 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
3216 }
3217 
3218 static inline struct page *dev_alloc_pages(unsigned int order)
3219 {
3220 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
3221 }
3222 
3223 /**
3224  * __dev_alloc_page - allocate a page for network Rx
3225  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3226  *
3227  * Allocate a new page.
3228  *
3229  * %NULL is returned if there is no free memory.
3230  */
3231 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
3232 {
3233 	return __dev_alloc_pages(gfp_mask, 0);
3234 }
3235 
3236 static inline struct page *dev_alloc_page(void)
3237 {
3238 	return dev_alloc_pages(0);
3239 }
3240 
3241 /**
3242  * dev_page_is_reusable - check whether a page can be reused for network Rx
3243  * @page: the page to test
3244  *
3245  * A page shouldn't be considered for reusing/recycling if it was allocated
3246  * under memory pressure or at a distant memory node.
3247  *
3248  * Returns false if this page should be returned to page allocator, true
3249  * otherwise.
3250  */
3251 static inline bool dev_page_is_reusable(const struct page *page)
3252 {
3253 	return likely(page_to_nid(page) == numa_mem_id() &&
3254 		      !page_is_pfmemalloc(page));
3255 }
3256 
3257 /**
3258  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
3259  *	@page: The page that was allocated from skb_alloc_page
3260  *	@skb: The skb that may need pfmemalloc set
3261  */
3262 static inline void skb_propagate_pfmemalloc(const struct page *page,
3263 					    struct sk_buff *skb)
3264 {
3265 	if (page_is_pfmemalloc(page))
3266 		skb->pfmemalloc = true;
3267 }
3268 
3269 /**
3270  * skb_frag_off() - Returns the offset of a skb fragment
3271  * @frag: the paged fragment
3272  */
3273 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
3274 {
3275 	return frag->bv_offset;
3276 }
3277 
3278 /**
3279  * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
3280  * @frag: skb fragment
3281  * @delta: value to add
3282  */
3283 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
3284 {
3285 	frag->bv_offset += delta;
3286 }
3287 
3288 /**
3289  * skb_frag_off_set() - Sets the offset of a skb fragment
3290  * @frag: skb fragment
3291  * @offset: offset of fragment
3292  */
3293 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
3294 {
3295 	frag->bv_offset = offset;
3296 }
3297 
3298 /**
3299  * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
3300  * @fragto: skb fragment where offset is set
3301  * @fragfrom: skb fragment offset is copied from
3302  */
3303 static inline void skb_frag_off_copy(skb_frag_t *fragto,
3304 				     const skb_frag_t *fragfrom)
3305 {
3306 	fragto->bv_offset = fragfrom->bv_offset;
3307 }
3308 
3309 /**
3310  * skb_frag_page - retrieve the page referred to by a paged fragment
3311  * @frag: the paged fragment
3312  *
3313  * Returns the &struct page associated with @frag.
3314  */
3315 static inline struct page *skb_frag_page(const skb_frag_t *frag)
3316 {
3317 	return frag->bv_page;
3318 }
3319 
3320 /**
3321  * __skb_frag_ref - take an addition reference on a paged fragment.
3322  * @frag: the paged fragment
3323  *
3324  * Takes an additional reference on the paged fragment @frag.
3325  */
3326 static inline void __skb_frag_ref(skb_frag_t *frag)
3327 {
3328 	get_page(skb_frag_page(frag));
3329 }
3330 
3331 /**
3332  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
3333  * @skb: the buffer
3334  * @f: the fragment offset.
3335  *
3336  * Takes an additional reference on the @f'th paged fragment of @skb.
3337  */
3338 static inline void skb_frag_ref(struct sk_buff *skb, int f)
3339 {
3340 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
3341 }
3342 
3343 /**
3344  * __skb_frag_unref - release a reference on a paged fragment.
3345  * @frag: the paged fragment
3346  * @recycle: recycle the page if allocated via page_pool
3347  *
3348  * Releases a reference on the paged fragment @frag
3349  * or recycles the page via the page_pool API.
3350  */
3351 static inline void __skb_frag_unref(skb_frag_t *frag, bool recycle)
3352 {
3353 	struct page *page = skb_frag_page(frag);
3354 
3355 #ifdef CONFIG_PAGE_POOL
3356 	if (recycle && page_pool_return_skb_page(page))
3357 		return;
3358 #endif
3359 	put_page(page);
3360 }
3361 
3362 /**
3363  * skb_frag_unref - release a reference on a paged fragment of an skb.
3364  * @skb: the buffer
3365  * @f: the fragment offset
3366  *
3367  * Releases a reference on the @f'th paged fragment of @skb.
3368  */
3369 static inline void skb_frag_unref(struct sk_buff *skb, int f)
3370 {
3371 	struct skb_shared_info *shinfo = skb_shinfo(skb);
3372 
3373 	if (!skb_zcopy_managed(skb))
3374 		__skb_frag_unref(&shinfo->frags[f], skb->pp_recycle);
3375 }
3376 
3377 /**
3378  * skb_frag_address - gets the address of the data contained in a paged fragment
3379  * @frag: the paged fragment buffer
3380  *
3381  * Returns the address of the data within @frag. The page must already
3382  * be mapped.
3383  */
3384 static inline void *skb_frag_address(const skb_frag_t *frag)
3385 {
3386 	return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3387 }
3388 
3389 /**
3390  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3391  * @frag: the paged fragment buffer
3392  *
3393  * Returns the address of the data within @frag. Checks that the page
3394  * is mapped and returns %NULL otherwise.
3395  */
3396 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3397 {
3398 	void *ptr = page_address(skb_frag_page(frag));
3399 	if (unlikely(!ptr))
3400 		return NULL;
3401 
3402 	return ptr + skb_frag_off(frag);
3403 }
3404 
3405 /**
3406  * skb_frag_page_copy() - sets the page in a fragment from another fragment
3407  * @fragto: skb fragment where page is set
3408  * @fragfrom: skb fragment page is copied from
3409  */
3410 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3411 				      const skb_frag_t *fragfrom)
3412 {
3413 	fragto->bv_page = fragfrom->bv_page;
3414 }
3415 
3416 /**
3417  * __skb_frag_set_page - sets the page contained in a paged fragment
3418  * @frag: the paged fragment
3419  * @page: the page to set
3420  *
3421  * Sets the fragment @frag to contain @page.
3422  */
3423 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
3424 {
3425 	frag->bv_page = page;
3426 }
3427 
3428 /**
3429  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
3430  * @skb: the buffer
3431  * @f: the fragment offset
3432  * @page: the page to set
3433  *
3434  * Sets the @f'th fragment of @skb to contain @page.
3435  */
3436 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
3437 				     struct page *page)
3438 {
3439 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
3440 }
3441 
3442 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3443 
3444 /**
3445  * skb_frag_dma_map - maps a paged fragment via the DMA API
3446  * @dev: the device to map the fragment to
3447  * @frag: the paged fragment to map
3448  * @offset: the offset within the fragment (starting at the
3449  *          fragment's own offset)
3450  * @size: the number of bytes to map
3451  * @dir: the direction of the mapping (``PCI_DMA_*``)
3452  *
3453  * Maps the page associated with @frag to @device.
3454  */
3455 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3456 					  const skb_frag_t *frag,
3457 					  size_t offset, size_t size,
3458 					  enum dma_data_direction dir)
3459 {
3460 	return dma_map_page(dev, skb_frag_page(frag),
3461 			    skb_frag_off(frag) + offset, size, dir);
3462 }
3463 
3464 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3465 					gfp_t gfp_mask)
3466 {
3467 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3468 }
3469 
3470 
3471 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3472 						  gfp_t gfp_mask)
3473 {
3474 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3475 }
3476 
3477 
3478 /**
3479  *	skb_clone_writable - is the header of a clone writable
3480  *	@skb: buffer to check
3481  *	@len: length up to which to write
3482  *
3483  *	Returns true if modifying the header part of the cloned buffer
3484  *	does not requires the data to be copied.
3485  */
3486 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3487 {
3488 	return !skb_header_cloned(skb) &&
3489 	       skb_headroom(skb) + len <= skb->hdr_len;
3490 }
3491 
3492 static inline int skb_try_make_writable(struct sk_buff *skb,
3493 					unsigned int write_len)
3494 {
3495 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3496 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3497 }
3498 
3499 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3500 			    int cloned)
3501 {
3502 	int delta = 0;
3503 
3504 	if (headroom > skb_headroom(skb))
3505 		delta = headroom - skb_headroom(skb);
3506 
3507 	if (delta || cloned)
3508 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3509 					GFP_ATOMIC);
3510 	return 0;
3511 }
3512 
3513 /**
3514  *	skb_cow - copy header of skb when it is required
3515  *	@skb: buffer to cow
3516  *	@headroom: needed headroom
3517  *
3518  *	If the skb passed lacks sufficient headroom or its data part
3519  *	is shared, data is reallocated. If reallocation fails, an error
3520  *	is returned and original skb is not changed.
3521  *
3522  *	The result is skb with writable area skb->head...skb->tail
3523  *	and at least @headroom of space at head.
3524  */
3525 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3526 {
3527 	return __skb_cow(skb, headroom, skb_cloned(skb));
3528 }
3529 
3530 /**
3531  *	skb_cow_head - skb_cow but only making the head writable
3532  *	@skb: buffer to cow
3533  *	@headroom: needed headroom
3534  *
3535  *	This function is identical to skb_cow except that we replace the
3536  *	skb_cloned check by skb_header_cloned.  It should be used when
3537  *	you only need to push on some header and do not need to modify
3538  *	the data.
3539  */
3540 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3541 {
3542 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
3543 }
3544 
3545 /**
3546  *	skb_padto	- pad an skbuff up to a minimal size
3547  *	@skb: buffer to pad
3548  *	@len: minimal length
3549  *
3550  *	Pads up a buffer to ensure the trailing bytes exist and are
3551  *	blanked. If the buffer already contains sufficient data it
3552  *	is untouched. Otherwise it is extended. Returns zero on
3553  *	success. The skb is freed on error.
3554  */
3555 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3556 {
3557 	unsigned int size = skb->len;
3558 	if (likely(size >= len))
3559 		return 0;
3560 	return skb_pad(skb, len - size);
3561 }
3562 
3563 /**
3564  *	__skb_put_padto - increase size and pad an skbuff up to a minimal size
3565  *	@skb: buffer to pad
3566  *	@len: minimal length
3567  *	@free_on_error: free buffer on error
3568  *
3569  *	Pads up a buffer to ensure the trailing bytes exist and are
3570  *	blanked. If the buffer already contains sufficient data it
3571  *	is untouched. Otherwise it is extended. Returns zero on
3572  *	success. The skb is freed on error if @free_on_error is true.
3573  */
3574 static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3575 					       unsigned int len,
3576 					       bool free_on_error)
3577 {
3578 	unsigned int size = skb->len;
3579 
3580 	if (unlikely(size < len)) {
3581 		len -= size;
3582 		if (__skb_pad(skb, len, free_on_error))
3583 			return -ENOMEM;
3584 		__skb_put(skb, len);
3585 	}
3586 	return 0;
3587 }
3588 
3589 /**
3590  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3591  *	@skb: buffer to pad
3592  *	@len: minimal length
3593  *
3594  *	Pads up a buffer to ensure the trailing bytes exist and are
3595  *	blanked. If the buffer already contains sufficient data it
3596  *	is untouched. Otherwise it is extended. Returns zero on
3597  *	success. The skb is freed on error.
3598  */
3599 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3600 {
3601 	return __skb_put_padto(skb, len, true);
3602 }
3603 
3604 static inline int skb_add_data(struct sk_buff *skb,
3605 			       struct iov_iter *from, int copy)
3606 {
3607 	const int off = skb->len;
3608 
3609 	if (skb->ip_summed == CHECKSUM_NONE) {
3610 		__wsum csum = 0;
3611 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3612 					         &csum, from)) {
3613 			skb->csum = csum_block_add(skb->csum, csum, off);
3614 			return 0;
3615 		}
3616 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3617 		return 0;
3618 
3619 	__skb_trim(skb, off);
3620 	return -EFAULT;
3621 }
3622 
3623 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3624 				    const struct page *page, int off)
3625 {
3626 	if (skb_zcopy(skb))
3627 		return false;
3628 	if (i) {
3629 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3630 
3631 		return page == skb_frag_page(frag) &&
3632 		       off == skb_frag_off(frag) + skb_frag_size(frag);
3633 	}
3634 	return false;
3635 }
3636 
3637 static inline int __skb_linearize(struct sk_buff *skb)
3638 {
3639 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3640 }
3641 
3642 /**
3643  *	skb_linearize - convert paged skb to linear one
3644  *	@skb: buffer to linarize
3645  *
3646  *	If there is no free memory -ENOMEM is returned, otherwise zero
3647  *	is returned and the old skb data released.
3648  */
3649 static inline int skb_linearize(struct sk_buff *skb)
3650 {
3651 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3652 }
3653 
3654 /**
3655  * skb_has_shared_frag - can any frag be overwritten
3656  * @skb: buffer to test
3657  *
3658  * Return true if the skb has at least one frag that might be modified
3659  * by an external entity (as in vmsplice()/sendfile())
3660  */
3661 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3662 {
3663 	return skb_is_nonlinear(skb) &&
3664 	       skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3665 }
3666 
3667 /**
3668  *	skb_linearize_cow - make sure skb is linear and writable
3669  *	@skb: buffer to process
3670  *
3671  *	If there is no free memory -ENOMEM is returned, otherwise zero
3672  *	is returned and the old skb data released.
3673  */
3674 static inline int skb_linearize_cow(struct sk_buff *skb)
3675 {
3676 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3677 	       __skb_linearize(skb) : 0;
3678 }
3679 
3680 static __always_inline void
3681 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3682 		     unsigned int off)
3683 {
3684 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3685 		skb->csum = csum_block_sub(skb->csum,
3686 					   csum_partial(start, len, 0), off);
3687 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3688 		 skb_checksum_start_offset(skb) < 0)
3689 		skb->ip_summed = CHECKSUM_NONE;
3690 }
3691 
3692 /**
3693  *	skb_postpull_rcsum - update checksum for received skb after pull
3694  *	@skb: buffer to update
3695  *	@start: start of data before pull
3696  *	@len: length of data pulled
3697  *
3698  *	After doing a pull on a received packet, you need to call this to
3699  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3700  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3701  */
3702 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3703 				      const void *start, unsigned int len)
3704 {
3705 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3706 		skb->csum = wsum_negate(csum_partial(start, len,
3707 						     wsum_negate(skb->csum)));
3708 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3709 		 skb_checksum_start_offset(skb) < 0)
3710 		skb->ip_summed = CHECKSUM_NONE;
3711 }
3712 
3713 static __always_inline void
3714 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3715 		     unsigned int off)
3716 {
3717 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3718 		skb->csum = csum_block_add(skb->csum,
3719 					   csum_partial(start, len, 0), off);
3720 }
3721 
3722 /**
3723  *	skb_postpush_rcsum - update checksum for received skb after push
3724  *	@skb: buffer to update
3725  *	@start: start of data after push
3726  *	@len: length of data pushed
3727  *
3728  *	After doing a push on a received packet, you need to call this to
3729  *	update the CHECKSUM_COMPLETE checksum.
3730  */
3731 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3732 				      const void *start, unsigned int len)
3733 {
3734 	__skb_postpush_rcsum(skb, start, len, 0);
3735 }
3736 
3737 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3738 
3739 /**
3740  *	skb_push_rcsum - push skb and update receive checksum
3741  *	@skb: buffer to update
3742  *	@len: length of data pulled
3743  *
3744  *	This function performs an skb_push on the packet and updates
3745  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3746  *	receive path processing instead of skb_push unless you know
3747  *	that the checksum difference is zero (e.g., a valid IP header)
3748  *	or you are setting ip_summed to CHECKSUM_NONE.
3749  */
3750 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3751 {
3752 	skb_push(skb, len);
3753 	skb_postpush_rcsum(skb, skb->data, len);
3754 	return skb->data;
3755 }
3756 
3757 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3758 /**
3759  *	pskb_trim_rcsum - trim received skb and update checksum
3760  *	@skb: buffer to trim
3761  *	@len: new length
3762  *
3763  *	This is exactly the same as pskb_trim except that it ensures the
3764  *	checksum of received packets are still valid after the operation.
3765  *	It can change skb pointers.
3766  */
3767 
3768 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3769 {
3770 	if (likely(len >= skb->len))
3771 		return 0;
3772 	return pskb_trim_rcsum_slow(skb, len);
3773 }
3774 
3775 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3776 {
3777 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3778 		skb->ip_summed = CHECKSUM_NONE;
3779 	__skb_trim(skb, len);
3780 	return 0;
3781 }
3782 
3783 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3784 {
3785 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3786 		skb->ip_summed = CHECKSUM_NONE;
3787 	return __skb_grow(skb, len);
3788 }
3789 
3790 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3791 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3792 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3793 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3794 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3795 
3796 #define skb_queue_walk(queue, skb) \
3797 		for (skb = (queue)->next;					\
3798 		     skb != (struct sk_buff *)(queue);				\
3799 		     skb = skb->next)
3800 
3801 #define skb_queue_walk_safe(queue, skb, tmp)					\
3802 		for (skb = (queue)->next, tmp = skb->next;			\
3803 		     skb != (struct sk_buff *)(queue);				\
3804 		     skb = tmp, tmp = skb->next)
3805 
3806 #define skb_queue_walk_from(queue, skb)						\
3807 		for (; skb != (struct sk_buff *)(queue);			\
3808 		     skb = skb->next)
3809 
3810 #define skb_rbtree_walk(skb, root)						\
3811 		for (skb = skb_rb_first(root); skb != NULL;			\
3812 		     skb = skb_rb_next(skb))
3813 
3814 #define skb_rbtree_walk_from(skb)						\
3815 		for (; skb != NULL;						\
3816 		     skb = skb_rb_next(skb))
3817 
3818 #define skb_rbtree_walk_from_safe(skb, tmp)					\
3819 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
3820 		     skb = tmp)
3821 
3822 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3823 		for (tmp = skb->next;						\
3824 		     skb != (struct sk_buff *)(queue);				\
3825 		     skb = tmp, tmp = skb->next)
3826 
3827 #define skb_queue_reverse_walk(queue, skb) \
3828 		for (skb = (queue)->prev;					\
3829 		     skb != (struct sk_buff *)(queue);				\
3830 		     skb = skb->prev)
3831 
3832 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3833 		for (skb = (queue)->prev, tmp = skb->prev;			\
3834 		     skb != (struct sk_buff *)(queue);				\
3835 		     skb = tmp, tmp = skb->prev)
3836 
3837 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3838 		for (tmp = skb->prev;						\
3839 		     skb != (struct sk_buff *)(queue);				\
3840 		     skb = tmp, tmp = skb->prev)
3841 
3842 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3843 {
3844 	return skb_shinfo(skb)->frag_list != NULL;
3845 }
3846 
3847 static inline void skb_frag_list_init(struct sk_buff *skb)
3848 {
3849 	skb_shinfo(skb)->frag_list = NULL;
3850 }
3851 
3852 #define skb_walk_frags(skb, iter)	\
3853 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3854 
3855 
3856 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3857 				int *err, long *timeo_p,
3858 				const struct sk_buff *skb);
3859 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3860 					  struct sk_buff_head *queue,
3861 					  unsigned int flags,
3862 					  int *off, int *err,
3863 					  struct sk_buff **last);
3864 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
3865 					struct sk_buff_head *queue,
3866 					unsigned int flags, int *off, int *err,
3867 					struct sk_buff **last);
3868 struct sk_buff *__skb_recv_datagram(struct sock *sk,
3869 				    struct sk_buff_head *sk_queue,
3870 				    unsigned int flags, int *off, int *err);
3871 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err);
3872 __poll_t datagram_poll(struct file *file, struct socket *sock,
3873 			   struct poll_table_struct *wait);
3874 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3875 			   struct iov_iter *to, int size);
3876 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3877 					struct msghdr *msg, int size)
3878 {
3879 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3880 }
3881 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3882 				   struct msghdr *msg);
3883 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3884 			   struct iov_iter *to, int len,
3885 			   struct ahash_request *hash);
3886 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3887 				 struct iov_iter *from, int len);
3888 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3889 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3890 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3891 static inline void skb_free_datagram_locked(struct sock *sk,
3892 					    struct sk_buff *skb)
3893 {
3894 	__skb_free_datagram_locked(sk, skb, 0);
3895 }
3896 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3897 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3898 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3899 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3900 			      int len);
3901 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3902 		    struct pipe_inode_info *pipe, unsigned int len,
3903 		    unsigned int flags);
3904 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3905 			 int len);
3906 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
3907 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3908 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3909 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3910 		 int len, int hlen);
3911 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3912 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3913 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3914 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3915 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3916 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3917 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
3918 				 unsigned int offset);
3919 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3920 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len);
3921 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3922 int skb_vlan_pop(struct sk_buff *skb);
3923 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3924 int skb_eth_pop(struct sk_buff *skb);
3925 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
3926 		 const unsigned char *src);
3927 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
3928 		  int mac_len, bool ethernet);
3929 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
3930 		 bool ethernet);
3931 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
3932 int skb_mpls_dec_ttl(struct sk_buff *skb);
3933 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3934 			     gfp_t gfp);
3935 
3936 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3937 {
3938 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3939 }
3940 
3941 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3942 {
3943 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3944 }
3945 
3946 struct skb_checksum_ops {
3947 	__wsum (*update)(const void *mem, int len, __wsum wsum);
3948 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3949 };
3950 
3951 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3952 
3953 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3954 		      __wsum csum, const struct skb_checksum_ops *ops);
3955 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3956 		    __wsum csum);
3957 
3958 static inline void * __must_check
3959 __skb_header_pointer(const struct sk_buff *skb, int offset, int len,
3960 		     const void *data, int hlen, void *buffer)
3961 {
3962 	if (likely(hlen - offset >= len))
3963 		return (void *)data + offset;
3964 
3965 	if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0))
3966 		return NULL;
3967 
3968 	return buffer;
3969 }
3970 
3971 static inline void * __must_check
3972 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3973 {
3974 	return __skb_header_pointer(skb, offset, len, skb->data,
3975 				    skb_headlen(skb), buffer);
3976 }
3977 
3978 /**
3979  *	skb_needs_linearize - check if we need to linearize a given skb
3980  *			      depending on the given device features.
3981  *	@skb: socket buffer to check
3982  *	@features: net device features
3983  *
3984  *	Returns true if either:
3985  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
3986  *	2. skb is fragmented and the device does not support SG.
3987  */
3988 static inline bool skb_needs_linearize(struct sk_buff *skb,
3989 				       netdev_features_t features)
3990 {
3991 	return skb_is_nonlinear(skb) &&
3992 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3993 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3994 }
3995 
3996 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3997 					     void *to,
3998 					     const unsigned int len)
3999 {
4000 	memcpy(to, skb->data, len);
4001 }
4002 
4003 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
4004 						    const int offset, void *to,
4005 						    const unsigned int len)
4006 {
4007 	memcpy(to, skb->data + offset, len);
4008 }
4009 
4010 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
4011 					   const void *from,
4012 					   const unsigned int len)
4013 {
4014 	memcpy(skb->data, from, len);
4015 }
4016 
4017 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
4018 						  const int offset,
4019 						  const void *from,
4020 						  const unsigned int len)
4021 {
4022 	memcpy(skb->data + offset, from, len);
4023 }
4024 
4025 void skb_init(void);
4026 
4027 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
4028 {
4029 	return skb->tstamp;
4030 }
4031 
4032 /**
4033  *	skb_get_timestamp - get timestamp from a skb
4034  *	@skb: skb to get stamp from
4035  *	@stamp: pointer to struct __kernel_old_timeval to store stamp in
4036  *
4037  *	Timestamps are stored in the skb as offsets to a base timestamp.
4038  *	This function converts the offset back to a struct timeval and stores
4039  *	it in stamp.
4040  */
4041 static inline void skb_get_timestamp(const struct sk_buff *skb,
4042 				     struct __kernel_old_timeval *stamp)
4043 {
4044 	*stamp = ns_to_kernel_old_timeval(skb->tstamp);
4045 }
4046 
4047 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
4048 					 struct __kernel_sock_timeval *stamp)
4049 {
4050 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4051 
4052 	stamp->tv_sec = ts.tv_sec;
4053 	stamp->tv_usec = ts.tv_nsec / 1000;
4054 }
4055 
4056 static inline void skb_get_timestampns(const struct sk_buff *skb,
4057 				       struct __kernel_old_timespec *stamp)
4058 {
4059 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4060 
4061 	stamp->tv_sec = ts.tv_sec;
4062 	stamp->tv_nsec = ts.tv_nsec;
4063 }
4064 
4065 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
4066 					   struct __kernel_timespec *stamp)
4067 {
4068 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4069 
4070 	stamp->tv_sec = ts.tv_sec;
4071 	stamp->tv_nsec = ts.tv_nsec;
4072 }
4073 
4074 static inline void __net_timestamp(struct sk_buff *skb)
4075 {
4076 	skb->tstamp = ktime_get_real();
4077 	skb->mono_delivery_time = 0;
4078 }
4079 
4080 static inline ktime_t net_timedelta(ktime_t t)
4081 {
4082 	return ktime_sub(ktime_get_real(), t);
4083 }
4084 
4085 static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt,
4086 					 bool mono)
4087 {
4088 	skb->tstamp = kt;
4089 	skb->mono_delivery_time = kt && mono;
4090 }
4091 
4092 DECLARE_STATIC_KEY_FALSE(netstamp_needed_key);
4093 
4094 /* It is used in the ingress path to clear the delivery_time.
4095  * If needed, set the skb->tstamp to the (rcv) timestamp.
4096  */
4097 static inline void skb_clear_delivery_time(struct sk_buff *skb)
4098 {
4099 	if (skb->mono_delivery_time) {
4100 		skb->mono_delivery_time = 0;
4101 		if (static_branch_unlikely(&netstamp_needed_key))
4102 			skb->tstamp = ktime_get_real();
4103 		else
4104 			skb->tstamp = 0;
4105 	}
4106 }
4107 
4108 static inline void skb_clear_tstamp(struct sk_buff *skb)
4109 {
4110 	if (skb->mono_delivery_time)
4111 		return;
4112 
4113 	skb->tstamp = 0;
4114 }
4115 
4116 static inline ktime_t skb_tstamp(const struct sk_buff *skb)
4117 {
4118 	if (skb->mono_delivery_time)
4119 		return 0;
4120 
4121 	return skb->tstamp;
4122 }
4123 
4124 static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond)
4125 {
4126 	if (!skb->mono_delivery_time && skb->tstamp)
4127 		return skb->tstamp;
4128 
4129 	if (static_branch_unlikely(&netstamp_needed_key) || cond)
4130 		return ktime_get_real();
4131 
4132 	return 0;
4133 }
4134 
4135 static inline u8 skb_metadata_len(const struct sk_buff *skb)
4136 {
4137 	return skb_shinfo(skb)->meta_len;
4138 }
4139 
4140 static inline void *skb_metadata_end(const struct sk_buff *skb)
4141 {
4142 	return skb_mac_header(skb);
4143 }
4144 
4145 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
4146 					  const struct sk_buff *skb_b,
4147 					  u8 meta_len)
4148 {
4149 	const void *a = skb_metadata_end(skb_a);
4150 	const void *b = skb_metadata_end(skb_b);
4151 	/* Using more efficient varaiant than plain call to memcmp(). */
4152 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
4153 	u64 diffs = 0;
4154 
4155 	switch (meta_len) {
4156 #define __it(x, op) (x -= sizeof(u##op))
4157 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
4158 	case 32: diffs |= __it_diff(a, b, 64);
4159 		fallthrough;
4160 	case 24: diffs |= __it_diff(a, b, 64);
4161 		fallthrough;
4162 	case 16: diffs |= __it_diff(a, b, 64);
4163 		fallthrough;
4164 	case  8: diffs |= __it_diff(a, b, 64);
4165 		break;
4166 	case 28: diffs |= __it_diff(a, b, 64);
4167 		fallthrough;
4168 	case 20: diffs |= __it_diff(a, b, 64);
4169 		fallthrough;
4170 	case 12: diffs |= __it_diff(a, b, 64);
4171 		fallthrough;
4172 	case  4: diffs |= __it_diff(a, b, 32);
4173 		break;
4174 	}
4175 	return diffs;
4176 #else
4177 	return memcmp(a - meta_len, b - meta_len, meta_len);
4178 #endif
4179 }
4180 
4181 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
4182 					const struct sk_buff *skb_b)
4183 {
4184 	u8 len_a = skb_metadata_len(skb_a);
4185 	u8 len_b = skb_metadata_len(skb_b);
4186 
4187 	if (!(len_a | len_b))
4188 		return false;
4189 
4190 	return len_a != len_b ?
4191 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
4192 }
4193 
4194 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
4195 {
4196 	skb_shinfo(skb)->meta_len = meta_len;
4197 }
4198 
4199 static inline void skb_metadata_clear(struct sk_buff *skb)
4200 {
4201 	skb_metadata_set(skb, 0);
4202 }
4203 
4204 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
4205 
4206 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
4207 
4208 void skb_clone_tx_timestamp(struct sk_buff *skb);
4209 bool skb_defer_rx_timestamp(struct sk_buff *skb);
4210 
4211 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
4212 
4213 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
4214 {
4215 }
4216 
4217 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
4218 {
4219 	return false;
4220 }
4221 
4222 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
4223 
4224 /**
4225  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
4226  *
4227  * PHY drivers may accept clones of transmitted packets for
4228  * timestamping via their phy_driver.txtstamp method. These drivers
4229  * must call this function to return the skb back to the stack with a
4230  * timestamp.
4231  *
4232  * @skb: clone of the original outgoing packet
4233  * @hwtstamps: hardware time stamps
4234  *
4235  */
4236 void skb_complete_tx_timestamp(struct sk_buff *skb,
4237 			       struct skb_shared_hwtstamps *hwtstamps);
4238 
4239 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb,
4240 		     struct skb_shared_hwtstamps *hwtstamps,
4241 		     struct sock *sk, int tstype);
4242 
4243 /**
4244  * skb_tstamp_tx - queue clone of skb with send time stamps
4245  * @orig_skb:	the original outgoing packet
4246  * @hwtstamps:	hardware time stamps, may be NULL if not available
4247  *
4248  * If the skb has a socket associated, then this function clones the
4249  * skb (thus sharing the actual data and optional structures), stores
4250  * the optional hardware time stamping information (if non NULL) or
4251  * generates a software time stamp (otherwise), then queues the clone
4252  * to the error queue of the socket.  Errors are silently ignored.
4253  */
4254 void skb_tstamp_tx(struct sk_buff *orig_skb,
4255 		   struct skb_shared_hwtstamps *hwtstamps);
4256 
4257 /**
4258  * skb_tx_timestamp() - Driver hook for transmit timestamping
4259  *
4260  * Ethernet MAC Drivers should call this function in their hard_xmit()
4261  * function immediately before giving the sk_buff to the MAC hardware.
4262  *
4263  * Specifically, one should make absolutely sure that this function is
4264  * called before TX completion of this packet can trigger.  Otherwise
4265  * the packet could potentially already be freed.
4266  *
4267  * @skb: A socket buffer.
4268  */
4269 static inline void skb_tx_timestamp(struct sk_buff *skb)
4270 {
4271 	skb_clone_tx_timestamp(skb);
4272 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
4273 		skb_tstamp_tx(skb, NULL);
4274 }
4275 
4276 /**
4277  * skb_complete_wifi_ack - deliver skb with wifi status
4278  *
4279  * @skb: the original outgoing packet
4280  * @acked: ack status
4281  *
4282  */
4283 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
4284 
4285 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
4286 __sum16 __skb_checksum_complete(struct sk_buff *skb);
4287 
4288 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
4289 {
4290 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
4291 		skb->csum_valid ||
4292 		(skb->ip_summed == CHECKSUM_PARTIAL &&
4293 		 skb_checksum_start_offset(skb) >= 0));
4294 }
4295 
4296 /**
4297  *	skb_checksum_complete - Calculate checksum of an entire packet
4298  *	@skb: packet to process
4299  *
4300  *	This function calculates the checksum over the entire packet plus
4301  *	the value of skb->csum.  The latter can be used to supply the
4302  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
4303  *	checksum.
4304  *
4305  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
4306  *	this function can be used to verify that checksum on received
4307  *	packets.  In that case the function should return zero if the
4308  *	checksum is correct.  In particular, this function will return zero
4309  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
4310  *	hardware has already verified the correctness of the checksum.
4311  */
4312 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
4313 {
4314 	return skb_csum_unnecessary(skb) ?
4315 	       0 : __skb_checksum_complete(skb);
4316 }
4317 
4318 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
4319 {
4320 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4321 		if (skb->csum_level == 0)
4322 			skb->ip_summed = CHECKSUM_NONE;
4323 		else
4324 			skb->csum_level--;
4325 	}
4326 }
4327 
4328 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
4329 {
4330 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4331 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
4332 			skb->csum_level++;
4333 	} else if (skb->ip_summed == CHECKSUM_NONE) {
4334 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4335 		skb->csum_level = 0;
4336 	}
4337 }
4338 
4339 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
4340 {
4341 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4342 		skb->ip_summed = CHECKSUM_NONE;
4343 		skb->csum_level = 0;
4344 	}
4345 }
4346 
4347 /* Check if we need to perform checksum complete validation.
4348  *
4349  * Returns true if checksum complete is needed, false otherwise
4350  * (either checksum is unnecessary or zero checksum is allowed).
4351  */
4352 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
4353 						  bool zero_okay,
4354 						  __sum16 check)
4355 {
4356 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
4357 		skb->csum_valid = 1;
4358 		__skb_decr_checksum_unnecessary(skb);
4359 		return false;
4360 	}
4361 
4362 	return true;
4363 }
4364 
4365 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
4366  * in checksum_init.
4367  */
4368 #define CHECKSUM_BREAK 76
4369 
4370 /* Unset checksum-complete
4371  *
4372  * Unset checksum complete can be done when packet is being modified
4373  * (uncompressed for instance) and checksum-complete value is
4374  * invalidated.
4375  */
4376 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
4377 {
4378 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4379 		skb->ip_summed = CHECKSUM_NONE;
4380 }
4381 
4382 /* Validate (init) checksum based on checksum complete.
4383  *
4384  * Return values:
4385  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
4386  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4387  *	checksum is stored in skb->csum for use in __skb_checksum_complete
4388  *   non-zero: value of invalid checksum
4389  *
4390  */
4391 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4392 						       bool complete,
4393 						       __wsum psum)
4394 {
4395 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
4396 		if (!csum_fold(csum_add(psum, skb->csum))) {
4397 			skb->csum_valid = 1;
4398 			return 0;
4399 		}
4400 	}
4401 
4402 	skb->csum = psum;
4403 
4404 	if (complete || skb->len <= CHECKSUM_BREAK) {
4405 		__sum16 csum;
4406 
4407 		csum = __skb_checksum_complete(skb);
4408 		skb->csum_valid = !csum;
4409 		return csum;
4410 	}
4411 
4412 	return 0;
4413 }
4414 
4415 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4416 {
4417 	return 0;
4418 }
4419 
4420 /* Perform checksum validate (init). Note that this is a macro since we only
4421  * want to calculate the pseudo header which is an input function if necessary.
4422  * First we try to validate without any computation (checksum unnecessary) and
4423  * then calculate based on checksum complete calling the function to compute
4424  * pseudo header.
4425  *
4426  * Return values:
4427  *   0: checksum is validated or try to in skb_checksum_complete
4428  *   non-zero: value of invalid checksum
4429  */
4430 #define __skb_checksum_validate(skb, proto, complete,			\
4431 				zero_okay, check, compute_pseudo)	\
4432 ({									\
4433 	__sum16 __ret = 0;						\
4434 	skb->csum_valid = 0;						\
4435 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
4436 		__ret = __skb_checksum_validate_complete(skb,		\
4437 				complete, compute_pseudo(skb, proto));	\
4438 	__ret;								\
4439 })
4440 
4441 #define skb_checksum_init(skb, proto, compute_pseudo)			\
4442 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4443 
4444 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
4445 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4446 
4447 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
4448 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4449 
4450 #define skb_checksum_validate_zero_check(skb, proto, check,		\
4451 					 compute_pseudo)		\
4452 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4453 
4454 #define skb_checksum_simple_validate(skb)				\
4455 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4456 
4457 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4458 {
4459 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4460 }
4461 
4462 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4463 {
4464 	skb->csum = ~pseudo;
4465 	skb->ip_summed = CHECKSUM_COMPLETE;
4466 }
4467 
4468 #define skb_checksum_try_convert(skb, proto, compute_pseudo)	\
4469 do {									\
4470 	if (__skb_checksum_convert_check(skb))				\
4471 		__skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4472 } while (0)
4473 
4474 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4475 					      u16 start, u16 offset)
4476 {
4477 	skb->ip_summed = CHECKSUM_PARTIAL;
4478 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4479 	skb->csum_offset = offset - start;
4480 }
4481 
4482 /* Update skbuf and packet to reflect the remote checksum offload operation.
4483  * When called, ptr indicates the starting point for skb->csum when
4484  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4485  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4486  */
4487 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4488 				       int start, int offset, bool nopartial)
4489 {
4490 	__wsum delta;
4491 
4492 	if (!nopartial) {
4493 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
4494 		return;
4495 	}
4496 
4497 	if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4498 		__skb_checksum_complete(skb);
4499 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4500 	}
4501 
4502 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
4503 
4504 	/* Adjust skb->csum since we changed the packet */
4505 	skb->csum = csum_add(skb->csum, delta);
4506 }
4507 
4508 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4509 {
4510 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4511 	return (void *)(skb->_nfct & NFCT_PTRMASK);
4512 #else
4513 	return NULL;
4514 #endif
4515 }
4516 
4517 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4518 {
4519 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4520 	return skb->_nfct;
4521 #else
4522 	return 0UL;
4523 #endif
4524 }
4525 
4526 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4527 {
4528 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4529 	skb->slow_gro |= !!nfct;
4530 	skb->_nfct = nfct;
4531 #endif
4532 }
4533 
4534 #ifdef CONFIG_SKB_EXTENSIONS
4535 enum skb_ext_id {
4536 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4537 	SKB_EXT_BRIDGE_NF,
4538 #endif
4539 #ifdef CONFIG_XFRM
4540 	SKB_EXT_SEC_PATH,
4541 #endif
4542 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4543 	TC_SKB_EXT,
4544 #endif
4545 #if IS_ENABLED(CONFIG_MPTCP)
4546 	SKB_EXT_MPTCP,
4547 #endif
4548 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4549 	SKB_EXT_MCTP,
4550 #endif
4551 	SKB_EXT_NUM, /* must be last */
4552 };
4553 
4554 /**
4555  *	struct skb_ext - sk_buff extensions
4556  *	@refcnt: 1 on allocation, deallocated on 0
4557  *	@offset: offset to add to @data to obtain extension address
4558  *	@chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4559  *	@data: start of extension data, variable sized
4560  *
4561  *	Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4562  *	to use 'u8' types while allowing up to 2kb worth of extension data.
4563  */
4564 struct skb_ext {
4565 	refcount_t refcnt;
4566 	u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4567 	u8 chunks;		/* same */
4568 	char data[] __aligned(8);
4569 };
4570 
4571 struct skb_ext *__skb_ext_alloc(gfp_t flags);
4572 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4573 		    struct skb_ext *ext);
4574 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4575 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4576 void __skb_ext_put(struct skb_ext *ext);
4577 
4578 static inline void skb_ext_put(struct sk_buff *skb)
4579 {
4580 	if (skb->active_extensions)
4581 		__skb_ext_put(skb->extensions);
4582 }
4583 
4584 static inline void __skb_ext_copy(struct sk_buff *dst,
4585 				  const struct sk_buff *src)
4586 {
4587 	dst->active_extensions = src->active_extensions;
4588 
4589 	if (src->active_extensions) {
4590 		struct skb_ext *ext = src->extensions;
4591 
4592 		refcount_inc(&ext->refcnt);
4593 		dst->extensions = ext;
4594 	}
4595 }
4596 
4597 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4598 {
4599 	skb_ext_put(dst);
4600 	__skb_ext_copy(dst, src);
4601 }
4602 
4603 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4604 {
4605 	return !!ext->offset[i];
4606 }
4607 
4608 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4609 {
4610 	return skb->active_extensions & (1 << id);
4611 }
4612 
4613 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4614 {
4615 	if (skb_ext_exist(skb, id))
4616 		__skb_ext_del(skb, id);
4617 }
4618 
4619 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4620 {
4621 	if (skb_ext_exist(skb, id)) {
4622 		struct skb_ext *ext = skb->extensions;
4623 
4624 		return (void *)ext + (ext->offset[id] << 3);
4625 	}
4626 
4627 	return NULL;
4628 }
4629 
4630 static inline void skb_ext_reset(struct sk_buff *skb)
4631 {
4632 	if (unlikely(skb->active_extensions)) {
4633 		__skb_ext_put(skb->extensions);
4634 		skb->active_extensions = 0;
4635 	}
4636 }
4637 
4638 static inline bool skb_has_extensions(struct sk_buff *skb)
4639 {
4640 	return unlikely(skb->active_extensions);
4641 }
4642 #else
4643 static inline void skb_ext_put(struct sk_buff *skb) {}
4644 static inline void skb_ext_reset(struct sk_buff *skb) {}
4645 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4646 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4647 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4648 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4649 #endif /* CONFIG_SKB_EXTENSIONS */
4650 
4651 static inline void nf_reset_ct(struct sk_buff *skb)
4652 {
4653 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4654 	nf_conntrack_put(skb_nfct(skb));
4655 	skb->_nfct = 0;
4656 #endif
4657 }
4658 
4659 static inline void nf_reset_trace(struct sk_buff *skb)
4660 {
4661 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4662 	skb->nf_trace = 0;
4663 #endif
4664 }
4665 
4666 static inline void ipvs_reset(struct sk_buff *skb)
4667 {
4668 #if IS_ENABLED(CONFIG_IP_VS)
4669 	skb->ipvs_property = 0;
4670 #endif
4671 }
4672 
4673 /* Note: This doesn't put any conntrack info in dst. */
4674 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4675 			     bool copy)
4676 {
4677 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4678 	dst->_nfct = src->_nfct;
4679 	nf_conntrack_get(skb_nfct(src));
4680 #endif
4681 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4682 	if (copy)
4683 		dst->nf_trace = src->nf_trace;
4684 #endif
4685 }
4686 
4687 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4688 {
4689 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4690 	nf_conntrack_put(skb_nfct(dst));
4691 #endif
4692 	dst->slow_gro = src->slow_gro;
4693 	__nf_copy(dst, src, true);
4694 }
4695 
4696 #ifdef CONFIG_NETWORK_SECMARK
4697 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4698 {
4699 	to->secmark = from->secmark;
4700 }
4701 
4702 static inline void skb_init_secmark(struct sk_buff *skb)
4703 {
4704 	skb->secmark = 0;
4705 }
4706 #else
4707 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4708 { }
4709 
4710 static inline void skb_init_secmark(struct sk_buff *skb)
4711 { }
4712 #endif
4713 
4714 static inline int secpath_exists(const struct sk_buff *skb)
4715 {
4716 #ifdef CONFIG_XFRM
4717 	return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4718 #else
4719 	return 0;
4720 #endif
4721 }
4722 
4723 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4724 {
4725 	return !skb->destructor &&
4726 		!secpath_exists(skb) &&
4727 		!skb_nfct(skb) &&
4728 		!skb->_skb_refdst &&
4729 		!skb_has_frag_list(skb);
4730 }
4731 
4732 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4733 {
4734 	skb->queue_mapping = queue_mapping;
4735 }
4736 
4737 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4738 {
4739 	return skb->queue_mapping;
4740 }
4741 
4742 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4743 {
4744 	to->queue_mapping = from->queue_mapping;
4745 }
4746 
4747 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4748 {
4749 	skb->queue_mapping = rx_queue + 1;
4750 }
4751 
4752 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4753 {
4754 	return skb->queue_mapping - 1;
4755 }
4756 
4757 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4758 {
4759 	return skb->queue_mapping != 0;
4760 }
4761 
4762 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4763 {
4764 	skb->dst_pending_confirm = val;
4765 }
4766 
4767 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4768 {
4769 	return skb->dst_pending_confirm != 0;
4770 }
4771 
4772 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4773 {
4774 #ifdef CONFIG_XFRM
4775 	return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4776 #else
4777 	return NULL;
4778 #endif
4779 }
4780 
4781 /* Keeps track of mac header offset relative to skb->head.
4782  * It is useful for TSO of Tunneling protocol. e.g. GRE.
4783  * For non-tunnel skb it points to skb_mac_header() and for
4784  * tunnel skb it points to outer mac header.
4785  * Keeps track of level of encapsulation of network headers.
4786  */
4787 struct skb_gso_cb {
4788 	union {
4789 		int	mac_offset;
4790 		int	data_offset;
4791 	};
4792 	int	encap_level;
4793 	__wsum	csum;
4794 	__u16	csum_start;
4795 };
4796 #define SKB_GSO_CB_OFFSET	32
4797 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET))
4798 
4799 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4800 {
4801 	return (skb_mac_header(inner_skb) - inner_skb->head) -
4802 		SKB_GSO_CB(inner_skb)->mac_offset;
4803 }
4804 
4805 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4806 {
4807 	int new_headroom, headroom;
4808 	int ret;
4809 
4810 	headroom = skb_headroom(skb);
4811 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4812 	if (ret)
4813 		return ret;
4814 
4815 	new_headroom = skb_headroom(skb);
4816 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4817 	return 0;
4818 }
4819 
4820 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4821 {
4822 	/* Do not update partial checksums if remote checksum is enabled. */
4823 	if (skb->remcsum_offload)
4824 		return;
4825 
4826 	SKB_GSO_CB(skb)->csum = res;
4827 	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4828 }
4829 
4830 /* Compute the checksum for a gso segment. First compute the checksum value
4831  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4832  * then add in skb->csum (checksum from csum_start to end of packet).
4833  * skb->csum and csum_start are then updated to reflect the checksum of the
4834  * resultant packet starting from the transport header-- the resultant checksum
4835  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4836  * header.
4837  */
4838 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4839 {
4840 	unsigned char *csum_start = skb_transport_header(skb);
4841 	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4842 	__wsum partial = SKB_GSO_CB(skb)->csum;
4843 
4844 	SKB_GSO_CB(skb)->csum = res;
4845 	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4846 
4847 	return csum_fold(csum_partial(csum_start, plen, partial));
4848 }
4849 
4850 static inline bool skb_is_gso(const struct sk_buff *skb)
4851 {
4852 	return skb_shinfo(skb)->gso_size;
4853 }
4854 
4855 /* Note: Should be called only if skb_is_gso(skb) is true */
4856 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4857 {
4858 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4859 }
4860 
4861 /* Note: Should be called only if skb_is_gso(skb) is true */
4862 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4863 {
4864 	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4865 }
4866 
4867 /* Note: Should be called only if skb_is_gso(skb) is true */
4868 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4869 {
4870 	return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4871 }
4872 
4873 static inline void skb_gso_reset(struct sk_buff *skb)
4874 {
4875 	skb_shinfo(skb)->gso_size = 0;
4876 	skb_shinfo(skb)->gso_segs = 0;
4877 	skb_shinfo(skb)->gso_type = 0;
4878 }
4879 
4880 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4881 					 u16 increment)
4882 {
4883 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4884 		return;
4885 	shinfo->gso_size += increment;
4886 }
4887 
4888 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4889 					 u16 decrement)
4890 {
4891 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4892 		return;
4893 	shinfo->gso_size -= decrement;
4894 }
4895 
4896 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4897 
4898 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4899 {
4900 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
4901 	 * wanted then gso_type will be set. */
4902 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4903 
4904 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4905 	    unlikely(shinfo->gso_type == 0)) {
4906 		__skb_warn_lro_forwarding(skb);
4907 		return true;
4908 	}
4909 	return false;
4910 }
4911 
4912 static inline void skb_forward_csum(struct sk_buff *skb)
4913 {
4914 	/* Unfortunately we don't support this one.  Any brave souls? */
4915 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4916 		skb->ip_summed = CHECKSUM_NONE;
4917 }
4918 
4919 /**
4920  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4921  * @skb: skb to check
4922  *
4923  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4924  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4925  * use this helper, to document places where we make this assertion.
4926  */
4927 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4928 {
4929 	DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE);
4930 }
4931 
4932 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4933 
4934 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4935 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4936 				     unsigned int transport_len,
4937 				     __sum16(*skb_chkf)(struct sk_buff *skb));
4938 
4939 /**
4940  * skb_head_is_locked - Determine if the skb->head is locked down
4941  * @skb: skb to check
4942  *
4943  * The head on skbs build around a head frag can be removed if they are
4944  * not cloned.  This function returns true if the skb head is locked down
4945  * due to either being allocated via kmalloc, or by being a clone with
4946  * multiple references to the head.
4947  */
4948 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4949 {
4950 	return !skb->head_frag || skb_cloned(skb);
4951 }
4952 
4953 /* Local Checksum Offload.
4954  * Compute outer checksum based on the assumption that the
4955  * inner checksum will be offloaded later.
4956  * See Documentation/networking/checksum-offloads.rst for
4957  * explanation of how this works.
4958  * Fill in outer checksum adjustment (e.g. with sum of outer
4959  * pseudo-header) before calling.
4960  * Also ensure that inner checksum is in linear data area.
4961  */
4962 static inline __wsum lco_csum(struct sk_buff *skb)
4963 {
4964 	unsigned char *csum_start = skb_checksum_start(skb);
4965 	unsigned char *l4_hdr = skb_transport_header(skb);
4966 	__wsum partial;
4967 
4968 	/* Start with complement of inner checksum adjustment */
4969 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4970 						    skb->csum_offset));
4971 
4972 	/* Add in checksum of our headers (incl. outer checksum
4973 	 * adjustment filled in by caller) and return result.
4974 	 */
4975 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4976 }
4977 
4978 static inline bool skb_is_redirected(const struct sk_buff *skb)
4979 {
4980 	return skb->redirected;
4981 }
4982 
4983 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
4984 {
4985 	skb->redirected = 1;
4986 #ifdef CONFIG_NET_REDIRECT
4987 	skb->from_ingress = from_ingress;
4988 	if (skb->from_ingress)
4989 		skb_clear_tstamp(skb);
4990 #endif
4991 }
4992 
4993 static inline void skb_reset_redirect(struct sk_buff *skb)
4994 {
4995 	skb->redirected = 0;
4996 }
4997 
4998 static inline bool skb_csum_is_sctp(struct sk_buff *skb)
4999 {
5000 	return skb->csum_not_inet;
5001 }
5002 
5003 static inline void skb_set_kcov_handle(struct sk_buff *skb,
5004 				       const u64 kcov_handle)
5005 {
5006 #ifdef CONFIG_KCOV
5007 	skb->kcov_handle = kcov_handle;
5008 #endif
5009 }
5010 
5011 static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
5012 {
5013 #ifdef CONFIG_KCOV
5014 	return skb->kcov_handle;
5015 #else
5016 	return 0;
5017 #endif
5018 }
5019 
5020 #ifdef CONFIG_PAGE_POOL
5021 static inline void skb_mark_for_recycle(struct sk_buff *skb)
5022 {
5023 	skb->pp_recycle = 1;
5024 }
5025 #endif
5026 
5027 static inline bool skb_pp_recycle(struct sk_buff *skb, void *data)
5028 {
5029 	if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
5030 		return false;
5031 	return page_pool_return_skb_page(virt_to_page(data));
5032 }
5033 
5034 #endif	/* __KERNEL__ */
5035 #endif	/* _LINUX_SKBUFF_H */
5036