xref: /linux-6.15/include/linux/skbuff.h (revision da51bbcd)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  *	Definitions for the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:
6  *		Alan Cox, <[email protected]>
7  *		Florian La Roche, <[email protected]>
8  */
9 
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12 
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
22 
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <net/checksum.h>
27 #include <linux/rcupdate.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/netdev_features.h>
30 #include <net/flow_dissector.h>
31 #include <linux/in6.h>
32 #include <linux/if_packet.h>
33 #include <linux/llist.h>
34 #include <net/flow.h>
35 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
36 #include <linux/netfilter/nf_conntrack_common.h>
37 #endif
38 #include <net/net_debug.h>
39 #include <net/dropreason-core.h>
40 #include <net/netmem.h>
41 
42 /**
43  * DOC: skb checksums
44  *
45  * The interface for checksum offload between the stack and networking drivers
46  * is as follows...
47  *
48  * IP checksum related features
49  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
50  *
51  * Drivers advertise checksum offload capabilities in the features of a device.
52  * From the stack's point of view these are capabilities offered by the driver.
53  * A driver typically only advertises features that it is capable of offloading
54  * to its device.
55  *
56  * .. flat-table:: Checksum related device features
57  *   :widths: 1 10
58  *
59  *   * - %NETIF_F_HW_CSUM
60  *     - The driver (or its device) is able to compute one
61  *	 IP (one's complement) checksum for any combination
62  *	 of protocols or protocol layering. The checksum is
63  *	 computed and set in a packet per the CHECKSUM_PARTIAL
64  *	 interface (see below).
65  *
66  *   * - %NETIF_F_IP_CSUM
67  *     - Driver (device) is only able to checksum plain
68  *	 TCP or UDP packets over IPv4. These are specifically
69  *	 unencapsulated packets of the form IPv4|TCP or
70  *	 IPv4|UDP where the Protocol field in the IPv4 header
71  *	 is TCP or UDP. The IPv4 header may contain IP options.
72  *	 This feature cannot be set in features for a device
73  *	 with NETIF_F_HW_CSUM also set. This feature is being
74  *	 DEPRECATED (see below).
75  *
76  *   * - %NETIF_F_IPV6_CSUM
77  *     - Driver (device) is only able to checksum plain
78  *	 TCP or UDP packets over IPv6. These are specifically
79  *	 unencapsulated packets of the form IPv6|TCP or
80  *	 IPv6|UDP where the Next Header field in the IPv6
81  *	 header is either TCP or UDP. IPv6 extension headers
82  *	 are not supported with this feature. This feature
83  *	 cannot be set in features for a device with
84  *	 NETIF_F_HW_CSUM also set. This feature is being
85  *	 DEPRECATED (see below).
86  *
87  *   * - %NETIF_F_RXCSUM
88  *     - Driver (device) performs receive checksum offload.
89  *	 This flag is only used to disable the RX checksum
90  *	 feature for a device. The stack will accept receive
91  *	 checksum indication in packets received on a device
92  *	 regardless of whether NETIF_F_RXCSUM is set.
93  *
94  * Checksumming of received packets by device
95  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
96  *
97  * Indication of checksum verification is set in &sk_buff.ip_summed.
98  * Possible values are:
99  *
100  * - %CHECKSUM_NONE
101  *
102  *   Device did not checksum this packet e.g. due to lack of capabilities.
103  *   The packet contains full (though not verified) checksum in packet but
104  *   not in skb->csum. Thus, skb->csum is undefined in this case.
105  *
106  * - %CHECKSUM_UNNECESSARY
107  *
108  *   The hardware you're dealing with doesn't calculate the full checksum
109  *   (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums
110  *   for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY
111  *   if their checksums are okay. &sk_buff.csum is still undefined in this case
112  *   though. A driver or device must never modify the checksum field in the
113  *   packet even if checksum is verified.
114  *
115  *   %CHECKSUM_UNNECESSARY is applicable to following protocols:
116  *
117  *     - TCP: IPv6 and IPv4.
118  *     - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
119  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
120  *       may perform further validation in this case.
121  *     - GRE: only if the checksum is present in the header.
122  *     - SCTP: indicates the CRC in SCTP header has been validated.
123  *     - FCOE: indicates the CRC in FC frame has been validated.
124  *
125  *   &sk_buff.csum_level indicates the number of consecutive checksums found in
126  *   the packet minus one that have been verified as %CHECKSUM_UNNECESSARY.
127  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
128  *   and a device is able to verify the checksums for UDP (possibly zero),
129  *   GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to
130  *   two. If the device were only able to verify the UDP checksum and not
131  *   GRE, either because it doesn't support GRE checksum or because GRE
132  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
133  *   not considered in this case).
134  *
135  * - %CHECKSUM_COMPLETE
136  *
137  *   This is the most generic way. The device supplied checksum of the _whole_
138  *   packet as seen by netif_rx() and fills in &sk_buff.csum. This means the
139  *   hardware doesn't need to parse L3/L4 headers to implement this.
140  *
141  *   Notes:
142  *
143  *   - Even if device supports only some protocols, but is able to produce
144  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
145  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
146  *
147  * - %CHECKSUM_PARTIAL
148  *
149  *   A checksum is set up to be offloaded to a device as described in the
150  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
151  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
152  *   on the same host, or it may be set in the input path in GRO or remote
153  *   checksum offload. For the purposes of checksum verification, the checksum
154  *   referred to by skb->csum_start + skb->csum_offset and any preceding
155  *   checksums in the packet are considered verified. Any checksums in the
156  *   packet that are after the checksum being offloaded are not considered to
157  *   be verified.
158  *
159  * Checksumming on transmit for non-GSO
160  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
161  *
162  * The stack requests checksum offload in the &sk_buff.ip_summed for a packet.
163  * Values are:
164  *
165  * - %CHECKSUM_PARTIAL
166  *
167  *   The driver is required to checksum the packet as seen by hard_start_xmit()
168  *   from &sk_buff.csum_start up to the end, and to record/write the checksum at
169  *   offset &sk_buff.csum_start + &sk_buff.csum_offset.
170  *   A driver may verify that the
171  *   csum_start and csum_offset values are valid values given the length and
172  *   offset of the packet, but it should not attempt to validate that the
173  *   checksum refers to a legitimate transport layer checksum -- it is the
174  *   purview of the stack to validate that csum_start and csum_offset are set
175  *   correctly.
176  *
177  *   When the stack requests checksum offload for a packet, the driver MUST
178  *   ensure that the checksum is set correctly. A driver can either offload the
179  *   checksum calculation to the device, or call skb_checksum_help (in the case
180  *   that the device does not support offload for a particular checksum).
181  *
182  *   %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of
183  *   %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate
184  *   checksum offload capability.
185  *   skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based
186  *   on network device checksumming capabilities: if a packet does not match
187  *   them, skb_checksum_help() or skb_crc32c_help() (depending on the value of
188  *   &sk_buff.csum_not_inet, see :ref:`crc`)
189  *   is called to resolve the checksum.
190  *
191  * - %CHECKSUM_NONE
192  *
193  *   The skb was already checksummed by the protocol, or a checksum is not
194  *   required.
195  *
196  * - %CHECKSUM_UNNECESSARY
197  *
198  *   This has the same meaning as CHECKSUM_NONE for checksum offload on
199  *   output.
200  *
201  * - %CHECKSUM_COMPLETE
202  *
203  *   Not used in checksum output. If a driver observes a packet with this value
204  *   set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set.
205  *
206  * .. _crc:
207  *
208  * Non-IP checksum (CRC) offloads
209  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
210  *
211  * .. flat-table::
212  *   :widths: 1 10
213  *
214  *   * - %NETIF_F_SCTP_CRC
215  *     - This feature indicates that a device is capable of
216  *	 offloading the SCTP CRC in a packet. To perform this offload the stack
217  *	 will set csum_start and csum_offset accordingly, set ip_summed to
218  *	 %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication
219  *	 in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c.
220  *	 A driver that supports both IP checksum offload and SCTP CRC32c offload
221  *	 must verify which offload is configured for a packet by testing the
222  *	 value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to
223  *	 resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
224  *
225  *   * - %NETIF_F_FCOE_CRC
226  *     - This feature indicates that a device is capable of offloading the FCOE
227  *	 CRC in a packet. To perform this offload the stack will set ip_summed
228  *	 to %CHECKSUM_PARTIAL and set csum_start and csum_offset
229  *	 accordingly. Note that there is no indication in the skbuff that the
230  *	 %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
231  *	 both IP checksum offload and FCOE CRC offload must verify which offload
232  *	 is configured for a packet, presumably by inspecting packet headers.
233  *
234  * Checksumming on output with GSO
235  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
236  *
237  * In the case of a GSO packet (skb_is_gso() is true), checksum offload
238  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
239  * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as
240  * part of the GSO operation is implied. If a checksum is being offloaded
241  * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and
242  * csum_offset are set to refer to the outermost checksum being offloaded
243  * (two offloaded checksums are possible with UDP encapsulation).
244  */
245 
246 /* Don't change this without changing skb_csum_unnecessary! */
247 #define CHECKSUM_NONE		0
248 #define CHECKSUM_UNNECESSARY	1
249 #define CHECKSUM_COMPLETE	2
250 #define CHECKSUM_PARTIAL	3
251 
252 /* Maximum value in skb->csum_level */
253 #define SKB_MAX_CSUM_LEVEL	3
254 
255 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
256 #define SKB_WITH_OVERHEAD(X)	\
257 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
258 
259 /* For X bytes available in skb->head, what is the minimal
260  * allocation needed, knowing struct skb_shared_info needs
261  * to be aligned.
262  */
263 #define SKB_HEAD_ALIGN(X) (SKB_DATA_ALIGN(X) + \
264 	SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
265 
266 #define SKB_MAX_ORDER(X, ORDER) \
267 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
268 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
269 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
270 
271 /* return minimum truesize of one skb containing X bytes of data */
272 #define SKB_TRUESIZE(X) ((X) +						\
273 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
274 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
275 
276 struct ahash_request;
277 struct net_device;
278 struct scatterlist;
279 struct pipe_inode_info;
280 struct iov_iter;
281 struct napi_struct;
282 struct bpf_prog;
283 union bpf_attr;
284 struct skb_ext;
285 struct ts_config;
286 
287 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
288 struct nf_bridge_info {
289 	enum {
290 		BRNF_PROTO_UNCHANGED,
291 		BRNF_PROTO_8021Q,
292 		BRNF_PROTO_PPPOE
293 	} orig_proto:8;
294 	u8			pkt_otherhost:1;
295 	u8			in_prerouting:1;
296 	u8			bridged_dnat:1;
297 	u8			sabotage_in_done:1;
298 	__u16			frag_max_size;
299 	int			physinif;
300 
301 	/* always valid & non-NULL from FORWARD on, for physdev match */
302 	struct net_device	*physoutdev;
303 	union {
304 		/* prerouting: detect dnat in orig/reply direction */
305 		__be32          ipv4_daddr;
306 		struct in6_addr ipv6_daddr;
307 
308 		/* after prerouting + nat detected: store original source
309 		 * mac since neigh resolution overwrites it, only used while
310 		 * skb is out in neigh layer.
311 		 */
312 		char neigh_header[8];
313 	};
314 };
315 #endif
316 
317 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
318 /* Chain in tc_skb_ext will be used to share the tc chain with
319  * ovs recirc_id. It will be set to the current chain by tc
320  * and read by ovs to recirc_id.
321  */
322 struct tc_skb_ext {
323 	union {
324 		u64 act_miss_cookie;
325 		__u32 chain;
326 	};
327 	__u16 mru;
328 	__u16 zone;
329 	u8 post_ct:1;
330 	u8 post_ct_snat:1;
331 	u8 post_ct_dnat:1;
332 	u8 act_miss:1; /* Set if act_miss_cookie is used */
333 	u8 l2_miss:1; /* Set by bridge upon FDB or MDB miss */
334 };
335 #endif
336 
337 struct sk_buff_head {
338 	/* These two members must be first to match sk_buff. */
339 	struct_group_tagged(sk_buff_list, list,
340 		struct sk_buff	*next;
341 		struct sk_buff	*prev;
342 	);
343 
344 	__u32		qlen;
345 	spinlock_t	lock;
346 };
347 
348 struct sk_buff;
349 
350 #ifndef CONFIG_MAX_SKB_FRAGS
351 # define CONFIG_MAX_SKB_FRAGS 17
352 #endif
353 
354 #define MAX_SKB_FRAGS CONFIG_MAX_SKB_FRAGS
355 
356 extern int sysctl_max_skb_frags;
357 
358 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
359  * segment using its current segmentation instead.
360  */
361 #define GSO_BY_FRAGS	0xFFFF
362 
363 typedef struct skb_frag {
364 	netmem_ref netmem;
365 	unsigned int len;
366 	unsigned int offset;
367 } skb_frag_t;
368 
369 /**
370  * skb_frag_size() - Returns the size of a skb fragment
371  * @frag: skb fragment
372  */
373 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
374 {
375 	return frag->len;
376 }
377 
378 /**
379  * skb_frag_size_set() - Sets the size of a skb fragment
380  * @frag: skb fragment
381  * @size: size of fragment
382  */
383 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
384 {
385 	frag->len = size;
386 }
387 
388 /**
389  * skb_frag_size_add() - Increments the size of a skb fragment by @delta
390  * @frag: skb fragment
391  * @delta: value to add
392  */
393 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
394 {
395 	frag->len += delta;
396 }
397 
398 /**
399  * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
400  * @frag: skb fragment
401  * @delta: value to subtract
402  */
403 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
404 {
405 	frag->len -= delta;
406 }
407 
408 /**
409  * skb_frag_must_loop - Test if %p is a high memory page
410  * @p: fragment's page
411  */
412 static inline bool skb_frag_must_loop(struct page *p)
413 {
414 #if defined(CONFIG_HIGHMEM)
415 	if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p))
416 		return true;
417 #endif
418 	return false;
419 }
420 
421 /**
422  *	skb_frag_foreach_page - loop over pages in a fragment
423  *
424  *	@f:		skb frag to operate on
425  *	@f_off:		offset from start of f->netmem
426  *	@f_len:		length from f_off to loop over
427  *	@p:		(temp var) current page
428  *	@p_off:		(temp var) offset from start of current page,
429  *	                           non-zero only on first page.
430  *	@p_len:		(temp var) length in current page,
431  *				   < PAGE_SIZE only on first and last page.
432  *	@copied:	(temp var) length so far, excluding current p_len.
433  *
434  *	A fragment can hold a compound page, in which case per-page
435  *	operations, notably kmap_atomic, must be called for each
436  *	regular page.
437  */
438 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
439 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
440 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
441 	     p_len = skb_frag_must_loop(p) ?				\
442 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
443 	     copied = 0;						\
444 	     copied < f_len;						\
445 	     copied += p_len, p++, p_off = 0,				\
446 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
447 
448 /**
449  * struct skb_shared_hwtstamps - hardware time stamps
450  * @hwtstamp:		hardware time stamp transformed into duration
451  *			since arbitrary point in time
452  * @netdev_data:	address/cookie of network device driver used as
453  *			reference to actual hardware time stamp
454  *
455  * Software time stamps generated by ktime_get_real() are stored in
456  * skb->tstamp.
457  *
458  * hwtstamps can only be compared against other hwtstamps from
459  * the same device.
460  *
461  * This structure is attached to packets as part of the
462  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
463  */
464 struct skb_shared_hwtstamps {
465 	union {
466 		ktime_t	hwtstamp;
467 		void *netdev_data;
468 	};
469 };
470 
471 /* Definitions for tx_flags in struct skb_shared_info */
472 enum {
473 	/* generate hardware time stamp */
474 	SKBTX_HW_TSTAMP = 1 << 0,
475 
476 	/* generate software time stamp when queueing packet to NIC */
477 	SKBTX_SW_TSTAMP = 1 << 1,
478 
479 	/* device driver is going to provide hardware time stamp */
480 	SKBTX_IN_PROGRESS = 1 << 2,
481 
482 	/* generate hardware time stamp based on cycles if supported */
483 	SKBTX_HW_TSTAMP_USE_CYCLES = 1 << 3,
484 
485 	/* generate wifi status information (where possible) */
486 	SKBTX_WIFI_STATUS = 1 << 4,
487 
488 	/* determine hardware time stamp based on time or cycles */
489 	SKBTX_HW_TSTAMP_NETDEV = 1 << 5,
490 
491 	/* generate software time stamp when entering packet scheduling */
492 	SKBTX_SCHED_TSTAMP = 1 << 6,
493 };
494 
495 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
496 				 SKBTX_SCHED_TSTAMP)
497 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | \
498 				 SKBTX_HW_TSTAMP_USE_CYCLES | \
499 				 SKBTX_ANY_SW_TSTAMP)
500 
501 /* Definitions for flags in struct skb_shared_info */
502 enum {
503 	/* use zcopy routines */
504 	SKBFL_ZEROCOPY_ENABLE = BIT(0),
505 
506 	/* This indicates at least one fragment might be overwritten
507 	 * (as in vmsplice(), sendfile() ...)
508 	 * If we need to compute a TX checksum, we'll need to copy
509 	 * all frags to avoid possible bad checksum
510 	 */
511 	SKBFL_SHARED_FRAG = BIT(1),
512 
513 	/* segment contains only zerocopy data and should not be
514 	 * charged to the kernel memory.
515 	 */
516 	SKBFL_PURE_ZEROCOPY = BIT(2),
517 
518 	SKBFL_DONT_ORPHAN = BIT(3),
519 
520 	/* page references are managed by the ubuf_info, so it's safe to
521 	 * use frags only up until ubuf_info is released
522 	 */
523 	SKBFL_MANAGED_FRAG_REFS = BIT(4),
524 };
525 
526 #define SKBFL_ZEROCOPY_FRAG	(SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG)
527 #define SKBFL_ALL_ZEROCOPY	(SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY | \
528 				 SKBFL_DONT_ORPHAN | SKBFL_MANAGED_FRAG_REFS)
529 
530 /*
531  * The callback notifies userspace to release buffers when skb DMA is done in
532  * lower device, the skb last reference should be 0 when calling this.
533  * The zerocopy_success argument is true if zero copy transmit occurred,
534  * false on data copy or out of memory error caused by data copy attempt.
535  * The ctx field is used to track device context.
536  * The desc field is used to track userspace buffer index.
537  */
538 struct ubuf_info {
539 	void (*callback)(struct sk_buff *, struct ubuf_info *,
540 			 bool zerocopy_success);
541 	refcount_t refcnt;
542 	u8 flags;
543 };
544 
545 struct ubuf_info_msgzc {
546 	struct ubuf_info ubuf;
547 
548 	union {
549 		struct {
550 			unsigned long desc;
551 			void *ctx;
552 		};
553 		struct {
554 			u32 id;
555 			u16 len;
556 			u16 zerocopy:1;
557 			u32 bytelen;
558 		};
559 	};
560 
561 	struct mmpin {
562 		struct user_struct *user;
563 		unsigned int num_pg;
564 	} mmp;
565 };
566 
567 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
568 #define uarg_to_msgzc(ubuf_ptr)	container_of((ubuf_ptr), struct ubuf_info_msgzc, \
569 					     ubuf)
570 
571 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
572 void mm_unaccount_pinned_pages(struct mmpin *mmp);
573 
574 /* Preserve some data across TX submission and completion.
575  *
576  * Note, this state is stored in the driver. Extending the layout
577  * might need some special care.
578  */
579 struct xsk_tx_metadata_compl {
580 	__u64 *tx_timestamp;
581 };
582 
583 /* This data is invariant across clones and lives at
584  * the end of the header data, ie. at skb->end.
585  */
586 struct skb_shared_info {
587 	__u8		flags;
588 	__u8		meta_len;
589 	__u8		nr_frags;
590 	__u8		tx_flags;
591 	unsigned short	gso_size;
592 	/* Warning: this field is not always filled in (UFO)! */
593 	unsigned short	gso_segs;
594 	struct sk_buff	*frag_list;
595 	union {
596 		struct skb_shared_hwtstamps hwtstamps;
597 		struct xsk_tx_metadata_compl xsk_meta;
598 	};
599 	unsigned int	gso_type;
600 	u32		tskey;
601 
602 	/*
603 	 * Warning : all fields before dataref are cleared in __alloc_skb()
604 	 */
605 	atomic_t	dataref;
606 	unsigned int	xdp_frags_size;
607 
608 	/* Intermediate layers must ensure that destructor_arg
609 	 * remains valid until skb destructor */
610 	void *		destructor_arg;
611 
612 	/* must be last field, see pskb_expand_head() */
613 	skb_frag_t	frags[MAX_SKB_FRAGS];
614 };
615 
616 /**
617  * DOC: dataref and headerless skbs
618  *
619  * Transport layers send out clones of payload skbs they hold for
620  * retransmissions. To allow lower layers of the stack to prepend their headers
621  * we split &skb_shared_info.dataref into two halves.
622  * The lower 16 bits count the overall number of references.
623  * The higher 16 bits indicate how many of the references are payload-only.
624  * skb_header_cloned() checks if skb is allowed to add / write the headers.
625  *
626  * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr
627  * (via __skb_header_release()). Any clone created from marked skb will get
628  * &sk_buff.hdr_len populated with the available headroom.
629  * If there's the only clone in existence it's able to modify the headroom
630  * at will. The sequence of calls inside the transport layer is::
631  *
632  *  <alloc skb>
633  *  skb_reserve()
634  *  __skb_header_release()
635  *  skb_clone()
636  *  // send the clone down the stack
637  *
638  * This is not a very generic construct and it depends on the transport layers
639  * doing the right thing. In practice there's usually only one payload-only skb.
640  * Having multiple payload-only skbs with different lengths of hdr_len is not
641  * possible. The payload-only skbs should never leave their owner.
642  */
643 #define SKB_DATAREF_SHIFT 16
644 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
645 
646 
647 enum {
648 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
649 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
650 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
651 };
652 
653 enum {
654 	SKB_GSO_TCPV4 = 1 << 0,
655 
656 	/* This indicates the skb is from an untrusted source. */
657 	SKB_GSO_DODGY = 1 << 1,
658 
659 	/* This indicates the tcp segment has CWR set. */
660 	SKB_GSO_TCP_ECN = 1 << 2,
661 
662 	SKB_GSO_TCP_FIXEDID = 1 << 3,
663 
664 	SKB_GSO_TCPV6 = 1 << 4,
665 
666 	SKB_GSO_FCOE = 1 << 5,
667 
668 	SKB_GSO_GRE = 1 << 6,
669 
670 	SKB_GSO_GRE_CSUM = 1 << 7,
671 
672 	SKB_GSO_IPXIP4 = 1 << 8,
673 
674 	SKB_GSO_IPXIP6 = 1 << 9,
675 
676 	SKB_GSO_UDP_TUNNEL = 1 << 10,
677 
678 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
679 
680 	SKB_GSO_PARTIAL = 1 << 12,
681 
682 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
683 
684 	SKB_GSO_SCTP = 1 << 14,
685 
686 	SKB_GSO_ESP = 1 << 15,
687 
688 	SKB_GSO_UDP = 1 << 16,
689 
690 	SKB_GSO_UDP_L4 = 1 << 17,
691 
692 	SKB_GSO_FRAGLIST = 1 << 18,
693 };
694 
695 #if BITS_PER_LONG > 32
696 #define NET_SKBUFF_DATA_USES_OFFSET 1
697 #endif
698 
699 #ifdef NET_SKBUFF_DATA_USES_OFFSET
700 typedef unsigned int sk_buff_data_t;
701 #else
702 typedef unsigned char *sk_buff_data_t;
703 #endif
704 
705 /**
706  * DOC: Basic sk_buff geometry
707  *
708  * struct sk_buff itself is a metadata structure and does not hold any packet
709  * data. All the data is held in associated buffers.
710  *
711  * &sk_buff.head points to the main "head" buffer. The head buffer is divided
712  * into two parts:
713  *
714  *  - data buffer, containing headers and sometimes payload;
715  *    this is the part of the skb operated on by the common helpers
716  *    such as skb_put() or skb_pull();
717  *  - shared info (struct skb_shared_info) which holds an array of pointers
718  *    to read-only data in the (page, offset, length) format.
719  *
720  * Optionally &skb_shared_info.frag_list may point to another skb.
721  *
722  * Basic diagram may look like this::
723  *
724  *                                  ---------------
725  *                                 | sk_buff       |
726  *                                  ---------------
727  *     ,---------------------------  + head
728  *    /          ,-----------------  + data
729  *   /          /      ,-----------  + tail
730  *  |          |      |            , + end
731  *  |          |      |           |
732  *  v          v      v           v
733  *   -----------------------------------------------
734  *  | headroom | data |  tailroom | skb_shared_info |
735  *   -----------------------------------------------
736  *                                 + [page frag]
737  *                                 + [page frag]
738  *                                 + [page frag]
739  *                                 + [page frag]       ---------
740  *                                 + frag_list    --> | sk_buff |
741  *                                                     ---------
742  *
743  */
744 
745 /**
746  *	struct sk_buff - socket buffer
747  *	@next: Next buffer in list
748  *	@prev: Previous buffer in list
749  *	@tstamp: Time we arrived/left
750  *	@skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
751  *		for retransmit timer
752  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
753  *	@list: queue head
754  *	@ll_node: anchor in an llist (eg socket defer_list)
755  *	@sk: Socket we are owned by
756  *	@ip_defrag_offset: (aka @sk) alternate use of @sk, used in
757  *		fragmentation management
758  *	@dev: Device we arrived on/are leaving by
759  *	@dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
760  *	@cb: Control buffer. Free for use by every layer. Put private vars here
761  *	@_skb_refdst: destination entry (with norefcount bit)
762  *	@len: Length of actual data
763  *	@data_len: Data length
764  *	@mac_len: Length of link layer header
765  *	@hdr_len: writable header length of cloned skb
766  *	@csum: Checksum (must include start/offset pair)
767  *	@csum_start: Offset from skb->head where checksumming should start
768  *	@csum_offset: Offset from csum_start where checksum should be stored
769  *	@priority: Packet queueing priority
770  *	@ignore_df: allow local fragmentation
771  *	@cloned: Head may be cloned (check refcnt to be sure)
772  *	@ip_summed: Driver fed us an IP checksum
773  *	@nohdr: Payload reference only, must not modify header
774  *	@pkt_type: Packet class
775  *	@fclone: skbuff clone status
776  *	@ipvs_property: skbuff is owned by ipvs
777  *	@inner_protocol_type: whether the inner protocol is
778  *		ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
779  *	@remcsum_offload: remote checksum offload is enabled
780  *	@offload_fwd_mark: Packet was L2-forwarded in hardware
781  *	@offload_l3_fwd_mark: Packet was L3-forwarded in hardware
782  *	@tc_skip_classify: do not classify packet. set by IFB device
783  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
784  *	@redirected: packet was redirected by packet classifier
785  *	@from_ingress: packet was redirected from the ingress path
786  *	@nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h
787  *	@peeked: this packet has been seen already, so stats have been
788  *		done for it, don't do them again
789  *	@nf_trace: netfilter packet trace flag
790  *	@protocol: Packet protocol from driver
791  *	@destructor: Destruct function
792  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
793  *	@_sk_redir: socket redirection information for skmsg
794  *	@_nfct: Associated connection, if any (with nfctinfo bits)
795  *	@skb_iif: ifindex of device we arrived on
796  *	@tc_index: Traffic control index
797  *	@hash: the packet hash
798  *	@queue_mapping: Queue mapping for multiqueue devices
799  *	@head_frag: skb was allocated from page fragments,
800  *		not allocated by kmalloc() or vmalloc().
801  *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
802  *	@pp_recycle: mark the packet for recycling instead of freeing (implies
803  *		page_pool support on driver)
804  *	@active_extensions: active extensions (skb_ext_id types)
805  *	@ndisc_nodetype: router type (from link layer)
806  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
807  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
808  *		ports.
809  *	@sw_hash: indicates hash was computed in software stack
810  *	@wifi_acked_valid: wifi_acked was set
811  *	@wifi_acked: whether frame was acked on wifi or not
812  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
813  *	@encapsulation: indicates the inner headers in the skbuff are valid
814  *	@encap_hdr_csum: software checksum is needed
815  *	@csum_valid: checksum is already valid
816  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
817  *	@csum_complete_sw: checksum was completed by software
818  *	@csum_level: indicates the number of consecutive checksums found in
819  *		the packet minus one that have been verified as
820  *		CHECKSUM_UNNECESSARY (max 3)
821  *	@dst_pending_confirm: need to confirm neighbour
822  *	@decrypted: Decrypted SKB
823  *	@slow_gro: state present at GRO time, slower prepare step required
824  *	@mono_delivery_time: When set, skb->tstamp has the
825  *		delivery_time in mono clock base (i.e. EDT).  Otherwise, the
826  *		skb->tstamp has the (rcv) timestamp at ingress and
827  *		delivery_time at egress.
828  *	@napi_id: id of the NAPI struct this skb came from
829  *	@sender_cpu: (aka @napi_id) source CPU in XPS
830  *	@alloc_cpu: CPU which did the skb allocation.
831  *	@secmark: security marking
832  *	@mark: Generic packet mark
833  *	@reserved_tailroom: (aka @mark) number of bytes of free space available
834  *		at the tail of an sk_buff
835  *	@vlan_all: vlan fields (proto & tci)
836  *	@vlan_proto: vlan encapsulation protocol
837  *	@vlan_tci: vlan tag control information
838  *	@inner_protocol: Protocol (encapsulation)
839  *	@inner_ipproto: (aka @inner_protocol) stores ipproto when
840  *		skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
841  *	@inner_transport_header: Inner transport layer header (encapsulation)
842  *	@inner_network_header: Network layer header (encapsulation)
843  *	@inner_mac_header: Link layer header (encapsulation)
844  *	@transport_header: Transport layer header
845  *	@network_header: Network layer header
846  *	@mac_header: Link layer header
847  *	@kcov_handle: KCOV remote handle for remote coverage collection
848  *	@tail: Tail pointer
849  *	@end: End pointer
850  *	@head: Head of buffer
851  *	@data: Data head pointer
852  *	@truesize: Buffer size
853  *	@users: User count - see {datagram,tcp}.c
854  *	@extensions: allocated extensions, valid if active_extensions is nonzero
855  */
856 
857 struct sk_buff {
858 	union {
859 		struct {
860 			/* These two members must be first to match sk_buff_head. */
861 			struct sk_buff		*next;
862 			struct sk_buff		*prev;
863 
864 			union {
865 				struct net_device	*dev;
866 				/* Some protocols might use this space to store information,
867 				 * while device pointer would be NULL.
868 				 * UDP receive path is one user.
869 				 */
870 				unsigned long		dev_scratch;
871 			};
872 		};
873 		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
874 		struct list_head	list;
875 		struct llist_node	ll_node;
876 	};
877 
878 	union {
879 		struct sock		*sk;
880 		int			ip_defrag_offset;
881 	};
882 
883 	union {
884 		ktime_t		tstamp;
885 		u64		skb_mstamp_ns; /* earliest departure time */
886 	};
887 	/*
888 	 * This is the control buffer. It is free to use for every
889 	 * layer. Please put your private variables there. If you
890 	 * want to keep them across layers you have to do a skb_clone()
891 	 * first. This is owned by whoever has the skb queued ATM.
892 	 */
893 	char			cb[48] __aligned(8);
894 
895 	union {
896 		struct {
897 			unsigned long	_skb_refdst;
898 			void		(*destructor)(struct sk_buff *skb);
899 		};
900 		struct list_head	tcp_tsorted_anchor;
901 #ifdef CONFIG_NET_SOCK_MSG
902 		unsigned long		_sk_redir;
903 #endif
904 	};
905 
906 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
907 	unsigned long		 _nfct;
908 #endif
909 	unsigned int		len,
910 				data_len;
911 	__u16			mac_len,
912 				hdr_len;
913 
914 	/* Following fields are _not_ copied in __copy_skb_header()
915 	 * Note that queue_mapping is here mostly to fill a hole.
916 	 */
917 	__u16			queue_mapping;
918 
919 /* if you move cloned around you also must adapt those constants */
920 #ifdef __BIG_ENDIAN_BITFIELD
921 #define CLONED_MASK	(1 << 7)
922 #else
923 #define CLONED_MASK	1
924 #endif
925 #define CLONED_OFFSET		offsetof(struct sk_buff, __cloned_offset)
926 
927 	/* private: */
928 	__u8			__cloned_offset[0];
929 	/* public: */
930 	__u8			cloned:1,
931 				nohdr:1,
932 				fclone:2,
933 				peeked:1,
934 				head_frag:1,
935 				pfmemalloc:1,
936 				pp_recycle:1; /* page_pool recycle indicator */
937 #ifdef CONFIG_SKB_EXTENSIONS
938 	__u8			active_extensions;
939 #endif
940 
941 	/* Fields enclosed in headers group are copied
942 	 * using a single memcpy() in __copy_skb_header()
943 	 */
944 	struct_group(headers,
945 
946 	/* private: */
947 	__u8			__pkt_type_offset[0];
948 	/* public: */
949 	__u8			pkt_type:3; /* see PKT_TYPE_MAX */
950 	__u8			ignore_df:1;
951 	__u8			dst_pending_confirm:1;
952 	__u8			ip_summed:2;
953 	__u8			ooo_okay:1;
954 
955 	/* private: */
956 	__u8			__mono_tc_offset[0];
957 	/* public: */
958 	__u8			mono_delivery_time:1;	/* See SKB_MONO_DELIVERY_TIME_MASK */
959 #ifdef CONFIG_NET_XGRESS
960 	__u8			tc_at_ingress:1;	/* See TC_AT_INGRESS_MASK */
961 	__u8			tc_skip_classify:1;
962 #endif
963 	__u8			remcsum_offload:1;
964 	__u8			csum_complete_sw:1;
965 	__u8			csum_level:2;
966 	__u8			inner_protocol_type:1;
967 
968 	__u8			l4_hash:1;
969 	__u8			sw_hash:1;
970 #ifdef CONFIG_WIRELESS
971 	__u8			wifi_acked_valid:1;
972 	__u8			wifi_acked:1;
973 #endif
974 	__u8			no_fcs:1;
975 	/* Indicates the inner headers are valid in the skbuff. */
976 	__u8			encapsulation:1;
977 	__u8			encap_hdr_csum:1;
978 	__u8			csum_valid:1;
979 #ifdef CONFIG_IPV6_NDISC_NODETYPE
980 	__u8			ndisc_nodetype:2;
981 #endif
982 
983 #if IS_ENABLED(CONFIG_IP_VS)
984 	__u8			ipvs_property:1;
985 #endif
986 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
987 	__u8			nf_trace:1;
988 #endif
989 #ifdef CONFIG_NET_SWITCHDEV
990 	__u8			offload_fwd_mark:1;
991 	__u8			offload_l3_fwd_mark:1;
992 #endif
993 	__u8			redirected:1;
994 #ifdef CONFIG_NET_REDIRECT
995 	__u8			from_ingress:1;
996 #endif
997 #ifdef CONFIG_NETFILTER_SKIP_EGRESS
998 	__u8			nf_skip_egress:1;
999 #endif
1000 #ifdef CONFIG_TLS_DEVICE
1001 	__u8			decrypted:1;
1002 #endif
1003 	__u8			slow_gro:1;
1004 #if IS_ENABLED(CONFIG_IP_SCTP)
1005 	__u8			csum_not_inet:1;
1006 #endif
1007 
1008 #if defined(CONFIG_NET_SCHED) || defined(CONFIG_NET_XGRESS)
1009 	__u16			tc_index;	/* traffic control index */
1010 #endif
1011 
1012 	u16			alloc_cpu;
1013 
1014 	union {
1015 		__wsum		csum;
1016 		struct {
1017 			__u16	csum_start;
1018 			__u16	csum_offset;
1019 		};
1020 	};
1021 	__u32			priority;
1022 	int			skb_iif;
1023 	__u32			hash;
1024 	union {
1025 		u32		vlan_all;
1026 		struct {
1027 			__be16	vlan_proto;
1028 			__u16	vlan_tci;
1029 		};
1030 	};
1031 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
1032 	union {
1033 		unsigned int	napi_id;
1034 		unsigned int	sender_cpu;
1035 	};
1036 #endif
1037 #ifdef CONFIG_NETWORK_SECMARK
1038 	__u32		secmark;
1039 #endif
1040 
1041 	union {
1042 		__u32		mark;
1043 		__u32		reserved_tailroom;
1044 	};
1045 
1046 	union {
1047 		__be16		inner_protocol;
1048 		__u8		inner_ipproto;
1049 	};
1050 
1051 	__u16			inner_transport_header;
1052 	__u16			inner_network_header;
1053 	__u16			inner_mac_header;
1054 
1055 	__be16			protocol;
1056 	__u16			transport_header;
1057 	__u16			network_header;
1058 	__u16			mac_header;
1059 
1060 #ifdef CONFIG_KCOV
1061 	u64			kcov_handle;
1062 #endif
1063 
1064 	); /* end headers group */
1065 
1066 	/* These elements must be at the end, see alloc_skb() for details.  */
1067 	sk_buff_data_t		tail;
1068 	sk_buff_data_t		end;
1069 	unsigned char		*head,
1070 				*data;
1071 	unsigned int		truesize;
1072 	refcount_t		users;
1073 
1074 #ifdef CONFIG_SKB_EXTENSIONS
1075 	/* only usable after checking ->active_extensions != 0 */
1076 	struct skb_ext		*extensions;
1077 #endif
1078 };
1079 
1080 /* if you move pkt_type around you also must adapt those constants */
1081 #ifdef __BIG_ENDIAN_BITFIELD
1082 #define PKT_TYPE_MAX	(7 << 5)
1083 #else
1084 #define PKT_TYPE_MAX	7
1085 #endif
1086 #define PKT_TYPE_OFFSET		offsetof(struct sk_buff, __pkt_type_offset)
1087 
1088 /* if you move tc_at_ingress or mono_delivery_time
1089  * around, you also must adapt these constants.
1090  */
1091 #ifdef __BIG_ENDIAN_BITFIELD
1092 #define SKB_MONO_DELIVERY_TIME_MASK	(1 << 7)
1093 #define TC_AT_INGRESS_MASK		(1 << 6)
1094 #else
1095 #define SKB_MONO_DELIVERY_TIME_MASK	(1 << 0)
1096 #define TC_AT_INGRESS_MASK		(1 << 1)
1097 #endif
1098 #define SKB_BF_MONO_TC_OFFSET		offsetof(struct sk_buff, __mono_tc_offset)
1099 
1100 #ifdef __KERNEL__
1101 /*
1102  *	Handling routines are only of interest to the kernel
1103  */
1104 
1105 #define SKB_ALLOC_FCLONE	0x01
1106 #define SKB_ALLOC_RX		0x02
1107 #define SKB_ALLOC_NAPI		0x04
1108 
1109 /**
1110  * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
1111  * @skb: buffer
1112  */
1113 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
1114 {
1115 	return unlikely(skb->pfmemalloc);
1116 }
1117 
1118 /*
1119  * skb might have a dst pointer attached, refcounted or not.
1120  * _skb_refdst low order bit is set if refcount was _not_ taken
1121  */
1122 #define SKB_DST_NOREF	1UL
1123 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
1124 
1125 /**
1126  * skb_dst - returns skb dst_entry
1127  * @skb: buffer
1128  *
1129  * Returns skb dst_entry, regardless of reference taken or not.
1130  */
1131 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
1132 {
1133 	/* If refdst was not refcounted, check we still are in a
1134 	 * rcu_read_lock section
1135 	 */
1136 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
1137 		!rcu_read_lock_held() &&
1138 		!rcu_read_lock_bh_held());
1139 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
1140 }
1141 
1142 /**
1143  * skb_dst_set - sets skb dst
1144  * @skb: buffer
1145  * @dst: dst entry
1146  *
1147  * Sets skb dst, assuming a reference was taken on dst and should
1148  * be released by skb_dst_drop()
1149  */
1150 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
1151 {
1152 	skb->slow_gro |= !!dst;
1153 	skb->_skb_refdst = (unsigned long)dst;
1154 }
1155 
1156 /**
1157  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
1158  * @skb: buffer
1159  * @dst: dst entry
1160  *
1161  * Sets skb dst, assuming a reference was not taken on dst.
1162  * If dst entry is cached, we do not take reference and dst_release
1163  * will be avoided by refdst_drop. If dst entry is not cached, we take
1164  * reference, so that last dst_release can destroy the dst immediately.
1165  */
1166 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
1167 {
1168 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
1169 	skb->slow_gro |= !!dst;
1170 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
1171 }
1172 
1173 /**
1174  * skb_dst_is_noref - Test if skb dst isn't refcounted
1175  * @skb: buffer
1176  */
1177 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1178 {
1179 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1180 }
1181 
1182 /**
1183  * skb_rtable - Returns the skb &rtable
1184  * @skb: buffer
1185  */
1186 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
1187 {
1188 	return (struct rtable *)skb_dst(skb);
1189 }
1190 
1191 /* For mangling skb->pkt_type from user space side from applications
1192  * such as nft, tc, etc, we only allow a conservative subset of
1193  * possible pkt_types to be set.
1194 */
1195 static inline bool skb_pkt_type_ok(u32 ptype)
1196 {
1197 	return ptype <= PACKET_OTHERHOST;
1198 }
1199 
1200 /**
1201  * skb_napi_id - Returns the skb's NAPI id
1202  * @skb: buffer
1203  */
1204 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1205 {
1206 #ifdef CONFIG_NET_RX_BUSY_POLL
1207 	return skb->napi_id;
1208 #else
1209 	return 0;
1210 #endif
1211 }
1212 
1213 static inline bool skb_wifi_acked_valid(const struct sk_buff *skb)
1214 {
1215 #ifdef CONFIG_WIRELESS
1216 	return skb->wifi_acked_valid;
1217 #else
1218 	return 0;
1219 #endif
1220 }
1221 
1222 /**
1223  * skb_unref - decrement the skb's reference count
1224  * @skb: buffer
1225  *
1226  * Returns true if we can free the skb.
1227  */
1228 static inline bool skb_unref(struct sk_buff *skb)
1229 {
1230 	if (unlikely(!skb))
1231 		return false;
1232 	if (likely(refcount_read(&skb->users) == 1))
1233 		smp_rmb();
1234 	else if (likely(!refcount_dec_and_test(&skb->users)))
1235 		return false;
1236 
1237 	return true;
1238 }
1239 
1240 static inline bool skb_data_unref(const struct sk_buff *skb,
1241 				  struct skb_shared_info *shinfo)
1242 {
1243 	int bias;
1244 
1245 	if (!skb->cloned)
1246 		return true;
1247 
1248 	bias = skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1;
1249 
1250 	if (atomic_read(&shinfo->dataref) == bias)
1251 		smp_rmb();
1252 	else if (atomic_sub_return(bias, &shinfo->dataref))
1253 		return false;
1254 
1255 	return true;
1256 }
1257 
1258 void __fix_address
1259 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason);
1260 
1261 /**
1262  *	kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason
1263  *	@skb: buffer to free
1264  */
1265 static inline void kfree_skb(struct sk_buff *skb)
1266 {
1267 	kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1268 }
1269 
1270 void skb_release_head_state(struct sk_buff *skb);
1271 void kfree_skb_list_reason(struct sk_buff *segs,
1272 			   enum skb_drop_reason reason);
1273 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1274 void skb_tx_error(struct sk_buff *skb);
1275 
1276 static inline void kfree_skb_list(struct sk_buff *segs)
1277 {
1278 	kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED);
1279 }
1280 
1281 #ifdef CONFIG_TRACEPOINTS
1282 void consume_skb(struct sk_buff *skb);
1283 #else
1284 static inline void consume_skb(struct sk_buff *skb)
1285 {
1286 	return kfree_skb(skb);
1287 }
1288 #endif
1289 
1290 void __consume_stateless_skb(struct sk_buff *skb);
1291 void  __kfree_skb(struct sk_buff *skb);
1292 
1293 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1294 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1295 		      bool *fragstolen, int *delta_truesize);
1296 
1297 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1298 			    int node);
1299 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1300 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1301 struct sk_buff *build_skb_around(struct sk_buff *skb,
1302 				 void *data, unsigned int frag_size);
1303 void skb_attempt_defer_free(struct sk_buff *skb);
1304 
1305 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size);
1306 struct sk_buff *slab_build_skb(void *data);
1307 
1308 /**
1309  * alloc_skb - allocate a network buffer
1310  * @size: size to allocate
1311  * @priority: allocation mask
1312  *
1313  * This function is a convenient wrapper around __alloc_skb().
1314  */
1315 static inline struct sk_buff *alloc_skb(unsigned int size,
1316 					gfp_t priority)
1317 {
1318 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1319 }
1320 
1321 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1322 				     unsigned long data_len,
1323 				     int max_page_order,
1324 				     int *errcode,
1325 				     gfp_t gfp_mask);
1326 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1327 
1328 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1329 struct sk_buff_fclones {
1330 	struct sk_buff	skb1;
1331 
1332 	struct sk_buff	skb2;
1333 
1334 	refcount_t	fclone_ref;
1335 };
1336 
1337 /**
1338  *	skb_fclone_busy - check if fclone is busy
1339  *	@sk: socket
1340  *	@skb: buffer
1341  *
1342  * Returns true if skb is a fast clone, and its clone is not freed.
1343  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1344  * so we also check that didn't happen.
1345  */
1346 static inline bool skb_fclone_busy(const struct sock *sk,
1347 				   const struct sk_buff *skb)
1348 {
1349 	const struct sk_buff_fclones *fclones;
1350 
1351 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1352 
1353 	return skb->fclone == SKB_FCLONE_ORIG &&
1354 	       refcount_read(&fclones->fclone_ref) > 1 &&
1355 	       READ_ONCE(fclones->skb2.sk) == sk;
1356 }
1357 
1358 /**
1359  * alloc_skb_fclone - allocate a network buffer from fclone cache
1360  * @size: size to allocate
1361  * @priority: allocation mask
1362  *
1363  * This function is a convenient wrapper around __alloc_skb().
1364  */
1365 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1366 					       gfp_t priority)
1367 {
1368 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1369 }
1370 
1371 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1372 void skb_headers_offset_update(struct sk_buff *skb, int off);
1373 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1374 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1375 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1376 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1377 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1378 				   gfp_t gfp_mask, bool fclone);
1379 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1380 					  gfp_t gfp_mask)
1381 {
1382 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1383 }
1384 
1385 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1386 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1387 				     unsigned int headroom);
1388 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom);
1389 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1390 				int newtailroom, gfp_t priority);
1391 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1392 				     int offset, int len);
1393 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1394 			      int offset, int len);
1395 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1396 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1397 
1398 /**
1399  *	skb_pad			-	zero pad the tail of an skb
1400  *	@skb: buffer to pad
1401  *	@pad: space to pad
1402  *
1403  *	Ensure that a buffer is followed by a padding area that is zero
1404  *	filled. Used by network drivers which may DMA or transfer data
1405  *	beyond the buffer end onto the wire.
1406  *
1407  *	May return error in out of memory cases. The skb is freed on error.
1408  */
1409 static inline int skb_pad(struct sk_buff *skb, int pad)
1410 {
1411 	return __skb_pad(skb, pad, true);
1412 }
1413 #define dev_kfree_skb(a)	consume_skb(a)
1414 
1415 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1416 			 int offset, size_t size, size_t max_frags);
1417 
1418 struct skb_seq_state {
1419 	__u32		lower_offset;
1420 	__u32		upper_offset;
1421 	__u32		frag_idx;
1422 	__u32		stepped_offset;
1423 	struct sk_buff	*root_skb;
1424 	struct sk_buff	*cur_skb;
1425 	__u8		*frag_data;
1426 	__u32		frag_off;
1427 };
1428 
1429 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1430 			  unsigned int to, struct skb_seq_state *st);
1431 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1432 			  struct skb_seq_state *st);
1433 void skb_abort_seq_read(struct skb_seq_state *st);
1434 
1435 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1436 			   unsigned int to, struct ts_config *config);
1437 
1438 /*
1439  * Packet hash types specify the type of hash in skb_set_hash.
1440  *
1441  * Hash types refer to the protocol layer addresses which are used to
1442  * construct a packet's hash. The hashes are used to differentiate or identify
1443  * flows of the protocol layer for the hash type. Hash types are either
1444  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1445  *
1446  * Properties of hashes:
1447  *
1448  * 1) Two packets in different flows have different hash values
1449  * 2) Two packets in the same flow should have the same hash value
1450  *
1451  * A hash at a higher layer is considered to be more specific. A driver should
1452  * set the most specific hash possible.
1453  *
1454  * A driver cannot indicate a more specific hash than the layer at which a hash
1455  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1456  *
1457  * A driver may indicate a hash level which is less specific than the
1458  * actual layer the hash was computed on. For instance, a hash computed
1459  * at L4 may be considered an L3 hash. This should only be done if the
1460  * driver can't unambiguously determine that the HW computed the hash at
1461  * the higher layer. Note that the "should" in the second property above
1462  * permits this.
1463  */
1464 enum pkt_hash_types {
1465 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1466 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1467 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1468 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1469 };
1470 
1471 static inline void skb_clear_hash(struct sk_buff *skb)
1472 {
1473 	skb->hash = 0;
1474 	skb->sw_hash = 0;
1475 	skb->l4_hash = 0;
1476 }
1477 
1478 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1479 {
1480 	if (!skb->l4_hash)
1481 		skb_clear_hash(skb);
1482 }
1483 
1484 static inline void
1485 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1486 {
1487 	skb->l4_hash = is_l4;
1488 	skb->sw_hash = is_sw;
1489 	skb->hash = hash;
1490 }
1491 
1492 static inline void
1493 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1494 {
1495 	/* Used by drivers to set hash from HW */
1496 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1497 }
1498 
1499 static inline void
1500 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1501 {
1502 	__skb_set_hash(skb, hash, true, is_l4);
1503 }
1504 
1505 void __skb_get_hash(struct sk_buff *skb);
1506 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1507 u32 skb_get_poff(const struct sk_buff *skb);
1508 u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
1509 		   const struct flow_keys_basic *keys, int hlen);
1510 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1511 			    const void *data, int hlen_proto);
1512 
1513 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1514 					int thoff, u8 ip_proto)
1515 {
1516 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1517 }
1518 
1519 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1520 			     const struct flow_dissector_key *key,
1521 			     unsigned int key_count);
1522 
1523 struct bpf_flow_dissector;
1524 u32 bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1525 		     __be16 proto, int nhoff, int hlen, unsigned int flags);
1526 
1527 bool __skb_flow_dissect(const struct net *net,
1528 			const struct sk_buff *skb,
1529 			struct flow_dissector *flow_dissector,
1530 			void *target_container, const void *data,
1531 			__be16 proto, int nhoff, int hlen, unsigned int flags);
1532 
1533 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1534 				    struct flow_dissector *flow_dissector,
1535 				    void *target_container, unsigned int flags)
1536 {
1537 	return __skb_flow_dissect(NULL, skb, flow_dissector,
1538 				  target_container, NULL, 0, 0, 0, flags);
1539 }
1540 
1541 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1542 					      struct flow_keys *flow,
1543 					      unsigned int flags)
1544 {
1545 	memset(flow, 0, sizeof(*flow));
1546 	return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1547 				  flow, NULL, 0, 0, 0, flags);
1548 }
1549 
1550 static inline bool
1551 skb_flow_dissect_flow_keys_basic(const struct net *net,
1552 				 const struct sk_buff *skb,
1553 				 struct flow_keys_basic *flow,
1554 				 const void *data, __be16 proto,
1555 				 int nhoff, int hlen, unsigned int flags)
1556 {
1557 	memset(flow, 0, sizeof(*flow));
1558 	return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1559 				  data, proto, nhoff, hlen, flags);
1560 }
1561 
1562 void skb_flow_dissect_meta(const struct sk_buff *skb,
1563 			   struct flow_dissector *flow_dissector,
1564 			   void *target_container);
1565 
1566 /* Gets a skb connection tracking info, ctinfo map should be a
1567  * map of mapsize to translate enum ip_conntrack_info states
1568  * to user states.
1569  */
1570 void
1571 skb_flow_dissect_ct(const struct sk_buff *skb,
1572 		    struct flow_dissector *flow_dissector,
1573 		    void *target_container,
1574 		    u16 *ctinfo_map, size_t mapsize,
1575 		    bool post_ct, u16 zone);
1576 void
1577 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1578 			     struct flow_dissector *flow_dissector,
1579 			     void *target_container);
1580 
1581 void skb_flow_dissect_hash(const struct sk_buff *skb,
1582 			   struct flow_dissector *flow_dissector,
1583 			   void *target_container);
1584 
1585 static inline __u32 skb_get_hash(struct sk_buff *skb)
1586 {
1587 	if (!skb->l4_hash && !skb->sw_hash)
1588 		__skb_get_hash(skb);
1589 
1590 	return skb->hash;
1591 }
1592 
1593 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1594 {
1595 	if (!skb->l4_hash && !skb->sw_hash) {
1596 		struct flow_keys keys;
1597 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1598 
1599 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1600 	}
1601 
1602 	return skb->hash;
1603 }
1604 
1605 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1606 			   const siphash_key_t *perturb);
1607 
1608 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1609 {
1610 	return skb->hash;
1611 }
1612 
1613 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1614 {
1615 	to->hash = from->hash;
1616 	to->sw_hash = from->sw_hash;
1617 	to->l4_hash = from->l4_hash;
1618 };
1619 
1620 static inline int skb_cmp_decrypted(const struct sk_buff *skb1,
1621 				    const struct sk_buff *skb2)
1622 {
1623 #ifdef CONFIG_TLS_DEVICE
1624 	return skb2->decrypted - skb1->decrypted;
1625 #else
1626 	return 0;
1627 #endif
1628 }
1629 
1630 static inline void skb_copy_decrypted(struct sk_buff *to,
1631 				      const struct sk_buff *from)
1632 {
1633 #ifdef CONFIG_TLS_DEVICE
1634 	to->decrypted = from->decrypted;
1635 #endif
1636 }
1637 
1638 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1639 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1640 {
1641 	return skb->head + skb->end;
1642 }
1643 
1644 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1645 {
1646 	return skb->end;
1647 }
1648 
1649 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1650 {
1651 	skb->end = offset;
1652 }
1653 #else
1654 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1655 {
1656 	return skb->end;
1657 }
1658 
1659 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1660 {
1661 	return skb->end - skb->head;
1662 }
1663 
1664 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1665 {
1666 	skb->end = skb->head + offset;
1667 }
1668 #endif
1669 
1670 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1671 				       struct ubuf_info *uarg);
1672 
1673 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
1674 
1675 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1676 			   bool success);
1677 
1678 int __zerocopy_sg_from_iter(struct msghdr *msg, struct sock *sk,
1679 			    struct sk_buff *skb, struct iov_iter *from,
1680 			    size_t length);
1681 
1682 static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb,
1683 					  struct msghdr *msg, int len)
1684 {
1685 	return __zerocopy_sg_from_iter(msg, skb->sk, skb, &msg->msg_iter, len);
1686 }
1687 
1688 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1689 			     struct msghdr *msg, int len,
1690 			     struct ubuf_info *uarg);
1691 
1692 /* Internal */
1693 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1694 
1695 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1696 {
1697 	return &skb_shinfo(skb)->hwtstamps;
1698 }
1699 
1700 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1701 {
1702 	bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE;
1703 
1704 	return is_zcopy ? skb_uarg(skb) : NULL;
1705 }
1706 
1707 static inline bool skb_zcopy_pure(const struct sk_buff *skb)
1708 {
1709 	return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY;
1710 }
1711 
1712 static inline bool skb_zcopy_managed(const struct sk_buff *skb)
1713 {
1714 	return skb_shinfo(skb)->flags & SKBFL_MANAGED_FRAG_REFS;
1715 }
1716 
1717 static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1,
1718 				       const struct sk_buff *skb2)
1719 {
1720 	return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2);
1721 }
1722 
1723 static inline void net_zcopy_get(struct ubuf_info *uarg)
1724 {
1725 	refcount_inc(&uarg->refcnt);
1726 }
1727 
1728 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg)
1729 {
1730 	skb_shinfo(skb)->destructor_arg = uarg;
1731 	skb_shinfo(skb)->flags |= uarg->flags;
1732 }
1733 
1734 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1735 				 bool *have_ref)
1736 {
1737 	if (skb && uarg && !skb_zcopy(skb)) {
1738 		if (unlikely(have_ref && *have_ref))
1739 			*have_ref = false;
1740 		else
1741 			net_zcopy_get(uarg);
1742 		skb_zcopy_init(skb, uarg);
1743 	}
1744 }
1745 
1746 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1747 {
1748 	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1749 	skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG;
1750 }
1751 
1752 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1753 {
1754 	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1755 }
1756 
1757 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1758 {
1759 	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1760 }
1761 
1762 static inline void net_zcopy_put(struct ubuf_info *uarg)
1763 {
1764 	if (uarg)
1765 		uarg->callback(NULL, uarg, true);
1766 }
1767 
1768 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1769 {
1770 	if (uarg) {
1771 		if (uarg->callback == msg_zerocopy_callback)
1772 			msg_zerocopy_put_abort(uarg, have_uref);
1773 		else if (have_uref)
1774 			net_zcopy_put(uarg);
1775 	}
1776 }
1777 
1778 /* Release a reference on a zerocopy structure */
1779 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success)
1780 {
1781 	struct ubuf_info *uarg = skb_zcopy(skb);
1782 
1783 	if (uarg) {
1784 		if (!skb_zcopy_is_nouarg(skb))
1785 			uarg->callback(skb, uarg, zerocopy_success);
1786 
1787 		skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY;
1788 	}
1789 }
1790 
1791 void __skb_zcopy_downgrade_managed(struct sk_buff *skb);
1792 
1793 static inline void skb_zcopy_downgrade_managed(struct sk_buff *skb)
1794 {
1795 	if (unlikely(skb_zcopy_managed(skb)))
1796 		__skb_zcopy_downgrade_managed(skb);
1797 }
1798 
1799 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1800 {
1801 	skb->next = NULL;
1802 }
1803 
1804 static inline void skb_poison_list(struct sk_buff *skb)
1805 {
1806 #ifdef CONFIG_DEBUG_NET
1807 	skb->next = SKB_LIST_POISON_NEXT;
1808 #endif
1809 }
1810 
1811 /* Iterate through singly-linked GSO fragments of an skb. */
1812 #define skb_list_walk_safe(first, skb, next_skb)                               \
1813 	for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb);  \
1814 	     (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1815 
1816 static inline void skb_list_del_init(struct sk_buff *skb)
1817 {
1818 	__list_del_entry(&skb->list);
1819 	skb_mark_not_on_list(skb);
1820 }
1821 
1822 /**
1823  *	skb_queue_empty - check if a queue is empty
1824  *	@list: queue head
1825  *
1826  *	Returns true if the queue is empty, false otherwise.
1827  */
1828 static inline int skb_queue_empty(const struct sk_buff_head *list)
1829 {
1830 	return list->next == (const struct sk_buff *) list;
1831 }
1832 
1833 /**
1834  *	skb_queue_empty_lockless - check if a queue is empty
1835  *	@list: queue head
1836  *
1837  *	Returns true if the queue is empty, false otherwise.
1838  *	This variant can be used in lockless contexts.
1839  */
1840 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1841 {
1842 	return READ_ONCE(list->next) == (const struct sk_buff *) list;
1843 }
1844 
1845 
1846 /**
1847  *	skb_queue_is_last - check if skb is the last entry in the queue
1848  *	@list: queue head
1849  *	@skb: buffer
1850  *
1851  *	Returns true if @skb is the last buffer on the list.
1852  */
1853 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1854 				     const struct sk_buff *skb)
1855 {
1856 	return skb->next == (const struct sk_buff *) list;
1857 }
1858 
1859 /**
1860  *	skb_queue_is_first - check if skb is the first entry in the queue
1861  *	@list: queue head
1862  *	@skb: buffer
1863  *
1864  *	Returns true if @skb is the first buffer on the list.
1865  */
1866 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1867 				      const struct sk_buff *skb)
1868 {
1869 	return skb->prev == (const struct sk_buff *) list;
1870 }
1871 
1872 /**
1873  *	skb_queue_next - return the next packet in the queue
1874  *	@list: queue head
1875  *	@skb: current buffer
1876  *
1877  *	Return the next packet in @list after @skb.  It is only valid to
1878  *	call this if skb_queue_is_last() evaluates to false.
1879  */
1880 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1881 					     const struct sk_buff *skb)
1882 {
1883 	/* This BUG_ON may seem severe, but if we just return then we
1884 	 * are going to dereference garbage.
1885 	 */
1886 	BUG_ON(skb_queue_is_last(list, skb));
1887 	return skb->next;
1888 }
1889 
1890 /**
1891  *	skb_queue_prev - return the prev packet in the queue
1892  *	@list: queue head
1893  *	@skb: current buffer
1894  *
1895  *	Return the prev packet in @list before @skb.  It is only valid to
1896  *	call this if skb_queue_is_first() evaluates to false.
1897  */
1898 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1899 					     const struct sk_buff *skb)
1900 {
1901 	/* This BUG_ON may seem severe, but if we just return then we
1902 	 * are going to dereference garbage.
1903 	 */
1904 	BUG_ON(skb_queue_is_first(list, skb));
1905 	return skb->prev;
1906 }
1907 
1908 /**
1909  *	skb_get - reference buffer
1910  *	@skb: buffer to reference
1911  *
1912  *	Makes another reference to a socket buffer and returns a pointer
1913  *	to the buffer.
1914  */
1915 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1916 {
1917 	refcount_inc(&skb->users);
1918 	return skb;
1919 }
1920 
1921 /*
1922  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1923  */
1924 
1925 /**
1926  *	skb_cloned - is the buffer a clone
1927  *	@skb: buffer to check
1928  *
1929  *	Returns true if the buffer was generated with skb_clone() and is
1930  *	one of multiple shared copies of the buffer. Cloned buffers are
1931  *	shared data so must not be written to under normal circumstances.
1932  */
1933 static inline int skb_cloned(const struct sk_buff *skb)
1934 {
1935 	return skb->cloned &&
1936 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1937 }
1938 
1939 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1940 {
1941 	might_sleep_if(gfpflags_allow_blocking(pri));
1942 
1943 	if (skb_cloned(skb))
1944 		return pskb_expand_head(skb, 0, 0, pri);
1945 
1946 	return 0;
1947 }
1948 
1949 /* This variant of skb_unclone() makes sure skb->truesize
1950  * and skb_end_offset() are not changed, whenever a new skb->head is needed.
1951  *
1952  * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X))
1953  * when various debugging features are in place.
1954  */
1955 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri);
1956 static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1957 {
1958 	might_sleep_if(gfpflags_allow_blocking(pri));
1959 
1960 	if (skb_cloned(skb))
1961 		return __skb_unclone_keeptruesize(skb, pri);
1962 	return 0;
1963 }
1964 
1965 /**
1966  *	skb_header_cloned - is the header a clone
1967  *	@skb: buffer to check
1968  *
1969  *	Returns true if modifying the header part of the buffer requires
1970  *	the data to be copied.
1971  */
1972 static inline int skb_header_cloned(const struct sk_buff *skb)
1973 {
1974 	int dataref;
1975 
1976 	if (!skb->cloned)
1977 		return 0;
1978 
1979 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1980 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1981 	return dataref != 1;
1982 }
1983 
1984 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1985 {
1986 	might_sleep_if(gfpflags_allow_blocking(pri));
1987 
1988 	if (skb_header_cloned(skb))
1989 		return pskb_expand_head(skb, 0, 0, pri);
1990 
1991 	return 0;
1992 }
1993 
1994 /**
1995  * __skb_header_release() - allow clones to use the headroom
1996  * @skb: buffer to operate on
1997  *
1998  * See "DOC: dataref and headerless skbs".
1999  */
2000 static inline void __skb_header_release(struct sk_buff *skb)
2001 {
2002 	skb->nohdr = 1;
2003 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
2004 }
2005 
2006 
2007 /**
2008  *	skb_shared - is the buffer shared
2009  *	@skb: buffer to check
2010  *
2011  *	Returns true if more than one person has a reference to this
2012  *	buffer.
2013  */
2014 static inline int skb_shared(const struct sk_buff *skb)
2015 {
2016 	return refcount_read(&skb->users) != 1;
2017 }
2018 
2019 /**
2020  *	skb_share_check - check if buffer is shared and if so clone it
2021  *	@skb: buffer to check
2022  *	@pri: priority for memory allocation
2023  *
2024  *	If the buffer is shared the buffer is cloned and the old copy
2025  *	drops a reference. A new clone with a single reference is returned.
2026  *	If the buffer is not shared the original buffer is returned. When
2027  *	being called from interrupt status or with spinlocks held pri must
2028  *	be GFP_ATOMIC.
2029  *
2030  *	NULL is returned on a memory allocation failure.
2031  */
2032 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
2033 {
2034 	might_sleep_if(gfpflags_allow_blocking(pri));
2035 	if (skb_shared(skb)) {
2036 		struct sk_buff *nskb = skb_clone(skb, pri);
2037 
2038 		if (likely(nskb))
2039 			consume_skb(skb);
2040 		else
2041 			kfree_skb(skb);
2042 		skb = nskb;
2043 	}
2044 	return skb;
2045 }
2046 
2047 /*
2048  *	Copy shared buffers into a new sk_buff. We effectively do COW on
2049  *	packets to handle cases where we have a local reader and forward
2050  *	and a couple of other messy ones. The normal one is tcpdumping
2051  *	a packet that's being forwarded.
2052  */
2053 
2054 /**
2055  *	skb_unshare - make a copy of a shared buffer
2056  *	@skb: buffer to check
2057  *	@pri: priority for memory allocation
2058  *
2059  *	If the socket buffer is a clone then this function creates a new
2060  *	copy of the data, drops a reference count on the old copy and returns
2061  *	the new copy with the reference count at 1. If the buffer is not a clone
2062  *	the original buffer is returned. When called with a spinlock held or
2063  *	from interrupt state @pri must be %GFP_ATOMIC
2064  *
2065  *	%NULL is returned on a memory allocation failure.
2066  */
2067 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
2068 					  gfp_t pri)
2069 {
2070 	might_sleep_if(gfpflags_allow_blocking(pri));
2071 	if (skb_cloned(skb)) {
2072 		struct sk_buff *nskb = skb_copy(skb, pri);
2073 
2074 		/* Free our shared copy */
2075 		if (likely(nskb))
2076 			consume_skb(skb);
2077 		else
2078 			kfree_skb(skb);
2079 		skb = nskb;
2080 	}
2081 	return skb;
2082 }
2083 
2084 /**
2085  *	skb_peek - peek at the head of an &sk_buff_head
2086  *	@list_: list to peek at
2087  *
2088  *	Peek an &sk_buff. Unlike most other operations you _MUST_
2089  *	be careful with this one. A peek leaves the buffer on the
2090  *	list and someone else may run off with it. You must hold
2091  *	the appropriate locks or have a private queue to do this.
2092  *
2093  *	Returns %NULL for an empty list or a pointer to the head element.
2094  *	The reference count is not incremented and the reference is therefore
2095  *	volatile. Use with caution.
2096  */
2097 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
2098 {
2099 	struct sk_buff *skb = list_->next;
2100 
2101 	if (skb == (struct sk_buff *)list_)
2102 		skb = NULL;
2103 	return skb;
2104 }
2105 
2106 /**
2107  *	__skb_peek - peek at the head of a non-empty &sk_buff_head
2108  *	@list_: list to peek at
2109  *
2110  *	Like skb_peek(), but the caller knows that the list is not empty.
2111  */
2112 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
2113 {
2114 	return list_->next;
2115 }
2116 
2117 /**
2118  *	skb_peek_next - peek skb following the given one from a queue
2119  *	@skb: skb to start from
2120  *	@list_: list to peek at
2121  *
2122  *	Returns %NULL when the end of the list is met or a pointer to the
2123  *	next element. The reference count is not incremented and the
2124  *	reference is therefore volatile. Use with caution.
2125  */
2126 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
2127 		const struct sk_buff_head *list_)
2128 {
2129 	struct sk_buff *next = skb->next;
2130 
2131 	if (next == (struct sk_buff *)list_)
2132 		next = NULL;
2133 	return next;
2134 }
2135 
2136 /**
2137  *	skb_peek_tail - peek at the tail of an &sk_buff_head
2138  *	@list_: list to peek at
2139  *
2140  *	Peek an &sk_buff. Unlike most other operations you _MUST_
2141  *	be careful with this one. A peek leaves the buffer on the
2142  *	list and someone else may run off with it. You must hold
2143  *	the appropriate locks or have a private queue to do this.
2144  *
2145  *	Returns %NULL for an empty list or a pointer to the tail element.
2146  *	The reference count is not incremented and the reference is therefore
2147  *	volatile. Use with caution.
2148  */
2149 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
2150 {
2151 	struct sk_buff *skb = READ_ONCE(list_->prev);
2152 
2153 	if (skb == (struct sk_buff *)list_)
2154 		skb = NULL;
2155 	return skb;
2156 
2157 }
2158 
2159 /**
2160  *	skb_queue_len	- get queue length
2161  *	@list_: list to measure
2162  *
2163  *	Return the length of an &sk_buff queue.
2164  */
2165 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
2166 {
2167 	return list_->qlen;
2168 }
2169 
2170 /**
2171  *	skb_queue_len_lockless	- get queue length
2172  *	@list_: list to measure
2173  *
2174  *	Return the length of an &sk_buff queue.
2175  *	This variant can be used in lockless contexts.
2176  */
2177 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
2178 {
2179 	return READ_ONCE(list_->qlen);
2180 }
2181 
2182 /**
2183  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
2184  *	@list: queue to initialize
2185  *
2186  *	This initializes only the list and queue length aspects of
2187  *	an sk_buff_head object.  This allows to initialize the list
2188  *	aspects of an sk_buff_head without reinitializing things like
2189  *	the spinlock.  It can also be used for on-stack sk_buff_head
2190  *	objects where the spinlock is known to not be used.
2191  */
2192 static inline void __skb_queue_head_init(struct sk_buff_head *list)
2193 {
2194 	list->prev = list->next = (struct sk_buff *)list;
2195 	list->qlen = 0;
2196 }
2197 
2198 /*
2199  * This function creates a split out lock class for each invocation;
2200  * this is needed for now since a whole lot of users of the skb-queue
2201  * infrastructure in drivers have different locking usage (in hardirq)
2202  * than the networking core (in softirq only). In the long run either the
2203  * network layer or drivers should need annotation to consolidate the
2204  * main types of usage into 3 classes.
2205  */
2206 static inline void skb_queue_head_init(struct sk_buff_head *list)
2207 {
2208 	spin_lock_init(&list->lock);
2209 	__skb_queue_head_init(list);
2210 }
2211 
2212 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
2213 		struct lock_class_key *class)
2214 {
2215 	skb_queue_head_init(list);
2216 	lockdep_set_class(&list->lock, class);
2217 }
2218 
2219 /*
2220  *	Insert an sk_buff on a list.
2221  *
2222  *	The "__skb_xxxx()" functions are the non-atomic ones that
2223  *	can only be called with interrupts disabled.
2224  */
2225 static inline void __skb_insert(struct sk_buff *newsk,
2226 				struct sk_buff *prev, struct sk_buff *next,
2227 				struct sk_buff_head *list)
2228 {
2229 	/* See skb_queue_empty_lockless() and skb_peek_tail()
2230 	 * for the opposite READ_ONCE()
2231 	 */
2232 	WRITE_ONCE(newsk->next, next);
2233 	WRITE_ONCE(newsk->prev, prev);
2234 	WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk);
2235 	WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk);
2236 	WRITE_ONCE(list->qlen, list->qlen + 1);
2237 }
2238 
2239 static inline void __skb_queue_splice(const struct sk_buff_head *list,
2240 				      struct sk_buff *prev,
2241 				      struct sk_buff *next)
2242 {
2243 	struct sk_buff *first = list->next;
2244 	struct sk_buff *last = list->prev;
2245 
2246 	WRITE_ONCE(first->prev, prev);
2247 	WRITE_ONCE(prev->next, first);
2248 
2249 	WRITE_ONCE(last->next, next);
2250 	WRITE_ONCE(next->prev, last);
2251 }
2252 
2253 /**
2254  *	skb_queue_splice - join two skb lists, this is designed for stacks
2255  *	@list: the new list to add
2256  *	@head: the place to add it in the first list
2257  */
2258 static inline void skb_queue_splice(const struct sk_buff_head *list,
2259 				    struct sk_buff_head *head)
2260 {
2261 	if (!skb_queue_empty(list)) {
2262 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2263 		head->qlen += list->qlen;
2264 	}
2265 }
2266 
2267 /**
2268  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
2269  *	@list: the new list to add
2270  *	@head: the place to add it in the first list
2271  *
2272  *	The list at @list is reinitialised
2273  */
2274 static inline void skb_queue_splice_init(struct sk_buff_head *list,
2275 					 struct sk_buff_head *head)
2276 {
2277 	if (!skb_queue_empty(list)) {
2278 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2279 		head->qlen += list->qlen;
2280 		__skb_queue_head_init(list);
2281 	}
2282 }
2283 
2284 /**
2285  *	skb_queue_splice_tail - join two skb lists, each list being a queue
2286  *	@list: the new list to add
2287  *	@head: the place to add it in the first list
2288  */
2289 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
2290 					 struct sk_buff_head *head)
2291 {
2292 	if (!skb_queue_empty(list)) {
2293 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2294 		head->qlen += list->qlen;
2295 	}
2296 }
2297 
2298 /**
2299  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
2300  *	@list: the new list to add
2301  *	@head: the place to add it in the first list
2302  *
2303  *	Each of the lists is a queue.
2304  *	The list at @list is reinitialised
2305  */
2306 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
2307 					      struct sk_buff_head *head)
2308 {
2309 	if (!skb_queue_empty(list)) {
2310 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2311 		head->qlen += list->qlen;
2312 		__skb_queue_head_init(list);
2313 	}
2314 }
2315 
2316 /**
2317  *	__skb_queue_after - queue a buffer at the list head
2318  *	@list: list to use
2319  *	@prev: place after this buffer
2320  *	@newsk: buffer to queue
2321  *
2322  *	Queue a buffer int the middle of a list. This function takes no locks
2323  *	and you must therefore hold required locks before calling it.
2324  *
2325  *	A buffer cannot be placed on two lists at the same time.
2326  */
2327 static inline void __skb_queue_after(struct sk_buff_head *list,
2328 				     struct sk_buff *prev,
2329 				     struct sk_buff *newsk)
2330 {
2331 	__skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list);
2332 }
2333 
2334 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2335 		struct sk_buff_head *list);
2336 
2337 static inline void __skb_queue_before(struct sk_buff_head *list,
2338 				      struct sk_buff *next,
2339 				      struct sk_buff *newsk)
2340 {
2341 	__skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list);
2342 }
2343 
2344 /**
2345  *	__skb_queue_head - queue a buffer at the list head
2346  *	@list: list to use
2347  *	@newsk: buffer to queue
2348  *
2349  *	Queue a buffer at the start of a list. This function takes no locks
2350  *	and you must therefore hold required locks before calling it.
2351  *
2352  *	A buffer cannot be placed on two lists at the same time.
2353  */
2354 static inline void __skb_queue_head(struct sk_buff_head *list,
2355 				    struct sk_buff *newsk)
2356 {
2357 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
2358 }
2359 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2360 
2361 /**
2362  *	__skb_queue_tail - queue a buffer at the list tail
2363  *	@list: list to use
2364  *	@newsk: buffer to queue
2365  *
2366  *	Queue a buffer at the end of a list. This function takes no locks
2367  *	and you must therefore hold required locks before calling it.
2368  *
2369  *	A buffer cannot be placed on two lists at the same time.
2370  */
2371 static inline void __skb_queue_tail(struct sk_buff_head *list,
2372 				   struct sk_buff *newsk)
2373 {
2374 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
2375 }
2376 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2377 
2378 /*
2379  * remove sk_buff from list. _Must_ be called atomically, and with
2380  * the list known..
2381  */
2382 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
2383 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2384 {
2385 	struct sk_buff *next, *prev;
2386 
2387 	WRITE_ONCE(list->qlen, list->qlen - 1);
2388 	next	   = skb->next;
2389 	prev	   = skb->prev;
2390 	skb->next  = skb->prev = NULL;
2391 	WRITE_ONCE(next->prev, prev);
2392 	WRITE_ONCE(prev->next, next);
2393 }
2394 
2395 /**
2396  *	__skb_dequeue - remove from the head of the queue
2397  *	@list: list to dequeue from
2398  *
2399  *	Remove the head of the list. This function does not take any locks
2400  *	so must be used with appropriate locks held only. The head item is
2401  *	returned or %NULL if the list is empty.
2402  */
2403 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2404 {
2405 	struct sk_buff *skb = skb_peek(list);
2406 	if (skb)
2407 		__skb_unlink(skb, list);
2408 	return skb;
2409 }
2410 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2411 
2412 /**
2413  *	__skb_dequeue_tail - remove from the tail of the queue
2414  *	@list: list to dequeue from
2415  *
2416  *	Remove the tail of the list. This function does not take any locks
2417  *	so must be used with appropriate locks held only. The tail item is
2418  *	returned or %NULL if the list is empty.
2419  */
2420 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2421 {
2422 	struct sk_buff *skb = skb_peek_tail(list);
2423 	if (skb)
2424 		__skb_unlink(skb, list);
2425 	return skb;
2426 }
2427 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2428 
2429 
2430 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2431 {
2432 	return skb->data_len;
2433 }
2434 
2435 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2436 {
2437 	return skb->len - skb->data_len;
2438 }
2439 
2440 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2441 {
2442 	unsigned int i, len = 0;
2443 
2444 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2445 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2446 	return len;
2447 }
2448 
2449 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2450 {
2451 	return skb_headlen(skb) + __skb_pagelen(skb);
2452 }
2453 
2454 static inline void skb_frag_fill_netmem_desc(skb_frag_t *frag,
2455 					     netmem_ref netmem, int off,
2456 					     int size)
2457 {
2458 	frag->netmem = netmem;
2459 	frag->offset = off;
2460 	skb_frag_size_set(frag, size);
2461 }
2462 
2463 static inline void skb_frag_fill_page_desc(skb_frag_t *frag,
2464 					   struct page *page,
2465 					   int off, int size)
2466 {
2467 	skb_frag_fill_netmem_desc(frag, page_to_netmem(page), off, size);
2468 }
2469 
2470 static inline void __skb_fill_netmem_desc_noacc(struct skb_shared_info *shinfo,
2471 						int i, netmem_ref netmem,
2472 						int off, int size)
2473 {
2474 	skb_frag_t *frag = &shinfo->frags[i];
2475 
2476 	skb_frag_fill_netmem_desc(frag, netmem, off, size);
2477 }
2478 
2479 static inline void __skb_fill_page_desc_noacc(struct skb_shared_info *shinfo,
2480 					      int i, struct page *page,
2481 					      int off, int size)
2482 {
2483 	__skb_fill_netmem_desc_noacc(shinfo, i, page_to_netmem(page), off,
2484 				     size);
2485 }
2486 
2487 /**
2488  * skb_len_add - adds a number to len fields of skb
2489  * @skb: buffer to add len to
2490  * @delta: number of bytes to add
2491  */
2492 static inline void skb_len_add(struct sk_buff *skb, int delta)
2493 {
2494 	skb->len += delta;
2495 	skb->data_len += delta;
2496 	skb->truesize += delta;
2497 }
2498 
2499 /**
2500  * __skb_fill_netmem_desc - initialise a fragment in an skb
2501  * @skb: buffer containing fragment to be initialised
2502  * @i: fragment index to initialise
2503  * @netmem: the netmem to use for this fragment
2504  * @off: the offset to the data with @page
2505  * @size: the length of the data
2506  *
2507  * Initialises the @i'th fragment of @skb to point to &size bytes at
2508  * offset @off within @page.
2509  *
2510  * Does not take any additional reference on the fragment.
2511  */
2512 static inline void __skb_fill_netmem_desc(struct sk_buff *skb, int i,
2513 					  netmem_ref netmem, int off, int size)
2514 {
2515 	struct page *page = netmem_to_page(netmem);
2516 
2517 	__skb_fill_netmem_desc_noacc(skb_shinfo(skb), i, netmem, off, size);
2518 
2519 	/* Propagate page pfmemalloc to the skb if we can. The problem is
2520 	 * that not all callers have unique ownership of the page but rely
2521 	 * on page_is_pfmemalloc doing the right thing(tm).
2522 	 */
2523 	page = compound_head(page);
2524 	if (page_is_pfmemalloc(page))
2525 		skb->pfmemalloc = true;
2526 }
2527 
2528 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2529 					struct page *page, int off, int size)
2530 {
2531 	__skb_fill_netmem_desc(skb, i, page_to_netmem(page), off, size);
2532 }
2533 
2534 static inline void skb_fill_netmem_desc(struct sk_buff *skb, int i,
2535 					netmem_ref netmem, int off, int size)
2536 {
2537 	__skb_fill_netmem_desc(skb, i, netmem, off, size);
2538 	skb_shinfo(skb)->nr_frags = i + 1;
2539 }
2540 
2541 /**
2542  * skb_fill_page_desc - initialise a paged fragment in an skb
2543  * @skb: buffer containing fragment to be initialised
2544  * @i: paged fragment index to initialise
2545  * @page: the page to use for this fragment
2546  * @off: the offset to the data with @page
2547  * @size: the length of the data
2548  *
2549  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2550  * @skb to point to @size bytes at offset @off within @page. In
2551  * addition updates @skb such that @i is the last fragment.
2552  *
2553  * Does not take any additional reference on the fragment.
2554  */
2555 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2556 				      struct page *page, int off, int size)
2557 {
2558 	skb_fill_netmem_desc(skb, i, page_to_netmem(page), off, size);
2559 }
2560 
2561 /**
2562  * skb_fill_page_desc_noacc - initialise a paged fragment in an skb
2563  * @skb: buffer containing fragment to be initialised
2564  * @i: paged fragment index to initialise
2565  * @page: the page to use for this fragment
2566  * @off: the offset to the data with @page
2567  * @size: the length of the data
2568  *
2569  * Variant of skb_fill_page_desc() which does not deal with
2570  * pfmemalloc, if page is not owned by us.
2571  */
2572 static inline void skb_fill_page_desc_noacc(struct sk_buff *skb, int i,
2573 					    struct page *page, int off,
2574 					    int size)
2575 {
2576 	struct skb_shared_info *shinfo = skb_shinfo(skb);
2577 
2578 	__skb_fill_page_desc_noacc(shinfo, i, page, off, size);
2579 	shinfo->nr_frags = i + 1;
2580 }
2581 
2582 void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem,
2583 			    int off, int size, unsigned int truesize);
2584 
2585 static inline void skb_add_rx_frag(struct sk_buff *skb, int i,
2586 				   struct page *page, int off, int size,
2587 				   unsigned int truesize)
2588 {
2589 	skb_add_rx_frag_netmem(skb, i, page_to_netmem(page), off, size,
2590 			       truesize);
2591 }
2592 
2593 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2594 			  unsigned int truesize);
2595 
2596 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2597 
2598 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2599 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2600 {
2601 	return skb->head + skb->tail;
2602 }
2603 
2604 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2605 {
2606 	skb->tail = skb->data - skb->head;
2607 }
2608 
2609 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2610 {
2611 	skb_reset_tail_pointer(skb);
2612 	skb->tail += offset;
2613 }
2614 
2615 #else /* NET_SKBUFF_DATA_USES_OFFSET */
2616 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2617 {
2618 	return skb->tail;
2619 }
2620 
2621 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2622 {
2623 	skb->tail = skb->data;
2624 }
2625 
2626 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2627 {
2628 	skb->tail = skb->data + offset;
2629 }
2630 
2631 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2632 
2633 static inline void skb_assert_len(struct sk_buff *skb)
2634 {
2635 #ifdef CONFIG_DEBUG_NET
2636 	if (WARN_ONCE(!skb->len, "%s\n", __func__))
2637 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
2638 #endif /* CONFIG_DEBUG_NET */
2639 }
2640 
2641 /*
2642  *	Add data to an sk_buff
2643  */
2644 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2645 void *skb_put(struct sk_buff *skb, unsigned int len);
2646 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2647 {
2648 	void *tmp = skb_tail_pointer(skb);
2649 	SKB_LINEAR_ASSERT(skb);
2650 	skb->tail += len;
2651 	skb->len  += len;
2652 	return tmp;
2653 }
2654 
2655 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2656 {
2657 	void *tmp = __skb_put(skb, len);
2658 
2659 	memset(tmp, 0, len);
2660 	return tmp;
2661 }
2662 
2663 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2664 				   unsigned int len)
2665 {
2666 	void *tmp = __skb_put(skb, len);
2667 
2668 	memcpy(tmp, data, len);
2669 	return tmp;
2670 }
2671 
2672 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2673 {
2674 	*(u8 *)__skb_put(skb, 1) = val;
2675 }
2676 
2677 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2678 {
2679 	void *tmp = skb_put(skb, len);
2680 
2681 	memset(tmp, 0, len);
2682 
2683 	return tmp;
2684 }
2685 
2686 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2687 				 unsigned int len)
2688 {
2689 	void *tmp = skb_put(skb, len);
2690 
2691 	memcpy(tmp, data, len);
2692 
2693 	return tmp;
2694 }
2695 
2696 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2697 {
2698 	*(u8 *)skb_put(skb, 1) = val;
2699 }
2700 
2701 void *skb_push(struct sk_buff *skb, unsigned int len);
2702 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2703 {
2704 	DEBUG_NET_WARN_ON_ONCE(len > INT_MAX);
2705 
2706 	skb->data -= len;
2707 	skb->len  += len;
2708 	return skb->data;
2709 }
2710 
2711 void *skb_pull(struct sk_buff *skb, unsigned int len);
2712 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2713 {
2714 	DEBUG_NET_WARN_ON_ONCE(len > INT_MAX);
2715 
2716 	skb->len -= len;
2717 	if (unlikely(skb->len < skb->data_len)) {
2718 #if defined(CONFIG_DEBUG_NET)
2719 		skb->len += len;
2720 		pr_err("__skb_pull(len=%u)\n", len);
2721 		skb_dump(KERN_ERR, skb, false);
2722 #endif
2723 		BUG();
2724 	}
2725 	return skb->data += len;
2726 }
2727 
2728 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2729 {
2730 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2731 }
2732 
2733 void *skb_pull_data(struct sk_buff *skb, size_t len);
2734 
2735 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2736 
2737 static inline enum skb_drop_reason
2738 pskb_may_pull_reason(struct sk_buff *skb, unsigned int len)
2739 {
2740 	DEBUG_NET_WARN_ON_ONCE(len > INT_MAX);
2741 
2742 	if (likely(len <= skb_headlen(skb)))
2743 		return SKB_NOT_DROPPED_YET;
2744 
2745 	if (unlikely(len > skb->len))
2746 		return SKB_DROP_REASON_PKT_TOO_SMALL;
2747 
2748 	if (unlikely(!__pskb_pull_tail(skb, len - skb_headlen(skb))))
2749 		return SKB_DROP_REASON_NOMEM;
2750 
2751 	return SKB_NOT_DROPPED_YET;
2752 }
2753 
2754 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2755 {
2756 	return pskb_may_pull_reason(skb, len) == SKB_NOT_DROPPED_YET;
2757 }
2758 
2759 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2760 {
2761 	if (!pskb_may_pull(skb, len))
2762 		return NULL;
2763 
2764 	skb->len -= len;
2765 	return skb->data += len;
2766 }
2767 
2768 void skb_condense(struct sk_buff *skb);
2769 
2770 /**
2771  *	skb_headroom - bytes at buffer head
2772  *	@skb: buffer to check
2773  *
2774  *	Return the number of bytes of free space at the head of an &sk_buff.
2775  */
2776 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2777 {
2778 	return skb->data - skb->head;
2779 }
2780 
2781 /**
2782  *	skb_tailroom - bytes at buffer end
2783  *	@skb: buffer to check
2784  *
2785  *	Return the number of bytes of free space at the tail of an sk_buff
2786  */
2787 static inline int skb_tailroom(const struct sk_buff *skb)
2788 {
2789 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2790 }
2791 
2792 /**
2793  *	skb_availroom - bytes at buffer end
2794  *	@skb: buffer to check
2795  *
2796  *	Return the number of bytes of free space at the tail of an sk_buff
2797  *	allocated by sk_stream_alloc()
2798  */
2799 static inline int skb_availroom(const struct sk_buff *skb)
2800 {
2801 	if (skb_is_nonlinear(skb))
2802 		return 0;
2803 
2804 	return skb->end - skb->tail - skb->reserved_tailroom;
2805 }
2806 
2807 /**
2808  *	skb_reserve - adjust headroom
2809  *	@skb: buffer to alter
2810  *	@len: bytes to move
2811  *
2812  *	Increase the headroom of an empty &sk_buff by reducing the tail
2813  *	room. This is only allowed for an empty buffer.
2814  */
2815 static inline void skb_reserve(struct sk_buff *skb, int len)
2816 {
2817 	skb->data += len;
2818 	skb->tail += len;
2819 }
2820 
2821 /**
2822  *	skb_tailroom_reserve - adjust reserved_tailroom
2823  *	@skb: buffer to alter
2824  *	@mtu: maximum amount of headlen permitted
2825  *	@needed_tailroom: minimum amount of reserved_tailroom
2826  *
2827  *	Set reserved_tailroom so that headlen can be as large as possible but
2828  *	not larger than mtu and tailroom cannot be smaller than
2829  *	needed_tailroom.
2830  *	The required headroom should already have been reserved before using
2831  *	this function.
2832  */
2833 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2834 					unsigned int needed_tailroom)
2835 {
2836 	SKB_LINEAR_ASSERT(skb);
2837 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2838 		/* use at most mtu */
2839 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2840 	else
2841 		/* use up to all available space */
2842 		skb->reserved_tailroom = needed_tailroom;
2843 }
2844 
2845 #define ENCAP_TYPE_ETHER	0
2846 #define ENCAP_TYPE_IPPROTO	1
2847 
2848 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2849 					  __be16 protocol)
2850 {
2851 	skb->inner_protocol = protocol;
2852 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2853 }
2854 
2855 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2856 					 __u8 ipproto)
2857 {
2858 	skb->inner_ipproto = ipproto;
2859 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2860 }
2861 
2862 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2863 {
2864 	skb->inner_mac_header = skb->mac_header;
2865 	skb->inner_network_header = skb->network_header;
2866 	skb->inner_transport_header = skb->transport_header;
2867 }
2868 
2869 static inline void skb_reset_mac_len(struct sk_buff *skb)
2870 {
2871 	skb->mac_len = skb->network_header - skb->mac_header;
2872 }
2873 
2874 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2875 							*skb)
2876 {
2877 	return skb->head + skb->inner_transport_header;
2878 }
2879 
2880 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2881 {
2882 	return skb_inner_transport_header(skb) - skb->data;
2883 }
2884 
2885 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2886 {
2887 	skb->inner_transport_header = skb->data - skb->head;
2888 }
2889 
2890 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2891 						   const int offset)
2892 {
2893 	skb_reset_inner_transport_header(skb);
2894 	skb->inner_transport_header += offset;
2895 }
2896 
2897 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2898 {
2899 	return skb->head + skb->inner_network_header;
2900 }
2901 
2902 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2903 {
2904 	skb->inner_network_header = skb->data - skb->head;
2905 }
2906 
2907 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2908 						const int offset)
2909 {
2910 	skb_reset_inner_network_header(skb);
2911 	skb->inner_network_header += offset;
2912 }
2913 
2914 static inline bool skb_inner_network_header_was_set(const struct sk_buff *skb)
2915 {
2916 	return skb->inner_network_header > 0;
2917 }
2918 
2919 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2920 {
2921 	return skb->head + skb->inner_mac_header;
2922 }
2923 
2924 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2925 {
2926 	skb->inner_mac_header = skb->data - skb->head;
2927 }
2928 
2929 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2930 					    const int offset)
2931 {
2932 	skb_reset_inner_mac_header(skb);
2933 	skb->inner_mac_header += offset;
2934 }
2935 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2936 {
2937 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2938 }
2939 
2940 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2941 {
2942 	DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb));
2943 	return skb->head + skb->transport_header;
2944 }
2945 
2946 static inline void skb_reset_transport_header(struct sk_buff *skb)
2947 {
2948 	skb->transport_header = skb->data - skb->head;
2949 }
2950 
2951 static inline void skb_set_transport_header(struct sk_buff *skb,
2952 					    const int offset)
2953 {
2954 	skb_reset_transport_header(skb);
2955 	skb->transport_header += offset;
2956 }
2957 
2958 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2959 {
2960 	return skb->head + skb->network_header;
2961 }
2962 
2963 static inline void skb_reset_network_header(struct sk_buff *skb)
2964 {
2965 	skb->network_header = skb->data - skb->head;
2966 }
2967 
2968 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2969 {
2970 	skb_reset_network_header(skb);
2971 	skb->network_header += offset;
2972 }
2973 
2974 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2975 {
2976 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2977 }
2978 
2979 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2980 {
2981 	DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
2982 	return skb->head + skb->mac_header;
2983 }
2984 
2985 static inline int skb_mac_offset(const struct sk_buff *skb)
2986 {
2987 	return skb_mac_header(skb) - skb->data;
2988 }
2989 
2990 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2991 {
2992 	DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
2993 	return skb->network_header - skb->mac_header;
2994 }
2995 
2996 static inline void skb_unset_mac_header(struct sk_buff *skb)
2997 {
2998 	skb->mac_header = (typeof(skb->mac_header))~0U;
2999 }
3000 
3001 static inline void skb_reset_mac_header(struct sk_buff *skb)
3002 {
3003 	skb->mac_header = skb->data - skb->head;
3004 }
3005 
3006 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
3007 {
3008 	skb_reset_mac_header(skb);
3009 	skb->mac_header += offset;
3010 }
3011 
3012 static inline void skb_pop_mac_header(struct sk_buff *skb)
3013 {
3014 	skb->mac_header = skb->network_header;
3015 }
3016 
3017 static inline void skb_probe_transport_header(struct sk_buff *skb)
3018 {
3019 	struct flow_keys_basic keys;
3020 
3021 	if (skb_transport_header_was_set(skb))
3022 		return;
3023 
3024 	if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
3025 					     NULL, 0, 0, 0, 0))
3026 		skb_set_transport_header(skb, keys.control.thoff);
3027 }
3028 
3029 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
3030 {
3031 	if (skb_mac_header_was_set(skb)) {
3032 		const unsigned char *old_mac = skb_mac_header(skb);
3033 
3034 		skb_set_mac_header(skb, -skb->mac_len);
3035 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
3036 	}
3037 }
3038 
3039 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
3040 {
3041 	return skb->csum_start - skb_headroom(skb);
3042 }
3043 
3044 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
3045 {
3046 	return skb->head + skb->csum_start;
3047 }
3048 
3049 static inline int skb_transport_offset(const struct sk_buff *skb)
3050 {
3051 	return skb_transport_header(skb) - skb->data;
3052 }
3053 
3054 static inline u32 skb_network_header_len(const struct sk_buff *skb)
3055 {
3056 	DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb));
3057 	return skb->transport_header - skb->network_header;
3058 }
3059 
3060 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
3061 {
3062 	return skb->inner_transport_header - skb->inner_network_header;
3063 }
3064 
3065 static inline int skb_network_offset(const struct sk_buff *skb)
3066 {
3067 	return skb_network_header(skb) - skb->data;
3068 }
3069 
3070 static inline int skb_inner_network_offset(const struct sk_buff *skb)
3071 {
3072 	return skb_inner_network_header(skb) - skb->data;
3073 }
3074 
3075 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
3076 {
3077 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
3078 }
3079 
3080 /*
3081  * CPUs often take a performance hit when accessing unaligned memory
3082  * locations. The actual performance hit varies, it can be small if the
3083  * hardware handles it or large if we have to take an exception and fix it
3084  * in software.
3085  *
3086  * Since an ethernet header is 14 bytes network drivers often end up with
3087  * the IP header at an unaligned offset. The IP header can be aligned by
3088  * shifting the start of the packet by 2 bytes. Drivers should do this
3089  * with:
3090  *
3091  * skb_reserve(skb, NET_IP_ALIGN);
3092  *
3093  * The downside to this alignment of the IP header is that the DMA is now
3094  * unaligned. On some architectures the cost of an unaligned DMA is high
3095  * and this cost outweighs the gains made by aligning the IP header.
3096  *
3097  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
3098  * to be overridden.
3099  */
3100 #ifndef NET_IP_ALIGN
3101 #define NET_IP_ALIGN	2
3102 #endif
3103 
3104 /*
3105  * The networking layer reserves some headroom in skb data (via
3106  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
3107  * the header has to grow. In the default case, if the header has to grow
3108  * 32 bytes or less we avoid the reallocation.
3109  *
3110  * Unfortunately this headroom changes the DMA alignment of the resulting
3111  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
3112  * on some architectures. An architecture can override this value,
3113  * perhaps setting it to a cacheline in size (since that will maintain
3114  * cacheline alignment of the DMA). It must be a power of 2.
3115  *
3116  * Various parts of the networking layer expect at least 32 bytes of
3117  * headroom, you should not reduce this.
3118  *
3119  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
3120  * to reduce average number of cache lines per packet.
3121  * get_rps_cpu() for example only access one 64 bytes aligned block :
3122  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
3123  */
3124 #ifndef NET_SKB_PAD
3125 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
3126 #endif
3127 
3128 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
3129 
3130 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
3131 {
3132 	if (WARN_ON(skb_is_nonlinear(skb)))
3133 		return;
3134 	skb->len = len;
3135 	skb_set_tail_pointer(skb, len);
3136 }
3137 
3138 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
3139 {
3140 	__skb_set_length(skb, len);
3141 }
3142 
3143 void skb_trim(struct sk_buff *skb, unsigned int len);
3144 
3145 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
3146 {
3147 	if (skb->data_len)
3148 		return ___pskb_trim(skb, len);
3149 	__skb_trim(skb, len);
3150 	return 0;
3151 }
3152 
3153 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
3154 {
3155 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
3156 }
3157 
3158 /**
3159  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
3160  *	@skb: buffer to alter
3161  *	@len: new length
3162  *
3163  *	This is identical to pskb_trim except that the caller knows that
3164  *	the skb is not cloned so we should never get an error due to out-
3165  *	of-memory.
3166  */
3167 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
3168 {
3169 	int err = pskb_trim(skb, len);
3170 	BUG_ON(err);
3171 }
3172 
3173 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
3174 {
3175 	unsigned int diff = len - skb->len;
3176 
3177 	if (skb_tailroom(skb) < diff) {
3178 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
3179 					   GFP_ATOMIC);
3180 		if (ret)
3181 			return ret;
3182 	}
3183 	__skb_set_length(skb, len);
3184 	return 0;
3185 }
3186 
3187 /**
3188  *	skb_orphan - orphan a buffer
3189  *	@skb: buffer to orphan
3190  *
3191  *	If a buffer currently has an owner then we call the owner's
3192  *	destructor function and make the @skb unowned. The buffer continues
3193  *	to exist but is no longer charged to its former owner.
3194  */
3195 static inline void skb_orphan(struct sk_buff *skb)
3196 {
3197 	if (skb->destructor) {
3198 		skb->destructor(skb);
3199 		skb->destructor = NULL;
3200 		skb->sk		= NULL;
3201 	} else {
3202 		BUG_ON(skb->sk);
3203 	}
3204 }
3205 
3206 /**
3207  *	skb_orphan_frags - orphan the frags contained in a buffer
3208  *	@skb: buffer to orphan frags from
3209  *	@gfp_mask: allocation mask for replacement pages
3210  *
3211  *	For each frag in the SKB which needs a destructor (i.e. has an
3212  *	owner) create a copy of that frag and release the original
3213  *	page by calling the destructor.
3214  */
3215 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
3216 {
3217 	if (likely(!skb_zcopy(skb)))
3218 		return 0;
3219 	if (skb_shinfo(skb)->flags & SKBFL_DONT_ORPHAN)
3220 		return 0;
3221 	return skb_copy_ubufs(skb, gfp_mask);
3222 }
3223 
3224 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
3225 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
3226 {
3227 	if (likely(!skb_zcopy(skb)))
3228 		return 0;
3229 	return skb_copy_ubufs(skb, gfp_mask);
3230 }
3231 
3232 /**
3233  *	__skb_queue_purge_reason - empty a list
3234  *	@list: list to empty
3235  *	@reason: drop reason
3236  *
3237  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3238  *	the list and one reference dropped. This function does not take the
3239  *	list lock and the caller must hold the relevant locks to use it.
3240  */
3241 static inline void __skb_queue_purge_reason(struct sk_buff_head *list,
3242 					    enum skb_drop_reason reason)
3243 {
3244 	struct sk_buff *skb;
3245 
3246 	while ((skb = __skb_dequeue(list)) != NULL)
3247 		kfree_skb_reason(skb, reason);
3248 }
3249 
3250 static inline void __skb_queue_purge(struct sk_buff_head *list)
3251 {
3252 	__skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE);
3253 }
3254 
3255 void skb_queue_purge_reason(struct sk_buff_head *list,
3256 			    enum skb_drop_reason reason);
3257 
3258 static inline void skb_queue_purge(struct sk_buff_head *list)
3259 {
3260 	skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE);
3261 }
3262 
3263 unsigned int skb_rbtree_purge(struct rb_root *root);
3264 void skb_errqueue_purge(struct sk_buff_head *list);
3265 
3266 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3267 
3268 /**
3269  * netdev_alloc_frag - allocate a page fragment
3270  * @fragsz: fragment size
3271  *
3272  * Allocates a frag from a page for receive buffer.
3273  * Uses GFP_ATOMIC allocations.
3274  */
3275 static inline void *netdev_alloc_frag(unsigned int fragsz)
3276 {
3277 	return __netdev_alloc_frag_align(fragsz, ~0u);
3278 }
3279 
3280 static inline void *netdev_alloc_frag_align(unsigned int fragsz,
3281 					    unsigned int align)
3282 {
3283 	WARN_ON_ONCE(!is_power_of_2(align));
3284 	return __netdev_alloc_frag_align(fragsz, -align);
3285 }
3286 
3287 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
3288 				   gfp_t gfp_mask);
3289 
3290 /**
3291  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
3292  *	@dev: network device to receive on
3293  *	@length: length to allocate
3294  *
3295  *	Allocate a new &sk_buff and assign it a usage count of one. The
3296  *	buffer has unspecified headroom built in. Users should allocate
3297  *	the headroom they think they need without accounting for the
3298  *	built in space. The built in space is used for optimisations.
3299  *
3300  *	%NULL is returned if there is no free memory. Although this function
3301  *	allocates memory it can be called from an interrupt.
3302  */
3303 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
3304 					       unsigned int length)
3305 {
3306 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
3307 }
3308 
3309 /* legacy helper around __netdev_alloc_skb() */
3310 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
3311 					      gfp_t gfp_mask)
3312 {
3313 	return __netdev_alloc_skb(NULL, length, gfp_mask);
3314 }
3315 
3316 /* legacy helper around netdev_alloc_skb() */
3317 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
3318 {
3319 	return netdev_alloc_skb(NULL, length);
3320 }
3321 
3322 
3323 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
3324 		unsigned int length, gfp_t gfp)
3325 {
3326 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
3327 
3328 	if (NET_IP_ALIGN && skb)
3329 		skb_reserve(skb, NET_IP_ALIGN);
3330 	return skb;
3331 }
3332 
3333 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
3334 		unsigned int length)
3335 {
3336 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
3337 }
3338 
3339 static inline void skb_free_frag(void *addr)
3340 {
3341 	page_frag_free(addr);
3342 }
3343 
3344 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3345 
3346 static inline void *napi_alloc_frag(unsigned int fragsz)
3347 {
3348 	return __napi_alloc_frag_align(fragsz, ~0u);
3349 }
3350 
3351 static inline void *napi_alloc_frag_align(unsigned int fragsz,
3352 					  unsigned int align)
3353 {
3354 	WARN_ON_ONCE(!is_power_of_2(align));
3355 	return __napi_alloc_frag_align(fragsz, -align);
3356 }
3357 
3358 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
3359 				 unsigned int length, gfp_t gfp_mask);
3360 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
3361 					     unsigned int length)
3362 {
3363 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
3364 }
3365 void napi_consume_skb(struct sk_buff *skb, int budget);
3366 
3367 void napi_skb_free_stolen_head(struct sk_buff *skb);
3368 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason);
3369 
3370 /**
3371  * __dev_alloc_pages - allocate page for network Rx
3372  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3373  * @order: size of the allocation
3374  *
3375  * Allocate a new page.
3376  *
3377  * %NULL is returned if there is no free memory.
3378 */
3379 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
3380 					     unsigned int order)
3381 {
3382 	/* This piece of code contains several assumptions.
3383 	 * 1.  This is for device Rx, therefore a cold page is preferred.
3384 	 * 2.  The expectation is the user wants a compound page.
3385 	 * 3.  If requesting a order 0 page it will not be compound
3386 	 *     due to the check to see if order has a value in prep_new_page
3387 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
3388 	 *     code in gfp_to_alloc_flags that should be enforcing this.
3389 	 */
3390 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
3391 
3392 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
3393 }
3394 
3395 static inline struct page *dev_alloc_pages(unsigned int order)
3396 {
3397 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
3398 }
3399 
3400 /**
3401  * __dev_alloc_page - allocate a page for network Rx
3402  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3403  *
3404  * Allocate a new page.
3405  *
3406  * %NULL is returned if there is no free memory.
3407  */
3408 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
3409 {
3410 	return __dev_alloc_pages(gfp_mask, 0);
3411 }
3412 
3413 static inline struct page *dev_alloc_page(void)
3414 {
3415 	return dev_alloc_pages(0);
3416 }
3417 
3418 /**
3419  * dev_page_is_reusable - check whether a page can be reused for network Rx
3420  * @page: the page to test
3421  *
3422  * A page shouldn't be considered for reusing/recycling if it was allocated
3423  * under memory pressure or at a distant memory node.
3424  *
3425  * Returns false if this page should be returned to page allocator, true
3426  * otherwise.
3427  */
3428 static inline bool dev_page_is_reusable(const struct page *page)
3429 {
3430 	return likely(page_to_nid(page) == numa_mem_id() &&
3431 		      !page_is_pfmemalloc(page));
3432 }
3433 
3434 /**
3435  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
3436  *	@page: The page that was allocated from skb_alloc_page
3437  *	@skb: The skb that may need pfmemalloc set
3438  */
3439 static inline void skb_propagate_pfmemalloc(const struct page *page,
3440 					    struct sk_buff *skb)
3441 {
3442 	if (page_is_pfmemalloc(page))
3443 		skb->pfmemalloc = true;
3444 }
3445 
3446 /**
3447  * skb_frag_off() - Returns the offset of a skb fragment
3448  * @frag: the paged fragment
3449  */
3450 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
3451 {
3452 	return frag->offset;
3453 }
3454 
3455 /**
3456  * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
3457  * @frag: skb fragment
3458  * @delta: value to add
3459  */
3460 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
3461 {
3462 	frag->offset += delta;
3463 }
3464 
3465 /**
3466  * skb_frag_off_set() - Sets the offset of a skb fragment
3467  * @frag: skb fragment
3468  * @offset: offset of fragment
3469  */
3470 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
3471 {
3472 	frag->offset = offset;
3473 }
3474 
3475 /**
3476  * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
3477  * @fragto: skb fragment where offset is set
3478  * @fragfrom: skb fragment offset is copied from
3479  */
3480 static inline void skb_frag_off_copy(skb_frag_t *fragto,
3481 				     const skb_frag_t *fragfrom)
3482 {
3483 	fragto->offset = fragfrom->offset;
3484 }
3485 
3486 /**
3487  * skb_frag_page - retrieve the page referred to by a paged fragment
3488  * @frag: the paged fragment
3489  *
3490  * Returns the &struct page associated with @frag.
3491  */
3492 static inline struct page *skb_frag_page(const skb_frag_t *frag)
3493 {
3494 	return netmem_to_page(frag->netmem);
3495 }
3496 
3497 /**
3498  * __skb_frag_ref - take an addition reference on a paged fragment.
3499  * @frag: the paged fragment
3500  *
3501  * Takes an additional reference on the paged fragment @frag.
3502  */
3503 static inline void __skb_frag_ref(skb_frag_t *frag)
3504 {
3505 	get_page(skb_frag_page(frag));
3506 }
3507 
3508 /**
3509  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
3510  * @skb: the buffer
3511  * @f: the fragment offset.
3512  *
3513  * Takes an additional reference on the @f'th paged fragment of @skb.
3514  */
3515 static inline void skb_frag_ref(struct sk_buff *skb, int f)
3516 {
3517 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
3518 }
3519 
3520 int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb,
3521 		    unsigned int headroom);
3522 int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb,
3523 			 struct bpf_prog *prog);
3524 bool napi_pp_put_page(struct page *page, bool napi_safe);
3525 
3526 static inline void
3527 skb_page_unref(const struct sk_buff *skb, struct page *page, bool napi_safe)
3528 {
3529 #ifdef CONFIG_PAGE_POOL
3530 	if (skb->pp_recycle && napi_pp_put_page(page, napi_safe))
3531 		return;
3532 #endif
3533 	put_page(page);
3534 }
3535 
3536 static inline void
3537 napi_frag_unref(skb_frag_t *frag, bool recycle, bool napi_safe)
3538 {
3539 	struct page *page = skb_frag_page(frag);
3540 
3541 #ifdef CONFIG_PAGE_POOL
3542 	if (recycle && napi_pp_put_page(page, napi_safe))
3543 		return;
3544 #endif
3545 	put_page(page);
3546 }
3547 
3548 /**
3549  * __skb_frag_unref - release a reference on a paged fragment.
3550  * @frag: the paged fragment
3551  * @recycle: recycle the page if allocated via page_pool
3552  *
3553  * Releases a reference on the paged fragment @frag
3554  * or recycles the page via the page_pool API.
3555  */
3556 static inline void __skb_frag_unref(skb_frag_t *frag, bool recycle)
3557 {
3558 	napi_frag_unref(frag, recycle, false);
3559 }
3560 
3561 /**
3562  * skb_frag_unref - release a reference on a paged fragment of an skb.
3563  * @skb: the buffer
3564  * @f: the fragment offset
3565  *
3566  * Releases a reference on the @f'th paged fragment of @skb.
3567  */
3568 static inline void skb_frag_unref(struct sk_buff *skb, int f)
3569 {
3570 	struct skb_shared_info *shinfo = skb_shinfo(skb);
3571 
3572 	if (!skb_zcopy_managed(skb))
3573 		__skb_frag_unref(&shinfo->frags[f], skb->pp_recycle);
3574 }
3575 
3576 /**
3577  * skb_frag_address - gets the address of the data contained in a paged fragment
3578  * @frag: the paged fragment buffer
3579  *
3580  * Returns the address of the data within @frag. The page must already
3581  * be mapped.
3582  */
3583 static inline void *skb_frag_address(const skb_frag_t *frag)
3584 {
3585 	return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3586 }
3587 
3588 /**
3589  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3590  * @frag: the paged fragment buffer
3591  *
3592  * Returns the address of the data within @frag. Checks that the page
3593  * is mapped and returns %NULL otherwise.
3594  */
3595 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3596 {
3597 	void *ptr = page_address(skb_frag_page(frag));
3598 	if (unlikely(!ptr))
3599 		return NULL;
3600 
3601 	return ptr + skb_frag_off(frag);
3602 }
3603 
3604 /**
3605  * skb_frag_page_copy() - sets the page in a fragment from another fragment
3606  * @fragto: skb fragment where page is set
3607  * @fragfrom: skb fragment page is copied from
3608  */
3609 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3610 				      const skb_frag_t *fragfrom)
3611 {
3612 	fragto->netmem = fragfrom->netmem;
3613 }
3614 
3615 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3616 
3617 /**
3618  * skb_frag_dma_map - maps a paged fragment via the DMA API
3619  * @dev: the device to map the fragment to
3620  * @frag: the paged fragment to map
3621  * @offset: the offset within the fragment (starting at the
3622  *          fragment's own offset)
3623  * @size: the number of bytes to map
3624  * @dir: the direction of the mapping (``PCI_DMA_*``)
3625  *
3626  * Maps the page associated with @frag to @device.
3627  */
3628 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3629 					  const skb_frag_t *frag,
3630 					  size_t offset, size_t size,
3631 					  enum dma_data_direction dir)
3632 {
3633 	return dma_map_page(dev, skb_frag_page(frag),
3634 			    skb_frag_off(frag) + offset, size, dir);
3635 }
3636 
3637 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3638 					gfp_t gfp_mask)
3639 {
3640 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3641 }
3642 
3643 
3644 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3645 						  gfp_t gfp_mask)
3646 {
3647 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3648 }
3649 
3650 
3651 /**
3652  *	skb_clone_writable - is the header of a clone writable
3653  *	@skb: buffer to check
3654  *	@len: length up to which to write
3655  *
3656  *	Returns true if modifying the header part of the cloned buffer
3657  *	does not requires the data to be copied.
3658  */
3659 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3660 {
3661 	return !skb_header_cloned(skb) &&
3662 	       skb_headroom(skb) + len <= skb->hdr_len;
3663 }
3664 
3665 static inline int skb_try_make_writable(struct sk_buff *skb,
3666 					unsigned int write_len)
3667 {
3668 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3669 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3670 }
3671 
3672 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3673 			    int cloned)
3674 {
3675 	int delta = 0;
3676 
3677 	if (headroom > skb_headroom(skb))
3678 		delta = headroom - skb_headroom(skb);
3679 
3680 	if (delta || cloned)
3681 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3682 					GFP_ATOMIC);
3683 	return 0;
3684 }
3685 
3686 /**
3687  *	skb_cow - copy header of skb when it is required
3688  *	@skb: buffer to cow
3689  *	@headroom: needed headroom
3690  *
3691  *	If the skb passed lacks sufficient headroom or its data part
3692  *	is shared, data is reallocated. If reallocation fails, an error
3693  *	is returned and original skb is not changed.
3694  *
3695  *	The result is skb with writable area skb->head...skb->tail
3696  *	and at least @headroom of space at head.
3697  */
3698 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3699 {
3700 	return __skb_cow(skb, headroom, skb_cloned(skb));
3701 }
3702 
3703 /**
3704  *	skb_cow_head - skb_cow but only making the head writable
3705  *	@skb: buffer to cow
3706  *	@headroom: needed headroom
3707  *
3708  *	This function is identical to skb_cow except that we replace the
3709  *	skb_cloned check by skb_header_cloned.  It should be used when
3710  *	you only need to push on some header and do not need to modify
3711  *	the data.
3712  */
3713 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3714 {
3715 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
3716 }
3717 
3718 /**
3719  *	skb_padto	- pad an skbuff up to a minimal size
3720  *	@skb: buffer to pad
3721  *	@len: minimal length
3722  *
3723  *	Pads up a buffer to ensure the trailing bytes exist and are
3724  *	blanked. If the buffer already contains sufficient data it
3725  *	is untouched. Otherwise it is extended. Returns zero on
3726  *	success. The skb is freed on error.
3727  */
3728 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3729 {
3730 	unsigned int size = skb->len;
3731 	if (likely(size >= len))
3732 		return 0;
3733 	return skb_pad(skb, len - size);
3734 }
3735 
3736 /**
3737  *	__skb_put_padto - increase size and pad an skbuff up to a minimal size
3738  *	@skb: buffer to pad
3739  *	@len: minimal length
3740  *	@free_on_error: free buffer on error
3741  *
3742  *	Pads up a buffer to ensure the trailing bytes exist and are
3743  *	blanked. If the buffer already contains sufficient data it
3744  *	is untouched. Otherwise it is extended. Returns zero on
3745  *	success. The skb is freed on error if @free_on_error is true.
3746  */
3747 static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3748 					       unsigned int len,
3749 					       bool free_on_error)
3750 {
3751 	unsigned int size = skb->len;
3752 
3753 	if (unlikely(size < len)) {
3754 		len -= size;
3755 		if (__skb_pad(skb, len, free_on_error))
3756 			return -ENOMEM;
3757 		__skb_put(skb, len);
3758 	}
3759 	return 0;
3760 }
3761 
3762 /**
3763  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3764  *	@skb: buffer to pad
3765  *	@len: minimal length
3766  *
3767  *	Pads up a buffer to ensure the trailing bytes exist and are
3768  *	blanked. If the buffer already contains sufficient data it
3769  *	is untouched. Otherwise it is extended. Returns zero on
3770  *	success. The skb is freed on error.
3771  */
3772 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3773 {
3774 	return __skb_put_padto(skb, len, true);
3775 }
3776 
3777 bool csum_and_copy_from_iter_full(void *addr, size_t bytes, __wsum *csum, struct iov_iter *i)
3778 	__must_check;
3779 
3780 static inline int skb_add_data(struct sk_buff *skb,
3781 			       struct iov_iter *from, int copy)
3782 {
3783 	const int off = skb->len;
3784 
3785 	if (skb->ip_summed == CHECKSUM_NONE) {
3786 		__wsum csum = 0;
3787 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3788 					         &csum, from)) {
3789 			skb->csum = csum_block_add(skb->csum, csum, off);
3790 			return 0;
3791 		}
3792 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3793 		return 0;
3794 
3795 	__skb_trim(skb, off);
3796 	return -EFAULT;
3797 }
3798 
3799 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3800 				    const struct page *page, int off)
3801 {
3802 	if (skb_zcopy(skb))
3803 		return false;
3804 	if (i) {
3805 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3806 
3807 		return page == skb_frag_page(frag) &&
3808 		       off == skb_frag_off(frag) + skb_frag_size(frag);
3809 	}
3810 	return false;
3811 }
3812 
3813 static inline int __skb_linearize(struct sk_buff *skb)
3814 {
3815 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3816 }
3817 
3818 /**
3819  *	skb_linearize - convert paged skb to linear one
3820  *	@skb: buffer to linarize
3821  *
3822  *	If there is no free memory -ENOMEM is returned, otherwise zero
3823  *	is returned and the old skb data released.
3824  */
3825 static inline int skb_linearize(struct sk_buff *skb)
3826 {
3827 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3828 }
3829 
3830 /**
3831  * skb_has_shared_frag - can any frag be overwritten
3832  * @skb: buffer to test
3833  *
3834  * Return true if the skb has at least one frag that might be modified
3835  * by an external entity (as in vmsplice()/sendfile())
3836  */
3837 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3838 {
3839 	return skb_is_nonlinear(skb) &&
3840 	       skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3841 }
3842 
3843 /**
3844  *	skb_linearize_cow - make sure skb is linear and writable
3845  *	@skb: buffer to process
3846  *
3847  *	If there is no free memory -ENOMEM is returned, otherwise zero
3848  *	is returned and the old skb data released.
3849  */
3850 static inline int skb_linearize_cow(struct sk_buff *skb)
3851 {
3852 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3853 	       __skb_linearize(skb) : 0;
3854 }
3855 
3856 static __always_inline void
3857 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3858 		     unsigned int off)
3859 {
3860 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3861 		skb->csum = csum_block_sub(skb->csum,
3862 					   csum_partial(start, len, 0), off);
3863 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3864 		 skb_checksum_start_offset(skb) < 0)
3865 		skb->ip_summed = CHECKSUM_NONE;
3866 }
3867 
3868 /**
3869  *	skb_postpull_rcsum - update checksum for received skb after pull
3870  *	@skb: buffer to update
3871  *	@start: start of data before pull
3872  *	@len: length of data pulled
3873  *
3874  *	After doing a pull on a received packet, you need to call this to
3875  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3876  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3877  */
3878 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3879 				      const void *start, unsigned int len)
3880 {
3881 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3882 		skb->csum = wsum_negate(csum_partial(start, len,
3883 						     wsum_negate(skb->csum)));
3884 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3885 		 skb_checksum_start_offset(skb) < 0)
3886 		skb->ip_summed = CHECKSUM_NONE;
3887 }
3888 
3889 static __always_inline void
3890 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3891 		     unsigned int off)
3892 {
3893 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3894 		skb->csum = csum_block_add(skb->csum,
3895 					   csum_partial(start, len, 0), off);
3896 }
3897 
3898 /**
3899  *	skb_postpush_rcsum - update checksum for received skb after push
3900  *	@skb: buffer to update
3901  *	@start: start of data after push
3902  *	@len: length of data pushed
3903  *
3904  *	After doing a push on a received packet, you need to call this to
3905  *	update the CHECKSUM_COMPLETE checksum.
3906  */
3907 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3908 				      const void *start, unsigned int len)
3909 {
3910 	__skb_postpush_rcsum(skb, start, len, 0);
3911 }
3912 
3913 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3914 
3915 /**
3916  *	skb_push_rcsum - push skb and update receive checksum
3917  *	@skb: buffer to update
3918  *	@len: length of data pulled
3919  *
3920  *	This function performs an skb_push on the packet and updates
3921  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3922  *	receive path processing instead of skb_push unless you know
3923  *	that the checksum difference is zero (e.g., a valid IP header)
3924  *	or you are setting ip_summed to CHECKSUM_NONE.
3925  */
3926 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3927 {
3928 	skb_push(skb, len);
3929 	skb_postpush_rcsum(skb, skb->data, len);
3930 	return skb->data;
3931 }
3932 
3933 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3934 /**
3935  *	pskb_trim_rcsum - trim received skb and update checksum
3936  *	@skb: buffer to trim
3937  *	@len: new length
3938  *
3939  *	This is exactly the same as pskb_trim except that it ensures the
3940  *	checksum of received packets are still valid after the operation.
3941  *	It can change skb pointers.
3942  */
3943 
3944 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3945 {
3946 	if (likely(len >= skb->len))
3947 		return 0;
3948 	return pskb_trim_rcsum_slow(skb, len);
3949 }
3950 
3951 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3952 {
3953 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3954 		skb->ip_summed = CHECKSUM_NONE;
3955 	__skb_trim(skb, len);
3956 	return 0;
3957 }
3958 
3959 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3960 {
3961 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3962 		skb->ip_summed = CHECKSUM_NONE;
3963 	return __skb_grow(skb, len);
3964 }
3965 
3966 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3967 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3968 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3969 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3970 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3971 
3972 #define skb_queue_walk(queue, skb) \
3973 		for (skb = (queue)->next;					\
3974 		     skb != (struct sk_buff *)(queue);				\
3975 		     skb = skb->next)
3976 
3977 #define skb_queue_walk_safe(queue, skb, tmp)					\
3978 		for (skb = (queue)->next, tmp = skb->next;			\
3979 		     skb != (struct sk_buff *)(queue);				\
3980 		     skb = tmp, tmp = skb->next)
3981 
3982 #define skb_queue_walk_from(queue, skb)						\
3983 		for (; skb != (struct sk_buff *)(queue);			\
3984 		     skb = skb->next)
3985 
3986 #define skb_rbtree_walk(skb, root)						\
3987 		for (skb = skb_rb_first(root); skb != NULL;			\
3988 		     skb = skb_rb_next(skb))
3989 
3990 #define skb_rbtree_walk_from(skb)						\
3991 		for (; skb != NULL;						\
3992 		     skb = skb_rb_next(skb))
3993 
3994 #define skb_rbtree_walk_from_safe(skb, tmp)					\
3995 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
3996 		     skb = tmp)
3997 
3998 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3999 		for (tmp = skb->next;						\
4000 		     skb != (struct sk_buff *)(queue);				\
4001 		     skb = tmp, tmp = skb->next)
4002 
4003 #define skb_queue_reverse_walk(queue, skb) \
4004 		for (skb = (queue)->prev;					\
4005 		     skb != (struct sk_buff *)(queue);				\
4006 		     skb = skb->prev)
4007 
4008 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
4009 		for (skb = (queue)->prev, tmp = skb->prev;			\
4010 		     skb != (struct sk_buff *)(queue);				\
4011 		     skb = tmp, tmp = skb->prev)
4012 
4013 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
4014 		for (tmp = skb->prev;						\
4015 		     skb != (struct sk_buff *)(queue);				\
4016 		     skb = tmp, tmp = skb->prev)
4017 
4018 static inline bool skb_has_frag_list(const struct sk_buff *skb)
4019 {
4020 	return skb_shinfo(skb)->frag_list != NULL;
4021 }
4022 
4023 static inline void skb_frag_list_init(struct sk_buff *skb)
4024 {
4025 	skb_shinfo(skb)->frag_list = NULL;
4026 }
4027 
4028 #define skb_walk_frags(skb, iter)	\
4029 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
4030 
4031 
4032 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
4033 				int *err, long *timeo_p,
4034 				const struct sk_buff *skb);
4035 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
4036 					  struct sk_buff_head *queue,
4037 					  unsigned int flags,
4038 					  int *off, int *err,
4039 					  struct sk_buff **last);
4040 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
4041 					struct sk_buff_head *queue,
4042 					unsigned int flags, int *off, int *err,
4043 					struct sk_buff **last);
4044 struct sk_buff *__skb_recv_datagram(struct sock *sk,
4045 				    struct sk_buff_head *sk_queue,
4046 				    unsigned int flags, int *off, int *err);
4047 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err);
4048 __poll_t datagram_poll(struct file *file, struct socket *sock,
4049 			   struct poll_table_struct *wait);
4050 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
4051 			   struct iov_iter *to, int size);
4052 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
4053 					struct msghdr *msg, int size)
4054 {
4055 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
4056 }
4057 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
4058 				   struct msghdr *msg);
4059 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
4060 			   struct iov_iter *to, int len,
4061 			   struct ahash_request *hash);
4062 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
4063 				 struct iov_iter *from, int len);
4064 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
4065 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
4066 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
4067 static inline void skb_free_datagram_locked(struct sock *sk,
4068 					    struct sk_buff *skb)
4069 {
4070 	__skb_free_datagram_locked(sk, skb, 0);
4071 }
4072 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
4073 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
4074 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
4075 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
4076 			      int len);
4077 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
4078 		    struct pipe_inode_info *pipe, unsigned int len,
4079 		    unsigned int flags);
4080 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
4081 			 int len);
4082 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
4083 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
4084 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
4085 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
4086 		 int len, int hlen);
4087 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
4088 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
4089 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
4090 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
4091 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
4092 				 unsigned int offset);
4093 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
4094 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len);
4095 int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev);
4096 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
4097 int skb_vlan_pop(struct sk_buff *skb);
4098 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
4099 int skb_eth_pop(struct sk_buff *skb);
4100 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
4101 		 const unsigned char *src);
4102 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
4103 		  int mac_len, bool ethernet);
4104 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
4105 		 bool ethernet);
4106 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
4107 int skb_mpls_dec_ttl(struct sk_buff *skb);
4108 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
4109 			     gfp_t gfp);
4110 
4111 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
4112 {
4113 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
4114 }
4115 
4116 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
4117 {
4118 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
4119 }
4120 
4121 struct skb_checksum_ops {
4122 	__wsum (*update)(const void *mem, int len, __wsum wsum);
4123 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
4124 };
4125 
4126 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
4127 
4128 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
4129 		      __wsum csum, const struct skb_checksum_ops *ops);
4130 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
4131 		    __wsum csum);
4132 
4133 static inline void * __must_check
4134 __skb_header_pointer(const struct sk_buff *skb, int offset, int len,
4135 		     const void *data, int hlen, void *buffer)
4136 {
4137 	if (likely(hlen - offset >= len))
4138 		return (void *)data + offset;
4139 
4140 	if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0))
4141 		return NULL;
4142 
4143 	return buffer;
4144 }
4145 
4146 static inline void * __must_check
4147 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
4148 {
4149 	return __skb_header_pointer(skb, offset, len, skb->data,
4150 				    skb_headlen(skb), buffer);
4151 }
4152 
4153 static inline void * __must_check
4154 skb_pointer_if_linear(const struct sk_buff *skb, int offset, int len)
4155 {
4156 	if (likely(skb_headlen(skb) - offset >= len))
4157 		return skb->data + offset;
4158 	return NULL;
4159 }
4160 
4161 /**
4162  *	skb_needs_linearize - check if we need to linearize a given skb
4163  *			      depending on the given device features.
4164  *	@skb: socket buffer to check
4165  *	@features: net device features
4166  *
4167  *	Returns true if either:
4168  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
4169  *	2. skb is fragmented and the device does not support SG.
4170  */
4171 static inline bool skb_needs_linearize(struct sk_buff *skb,
4172 				       netdev_features_t features)
4173 {
4174 	return skb_is_nonlinear(skb) &&
4175 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
4176 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
4177 }
4178 
4179 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
4180 					     void *to,
4181 					     const unsigned int len)
4182 {
4183 	memcpy(to, skb->data, len);
4184 }
4185 
4186 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
4187 						    const int offset, void *to,
4188 						    const unsigned int len)
4189 {
4190 	memcpy(to, skb->data + offset, len);
4191 }
4192 
4193 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
4194 					   const void *from,
4195 					   const unsigned int len)
4196 {
4197 	memcpy(skb->data, from, len);
4198 }
4199 
4200 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
4201 						  const int offset,
4202 						  const void *from,
4203 						  const unsigned int len)
4204 {
4205 	memcpy(skb->data + offset, from, len);
4206 }
4207 
4208 void skb_init(void);
4209 
4210 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
4211 {
4212 	return skb->tstamp;
4213 }
4214 
4215 /**
4216  *	skb_get_timestamp - get timestamp from a skb
4217  *	@skb: skb to get stamp from
4218  *	@stamp: pointer to struct __kernel_old_timeval to store stamp in
4219  *
4220  *	Timestamps are stored in the skb as offsets to a base timestamp.
4221  *	This function converts the offset back to a struct timeval and stores
4222  *	it in stamp.
4223  */
4224 static inline void skb_get_timestamp(const struct sk_buff *skb,
4225 				     struct __kernel_old_timeval *stamp)
4226 {
4227 	*stamp = ns_to_kernel_old_timeval(skb->tstamp);
4228 }
4229 
4230 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
4231 					 struct __kernel_sock_timeval *stamp)
4232 {
4233 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4234 
4235 	stamp->tv_sec = ts.tv_sec;
4236 	stamp->tv_usec = ts.tv_nsec / 1000;
4237 }
4238 
4239 static inline void skb_get_timestampns(const struct sk_buff *skb,
4240 				       struct __kernel_old_timespec *stamp)
4241 {
4242 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4243 
4244 	stamp->tv_sec = ts.tv_sec;
4245 	stamp->tv_nsec = ts.tv_nsec;
4246 }
4247 
4248 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
4249 					   struct __kernel_timespec *stamp)
4250 {
4251 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4252 
4253 	stamp->tv_sec = ts.tv_sec;
4254 	stamp->tv_nsec = ts.tv_nsec;
4255 }
4256 
4257 static inline void __net_timestamp(struct sk_buff *skb)
4258 {
4259 	skb->tstamp = ktime_get_real();
4260 	skb->mono_delivery_time = 0;
4261 }
4262 
4263 static inline ktime_t net_timedelta(ktime_t t)
4264 {
4265 	return ktime_sub(ktime_get_real(), t);
4266 }
4267 
4268 static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt,
4269 					 bool mono)
4270 {
4271 	skb->tstamp = kt;
4272 	skb->mono_delivery_time = kt && mono;
4273 }
4274 
4275 DECLARE_STATIC_KEY_FALSE(netstamp_needed_key);
4276 
4277 /* It is used in the ingress path to clear the delivery_time.
4278  * If needed, set the skb->tstamp to the (rcv) timestamp.
4279  */
4280 static inline void skb_clear_delivery_time(struct sk_buff *skb)
4281 {
4282 	if (skb->mono_delivery_time) {
4283 		skb->mono_delivery_time = 0;
4284 		if (static_branch_unlikely(&netstamp_needed_key))
4285 			skb->tstamp = ktime_get_real();
4286 		else
4287 			skb->tstamp = 0;
4288 	}
4289 }
4290 
4291 static inline void skb_clear_tstamp(struct sk_buff *skb)
4292 {
4293 	if (skb->mono_delivery_time)
4294 		return;
4295 
4296 	skb->tstamp = 0;
4297 }
4298 
4299 static inline ktime_t skb_tstamp(const struct sk_buff *skb)
4300 {
4301 	if (skb->mono_delivery_time)
4302 		return 0;
4303 
4304 	return skb->tstamp;
4305 }
4306 
4307 static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond)
4308 {
4309 	if (!skb->mono_delivery_time && skb->tstamp)
4310 		return skb->tstamp;
4311 
4312 	if (static_branch_unlikely(&netstamp_needed_key) || cond)
4313 		return ktime_get_real();
4314 
4315 	return 0;
4316 }
4317 
4318 static inline u8 skb_metadata_len(const struct sk_buff *skb)
4319 {
4320 	return skb_shinfo(skb)->meta_len;
4321 }
4322 
4323 static inline void *skb_metadata_end(const struct sk_buff *skb)
4324 {
4325 	return skb_mac_header(skb);
4326 }
4327 
4328 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
4329 					  const struct sk_buff *skb_b,
4330 					  u8 meta_len)
4331 {
4332 	const void *a = skb_metadata_end(skb_a);
4333 	const void *b = skb_metadata_end(skb_b);
4334 	u64 diffs = 0;
4335 
4336 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) ||
4337 	    BITS_PER_LONG != 64)
4338 		goto slow;
4339 
4340 	/* Using more efficient variant than plain call to memcmp(). */
4341 	switch (meta_len) {
4342 #define __it(x, op) (x -= sizeof(u##op))
4343 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
4344 	case 32: diffs |= __it_diff(a, b, 64);
4345 		fallthrough;
4346 	case 24: diffs |= __it_diff(a, b, 64);
4347 		fallthrough;
4348 	case 16: diffs |= __it_diff(a, b, 64);
4349 		fallthrough;
4350 	case  8: diffs |= __it_diff(a, b, 64);
4351 		break;
4352 	case 28: diffs |= __it_diff(a, b, 64);
4353 		fallthrough;
4354 	case 20: diffs |= __it_diff(a, b, 64);
4355 		fallthrough;
4356 	case 12: diffs |= __it_diff(a, b, 64);
4357 		fallthrough;
4358 	case  4: diffs |= __it_diff(a, b, 32);
4359 		break;
4360 	default:
4361 slow:
4362 		return memcmp(a - meta_len, b - meta_len, meta_len);
4363 	}
4364 	return diffs;
4365 }
4366 
4367 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
4368 					const struct sk_buff *skb_b)
4369 {
4370 	u8 len_a = skb_metadata_len(skb_a);
4371 	u8 len_b = skb_metadata_len(skb_b);
4372 
4373 	if (!(len_a | len_b))
4374 		return false;
4375 
4376 	return len_a != len_b ?
4377 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
4378 }
4379 
4380 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
4381 {
4382 	skb_shinfo(skb)->meta_len = meta_len;
4383 }
4384 
4385 static inline void skb_metadata_clear(struct sk_buff *skb)
4386 {
4387 	skb_metadata_set(skb, 0);
4388 }
4389 
4390 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
4391 
4392 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
4393 
4394 void skb_clone_tx_timestamp(struct sk_buff *skb);
4395 bool skb_defer_rx_timestamp(struct sk_buff *skb);
4396 
4397 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
4398 
4399 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
4400 {
4401 }
4402 
4403 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
4404 {
4405 	return false;
4406 }
4407 
4408 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
4409 
4410 /**
4411  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
4412  *
4413  * PHY drivers may accept clones of transmitted packets for
4414  * timestamping via their phy_driver.txtstamp method. These drivers
4415  * must call this function to return the skb back to the stack with a
4416  * timestamp.
4417  *
4418  * @skb: clone of the original outgoing packet
4419  * @hwtstamps: hardware time stamps
4420  *
4421  */
4422 void skb_complete_tx_timestamp(struct sk_buff *skb,
4423 			       struct skb_shared_hwtstamps *hwtstamps);
4424 
4425 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb,
4426 		     struct skb_shared_hwtstamps *hwtstamps,
4427 		     struct sock *sk, int tstype);
4428 
4429 /**
4430  * skb_tstamp_tx - queue clone of skb with send time stamps
4431  * @orig_skb:	the original outgoing packet
4432  * @hwtstamps:	hardware time stamps, may be NULL if not available
4433  *
4434  * If the skb has a socket associated, then this function clones the
4435  * skb (thus sharing the actual data and optional structures), stores
4436  * the optional hardware time stamping information (if non NULL) or
4437  * generates a software time stamp (otherwise), then queues the clone
4438  * to the error queue of the socket.  Errors are silently ignored.
4439  */
4440 void skb_tstamp_tx(struct sk_buff *orig_skb,
4441 		   struct skb_shared_hwtstamps *hwtstamps);
4442 
4443 /**
4444  * skb_tx_timestamp() - Driver hook for transmit timestamping
4445  *
4446  * Ethernet MAC Drivers should call this function in their hard_xmit()
4447  * function immediately before giving the sk_buff to the MAC hardware.
4448  *
4449  * Specifically, one should make absolutely sure that this function is
4450  * called before TX completion of this packet can trigger.  Otherwise
4451  * the packet could potentially already be freed.
4452  *
4453  * @skb: A socket buffer.
4454  */
4455 static inline void skb_tx_timestamp(struct sk_buff *skb)
4456 {
4457 	skb_clone_tx_timestamp(skb);
4458 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
4459 		skb_tstamp_tx(skb, NULL);
4460 }
4461 
4462 /**
4463  * skb_complete_wifi_ack - deliver skb with wifi status
4464  *
4465  * @skb: the original outgoing packet
4466  * @acked: ack status
4467  *
4468  */
4469 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
4470 
4471 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
4472 __sum16 __skb_checksum_complete(struct sk_buff *skb);
4473 
4474 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
4475 {
4476 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
4477 		skb->csum_valid ||
4478 		(skb->ip_summed == CHECKSUM_PARTIAL &&
4479 		 skb_checksum_start_offset(skb) >= 0));
4480 }
4481 
4482 /**
4483  *	skb_checksum_complete - Calculate checksum of an entire packet
4484  *	@skb: packet to process
4485  *
4486  *	This function calculates the checksum over the entire packet plus
4487  *	the value of skb->csum.  The latter can be used to supply the
4488  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
4489  *	checksum.
4490  *
4491  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
4492  *	this function can be used to verify that checksum on received
4493  *	packets.  In that case the function should return zero if the
4494  *	checksum is correct.  In particular, this function will return zero
4495  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
4496  *	hardware has already verified the correctness of the checksum.
4497  */
4498 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
4499 {
4500 	return skb_csum_unnecessary(skb) ?
4501 	       0 : __skb_checksum_complete(skb);
4502 }
4503 
4504 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
4505 {
4506 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4507 		if (skb->csum_level == 0)
4508 			skb->ip_summed = CHECKSUM_NONE;
4509 		else
4510 			skb->csum_level--;
4511 	}
4512 }
4513 
4514 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
4515 {
4516 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4517 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
4518 			skb->csum_level++;
4519 	} else if (skb->ip_summed == CHECKSUM_NONE) {
4520 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4521 		skb->csum_level = 0;
4522 	}
4523 }
4524 
4525 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
4526 {
4527 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4528 		skb->ip_summed = CHECKSUM_NONE;
4529 		skb->csum_level = 0;
4530 	}
4531 }
4532 
4533 /* Check if we need to perform checksum complete validation.
4534  *
4535  * Returns true if checksum complete is needed, false otherwise
4536  * (either checksum is unnecessary or zero checksum is allowed).
4537  */
4538 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
4539 						  bool zero_okay,
4540 						  __sum16 check)
4541 {
4542 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
4543 		skb->csum_valid = 1;
4544 		__skb_decr_checksum_unnecessary(skb);
4545 		return false;
4546 	}
4547 
4548 	return true;
4549 }
4550 
4551 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
4552  * in checksum_init.
4553  */
4554 #define CHECKSUM_BREAK 76
4555 
4556 /* Unset checksum-complete
4557  *
4558  * Unset checksum complete can be done when packet is being modified
4559  * (uncompressed for instance) and checksum-complete value is
4560  * invalidated.
4561  */
4562 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
4563 {
4564 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4565 		skb->ip_summed = CHECKSUM_NONE;
4566 }
4567 
4568 /* Validate (init) checksum based on checksum complete.
4569  *
4570  * Return values:
4571  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
4572  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4573  *	checksum is stored in skb->csum for use in __skb_checksum_complete
4574  *   non-zero: value of invalid checksum
4575  *
4576  */
4577 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4578 						       bool complete,
4579 						       __wsum psum)
4580 {
4581 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
4582 		if (!csum_fold(csum_add(psum, skb->csum))) {
4583 			skb->csum_valid = 1;
4584 			return 0;
4585 		}
4586 	}
4587 
4588 	skb->csum = psum;
4589 
4590 	if (complete || skb->len <= CHECKSUM_BREAK) {
4591 		__sum16 csum;
4592 
4593 		csum = __skb_checksum_complete(skb);
4594 		skb->csum_valid = !csum;
4595 		return csum;
4596 	}
4597 
4598 	return 0;
4599 }
4600 
4601 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4602 {
4603 	return 0;
4604 }
4605 
4606 /* Perform checksum validate (init). Note that this is a macro since we only
4607  * want to calculate the pseudo header which is an input function if necessary.
4608  * First we try to validate without any computation (checksum unnecessary) and
4609  * then calculate based on checksum complete calling the function to compute
4610  * pseudo header.
4611  *
4612  * Return values:
4613  *   0: checksum is validated or try to in skb_checksum_complete
4614  *   non-zero: value of invalid checksum
4615  */
4616 #define __skb_checksum_validate(skb, proto, complete,			\
4617 				zero_okay, check, compute_pseudo)	\
4618 ({									\
4619 	__sum16 __ret = 0;						\
4620 	skb->csum_valid = 0;						\
4621 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
4622 		__ret = __skb_checksum_validate_complete(skb,		\
4623 				complete, compute_pseudo(skb, proto));	\
4624 	__ret;								\
4625 })
4626 
4627 #define skb_checksum_init(skb, proto, compute_pseudo)			\
4628 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4629 
4630 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
4631 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4632 
4633 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
4634 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4635 
4636 #define skb_checksum_validate_zero_check(skb, proto, check,		\
4637 					 compute_pseudo)		\
4638 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4639 
4640 #define skb_checksum_simple_validate(skb)				\
4641 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4642 
4643 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4644 {
4645 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4646 }
4647 
4648 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4649 {
4650 	skb->csum = ~pseudo;
4651 	skb->ip_summed = CHECKSUM_COMPLETE;
4652 }
4653 
4654 #define skb_checksum_try_convert(skb, proto, compute_pseudo)	\
4655 do {									\
4656 	if (__skb_checksum_convert_check(skb))				\
4657 		__skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4658 } while (0)
4659 
4660 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4661 					      u16 start, u16 offset)
4662 {
4663 	skb->ip_summed = CHECKSUM_PARTIAL;
4664 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4665 	skb->csum_offset = offset - start;
4666 }
4667 
4668 /* Update skbuf and packet to reflect the remote checksum offload operation.
4669  * When called, ptr indicates the starting point for skb->csum when
4670  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4671  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4672  */
4673 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4674 				       int start, int offset, bool nopartial)
4675 {
4676 	__wsum delta;
4677 
4678 	if (!nopartial) {
4679 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
4680 		return;
4681 	}
4682 
4683 	if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4684 		__skb_checksum_complete(skb);
4685 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4686 	}
4687 
4688 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
4689 
4690 	/* Adjust skb->csum since we changed the packet */
4691 	skb->csum = csum_add(skb->csum, delta);
4692 }
4693 
4694 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4695 {
4696 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4697 	return (void *)(skb->_nfct & NFCT_PTRMASK);
4698 #else
4699 	return NULL;
4700 #endif
4701 }
4702 
4703 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4704 {
4705 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4706 	return skb->_nfct;
4707 #else
4708 	return 0UL;
4709 #endif
4710 }
4711 
4712 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4713 {
4714 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4715 	skb->slow_gro |= !!nfct;
4716 	skb->_nfct = nfct;
4717 #endif
4718 }
4719 
4720 #ifdef CONFIG_SKB_EXTENSIONS
4721 enum skb_ext_id {
4722 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4723 	SKB_EXT_BRIDGE_NF,
4724 #endif
4725 #ifdef CONFIG_XFRM
4726 	SKB_EXT_SEC_PATH,
4727 #endif
4728 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4729 	TC_SKB_EXT,
4730 #endif
4731 #if IS_ENABLED(CONFIG_MPTCP)
4732 	SKB_EXT_MPTCP,
4733 #endif
4734 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4735 	SKB_EXT_MCTP,
4736 #endif
4737 	SKB_EXT_NUM, /* must be last */
4738 };
4739 
4740 /**
4741  *	struct skb_ext - sk_buff extensions
4742  *	@refcnt: 1 on allocation, deallocated on 0
4743  *	@offset: offset to add to @data to obtain extension address
4744  *	@chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4745  *	@data: start of extension data, variable sized
4746  *
4747  *	Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4748  *	to use 'u8' types while allowing up to 2kb worth of extension data.
4749  */
4750 struct skb_ext {
4751 	refcount_t refcnt;
4752 	u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4753 	u8 chunks;		/* same */
4754 	char data[] __aligned(8);
4755 };
4756 
4757 struct skb_ext *__skb_ext_alloc(gfp_t flags);
4758 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4759 		    struct skb_ext *ext);
4760 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4761 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4762 void __skb_ext_put(struct skb_ext *ext);
4763 
4764 static inline void skb_ext_put(struct sk_buff *skb)
4765 {
4766 	if (skb->active_extensions)
4767 		__skb_ext_put(skb->extensions);
4768 }
4769 
4770 static inline void __skb_ext_copy(struct sk_buff *dst,
4771 				  const struct sk_buff *src)
4772 {
4773 	dst->active_extensions = src->active_extensions;
4774 
4775 	if (src->active_extensions) {
4776 		struct skb_ext *ext = src->extensions;
4777 
4778 		refcount_inc(&ext->refcnt);
4779 		dst->extensions = ext;
4780 	}
4781 }
4782 
4783 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4784 {
4785 	skb_ext_put(dst);
4786 	__skb_ext_copy(dst, src);
4787 }
4788 
4789 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4790 {
4791 	return !!ext->offset[i];
4792 }
4793 
4794 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4795 {
4796 	return skb->active_extensions & (1 << id);
4797 }
4798 
4799 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4800 {
4801 	if (skb_ext_exist(skb, id))
4802 		__skb_ext_del(skb, id);
4803 }
4804 
4805 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4806 {
4807 	if (skb_ext_exist(skb, id)) {
4808 		struct skb_ext *ext = skb->extensions;
4809 
4810 		return (void *)ext + (ext->offset[id] << 3);
4811 	}
4812 
4813 	return NULL;
4814 }
4815 
4816 static inline void skb_ext_reset(struct sk_buff *skb)
4817 {
4818 	if (unlikely(skb->active_extensions)) {
4819 		__skb_ext_put(skb->extensions);
4820 		skb->active_extensions = 0;
4821 	}
4822 }
4823 
4824 static inline bool skb_has_extensions(struct sk_buff *skb)
4825 {
4826 	return unlikely(skb->active_extensions);
4827 }
4828 #else
4829 static inline void skb_ext_put(struct sk_buff *skb) {}
4830 static inline void skb_ext_reset(struct sk_buff *skb) {}
4831 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4832 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4833 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4834 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4835 #endif /* CONFIG_SKB_EXTENSIONS */
4836 
4837 static inline void nf_reset_ct(struct sk_buff *skb)
4838 {
4839 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4840 	nf_conntrack_put(skb_nfct(skb));
4841 	skb->_nfct = 0;
4842 #endif
4843 }
4844 
4845 static inline void nf_reset_trace(struct sk_buff *skb)
4846 {
4847 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
4848 	skb->nf_trace = 0;
4849 #endif
4850 }
4851 
4852 static inline void ipvs_reset(struct sk_buff *skb)
4853 {
4854 #if IS_ENABLED(CONFIG_IP_VS)
4855 	skb->ipvs_property = 0;
4856 #endif
4857 }
4858 
4859 /* Note: This doesn't put any conntrack info in dst. */
4860 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4861 			     bool copy)
4862 {
4863 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4864 	dst->_nfct = src->_nfct;
4865 	nf_conntrack_get(skb_nfct(src));
4866 #endif
4867 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
4868 	if (copy)
4869 		dst->nf_trace = src->nf_trace;
4870 #endif
4871 }
4872 
4873 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4874 {
4875 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4876 	nf_conntrack_put(skb_nfct(dst));
4877 #endif
4878 	dst->slow_gro = src->slow_gro;
4879 	__nf_copy(dst, src, true);
4880 }
4881 
4882 #ifdef CONFIG_NETWORK_SECMARK
4883 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4884 {
4885 	to->secmark = from->secmark;
4886 }
4887 
4888 static inline void skb_init_secmark(struct sk_buff *skb)
4889 {
4890 	skb->secmark = 0;
4891 }
4892 #else
4893 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4894 { }
4895 
4896 static inline void skb_init_secmark(struct sk_buff *skb)
4897 { }
4898 #endif
4899 
4900 static inline int secpath_exists(const struct sk_buff *skb)
4901 {
4902 #ifdef CONFIG_XFRM
4903 	return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4904 #else
4905 	return 0;
4906 #endif
4907 }
4908 
4909 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4910 {
4911 	return !skb->destructor &&
4912 		!secpath_exists(skb) &&
4913 		!skb_nfct(skb) &&
4914 		!skb->_skb_refdst &&
4915 		!skb_has_frag_list(skb);
4916 }
4917 
4918 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4919 {
4920 	skb->queue_mapping = queue_mapping;
4921 }
4922 
4923 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4924 {
4925 	return skb->queue_mapping;
4926 }
4927 
4928 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4929 {
4930 	to->queue_mapping = from->queue_mapping;
4931 }
4932 
4933 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4934 {
4935 	skb->queue_mapping = rx_queue + 1;
4936 }
4937 
4938 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4939 {
4940 	return skb->queue_mapping - 1;
4941 }
4942 
4943 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4944 {
4945 	return skb->queue_mapping != 0;
4946 }
4947 
4948 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4949 {
4950 	skb->dst_pending_confirm = val;
4951 }
4952 
4953 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4954 {
4955 	return skb->dst_pending_confirm != 0;
4956 }
4957 
4958 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4959 {
4960 #ifdef CONFIG_XFRM
4961 	return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4962 #else
4963 	return NULL;
4964 #endif
4965 }
4966 
4967 static inline bool skb_is_gso(const struct sk_buff *skb)
4968 {
4969 	return skb_shinfo(skb)->gso_size;
4970 }
4971 
4972 /* Note: Should be called only if skb_is_gso(skb) is true */
4973 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4974 {
4975 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4976 }
4977 
4978 /* Note: Should be called only if skb_is_gso(skb) is true */
4979 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4980 {
4981 	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4982 }
4983 
4984 /* Note: Should be called only if skb_is_gso(skb) is true */
4985 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4986 {
4987 	return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4988 }
4989 
4990 static inline void skb_gso_reset(struct sk_buff *skb)
4991 {
4992 	skb_shinfo(skb)->gso_size = 0;
4993 	skb_shinfo(skb)->gso_segs = 0;
4994 	skb_shinfo(skb)->gso_type = 0;
4995 }
4996 
4997 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4998 					 u16 increment)
4999 {
5000 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
5001 		return;
5002 	shinfo->gso_size += increment;
5003 }
5004 
5005 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
5006 					 u16 decrement)
5007 {
5008 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
5009 		return;
5010 	shinfo->gso_size -= decrement;
5011 }
5012 
5013 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
5014 
5015 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
5016 {
5017 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
5018 	 * wanted then gso_type will be set. */
5019 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5020 
5021 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
5022 	    unlikely(shinfo->gso_type == 0)) {
5023 		__skb_warn_lro_forwarding(skb);
5024 		return true;
5025 	}
5026 	return false;
5027 }
5028 
5029 static inline void skb_forward_csum(struct sk_buff *skb)
5030 {
5031 	/* Unfortunately we don't support this one.  Any brave souls? */
5032 	if (skb->ip_summed == CHECKSUM_COMPLETE)
5033 		skb->ip_summed = CHECKSUM_NONE;
5034 }
5035 
5036 /**
5037  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
5038  * @skb: skb to check
5039  *
5040  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
5041  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
5042  * use this helper, to document places where we make this assertion.
5043  */
5044 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
5045 {
5046 	DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE);
5047 }
5048 
5049 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
5050 
5051 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
5052 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5053 				     unsigned int transport_len,
5054 				     __sum16(*skb_chkf)(struct sk_buff *skb));
5055 
5056 /**
5057  * skb_head_is_locked - Determine if the skb->head is locked down
5058  * @skb: skb to check
5059  *
5060  * The head on skbs build around a head frag can be removed if they are
5061  * not cloned.  This function returns true if the skb head is locked down
5062  * due to either being allocated via kmalloc, or by being a clone with
5063  * multiple references to the head.
5064  */
5065 static inline bool skb_head_is_locked(const struct sk_buff *skb)
5066 {
5067 	return !skb->head_frag || skb_cloned(skb);
5068 }
5069 
5070 /* Local Checksum Offload.
5071  * Compute outer checksum based on the assumption that the
5072  * inner checksum will be offloaded later.
5073  * See Documentation/networking/checksum-offloads.rst for
5074  * explanation of how this works.
5075  * Fill in outer checksum adjustment (e.g. with sum of outer
5076  * pseudo-header) before calling.
5077  * Also ensure that inner checksum is in linear data area.
5078  */
5079 static inline __wsum lco_csum(struct sk_buff *skb)
5080 {
5081 	unsigned char *csum_start = skb_checksum_start(skb);
5082 	unsigned char *l4_hdr = skb_transport_header(skb);
5083 	__wsum partial;
5084 
5085 	/* Start with complement of inner checksum adjustment */
5086 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
5087 						    skb->csum_offset));
5088 
5089 	/* Add in checksum of our headers (incl. outer checksum
5090 	 * adjustment filled in by caller) and return result.
5091 	 */
5092 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
5093 }
5094 
5095 static inline bool skb_is_redirected(const struct sk_buff *skb)
5096 {
5097 	return skb->redirected;
5098 }
5099 
5100 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
5101 {
5102 	skb->redirected = 1;
5103 #ifdef CONFIG_NET_REDIRECT
5104 	skb->from_ingress = from_ingress;
5105 	if (skb->from_ingress)
5106 		skb_clear_tstamp(skb);
5107 #endif
5108 }
5109 
5110 static inline void skb_reset_redirect(struct sk_buff *skb)
5111 {
5112 	skb->redirected = 0;
5113 }
5114 
5115 static inline void skb_set_redirected_noclear(struct sk_buff *skb,
5116 					      bool from_ingress)
5117 {
5118 	skb->redirected = 1;
5119 #ifdef CONFIG_NET_REDIRECT
5120 	skb->from_ingress = from_ingress;
5121 #endif
5122 }
5123 
5124 static inline bool skb_csum_is_sctp(struct sk_buff *skb)
5125 {
5126 #if IS_ENABLED(CONFIG_IP_SCTP)
5127 	return skb->csum_not_inet;
5128 #else
5129 	return 0;
5130 #endif
5131 }
5132 
5133 static inline void skb_reset_csum_not_inet(struct sk_buff *skb)
5134 {
5135 	skb->ip_summed = CHECKSUM_NONE;
5136 #if IS_ENABLED(CONFIG_IP_SCTP)
5137 	skb->csum_not_inet = 0;
5138 #endif
5139 }
5140 
5141 static inline void skb_set_kcov_handle(struct sk_buff *skb,
5142 				       const u64 kcov_handle)
5143 {
5144 #ifdef CONFIG_KCOV
5145 	skb->kcov_handle = kcov_handle;
5146 #endif
5147 }
5148 
5149 static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
5150 {
5151 #ifdef CONFIG_KCOV
5152 	return skb->kcov_handle;
5153 #else
5154 	return 0;
5155 #endif
5156 }
5157 
5158 static inline void skb_mark_for_recycle(struct sk_buff *skb)
5159 {
5160 #ifdef CONFIG_PAGE_POOL
5161 	skb->pp_recycle = 1;
5162 #endif
5163 }
5164 
5165 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter,
5166 			     ssize_t maxsize, gfp_t gfp);
5167 
5168 #endif	/* __KERNEL__ */
5169 #endif	/* _LINUX_SKBUFF_H */
5170