xref: /linux-6.15/include/linux/skbuff.h (revision da29e4b4)
1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <[email protected]>
6  *		Florian La Roche, <[email protected]>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/bug.h>
21 #include <linux/cache.h>
22 #include <linux/rbtree.h>
23 #include <linux/socket.h>
24 #include <linux/refcount.h>
25 
26 #include <linux/atomic.h>
27 #include <asm/types.h>
28 #include <linux/spinlock.h>
29 #include <linux/net.h>
30 #include <linux/textsearch.h>
31 #include <net/checksum.h>
32 #include <linux/rcupdate.h>
33 #include <linux/hrtimer.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/netdev_features.h>
36 #include <linux/sched.h>
37 #include <linux/sched/clock.h>
38 #include <net/flow_dissector.h>
39 #include <linux/splice.h>
40 #include <linux/in6.h>
41 #include <linux/if_packet.h>
42 #include <net/flow.h>
43 
44 /* The interface for checksum offload between the stack and networking drivers
45  * is as follows...
46  *
47  * A. IP checksum related features
48  *
49  * Drivers advertise checksum offload capabilities in the features of a device.
50  * From the stack's point of view these are capabilities offered by the driver,
51  * a driver typically only advertises features that it is capable of offloading
52  * to its device.
53  *
54  * The checksum related features are:
55  *
56  *	NETIF_F_HW_CSUM	- The driver (or its device) is able to compute one
57  *			  IP (one's complement) checksum for any combination
58  *			  of protocols or protocol layering. The checksum is
59  *			  computed and set in a packet per the CHECKSUM_PARTIAL
60  *			  interface (see below).
61  *
62  *	NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
63  *			  TCP or UDP packets over IPv4. These are specifically
64  *			  unencapsulated packets of the form IPv4|TCP or
65  *			  IPv4|UDP where the Protocol field in the IPv4 header
66  *			  is TCP or UDP. The IPv4 header may contain IP options
67  *			  This feature cannot be set in features for a device
68  *			  with NETIF_F_HW_CSUM also set. This feature is being
69  *			  DEPRECATED (see below).
70  *
71  *	NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
72  *			  TCP or UDP packets over IPv6. These are specifically
73  *			  unencapsulated packets of the form IPv6|TCP or
74  *			  IPv4|UDP where the Next Header field in the IPv6
75  *			  header is either TCP or UDP. IPv6 extension headers
76  *			  are not supported with this feature. This feature
77  *			  cannot be set in features for a device with
78  *			  NETIF_F_HW_CSUM also set. This feature is being
79  *			  DEPRECATED (see below).
80  *
81  *	NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
82  *			 This flag is used only used to disable the RX checksum
83  *			 feature for a device. The stack will accept receive
84  *			 checksum indication in packets received on a device
85  *			 regardless of whether NETIF_F_RXCSUM is set.
86  *
87  * B. Checksumming of received packets by device. Indication of checksum
88  *    verification is in set skb->ip_summed. Possible values are:
89  *
90  * CHECKSUM_NONE:
91  *
92  *   Device did not checksum this packet e.g. due to lack of capabilities.
93  *   The packet contains full (though not verified) checksum in packet but
94  *   not in skb->csum. Thus, skb->csum is undefined in this case.
95  *
96  * CHECKSUM_UNNECESSARY:
97  *
98  *   The hardware you're dealing with doesn't calculate the full checksum
99  *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
100  *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
101  *   if their checksums are okay. skb->csum is still undefined in this case
102  *   though. A driver or device must never modify the checksum field in the
103  *   packet even if checksum is verified.
104  *
105  *   CHECKSUM_UNNECESSARY is applicable to following protocols:
106  *     TCP: IPv6 and IPv4.
107  *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
108  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
109  *       may perform further validation in this case.
110  *     GRE: only if the checksum is present in the header.
111  *     SCTP: indicates the CRC in SCTP header has been validated.
112  *     FCOE: indicates the CRC in FC frame has been validated.
113  *
114  *   skb->csum_level indicates the number of consecutive checksums found in
115  *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
116  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
117  *   and a device is able to verify the checksums for UDP (possibly zero),
118  *   GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
119  *   two. If the device were only able to verify the UDP checksum and not
120  *   GRE, either because it doesn't support GRE checksum of because GRE
121  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
122  *   not considered in this case).
123  *
124  * CHECKSUM_COMPLETE:
125  *
126  *   This is the most generic way. The device supplied checksum of the _whole_
127  *   packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
128  *   hardware doesn't need to parse L3/L4 headers to implement this.
129  *
130  *   Notes:
131  *   - Even if device supports only some protocols, but is able to produce
132  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
133  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
134  *
135  * CHECKSUM_PARTIAL:
136  *
137  *   A checksum is set up to be offloaded to a device as described in the
138  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
139  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
140  *   on the same host, or it may be set in the input path in GRO or remote
141  *   checksum offload. For the purposes of checksum verification, the checksum
142  *   referred to by skb->csum_start + skb->csum_offset and any preceding
143  *   checksums in the packet are considered verified. Any checksums in the
144  *   packet that are after the checksum being offloaded are not considered to
145  *   be verified.
146  *
147  * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
148  *    in the skb->ip_summed for a packet. Values are:
149  *
150  * CHECKSUM_PARTIAL:
151  *
152  *   The driver is required to checksum the packet as seen by hard_start_xmit()
153  *   from skb->csum_start up to the end, and to record/write the checksum at
154  *   offset skb->csum_start + skb->csum_offset. A driver may verify that the
155  *   csum_start and csum_offset values are valid values given the length and
156  *   offset of the packet, however they should not attempt to validate that the
157  *   checksum refers to a legitimate transport layer checksum-- it is the
158  *   purview of the stack to validate that csum_start and csum_offset are set
159  *   correctly.
160  *
161  *   When the stack requests checksum offload for a packet, the driver MUST
162  *   ensure that the checksum is set correctly. A driver can either offload the
163  *   checksum calculation to the device, or call skb_checksum_help (in the case
164  *   that the device does not support offload for a particular checksum).
165  *
166  *   NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
167  *   NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
168  *   checksum offload capability.
169  *   skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
170  *   on network device checksumming capabilities: if a packet does not match
171  *   them, skb_checksum_help or skb_crc32c_help (depending on the value of
172  *   csum_not_inet, see item D.) is called to resolve the checksum.
173  *
174  * CHECKSUM_NONE:
175  *
176  *   The skb was already checksummed by the protocol, or a checksum is not
177  *   required.
178  *
179  * CHECKSUM_UNNECESSARY:
180  *
181  *   This has the same meaning on as CHECKSUM_NONE for checksum offload on
182  *   output.
183  *
184  * CHECKSUM_COMPLETE:
185  *   Not used in checksum output. If a driver observes a packet with this value
186  *   set in skbuff, if should treat as CHECKSUM_NONE being set.
187  *
188  * D. Non-IP checksum (CRC) offloads
189  *
190  *   NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
191  *     offloading the SCTP CRC in a packet. To perform this offload the stack
192  *     will set set csum_start and csum_offset accordingly, set ip_summed to
193  *     CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
194  *     the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
195  *     A driver that supports both IP checksum offload and SCTP CRC32c offload
196  *     must verify which offload is configured for a packet by testing the
197  *     value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
198  *     CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
199  *
200  *   NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
201  *     offloading the FCOE CRC in a packet. To perform this offload the stack
202  *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
203  *     accordingly. Note the there is no indication in the skbuff that the
204  *     CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
205  *     both IP checksum offload and FCOE CRC offload must verify which offload
206  *     is configured for a packet presumably by inspecting packet headers.
207  *
208  * E. Checksumming on output with GSO.
209  *
210  * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
211  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
212  * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
213  * part of the GSO operation is implied. If a checksum is being offloaded
214  * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
215  * are set to refer to the outermost checksum being offload (two offloaded
216  * checksums are possible with UDP encapsulation).
217  */
218 
219 /* Don't change this without changing skb_csum_unnecessary! */
220 #define CHECKSUM_NONE		0
221 #define CHECKSUM_UNNECESSARY	1
222 #define CHECKSUM_COMPLETE	2
223 #define CHECKSUM_PARTIAL	3
224 
225 /* Maximum value in skb->csum_level */
226 #define SKB_MAX_CSUM_LEVEL	3
227 
228 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
229 #define SKB_WITH_OVERHEAD(X)	\
230 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
231 #define SKB_MAX_ORDER(X, ORDER) \
232 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
233 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
234 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
235 
236 /* return minimum truesize of one skb containing X bytes of data */
237 #define SKB_TRUESIZE(X) ((X) +						\
238 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
239 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
240 
241 struct net_device;
242 struct scatterlist;
243 struct pipe_inode_info;
244 struct iov_iter;
245 struct napi_struct;
246 struct bpf_prog;
247 union bpf_attr;
248 struct skb_ext;
249 
250 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
251 struct nf_conntrack {
252 	atomic_t use;
253 };
254 #endif
255 
256 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
257 struct nf_bridge_info {
258 	enum {
259 		BRNF_PROTO_UNCHANGED,
260 		BRNF_PROTO_8021Q,
261 		BRNF_PROTO_PPPOE
262 	} orig_proto:8;
263 	u8			pkt_otherhost:1;
264 	u8			in_prerouting:1;
265 	u8			bridged_dnat:1;
266 	__u16			frag_max_size;
267 	struct net_device	*physindev;
268 
269 	/* always valid & non-NULL from FORWARD on, for physdev match */
270 	struct net_device	*physoutdev;
271 	union {
272 		/* prerouting: detect dnat in orig/reply direction */
273 		__be32          ipv4_daddr;
274 		struct in6_addr ipv6_daddr;
275 
276 		/* after prerouting + nat detected: store original source
277 		 * mac since neigh resolution overwrites it, only used while
278 		 * skb is out in neigh layer.
279 		 */
280 		char neigh_header[8];
281 	};
282 };
283 #endif
284 
285 struct sk_buff_head {
286 	/* These two members must be first. */
287 	struct sk_buff	*next;
288 	struct sk_buff	*prev;
289 
290 	__u32		qlen;
291 	spinlock_t	lock;
292 };
293 
294 struct sk_buff;
295 
296 /* To allow 64K frame to be packed as single skb without frag_list we
297  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
298  * buffers which do not start on a page boundary.
299  *
300  * Since GRO uses frags we allocate at least 16 regardless of page
301  * size.
302  */
303 #if (65536/PAGE_SIZE + 1) < 16
304 #define MAX_SKB_FRAGS 16UL
305 #else
306 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
307 #endif
308 extern int sysctl_max_skb_frags;
309 
310 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
311  * segment using its current segmentation instead.
312  */
313 #define GSO_BY_FRAGS	0xFFFF
314 
315 typedef struct skb_frag_struct skb_frag_t;
316 
317 struct skb_frag_struct {
318 	struct {
319 		struct page *p;
320 	} page;
321 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
322 	__u32 page_offset;
323 	__u32 size;
324 #else
325 	__u16 page_offset;
326 	__u16 size;
327 #endif
328 };
329 
330 /**
331  * skb_frag_size - Returns the size of a skb fragment
332  * @frag: skb fragment
333  */
334 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
335 {
336 	return frag->size;
337 }
338 
339 /**
340  * skb_frag_size_set - Sets the size of a skb fragment
341  * @frag: skb fragment
342  * @size: size of fragment
343  */
344 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
345 {
346 	frag->size = size;
347 }
348 
349 /**
350  * skb_frag_size_add - Incrementes the size of a skb fragment by %delta
351  * @frag: skb fragment
352  * @delta: value to add
353  */
354 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
355 {
356 	frag->size += delta;
357 }
358 
359 /**
360  * skb_frag_size_sub - Decrements the size of a skb fragment by %delta
361  * @frag: skb fragment
362  * @delta: value to subtract
363  */
364 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
365 {
366 	frag->size -= delta;
367 }
368 
369 /**
370  * skb_frag_must_loop - Test if %p is a high memory page
371  * @p: fragment's page
372  */
373 static inline bool skb_frag_must_loop(struct page *p)
374 {
375 #if defined(CONFIG_HIGHMEM)
376 	if (PageHighMem(p))
377 		return true;
378 #endif
379 	return false;
380 }
381 
382 /**
383  *	skb_frag_foreach_page - loop over pages in a fragment
384  *
385  *	@f:		skb frag to operate on
386  *	@f_off:		offset from start of f->page.p
387  *	@f_len:		length from f_off to loop over
388  *	@p:		(temp var) current page
389  *	@p_off:		(temp var) offset from start of current page,
390  *	                           non-zero only on first page.
391  *	@p_len:		(temp var) length in current page,
392  *				   < PAGE_SIZE only on first and last page.
393  *	@copied:	(temp var) length so far, excluding current p_len.
394  *
395  *	A fragment can hold a compound page, in which case per-page
396  *	operations, notably kmap_atomic, must be called for each
397  *	regular page.
398  */
399 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
400 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
401 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
402 	     p_len = skb_frag_must_loop(p) ?				\
403 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
404 	     copied = 0;						\
405 	     copied < f_len;						\
406 	     copied += p_len, p++, p_off = 0,				\
407 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
408 
409 #define HAVE_HW_TIME_STAMP
410 
411 /**
412  * struct skb_shared_hwtstamps - hardware time stamps
413  * @hwtstamp:	hardware time stamp transformed into duration
414  *		since arbitrary point in time
415  *
416  * Software time stamps generated by ktime_get_real() are stored in
417  * skb->tstamp.
418  *
419  * hwtstamps can only be compared against other hwtstamps from
420  * the same device.
421  *
422  * This structure is attached to packets as part of the
423  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
424  */
425 struct skb_shared_hwtstamps {
426 	ktime_t	hwtstamp;
427 };
428 
429 /* Definitions for tx_flags in struct skb_shared_info */
430 enum {
431 	/* generate hardware time stamp */
432 	SKBTX_HW_TSTAMP = 1 << 0,
433 
434 	/* generate software time stamp when queueing packet to NIC */
435 	SKBTX_SW_TSTAMP = 1 << 1,
436 
437 	/* device driver is going to provide hardware time stamp */
438 	SKBTX_IN_PROGRESS = 1 << 2,
439 
440 	/* device driver supports TX zero-copy buffers */
441 	SKBTX_DEV_ZEROCOPY = 1 << 3,
442 
443 	/* generate wifi status information (where possible) */
444 	SKBTX_WIFI_STATUS = 1 << 4,
445 
446 	/* This indicates at least one fragment might be overwritten
447 	 * (as in vmsplice(), sendfile() ...)
448 	 * If we need to compute a TX checksum, we'll need to copy
449 	 * all frags to avoid possible bad checksum
450 	 */
451 	SKBTX_SHARED_FRAG = 1 << 5,
452 
453 	/* generate software time stamp when entering packet scheduling */
454 	SKBTX_SCHED_TSTAMP = 1 << 6,
455 };
456 
457 #define SKBTX_ZEROCOPY_FRAG	(SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG)
458 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
459 				 SKBTX_SCHED_TSTAMP)
460 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
461 
462 /*
463  * The callback notifies userspace to release buffers when skb DMA is done in
464  * lower device, the skb last reference should be 0 when calling this.
465  * The zerocopy_success argument is true if zero copy transmit occurred,
466  * false on data copy or out of memory error caused by data copy attempt.
467  * The ctx field is used to track device context.
468  * The desc field is used to track userspace buffer index.
469  */
470 struct ubuf_info {
471 	void (*callback)(struct ubuf_info *, bool zerocopy_success);
472 	union {
473 		struct {
474 			unsigned long desc;
475 			void *ctx;
476 		};
477 		struct {
478 			u32 id;
479 			u16 len;
480 			u16 zerocopy:1;
481 			u32 bytelen;
482 		};
483 	};
484 	refcount_t refcnt;
485 
486 	struct mmpin {
487 		struct user_struct *user;
488 		unsigned int num_pg;
489 	} mmp;
490 };
491 
492 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
493 
494 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
495 void mm_unaccount_pinned_pages(struct mmpin *mmp);
496 
497 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size);
498 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
499 					struct ubuf_info *uarg);
500 
501 static inline void sock_zerocopy_get(struct ubuf_info *uarg)
502 {
503 	refcount_inc(&uarg->refcnt);
504 }
505 
506 void sock_zerocopy_put(struct ubuf_info *uarg);
507 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
508 
509 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success);
510 
511 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len);
512 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
513 			     struct msghdr *msg, int len,
514 			     struct ubuf_info *uarg);
515 
516 /* This data is invariant across clones and lives at
517  * the end of the header data, ie. at skb->end.
518  */
519 struct skb_shared_info {
520 	__u8		__unused;
521 	__u8		meta_len;
522 	__u8		nr_frags;
523 	__u8		tx_flags;
524 	unsigned short	gso_size;
525 	/* Warning: this field is not always filled in (UFO)! */
526 	unsigned short	gso_segs;
527 	struct sk_buff	*frag_list;
528 	struct skb_shared_hwtstamps hwtstamps;
529 	unsigned int	gso_type;
530 	u32		tskey;
531 
532 	/*
533 	 * Warning : all fields before dataref are cleared in __alloc_skb()
534 	 */
535 	atomic_t	dataref;
536 
537 	/* Intermediate layers must ensure that destructor_arg
538 	 * remains valid until skb destructor */
539 	void *		destructor_arg;
540 
541 	/* must be last field, see pskb_expand_head() */
542 	skb_frag_t	frags[MAX_SKB_FRAGS];
543 };
544 
545 /* We divide dataref into two halves.  The higher 16 bits hold references
546  * to the payload part of skb->data.  The lower 16 bits hold references to
547  * the entire skb->data.  A clone of a headerless skb holds the length of
548  * the header in skb->hdr_len.
549  *
550  * All users must obey the rule that the skb->data reference count must be
551  * greater than or equal to the payload reference count.
552  *
553  * Holding a reference to the payload part means that the user does not
554  * care about modifications to the header part of skb->data.
555  */
556 #define SKB_DATAREF_SHIFT 16
557 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
558 
559 
560 enum {
561 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
562 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
563 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
564 };
565 
566 enum {
567 	SKB_GSO_TCPV4 = 1 << 0,
568 
569 	/* This indicates the skb is from an untrusted source. */
570 	SKB_GSO_DODGY = 1 << 1,
571 
572 	/* This indicates the tcp segment has CWR set. */
573 	SKB_GSO_TCP_ECN = 1 << 2,
574 
575 	SKB_GSO_TCP_FIXEDID = 1 << 3,
576 
577 	SKB_GSO_TCPV6 = 1 << 4,
578 
579 	SKB_GSO_FCOE = 1 << 5,
580 
581 	SKB_GSO_GRE = 1 << 6,
582 
583 	SKB_GSO_GRE_CSUM = 1 << 7,
584 
585 	SKB_GSO_IPXIP4 = 1 << 8,
586 
587 	SKB_GSO_IPXIP6 = 1 << 9,
588 
589 	SKB_GSO_UDP_TUNNEL = 1 << 10,
590 
591 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
592 
593 	SKB_GSO_PARTIAL = 1 << 12,
594 
595 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
596 
597 	SKB_GSO_SCTP = 1 << 14,
598 
599 	SKB_GSO_ESP = 1 << 15,
600 
601 	SKB_GSO_UDP = 1 << 16,
602 
603 	SKB_GSO_UDP_L4 = 1 << 17,
604 };
605 
606 #if BITS_PER_LONG > 32
607 #define NET_SKBUFF_DATA_USES_OFFSET 1
608 #endif
609 
610 #ifdef NET_SKBUFF_DATA_USES_OFFSET
611 typedef unsigned int sk_buff_data_t;
612 #else
613 typedef unsigned char *sk_buff_data_t;
614 #endif
615 
616 /**
617  *	struct sk_buff - socket buffer
618  *	@next: Next buffer in list
619  *	@prev: Previous buffer in list
620  *	@tstamp: Time we arrived/left
621  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
622  *	@sk: Socket we are owned by
623  *	@dev: Device we arrived on/are leaving by
624  *	@cb: Control buffer. Free for use by every layer. Put private vars here
625  *	@_skb_refdst: destination entry (with norefcount bit)
626  *	@sp: the security path, used for xfrm
627  *	@len: Length of actual data
628  *	@data_len: Data length
629  *	@mac_len: Length of link layer header
630  *	@hdr_len: writable header length of cloned skb
631  *	@csum: Checksum (must include start/offset pair)
632  *	@csum_start: Offset from skb->head where checksumming should start
633  *	@csum_offset: Offset from csum_start where checksum should be stored
634  *	@priority: Packet queueing priority
635  *	@ignore_df: allow local fragmentation
636  *	@cloned: Head may be cloned (check refcnt to be sure)
637  *	@ip_summed: Driver fed us an IP checksum
638  *	@nohdr: Payload reference only, must not modify header
639  *	@pkt_type: Packet class
640  *	@fclone: skbuff clone status
641  *	@ipvs_property: skbuff is owned by ipvs
642  *	@offload_fwd_mark: Packet was L2-forwarded in hardware
643  *	@offload_l3_fwd_mark: Packet was L3-forwarded in hardware
644  *	@tc_skip_classify: do not classify packet. set by IFB device
645  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
646  *	@tc_redirected: packet was redirected by a tc action
647  *	@tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect
648  *	@peeked: this packet has been seen already, so stats have been
649  *		done for it, don't do them again
650  *	@nf_trace: netfilter packet trace flag
651  *	@protocol: Packet protocol from driver
652  *	@destructor: Destruct function
653  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
654  *	@_nfct: Associated connection, if any (with nfctinfo bits)
655  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
656  *	@skb_iif: ifindex of device we arrived on
657  *	@tc_index: Traffic control index
658  *	@hash: the packet hash
659  *	@queue_mapping: Queue mapping for multiqueue devices
660  *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
661  *	@active_extensions: active extensions (skb_ext_id types)
662  *	@ndisc_nodetype: router type (from link layer)
663  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
664  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
665  *		ports.
666  *	@sw_hash: indicates hash was computed in software stack
667  *	@wifi_acked_valid: wifi_acked was set
668  *	@wifi_acked: whether frame was acked on wifi or not
669  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
670  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
671  *	@dst_pending_confirm: need to confirm neighbour
672  *	@decrypted: Decrypted SKB
673  *	@napi_id: id of the NAPI struct this skb came from
674  *	@secmark: security marking
675  *	@mark: Generic packet mark
676  *	@vlan_proto: vlan encapsulation protocol
677  *	@vlan_tci: vlan tag control information
678  *	@inner_protocol: Protocol (encapsulation)
679  *	@inner_transport_header: Inner transport layer header (encapsulation)
680  *	@inner_network_header: Network layer header (encapsulation)
681  *	@inner_mac_header: Link layer header (encapsulation)
682  *	@transport_header: Transport layer header
683  *	@network_header: Network layer header
684  *	@mac_header: Link layer header
685  *	@tail: Tail pointer
686  *	@end: End pointer
687  *	@head: Head of buffer
688  *	@data: Data head pointer
689  *	@truesize: Buffer size
690  *	@users: User count - see {datagram,tcp}.c
691  *	@extensions: allocated extensions, valid if active_extensions is nonzero
692  */
693 
694 struct sk_buff {
695 	union {
696 		struct {
697 			/* These two members must be first. */
698 			struct sk_buff		*next;
699 			struct sk_buff		*prev;
700 
701 			union {
702 				struct net_device	*dev;
703 				/* Some protocols might use this space to store information,
704 				 * while device pointer would be NULL.
705 				 * UDP receive path is one user.
706 				 */
707 				unsigned long		dev_scratch;
708 			};
709 		};
710 		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
711 		struct list_head	list;
712 	};
713 
714 	union {
715 		struct sock		*sk;
716 		int			ip_defrag_offset;
717 	};
718 
719 	union {
720 		ktime_t		tstamp;
721 		u64		skb_mstamp_ns; /* earliest departure time */
722 	};
723 	/*
724 	 * This is the control buffer. It is free to use for every
725 	 * layer. Please put your private variables there. If you
726 	 * want to keep them across layers you have to do a skb_clone()
727 	 * first. This is owned by whoever has the skb queued ATM.
728 	 */
729 	char			cb[48] __aligned(8);
730 
731 	union {
732 		struct {
733 			unsigned long	_skb_refdst;
734 			void		(*destructor)(struct sk_buff *skb);
735 		};
736 		struct list_head	tcp_tsorted_anchor;
737 	};
738 
739 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
740 	unsigned long		 _nfct;
741 #endif
742 	unsigned int		len,
743 				data_len;
744 	__u16			mac_len,
745 				hdr_len;
746 
747 	/* Following fields are _not_ copied in __copy_skb_header()
748 	 * Note that queue_mapping is here mostly to fill a hole.
749 	 */
750 	__u16			queue_mapping;
751 
752 /* if you move cloned around you also must adapt those constants */
753 #ifdef __BIG_ENDIAN_BITFIELD
754 #define CLONED_MASK	(1 << 7)
755 #else
756 #define CLONED_MASK	1
757 #endif
758 #define CLONED_OFFSET()		offsetof(struct sk_buff, __cloned_offset)
759 
760 	__u8			__cloned_offset[0];
761 	__u8			cloned:1,
762 				nohdr:1,
763 				fclone:2,
764 				peeked:1,
765 				head_frag:1,
766 				pfmemalloc:1;
767 #ifdef CONFIG_SKB_EXTENSIONS
768 	__u8			active_extensions;
769 #endif
770 	/* fields enclosed in headers_start/headers_end are copied
771 	 * using a single memcpy() in __copy_skb_header()
772 	 */
773 	/* private: */
774 	__u32			headers_start[0];
775 	/* public: */
776 
777 /* if you move pkt_type around you also must adapt those constants */
778 #ifdef __BIG_ENDIAN_BITFIELD
779 #define PKT_TYPE_MAX	(7 << 5)
780 #else
781 #define PKT_TYPE_MAX	7
782 #endif
783 #define PKT_TYPE_OFFSET()	offsetof(struct sk_buff, __pkt_type_offset)
784 
785 	__u8			__pkt_type_offset[0];
786 	__u8			pkt_type:3;
787 	__u8			ignore_df:1;
788 	__u8			nf_trace:1;
789 	__u8			ip_summed:2;
790 	__u8			ooo_okay:1;
791 
792 	__u8			l4_hash:1;
793 	__u8			sw_hash:1;
794 	__u8			wifi_acked_valid:1;
795 	__u8			wifi_acked:1;
796 	__u8			no_fcs:1;
797 	/* Indicates the inner headers are valid in the skbuff. */
798 	__u8			encapsulation:1;
799 	__u8			encap_hdr_csum:1;
800 	__u8			csum_valid:1;
801 
802 #ifdef __BIG_ENDIAN_BITFIELD
803 #define PKT_VLAN_PRESENT_BIT	7
804 #else
805 #define PKT_VLAN_PRESENT_BIT	0
806 #endif
807 #define PKT_VLAN_PRESENT_OFFSET()	offsetof(struct sk_buff, __pkt_vlan_present_offset)
808 	__u8			__pkt_vlan_present_offset[0];
809 	__u8			vlan_present:1;
810 	__u8			csum_complete_sw:1;
811 	__u8			csum_level:2;
812 	__u8			csum_not_inet:1;
813 	__u8			dst_pending_confirm:1;
814 #ifdef CONFIG_IPV6_NDISC_NODETYPE
815 	__u8			ndisc_nodetype:2;
816 #endif
817 
818 	__u8			ipvs_property:1;
819 	__u8			inner_protocol_type:1;
820 	__u8			remcsum_offload:1;
821 #ifdef CONFIG_NET_SWITCHDEV
822 	__u8			offload_fwd_mark:1;
823 	__u8			offload_l3_fwd_mark:1;
824 #endif
825 #ifdef CONFIG_NET_CLS_ACT
826 	__u8			tc_skip_classify:1;
827 	__u8			tc_at_ingress:1;
828 	__u8			tc_redirected:1;
829 	__u8			tc_from_ingress:1;
830 #endif
831 #ifdef CONFIG_TLS_DEVICE
832 	__u8			decrypted:1;
833 #endif
834 
835 #ifdef CONFIG_NET_SCHED
836 	__u16			tc_index;	/* traffic control index */
837 #endif
838 
839 	union {
840 		__wsum		csum;
841 		struct {
842 			__u16	csum_start;
843 			__u16	csum_offset;
844 		};
845 	};
846 	__u32			priority;
847 	int			skb_iif;
848 	__u32			hash;
849 	__be16			vlan_proto;
850 	__u16			vlan_tci;
851 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
852 	union {
853 		unsigned int	napi_id;
854 		unsigned int	sender_cpu;
855 	};
856 #endif
857 #ifdef CONFIG_NETWORK_SECMARK
858 	__u32		secmark;
859 #endif
860 
861 	union {
862 		__u32		mark;
863 		__u32		reserved_tailroom;
864 	};
865 
866 	union {
867 		__be16		inner_protocol;
868 		__u8		inner_ipproto;
869 	};
870 
871 	__u16			inner_transport_header;
872 	__u16			inner_network_header;
873 	__u16			inner_mac_header;
874 
875 	__be16			protocol;
876 	__u16			transport_header;
877 	__u16			network_header;
878 	__u16			mac_header;
879 
880 	/* private: */
881 	__u32			headers_end[0];
882 	/* public: */
883 
884 	/* These elements must be at the end, see alloc_skb() for details.  */
885 	sk_buff_data_t		tail;
886 	sk_buff_data_t		end;
887 	unsigned char		*head,
888 				*data;
889 	unsigned int		truesize;
890 	refcount_t		users;
891 
892 #ifdef CONFIG_SKB_EXTENSIONS
893 	/* only useable after checking ->active_extensions != 0 */
894 	struct skb_ext		*extensions;
895 #endif
896 };
897 
898 #ifdef __KERNEL__
899 /*
900  *	Handling routines are only of interest to the kernel
901  */
902 
903 #define SKB_ALLOC_FCLONE	0x01
904 #define SKB_ALLOC_RX		0x02
905 #define SKB_ALLOC_NAPI		0x04
906 
907 /**
908  * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
909  * @skb: buffer
910  */
911 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
912 {
913 	return unlikely(skb->pfmemalloc);
914 }
915 
916 /*
917  * skb might have a dst pointer attached, refcounted or not.
918  * _skb_refdst low order bit is set if refcount was _not_ taken
919  */
920 #define SKB_DST_NOREF	1UL
921 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
922 
923 #define SKB_NFCT_PTRMASK	~(7UL)
924 /**
925  * skb_dst - returns skb dst_entry
926  * @skb: buffer
927  *
928  * Returns skb dst_entry, regardless of reference taken or not.
929  */
930 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
931 {
932 	/* If refdst was not refcounted, check we still are in a
933 	 * rcu_read_lock section
934 	 */
935 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
936 		!rcu_read_lock_held() &&
937 		!rcu_read_lock_bh_held());
938 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
939 }
940 
941 /**
942  * skb_dst_set - sets skb dst
943  * @skb: buffer
944  * @dst: dst entry
945  *
946  * Sets skb dst, assuming a reference was taken on dst and should
947  * be released by skb_dst_drop()
948  */
949 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
950 {
951 	skb->_skb_refdst = (unsigned long)dst;
952 }
953 
954 /**
955  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
956  * @skb: buffer
957  * @dst: dst entry
958  *
959  * Sets skb dst, assuming a reference was not taken on dst.
960  * If dst entry is cached, we do not take reference and dst_release
961  * will be avoided by refdst_drop. If dst entry is not cached, we take
962  * reference, so that last dst_release can destroy the dst immediately.
963  */
964 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
965 {
966 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
967 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
968 }
969 
970 /**
971  * skb_dst_is_noref - Test if skb dst isn't refcounted
972  * @skb: buffer
973  */
974 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
975 {
976 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
977 }
978 
979 /**
980  * skb_rtable - Returns the skb &rtable
981  * @skb: buffer
982  */
983 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
984 {
985 	return (struct rtable *)skb_dst(skb);
986 }
987 
988 /* For mangling skb->pkt_type from user space side from applications
989  * such as nft, tc, etc, we only allow a conservative subset of
990  * possible pkt_types to be set.
991 */
992 static inline bool skb_pkt_type_ok(u32 ptype)
993 {
994 	return ptype <= PACKET_OTHERHOST;
995 }
996 
997 /**
998  * skb_napi_id - Returns the skb's NAPI id
999  * @skb: buffer
1000  */
1001 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1002 {
1003 #ifdef CONFIG_NET_RX_BUSY_POLL
1004 	return skb->napi_id;
1005 #else
1006 	return 0;
1007 #endif
1008 }
1009 
1010 /**
1011  * skb_unref - decrement the skb's reference count
1012  * @skb: buffer
1013  *
1014  * Returns true if we can free the skb.
1015  */
1016 static inline bool skb_unref(struct sk_buff *skb)
1017 {
1018 	if (unlikely(!skb))
1019 		return false;
1020 	if (likely(refcount_read(&skb->users) == 1))
1021 		smp_rmb();
1022 	else if (likely(!refcount_dec_and_test(&skb->users)))
1023 		return false;
1024 
1025 	return true;
1026 }
1027 
1028 void skb_release_head_state(struct sk_buff *skb);
1029 void kfree_skb(struct sk_buff *skb);
1030 void kfree_skb_list(struct sk_buff *segs);
1031 void skb_tx_error(struct sk_buff *skb);
1032 void consume_skb(struct sk_buff *skb);
1033 void __consume_stateless_skb(struct sk_buff *skb);
1034 void  __kfree_skb(struct sk_buff *skb);
1035 extern struct kmem_cache *skbuff_head_cache;
1036 
1037 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1038 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1039 		      bool *fragstolen, int *delta_truesize);
1040 
1041 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1042 			    int node);
1043 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1044 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1045 struct sk_buff *build_skb_around(struct sk_buff *skb,
1046 				 void *data, unsigned int frag_size);
1047 
1048 /**
1049  * alloc_skb - allocate a network buffer
1050  * @size: size to allocate
1051  * @priority: allocation mask
1052  *
1053  * This function is a convenient wrapper around __alloc_skb().
1054  */
1055 static inline struct sk_buff *alloc_skb(unsigned int size,
1056 					gfp_t priority)
1057 {
1058 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1059 }
1060 
1061 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1062 				     unsigned long data_len,
1063 				     int max_page_order,
1064 				     int *errcode,
1065 				     gfp_t gfp_mask);
1066 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1067 
1068 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1069 struct sk_buff_fclones {
1070 	struct sk_buff	skb1;
1071 
1072 	struct sk_buff	skb2;
1073 
1074 	refcount_t	fclone_ref;
1075 };
1076 
1077 /**
1078  *	skb_fclone_busy - check if fclone is busy
1079  *	@sk: socket
1080  *	@skb: buffer
1081  *
1082  * Returns true if skb is a fast clone, and its clone is not freed.
1083  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1084  * so we also check that this didnt happen.
1085  */
1086 static inline bool skb_fclone_busy(const struct sock *sk,
1087 				   const struct sk_buff *skb)
1088 {
1089 	const struct sk_buff_fclones *fclones;
1090 
1091 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1092 
1093 	return skb->fclone == SKB_FCLONE_ORIG &&
1094 	       refcount_read(&fclones->fclone_ref) > 1 &&
1095 	       fclones->skb2.sk == sk;
1096 }
1097 
1098 /**
1099  * alloc_skb_fclone - allocate a network buffer from fclone cache
1100  * @size: size to allocate
1101  * @priority: allocation mask
1102  *
1103  * This function is a convenient wrapper around __alloc_skb().
1104  */
1105 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1106 					       gfp_t priority)
1107 {
1108 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1109 }
1110 
1111 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1112 void skb_headers_offset_update(struct sk_buff *skb, int off);
1113 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1114 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1115 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1116 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1117 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1118 				   gfp_t gfp_mask, bool fclone);
1119 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1120 					  gfp_t gfp_mask)
1121 {
1122 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1123 }
1124 
1125 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1126 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1127 				     unsigned int headroom);
1128 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1129 				int newtailroom, gfp_t priority);
1130 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1131 				     int offset, int len);
1132 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1133 			      int offset, int len);
1134 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1135 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1136 
1137 /**
1138  *	skb_pad			-	zero pad the tail of an skb
1139  *	@skb: buffer to pad
1140  *	@pad: space to pad
1141  *
1142  *	Ensure that a buffer is followed by a padding area that is zero
1143  *	filled. Used by network drivers which may DMA or transfer data
1144  *	beyond the buffer end onto the wire.
1145  *
1146  *	May return error in out of memory cases. The skb is freed on error.
1147  */
1148 static inline int skb_pad(struct sk_buff *skb, int pad)
1149 {
1150 	return __skb_pad(skb, pad, true);
1151 }
1152 #define dev_kfree_skb(a)	consume_skb(a)
1153 
1154 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1155 			 int offset, size_t size);
1156 
1157 struct skb_seq_state {
1158 	__u32		lower_offset;
1159 	__u32		upper_offset;
1160 	__u32		frag_idx;
1161 	__u32		stepped_offset;
1162 	struct sk_buff	*root_skb;
1163 	struct sk_buff	*cur_skb;
1164 	__u8		*frag_data;
1165 };
1166 
1167 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1168 			  unsigned int to, struct skb_seq_state *st);
1169 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1170 			  struct skb_seq_state *st);
1171 void skb_abort_seq_read(struct skb_seq_state *st);
1172 
1173 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1174 			   unsigned int to, struct ts_config *config);
1175 
1176 /*
1177  * Packet hash types specify the type of hash in skb_set_hash.
1178  *
1179  * Hash types refer to the protocol layer addresses which are used to
1180  * construct a packet's hash. The hashes are used to differentiate or identify
1181  * flows of the protocol layer for the hash type. Hash types are either
1182  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1183  *
1184  * Properties of hashes:
1185  *
1186  * 1) Two packets in different flows have different hash values
1187  * 2) Two packets in the same flow should have the same hash value
1188  *
1189  * A hash at a higher layer is considered to be more specific. A driver should
1190  * set the most specific hash possible.
1191  *
1192  * A driver cannot indicate a more specific hash than the layer at which a hash
1193  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1194  *
1195  * A driver may indicate a hash level which is less specific than the
1196  * actual layer the hash was computed on. For instance, a hash computed
1197  * at L4 may be considered an L3 hash. This should only be done if the
1198  * driver can't unambiguously determine that the HW computed the hash at
1199  * the higher layer. Note that the "should" in the second property above
1200  * permits this.
1201  */
1202 enum pkt_hash_types {
1203 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1204 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1205 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1206 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1207 };
1208 
1209 static inline void skb_clear_hash(struct sk_buff *skb)
1210 {
1211 	skb->hash = 0;
1212 	skb->sw_hash = 0;
1213 	skb->l4_hash = 0;
1214 }
1215 
1216 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1217 {
1218 	if (!skb->l4_hash)
1219 		skb_clear_hash(skb);
1220 }
1221 
1222 static inline void
1223 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1224 {
1225 	skb->l4_hash = is_l4;
1226 	skb->sw_hash = is_sw;
1227 	skb->hash = hash;
1228 }
1229 
1230 static inline void
1231 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1232 {
1233 	/* Used by drivers to set hash from HW */
1234 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1235 }
1236 
1237 static inline void
1238 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1239 {
1240 	__skb_set_hash(skb, hash, true, is_l4);
1241 }
1242 
1243 void __skb_get_hash(struct sk_buff *skb);
1244 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1245 u32 skb_get_poff(const struct sk_buff *skb);
1246 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1247 		   const struct flow_keys_basic *keys, int hlen);
1248 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1249 			    void *data, int hlen_proto);
1250 
1251 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1252 					int thoff, u8 ip_proto)
1253 {
1254 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1255 }
1256 
1257 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1258 			     const struct flow_dissector_key *key,
1259 			     unsigned int key_count);
1260 
1261 #ifdef CONFIG_NET
1262 int skb_flow_dissector_prog_query(const union bpf_attr *attr,
1263 				  union bpf_attr __user *uattr);
1264 int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr,
1265 				       struct bpf_prog *prog);
1266 
1267 int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr);
1268 #else
1269 static inline int skb_flow_dissector_prog_query(const union bpf_attr *attr,
1270 						union bpf_attr __user *uattr)
1271 {
1272 	return -EOPNOTSUPP;
1273 }
1274 
1275 static inline int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr,
1276 						     struct bpf_prog *prog)
1277 {
1278 	return -EOPNOTSUPP;
1279 }
1280 
1281 static inline int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr)
1282 {
1283 	return -EOPNOTSUPP;
1284 }
1285 #endif
1286 
1287 struct bpf_flow_dissector;
1288 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1289 		      __be16 proto, int nhoff, int hlen);
1290 
1291 bool __skb_flow_dissect(const struct net *net,
1292 			const struct sk_buff *skb,
1293 			struct flow_dissector *flow_dissector,
1294 			void *target_container,
1295 			void *data, __be16 proto, int nhoff, int hlen,
1296 			unsigned int flags);
1297 
1298 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1299 				    struct flow_dissector *flow_dissector,
1300 				    void *target_container, unsigned int flags)
1301 {
1302 	return __skb_flow_dissect(NULL, skb, flow_dissector,
1303 				  target_container, NULL, 0, 0, 0, flags);
1304 }
1305 
1306 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1307 					      struct flow_keys *flow,
1308 					      unsigned int flags)
1309 {
1310 	memset(flow, 0, sizeof(*flow));
1311 	return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1312 				  flow, NULL, 0, 0, 0, flags);
1313 }
1314 
1315 static inline bool
1316 skb_flow_dissect_flow_keys_basic(const struct net *net,
1317 				 const struct sk_buff *skb,
1318 				 struct flow_keys_basic *flow, void *data,
1319 				 __be16 proto, int nhoff, int hlen,
1320 				 unsigned int flags)
1321 {
1322 	memset(flow, 0, sizeof(*flow));
1323 	return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1324 				  data, proto, nhoff, hlen, flags);
1325 }
1326 
1327 void
1328 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1329 			     struct flow_dissector *flow_dissector,
1330 			     void *target_container);
1331 
1332 static inline __u32 skb_get_hash(struct sk_buff *skb)
1333 {
1334 	if (!skb->l4_hash && !skb->sw_hash)
1335 		__skb_get_hash(skb);
1336 
1337 	return skb->hash;
1338 }
1339 
1340 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1341 {
1342 	if (!skb->l4_hash && !skb->sw_hash) {
1343 		struct flow_keys keys;
1344 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1345 
1346 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1347 	}
1348 
1349 	return skb->hash;
1350 }
1351 
1352 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);
1353 
1354 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1355 {
1356 	return skb->hash;
1357 }
1358 
1359 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1360 {
1361 	to->hash = from->hash;
1362 	to->sw_hash = from->sw_hash;
1363 	to->l4_hash = from->l4_hash;
1364 };
1365 
1366 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1367 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1368 {
1369 	return skb->head + skb->end;
1370 }
1371 
1372 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1373 {
1374 	return skb->end;
1375 }
1376 #else
1377 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1378 {
1379 	return skb->end;
1380 }
1381 
1382 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1383 {
1384 	return skb->end - skb->head;
1385 }
1386 #endif
1387 
1388 /* Internal */
1389 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1390 
1391 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1392 {
1393 	return &skb_shinfo(skb)->hwtstamps;
1394 }
1395 
1396 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1397 {
1398 	bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY;
1399 
1400 	return is_zcopy ? skb_uarg(skb) : NULL;
1401 }
1402 
1403 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1404 				 bool *have_ref)
1405 {
1406 	if (skb && uarg && !skb_zcopy(skb)) {
1407 		if (unlikely(have_ref && *have_ref))
1408 			*have_ref = false;
1409 		else
1410 			sock_zerocopy_get(uarg);
1411 		skb_shinfo(skb)->destructor_arg = uarg;
1412 		skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1413 	}
1414 }
1415 
1416 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1417 {
1418 	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1419 	skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1420 }
1421 
1422 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1423 {
1424 	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1425 }
1426 
1427 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1428 {
1429 	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1430 }
1431 
1432 /* Release a reference on a zerocopy structure */
1433 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy)
1434 {
1435 	struct ubuf_info *uarg = skb_zcopy(skb);
1436 
1437 	if (uarg) {
1438 		if (skb_zcopy_is_nouarg(skb)) {
1439 			/* no notification callback */
1440 		} else if (uarg->callback == sock_zerocopy_callback) {
1441 			uarg->zerocopy = uarg->zerocopy && zerocopy;
1442 			sock_zerocopy_put(uarg);
1443 		} else {
1444 			uarg->callback(uarg, zerocopy);
1445 		}
1446 
1447 		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1448 	}
1449 }
1450 
1451 /* Abort a zerocopy operation and revert zckey on error in send syscall */
1452 static inline void skb_zcopy_abort(struct sk_buff *skb)
1453 {
1454 	struct ubuf_info *uarg = skb_zcopy(skb);
1455 
1456 	if (uarg) {
1457 		sock_zerocopy_put_abort(uarg, false);
1458 		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1459 	}
1460 }
1461 
1462 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1463 {
1464 	skb->next = NULL;
1465 }
1466 
1467 static inline void skb_list_del_init(struct sk_buff *skb)
1468 {
1469 	__list_del_entry(&skb->list);
1470 	skb_mark_not_on_list(skb);
1471 }
1472 
1473 /**
1474  *	skb_queue_empty - check if a queue is empty
1475  *	@list: queue head
1476  *
1477  *	Returns true if the queue is empty, false otherwise.
1478  */
1479 static inline int skb_queue_empty(const struct sk_buff_head *list)
1480 {
1481 	return list->next == (const struct sk_buff *) list;
1482 }
1483 
1484 /**
1485  *	skb_queue_is_last - check if skb is the last entry in the queue
1486  *	@list: queue head
1487  *	@skb: buffer
1488  *
1489  *	Returns true if @skb is the last buffer on the list.
1490  */
1491 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1492 				     const struct sk_buff *skb)
1493 {
1494 	return skb->next == (const struct sk_buff *) list;
1495 }
1496 
1497 /**
1498  *	skb_queue_is_first - check if skb is the first entry in the queue
1499  *	@list: queue head
1500  *	@skb: buffer
1501  *
1502  *	Returns true if @skb is the first buffer on the list.
1503  */
1504 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1505 				      const struct sk_buff *skb)
1506 {
1507 	return skb->prev == (const struct sk_buff *) list;
1508 }
1509 
1510 /**
1511  *	skb_queue_next - return the next packet in the queue
1512  *	@list: queue head
1513  *	@skb: current buffer
1514  *
1515  *	Return the next packet in @list after @skb.  It is only valid to
1516  *	call this if skb_queue_is_last() evaluates to false.
1517  */
1518 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1519 					     const struct sk_buff *skb)
1520 {
1521 	/* This BUG_ON may seem severe, but if we just return then we
1522 	 * are going to dereference garbage.
1523 	 */
1524 	BUG_ON(skb_queue_is_last(list, skb));
1525 	return skb->next;
1526 }
1527 
1528 /**
1529  *	skb_queue_prev - return the prev packet in the queue
1530  *	@list: queue head
1531  *	@skb: current buffer
1532  *
1533  *	Return the prev packet in @list before @skb.  It is only valid to
1534  *	call this if skb_queue_is_first() evaluates to false.
1535  */
1536 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1537 					     const struct sk_buff *skb)
1538 {
1539 	/* This BUG_ON may seem severe, but if we just return then we
1540 	 * are going to dereference garbage.
1541 	 */
1542 	BUG_ON(skb_queue_is_first(list, skb));
1543 	return skb->prev;
1544 }
1545 
1546 /**
1547  *	skb_get - reference buffer
1548  *	@skb: buffer to reference
1549  *
1550  *	Makes another reference to a socket buffer and returns a pointer
1551  *	to the buffer.
1552  */
1553 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1554 {
1555 	refcount_inc(&skb->users);
1556 	return skb;
1557 }
1558 
1559 /*
1560  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1561  */
1562 
1563 /**
1564  *	skb_cloned - is the buffer a clone
1565  *	@skb: buffer to check
1566  *
1567  *	Returns true if the buffer was generated with skb_clone() and is
1568  *	one of multiple shared copies of the buffer. Cloned buffers are
1569  *	shared data so must not be written to under normal circumstances.
1570  */
1571 static inline int skb_cloned(const struct sk_buff *skb)
1572 {
1573 	return skb->cloned &&
1574 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1575 }
1576 
1577 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1578 {
1579 	might_sleep_if(gfpflags_allow_blocking(pri));
1580 
1581 	if (skb_cloned(skb))
1582 		return pskb_expand_head(skb, 0, 0, pri);
1583 
1584 	return 0;
1585 }
1586 
1587 /**
1588  *	skb_header_cloned - is the header a clone
1589  *	@skb: buffer to check
1590  *
1591  *	Returns true if modifying the header part of the buffer requires
1592  *	the data to be copied.
1593  */
1594 static inline int skb_header_cloned(const struct sk_buff *skb)
1595 {
1596 	int dataref;
1597 
1598 	if (!skb->cloned)
1599 		return 0;
1600 
1601 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1602 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1603 	return dataref != 1;
1604 }
1605 
1606 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1607 {
1608 	might_sleep_if(gfpflags_allow_blocking(pri));
1609 
1610 	if (skb_header_cloned(skb))
1611 		return pskb_expand_head(skb, 0, 0, pri);
1612 
1613 	return 0;
1614 }
1615 
1616 /**
1617  *	__skb_header_release - release reference to header
1618  *	@skb: buffer to operate on
1619  */
1620 static inline void __skb_header_release(struct sk_buff *skb)
1621 {
1622 	skb->nohdr = 1;
1623 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1624 }
1625 
1626 
1627 /**
1628  *	skb_shared - is the buffer shared
1629  *	@skb: buffer to check
1630  *
1631  *	Returns true if more than one person has a reference to this
1632  *	buffer.
1633  */
1634 static inline int skb_shared(const struct sk_buff *skb)
1635 {
1636 	return refcount_read(&skb->users) != 1;
1637 }
1638 
1639 /**
1640  *	skb_share_check - check if buffer is shared and if so clone it
1641  *	@skb: buffer to check
1642  *	@pri: priority for memory allocation
1643  *
1644  *	If the buffer is shared the buffer is cloned and the old copy
1645  *	drops a reference. A new clone with a single reference is returned.
1646  *	If the buffer is not shared the original buffer is returned. When
1647  *	being called from interrupt status or with spinlocks held pri must
1648  *	be GFP_ATOMIC.
1649  *
1650  *	NULL is returned on a memory allocation failure.
1651  */
1652 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1653 {
1654 	might_sleep_if(gfpflags_allow_blocking(pri));
1655 	if (skb_shared(skb)) {
1656 		struct sk_buff *nskb = skb_clone(skb, pri);
1657 
1658 		if (likely(nskb))
1659 			consume_skb(skb);
1660 		else
1661 			kfree_skb(skb);
1662 		skb = nskb;
1663 	}
1664 	return skb;
1665 }
1666 
1667 /*
1668  *	Copy shared buffers into a new sk_buff. We effectively do COW on
1669  *	packets to handle cases where we have a local reader and forward
1670  *	and a couple of other messy ones. The normal one is tcpdumping
1671  *	a packet thats being forwarded.
1672  */
1673 
1674 /**
1675  *	skb_unshare - make a copy of a shared buffer
1676  *	@skb: buffer to check
1677  *	@pri: priority for memory allocation
1678  *
1679  *	If the socket buffer is a clone then this function creates a new
1680  *	copy of the data, drops a reference count on the old copy and returns
1681  *	the new copy with the reference count at 1. If the buffer is not a clone
1682  *	the original buffer is returned. When called with a spinlock held or
1683  *	from interrupt state @pri must be %GFP_ATOMIC
1684  *
1685  *	%NULL is returned on a memory allocation failure.
1686  */
1687 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1688 					  gfp_t pri)
1689 {
1690 	might_sleep_if(gfpflags_allow_blocking(pri));
1691 	if (skb_cloned(skb)) {
1692 		struct sk_buff *nskb = skb_copy(skb, pri);
1693 
1694 		/* Free our shared copy */
1695 		if (likely(nskb))
1696 			consume_skb(skb);
1697 		else
1698 			kfree_skb(skb);
1699 		skb = nskb;
1700 	}
1701 	return skb;
1702 }
1703 
1704 /**
1705  *	skb_peek - peek at the head of an &sk_buff_head
1706  *	@list_: list to peek at
1707  *
1708  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1709  *	be careful with this one. A peek leaves the buffer on the
1710  *	list and someone else may run off with it. You must hold
1711  *	the appropriate locks or have a private queue to do this.
1712  *
1713  *	Returns %NULL for an empty list or a pointer to the head element.
1714  *	The reference count is not incremented and the reference is therefore
1715  *	volatile. Use with caution.
1716  */
1717 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1718 {
1719 	struct sk_buff *skb = list_->next;
1720 
1721 	if (skb == (struct sk_buff *)list_)
1722 		skb = NULL;
1723 	return skb;
1724 }
1725 
1726 /**
1727  *	__skb_peek - peek at the head of a non-empty &sk_buff_head
1728  *	@list_: list to peek at
1729  *
1730  *	Like skb_peek(), but the caller knows that the list is not empty.
1731  */
1732 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
1733 {
1734 	return list_->next;
1735 }
1736 
1737 /**
1738  *	skb_peek_next - peek skb following the given one from a queue
1739  *	@skb: skb to start from
1740  *	@list_: list to peek at
1741  *
1742  *	Returns %NULL when the end of the list is met or a pointer to the
1743  *	next element. The reference count is not incremented and the
1744  *	reference is therefore volatile. Use with caution.
1745  */
1746 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1747 		const struct sk_buff_head *list_)
1748 {
1749 	struct sk_buff *next = skb->next;
1750 
1751 	if (next == (struct sk_buff *)list_)
1752 		next = NULL;
1753 	return next;
1754 }
1755 
1756 /**
1757  *	skb_peek_tail - peek at the tail of an &sk_buff_head
1758  *	@list_: list to peek at
1759  *
1760  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1761  *	be careful with this one. A peek leaves the buffer on the
1762  *	list and someone else may run off with it. You must hold
1763  *	the appropriate locks or have a private queue to do this.
1764  *
1765  *	Returns %NULL for an empty list or a pointer to the tail element.
1766  *	The reference count is not incremented and the reference is therefore
1767  *	volatile. Use with caution.
1768  */
1769 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1770 {
1771 	struct sk_buff *skb = list_->prev;
1772 
1773 	if (skb == (struct sk_buff *)list_)
1774 		skb = NULL;
1775 	return skb;
1776 
1777 }
1778 
1779 /**
1780  *	skb_queue_len	- get queue length
1781  *	@list_: list to measure
1782  *
1783  *	Return the length of an &sk_buff queue.
1784  */
1785 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1786 {
1787 	return list_->qlen;
1788 }
1789 
1790 /**
1791  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1792  *	@list: queue to initialize
1793  *
1794  *	This initializes only the list and queue length aspects of
1795  *	an sk_buff_head object.  This allows to initialize the list
1796  *	aspects of an sk_buff_head without reinitializing things like
1797  *	the spinlock.  It can also be used for on-stack sk_buff_head
1798  *	objects where the spinlock is known to not be used.
1799  */
1800 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1801 {
1802 	list->prev = list->next = (struct sk_buff *)list;
1803 	list->qlen = 0;
1804 }
1805 
1806 /*
1807  * This function creates a split out lock class for each invocation;
1808  * this is needed for now since a whole lot of users of the skb-queue
1809  * infrastructure in drivers have different locking usage (in hardirq)
1810  * than the networking core (in softirq only). In the long run either the
1811  * network layer or drivers should need annotation to consolidate the
1812  * main types of usage into 3 classes.
1813  */
1814 static inline void skb_queue_head_init(struct sk_buff_head *list)
1815 {
1816 	spin_lock_init(&list->lock);
1817 	__skb_queue_head_init(list);
1818 }
1819 
1820 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1821 		struct lock_class_key *class)
1822 {
1823 	skb_queue_head_init(list);
1824 	lockdep_set_class(&list->lock, class);
1825 }
1826 
1827 /*
1828  *	Insert an sk_buff on a list.
1829  *
1830  *	The "__skb_xxxx()" functions are the non-atomic ones that
1831  *	can only be called with interrupts disabled.
1832  */
1833 static inline void __skb_insert(struct sk_buff *newsk,
1834 				struct sk_buff *prev, struct sk_buff *next,
1835 				struct sk_buff_head *list)
1836 {
1837 	newsk->next = next;
1838 	newsk->prev = prev;
1839 	next->prev  = prev->next = newsk;
1840 	list->qlen++;
1841 }
1842 
1843 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1844 				      struct sk_buff *prev,
1845 				      struct sk_buff *next)
1846 {
1847 	struct sk_buff *first = list->next;
1848 	struct sk_buff *last = list->prev;
1849 
1850 	first->prev = prev;
1851 	prev->next = first;
1852 
1853 	last->next = next;
1854 	next->prev = last;
1855 }
1856 
1857 /**
1858  *	skb_queue_splice - join two skb lists, this is designed for stacks
1859  *	@list: the new list to add
1860  *	@head: the place to add it in the first list
1861  */
1862 static inline void skb_queue_splice(const struct sk_buff_head *list,
1863 				    struct sk_buff_head *head)
1864 {
1865 	if (!skb_queue_empty(list)) {
1866 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1867 		head->qlen += list->qlen;
1868 	}
1869 }
1870 
1871 /**
1872  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1873  *	@list: the new list to add
1874  *	@head: the place to add it in the first list
1875  *
1876  *	The list at @list is reinitialised
1877  */
1878 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1879 					 struct sk_buff_head *head)
1880 {
1881 	if (!skb_queue_empty(list)) {
1882 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1883 		head->qlen += list->qlen;
1884 		__skb_queue_head_init(list);
1885 	}
1886 }
1887 
1888 /**
1889  *	skb_queue_splice_tail - join two skb lists, each list being a queue
1890  *	@list: the new list to add
1891  *	@head: the place to add it in the first list
1892  */
1893 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1894 					 struct sk_buff_head *head)
1895 {
1896 	if (!skb_queue_empty(list)) {
1897 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1898 		head->qlen += list->qlen;
1899 	}
1900 }
1901 
1902 /**
1903  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1904  *	@list: the new list to add
1905  *	@head: the place to add it in the first list
1906  *
1907  *	Each of the lists is a queue.
1908  *	The list at @list is reinitialised
1909  */
1910 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1911 					      struct sk_buff_head *head)
1912 {
1913 	if (!skb_queue_empty(list)) {
1914 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1915 		head->qlen += list->qlen;
1916 		__skb_queue_head_init(list);
1917 	}
1918 }
1919 
1920 /**
1921  *	__skb_queue_after - queue a buffer at the list head
1922  *	@list: list to use
1923  *	@prev: place after this buffer
1924  *	@newsk: buffer to queue
1925  *
1926  *	Queue a buffer int the middle of a list. This function takes no locks
1927  *	and you must therefore hold required locks before calling it.
1928  *
1929  *	A buffer cannot be placed on two lists at the same time.
1930  */
1931 static inline void __skb_queue_after(struct sk_buff_head *list,
1932 				     struct sk_buff *prev,
1933 				     struct sk_buff *newsk)
1934 {
1935 	__skb_insert(newsk, prev, prev->next, list);
1936 }
1937 
1938 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1939 		struct sk_buff_head *list);
1940 
1941 static inline void __skb_queue_before(struct sk_buff_head *list,
1942 				      struct sk_buff *next,
1943 				      struct sk_buff *newsk)
1944 {
1945 	__skb_insert(newsk, next->prev, next, list);
1946 }
1947 
1948 /**
1949  *	__skb_queue_head - queue a buffer at the list head
1950  *	@list: list to use
1951  *	@newsk: buffer to queue
1952  *
1953  *	Queue a buffer at the start of a list. This function takes no locks
1954  *	and you must therefore hold required locks before calling it.
1955  *
1956  *	A buffer cannot be placed on two lists at the same time.
1957  */
1958 static inline void __skb_queue_head(struct sk_buff_head *list,
1959 				    struct sk_buff *newsk)
1960 {
1961 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
1962 }
1963 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1964 
1965 /**
1966  *	__skb_queue_tail - queue a buffer at the list tail
1967  *	@list: list to use
1968  *	@newsk: buffer to queue
1969  *
1970  *	Queue a buffer at the end of a list. This function takes no locks
1971  *	and you must therefore hold required locks before calling it.
1972  *
1973  *	A buffer cannot be placed on two lists at the same time.
1974  */
1975 static inline void __skb_queue_tail(struct sk_buff_head *list,
1976 				   struct sk_buff *newsk)
1977 {
1978 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
1979 }
1980 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1981 
1982 /*
1983  * remove sk_buff from list. _Must_ be called atomically, and with
1984  * the list known..
1985  */
1986 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1987 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1988 {
1989 	struct sk_buff *next, *prev;
1990 
1991 	list->qlen--;
1992 	next	   = skb->next;
1993 	prev	   = skb->prev;
1994 	skb->next  = skb->prev = NULL;
1995 	next->prev = prev;
1996 	prev->next = next;
1997 }
1998 
1999 /**
2000  *	__skb_dequeue - remove from the head of the queue
2001  *	@list: list to dequeue from
2002  *
2003  *	Remove the head of the list. This function does not take any locks
2004  *	so must be used with appropriate locks held only. The head item is
2005  *	returned or %NULL if the list is empty.
2006  */
2007 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2008 {
2009 	struct sk_buff *skb = skb_peek(list);
2010 	if (skb)
2011 		__skb_unlink(skb, list);
2012 	return skb;
2013 }
2014 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2015 
2016 /**
2017  *	__skb_dequeue_tail - remove from the tail of the queue
2018  *	@list: list to dequeue from
2019  *
2020  *	Remove the tail of the list. This function does not take any locks
2021  *	so must be used with appropriate locks held only. The tail item is
2022  *	returned or %NULL if the list is empty.
2023  */
2024 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2025 {
2026 	struct sk_buff *skb = skb_peek_tail(list);
2027 	if (skb)
2028 		__skb_unlink(skb, list);
2029 	return skb;
2030 }
2031 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2032 
2033 
2034 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2035 {
2036 	return skb->data_len;
2037 }
2038 
2039 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2040 {
2041 	return skb->len - skb->data_len;
2042 }
2043 
2044 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2045 {
2046 	unsigned int i, len = 0;
2047 
2048 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2049 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2050 	return len;
2051 }
2052 
2053 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2054 {
2055 	return skb_headlen(skb) + __skb_pagelen(skb);
2056 }
2057 
2058 /**
2059  * __skb_fill_page_desc - initialise a paged fragment in an skb
2060  * @skb: buffer containing fragment to be initialised
2061  * @i: paged fragment index to initialise
2062  * @page: the page to use for this fragment
2063  * @off: the offset to the data with @page
2064  * @size: the length of the data
2065  *
2066  * Initialises the @i'th fragment of @skb to point to &size bytes at
2067  * offset @off within @page.
2068  *
2069  * Does not take any additional reference on the fragment.
2070  */
2071 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2072 					struct page *page, int off, int size)
2073 {
2074 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2075 
2076 	/*
2077 	 * Propagate page pfmemalloc to the skb if we can. The problem is
2078 	 * that not all callers have unique ownership of the page but rely
2079 	 * on page_is_pfmemalloc doing the right thing(tm).
2080 	 */
2081 	frag->page.p		  = page;
2082 	frag->page_offset	  = off;
2083 	skb_frag_size_set(frag, size);
2084 
2085 	page = compound_head(page);
2086 	if (page_is_pfmemalloc(page))
2087 		skb->pfmemalloc	= true;
2088 }
2089 
2090 /**
2091  * skb_fill_page_desc - initialise a paged fragment in an skb
2092  * @skb: buffer containing fragment to be initialised
2093  * @i: paged fragment index to initialise
2094  * @page: the page to use for this fragment
2095  * @off: the offset to the data with @page
2096  * @size: the length of the data
2097  *
2098  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2099  * @skb to point to @size bytes at offset @off within @page. In
2100  * addition updates @skb such that @i is the last fragment.
2101  *
2102  * Does not take any additional reference on the fragment.
2103  */
2104 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2105 				      struct page *page, int off, int size)
2106 {
2107 	__skb_fill_page_desc(skb, i, page, off, size);
2108 	skb_shinfo(skb)->nr_frags = i + 1;
2109 }
2110 
2111 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2112 		     int size, unsigned int truesize);
2113 
2114 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2115 			  unsigned int truesize);
2116 
2117 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2118 
2119 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2120 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2121 {
2122 	return skb->head + skb->tail;
2123 }
2124 
2125 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2126 {
2127 	skb->tail = skb->data - skb->head;
2128 }
2129 
2130 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2131 {
2132 	skb_reset_tail_pointer(skb);
2133 	skb->tail += offset;
2134 }
2135 
2136 #else /* NET_SKBUFF_DATA_USES_OFFSET */
2137 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2138 {
2139 	return skb->tail;
2140 }
2141 
2142 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2143 {
2144 	skb->tail = skb->data;
2145 }
2146 
2147 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2148 {
2149 	skb->tail = skb->data + offset;
2150 }
2151 
2152 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2153 
2154 /*
2155  *	Add data to an sk_buff
2156  */
2157 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2158 void *skb_put(struct sk_buff *skb, unsigned int len);
2159 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2160 {
2161 	void *tmp = skb_tail_pointer(skb);
2162 	SKB_LINEAR_ASSERT(skb);
2163 	skb->tail += len;
2164 	skb->len  += len;
2165 	return tmp;
2166 }
2167 
2168 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2169 {
2170 	void *tmp = __skb_put(skb, len);
2171 
2172 	memset(tmp, 0, len);
2173 	return tmp;
2174 }
2175 
2176 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2177 				   unsigned int len)
2178 {
2179 	void *tmp = __skb_put(skb, len);
2180 
2181 	memcpy(tmp, data, len);
2182 	return tmp;
2183 }
2184 
2185 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2186 {
2187 	*(u8 *)__skb_put(skb, 1) = val;
2188 }
2189 
2190 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2191 {
2192 	void *tmp = skb_put(skb, len);
2193 
2194 	memset(tmp, 0, len);
2195 
2196 	return tmp;
2197 }
2198 
2199 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2200 				 unsigned int len)
2201 {
2202 	void *tmp = skb_put(skb, len);
2203 
2204 	memcpy(tmp, data, len);
2205 
2206 	return tmp;
2207 }
2208 
2209 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2210 {
2211 	*(u8 *)skb_put(skb, 1) = val;
2212 }
2213 
2214 void *skb_push(struct sk_buff *skb, unsigned int len);
2215 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2216 {
2217 	skb->data -= len;
2218 	skb->len  += len;
2219 	return skb->data;
2220 }
2221 
2222 void *skb_pull(struct sk_buff *skb, unsigned int len);
2223 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2224 {
2225 	skb->len -= len;
2226 	BUG_ON(skb->len < skb->data_len);
2227 	return skb->data += len;
2228 }
2229 
2230 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2231 {
2232 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2233 }
2234 
2235 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2236 
2237 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2238 {
2239 	if (len > skb_headlen(skb) &&
2240 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2241 		return NULL;
2242 	skb->len -= len;
2243 	return skb->data += len;
2244 }
2245 
2246 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2247 {
2248 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2249 }
2250 
2251 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
2252 {
2253 	if (likely(len <= skb_headlen(skb)))
2254 		return 1;
2255 	if (unlikely(len > skb->len))
2256 		return 0;
2257 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2258 }
2259 
2260 void skb_condense(struct sk_buff *skb);
2261 
2262 /**
2263  *	skb_headroom - bytes at buffer head
2264  *	@skb: buffer to check
2265  *
2266  *	Return the number of bytes of free space at the head of an &sk_buff.
2267  */
2268 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2269 {
2270 	return skb->data - skb->head;
2271 }
2272 
2273 /**
2274  *	skb_tailroom - bytes at buffer end
2275  *	@skb: buffer to check
2276  *
2277  *	Return the number of bytes of free space at the tail of an sk_buff
2278  */
2279 static inline int skb_tailroom(const struct sk_buff *skb)
2280 {
2281 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2282 }
2283 
2284 /**
2285  *	skb_availroom - bytes at buffer end
2286  *	@skb: buffer to check
2287  *
2288  *	Return the number of bytes of free space at the tail of an sk_buff
2289  *	allocated by sk_stream_alloc()
2290  */
2291 static inline int skb_availroom(const struct sk_buff *skb)
2292 {
2293 	if (skb_is_nonlinear(skb))
2294 		return 0;
2295 
2296 	return skb->end - skb->tail - skb->reserved_tailroom;
2297 }
2298 
2299 /**
2300  *	skb_reserve - adjust headroom
2301  *	@skb: buffer to alter
2302  *	@len: bytes to move
2303  *
2304  *	Increase the headroom of an empty &sk_buff by reducing the tail
2305  *	room. This is only allowed for an empty buffer.
2306  */
2307 static inline void skb_reserve(struct sk_buff *skb, int len)
2308 {
2309 	skb->data += len;
2310 	skb->tail += len;
2311 }
2312 
2313 /**
2314  *	skb_tailroom_reserve - adjust reserved_tailroom
2315  *	@skb: buffer to alter
2316  *	@mtu: maximum amount of headlen permitted
2317  *	@needed_tailroom: minimum amount of reserved_tailroom
2318  *
2319  *	Set reserved_tailroom so that headlen can be as large as possible but
2320  *	not larger than mtu and tailroom cannot be smaller than
2321  *	needed_tailroom.
2322  *	The required headroom should already have been reserved before using
2323  *	this function.
2324  */
2325 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2326 					unsigned int needed_tailroom)
2327 {
2328 	SKB_LINEAR_ASSERT(skb);
2329 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2330 		/* use at most mtu */
2331 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2332 	else
2333 		/* use up to all available space */
2334 		skb->reserved_tailroom = needed_tailroom;
2335 }
2336 
2337 #define ENCAP_TYPE_ETHER	0
2338 #define ENCAP_TYPE_IPPROTO	1
2339 
2340 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2341 					  __be16 protocol)
2342 {
2343 	skb->inner_protocol = protocol;
2344 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2345 }
2346 
2347 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2348 					 __u8 ipproto)
2349 {
2350 	skb->inner_ipproto = ipproto;
2351 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2352 }
2353 
2354 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2355 {
2356 	skb->inner_mac_header = skb->mac_header;
2357 	skb->inner_network_header = skb->network_header;
2358 	skb->inner_transport_header = skb->transport_header;
2359 }
2360 
2361 static inline void skb_reset_mac_len(struct sk_buff *skb)
2362 {
2363 	skb->mac_len = skb->network_header - skb->mac_header;
2364 }
2365 
2366 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2367 							*skb)
2368 {
2369 	return skb->head + skb->inner_transport_header;
2370 }
2371 
2372 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2373 {
2374 	return skb_inner_transport_header(skb) - skb->data;
2375 }
2376 
2377 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2378 {
2379 	skb->inner_transport_header = skb->data - skb->head;
2380 }
2381 
2382 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2383 						   const int offset)
2384 {
2385 	skb_reset_inner_transport_header(skb);
2386 	skb->inner_transport_header += offset;
2387 }
2388 
2389 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2390 {
2391 	return skb->head + skb->inner_network_header;
2392 }
2393 
2394 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2395 {
2396 	skb->inner_network_header = skb->data - skb->head;
2397 }
2398 
2399 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2400 						const int offset)
2401 {
2402 	skb_reset_inner_network_header(skb);
2403 	skb->inner_network_header += offset;
2404 }
2405 
2406 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2407 {
2408 	return skb->head + skb->inner_mac_header;
2409 }
2410 
2411 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2412 {
2413 	skb->inner_mac_header = skb->data - skb->head;
2414 }
2415 
2416 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2417 					    const int offset)
2418 {
2419 	skb_reset_inner_mac_header(skb);
2420 	skb->inner_mac_header += offset;
2421 }
2422 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2423 {
2424 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2425 }
2426 
2427 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2428 {
2429 	return skb->head + skb->transport_header;
2430 }
2431 
2432 static inline void skb_reset_transport_header(struct sk_buff *skb)
2433 {
2434 	skb->transport_header = skb->data - skb->head;
2435 }
2436 
2437 static inline void skb_set_transport_header(struct sk_buff *skb,
2438 					    const int offset)
2439 {
2440 	skb_reset_transport_header(skb);
2441 	skb->transport_header += offset;
2442 }
2443 
2444 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2445 {
2446 	return skb->head + skb->network_header;
2447 }
2448 
2449 static inline void skb_reset_network_header(struct sk_buff *skb)
2450 {
2451 	skb->network_header = skb->data - skb->head;
2452 }
2453 
2454 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2455 {
2456 	skb_reset_network_header(skb);
2457 	skb->network_header += offset;
2458 }
2459 
2460 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2461 {
2462 	return skb->head + skb->mac_header;
2463 }
2464 
2465 static inline int skb_mac_offset(const struct sk_buff *skb)
2466 {
2467 	return skb_mac_header(skb) - skb->data;
2468 }
2469 
2470 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2471 {
2472 	return skb->network_header - skb->mac_header;
2473 }
2474 
2475 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2476 {
2477 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2478 }
2479 
2480 static inline void skb_reset_mac_header(struct sk_buff *skb)
2481 {
2482 	skb->mac_header = skb->data - skb->head;
2483 }
2484 
2485 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2486 {
2487 	skb_reset_mac_header(skb);
2488 	skb->mac_header += offset;
2489 }
2490 
2491 static inline void skb_pop_mac_header(struct sk_buff *skb)
2492 {
2493 	skb->mac_header = skb->network_header;
2494 }
2495 
2496 static inline void skb_probe_transport_header(struct sk_buff *skb)
2497 {
2498 	struct flow_keys_basic keys;
2499 
2500 	if (skb_transport_header_was_set(skb))
2501 		return;
2502 
2503 	if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2504 					     NULL, 0, 0, 0, 0))
2505 		skb_set_transport_header(skb, keys.control.thoff);
2506 }
2507 
2508 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2509 {
2510 	if (skb_mac_header_was_set(skb)) {
2511 		const unsigned char *old_mac = skb_mac_header(skb);
2512 
2513 		skb_set_mac_header(skb, -skb->mac_len);
2514 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2515 	}
2516 }
2517 
2518 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2519 {
2520 	return skb->csum_start - skb_headroom(skb);
2521 }
2522 
2523 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2524 {
2525 	return skb->head + skb->csum_start;
2526 }
2527 
2528 static inline int skb_transport_offset(const struct sk_buff *skb)
2529 {
2530 	return skb_transport_header(skb) - skb->data;
2531 }
2532 
2533 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2534 {
2535 	return skb->transport_header - skb->network_header;
2536 }
2537 
2538 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2539 {
2540 	return skb->inner_transport_header - skb->inner_network_header;
2541 }
2542 
2543 static inline int skb_network_offset(const struct sk_buff *skb)
2544 {
2545 	return skb_network_header(skb) - skb->data;
2546 }
2547 
2548 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2549 {
2550 	return skb_inner_network_header(skb) - skb->data;
2551 }
2552 
2553 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2554 {
2555 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
2556 }
2557 
2558 /*
2559  * CPUs often take a performance hit when accessing unaligned memory
2560  * locations. The actual performance hit varies, it can be small if the
2561  * hardware handles it or large if we have to take an exception and fix it
2562  * in software.
2563  *
2564  * Since an ethernet header is 14 bytes network drivers often end up with
2565  * the IP header at an unaligned offset. The IP header can be aligned by
2566  * shifting the start of the packet by 2 bytes. Drivers should do this
2567  * with:
2568  *
2569  * skb_reserve(skb, NET_IP_ALIGN);
2570  *
2571  * The downside to this alignment of the IP header is that the DMA is now
2572  * unaligned. On some architectures the cost of an unaligned DMA is high
2573  * and this cost outweighs the gains made by aligning the IP header.
2574  *
2575  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2576  * to be overridden.
2577  */
2578 #ifndef NET_IP_ALIGN
2579 #define NET_IP_ALIGN	2
2580 #endif
2581 
2582 /*
2583  * The networking layer reserves some headroom in skb data (via
2584  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2585  * the header has to grow. In the default case, if the header has to grow
2586  * 32 bytes or less we avoid the reallocation.
2587  *
2588  * Unfortunately this headroom changes the DMA alignment of the resulting
2589  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2590  * on some architectures. An architecture can override this value,
2591  * perhaps setting it to a cacheline in size (since that will maintain
2592  * cacheline alignment of the DMA). It must be a power of 2.
2593  *
2594  * Various parts of the networking layer expect at least 32 bytes of
2595  * headroom, you should not reduce this.
2596  *
2597  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2598  * to reduce average number of cache lines per packet.
2599  * get_rps_cpus() for example only access one 64 bytes aligned block :
2600  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2601  */
2602 #ifndef NET_SKB_PAD
2603 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2604 #endif
2605 
2606 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2607 
2608 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2609 {
2610 	if (WARN_ON(skb_is_nonlinear(skb)))
2611 		return;
2612 	skb->len = len;
2613 	skb_set_tail_pointer(skb, len);
2614 }
2615 
2616 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2617 {
2618 	__skb_set_length(skb, len);
2619 }
2620 
2621 void skb_trim(struct sk_buff *skb, unsigned int len);
2622 
2623 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2624 {
2625 	if (skb->data_len)
2626 		return ___pskb_trim(skb, len);
2627 	__skb_trim(skb, len);
2628 	return 0;
2629 }
2630 
2631 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2632 {
2633 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2634 }
2635 
2636 /**
2637  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2638  *	@skb: buffer to alter
2639  *	@len: new length
2640  *
2641  *	This is identical to pskb_trim except that the caller knows that
2642  *	the skb is not cloned so we should never get an error due to out-
2643  *	of-memory.
2644  */
2645 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2646 {
2647 	int err = pskb_trim(skb, len);
2648 	BUG_ON(err);
2649 }
2650 
2651 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2652 {
2653 	unsigned int diff = len - skb->len;
2654 
2655 	if (skb_tailroom(skb) < diff) {
2656 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2657 					   GFP_ATOMIC);
2658 		if (ret)
2659 			return ret;
2660 	}
2661 	__skb_set_length(skb, len);
2662 	return 0;
2663 }
2664 
2665 /**
2666  *	skb_orphan - orphan a buffer
2667  *	@skb: buffer to orphan
2668  *
2669  *	If a buffer currently has an owner then we call the owner's
2670  *	destructor function and make the @skb unowned. The buffer continues
2671  *	to exist but is no longer charged to its former owner.
2672  */
2673 static inline void skb_orphan(struct sk_buff *skb)
2674 {
2675 	if (skb->destructor) {
2676 		skb->destructor(skb);
2677 		skb->destructor = NULL;
2678 		skb->sk		= NULL;
2679 	} else {
2680 		BUG_ON(skb->sk);
2681 	}
2682 }
2683 
2684 /**
2685  *	skb_orphan_frags - orphan the frags contained in a buffer
2686  *	@skb: buffer to orphan frags from
2687  *	@gfp_mask: allocation mask for replacement pages
2688  *
2689  *	For each frag in the SKB which needs a destructor (i.e. has an
2690  *	owner) create a copy of that frag and release the original
2691  *	page by calling the destructor.
2692  */
2693 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2694 {
2695 	if (likely(!skb_zcopy(skb)))
2696 		return 0;
2697 	if (!skb_zcopy_is_nouarg(skb) &&
2698 	    skb_uarg(skb)->callback == sock_zerocopy_callback)
2699 		return 0;
2700 	return skb_copy_ubufs(skb, gfp_mask);
2701 }
2702 
2703 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
2704 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2705 {
2706 	if (likely(!skb_zcopy(skb)))
2707 		return 0;
2708 	return skb_copy_ubufs(skb, gfp_mask);
2709 }
2710 
2711 /**
2712  *	__skb_queue_purge - empty a list
2713  *	@list: list to empty
2714  *
2715  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2716  *	the list and one reference dropped. This function does not take the
2717  *	list lock and the caller must hold the relevant locks to use it.
2718  */
2719 static inline void __skb_queue_purge(struct sk_buff_head *list)
2720 {
2721 	struct sk_buff *skb;
2722 	while ((skb = __skb_dequeue(list)) != NULL)
2723 		kfree_skb(skb);
2724 }
2725 void skb_queue_purge(struct sk_buff_head *list);
2726 
2727 unsigned int skb_rbtree_purge(struct rb_root *root);
2728 
2729 void *netdev_alloc_frag(unsigned int fragsz);
2730 
2731 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2732 				   gfp_t gfp_mask);
2733 
2734 /**
2735  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
2736  *	@dev: network device to receive on
2737  *	@length: length to allocate
2738  *
2739  *	Allocate a new &sk_buff and assign it a usage count of one. The
2740  *	buffer has unspecified headroom built in. Users should allocate
2741  *	the headroom they think they need without accounting for the
2742  *	built in space. The built in space is used for optimisations.
2743  *
2744  *	%NULL is returned if there is no free memory. Although this function
2745  *	allocates memory it can be called from an interrupt.
2746  */
2747 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2748 					       unsigned int length)
2749 {
2750 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2751 }
2752 
2753 /* legacy helper around __netdev_alloc_skb() */
2754 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2755 					      gfp_t gfp_mask)
2756 {
2757 	return __netdev_alloc_skb(NULL, length, gfp_mask);
2758 }
2759 
2760 /* legacy helper around netdev_alloc_skb() */
2761 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2762 {
2763 	return netdev_alloc_skb(NULL, length);
2764 }
2765 
2766 
2767 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2768 		unsigned int length, gfp_t gfp)
2769 {
2770 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2771 
2772 	if (NET_IP_ALIGN && skb)
2773 		skb_reserve(skb, NET_IP_ALIGN);
2774 	return skb;
2775 }
2776 
2777 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2778 		unsigned int length)
2779 {
2780 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2781 }
2782 
2783 static inline void skb_free_frag(void *addr)
2784 {
2785 	page_frag_free(addr);
2786 }
2787 
2788 void *napi_alloc_frag(unsigned int fragsz);
2789 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2790 				 unsigned int length, gfp_t gfp_mask);
2791 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2792 					     unsigned int length)
2793 {
2794 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2795 }
2796 void napi_consume_skb(struct sk_buff *skb, int budget);
2797 
2798 void __kfree_skb_flush(void);
2799 void __kfree_skb_defer(struct sk_buff *skb);
2800 
2801 /**
2802  * __dev_alloc_pages - allocate page for network Rx
2803  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2804  * @order: size of the allocation
2805  *
2806  * Allocate a new page.
2807  *
2808  * %NULL is returned if there is no free memory.
2809 */
2810 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2811 					     unsigned int order)
2812 {
2813 	/* This piece of code contains several assumptions.
2814 	 * 1.  This is for device Rx, therefor a cold page is preferred.
2815 	 * 2.  The expectation is the user wants a compound page.
2816 	 * 3.  If requesting a order 0 page it will not be compound
2817 	 *     due to the check to see if order has a value in prep_new_page
2818 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2819 	 *     code in gfp_to_alloc_flags that should be enforcing this.
2820 	 */
2821 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
2822 
2823 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2824 }
2825 
2826 static inline struct page *dev_alloc_pages(unsigned int order)
2827 {
2828 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2829 }
2830 
2831 /**
2832  * __dev_alloc_page - allocate a page for network Rx
2833  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2834  *
2835  * Allocate a new page.
2836  *
2837  * %NULL is returned if there is no free memory.
2838  */
2839 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2840 {
2841 	return __dev_alloc_pages(gfp_mask, 0);
2842 }
2843 
2844 static inline struct page *dev_alloc_page(void)
2845 {
2846 	return dev_alloc_pages(0);
2847 }
2848 
2849 /**
2850  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2851  *	@page: The page that was allocated from skb_alloc_page
2852  *	@skb: The skb that may need pfmemalloc set
2853  */
2854 static inline void skb_propagate_pfmemalloc(struct page *page,
2855 					     struct sk_buff *skb)
2856 {
2857 	if (page_is_pfmemalloc(page))
2858 		skb->pfmemalloc = true;
2859 }
2860 
2861 /**
2862  * skb_frag_page - retrieve the page referred to by a paged fragment
2863  * @frag: the paged fragment
2864  *
2865  * Returns the &struct page associated with @frag.
2866  */
2867 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2868 {
2869 	return frag->page.p;
2870 }
2871 
2872 /**
2873  * __skb_frag_ref - take an addition reference on a paged fragment.
2874  * @frag: the paged fragment
2875  *
2876  * Takes an additional reference on the paged fragment @frag.
2877  */
2878 static inline void __skb_frag_ref(skb_frag_t *frag)
2879 {
2880 	get_page(skb_frag_page(frag));
2881 }
2882 
2883 /**
2884  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2885  * @skb: the buffer
2886  * @f: the fragment offset.
2887  *
2888  * Takes an additional reference on the @f'th paged fragment of @skb.
2889  */
2890 static inline void skb_frag_ref(struct sk_buff *skb, int f)
2891 {
2892 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2893 }
2894 
2895 /**
2896  * __skb_frag_unref - release a reference on a paged fragment.
2897  * @frag: the paged fragment
2898  *
2899  * Releases a reference on the paged fragment @frag.
2900  */
2901 static inline void __skb_frag_unref(skb_frag_t *frag)
2902 {
2903 	put_page(skb_frag_page(frag));
2904 }
2905 
2906 /**
2907  * skb_frag_unref - release a reference on a paged fragment of an skb.
2908  * @skb: the buffer
2909  * @f: the fragment offset
2910  *
2911  * Releases a reference on the @f'th paged fragment of @skb.
2912  */
2913 static inline void skb_frag_unref(struct sk_buff *skb, int f)
2914 {
2915 	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2916 }
2917 
2918 /**
2919  * skb_frag_address - gets the address of the data contained in a paged fragment
2920  * @frag: the paged fragment buffer
2921  *
2922  * Returns the address of the data within @frag. The page must already
2923  * be mapped.
2924  */
2925 static inline void *skb_frag_address(const skb_frag_t *frag)
2926 {
2927 	return page_address(skb_frag_page(frag)) + frag->page_offset;
2928 }
2929 
2930 /**
2931  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2932  * @frag: the paged fragment buffer
2933  *
2934  * Returns the address of the data within @frag. Checks that the page
2935  * is mapped and returns %NULL otherwise.
2936  */
2937 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2938 {
2939 	void *ptr = page_address(skb_frag_page(frag));
2940 	if (unlikely(!ptr))
2941 		return NULL;
2942 
2943 	return ptr + frag->page_offset;
2944 }
2945 
2946 /**
2947  * __skb_frag_set_page - sets the page contained in a paged fragment
2948  * @frag: the paged fragment
2949  * @page: the page to set
2950  *
2951  * Sets the fragment @frag to contain @page.
2952  */
2953 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2954 {
2955 	frag->page.p = page;
2956 }
2957 
2958 /**
2959  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2960  * @skb: the buffer
2961  * @f: the fragment offset
2962  * @page: the page to set
2963  *
2964  * Sets the @f'th fragment of @skb to contain @page.
2965  */
2966 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2967 				     struct page *page)
2968 {
2969 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2970 }
2971 
2972 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2973 
2974 /**
2975  * skb_frag_dma_map - maps a paged fragment via the DMA API
2976  * @dev: the device to map the fragment to
2977  * @frag: the paged fragment to map
2978  * @offset: the offset within the fragment (starting at the
2979  *          fragment's own offset)
2980  * @size: the number of bytes to map
2981  * @dir: the direction of the mapping (``PCI_DMA_*``)
2982  *
2983  * Maps the page associated with @frag to @device.
2984  */
2985 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2986 					  const skb_frag_t *frag,
2987 					  size_t offset, size_t size,
2988 					  enum dma_data_direction dir)
2989 {
2990 	return dma_map_page(dev, skb_frag_page(frag),
2991 			    frag->page_offset + offset, size, dir);
2992 }
2993 
2994 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2995 					gfp_t gfp_mask)
2996 {
2997 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2998 }
2999 
3000 
3001 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3002 						  gfp_t gfp_mask)
3003 {
3004 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3005 }
3006 
3007 
3008 /**
3009  *	skb_clone_writable - is the header of a clone writable
3010  *	@skb: buffer to check
3011  *	@len: length up to which to write
3012  *
3013  *	Returns true if modifying the header part of the cloned buffer
3014  *	does not requires the data to be copied.
3015  */
3016 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3017 {
3018 	return !skb_header_cloned(skb) &&
3019 	       skb_headroom(skb) + len <= skb->hdr_len;
3020 }
3021 
3022 static inline int skb_try_make_writable(struct sk_buff *skb,
3023 					unsigned int write_len)
3024 {
3025 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3026 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3027 }
3028 
3029 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3030 			    int cloned)
3031 {
3032 	int delta = 0;
3033 
3034 	if (headroom > skb_headroom(skb))
3035 		delta = headroom - skb_headroom(skb);
3036 
3037 	if (delta || cloned)
3038 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3039 					GFP_ATOMIC);
3040 	return 0;
3041 }
3042 
3043 /**
3044  *	skb_cow - copy header of skb when it is required
3045  *	@skb: buffer to cow
3046  *	@headroom: needed headroom
3047  *
3048  *	If the skb passed lacks sufficient headroom or its data part
3049  *	is shared, data is reallocated. If reallocation fails, an error
3050  *	is returned and original skb is not changed.
3051  *
3052  *	The result is skb with writable area skb->head...skb->tail
3053  *	and at least @headroom of space at head.
3054  */
3055 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3056 {
3057 	return __skb_cow(skb, headroom, skb_cloned(skb));
3058 }
3059 
3060 /**
3061  *	skb_cow_head - skb_cow but only making the head writable
3062  *	@skb: buffer to cow
3063  *	@headroom: needed headroom
3064  *
3065  *	This function is identical to skb_cow except that we replace the
3066  *	skb_cloned check by skb_header_cloned.  It should be used when
3067  *	you only need to push on some header and do not need to modify
3068  *	the data.
3069  */
3070 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3071 {
3072 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
3073 }
3074 
3075 /**
3076  *	skb_padto	- pad an skbuff up to a minimal size
3077  *	@skb: buffer to pad
3078  *	@len: minimal length
3079  *
3080  *	Pads up a buffer to ensure the trailing bytes exist and are
3081  *	blanked. If the buffer already contains sufficient data it
3082  *	is untouched. Otherwise it is extended. Returns zero on
3083  *	success. The skb is freed on error.
3084  */
3085 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3086 {
3087 	unsigned int size = skb->len;
3088 	if (likely(size >= len))
3089 		return 0;
3090 	return skb_pad(skb, len - size);
3091 }
3092 
3093 /**
3094  *	__skb_put_padto - increase size and pad an skbuff up to a minimal size
3095  *	@skb: buffer to pad
3096  *	@len: minimal length
3097  *	@free_on_error: free buffer on error
3098  *
3099  *	Pads up a buffer to ensure the trailing bytes exist and are
3100  *	blanked. If the buffer already contains sufficient data it
3101  *	is untouched. Otherwise it is extended. Returns zero on
3102  *	success. The skb is freed on error if @free_on_error is true.
3103  */
3104 static inline int __skb_put_padto(struct sk_buff *skb, unsigned int len,
3105 				  bool free_on_error)
3106 {
3107 	unsigned int size = skb->len;
3108 
3109 	if (unlikely(size < len)) {
3110 		len -= size;
3111 		if (__skb_pad(skb, len, free_on_error))
3112 			return -ENOMEM;
3113 		__skb_put(skb, len);
3114 	}
3115 	return 0;
3116 }
3117 
3118 /**
3119  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3120  *	@skb: buffer to pad
3121  *	@len: minimal length
3122  *
3123  *	Pads up a buffer to ensure the trailing bytes exist and are
3124  *	blanked. If the buffer already contains sufficient data it
3125  *	is untouched. Otherwise it is extended. Returns zero on
3126  *	success. The skb is freed on error.
3127  */
3128 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
3129 {
3130 	return __skb_put_padto(skb, len, true);
3131 }
3132 
3133 static inline int skb_add_data(struct sk_buff *skb,
3134 			       struct iov_iter *from, int copy)
3135 {
3136 	const int off = skb->len;
3137 
3138 	if (skb->ip_summed == CHECKSUM_NONE) {
3139 		__wsum csum = 0;
3140 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3141 					         &csum, from)) {
3142 			skb->csum = csum_block_add(skb->csum, csum, off);
3143 			return 0;
3144 		}
3145 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3146 		return 0;
3147 
3148 	__skb_trim(skb, off);
3149 	return -EFAULT;
3150 }
3151 
3152 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3153 				    const struct page *page, int off)
3154 {
3155 	if (skb_zcopy(skb))
3156 		return false;
3157 	if (i) {
3158 		const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
3159 
3160 		return page == skb_frag_page(frag) &&
3161 		       off == frag->page_offset + skb_frag_size(frag);
3162 	}
3163 	return false;
3164 }
3165 
3166 static inline int __skb_linearize(struct sk_buff *skb)
3167 {
3168 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3169 }
3170 
3171 /**
3172  *	skb_linearize - convert paged skb to linear one
3173  *	@skb: buffer to linarize
3174  *
3175  *	If there is no free memory -ENOMEM is returned, otherwise zero
3176  *	is returned and the old skb data released.
3177  */
3178 static inline int skb_linearize(struct sk_buff *skb)
3179 {
3180 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3181 }
3182 
3183 /**
3184  * skb_has_shared_frag - can any frag be overwritten
3185  * @skb: buffer to test
3186  *
3187  * Return true if the skb has at least one frag that might be modified
3188  * by an external entity (as in vmsplice()/sendfile())
3189  */
3190 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3191 {
3192 	return skb_is_nonlinear(skb) &&
3193 	       skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
3194 }
3195 
3196 /**
3197  *	skb_linearize_cow - make sure skb is linear and writable
3198  *	@skb: buffer to process
3199  *
3200  *	If there is no free memory -ENOMEM is returned, otherwise zero
3201  *	is returned and the old skb data released.
3202  */
3203 static inline int skb_linearize_cow(struct sk_buff *skb)
3204 {
3205 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3206 	       __skb_linearize(skb) : 0;
3207 }
3208 
3209 static __always_inline void
3210 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3211 		     unsigned int off)
3212 {
3213 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3214 		skb->csum = csum_block_sub(skb->csum,
3215 					   csum_partial(start, len, 0), off);
3216 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3217 		 skb_checksum_start_offset(skb) < 0)
3218 		skb->ip_summed = CHECKSUM_NONE;
3219 }
3220 
3221 /**
3222  *	skb_postpull_rcsum - update checksum for received skb after pull
3223  *	@skb: buffer to update
3224  *	@start: start of data before pull
3225  *	@len: length of data pulled
3226  *
3227  *	After doing a pull on a received packet, you need to call this to
3228  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3229  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3230  */
3231 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3232 				      const void *start, unsigned int len)
3233 {
3234 	__skb_postpull_rcsum(skb, start, len, 0);
3235 }
3236 
3237 static __always_inline void
3238 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3239 		     unsigned int off)
3240 {
3241 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3242 		skb->csum = csum_block_add(skb->csum,
3243 					   csum_partial(start, len, 0), off);
3244 }
3245 
3246 /**
3247  *	skb_postpush_rcsum - update checksum for received skb after push
3248  *	@skb: buffer to update
3249  *	@start: start of data after push
3250  *	@len: length of data pushed
3251  *
3252  *	After doing a push on a received packet, you need to call this to
3253  *	update the CHECKSUM_COMPLETE checksum.
3254  */
3255 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3256 				      const void *start, unsigned int len)
3257 {
3258 	__skb_postpush_rcsum(skb, start, len, 0);
3259 }
3260 
3261 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3262 
3263 /**
3264  *	skb_push_rcsum - push skb and update receive checksum
3265  *	@skb: buffer to update
3266  *	@len: length of data pulled
3267  *
3268  *	This function performs an skb_push on the packet and updates
3269  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3270  *	receive path processing instead of skb_push unless you know
3271  *	that the checksum difference is zero (e.g., a valid IP header)
3272  *	or you are setting ip_summed to CHECKSUM_NONE.
3273  */
3274 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3275 {
3276 	skb_push(skb, len);
3277 	skb_postpush_rcsum(skb, skb->data, len);
3278 	return skb->data;
3279 }
3280 
3281 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3282 /**
3283  *	pskb_trim_rcsum - trim received skb and update checksum
3284  *	@skb: buffer to trim
3285  *	@len: new length
3286  *
3287  *	This is exactly the same as pskb_trim except that it ensures the
3288  *	checksum of received packets are still valid after the operation.
3289  *	It can change skb pointers.
3290  */
3291 
3292 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3293 {
3294 	if (likely(len >= skb->len))
3295 		return 0;
3296 	return pskb_trim_rcsum_slow(skb, len);
3297 }
3298 
3299 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3300 {
3301 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3302 		skb->ip_summed = CHECKSUM_NONE;
3303 	__skb_trim(skb, len);
3304 	return 0;
3305 }
3306 
3307 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3308 {
3309 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3310 		skb->ip_summed = CHECKSUM_NONE;
3311 	return __skb_grow(skb, len);
3312 }
3313 
3314 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3315 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3316 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3317 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3318 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3319 
3320 #define skb_queue_walk(queue, skb) \
3321 		for (skb = (queue)->next;					\
3322 		     skb != (struct sk_buff *)(queue);				\
3323 		     skb = skb->next)
3324 
3325 #define skb_queue_walk_safe(queue, skb, tmp)					\
3326 		for (skb = (queue)->next, tmp = skb->next;			\
3327 		     skb != (struct sk_buff *)(queue);				\
3328 		     skb = tmp, tmp = skb->next)
3329 
3330 #define skb_queue_walk_from(queue, skb)						\
3331 		for (; skb != (struct sk_buff *)(queue);			\
3332 		     skb = skb->next)
3333 
3334 #define skb_rbtree_walk(skb, root)						\
3335 		for (skb = skb_rb_first(root); skb != NULL;			\
3336 		     skb = skb_rb_next(skb))
3337 
3338 #define skb_rbtree_walk_from(skb)						\
3339 		for (; skb != NULL;						\
3340 		     skb = skb_rb_next(skb))
3341 
3342 #define skb_rbtree_walk_from_safe(skb, tmp)					\
3343 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
3344 		     skb = tmp)
3345 
3346 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3347 		for (tmp = skb->next;						\
3348 		     skb != (struct sk_buff *)(queue);				\
3349 		     skb = tmp, tmp = skb->next)
3350 
3351 #define skb_queue_reverse_walk(queue, skb) \
3352 		for (skb = (queue)->prev;					\
3353 		     skb != (struct sk_buff *)(queue);				\
3354 		     skb = skb->prev)
3355 
3356 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3357 		for (skb = (queue)->prev, tmp = skb->prev;			\
3358 		     skb != (struct sk_buff *)(queue);				\
3359 		     skb = tmp, tmp = skb->prev)
3360 
3361 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3362 		for (tmp = skb->prev;						\
3363 		     skb != (struct sk_buff *)(queue);				\
3364 		     skb = tmp, tmp = skb->prev)
3365 
3366 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3367 {
3368 	return skb_shinfo(skb)->frag_list != NULL;
3369 }
3370 
3371 static inline void skb_frag_list_init(struct sk_buff *skb)
3372 {
3373 	skb_shinfo(skb)->frag_list = NULL;
3374 }
3375 
3376 #define skb_walk_frags(skb, iter)	\
3377 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3378 
3379 
3380 int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
3381 				const struct sk_buff *skb);
3382 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3383 					  struct sk_buff_head *queue,
3384 					  unsigned int flags,
3385 					  void (*destructor)(struct sock *sk,
3386 							   struct sk_buff *skb),
3387 					  int *off, int *err,
3388 					  struct sk_buff **last);
3389 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
3390 					void (*destructor)(struct sock *sk,
3391 							   struct sk_buff *skb),
3392 					int *off, int *err,
3393 					struct sk_buff **last);
3394 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
3395 				    void (*destructor)(struct sock *sk,
3396 						       struct sk_buff *skb),
3397 				    int *off, int *err);
3398 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3399 				  int *err);
3400 __poll_t datagram_poll(struct file *file, struct socket *sock,
3401 			   struct poll_table_struct *wait);
3402 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3403 			   struct iov_iter *to, int size);
3404 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3405 					struct msghdr *msg, int size)
3406 {
3407 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3408 }
3409 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3410 				   struct msghdr *msg);
3411 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3412 			   struct iov_iter *to, int len,
3413 			   struct ahash_request *hash);
3414 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3415 				 struct iov_iter *from, int len);
3416 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3417 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3418 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3419 static inline void skb_free_datagram_locked(struct sock *sk,
3420 					    struct sk_buff *skb)
3421 {
3422 	__skb_free_datagram_locked(sk, skb, 0);
3423 }
3424 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3425 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3426 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3427 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3428 			      int len, __wsum csum);
3429 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3430 		    struct pipe_inode_info *pipe, unsigned int len,
3431 		    unsigned int flags);
3432 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3433 			 int len);
3434 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3435 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3436 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3437 		 int len, int hlen);
3438 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3439 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3440 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3441 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3442 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3443 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3444 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3445 int skb_ensure_writable(struct sk_buff *skb, int write_len);
3446 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3447 int skb_vlan_pop(struct sk_buff *skb);
3448 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3449 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3450 			     gfp_t gfp);
3451 
3452 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3453 {
3454 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3455 }
3456 
3457 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3458 {
3459 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3460 }
3461 
3462 struct skb_checksum_ops {
3463 	__wsum (*update)(const void *mem, int len, __wsum wsum);
3464 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3465 };
3466 
3467 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3468 
3469 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3470 		      __wsum csum, const struct skb_checksum_ops *ops);
3471 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3472 		    __wsum csum);
3473 
3474 static inline void * __must_check
3475 __skb_header_pointer(const struct sk_buff *skb, int offset,
3476 		     int len, void *data, int hlen, void *buffer)
3477 {
3478 	if (hlen - offset >= len)
3479 		return data + offset;
3480 
3481 	if (!skb ||
3482 	    skb_copy_bits(skb, offset, buffer, len) < 0)
3483 		return NULL;
3484 
3485 	return buffer;
3486 }
3487 
3488 static inline void * __must_check
3489 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3490 {
3491 	return __skb_header_pointer(skb, offset, len, skb->data,
3492 				    skb_headlen(skb), buffer);
3493 }
3494 
3495 /**
3496  *	skb_needs_linearize - check if we need to linearize a given skb
3497  *			      depending on the given device features.
3498  *	@skb: socket buffer to check
3499  *	@features: net device features
3500  *
3501  *	Returns true if either:
3502  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
3503  *	2. skb is fragmented and the device does not support SG.
3504  */
3505 static inline bool skb_needs_linearize(struct sk_buff *skb,
3506 				       netdev_features_t features)
3507 {
3508 	return skb_is_nonlinear(skb) &&
3509 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3510 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3511 }
3512 
3513 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3514 					     void *to,
3515 					     const unsigned int len)
3516 {
3517 	memcpy(to, skb->data, len);
3518 }
3519 
3520 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3521 						    const int offset, void *to,
3522 						    const unsigned int len)
3523 {
3524 	memcpy(to, skb->data + offset, len);
3525 }
3526 
3527 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3528 					   const void *from,
3529 					   const unsigned int len)
3530 {
3531 	memcpy(skb->data, from, len);
3532 }
3533 
3534 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3535 						  const int offset,
3536 						  const void *from,
3537 						  const unsigned int len)
3538 {
3539 	memcpy(skb->data + offset, from, len);
3540 }
3541 
3542 void skb_init(void);
3543 
3544 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3545 {
3546 	return skb->tstamp;
3547 }
3548 
3549 /**
3550  *	skb_get_timestamp - get timestamp from a skb
3551  *	@skb: skb to get stamp from
3552  *	@stamp: pointer to struct __kernel_old_timeval to store stamp in
3553  *
3554  *	Timestamps are stored in the skb as offsets to a base timestamp.
3555  *	This function converts the offset back to a struct timeval and stores
3556  *	it in stamp.
3557  */
3558 static inline void skb_get_timestamp(const struct sk_buff *skb,
3559 				     struct __kernel_old_timeval *stamp)
3560 {
3561 	*stamp = ns_to_kernel_old_timeval(skb->tstamp);
3562 }
3563 
3564 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
3565 					 struct __kernel_sock_timeval *stamp)
3566 {
3567 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3568 
3569 	stamp->tv_sec = ts.tv_sec;
3570 	stamp->tv_usec = ts.tv_nsec / 1000;
3571 }
3572 
3573 static inline void skb_get_timestampns(const struct sk_buff *skb,
3574 				       struct timespec *stamp)
3575 {
3576 	*stamp = ktime_to_timespec(skb->tstamp);
3577 }
3578 
3579 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
3580 					   struct __kernel_timespec *stamp)
3581 {
3582 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3583 
3584 	stamp->tv_sec = ts.tv_sec;
3585 	stamp->tv_nsec = ts.tv_nsec;
3586 }
3587 
3588 static inline void __net_timestamp(struct sk_buff *skb)
3589 {
3590 	skb->tstamp = ktime_get_real();
3591 }
3592 
3593 static inline ktime_t net_timedelta(ktime_t t)
3594 {
3595 	return ktime_sub(ktime_get_real(), t);
3596 }
3597 
3598 static inline ktime_t net_invalid_timestamp(void)
3599 {
3600 	return 0;
3601 }
3602 
3603 static inline u8 skb_metadata_len(const struct sk_buff *skb)
3604 {
3605 	return skb_shinfo(skb)->meta_len;
3606 }
3607 
3608 static inline void *skb_metadata_end(const struct sk_buff *skb)
3609 {
3610 	return skb_mac_header(skb);
3611 }
3612 
3613 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3614 					  const struct sk_buff *skb_b,
3615 					  u8 meta_len)
3616 {
3617 	const void *a = skb_metadata_end(skb_a);
3618 	const void *b = skb_metadata_end(skb_b);
3619 	/* Using more efficient varaiant than plain call to memcmp(). */
3620 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3621 	u64 diffs = 0;
3622 
3623 	switch (meta_len) {
3624 #define __it(x, op) (x -= sizeof(u##op))
3625 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3626 	case 32: diffs |= __it_diff(a, b, 64);
3627 		 /* fall through */
3628 	case 24: diffs |= __it_diff(a, b, 64);
3629 		 /* fall through */
3630 	case 16: diffs |= __it_diff(a, b, 64);
3631 		 /* fall through */
3632 	case  8: diffs |= __it_diff(a, b, 64);
3633 		break;
3634 	case 28: diffs |= __it_diff(a, b, 64);
3635 		 /* fall through */
3636 	case 20: diffs |= __it_diff(a, b, 64);
3637 		 /* fall through */
3638 	case 12: diffs |= __it_diff(a, b, 64);
3639 		 /* fall through */
3640 	case  4: diffs |= __it_diff(a, b, 32);
3641 		break;
3642 	}
3643 	return diffs;
3644 #else
3645 	return memcmp(a - meta_len, b - meta_len, meta_len);
3646 #endif
3647 }
3648 
3649 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3650 					const struct sk_buff *skb_b)
3651 {
3652 	u8 len_a = skb_metadata_len(skb_a);
3653 	u8 len_b = skb_metadata_len(skb_b);
3654 
3655 	if (!(len_a | len_b))
3656 		return false;
3657 
3658 	return len_a != len_b ?
3659 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
3660 }
3661 
3662 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3663 {
3664 	skb_shinfo(skb)->meta_len = meta_len;
3665 }
3666 
3667 static inline void skb_metadata_clear(struct sk_buff *skb)
3668 {
3669 	skb_metadata_set(skb, 0);
3670 }
3671 
3672 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3673 
3674 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3675 
3676 void skb_clone_tx_timestamp(struct sk_buff *skb);
3677 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3678 
3679 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3680 
3681 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3682 {
3683 }
3684 
3685 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3686 {
3687 	return false;
3688 }
3689 
3690 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3691 
3692 /**
3693  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3694  *
3695  * PHY drivers may accept clones of transmitted packets for
3696  * timestamping via their phy_driver.txtstamp method. These drivers
3697  * must call this function to return the skb back to the stack with a
3698  * timestamp.
3699  *
3700  * @skb: clone of the the original outgoing packet
3701  * @hwtstamps: hardware time stamps
3702  *
3703  */
3704 void skb_complete_tx_timestamp(struct sk_buff *skb,
3705 			       struct skb_shared_hwtstamps *hwtstamps);
3706 
3707 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3708 		     struct skb_shared_hwtstamps *hwtstamps,
3709 		     struct sock *sk, int tstype);
3710 
3711 /**
3712  * skb_tstamp_tx - queue clone of skb with send time stamps
3713  * @orig_skb:	the original outgoing packet
3714  * @hwtstamps:	hardware time stamps, may be NULL if not available
3715  *
3716  * If the skb has a socket associated, then this function clones the
3717  * skb (thus sharing the actual data and optional structures), stores
3718  * the optional hardware time stamping information (if non NULL) or
3719  * generates a software time stamp (otherwise), then queues the clone
3720  * to the error queue of the socket.  Errors are silently ignored.
3721  */
3722 void skb_tstamp_tx(struct sk_buff *orig_skb,
3723 		   struct skb_shared_hwtstamps *hwtstamps);
3724 
3725 /**
3726  * skb_tx_timestamp() - Driver hook for transmit timestamping
3727  *
3728  * Ethernet MAC Drivers should call this function in their hard_xmit()
3729  * function immediately before giving the sk_buff to the MAC hardware.
3730  *
3731  * Specifically, one should make absolutely sure that this function is
3732  * called before TX completion of this packet can trigger.  Otherwise
3733  * the packet could potentially already be freed.
3734  *
3735  * @skb: A socket buffer.
3736  */
3737 static inline void skb_tx_timestamp(struct sk_buff *skb)
3738 {
3739 	skb_clone_tx_timestamp(skb);
3740 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3741 		skb_tstamp_tx(skb, NULL);
3742 }
3743 
3744 /**
3745  * skb_complete_wifi_ack - deliver skb with wifi status
3746  *
3747  * @skb: the original outgoing packet
3748  * @acked: ack status
3749  *
3750  */
3751 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3752 
3753 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3754 __sum16 __skb_checksum_complete(struct sk_buff *skb);
3755 
3756 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3757 {
3758 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3759 		skb->csum_valid ||
3760 		(skb->ip_summed == CHECKSUM_PARTIAL &&
3761 		 skb_checksum_start_offset(skb) >= 0));
3762 }
3763 
3764 /**
3765  *	skb_checksum_complete - Calculate checksum of an entire packet
3766  *	@skb: packet to process
3767  *
3768  *	This function calculates the checksum over the entire packet plus
3769  *	the value of skb->csum.  The latter can be used to supply the
3770  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
3771  *	checksum.
3772  *
3773  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
3774  *	this function can be used to verify that checksum on received
3775  *	packets.  In that case the function should return zero if the
3776  *	checksum is correct.  In particular, this function will return zero
3777  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3778  *	hardware has already verified the correctness of the checksum.
3779  */
3780 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3781 {
3782 	return skb_csum_unnecessary(skb) ?
3783 	       0 : __skb_checksum_complete(skb);
3784 }
3785 
3786 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3787 {
3788 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3789 		if (skb->csum_level == 0)
3790 			skb->ip_summed = CHECKSUM_NONE;
3791 		else
3792 			skb->csum_level--;
3793 	}
3794 }
3795 
3796 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3797 {
3798 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3799 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3800 			skb->csum_level++;
3801 	} else if (skb->ip_summed == CHECKSUM_NONE) {
3802 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3803 		skb->csum_level = 0;
3804 	}
3805 }
3806 
3807 /* Check if we need to perform checksum complete validation.
3808  *
3809  * Returns true if checksum complete is needed, false otherwise
3810  * (either checksum is unnecessary or zero checksum is allowed).
3811  */
3812 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3813 						  bool zero_okay,
3814 						  __sum16 check)
3815 {
3816 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3817 		skb->csum_valid = 1;
3818 		__skb_decr_checksum_unnecessary(skb);
3819 		return false;
3820 	}
3821 
3822 	return true;
3823 }
3824 
3825 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
3826  * in checksum_init.
3827  */
3828 #define CHECKSUM_BREAK 76
3829 
3830 /* Unset checksum-complete
3831  *
3832  * Unset checksum complete can be done when packet is being modified
3833  * (uncompressed for instance) and checksum-complete value is
3834  * invalidated.
3835  */
3836 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3837 {
3838 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3839 		skb->ip_summed = CHECKSUM_NONE;
3840 }
3841 
3842 /* Validate (init) checksum based on checksum complete.
3843  *
3844  * Return values:
3845  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
3846  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3847  *	checksum is stored in skb->csum for use in __skb_checksum_complete
3848  *   non-zero: value of invalid checksum
3849  *
3850  */
3851 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3852 						       bool complete,
3853 						       __wsum psum)
3854 {
3855 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
3856 		if (!csum_fold(csum_add(psum, skb->csum))) {
3857 			skb->csum_valid = 1;
3858 			return 0;
3859 		}
3860 	}
3861 
3862 	skb->csum = psum;
3863 
3864 	if (complete || skb->len <= CHECKSUM_BREAK) {
3865 		__sum16 csum;
3866 
3867 		csum = __skb_checksum_complete(skb);
3868 		skb->csum_valid = !csum;
3869 		return csum;
3870 	}
3871 
3872 	return 0;
3873 }
3874 
3875 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3876 {
3877 	return 0;
3878 }
3879 
3880 /* Perform checksum validate (init). Note that this is a macro since we only
3881  * want to calculate the pseudo header which is an input function if necessary.
3882  * First we try to validate without any computation (checksum unnecessary) and
3883  * then calculate based on checksum complete calling the function to compute
3884  * pseudo header.
3885  *
3886  * Return values:
3887  *   0: checksum is validated or try to in skb_checksum_complete
3888  *   non-zero: value of invalid checksum
3889  */
3890 #define __skb_checksum_validate(skb, proto, complete,			\
3891 				zero_okay, check, compute_pseudo)	\
3892 ({									\
3893 	__sum16 __ret = 0;						\
3894 	skb->csum_valid = 0;						\
3895 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
3896 		__ret = __skb_checksum_validate_complete(skb,		\
3897 				complete, compute_pseudo(skb, proto));	\
3898 	__ret;								\
3899 })
3900 
3901 #define skb_checksum_init(skb, proto, compute_pseudo)			\
3902 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3903 
3904 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
3905 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3906 
3907 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
3908 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3909 
3910 #define skb_checksum_validate_zero_check(skb, proto, check,		\
3911 					 compute_pseudo)		\
3912 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
3913 
3914 #define skb_checksum_simple_validate(skb)				\
3915 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3916 
3917 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3918 {
3919 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
3920 }
3921 
3922 static inline void __skb_checksum_convert(struct sk_buff *skb,
3923 					  __sum16 check, __wsum pseudo)
3924 {
3925 	skb->csum = ~pseudo;
3926 	skb->ip_summed = CHECKSUM_COMPLETE;
3927 }
3928 
3929 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo)	\
3930 do {									\
3931 	if (__skb_checksum_convert_check(skb))				\
3932 		__skb_checksum_convert(skb, check,			\
3933 				       compute_pseudo(skb, proto));	\
3934 } while (0)
3935 
3936 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3937 					      u16 start, u16 offset)
3938 {
3939 	skb->ip_summed = CHECKSUM_PARTIAL;
3940 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3941 	skb->csum_offset = offset - start;
3942 }
3943 
3944 /* Update skbuf and packet to reflect the remote checksum offload operation.
3945  * When called, ptr indicates the starting point for skb->csum when
3946  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3947  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3948  */
3949 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
3950 				       int start, int offset, bool nopartial)
3951 {
3952 	__wsum delta;
3953 
3954 	if (!nopartial) {
3955 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
3956 		return;
3957 	}
3958 
3959 	 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3960 		__skb_checksum_complete(skb);
3961 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3962 	}
3963 
3964 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
3965 
3966 	/* Adjust skb->csum since we changed the packet */
3967 	skb->csum = csum_add(skb->csum, delta);
3968 }
3969 
3970 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
3971 {
3972 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
3973 	return (void *)(skb->_nfct & SKB_NFCT_PTRMASK);
3974 #else
3975 	return NULL;
3976 #endif
3977 }
3978 
3979 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3980 void nf_conntrack_destroy(struct nf_conntrack *nfct);
3981 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3982 {
3983 	if (nfct && atomic_dec_and_test(&nfct->use))
3984 		nf_conntrack_destroy(nfct);
3985 }
3986 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3987 {
3988 	if (nfct)
3989 		atomic_inc(&nfct->use);
3990 }
3991 #endif
3992 
3993 #ifdef CONFIG_SKB_EXTENSIONS
3994 enum skb_ext_id {
3995 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3996 	SKB_EXT_BRIDGE_NF,
3997 #endif
3998 #ifdef CONFIG_XFRM
3999 	SKB_EXT_SEC_PATH,
4000 #endif
4001 	SKB_EXT_NUM, /* must be last */
4002 };
4003 
4004 /**
4005  *	struct skb_ext - sk_buff extensions
4006  *	@refcnt: 1 on allocation, deallocated on 0
4007  *	@offset: offset to add to @data to obtain extension address
4008  *	@chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4009  *	@data: start of extension data, variable sized
4010  *
4011  *	Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4012  *	to use 'u8' types while allowing up to 2kb worth of extension data.
4013  */
4014 struct skb_ext {
4015 	refcount_t refcnt;
4016 	u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4017 	u8 chunks;		/* same */
4018 	char data[0] __aligned(8);
4019 };
4020 
4021 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4022 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4023 void __skb_ext_put(struct skb_ext *ext);
4024 
4025 static inline void skb_ext_put(struct sk_buff *skb)
4026 {
4027 	if (skb->active_extensions)
4028 		__skb_ext_put(skb->extensions);
4029 }
4030 
4031 static inline void __skb_ext_copy(struct sk_buff *dst,
4032 				  const struct sk_buff *src)
4033 {
4034 	dst->active_extensions = src->active_extensions;
4035 
4036 	if (src->active_extensions) {
4037 		struct skb_ext *ext = src->extensions;
4038 
4039 		refcount_inc(&ext->refcnt);
4040 		dst->extensions = ext;
4041 	}
4042 }
4043 
4044 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4045 {
4046 	skb_ext_put(dst);
4047 	__skb_ext_copy(dst, src);
4048 }
4049 
4050 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4051 {
4052 	return !!ext->offset[i];
4053 }
4054 
4055 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4056 {
4057 	return skb->active_extensions & (1 << id);
4058 }
4059 
4060 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4061 {
4062 	if (skb_ext_exist(skb, id))
4063 		__skb_ext_del(skb, id);
4064 }
4065 
4066 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4067 {
4068 	if (skb_ext_exist(skb, id)) {
4069 		struct skb_ext *ext = skb->extensions;
4070 
4071 		return (void *)ext + (ext->offset[id] << 3);
4072 	}
4073 
4074 	return NULL;
4075 }
4076 #else
4077 static inline void skb_ext_put(struct sk_buff *skb) {}
4078 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4079 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4080 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4081 #endif /* CONFIG_SKB_EXTENSIONS */
4082 
4083 static inline void nf_reset(struct sk_buff *skb)
4084 {
4085 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4086 	nf_conntrack_put(skb_nfct(skb));
4087 	skb->_nfct = 0;
4088 #endif
4089 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4090 	skb_ext_del(skb, SKB_EXT_BRIDGE_NF);
4091 #endif
4092 }
4093 
4094 static inline void nf_reset_trace(struct sk_buff *skb)
4095 {
4096 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4097 	skb->nf_trace = 0;
4098 #endif
4099 }
4100 
4101 static inline void ipvs_reset(struct sk_buff *skb)
4102 {
4103 #if IS_ENABLED(CONFIG_IP_VS)
4104 	skb->ipvs_property = 0;
4105 #endif
4106 }
4107 
4108 /* Note: This doesn't put any conntrack info in dst. */
4109 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4110 			     bool copy)
4111 {
4112 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4113 	dst->_nfct = src->_nfct;
4114 	nf_conntrack_get(skb_nfct(src));
4115 #endif
4116 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4117 	if (copy)
4118 		dst->nf_trace = src->nf_trace;
4119 #endif
4120 }
4121 
4122 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4123 {
4124 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4125 	nf_conntrack_put(skb_nfct(dst));
4126 #endif
4127 	__nf_copy(dst, src, true);
4128 }
4129 
4130 #ifdef CONFIG_NETWORK_SECMARK
4131 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4132 {
4133 	to->secmark = from->secmark;
4134 }
4135 
4136 static inline void skb_init_secmark(struct sk_buff *skb)
4137 {
4138 	skb->secmark = 0;
4139 }
4140 #else
4141 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4142 { }
4143 
4144 static inline void skb_init_secmark(struct sk_buff *skb)
4145 { }
4146 #endif
4147 
4148 static inline int secpath_exists(const struct sk_buff *skb)
4149 {
4150 #ifdef CONFIG_XFRM
4151 	return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4152 #else
4153 	return 0;
4154 #endif
4155 }
4156 
4157 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4158 {
4159 	return !skb->destructor &&
4160 		!secpath_exists(skb) &&
4161 		!skb_nfct(skb) &&
4162 		!skb->_skb_refdst &&
4163 		!skb_has_frag_list(skb);
4164 }
4165 
4166 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4167 {
4168 	skb->queue_mapping = queue_mapping;
4169 }
4170 
4171 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4172 {
4173 	return skb->queue_mapping;
4174 }
4175 
4176 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4177 {
4178 	to->queue_mapping = from->queue_mapping;
4179 }
4180 
4181 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4182 {
4183 	skb->queue_mapping = rx_queue + 1;
4184 }
4185 
4186 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4187 {
4188 	return skb->queue_mapping - 1;
4189 }
4190 
4191 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4192 {
4193 	return skb->queue_mapping != 0;
4194 }
4195 
4196 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4197 {
4198 	skb->dst_pending_confirm = val;
4199 }
4200 
4201 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4202 {
4203 	return skb->dst_pending_confirm != 0;
4204 }
4205 
4206 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4207 {
4208 #ifdef CONFIG_XFRM
4209 	return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4210 #else
4211 	return NULL;
4212 #endif
4213 }
4214 
4215 /* Keeps track of mac header offset relative to skb->head.
4216  * It is useful for TSO of Tunneling protocol. e.g. GRE.
4217  * For non-tunnel skb it points to skb_mac_header() and for
4218  * tunnel skb it points to outer mac header.
4219  * Keeps track of level of encapsulation of network headers.
4220  */
4221 struct skb_gso_cb {
4222 	union {
4223 		int	mac_offset;
4224 		int	data_offset;
4225 	};
4226 	int	encap_level;
4227 	__wsum	csum;
4228 	__u16	csum_start;
4229 };
4230 #define SKB_SGO_CB_OFFSET	32
4231 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
4232 
4233 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4234 {
4235 	return (skb_mac_header(inner_skb) - inner_skb->head) -
4236 		SKB_GSO_CB(inner_skb)->mac_offset;
4237 }
4238 
4239 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4240 {
4241 	int new_headroom, headroom;
4242 	int ret;
4243 
4244 	headroom = skb_headroom(skb);
4245 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4246 	if (ret)
4247 		return ret;
4248 
4249 	new_headroom = skb_headroom(skb);
4250 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4251 	return 0;
4252 }
4253 
4254 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4255 {
4256 	/* Do not update partial checksums if remote checksum is enabled. */
4257 	if (skb->remcsum_offload)
4258 		return;
4259 
4260 	SKB_GSO_CB(skb)->csum = res;
4261 	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4262 }
4263 
4264 /* Compute the checksum for a gso segment. First compute the checksum value
4265  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4266  * then add in skb->csum (checksum from csum_start to end of packet).
4267  * skb->csum and csum_start are then updated to reflect the checksum of the
4268  * resultant packet starting from the transport header-- the resultant checksum
4269  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4270  * header.
4271  */
4272 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4273 {
4274 	unsigned char *csum_start = skb_transport_header(skb);
4275 	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4276 	__wsum partial = SKB_GSO_CB(skb)->csum;
4277 
4278 	SKB_GSO_CB(skb)->csum = res;
4279 	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4280 
4281 	return csum_fold(csum_partial(csum_start, plen, partial));
4282 }
4283 
4284 static inline bool skb_is_gso(const struct sk_buff *skb)
4285 {
4286 	return skb_shinfo(skb)->gso_size;
4287 }
4288 
4289 /* Note: Should be called only if skb_is_gso(skb) is true */
4290 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4291 {
4292 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4293 }
4294 
4295 /* Note: Should be called only if skb_is_gso(skb) is true */
4296 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4297 {
4298 	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4299 }
4300 
4301 /* Note: Should be called only if skb_is_gso(skb) is true */
4302 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4303 {
4304 	return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4305 }
4306 
4307 static inline void skb_gso_reset(struct sk_buff *skb)
4308 {
4309 	skb_shinfo(skb)->gso_size = 0;
4310 	skb_shinfo(skb)->gso_segs = 0;
4311 	skb_shinfo(skb)->gso_type = 0;
4312 }
4313 
4314 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4315 					 u16 increment)
4316 {
4317 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4318 		return;
4319 	shinfo->gso_size += increment;
4320 }
4321 
4322 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4323 					 u16 decrement)
4324 {
4325 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4326 		return;
4327 	shinfo->gso_size -= decrement;
4328 }
4329 
4330 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4331 
4332 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4333 {
4334 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
4335 	 * wanted then gso_type will be set. */
4336 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4337 
4338 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4339 	    unlikely(shinfo->gso_type == 0)) {
4340 		__skb_warn_lro_forwarding(skb);
4341 		return true;
4342 	}
4343 	return false;
4344 }
4345 
4346 static inline void skb_forward_csum(struct sk_buff *skb)
4347 {
4348 	/* Unfortunately we don't support this one.  Any brave souls? */
4349 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4350 		skb->ip_summed = CHECKSUM_NONE;
4351 }
4352 
4353 /**
4354  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4355  * @skb: skb to check
4356  *
4357  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4358  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4359  * use this helper, to document places where we make this assertion.
4360  */
4361 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4362 {
4363 #ifdef DEBUG
4364 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4365 #endif
4366 }
4367 
4368 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4369 
4370 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4371 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4372 				     unsigned int transport_len,
4373 				     __sum16(*skb_chkf)(struct sk_buff *skb));
4374 
4375 /**
4376  * skb_head_is_locked - Determine if the skb->head is locked down
4377  * @skb: skb to check
4378  *
4379  * The head on skbs build around a head frag can be removed if they are
4380  * not cloned.  This function returns true if the skb head is locked down
4381  * due to either being allocated via kmalloc, or by being a clone with
4382  * multiple references to the head.
4383  */
4384 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4385 {
4386 	return !skb->head_frag || skb_cloned(skb);
4387 }
4388 
4389 /* Local Checksum Offload.
4390  * Compute outer checksum based on the assumption that the
4391  * inner checksum will be offloaded later.
4392  * See Documentation/networking/checksum-offloads.rst for
4393  * explanation of how this works.
4394  * Fill in outer checksum adjustment (e.g. with sum of outer
4395  * pseudo-header) before calling.
4396  * Also ensure that inner checksum is in linear data area.
4397  */
4398 static inline __wsum lco_csum(struct sk_buff *skb)
4399 {
4400 	unsigned char *csum_start = skb_checksum_start(skb);
4401 	unsigned char *l4_hdr = skb_transport_header(skb);
4402 	__wsum partial;
4403 
4404 	/* Start with complement of inner checksum adjustment */
4405 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4406 						    skb->csum_offset));
4407 
4408 	/* Add in checksum of our headers (incl. outer checksum
4409 	 * adjustment filled in by caller) and return result.
4410 	 */
4411 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4412 }
4413 
4414 #endif	/* __KERNEL__ */
4415 #endif	/* _LINUX_SKBUFF_H */
4416