1 /* 2 * Definitions for the 'struct sk_buff' memory handlers. 3 * 4 * Authors: 5 * Alan Cox, <[email protected]> 6 * Florian La Roche, <[email protected]> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14 #ifndef _LINUX_SKBUFF_H 15 #define _LINUX_SKBUFF_H 16 17 #include <linux/kernel.h> 18 #include <linux/compiler.h> 19 #include <linux/time.h> 20 #include <linux/bug.h> 21 #include <linux/cache.h> 22 #include <linux/rbtree.h> 23 #include <linux/socket.h> 24 #include <linux/refcount.h> 25 26 #include <linux/atomic.h> 27 #include <asm/types.h> 28 #include <linux/spinlock.h> 29 #include <linux/net.h> 30 #include <linux/textsearch.h> 31 #include <net/checksum.h> 32 #include <linux/rcupdate.h> 33 #include <linux/hrtimer.h> 34 #include <linux/dma-mapping.h> 35 #include <linux/netdev_features.h> 36 #include <linux/sched.h> 37 #include <linux/sched/clock.h> 38 #include <net/flow_dissector.h> 39 #include <linux/splice.h> 40 #include <linux/in6.h> 41 #include <linux/if_packet.h> 42 #include <net/flow.h> 43 44 /* The interface for checksum offload between the stack and networking drivers 45 * is as follows... 46 * 47 * A. IP checksum related features 48 * 49 * Drivers advertise checksum offload capabilities in the features of a device. 50 * From the stack's point of view these are capabilities offered by the driver, 51 * a driver typically only advertises features that it is capable of offloading 52 * to its device. 53 * 54 * The checksum related features are: 55 * 56 * NETIF_F_HW_CSUM - The driver (or its device) is able to compute one 57 * IP (one's complement) checksum for any combination 58 * of protocols or protocol layering. The checksum is 59 * computed and set in a packet per the CHECKSUM_PARTIAL 60 * interface (see below). 61 * 62 * NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain 63 * TCP or UDP packets over IPv4. These are specifically 64 * unencapsulated packets of the form IPv4|TCP or 65 * IPv4|UDP where the Protocol field in the IPv4 header 66 * is TCP or UDP. The IPv4 header may contain IP options 67 * This feature cannot be set in features for a device 68 * with NETIF_F_HW_CSUM also set. This feature is being 69 * DEPRECATED (see below). 70 * 71 * NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain 72 * TCP or UDP packets over IPv6. These are specifically 73 * unencapsulated packets of the form IPv6|TCP or 74 * IPv4|UDP where the Next Header field in the IPv6 75 * header is either TCP or UDP. IPv6 extension headers 76 * are not supported with this feature. This feature 77 * cannot be set in features for a device with 78 * NETIF_F_HW_CSUM also set. This feature is being 79 * DEPRECATED (see below). 80 * 81 * NETIF_F_RXCSUM - Driver (device) performs receive checksum offload. 82 * This flag is used only used to disable the RX checksum 83 * feature for a device. The stack will accept receive 84 * checksum indication in packets received on a device 85 * regardless of whether NETIF_F_RXCSUM is set. 86 * 87 * B. Checksumming of received packets by device. Indication of checksum 88 * verification is in set skb->ip_summed. Possible values are: 89 * 90 * CHECKSUM_NONE: 91 * 92 * Device did not checksum this packet e.g. due to lack of capabilities. 93 * The packet contains full (though not verified) checksum in packet but 94 * not in skb->csum. Thus, skb->csum is undefined in this case. 95 * 96 * CHECKSUM_UNNECESSARY: 97 * 98 * The hardware you're dealing with doesn't calculate the full checksum 99 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums 100 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY 101 * if their checksums are okay. skb->csum is still undefined in this case 102 * though. A driver or device must never modify the checksum field in the 103 * packet even if checksum is verified. 104 * 105 * CHECKSUM_UNNECESSARY is applicable to following protocols: 106 * TCP: IPv6 and IPv4. 107 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a 108 * zero UDP checksum for either IPv4 or IPv6, the networking stack 109 * may perform further validation in this case. 110 * GRE: only if the checksum is present in the header. 111 * SCTP: indicates the CRC in SCTP header has been validated. 112 * FCOE: indicates the CRC in FC frame has been validated. 113 * 114 * skb->csum_level indicates the number of consecutive checksums found in 115 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY. 116 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet 117 * and a device is able to verify the checksums for UDP (possibly zero), 118 * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to 119 * two. If the device were only able to verify the UDP checksum and not 120 * GRE, either because it doesn't support GRE checksum of because GRE 121 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is 122 * not considered in this case). 123 * 124 * CHECKSUM_COMPLETE: 125 * 126 * This is the most generic way. The device supplied checksum of the _whole_ 127 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the 128 * hardware doesn't need to parse L3/L4 headers to implement this. 129 * 130 * Notes: 131 * - Even if device supports only some protocols, but is able to produce 132 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY. 133 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols. 134 * 135 * CHECKSUM_PARTIAL: 136 * 137 * A checksum is set up to be offloaded to a device as described in the 138 * output description for CHECKSUM_PARTIAL. This may occur on a packet 139 * received directly from another Linux OS, e.g., a virtualized Linux kernel 140 * on the same host, or it may be set in the input path in GRO or remote 141 * checksum offload. For the purposes of checksum verification, the checksum 142 * referred to by skb->csum_start + skb->csum_offset and any preceding 143 * checksums in the packet are considered verified. Any checksums in the 144 * packet that are after the checksum being offloaded are not considered to 145 * be verified. 146 * 147 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload 148 * in the skb->ip_summed for a packet. Values are: 149 * 150 * CHECKSUM_PARTIAL: 151 * 152 * The driver is required to checksum the packet as seen by hard_start_xmit() 153 * from skb->csum_start up to the end, and to record/write the checksum at 154 * offset skb->csum_start + skb->csum_offset. A driver may verify that the 155 * csum_start and csum_offset values are valid values given the length and 156 * offset of the packet, however they should not attempt to validate that the 157 * checksum refers to a legitimate transport layer checksum-- it is the 158 * purview of the stack to validate that csum_start and csum_offset are set 159 * correctly. 160 * 161 * When the stack requests checksum offload for a packet, the driver MUST 162 * ensure that the checksum is set correctly. A driver can either offload the 163 * checksum calculation to the device, or call skb_checksum_help (in the case 164 * that the device does not support offload for a particular checksum). 165 * 166 * NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of 167 * NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate 168 * checksum offload capability. 169 * skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based 170 * on network device checksumming capabilities: if a packet does not match 171 * them, skb_checksum_help or skb_crc32c_help (depending on the value of 172 * csum_not_inet, see item D.) is called to resolve the checksum. 173 * 174 * CHECKSUM_NONE: 175 * 176 * The skb was already checksummed by the protocol, or a checksum is not 177 * required. 178 * 179 * CHECKSUM_UNNECESSARY: 180 * 181 * This has the same meaning on as CHECKSUM_NONE for checksum offload on 182 * output. 183 * 184 * CHECKSUM_COMPLETE: 185 * Not used in checksum output. If a driver observes a packet with this value 186 * set in skbuff, if should treat as CHECKSUM_NONE being set. 187 * 188 * D. Non-IP checksum (CRC) offloads 189 * 190 * NETIF_F_SCTP_CRC - This feature indicates that a device is capable of 191 * offloading the SCTP CRC in a packet. To perform this offload the stack 192 * will set set csum_start and csum_offset accordingly, set ip_summed to 193 * CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in 194 * the skbuff that the CHECKSUM_PARTIAL refers to CRC32c. 195 * A driver that supports both IP checksum offload and SCTP CRC32c offload 196 * must verify which offload is configured for a packet by testing the 197 * value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve 198 * CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1. 199 * 200 * NETIF_F_FCOE_CRC - This feature indicates that a device is capable of 201 * offloading the FCOE CRC in a packet. To perform this offload the stack 202 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset 203 * accordingly. Note the there is no indication in the skbuff that the 204 * CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports 205 * both IP checksum offload and FCOE CRC offload must verify which offload 206 * is configured for a packet presumably by inspecting packet headers. 207 * 208 * E. Checksumming on output with GSO. 209 * 210 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload 211 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the 212 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as 213 * part of the GSO operation is implied. If a checksum is being offloaded 214 * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset 215 * are set to refer to the outermost checksum being offload (two offloaded 216 * checksums are possible with UDP encapsulation). 217 */ 218 219 /* Don't change this without changing skb_csum_unnecessary! */ 220 #define CHECKSUM_NONE 0 221 #define CHECKSUM_UNNECESSARY 1 222 #define CHECKSUM_COMPLETE 2 223 #define CHECKSUM_PARTIAL 3 224 225 /* Maximum value in skb->csum_level */ 226 #define SKB_MAX_CSUM_LEVEL 3 227 228 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES) 229 #define SKB_WITH_OVERHEAD(X) \ 230 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 231 #define SKB_MAX_ORDER(X, ORDER) \ 232 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 233 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 234 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 235 236 /* return minimum truesize of one skb containing X bytes of data */ 237 #define SKB_TRUESIZE(X) ((X) + \ 238 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ 239 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 240 241 struct net_device; 242 struct scatterlist; 243 struct pipe_inode_info; 244 struct iov_iter; 245 struct napi_struct; 246 struct bpf_prog; 247 union bpf_attr; 248 struct skb_ext; 249 250 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 251 struct nf_conntrack { 252 atomic_t use; 253 }; 254 #endif 255 256 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 257 struct nf_bridge_info { 258 enum { 259 BRNF_PROTO_UNCHANGED, 260 BRNF_PROTO_8021Q, 261 BRNF_PROTO_PPPOE 262 } orig_proto:8; 263 u8 pkt_otherhost:1; 264 u8 in_prerouting:1; 265 u8 bridged_dnat:1; 266 __u16 frag_max_size; 267 struct net_device *physindev; 268 269 /* always valid & non-NULL from FORWARD on, for physdev match */ 270 struct net_device *physoutdev; 271 union { 272 /* prerouting: detect dnat in orig/reply direction */ 273 __be32 ipv4_daddr; 274 struct in6_addr ipv6_daddr; 275 276 /* after prerouting + nat detected: store original source 277 * mac since neigh resolution overwrites it, only used while 278 * skb is out in neigh layer. 279 */ 280 char neigh_header[8]; 281 }; 282 }; 283 #endif 284 285 struct sk_buff_head { 286 /* These two members must be first. */ 287 struct sk_buff *next; 288 struct sk_buff *prev; 289 290 __u32 qlen; 291 spinlock_t lock; 292 }; 293 294 struct sk_buff; 295 296 /* To allow 64K frame to be packed as single skb without frag_list we 297 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for 298 * buffers which do not start on a page boundary. 299 * 300 * Since GRO uses frags we allocate at least 16 regardless of page 301 * size. 302 */ 303 #if (65536/PAGE_SIZE + 1) < 16 304 #define MAX_SKB_FRAGS 16UL 305 #else 306 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1) 307 #endif 308 extern int sysctl_max_skb_frags; 309 310 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to 311 * segment using its current segmentation instead. 312 */ 313 #define GSO_BY_FRAGS 0xFFFF 314 315 typedef struct skb_frag_struct skb_frag_t; 316 317 struct skb_frag_struct { 318 struct { 319 struct page *p; 320 } page; 321 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536) 322 __u32 page_offset; 323 __u32 size; 324 #else 325 __u16 page_offset; 326 __u16 size; 327 #endif 328 }; 329 330 /** 331 * skb_frag_size - Returns the size of a skb fragment 332 * @frag: skb fragment 333 */ 334 static inline unsigned int skb_frag_size(const skb_frag_t *frag) 335 { 336 return frag->size; 337 } 338 339 /** 340 * skb_frag_size_set - Sets the size of a skb fragment 341 * @frag: skb fragment 342 * @size: size of fragment 343 */ 344 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) 345 { 346 frag->size = size; 347 } 348 349 /** 350 * skb_frag_size_add - Incrementes the size of a skb fragment by %delta 351 * @frag: skb fragment 352 * @delta: value to add 353 */ 354 static inline void skb_frag_size_add(skb_frag_t *frag, int delta) 355 { 356 frag->size += delta; 357 } 358 359 /** 360 * skb_frag_size_sub - Decrements the size of a skb fragment by %delta 361 * @frag: skb fragment 362 * @delta: value to subtract 363 */ 364 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) 365 { 366 frag->size -= delta; 367 } 368 369 /** 370 * skb_frag_must_loop - Test if %p is a high memory page 371 * @p: fragment's page 372 */ 373 static inline bool skb_frag_must_loop(struct page *p) 374 { 375 #if defined(CONFIG_HIGHMEM) 376 if (PageHighMem(p)) 377 return true; 378 #endif 379 return false; 380 } 381 382 /** 383 * skb_frag_foreach_page - loop over pages in a fragment 384 * 385 * @f: skb frag to operate on 386 * @f_off: offset from start of f->page.p 387 * @f_len: length from f_off to loop over 388 * @p: (temp var) current page 389 * @p_off: (temp var) offset from start of current page, 390 * non-zero only on first page. 391 * @p_len: (temp var) length in current page, 392 * < PAGE_SIZE only on first and last page. 393 * @copied: (temp var) length so far, excluding current p_len. 394 * 395 * A fragment can hold a compound page, in which case per-page 396 * operations, notably kmap_atomic, must be called for each 397 * regular page. 398 */ 399 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \ 400 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \ 401 p_off = (f_off) & (PAGE_SIZE - 1), \ 402 p_len = skb_frag_must_loop(p) ? \ 403 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \ 404 copied = 0; \ 405 copied < f_len; \ 406 copied += p_len, p++, p_off = 0, \ 407 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \ 408 409 #define HAVE_HW_TIME_STAMP 410 411 /** 412 * struct skb_shared_hwtstamps - hardware time stamps 413 * @hwtstamp: hardware time stamp transformed into duration 414 * since arbitrary point in time 415 * 416 * Software time stamps generated by ktime_get_real() are stored in 417 * skb->tstamp. 418 * 419 * hwtstamps can only be compared against other hwtstamps from 420 * the same device. 421 * 422 * This structure is attached to packets as part of the 423 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 424 */ 425 struct skb_shared_hwtstamps { 426 ktime_t hwtstamp; 427 }; 428 429 /* Definitions for tx_flags in struct skb_shared_info */ 430 enum { 431 /* generate hardware time stamp */ 432 SKBTX_HW_TSTAMP = 1 << 0, 433 434 /* generate software time stamp when queueing packet to NIC */ 435 SKBTX_SW_TSTAMP = 1 << 1, 436 437 /* device driver is going to provide hardware time stamp */ 438 SKBTX_IN_PROGRESS = 1 << 2, 439 440 /* device driver supports TX zero-copy buffers */ 441 SKBTX_DEV_ZEROCOPY = 1 << 3, 442 443 /* generate wifi status information (where possible) */ 444 SKBTX_WIFI_STATUS = 1 << 4, 445 446 /* This indicates at least one fragment might be overwritten 447 * (as in vmsplice(), sendfile() ...) 448 * If we need to compute a TX checksum, we'll need to copy 449 * all frags to avoid possible bad checksum 450 */ 451 SKBTX_SHARED_FRAG = 1 << 5, 452 453 /* generate software time stamp when entering packet scheduling */ 454 SKBTX_SCHED_TSTAMP = 1 << 6, 455 }; 456 457 #define SKBTX_ZEROCOPY_FRAG (SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG) 458 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \ 459 SKBTX_SCHED_TSTAMP) 460 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP) 461 462 /* 463 * The callback notifies userspace to release buffers when skb DMA is done in 464 * lower device, the skb last reference should be 0 when calling this. 465 * The zerocopy_success argument is true if zero copy transmit occurred, 466 * false on data copy or out of memory error caused by data copy attempt. 467 * The ctx field is used to track device context. 468 * The desc field is used to track userspace buffer index. 469 */ 470 struct ubuf_info { 471 void (*callback)(struct ubuf_info *, bool zerocopy_success); 472 union { 473 struct { 474 unsigned long desc; 475 void *ctx; 476 }; 477 struct { 478 u32 id; 479 u16 len; 480 u16 zerocopy:1; 481 u32 bytelen; 482 }; 483 }; 484 refcount_t refcnt; 485 486 struct mmpin { 487 struct user_struct *user; 488 unsigned int num_pg; 489 } mmp; 490 }; 491 492 #define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg)) 493 494 int mm_account_pinned_pages(struct mmpin *mmp, size_t size); 495 void mm_unaccount_pinned_pages(struct mmpin *mmp); 496 497 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size); 498 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size, 499 struct ubuf_info *uarg); 500 501 static inline void sock_zerocopy_get(struct ubuf_info *uarg) 502 { 503 refcount_inc(&uarg->refcnt); 504 } 505 506 void sock_zerocopy_put(struct ubuf_info *uarg); 507 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref); 508 509 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success); 510 511 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len); 512 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 513 struct msghdr *msg, int len, 514 struct ubuf_info *uarg); 515 516 /* This data is invariant across clones and lives at 517 * the end of the header data, ie. at skb->end. 518 */ 519 struct skb_shared_info { 520 __u8 __unused; 521 __u8 meta_len; 522 __u8 nr_frags; 523 __u8 tx_flags; 524 unsigned short gso_size; 525 /* Warning: this field is not always filled in (UFO)! */ 526 unsigned short gso_segs; 527 struct sk_buff *frag_list; 528 struct skb_shared_hwtstamps hwtstamps; 529 unsigned int gso_type; 530 u32 tskey; 531 532 /* 533 * Warning : all fields before dataref are cleared in __alloc_skb() 534 */ 535 atomic_t dataref; 536 537 /* Intermediate layers must ensure that destructor_arg 538 * remains valid until skb destructor */ 539 void * destructor_arg; 540 541 /* must be last field, see pskb_expand_head() */ 542 skb_frag_t frags[MAX_SKB_FRAGS]; 543 }; 544 545 /* We divide dataref into two halves. The higher 16 bits hold references 546 * to the payload part of skb->data. The lower 16 bits hold references to 547 * the entire skb->data. A clone of a headerless skb holds the length of 548 * the header in skb->hdr_len. 549 * 550 * All users must obey the rule that the skb->data reference count must be 551 * greater than or equal to the payload reference count. 552 * 553 * Holding a reference to the payload part means that the user does not 554 * care about modifications to the header part of skb->data. 555 */ 556 #define SKB_DATAREF_SHIFT 16 557 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 558 559 560 enum { 561 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */ 562 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */ 563 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */ 564 }; 565 566 enum { 567 SKB_GSO_TCPV4 = 1 << 0, 568 569 /* This indicates the skb is from an untrusted source. */ 570 SKB_GSO_DODGY = 1 << 1, 571 572 /* This indicates the tcp segment has CWR set. */ 573 SKB_GSO_TCP_ECN = 1 << 2, 574 575 SKB_GSO_TCP_FIXEDID = 1 << 3, 576 577 SKB_GSO_TCPV6 = 1 << 4, 578 579 SKB_GSO_FCOE = 1 << 5, 580 581 SKB_GSO_GRE = 1 << 6, 582 583 SKB_GSO_GRE_CSUM = 1 << 7, 584 585 SKB_GSO_IPXIP4 = 1 << 8, 586 587 SKB_GSO_IPXIP6 = 1 << 9, 588 589 SKB_GSO_UDP_TUNNEL = 1 << 10, 590 591 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11, 592 593 SKB_GSO_PARTIAL = 1 << 12, 594 595 SKB_GSO_TUNNEL_REMCSUM = 1 << 13, 596 597 SKB_GSO_SCTP = 1 << 14, 598 599 SKB_GSO_ESP = 1 << 15, 600 601 SKB_GSO_UDP = 1 << 16, 602 603 SKB_GSO_UDP_L4 = 1 << 17, 604 }; 605 606 #if BITS_PER_LONG > 32 607 #define NET_SKBUFF_DATA_USES_OFFSET 1 608 #endif 609 610 #ifdef NET_SKBUFF_DATA_USES_OFFSET 611 typedef unsigned int sk_buff_data_t; 612 #else 613 typedef unsigned char *sk_buff_data_t; 614 #endif 615 616 /** 617 * struct sk_buff - socket buffer 618 * @next: Next buffer in list 619 * @prev: Previous buffer in list 620 * @tstamp: Time we arrived/left 621 * @rbnode: RB tree node, alternative to next/prev for netem/tcp 622 * @sk: Socket we are owned by 623 * @dev: Device we arrived on/are leaving by 624 * @cb: Control buffer. Free for use by every layer. Put private vars here 625 * @_skb_refdst: destination entry (with norefcount bit) 626 * @sp: the security path, used for xfrm 627 * @len: Length of actual data 628 * @data_len: Data length 629 * @mac_len: Length of link layer header 630 * @hdr_len: writable header length of cloned skb 631 * @csum: Checksum (must include start/offset pair) 632 * @csum_start: Offset from skb->head where checksumming should start 633 * @csum_offset: Offset from csum_start where checksum should be stored 634 * @priority: Packet queueing priority 635 * @ignore_df: allow local fragmentation 636 * @cloned: Head may be cloned (check refcnt to be sure) 637 * @ip_summed: Driver fed us an IP checksum 638 * @nohdr: Payload reference only, must not modify header 639 * @pkt_type: Packet class 640 * @fclone: skbuff clone status 641 * @ipvs_property: skbuff is owned by ipvs 642 * @offload_fwd_mark: Packet was L2-forwarded in hardware 643 * @offload_l3_fwd_mark: Packet was L3-forwarded in hardware 644 * @tc_skip_classify: do not classify packet. set by IFB device 645 * @tc_at_ingress: used within tc_classify to distinguish in/egress 646 * @tc_redirected: packet was redirected by a tc action 647 * @tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect 648 * @peeked: this packet has been seen already, so stats have been 649 * done for it, don't do them again 650 * @nf_trace: netfilter packet trace flag 651 * @protocol: Packet protocol from driver 652 * @destructor: Destruct function 653 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue) 654 * @_nfct: Associated connection, if any (with nfctinfo bits) 655 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 656 * @skb_iif: ifindex of device we arrived on 657 * @tc_index: Traffic control index 658 * @hash: the packet hash 659 * @queue_mapping: Queue mapping for multiqueue devices 660 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves 661 * @active_extensions: active extensions (skb_ext_id types) 662 * @ndisc_nodetype: router type (from link layer) 663 * @ooo_okay: allow the mapping of a socket to a queue to be changed 664 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport 665 * ports. 666 * @sw_hash: indicates hash was computed in software stack 667 * @wifi_acked_valid: wifi_acked was set 668 * @wifi_acked: whether frame was acked on wifi or not 669 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS 670 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL 671 * @dst_pending_confirm: need to confirm neighbour 672 * @decrypted: Decrypted SKB 673 * @napi_id: id of the NAPI struct this skb came from 674 * @secmark: security marking 675 * @mark: Generic packet mark 676 * @vlan_proto: vlan encapsulation protocol 677 * @vlan_tci: vlan tag control information 678 * @inner_protocol: Protocol (encapsulation) 679 * @inner_transport_header: Inner transport layer header (encapsulation) 680 * @inner_network_header: Network layer header (encapsulation) 681 * @inner_mac_header: Link layer header (encapsulation) 682 * @transport_header: Transport layer header 683 * @network_header: Network layer header 684 * @mac_header: Link layer header 685 * @tail: Tail pointer 686 * @end: End pointer 687 * @head: Head of buffer 688 * @data: Data head pointer 689 * @truesize: Buffer size 690 * @users: User count - see {datagram,tcp}.c 691 * @extensions: allocated extensions, valid if active_extensions is nonzero 692 */ 693 694 struct sk_buff { 695 union { 696 struct { 697 /* These two members must be first. */ 698 struct sk_buff *next; 699 struct sk_buff *prev; 700 701 union { 702 struct net_device *dev; 703 /* Some protocols might use this space to store information, 704 * while device pointer would be NULL. 705 * UDP receive path is one user. 706 */ 707 unsigned long dev_scratch; 708 }; 709 }; 710 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */ 711 struct list_head list; 712 }; 713 714 union { 715 struct sock *sk; 716 int ip_defrag_offset; 717 }; 718 719 union { 720 ktime_t tstamp; 721 u64 skb_mstamp_ns; /* earliest departure time */ 722 }; 723 /* 724 * This is the control buffer. It is free to use for every 725 * layer. Please put your private variables there. If you 726 * want to keep them across layers you have to do a skb_clone() 727 * first. This is owned by whoever has the skb queued ATM. 728 */ 729 char cb[48] __aligned(8); 730 731 union { 732 struct { 733 unsigned long _skb_refdst; 734 void (*destructor)(struct sk_buff *skb); 735 }; 736 struct list_head tcp_tsorted_anchor; 737 }; 738 739 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 740 unsigned long _nfct; 741 #endif 742 unsigned int len, 743 data_len; 744 __u16 mac_len, 745 hdr_len; 746 747 /* Following fields are _not_ copied in __copy_skb_header() 748 * Note that queue_mapping is here mostly to fill a hole. 749 */ 750 __u16 queue_mapping; 751 752 /* if you move cloned around you also must adapt those constants */ 753 #ifdef __BIG_ENDIAN_BITFIELD 754 #define CLONED_MASK (1 << 7) 755 #else 756 #define CLONED_MASK 1 757 #endif 758 #define CLONED_OFFSET() offsetof(struct sk_buff, __cloned_offset) 759 760 __u8 __cloned_offset[0]; 761 __u8 cloned:1, 762 nohdr:1, 763 fclone:2, 764 peeked:1, 765 head_frag:1, 766 pfmemalloc:1; 767 #ifdef CONFIG_SKB_EXTENSIONS 768 __u8 active_extensions; 769 #endif 770 /* fields enclosed in headers_start/headers_end are copied 771 * using a single memcpy() in __copy_skb_header() 772 */ 773 /* private: */ 774 __u32 headers_start[0]; 775 /* public: */ 776 777 /* if you move pkt_type around you also must adapt those constants */ 778 #ifdef __BIG_ENDIAN_BITFIELD 779 #define PKT_TYPE_MAX (7 << 5) 780 #else 781 #define PKT_TYPE_MAX 7 782 #endif 783 #define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset) 784 785 __u8 __pkt_type_offset[0]; 786 __u8 pkt_type:3; 787 __u8 ignore_df:1; 788 __u8 nf_trace:1; 789 __u8 ip_summed:2; 790 __u8 ooo_okay:1; 791 792 __u8 l4_hash:1; 793 __u8 sw_hash:1; 794 __u8 wifi_acked_valid:1; 795 __u8 wifi_acked:1; 796 __u8 no_fcs:1; 797 /* Indicates the inner headers are valid in the skbuff. */ 798 __u8 encapsulation:1; 799 __u8 encap_hdr_csum:1; 800 __u8 csum_valid:1; 801 802 #ifdef __BIG_ENDIAN_BITFIELD 803 #define PKT_VLAN_PRESENT_BIT 7 804 #else 805 #define PKT_VLAN_PRESENT_BIT 0 806 #endif 807 #define PKT_VLAN_PRESENT_OFFSET() offsetof(struct sk_buff, __pkt_vlan_present_offset) 808 __u8 __pkt_vlan_present_offset[0]; 809 __u8 vlan_present:1; 810 __u8 csum_complete_sw:1; 811 __u8 csum_level:2; 812 __u8 csum_not_inet:1; 813 __u8 dst_pending_confirm:1; 814 #ifdef CONFIG_IPV6_NDISC_NODETYPE 815 __u8 ndisc_nodetype:2; 816 #endif 817 818 __u8 ipvs_property:1; 819 __u8 inner_protocol_type:1; 820 __u8 remcsum_offload:1; 821 #ifdef CONFIG_NET_SWITCHDEV 822 __u8 offload_fwd_mark:1; 823 __u8 offload_l3_fwd_mark:1; 824 #endif 825 #ifdef CONFIG_NET_CLS_ACT 826 __u8 tc_skip_classify:1; 827 __u8 tc_at_ingress:1; 828 __u8 tc_redirected:1; 829 __u8 tc_from_ingress:1; 830 #endif 831 #ifdef CONFIG_TLS_DEVICE 832 __u8 decrypted:1; 833 #endif 834 835 #ifdef CONFIG_NET_SCHED 836 __u16 tc_index; /* traffic control index */ 837 #endif 838 839 union { 840 __wsum csum; 841 struct { 842 __u16 csum_start; 843 __u16 csum_offset; 844 }; 845 }; 846 __u32 priority; 847 int skb_iif; 848 __u32 hash; 849 __be16 vlan_proto; 850 __u16 vlan_tci; 851 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS) 852 union { 853 unsigned int napi_id; 854 unsigned int sender_cpu; 855 }; 856 #endif 857 #ifdef CONFIG_NETWORK_SECMARK 858 __u32 secmark; 859 #endif 860 861 union { 862 __u32 mark; 863 __u32 reserved_tailroom; 864 }; 865 866 union { 867 __be16 inner_protocol; 868 __u8 inner_ipproto; 869 }; 870 871 __u16 inner_transport_header; 872 __u16 inner_network_header; 873 __u16 inner_mac_header; 874 875 __be16 protocol; 876 __u16 transport_header; 877 __u16 network_header; 878 __u16 mac_header; 879 880 /* private: */ 881 __u32 headers_end[0]; 882 /* public: */ 883 884 /* These elements must be at the end, see alloc_skb() for details. */ 885 sk_buff_data_t tail; 886 sk_buff_data_t end; 887 unsigned char *head, 888 *data; 889 unsigned int truesize; 890 refcount_t users; 891 892 #ifdef CONFIG_SKB_EXTENSIONS 893 /* only useable after checking ->active_extensions != 0 */ 894 struct skb_ext *extensions; 895 #endif 896 }; 897 898 #ifdef __KERNEL__ 899 /* 900 * Handling routines are only of interest to the kernel 901 */ 902 903 #define SKB_ALLOC_FCLONE 0x01 904 #define SKB_ALLOC_RX 0x02 905 #define SKB_ALLOC_NAPI 0x04 906 907 /** 908 * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves 909 * @skb: buffer 910 */ 911 static inline bool skb_pfmemalloc(const struct sk_buff *skb) 912 { 913 return unlikely(skb->pfmemalloc); 914 } 915 916 /* 917 * skb might have a dst pointer attached, refcounted or not. 918 * _skb_refdst low order bit is set if refcount was _not_ taken 919 */ 920 #define SKB_DST_NOREF 1UL 921 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 922 923 #define SKB_NFCT_PTRMASK ~(7UL) 924 /** 925 * skb_dst - returns skb dst_entry 926 * @skb: buffer 927 * 928 * Returns skb dst_entry, regardless of reference taken or not. 929 */ 930 static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 931 { 932 /* If refdst was not refcounted, check we still are in a 933 * rcu_read_lock section 934 */ 935 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 936 !rcu_read_lock_held() && 937 !rcu_read_lock_bh_held()); 938 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 939 } 940 941 /** 942 * skb_dst_set - sets skb dst 943 * @skb: buffer 944 * @dst: dst entry 945 * 946 * Sets skb dst, assuming a reference was taken on dst and should 947 * be released by skb_dst_drop() 948 */ 949 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 950 { 951 skb->_skb_refdst = (unsigned long)dst; 952 } 953 954 /** 955 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference 956 * @skb: buffer 957 * @dst: dst entry 958 * 959 * Sets skb dst, assuming a reference was not taken on dst. 960 * If dst entry is cached, we do not take reference and dst_release 961 * will be avoided by refdst_drop. If dst entry is not cached, we take 962 * reference, so that last dst_release can destroy the dst immediately. 963 */ 964 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) 965 { 966 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 967 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF; 968 } 969 970 /** 971 * skb_dst_is_noref - Test if skb dst isn't refcounted 972 * @skb: buffer 973 */ 974 static inline bool skb_dst_is_noref(const struct sk_buff *skb) 975 { 976 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 977 } 978 979 /** 980 * skb_rtable - Returns the skb &rtable 981 * @skb: buffer 982 */ 983 static inline struct rtable *skb_rtable(const struct sk_buff *skb) 984 { 985 return (struct rtable *)skb_dst(skb); 986 } 987 988 /* For mangling skb->pkt_type from user space side from applications 989 * such as nft, tc, etc, we only allow a conservative subset of 990 * possible pkt_types to be set. 991 */ 992 static inline bool skb_pkt_type_ok(u32 ptype) 993 { 994 return ptype <= PACKET_OTHERHOST; 995 } 996 997 /** 998 * skb_napi_id - Returns the skb's NAPI id 999 * @skb: buffer 1000 */ 1001 static inline unsigned int skb_napi_id(const struct sk_buff *skb) 1002 { 1003 #ifdef CONFIG_NET_RX_BUSY_POLL 1004 return skb->napi_id; 1005 #else 1006 return 0; 1007 #endif 1008 } 1009 1010 /** 1011 * skb_unref - decrement the skb's reference count 1012 * @skb: buffer 1013 * 1014 * Returns true if we can free the skb. 1015 */ 1016 static inline bool skb_unref(struct sk_buff *skb) 1017 { 1018 if (unlikely(!skb)) 1019 return false; 1020 if (likely(refcount_read(&skb->users) == 1)) 1021 smp_rmb(); 1022 else if (likely(!refcount_dec_and_test(&skb->users))) 1023 return false; 1024 1025 return true; 1026 } 1027 1028 void skb_release_head_state(struct sk_buff *skb); 1029 void kfree_skb(struct sk_buff *skb); 1030 void kfree_skb_list(struct sk_buff *segs); 1031 void skb_tx_error(struct sk_buff *skb); 1032 void consume_skb(struct sk_buff *skb); 1033 void __consume_stateless_skb(struct sk_buff *skb); 1034 void __kfree_skb(struct sk_buff *skb); 1035 extern struct kmem_cache *skbuff_head_cache; 1036 1037 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); 1038 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 1039 bool *fragstolen, int *delta_truesize); 1040 1041 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags, 1042 int node); 1043 struct sk_buff *__build_skb(void *data, unsigned int frag_size); 1044 struct sk_buff *build_skb(void *data, unsigned int frag_size); 1045 struct sk_buff *build_skb_around(struct sk_buff *skb, 1046 void *data, unsigned int frag_size); 1047 1048 /** 1049 * alloc_skb - allocate a network buffer 1050 * @size: size to allocate 1051 * @priority: allocation mask 1052 * 1053 * This function is a convenient wrapper around __alloc_skb(). 1054 */ 1055 static inline struct sk_buff *alloc_skb(unsigned int size, 1056 gfp_t priority) 1057 { 1058 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 1059 } 1060 1061 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 1062 unsigned long data_len, 1063 int max_page_order, 1064 int *errcode, 1065 gfp_t gfp_mask); 1066 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first); 1067 1068 /* Layout of fast clones : [skb1][skb2][fclone_ref] */ 1069 struct sk_buff_fclones { 1070 struct sk_buff skb1; 1071 1072 struct sk_buff skb2; 1073 1074 refcount_t fclone_ref; 1075 }; 1076 1077 /** 1078 * skb_fclone_busy - check if fclone is busy 1079 * @sk: socket 1080 * @skb: buffer 1081 * 1082 * Returns true if skb is a fast clone, and its clone is not freed. 1083 * Some drivers call skb_orphan() in their ndo_start_xmit(), 1084 * so we also check that this didnt happen. 1085 */ 1086 static inline bool skb_fclone_busy(const struct sock *sk, 1087 const struct sk_buff *skb) 1088 { 1089 const struct sk_buff_fclones *fclones; 1090 1091 fclones = container_of(skb, struct sk_buff_fclones, skb1); 1092 1093 return skb->fclone == SKB_FCLONE_ORIG && 1094 refcount_read(&fclones->fclone_ref) > 1 && 1095 fclones->skb2.sk == sk; 1096 } 1097 1098 /** 1099 * alloc_skb_fclone - allocate a network buffer from fclone cache 1100 * @size: size to allocate 1101 * @priority: allocation mask 1102 * 1103 * This function is a convenient wrapper around __alloc_skb(). 1104 */ 1105 static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 1106 gfp_t priority) 1107 { 1108 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); 1109 } 1110 1111 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 1112 void skb_headers_offset_update(struct sk_buff *skb, int off); 1113 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); 1114 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority); 1115 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old); 1116 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority); 1117 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1118 gfp_t gfp_mask, bool fclone); 1119 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, 1120 gfp_t gfp_mask) 1121 { 1122 return __pskb_copy_fclone(skb, headroom, gfp_mask, false); 1123 } 1124 1125 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask); 1126 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 1127 unsigned int headroom); 1128 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, 1129 int newtailroom, gfp_t priority); 1130 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 1131 int offset, int len); 1132 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, 1133 int offset, int len); 1134 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer); 1135 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error); 1136 1137 /** 1138 * skb_pad - zero pad the tail of an skb 1139 * @skb: buffer to pad 1140 * @pad: space to pad 1141 * 1142 * Ensure that a buffer is followed by a padding area that is zero 1143 * filled. Used by network drivers which may DMA or transfer data 1144 * beyond the buffer end onto the wire. 1145 * 1146 * May return error in out of memory cases. The skb is freed on error. 1147 */ 1148 static inline int skb_pad(struct sk_buff *skb, int pad) 1149 { 1150 return __skb_pad(skb, pad, true); 1151 } 1152 #define dev_kfree_skb(a) consume_skb(a) 1153 1154 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 1155 int offset, size_t size); 1156 1157 struct skb_seq_state { 1158 __u32 lower_offset; 1159 __u32 upper_offset; 1160 __u32 frag_idx; 1161 __u32 stepped_offset; 1162 struct sk_buff *root_skb; 1163 struct sk_buff *cur_skb; 1164 __u8 *frag_data; 1165 }; 1166 1167 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 1168 unsigned int to, struct skb_seq_state *st); 1169 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 1170 struct skb_seq_state *st); 1171 void skb_abort_seq_read(struct skb_seq_state *st); 1172 1173 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 1174 unsigned int to, struct ts_config *config); 1175 1176 /* 1177 * Packet hash types specify the type of hash in skb_set_hash. 1178 * 1179 * Hash types refer to the protocol layer addresses which are used to 1180 * construct a packet's hash. The hashes are used to differentiate or identify 1181 * flows of the protocol layer for the hash type. Hash types are either 1182 * layer-2 (L2), layer-3 (L3), or layer-4 (L4). 1183 * 1184 * Properties of hashes: 1185 * 1186 * 1) Two packets in different flows have different hash values 1187 * 2) Two packets in the same flow should have the same hash value 1188 * 1189 * A hash at a higher layer is considered to be more specific. A driver should 1190 * set the most specific hash possible. 1191 * 1192 * A driver cannot indicate a more specific hash than the layer at which a hash 1193 * was computed. For instance an L3 hash cannot be set as an L4 hash. 1194 * 1195 * A driver may indicate a hash level which is less specific than the 1196 * actual layer the hash was computed on. For instance, a hash computed 1197 * at L4 may be considered an L3 hash. This should only be done if the 1198 * driver can't unambiguously determine that the HW computed the hash at 1199 * the higher layer. Note that the "should" in the second property above 1200 * permits this. 1201 */ 1202 enum pkt_hash_types { 1203 PKT_HASH_TYPE_NONE, /* Undefined type */ 1204 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */ 1205 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */ 1206 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */ 1207 }; 1208 1209 static inline void skb_clear_hash(struct sk_buff *skb) 1210 { 1211 skb->hash = 0; 1212 skb->sw_hash = 0; 1213 skb->l4_hash = 0; 1214 } 1215 1216 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb) 1217 { 1218 if (!skb->l4_hash) 1219 skb_clear_hash(skb); 1220 } 1221 1222 static inline void 1223 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4) 1224 { 1225 skb->l4_hash = is_l4; 1226 skb->sw_hash = is_sw; 1227 skb->hash = hash; 1228 } 1229 1230 static inline void 1231 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type) 1232 { 1233 /* Used by drivers to set hash from HW */ 1234 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4); 1235 } 1236 1237 static inline void 1238 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4) 1239 { 1240 __skb_set_hash(skb, hash, true, is_l4); 1241 } 1242 1243 void __skb_get_hash(struct sk_buff *skb); 1244 u32 __skb_get_hash_symmetric(const struct sk_buff *skb); 1245 u32 skb_get_poff(const struct sk_buff *skb); 1246 u32 __skb_get_poff(const struct sk_buff *skb, void *data, 1247 const struct flow_keys_basic *keys, int hlen); 1248 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto, 1249 void *data, int hlen_proto); 1250 1251 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb, 1252 int thoff, u8 ip_proto) 1253 { 1254 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0); 1255 } 1256 1257 void skb_flow_dissector_init(struct flow_dissector *flow_dissector, 1258 const struct flow_dissector_key *key, 1259 unsigned int key_count); 1260 1261 #ifdef CONFIG_NET 1262 int skb_flow_dissector_prog_query(const union bpf_attr *attr, 1263 union bpf_attr __user *uattr); 1264 int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr, 1265 struct bpf_prog *prog); 1266 1267 int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr); 1268 #else 1269 static inline int skb_flow_dissector_prog_query(const union bpf_attr *attr, 1270 union bpf_attr __user *uattr) 1271 { 1272 return -EOPNOTSUPP; 1273 } 1274 1275 static inline int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr, 1276 struct bpf_prog *prog) 1277 { 1278 return -EOPNOTSUPP; 1279 } 1280 1281 static inline int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr) 1282 { 1283 return -EOPNOTSUPP; 1284 } 1285 #endif 1286 1287 struct bpf_flow_dissector; 1288 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx, 1289 __be16 proto, int nhoff, int hlen); 1290 1291 bool __skb_flow_dissect(const struct net *net, 1292 const struct sk_buff *skb, 1293 struct flow_dissector *flow_dissector, 1294 void *target_container, 1295 void *data, __be16 proto, int nhoff, int hlen, 1296 unsigned int flags); 1297 1298 static inline bool skb_flow_dissect(const struct sk_buff *skb, 1299 struct flow_dissector *flow_dissector, 1300 void *target_container, unsigned int flags) 1301 { 1302 return __skb_flow_dissect(NULL, skb, flow_dissector, 1303 target_container, NULL, 0, 0, 0, flags); 1304 } 1305 1306 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb, 1307 struct flow_keys *flow, 1308 unsigned int flags) 1309 { 1310 memset(flow, 0, sizeof(*flow)); 1311 return __skb_flow_dissect(NULL, skb, &flow_keys_dissector, 1312 flow, NULL, 0, 0, 0, flags); 1313 } 1314 1315 static inline bool 1316 skb_flow_dissect_flow_keys_basic(const struct net *net, 1317 const struct sk_buff *skb, 1318 struct flow_keys_basic *flow, void *data, 1319 __be16 proto, int nhoff, int hlen, 1320 unsigned int flags) 1321 { 1322 memset(flow, 0, sizeof(*flow)); 1323 return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow, 1324 data, proto, nhoff, hlen, flags); 1325 } 1326 1327 void 1328 skb_flow_dissect_tunnel_info(const struct sk_buff *skb, 1329 struct flow_dissector *flow_dissector, 1330 void *target_container); 1331 1332 static inline __u32 skb_get_hash(struct sk_buff *skb) 1333 { 1334 if (!skb->l4_hash && !skb->sw_hash) 1335 __skb_get_hash(skb); 1336 1337 return skb->hash; 1338 } 1339 1340 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6) 1341 { 1342 if (!skb->l4_hash && !skb->sw_hash) { 1343 struct flow_keys keys; 1344 __u32 hash = __get_hash_from_flowi6(fl6, &keys); 1345 1346 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys)); 1347 } 1348 1349 return skb->hash; 1350 } 1351 1352 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb); 1353 1354 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb) 1355 { 1356 return skb->hash; 1357 } 1358 1359 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from) 1360 { 1361 to->hash = from->hash; 1362 to->sw_hash = from->sw_hash; 1363 to->l4_hash = from->l4_hash; 1364 }; 1365 1366 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1367 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1368 { 1369 return skb->head + skb->end; 1370 } 1371 1372 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1373 { 1374 return skb->end; 1375 } 1376 #else 1377 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1378 { 1379 return skb->end; 1380 } 1381 1382 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1383 { 1384 return skb->end - skb->head; 1385 } 1386 #endif 1387 1388 /* Internal */ 1389 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 1390 1391 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 1392 { 1393 return &skb_shinfo(skb)->hwtstamps; 1394 } 1395 1396 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb) 1397 { 1398 bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY; 1399 1400 return is_zcopy ? skb_uarg(skb) : NULL; 1401 } 1402 1403 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg, 1404 bool *have_ref) 1405 { 1406 if (skb && uarg && !skb_zcopy(skb)) { 1407 if (unlikely(have_ref && *have_ref)) 1408 *have_ref = false; 1409 else 1410 sock_zerocopy_get(uarg); 1411 skb_shinfo(skb)->destructor_arg = uarg; 1412 skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG; 1413 } 1414 } 1415 1416 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val) 1417 { 1418 skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL); 1419 skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG; 1420 } 1421 1422 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb) 1423 { 1424 return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL; 1425 } 1426 1427 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb) 1428 { 1429 return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL); 1430 } 1431 1432 /* Release a reference on a zerocopy structure */ 1433 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy) 1434 { 1435 struct ubuf_info *uarg = skb_zcopy(skb); 1436 1437 if (uarg) { 1438 if (skb_zcopy_is_nouarg(skb)) { 1439 /* no notification callback */ 1440 } else if (uarg->callback == sock_zerocopy_callback) { 1441 uarg->zerocopy = uarg->zerocopy && zerocopy; 1442 sock_zerocopy_put(uarg); 1443 } else { 1444 uarg->callback(uarg, zerocopy); 1445 } 1446 1447 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG; 1448 } 1449 } 1450 1451 /* Abort a zerocopy operation and revert zckey on error in send syscall */ 1452 static inline void skb_zcopy_abort(struct sk_buff *skb) 1453 { 1454 struct ubuf_info *uarg = skb_zcopy(skb); 1455 1456 if (uarg) { 1457 sock_zerocopy_put_abort(uarg, false); 1458 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG; 1459 } 1460 } 1461 1462 static inline void skb_mark_not_on_list(struct sk_buff *skb) 1463 { 1464 skb->next = NULL; 1465 } 1466 1467 static inline void skb_list_del_init(struct sk_buff *skb) 1468 { 1469 __list_del_entry(&skb->list); 1470 skb_mark_not_on_list(skb); 1471 } 1472 1473 /** 1474 * skb_queue_empty - check if a queue is empty 1475 * @list: queue head 1476 * 1477 * Returns true if the queue is empty, false otherwise. 1478 */ 1479 static inline int skb_queue_empty(const struct sk_buff_head *list) 1480 { 1481 return list->next == (const struct sk_buff *) list; 1482 } 1483 1484 /** 1485 * skb_queue_is_last - check if skb is the last entry in the queue 1486 * @list: queue head 1487 * @skb: buffer 1488 * 1489 * Returns true if @skb is the last buffer on the list. 1490 */ 1491 static inline bool skb_queue_is_last(const struct sk_buff_head *list, 1492 const struct sk_buff *skb) 1493 { 1494 return skb->next == (const struct sk_buff *) list; 1495 } 1496 1497 /** 1498 * skb_queue_is_first - check if skb is the first entry in the queue 1499 * @list: queue head 1500 * @skb: buffer 1501 * 1502 * Returns true if @skb is the first buffer on the list. 1503 */ 1504 static inline bool skb_queue_is_first(const struct sk_buff_head *list, 1505 const struct sk_buff *skb) 1506 { 1507 return skb->prev == (const struct sk_buff *) list; 1508 } 1509 1510 /** 1511 * skb_queue_next - return the next packet in the queue 1512 * @list: queue head 1513 * @skb: current buffer 1514 * 1515 * Return the next packet in @list after @skb. It is only valid to 1516 * call this if skb_queue_is_last() evaluates to false. 1517 */ 1518 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 1519 const struct sk_buff *skb) 1520 { 1521 /* This BUG_ON may seem severe, but if we just return then we 1522 * are going to dereference garbage. 1523 */ 1524 BUG_ON(skb_queue_is_last(list, skb)); 1525 return skb->next; 1526 } 1527 1528 /** 1529 * skb_queue_prev - return the prev packet in the queue 1530 * @list: queue head 1531 * @skb: current buffer 1532 * 1533 * Return the prev packet in @list before @skb. It is only valid to 1534 * call this if skb_queue_is_first() evaluates to false. 1535 */ 1536 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 1537 const struct sk_buff *skb) 1538 { 1539 /* This BUG_ON may seem severe, but if we just return then we 1540 * are going to dereference garbage. 1541 */ 1542 BUG_ON(skb_queue_is_first(list, skb)); 1543 return skb->prev; 1544 } 1545 1546 /** 1547 * skb_get - reference buffer 1548 * @skb: buffer to reference 1549 * 1550 * Makes another reference to a socket buffer and returns a pointer 1551 * to the buffer. 1552 */ 1553 static inline struct sk_buff *skb_get(struct sk_buff *skb) 1554 { 1555 refcount_inc(&skb->users); 1556 return skb; 1557 } 1558 1559 /* 1560 * If users == 1, we are the only owner and can avoid redundant atomic changes. 1561 */ 1562 1563 /** 1564 * skb_cloned - is the buffer a clone 1565 * @skb: buffer to check 1566 * 1567 * Returns true if the buffer was generated with skb_clone() and is 1568 * one of multiple shared copies of the buffer. Cloned buffers are 1569 * shared data so must not be written to under normal circumstances. 1570 */ 1571 static inline int skb_cloned(const struct sk_buff *skb) 1572 { 1573 return skb->cloned && 1574 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 1575 } 1576 1577 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) 1578 { 1579 might_sleep_if(gfpflags_allow_blocking(pri)); 1580 1581 if (skb_cloned(skb)) 1582 return pskb_expand_head(skb, 0, 0, pri); 1583 1584 return 0; 1585 } 1586 1587 /** 1588 * skb_header_cloned - is the header a clone 1589 * @skb: buffer to check 1590 * 1591 * Returns true if modifying the header part of the buffer requires 1592 * the data to be copied. 1593 */ 1594 static inline int skb_header_cloned(const struct sk_buff *skb) 1595 { 1596 int dataref; 1597 1598 if (!skb->cloned) 1599 return 0; 1600 1601 dataref = atomic_read(&skb_shinfo(skb)->dataref); 1602 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 1603 return dataref != 1; 1604 } 1605 1606 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri) 1607 { 1608 might_sleep_if(gfpflags_allow_blocking(pri)); 1609 1610 if (skb_header_cloned(skb)) 1611 return pskb_expand_head(skb, 0, 0, pri); 1612 1613 return 0; 1614 } 1615 1616 /** 1617 * __skb_header_release - release reference to header 1618 * @skb: buffer to operate on 1619 */ 1620 static inline void __skb_header_release(struct sk_buff *skb) 1621 { 1622 skb->nohdr = 1; 1623 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT)); 1624 } 1625 1626 1627 /** 1628 * skb_shared - is the buffer shared 1629 * @skb: buffer to check 1630 * 1631 * Returns true if more than one person has a reference to this 1632 * buffer. 1633 */ 1634 static inline int skb_shared(const struct sk_buff *skb) 1635 { 1636 return refcount_read(&skb->users) != 1; 1637 } 1638 1639 /** 1640 * skb_share_check - check if buffer is shared and if so clone it 1641 * @skb: buffer to check 1642 * @pri: priority for memory allocation 1643 * 1644 * If the buffer is shared the buffer is cloned and the old copy 1645 * drops a reference. A new clone with a single reference is returned. 1646 * If the buffer is not shared the original buffer is returned. When 1647 * being called from interrupt status or with spinlocks held pri must 1648 * be GFP_ATOMIC. 1649 * 1650 * NULL is returned on a memory allocation failure. 1651 */ 1652 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) 1653 { 1654 might_sleep_if(gfpflags_allow_blocking(pri)); 1655 if (skb_shared(skb)) { 1656 struct sk_buff *nskb = skb_clone(skb, pri); 1657 1658 if (likely(nskb)) 1659 consume_skb(skb); 1660 else 1661 kfree_skb(skb); 1662 skb = nskb; 1663 } 1664 return skb; 1665 } 1666 1667 /* 1668 * Copy shared buffers into a new sk_buff. We effectively do COW on 1669 * packets to handle cases where we have a local reader and forward 1670 * and a couple of other messy ones. The normal one is tcpdumping 1671 * a packet thats being forwarded. 1672 */ 1673 1674 /** 1675 * skb_unshare - make a copy of a shared buffer 1676 * @skb: buffer to check 1677 * @pri: priority for memory allocation 1678 * 1679 * If the socket buffer is a clone then this function creates a new 1680 * copy of the data, drops a reference count on the old copy and returns 1681 * the new copy with the reference count at 1. If the buffer is not a clone 1682 * the original buffer is returned. When called with a spinlock held or 1683 * from interrupt state @pri must be %GFP_ATOMIC 1684 * 1685 * %NULL is returned on a memory allocation failure. 1686 */ 1687 static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 1688 gfp_t pri) 1689 { 1690 might_sleep_if(gfpflags_allow_blocking(pri)); 1691 if (skb_cloned(skb)) { 1692 struct sk_buff *nskb = skb_copy(skb, pri); 1693 1694 /* Free our shared copy */ 1695 if (likely(nskb)) 1696 consume_skb(skb); 1697 else 1698 kfree_skb(skb); 1699 skb = nskb; 1700 } 1701 return skb; 1702 } 1703 1704 /** 1705 * skb_peek - peek at the head of an &sk_buff_head 1706 * @list_: list to peek at 1707 * 1708 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1709 * be careful with this one. A peek leaves the buffer on the 1710 * list and someone else may run off with it. You must hold 1711 * the appropriate locks or have a private queue to do this. 1712 * 1713 * Returns %NULL for an empty list or a pointer to the head element. 1714 * The reference count is not incremented and the reference is therefore 1715 * volatile. Use with caution. 1716 */ 1717 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) 1718 { 1719 struct sk_buff *skb = list_->next; 1720 1721 if (skb == (struct sk_buff *)list_) 1722 skb = NULL; 1723 return skb; 1724 } 1725 1726 /** 1727 * __skb_peek - peek at the head of a non-empty &sk_buff_head 1728 * @list_: list to peek at 1729 * 1730 * Like skb_peek(), but the caller knows that the list is not empty. 1731 */ 1732 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_) 1733 { 1734 return list_->next; 1735 } 1736 1737 /** 1738 * skb_peek_next - peek skb following the given one from a queue 1739 * @skb: skb to start from 1740 * @list_: list to peek at 1741 * 1742 * Returns %NULL when the end of the list is met or a pointer to the 1743 * next element. The reference count is not incremented and the 1744 * reference is therefore volatile. Use with caution. 1745 */ 1746 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, 1747 const struct sk_buff_head *list_) 1748 { 1749 struct sk_buff *next = skb->next; 1750 1751 if (next == (struct sk_buff *)list_) 1752 next = NULL; 1753 return next; 1754 } 1755 1756 /** 1757 * skb_peek_tail - peek at the tail of an &sk_buff_head 1758 * @list_: list to peek at 1759 * 1760 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1761 * be careful with this one. A peek leaves the buffer on the 1762 * list and someone else may run off with it. You must hold 1763 * the appropriate locks or have a private queue to do this. 1764 * 1765 * Returns %NULL for an empty list or a pointer to the tail element. 1766 * The reference count is not incremented and the reference is therefore 1767 * volatile. Use with caution. 1768 */ 1769 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) 1770 { 1771 struct sk_buff *skb = list_->prev; 1772 1773 if (skb == (struct sk_buff *)list_) 1774 skb = NULL; 1775 return skb; 1776 1777 } 1778 1779 /** 1780 * skb_queue_len - get queue length 1781 * @list_: list to measure 1782 * 1783 * Return the length of an &sk_buff queue. 1784 */ 1785 static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 1786 { 1787 return list_->qlen; 1788 } 1789 1790 /** 1791 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 1792 * @list: queue to initialize 1793 * 1794 * This initializes only the list and queue length aspects of 1795 * an sk_buff_head object. This allows to initialize the list 1796 * aspects of an sk_buff_head without reinitializing things like 1797 * the spinlock. It can also be used for on-stack sk_buff_head 1798 * objects where the spinlock is known to not be used. 1799 */ 1800 static inline void __skb_queue_head_init(struct sk_buff_head *list) 1801 { 1802 list->prev = list->next = (struct sk_buff *)list; 1803 list->qlen = 0; 1804 } 1805 1806 /* 1807 * This function creates a split out lock class for each invocation; 1808 * this is needed for now since a whole lot of users of the skb-queue 1809 * infrastructure in drivers have different locking usage (in hardirq) 1810 * than the networking core (in softirq only). In the long run either the 1811 * network layer or drivers should need annotation to consolidate the 1812 * main types of usage into 3 classes. 1813 */ 1814 static inline void skb_queue_head_init(struct sk_buff_head *list) 1815 { 1816 spin_lock_init(&list->lock); 1817 __skb_queue_head_init(list); 1818 } 1819 1820 static inline void skb_queue_head_init_class(struct sk_buff_head *list, 1821 struct lock_class_key *class) 1822 { 1823 skb_queue_head_init(list); 1824 lockdep_set_class(&list->lock, class); 1825 } 1826 1827 /* 1828 * Insert an sk_buff on a list. 1829 * 1830 * The "__skb_xxxx()" functions are the non-atomic ones that 1831 * can only be called with interrupts disabled. 1832 */ 1833 static inline void __skb_insert(struct sk_buff *newsk, 1834 struct sk_buff *prev, struct sk_buff *next, 1835 struct sk_buff_head *list) 1836 { 1837 newsk->next = next; 1838 newsk->prev = prev; 1839 next->prev = prev->next = newsk; 1840 list->qlen++; 1841 } 1842 1843 static inline void __skb_queue_splice(const struct sk_buff_head *list, 1844 struct sk_buff *prev, 1845 struct sk_buff *next) 1846 { 1847 struct sk_buff *first = list->next; 1848 struct sk_buff *last = list->prev; 1849 1850 first->prev = prev; 1851 prev->next = first; 1852 1853 last->next = next; 1854 next->prev = last; 1855 } 1856 1857 /** 1858 * skb_queue_splice - join two skb lists, this is designed for stacks 1859 * @list: the new list to add 1860 * @head: the place to add it in the first list 1861 */ 1862 static inline void skb_queue_splice(const struct sk_buff_head *list, 1863 struct sk_buff_head *head) 1864 { 1865 if (!skb_queue_empty(list)) { 1866 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1867 head->qlen += list->qlen; 1868 } 1869 } 1870 1871 /** 1872 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list 1873 * @list: the new list to add 1874 * @head: the place to add it in the first list 1875 * 1876 * The list at @list is reinitialised 1877 */ 1878 static inline void skb_queue_splice_init(struct sk_buff_head *list, 1879 struct sk_buff_head *head) 1880 { 1881 if (!skb_queue_empty(list)) { 1882 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1883 head->qlen += list->qlen; 1884 __skb_queue_head_init(list); 1885 } 1886 } 1887 1888 /** 1889 * skb_queue_splice_tail - join two skb lists, each list being a queue 1890 * @list: the new list to add 1891 * @head: the place to add it in the first list 1892 */ 1893 static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 1894 struct sk_buff_head *head) 1895 { 1896 if (!skb_queue_empty(list)) { 1897 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1898 head->qlen += list->qlen; 1899 } 1900 } 1901 1902 /** 1903 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list 1904 * @list: the new list to add 1905 * @head: the place to add it in the first list 1906 * 1907 * Each of the lists is a queue. 1908 * The list at @list is reinitialised 1909 */ 1910 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 1911 struct sk_buff_head *head) 1912 { 1913 if (!skb_queue_empty(list)) { 1914 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1915 head->qlen += list->qlen; 1916 __skb_queue_head_init(list); 1917 } 1918 } 1919 1920 /** 1921 * __skb_queue_after - queue a buffer at the list head 1922 * @list: list to use 1923 * @prev: place after this buffer 1924 * @newsk: buffer to queue 1925 * 1926 * Queue a buffer int the middle of a list. This function takes no locks 1927 * and you must therefore hold required locks before calling it. 1928 * 1929 * A buffer cannot be placed on two lists at the same time. 1930 */ 1931 static inline void __skb_queue_after(struct sk_buff_head *list, 1932 struct sk_buff *prev, 1933 struct sk_buff *newsk) 1934 { 1935 __skb_insert(newsk, prev, prev->next, list); 1936 } 1937 1938 void skb_append(struct sk_buff *old, struct sk_buff *newsk, 1939 struct sk_buff_head *list); 1940 1941 static inline void __skb_queue_before(struct sk_buff_head *list, 1942 struct sk_buff *next, 1943 struct sk_buff *newsk) 1944 { 1945 __skb_insert(newsk, next->prev, next, list); 1946 } 1947 1948 /** 1949 * __skb_queue_head - queue a buffer at the list head 1950 * @list: list to use 1951 * @newsk: buffer to queue 1952 * 1953 * Queue a buffer at the start of a list. This function takes no locks 1954 * and you must therefore hold required locks before calling it. 1955 * 1956 * A buffer cannot be placed on two lists at the same time. 1957 */ 1958 static inline void __skb_queue_head(struct sk_buff_head *list, 1959 struct sk_buff *newsk) 1960 { 1961 __skb_queue_after(list, (struct sk_buff *)list, newsk); 1962 } 1963 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 1964 1965 /** 1966 * __skb_queue_tail - queue a buffer at the list tail 1967 * @list: list to use 1968 * @newsk: buffer to queue 1969 * 1970 * Queue a buffer at the end of a list. This function takes no locks 1971 * and you must therefore hold required locks before calling it. 1972 * 1973 * A buffer cannot be placed on two lists at the same time. 1974 */ 1975 static inline void __skb_queue_tail(struct sk_buff_head *list, 1976 struct sk_buff *newsk) 1977 { 1978 __skb_queue_before(list, (struct sk_buff *)list, newsk); 1979 } 1980 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 1981 1982 /* 1983 * remove sk_buff from list. _Must_ be called atomically, and with 1984 * the list known.. 1985 */ 1986 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 1987 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 1988 { 1989 struct sk_buff *next, *prev; 1990 1991 list->qlen--; 1992 next = skb->next; 1993 prev = skb->prev; 1994 skb->next = skb->prev = NULL; 1995 next->prev = prev; 1996 prev->next = next; 1997 } 1998 1999 /** 2000 * __skb_dequeue - remove from the head of the queue 2001 * @list: list to dequeue from 2002 * 2003 * Remove the head of the list. This function does not take any locks 2004 * so must be used with appropriate locks held only. The head item is 2005 * returned or %NULL if the list is empty. 2006 */ 2007 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 2008 { 2009 struct sk_buff *skb = skb_peek(list); 2010 if (skb) 2011 __skb_unlink(skb, list); 2012 return skb; 2013 } 2014 struct sk_buff *skb_dequeue(struct sk_buff_head *list); 2015 2016 /** 2017 * __skb_dequeue_tail - remove from the tail of the queue 2018 * @list: list to dequeue from 2019 * 2020 * Remove the tail of the list. This function does not take any locks 2021 * so must be used with appropriate locks held only. The tail item is 2022 * returned or %NULL if the list is empty. 2023 */ 2024 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 2025 { 2026 struct sk_buff *skb = skb_peek_tail(list); 2027 if (skb) 2028 __skb_unlink(skb, list); 2029 return skb; 2030 } 2031 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 2032 2033 2034 static inline bool skb_is_nonlinear(const struct sk_buff *skb) 2035 { 2036 return skb->data_len; 2037 } 2038 2039 static inline unsigned int skb_headlen(const struct sk_buff *skb) 2040 { 2041 return skb->len - skb->data_len; 2042 } 2043 2044 static inline unsigned int __skb_pagelen(const struct sk_buff *skb) 2045 { 2046 unsigned int i, len = 0; 2047 2048 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--) 2049 len += skb_frag_size(&skb_shinfo(skb)->frags[i]); 2050 return len; 2051 } 2052 2053 static inline unsigned int skb_pagelen(const struct sk_buff *skb) 2054 { 2055 return skb_headlen(skb) + __skb_pagelen(skb); 2056 } 2057 2058 /** 2059 * __skb_fill_page_desc - initialise a paged fragment in an skb 2060 * @skb: buffer containing fragment to be initialised 2061 * @i: paged fragment index to initialise 2062 * @page: the page to use for this fragment 2063 * @off: the offset to the data with @page 2064 * @size: the length of the data 2065 * 2066 * Initialises the @i'th fragment of @skb to point to &size bytes at 2067 * offset @off within @page. 2068 * 2069 * Does not take any additional reference on the fragment. 2070 */ 2071 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, 2072 struct page *page, int off, int size) 2073 { 2074 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2075 2076 /* 2077 * Propagate page pfmemalloc to the skb if we can. The problem is 2078 * that not all callers have unique ownership of the page but rely 2079 * on page_is_pfmemalloc doing the right thing(tm). 2080 */ 2081 frag->page.p = page; 2082 frag->page_offset = off; 2083 skb_frag_size_set(frag, size); 2084 2085 page = compound_head(page); 2086 if (page_is_pfmemalloc(page)) 2087 skb->pfmemalloc = true; 2088 } 2089 2090 /** 2091 * skb_fill_page_desc - initialise a paged fragment in an skb 2092 * @skb: buffer containing fragment to be initialised 2093 * @i: paged fragment index to initialise 2094 * @page: the page to use for this fragment 2095 * @off: the offset to the data with @page 2096 * @size: the length of the data 2097 * 2098 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of 2099 * @skb to point to @size bytes at offset @off within @page. In 2100 * addition updates @skb such that @i is the last fragment. 2101 * 2102 * Does not take any additional reference on the fragment. 2103 */ 2104 static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 2105 struct page *page, int off, int size) 2106 { 2107 __skb_fill_page_desc(skb, i, page, off, size); 2108 skb_shinfo(skb)->nr_frags = i + 1; 2109 } 2110 2111 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 2112 int size, unsigned int truesize); 2113 2114 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 2115 unsigned int truesize); 2116 2117 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 2118 2119 #ifdef NET_SKBUFF_DATA_USES_OFFSET 2120 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 2121 { 2122 return skb->head + skb->tail; 2123 } 2124 2125 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2126 { 2127 skb->tail = skb->data - skb->head; 2128 } 2129 2130 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2131 { 2132 skb_reset_tail_pointer(skb); 2133 skb->tail += offset; 2134 } 2135 2136 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 2137 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 2138 { 2139 return skb->tail; 2140 } 2141 2142 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2143 { 2144 skb->tail = skb->data; 2145 } 2146 2147 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2148 { 2149 skb->tail = skb->data + offset; 2150 } 2151 2152 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 2153 2154 /* 2155 * Add data to an sk_buff 2156 */ 2157 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len); 2158 void *skb_put(struct sk_buff *skb, unsigned int len); 2159 static inline void *__skb_put(struct sk_buff *skb, unsigned int len) 2160 { 2161 void *tmp = skb_tail_pointer(skb); 2162 SKB_LINEAR_ASSERT(skb); 2163 skb->tail += len; 2164 skb->len += len; 2165 return tmp; 2166 } 2167 2168 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len) 2169 { 2170 void *tmp = __skb_put(skb, len); 2171 2172 memset(tmp, 0, len); 2173 return tmp; 2174 } 2175 2176 static inline void *__skb_put_data(struct sk_buff *skb, const void *data, 2177 unsigned int len) 2178 { 2179 void *tmp = __skb_put(skb, len); 2180 2181 memcpy(tmp, data, len); 2182 return tmp; 2183 } 2184 2185 static inline void __skb_put_u8(struct sk_buff *skb, u8 val) 2186 { 2187 *(u8 *)__skb_put(skb, 1) = val; 2188 } 2189 2190 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len) 2191 { 2192 void *tmp = skb_put(skb, len); 2193 2194 memset(tmp, 0, len); 2195 2196 return tmp; 2197 } 2198 2199 static inline void *skb_put_data(struct sk_buff *skb, const void *data, 2200 unsigned int len) 2201 { 2202 void *tmp = skb_put(skb, len); 2203 2204 memcpy(tmp, data, len); 2205 2206 return tmp; 2207 } 2208 2209 static inline void skb_put_u8(struct sk_buff *skb, u8 val) 2210 { 2211 *(u8 *)skb_put(skb, 1) = val; 2212 } 2213 2214 void *skb_push(struct sk_buff *skb, unsigned int len); 2215 static inline void *__skb_push(struct sk_buff *skb, unsigned int len) 2216 { 2217 skb->data -= len; 2218 skb->len += len; 2219 return skb->data; 2220 } 2221 2222 void *skb_pull(struct sk_buff *skb, unsigned int len); 2223 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len) 2224 { 2225 skb->len -= len; 2226 BUG_ON(skb->len < skb->data_len); 2227 return skb->data += len; 2228 } 2229 2230 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len) 2231 { 2232 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 2233 } 2234 2235 void *__pskb_pull_tail(struct sk_buff *skb, int delta); 2236 2237 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len) 2238 { 2239 if (len > skb_headlen(skb) && 2240 !__pskb_pull_tail(skb, len - skb_headlen(skb))) 2241 return NULL; 2242 skb->len -= len; 2243 return skb->data += len; 2244 } 2245 2246 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len) 2247 { 2248 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 2249 } 2250 2251 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) 2252 { 2253 if (likely(len <= skb_headlen(skb))) 2254 return 1; 2255 if (unlikely(len > skb->len)) 2256 return 0; 2257 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; 2258 } 2259 2260 void skb_condense(struct sk_buff *skb); 2261 2262 /** 2263 * skb_headroom - bytes at buffer head 2264 * @skb: buffer to check 2265 * 2266 * Return the number of bytes of free space at the head of an &sk_buff. 2267 */ 2268 static inline unsigned int skb_headroom(const struct sk_buff *skb) 2269 { 2270 return skb->data - skb->head; 2271 } 2272 2273 /** 2274 * skb_tailroom - bytes at buffer end 2275 * @skb: buffer to check 2276 * 2277 * Return the number of bytes of free space at the tail of an sk_buff 2278 */ 2279 static inline int skb_tailroom(const struct sk_buff *skb) 2280 { 2281 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 2282 } 2283 2284 /** 2285 * skb_availroom - bytes at buffer end 2286 * @skb: buffer to check 2287 * 2288 * Return the number of bytes of free space at the tail of an sk_buff 2289 * allocated by sk_stream_alloc() 2290 */ 2291 static inline int skb_availroom(const struct sk_buff *skb) 2292 { 2293 if (skb_is_nonlinear(skb)) 2294 return 0; 2295 2296 return skb->end - skb->tail - skb->reserved_tailroom; 2297 } 2298 2299 /** 2300 * skb_reserve - adjust headroom 2301 * @skb: buffer to alter 2302 * @len: bytes to move 2303 * 2304 * Increase the headroom of an empty &sk_buff by reducing the tail 2305 * room. This is only allowed for an empty buffer. 2306 */ 2307 static inline void skb_reserve(struct sk_buff *skb, int len) 2308 { 2309 skb->data += len; 2310 skb->tail += len; 2311 } 2312 2313 /** 2314 * skb_tailroom_reserve - adjust reserved_tailroom 2315 * @skb: buffer to alter 2316 * @mtu: maximum amount of headlen permitted 2317 * @needed_tailroom: minimum amount of reserved_tailroom 2318 * 2319 * Set reserved_tailroom so that headlen can be as large as possible but 2320 * not larger than mtu and tailroom cannot be smaller than 2321 * needed_tailroom. 2322 * The required headroom should already have been reserved before using 2323 * this function. 2324 */ 2325 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu, 2326 unsigned int needed_tailroom) 2327 { 2328 SKB_LINEAR_ASSERT(skb); 2329 if (mtu < skb_tailroom(skb) - needed_tailroom) 2330 /* use at most mtu */ 2331 skb->reserved_tailroom = skb_tailroom(skb) - mtu; 2332 else 2333 /* use up to all available space */ 2334 skb->reserved_tailroom = needed_tailroom; 2335 } 2336 2337 #define ENCAP_TYPE_ETHER 0 2338 #define ENCAP_TYPE_IPPROTO 1 2339 2340 static inline void skb_set_inner_protocol(struct sk_buff *skb, 2341 __be16 protocol) 2342 { 2343 skb->inner_protocol = protocol; 2344 skb->inner_protocol_type = ENCAP_TYPE_ETHER; 2345 } 2346 2347 static inline void skb_set_inner_ipproto(struct sk_buff *skb, 2348 __u8 ipproto) 2349 { 2350 skb->inner_ipproto = ipproto; 2351 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO; 2352 } 2353 2354 static inline void skb_reset_inner_headers(struct sk_buff *skb) 2355 { 2356 skb->inner_mac_header = skb->mac_header; 2357 skb->inner_network_header = skb->network_header; 2358 skb->inner_transport_header = skb->transport_header; 2359 } 2360 2361 static inline void skb_reset_mac_len(struct sk_buff *skb) 2362 { 2363 skb->mac_len = skb->network_header - skb->mac_header; 2364 } 2365 2366 static inline unsigned char *skb_inner_transport_header(const struct sk_buff 2367 *skb) 2368 { 2369 return skb->head + skb->inner_transport_header; 2370 } 2371 2372 static inline int skb_inner_transport_offset(const struct sk_buff *skb) 2373 { 2374 return skb_inner_transport_header(skb) - skb->data; 2375 } 2376 2377 static inline void skb_reset_inner_transport_header(struct sk_buff *skb) 2378 { 2379 skb->inner_transport_header = skb->data - skb->head; 2380 } 2381 2382 static inline void skb_set_inner_transport_header(struct sk_buff *skb, 2383 const int offset) 2384 { 2385 skb_reset_inner_transport_header(skb); 2386 skb->inner_transport_header += offset; 2387 } 2388 2389 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) 2390 { 2391 return skb->head + skb->inner_network_header; 2392 } 2393 2394 static inline void skb_reset_inner_network_header(struct sk_buff *skb) 2395 { 2396 skb->inner_network_header = skb->data - skb->head; 2397 } 2398 2399 static inline void skb_set_inner_network_header(struct sk_buff *skb, 2400 const int offset) 2401 { 2402 skb_reset_inner_network_header(skb); 2403 skb->inner_network_header += offset; 2404 } 2405 2406 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) 2407 { 2408 return skb->head + skb->inner_mac_header; 2409 } 2410 2411 static inline void skb_reset_inner_mac_header(struct sk_buff *skb) 2412 { 2413 skb->inner_mac_header = skb->data - skb->head; 2414 } 2415 2416 static inline void skb_set_inner_mac_header(struct sk_buff *skb, 2417 const int offset) 2418 { 2419 skb_reset_inner_mac_header(skb); 2420 skb->inner_mac_header += offset; 2421 } 2422 static inline bool skb_transport_header_was_set(const struct sk_buff *skb) 2423 { 2424 return skb->transport_header != (typeof(skb->transport_header))~0U; 2425 } 2426 2427 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 2428 { 2429 return skb->head + skb->transport_header; 2430 } 2431 2432 static inline void skb_reset_transport_header(struct sk_buff *skb) 2433 { 2434 skb->transport_header = skb->data - skb->head; 2435 } 2436 2437 static inline void skb_set_transport_header(struct sk_buff *skb, 2438 const int offset) 2439 { 2440 skb_reset_transport_header(skb); 2441 skb->transport_header += offset; 2442 } 2443 2444 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 2445 { 2446 return skb->head + skb->network_header; 2447 } 2448 2449 static inline void skb_reset_network_header(struct sk_buff *skb) 2450 { 2451 skb->network_header = skb->data - skb->head; 2452 } 2453 2454 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 2455 { 2456 skb_reset_network_header(skb); 2457 skb->network_header += offset; 2458 } 2459 2460 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 2461 { 2462 return skb->head + skb->mac_header; 2463 } 2464 2465 static inline int skb_mac_offset(const struct sk_buff *skb) 2466 { 2467 return skb_mac_header(skb) - skb->data; 2468 } 2469 2470 static inline u32 skb_mac_header_len(const struct sk_buff *skb) 2471 { 2472 return skb->network_header - skb->mac_header; 2473 } 2474 2475 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 2476 { 2477 return skb->mac_header != (typeof(skb->mac_header))~0U; 2478 } 2479 2480 static inline void skb_reset_mac_header(struct sk_buff *skb) 2481 { 2482 skb->mac_header = skb->data - skb->head; 2483 } 2484 2485 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 2486 { 2487 skb_reset_mac_header(skb); 2488 skb->mac_header += offset; 2489 } 2490 2491 static inline void skb_pop_mac_header(struct sk_buff *skb) 2492 { 2493 skb->mac_header = skb->network_header; 2494 } 2495 2496 static inline void skb_probe_transport_header(struct sk_buff *skb) 2497 { 2498 struct flow_keys_basic keys; 2499 2500 if (skb_transport_header_was_set(skb)) 2501 return; 2502 2503 if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys, 2504 NULL, 0, 0, 0, 0)) 2505 skb_set_transport_header(skb, keys.control.thoff); 2506 } 2507 2508 static inline void skb_mac_header_rebuild(struct sk_buff *skb) 2509 { 2510 if (skb_mac_header_was_set(skb)) { 2511 const unsigned char *old_mac = skb_mac_header(skb); 2512 2513 skb_set_mac_header(skb, -skb->mac_len); 2514 memmove(skb_mac_header(skb), old_mac, skb->mac_len); 2515 } 2516 } 2517 2518 static inline int skb_checksum_start_offset(const struct sk_buff *skb) 2519 { 2520 return skb->csum_start - skb_headroom(skb); 2521 } 2522 2523 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb) 2524 { 2525 return skb->head + skb->csum_start; 2526 } 2527 2528 static inline int skb_transport_offset(const struct sk_buff *skb) 2529 { 2530 return skb_transport_header(skb) - skb->data; 2531 } 2532 2533 static inline u32 skb_network_header_len(const struct sk_buff *skb) 2534 { 2535 return skb->transport_header - skb->network_header; 2536 } 2537 2538 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) 2539 { 2540 return skb->inner_transport_header - skb->inner_network_header; 2541 } 2542 2543 static inline int skb_network_offset(const struct sk_buff *skb) 2544 { 2545 return skb_network_header(skb) - skb->data; 2546 } 2547 2548 static inline int skb_inner_network_offset(const struct sk_buff *skb) 2549 { 2550 return skb_inner_network_header(skb) - skb->data; 2551 } 2552 2553 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 2554 { 2555 return pskb_may_pull(skb, skb_network_offset(skb) + len); 2556 } 2557 2558 /* 2559 * CPUs often take a performance hit when accessing unaligned memory 2560 * locations. The actual performance hit varies, it can be small if the 2561 * hardware handles it or large if we have to take an exception and fix it 2562 * in software. 2563 * 2564 * Since an ethernet header is 14 bytes network drivers often end up with 2565 * the IP header at an unaligned offset. The IP header can be aligned by 2566 * shifting the start of the packet by 2 bytes. Drivers should do this 2567 * with: 2568 * 2569 * skb_reserve(skb, NET_IP_ALIGN); 2570 * 2571 * The downside to this alignment of the IP header is that the DMA is now 2572 * unaligned. On some architectures the cost of an unaligned DMA is high 2573 * and this cost outweighs the gains made by aligning the IP header. 2574 * 2575 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 2576 * to be overridden. 2577 */ 2578 #ifndef NET_IP_ALIGN 2579 #define NET_IP_ALIGN 2 2580 #endif 2581 2582 /* 2583 * The networking layer reserves some headroom in skb data (via 2584 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 2585 * the header has to grow. In the default case, if the header has to grow 2586 * 32 bytes or less we avoid the reallocation. 2587 * 2588 * Unfortunately this headroom changes the DMA alignment of the resulting 2589 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 2590 * on some architectures. An architecture can override this value, 2591 * perhaps setting it to a cacheline in size (since that will maintain 2592 * cacheline alignment of the DMA). It must be a power of 2. 2593 * 2594 * Various parts of the networking layer expect at least 32 bytes of 2595 * headroom, you should not reduce this. 2596 * 2597 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 2598 * to reduce average number of cache lines per packet. 2599 * get_rps_cpus() for example only access one 64 bytes aligned block : 2600 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 2601 */ 2602 #ifndef NET_SKB_PAD 2603 #define NET_SKB_PAD max(32, L1_CACHE_BYTES) 2604 #endif 2605 2606 int ___pskb_trim(struct sk_buff *skb, unsigned int len); 2607 2608 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len) 2609 { 2610 if (WARN_ON(skb_is_nonlinear(skb))) 2611 return; 2612 skb->len = len; 2613 skb_set_tail_pointer(skb, len); 2614 } 2615 2616 static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 2617 { 2618 __skb_set_length(skb, len); 2619 } 2620 2621 void skb_trim(struct sk_buff *skb, unsigned int len); 2622 2623 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 2624 { 2625 if (skb->data_len) 2626 return ___pskb_trim(skb, len); 2627 __skb_trim(skb, len); 2628 return 0; 2629 } 2630 2631 static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 2632 { 2633 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 2634 } 2635 2636 /** 2637 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 2638 * @skb: buffer to alter 2639 * @len: new length 2640 * 2641 * This is identical to pskb_trim except that the caller knows that 2642 * the skb is not cloned so we should never get an error due to out- 2643 * of-memory. 2644 */ 2645 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 2646 { 2647 int err = pskb_trim(skb, len); 2648 BUG_ON(err); 2649 } 2650 2651 static inline int __skb_grow(struct sk_buff *skb, unsigned int len) 2652 { 2653 unsigned int diff = len - skb->len; 2654 2655 if (skb_tailroom(skb) < diff) { 2656 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb), 2657 GFP_ATOMIC); 2658 if (ret) 2659 return ret; 2660 } 2661 __skb_set_length(skb, len); 2662 return 0; 2663 } 2664 2665 /** 2666 * skb_orphan - orphan a buffer 2667 * @skb: buffer to orphan 2668 * 2669 * If a buffer currently has an owner then we call the owner's 2670 * destructor function and make the @skb unowned. The buffer continues 2671 * to exist but is no longer charged to its former owner. 2672 */ 2673 static inline void skb_orphan(struct sk_buff *skb) 2674 { 2675 if (skb->destructor) { 2676 skb->destructor(skb); 2677 skb->destructor = NULL; 2678 skb->sk = NULL; 2679 } else { 2680 BUG_ON(skb->sk); 2681 } 2682 } 2683 2684 /** 2685 * skb_orphan_frags - orphan the frags contained in a buffer 2686 * @skb: buffer to orphan frags from 2687 * @gfp_mask: allocation mask for replacement pages 2688 * 2689 * For each frag in the SKB which needs a destructor (i.e. has an 2690 * owner) create a copy of that frag and release the original 2691 * page by calling the destructor. 2692 */ 2693 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) 2694 { 2695 if (likely(!skb_zcopy(skb))) 2696 return 0; 2697 if (!skb_zcopy_is_nouarg(skb) && 2698 skb_uarg(skb)->callback == sock_zerocopy_callback) 2699 return 0; 2700 return skb_copy_ubufs(skb, gfp_mask); 2701 } 2702 2703 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */ 2704 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask) 2705 { 2706 if (likely(!skb_zcopy(skb))) 2707 return 0; 2708 return skb_copy_ubufs(skb, gfp_mask); 2709 } 2710 2711 /** 2712 * __skb_queue_purge - empty a list 2713 * @list: list to empty 2714 * 2715 * Delete all buffers on an &sk_buff list. Each buffer is removed from 2716 * the list and one reference dropped. This function does not take the 2717 * list lock and the caller must hold the relevant locks to use it. 2718 */ 2719 static inline void __skb_queue_purge(struct sk_buff_head *list) 2720 { 2721 struct sk_buff *skb; 2722 while ((skb = __skb_dequeue(list)) != NULL) 2723 kfree_skb(skb); 2724 } 2725 void skb_queue_purge(struct sk_buff_head *list); 2726 2727 unsigned int skb_rbtree_purge(struct rb_root *root); 2728 2729 void *netdev_alloc_frag(unsigned int fragsz); 2730 2731 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length, 2732 gfp_t gfp_mask); 2733 2734 /** 2735 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 2736 * @dev: network device to receive on 2737 * @length: length to allocate 2738 * 2739 * Allocate a new &sk_buff and assign it a usage count of one. The 2740 * buffer has unspecified headroom built in. Users should allocate 2741 * the headroom they think they need without accounting for the 2742 * built in space. The built in space is used for optimisations. 2743 * 2744 * %NULL is returned if there is no free memory. Although this function 2745 * allocates memory it can be called from an interrupt. 2746 */ 2747 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 2748 unsigned int length) 2749 { 2750 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 2751 } 2752 2753 /* legacy helper around __netdev_alloc_skb() */ 2754 static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 2755 gfp_t gfp_mask) 2756 { 2757 return __netdev_alloc_skb(NULL, length, gfp_mask); 2758 } 2759 2760 /* legacy helper around netdev_alloc_skb() */ 2761 static inline struct sk_buff *dev_alloc_skb(unsigned int length) 2762 { 2763 return netdev_alloc_skb(NULL, length); 2764 } 2765 2766 2767 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, 2768 unsigned int length, gfp_t gfp) 2769 { 2770 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); 2771 2772 if (NET_IP_ALIGN && skb) 2773 skb_reserve(skb, NET_IP_ALIGN); 2774 return skb; 2775 } 2776 2777 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 2778 unsigned int length) 2779 { 2780 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); 2781 } 2782 2783 static inline void skb_free_frag(void *addr) 2784 { 2785 page_frag_free(addr); 2786 } 2787 2788 void *napi_alloc_frag(unsigned int fragsz); 2789 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, 2790 unsigned int length, gfp_t gfp_mask); 2791 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi, 2792 unsigned int length) 2793 { 2794 return __napi_alloc_skb(napi, length, GFP_ATOMIC); 2795 } 2796 void napi_consume_skb(struct sk_buff *skb, int budget); 2797 2798 void __kfree_skb_flush(void); 2799 void __kfree_skb_defer(struct sk_buff *skb); 2800 2801 /** 2802 * __dev_alloc_pages - allocate page for network Rx 2803 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 2804 * @order: size of the allocation 2805 * 2806 * Allocate a new page. 2807 * 2808 * %NULL is returned if there is no free memory. 2809 */ 2810 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask, 2811 unsigned int order) 2812 { 2813 /* This piece of code contains several assumptions. 2814 * 1. This is for device Rx, therefor a cold page is preferred. 2815 * 2. The expectation is the user wants a compound page. 2816 * 3. If requesting a order 0 page it will not be compound 2817 * due to the check to see if order has a value in prep_new_page 2818 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to 2819 * code in gfp_to_alloc_flags that should be enforcing this. 2820 */ 2821 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC; 2822 2823 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order); 2824 } 2825 2826 static inline struct page *dev_alloc_pages(unsigned int order) 2827 { 2828 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order); 2829 } 2830 2831 /** 2832 * __dev_alloc_page - allocate a page for network Rx 2833 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 2834 * 2835 * Allocate a new page. 2836 * 2837 * %NULL is returned if there is no free memory. 2838 */ 2839 static inline struct page *__dev_alloc_page(gfp_t gfp_mask) 2840 { 2841 return __dev_alloc_pages(gfp_mask, 0); 2842 } 2843 2844 static inline struct page *dev_alloc_page(void) 2845 { 2846 return dev_alloc_pages(0); 2847 } 2848 2849 /** 2850 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page 2851 * @page: The page that was allocated from skb_alloc_page 2852 * @skb: The skb that may need pfmemalloc set 2853 */ 2854 static inline void skb_propagate_pfmemalloc(struct page *page, 2855 struct sk_buff *skb) 2856 { 2857 if (page_is_pfmemalloc(page)) 2858 skb->pfmemalloc = true; 2859 } 2860 2861 /** 2862 * skb_frag_page - retrieve the page referred to by a paged fragment 2863 * @frag: the paged fragment 2864 * 2865 * Returns the &struct page associated with @frag. 2866 */ 2867 static inline struct page *skb_frag_page(const skb_frag_t *frag) 2868 { 2869 return frag->page.p; 2870 } 2871 2872 /** 2873 * __skb_frag_ref - take an addition reference on a paged fragment. 2874 * @frag: the paged fragment 2875 * 2876 * Takes an additional reference on the paged fragment @frag. 2877 */ 2878 static inline void __skb_frag_ref(skb_frag_t *frag) 2879 { 2880 get_page(skb_frag_page(frag)); 2881 } 2882 2883 /** 2884 * skb_frag_ref - take an addition reference on a paged fragment of an skb. 2885 * @skb: the buffer 2886 * @f: the fragment offset. 2887 * 2888 * Takes an additional reference on the @f'th paged fragment of @skb. 2889 */ 2890 static inline void skb_frag_ref(struct sk_buff *skb, int f) 2891 { 2892 __skb_frag_ref(&skb_shinfo(skb)->frags[f]); 2893 } 2894 2895 /** 2896 * __skb_frag_unref - release a reference on a paged fragment. 2897 * @frag: the paged fragment 2898 * 2899 * Releases a reference on the paged fragment @frag. 2900 */ 2901 static inline void __skb_frag_unref(skb_frag_t *frag) 2902 { 2903 put_page(skb_frag_page(frag)); 2904 } 2905 2906 /** 2907 * skb_frag_unref - release a reference on a paged fragment of an skb. 2908 * @skb: the buffer 2909 * @f: the fragment offset 2910 * 2911 * Releases a reference on the @f'th paged fragment of @skb. 2912 */ 2913 static inline void skb_frag_unref(struct sk_buff *skb, int f) 2914 { 2915 __skb_frag_unref(&skb_shinfo(skb)->frags[f]); 2916 } 2917 2918 /** 2919 * skb_frag_address - gets the address of the data contained in a paged fragment 2920 * @frag: the paged fragment buffer 2921 * 2922 * Returns the address of the data within @frag. The page must already 2923 * be mapped. 2924 */ 2925 static inline void *skb_frag_address(const skb_frag_t *frag) 2926 { 2927 return page_address(skb_frag_page(frag)) + frag->page_offset; 2928 } 2929 2930 /** 2931 * skb_frag_address_safe - gets the address of the data contained in a paged fragment 2932 * @frag: the paged fragment buffer 2933 * 2934 * Returns the address of the data within @frag. Checks that the page 2935 * is mapped and returns %NULL otherwise. 2936 */ 2937 static inline void *skb_frag_address_safe(const skb_frag_t *frag) 2938 { 2939 void *ptr = page_address(skb_frag_page(frag)); 2940 if (unlikely(!ptr)) 2941 return NULL; 2942 2943 return ptr + frag->page_offset; 2944 } 2945 2946 /** 2947 * __skb_frag_set_page - sets the page contained in a paged fragment 2948 * @frag: the paged fragment 2949 * @page: the page to set 2950 * 2951 * Sets the fragment @frag to contain @page. 2952 */ 2953 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page) 2954 { 2955 frag->page.p = page; 2956 } 2957 2958 /** 2959 * skb_frag_set_page - sets the page contained in a paged fragment of an skb 2960 * @skb: the buffer 2961 * @f: the fragment offset 2962 * @page: the page to set 2963 * 2964 * Sets the @f'th fragment of @skb to contain @page. 2965 */ 2966 static inline void skb_frag_set_page(struct sk_buff *skb, int f, 2967 struct page *page) 2968 { 2969 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page); 2970 } 2971 2972 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio); 2973 2974 /** 2975 * skb_frag_dma_map - maps a paged fragment via the DMA API 2976 * @dev: the device to map the fragment to 2977 * @frag: the paged fragment to map 2978 * @offset: the offset within the fragment (starting at the 2979 * fragment's own offset) 2980 * @size: the number of bytes to map 2981 * @dir: the direction of the mapping (``PCI_DMA_*``) 2982 * 2983 * Maps the page associated with @frag to @device. 2984 */ 2985 static inline dma_addr_t skb_frag_dma_map(struct device *dev, 2986 const skb_frag_t *frag, 2987 size_t offset, size_t size, 2988 enum dma_data_direction dir) 2989 { 2990 return dma_map_page(dev, skb_frag_page(frag), 2991 frag->page_offset + offset, size, dir); 2992 } 2993 2994 static inline struct sk_buff *pskb_copy(struct sk_buff *skb, 2995 gfp_t gfp_mask) 2996 { 2997 return __pskb_copy(skb, skb_headroom(skb), gfp_mask); 2998 } 2999 3000 3001 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb, 3002 gfp_t gfp_mask) 3003 { 3004 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true); 3005 } 3006 3007 3008 /** 3009 * skb_clone_writable - is the header of a clone writable 3010 * @skb: buffer to check 3011 * @len: length up to which to write 3012 * 3013 * Returns true if modifying the header part of the cloned buffer 3014 * does not requires the data to be copied. 3015 */ 3016 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) 3017 { 3018 return !skb_header_cloned(skb) && 3019 skb_headroom(skb) + len <= skb->hdr_len; 3020 } 3021 3022 static inline int skb_try_make_writable(struct sk_buff *skb, 3023 unsigned int write_len) 3024 { 3025 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) && 3026 pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 3027 } 3028 3029 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 3030 int cloned) 3031 { 3032 int delta = 0; 3033 3034 if (headroom > skb_headroom(skb)) 3035 delta = headroom - skb_headroom(skb); 3036 3037 if (delta || cloned) 3038 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 3039 GFP_ATOMIC); 3040 return 0; 3041 } 3042 3043 /** 3044 * skb_cow - copy header of skb when it is required 3045 * @skb: buffer to cow 3046 * @headroom: needed headroom 3047 * 3048 * If the skb passed lacks sufficient headroom or its data part 3049 * is shared, data is reallocated. If reallocation fails, an error 3050 * is returned and original skb is not changed. 3051 * 3052 * The result is skb with writable area skb->head...skb->tail 3053 * and at least @headroom of space at head. 3054 */ 3055 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 3056 { 3057 return __skb_cow(skb, headroom, skb_cloned(skb)); 3058 } 3059 3060 /** 3061 * skb_cow_head - skb_cow but only making the head writable 3062 * @skb: buffer to cow 3063 * @headroom: needed headroom 3064 * 3065 * This function is identical to skb_cow except that we replace the 3066 * skb_cloned check by skb_header_cloned. It should be used when 3067 * you only need to push on some header and do not need to modify 3068 * the data. 3069 */ 3070 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 3071 { 3072 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 3073 } 3074 3075 /** 3076 * skb_padto - pad an skbuff up to a minimal size 3077 * @skb: buffer to pad 3078 * @len: minimal length 3079 * 3080 * Pads up a buffer to ensure the trailing bytes exist and are 3081 * blanked. If the buffer already contains sufficient data it 3082 * is untouched. Otherwise it is extended. Returns zero on 3083 * success. The skb is freed on error. 3084 */ 3085 static inline int skb_padto(struct sk_buff *skb, unsigned int len) 3086 { 3087 unsigned int size = skb->len; 3088 if (likely(size >= len)) 3089 return 0; 3090 return skb_pad(skb, len - size); 3091 } 3092 3093 /** 3094 * __skb_put_padto - increase size and pad an skbuff up to a minimal size 3095 * @skb: buffer to pad 3096 * @len: minimal length 3097 * @free_on_error: free buffer on error 3098 * 3099 * Pads up a buffer to ensure the trailing bytes exist and are 3100 * blanked. If the buffer already contains sufficient data it 3101 * is untouched. Otherwise it is extended. Returns zero on 3102 * success. The skb is freed on error if @free_on_error is true. 3103 */ 3104 static inline int __skb_put_padto(struct sk_buff *skb, unsigned int len, 3105 bool free_on_error) 3106 { 3107 unsigned int size = skb->len; 3108 3109 if (unlikely(size < len)) { 3110 len -= size; 3111 if (__skb_pad(skb, len, free_on_error)) 3112 return -ENOMEM; 3113 __skb_put(skb, len); 3114 } 3115 return 0; 3116 } 3117 3118 /** 3119 * skb_put_padto - increase size and pad an skbuff up to a minimal size 3120 * @skb: buffer to pad 3121 * @len: minimal length 3122 * 3123 * Pads up a buffer to ensure the trailing bytes exist and are 3124 * blanked. If the buffer already contains sufficient data it 3125 * is untouched. Otherwise it is extended. Returns zero on 3126 * success. The skb is freed on error. 3127 */ 3128 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len) 3129 { 3130 return __skb_put_padto(skb, len, true); 3131 } 3132 3133 static inline int skb_add_data(struct sk_buff *skb, 3134 struct iov_iter *from, int copy) 3135 { 3136 const int off = skb->len; 3137 3138 if (skb->ip_summed == CHECKSUM_NONE) { 3139 __wsum csum = 0; 3140 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy, 3141 &csum, from)) { 3142 skb->csum = csum_block_add(skb->csum, csum, off); 3143 return 0; 3144 } 3145 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from)) 3146 return 0; 3147 3148 __skb_trim(skb, off); 3149 return -EFAULT; 3150 } 3151 3152 static inline bool skb_can_coalesce(struct sk_buff *skb, int i, 3153 const struct page *page, int off) 3154 { 3155 if (skb_zcopy(skb)) 3156 return false; 3157 if (i) { 3158 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 3159 3160 return page == skb_frag_page(frag) && 3161 off == frag->page_offset + skb_frag_size(frag); 3162 } 3163 return false; 3164 } 3165 3166 static inline int __skb_linearize(struct sk_buff *skb) 3167 { 3168 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 3169 } 3170 3171 /** 3172 * skb_linearize - convert paged skb to linear one 3173 * @skb: buffer to linarize 3174 * 3175 * If there is no free memory -ENOMEM is returned, otherwise zero 3176 * is returned and the old skb data released. 3177 */ 3178 static inline int skb_linearize(struct sk_buff *skb) 3179 { 3180 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 3181 } 3182 3183 /** 3184 * skb_has_shared_frag - can any frag be overwritten 3185 * @skb: buffer to test 3186 * 3187 * Return true if the skb has at least one frag that might be modified 3188 * by an external entity (as in vmsplice()/sendfile()) 3189 */ 3190 static inline bool skb_has_shared_frag(const struct sk_buff *skb) 3191 { 3192 return skb_is_nonlinear(skb) && 3193 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG; 3194 } 3195 3196 /** 3197 * skb_linearize_cow - make sure skb is linear and writable 3198 * @skb: buffer to process 3199 * 3200 * If there is no free memory -ENOMEM is returned, otherwise zero 3201 * is returned and the old skb data released. 3202 */ 3203 static inline int skb_linearize_cow(struct sk_buff *skb) 3204 { 3205 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 3206 __skb_linearize(skb) : 0; 3207 } 3208 3209 static __always_inline void 3210 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3211 unsigned int off) 3212 { 3213 if (skb->ip_summed == CHECKSUM_COMPLETE) 3214 skb->csum = csum_block_sub(skb->csum, 3215 csum_partial(start, len, 0), off); 3216 else if (skb->ip_summed == CHECKSUM_PARTIAL && 3217 skb_checksum_start_offset(skb) < 0) 3218 skb->ip_summed = CHECKSUM_NONE; 3219 } 3220 3221 /** 3222 * skb_postpull_rcsum - update checksum for received skb after pull 3223 * @skb: buffer to update 3224 * @start: start of data before pull 3225 * @len: length of data pulled 3226 * 3227 * After doing a pull on a received packet, you need to call this to 3228 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 3229 * CHECKSUM_NONE so that it can be recomputed from scratch. 3230 */ 3231 static inline void skb_postpull_rcsum(struct sk_buff *skb, 3232 const void *start, unsigned int len) 3233 { 3234 __skb_postpull_rcsum(skb, start, len, 0); 3235 } 3236 3237 static __always_inline void 3238 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3239 unsigned int off) 3240 { 3241 if (skb->ip_summed == CHECKSUM_COMPLETE) 3242 skb->csum = csum_block_add(skb->csum, 3243 csum_partial(start, len, 0), off); 3244 } 3245 3246 /** 3247 * skb_postpush_rcsum - update checksum for received skb after push 3248 * @skb: buffer to update 3249 * @start: start of data after push 3250 * @len: length of data pushed 3251 * 3252 * After doing a push on a received packet, you need to call this to 3253 * update the CHECKSUM_COMPLETE checksum. 3254 */ 3255 static inline void skb_postpush_rcsum(struct sk_buff *skb, 3256 const void *start, unsigned int len) 3257 { 3258 __skb_postpush_rcsum(skb, start, len, 0); 3259 } 3260 3261 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 3262 3263 /** 3264 * skb_push_rcsum - push skb and update receive checksum 3265 * @skb: buffer to update 3266 * @len: length of data pulled 3267 * 3268 * This function performs an skb_push on the packet and updates 3269 * the CHECKSUM_COMPLETE checksum. It should be used on 3270 * receive path processing instead of skb_push unless you know 3271 * that the checksum difference is zero (e.g., a valid IP header) 3272 * or you are setting ip_summed to CHECKSUM_NONE. 3273 */ 3274 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len) 3275 { 3276 skb_push(skb, len); 3277 skb_postpush_rcsum(skb, skb->data, len); 3278 return skb->data; 3279 } 3280 3281 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len); 3282 /** 3283 * pskb_trim_rcsum - trim received skb and update checksum 3284 * @skb: buffer to trim 3285 * @len: new length 3286 * 3287 * This is exactly the same as pskb_trim except that it ensures the 3288 * checksum of received packets are still valid after the operation. 3289 * It can change skb pointers. 3290 */ 3291 3292 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3293 { 3294 if (likely(len >= skb->len)) 3295 return 0; 3296 return pskb_trim_rcsum_slow(skb, len); 3297 } 3298 3299 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3300 { 3301 if (skb->ip_summed == CHECKSUM_COMPLETE) 3302 skb->ip_summed = CHECKSUM_NONE; 3303 __skb_trim(skb, len); 3304 return 0; 3305 } 3306 3307 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len) 3308 { 3309 if (skb->ip_summed == CHECKSUM_COMPLETE) 3310 skb->ip_summed = CHECKSUM_NONE; 3311 return __skb_grow(skb, len); 3312 } 3313 3314 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode) 3315 #define skb_rb_first(root) rb_to_skb(rb_first(root)) 3316 #define skb_rb_last(root) rb_to_skb(rb_last(root)) 3317 #define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode)) 3318 #define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode)) 3319 3320 #define skb_queue_walk(queue, skb) \ 3321 for (skb = (queue)->next; \ 3322 skb != (struct sk_buff *)(queue); \ 3323 skb = skb->next) 3324 3325 #define skb_queue_walk_safe(queue, skb, tmp) \ 3326 for (skb = (queue)->next, tmp = skb->next; \ 3327 skb != (struct sk_buff *)(queue); \ 3328 skb = tmp, tmp = skb->next) 3329 3330 #define skb_queue_walk_from(queue, skb) \ 3331 for (; skb != (struct sk_buff *)(queue); \ 3332 skb = skb->next) 3333 3334 #define skb_rbtree_walk(skb, root) \ 3335 for (skb = skb_rb_first(root); skb != NULL; \ 3336 skb = skb_rb_next(skb)) 3337 3338 #define skb_rbtree_walk_from(skb) \ 3339 for (; skb != NULL; \ 3340 skb = skb_rb_next(skb)) 3341 3342 #define skb_rbtree_walk_from_safe(skb, tmp) \ 3343 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \ 3344 skb = tmp) 3345 3346 #define skb_queue_walk_from_safe(queue, skb, tmp) \ 3347 for (tmp = skb->next; \ 3348 skb != (struct sk_buff *)(queue); \ 3349 skb = tmp, tmp = skb->next) 3350 3351 #define skb_queue_reverse_walk(queue, skb) \ 3352 for (skb = (queue)->prev; \ 3353 skb != (struct sk_buff *)(queue); \ 3354 skb = skb->prev) 3355 3356 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \ 3357 for (skb = (queue)->prev, tmp = skb->prev; \ 3358 skb != (struct sk_buff *)(queue); \ 3359 skb = tmp, tmp = skb->prev) 3360 3361 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ 3362 for (tmp = skb->prev; \ 3363 skb != (struct sk_buff *)(queue); \ 3364 skb = tmp, tmp = skb->prev) 3365 3366 static inline bool skb_has_frag_list(const struct sk_buff *skb) 3367 { 3368 return skb_shinfo(skb)->frag_list != NULL; 3369 } 3370 3371 static inline void skb_frag_list_init(struct sk_buff *skb) 3372 { 3373 skb_shinfo(skb)->frag_list = NULL; 3374 } 3375 3376 #define skb_walk_frags(skb, iter) \ 3377 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 3378 3379 3380 int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p, 3381 const struct sk_buff *skb); 3382 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk, 3383 struct sk_buff_head *queue, 3384 unsigned int flags, 3385 void (*destructor)(struct sock *sk, 3386 struct sk_buff *skb), 3387 int *off, int *err, 3388 struct sk_buff **last); 3389 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags, 3390 void (*destructor)(struct sock *sk, 3391 struct sk_buff *skb), 3392 int *off, int *err, 3393 struct sk_buff **last); 3394 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags, 3395 void (*destructor)(struct sock *sk, 3396 struct sk_buff *skb), 3397 int *off, int *err); 3398 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock, 3399 int *err); 3400 __poll_t datagram_poll(struct file *file, struct socket *sock, 3401 struct poll_table_struct *wait); 3402 int skb_copy_datagram_iter(const struct sk_buff *from, int offset, 3403 struct iov_iter *to, int size); 3404 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset, 3405 struct msghdr *msg, int size) 3406 { 3407 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size); 3408 } 3409 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen, 3410 struct msghdr *msg); 3411 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset, 3412 struct iov_iter *to, int len, 3413 struct ahash_request *hash); 3414 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset, 3415 struct iov_iter *from, int len); 3416 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm); 3417 void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 3418 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len); 3419 static inline void skb_free_datagram_locked(struct sock *sk, 3420 struct sk_buff *skb) 3421 { 3422 __skb_free_datagram_locked(sk, skb, 0); 3423 } 3424 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags); 3425 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len); 3426 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len); 3427 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, 3428 int len, __wsum csum); 3429 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 3430 struct pipe_inode_info *pipe, unsigned int len, 3431 unsigned int flags); 3432 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 3433 int len); 3434 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 3435 unsigned int skb_zerocopy_headlen(const struct sk_buff *from); 3436 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from, 3437 int len, int hlen); 3438 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len); 3439 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen); 3440 void skb_scrub_packet(struct sk_buff *skb, bool xnet); 3441 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu); 3442 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len); 3443 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features); 3444 struct sk_buff *skb_vlan_untag(struct sk_buff *skb); 3445 int skb_ensure_writable(struct sk_buff *skb, int write_len); 3446 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci); 3447 int skb_vlan_pop(struct sk_buff *skb); 3448 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci); 3449 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy, 3450 gfp_t gfp); 3451 3452 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len) 3453 { 3454 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT; 3455 } 3456 3457 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len) 3458 { 3459 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT; 3460 } 3461 3462 struct skb_checksum_ops { 3463 __wsum (*update)(const void *mem, int len, __wsum wsum); 3464 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len); 3465 }; 3466 3467 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly; 3468 3469 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 3470 __wsum csum, const struct skb_checksum_ops *ops); 3471 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len, 3472 __wsum csum); 3473 3474 static inline void * __must_check 3475 __skb_header_pointer(const struct sk_buff *skb, int offset, 3476 int len, void *data, int hlen, void *buffer) 3477 { 3478 if (hlen - offset >= len) 3479 return data + offset; 3480 3481 if (!skb || 3482 skb_copy_bits(skb, offset, buffer, len) < 0) 3483 return NULL; 3484 3485 return buffer; 3486 } 3487 3488 static inline void * __must_check 3489 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer) 3490 { 3491 return __skb_header_pointer(skb, offset, len, skb->data, 3492 skb_headlen(skb), buffer); 3493 } 3494 3495 /** 3496 * skb_needs_linearize - check if we need to linearize a given skb 3497 * depending on the given device features. 3498 * @skb: socket buffer to check 3499 * @features: net device features 3500 * 3501 * Returns true if either: 3502 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 3503 * 2. skb is fragmented and the device does not support SG. 3504 */ 3505 static inline bool skb_needs_linearize(struct sk_buff *skb, 3506 netdev_features_t features) 3507 { 3508 return skb_is_nonlinear(skb) && 3509 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) || 3510 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG))); 3511 } 3512 3513 static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 3514 void *to, 3515 const unsigned int len) 3516 { 3517 memcpy(to, skb->data, len); 3518 } 3519 3520 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 3521 const int offset, void *to, 3522 const unsigned int len) 3523 { 3524 memcpy(to, skb->data + offset, len); 3525 } 3526 3527 static inline void skb_copy_to_linear_data(struct sk_buff *skb, 3528 const void *from, 3529 const unsigned int len) 3530 { 3531 memcpy(skb->data, from, len); 3532 } 3533 3534 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 3535 const int offset, 3536 const void *from, 3537 const unsigned int len) 3538 { 3539 memcpy(skb->data + offset, from, len); 3540 } 3541 3542 void skb_init(void); 3543 3544 static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 3545 { 3546 return skb->tstamp; 3547 } 3548 3549 /** 3550 * skb_get_timestamp - get timestamp from a skb 3551 * @skb: skb to get stamp from 3552 * @stamp: pointer to struct __kernel_old_timeval to store stamp in 3553 * 3554 * Timestamps are stored in the skb as offsets to a base timestamp. 3555 * This function converts the offset back to a struct timeval and stores 3556 * it in stamp. 3557 */ 3558 static inline void skb_get_timestamp(const struct sk_buff *skb, 3559 struct __kernel_old_timeval *stamp) 3560 { 3561 *stamp = ns_to_kernel_old_timeval(skb->tstamp); 3562 } 3563 3564 static inline void skb_get_new_timestamp(const struct sk_buff *skb, 3565 struct __kernel_sock_timeval *stamp) 3566 { 3567 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 3568 3569 stamp->tv_sec = ts.tv_sec; 3570 stamp->tv_usec = ts.tv_nsec / 1000; 3571 } 3572 3573 static inline void skb_get_timestampns(const struct sk_buff *skb, 3574 struct timespec *stamp) 3575 { 3576 *stamp = ktime_to_timespec(skb->tstamp); 3577 } 3578 3579 static inline void skb_get_new_timestampns(const struct sk_buff *skb, 3580 struct __kernel_timespec *stamp) 3581 { 3582 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 3583 3584 stamp->tv_sec = ts.tv_sec; 3585 stamp->tv_nsec = ts.tv_nsec; 3586 } 3587 3588 static inline void __net_timestamp(struct sk_buff *skb) 3589 { 3590 skb->tstamp = ktime_get_real(); 3591 } 3592 3593 static inline ktime_t net_timedelta(ktime_t t) 3594 { 3595 return ktime_sub(ktime_get_real(), t); 3596 } 3597 3598 static inline ktime_t net_invalid_timestamp(void) 3599 { 3600 return 0; 3601 } 3602 3603 static inline u8 skb_metadata_len(const struct sk_buff *skb) 3604 { 3605 return skb_shinfo(skb)->meta_len; 3606 } 3607 3608 static inline void *skb_metadata_end(const struct sk_buff *skb) 3609 { 3610 return skb_mac_header(skb); 3611 } 3612 3613 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a, 3614 const struct sk_buff *skb_b, 3615 u8 meta_len) 3616 { 3617 const void *a = skb_metadata_end(skb_a); 3618 const void *b = skb_metadata_end(skb_b); 3619 /* Using more efficient varaiant than plain call to memcmp(). */ 3620 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 3621 u64 diffs = 0; 3622 3623 switch (meta_len) { 3624 #define __it(x, op) (x -= sizeof(u##op)) 3625 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op)) 3626 case 32: diffs |= __it_diff(a, b, 64); 3627 /* fall through */ 3628 case 24: diffs |= __it_diff(a, b, 64); 3629 /* fall through */ 3630 case 16: diffs |= __it_diff(a, b, 64); 3631 /* fall through */ 3632 case 8: diffs |= __it_diff(a, b, 64); 3633 break; 3634 case 28: diffs |= __it_diff(a, b, 64); 3635 /* fall through */ 3636 case 20: diffs |= __it_diff(a, b, 64); 3637 /* fall through */ 3638 case 12: diffs |= __it_diff(a, b, 64); 3639 /* fall through */ 3640 case 4: diffs |= __it_diff(a, b, 32); 3641 break; 3642 } 3643 return diffs; 3644 #else 3645 return memcmp(a - meta_len, b - meta_len, meta_len); 3646 #endif 3647 } 3648 3649 static inline bool skb_metadata_differs(const struct sk_buff *skb_a, 3650 const struct sk_buff *skb_b) 3651 { 3652 u8 len_a = skb_metadata_len(skb_a); 3653 u8 len_b = skb_metadata_len(skb_b); 3654 3655 if (!(len_a | len_b)) 3656 return false; 3657 3658 return len_a != len_b ? 3659 true : __skb_metadata_differs(skb_a, skb_b, len_a); 3660 } 3661 3662 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len) 3663 { 3664 skb_shinfo(skb)->meta_len = meta_len; 3665 } 3666 3667 static inline void skb_metadata_clear(struct sk_buff *skb) 3668 { 3669 skb_metadata_set(skb, 0); 3670 } 3671 3672 struct sk_buff *skb_clone_sk(struct sk_buff *skb); 3673 3674 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 3675 3676 void skb_clone_tx_timestamp(struct sk_buff *skb); 3677 bool skb_defer_rx_timestamp(struct sk_buff *skb); 3678 3679 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 3680 3681 static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 3682 { 3683 } 3684 3685 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 3686 { 3687 return false; 3688 } 3689 3690 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 3691 3692 /** 3693 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 3694 * 3695 * PHY drivers may accept clones of transmitted packets for 3696 * timestamping via their phy_driver.txtstamp method. These drivers 3697 * must call this function to return the skb back to the stack with a 3698 * timestamp. 3699 * 3700 * @skb: clone of the the original outgoing packet 3701 * @hwtstamps: hardware time stamps 3702 * 3703 */ 3704 void skb_complete_tx_timestamp(struct sk_buff *skb, 3705 struct skb_shared_hwtstamps *hwtstamps); 3706 3707 void __skb_tstamp_tx(struct sk_buff *orig_skb, 3708 struct skb_shared_hwtstamps *hwtstamps, 3709 struct sock *sk, int tstype); 3710 3711 /** 3712 * skb_tstamp_tx - queue clone of skb with send time stamps 3713 * @orig_skb: the original outgoing packet 3714 * @hwtstamps: hardware time stamps, may be NULL if not available 3715 * 3716 * If the skb has a socket associated, then this function clones the 3717 * skb (thus sharing the actual data and optional structures), stores 3718 * the optional hardware time stamping information (if non NULL) or 3719 * generates a software time stamp (otherwise), then queues the clone 3720 * to the error queue of the socket. Errors are silently ignored. 3721 */ 3722 void skb_tstamp_tx(struct sk_buff *orig_skb, 3723 struct skb_shared_hwtstamps *hwtstamps); 3724 3725 /** 3726 * skb_tx_timestamp() - Driver hook for transmit timestamping 3727 * 3728 * Ethernet MAC Drivers should call this function in their hard_xmit() 3729 * function immediately before giving the sk_buff to the MAC hardware. 3730 * 3731 * Specifically, one should make absolutely sure that this function is 3732 * called before TX completion of this packet can trigger. Otherwise 3733 * the packet could potentially already be freed. 3734 * 3735 * @skb: A socket buffer. 3736 */ 3737 static inline void skb_tx_timestamp(struct sk_buff *skb) 3738 { 3739 skb_clone_tx_timestamp(skb); 3740 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP) 3741 skb_tstamp_tx(skb, NULL); 3742 } 3743 3744 /** 3745 * skb_complete_wifi_ack - deliver skb with wifi status 3746 * 3747 * @skb: the original outgoing packet 3748 * @acked: ack status 3749 * 3750 */ 3751 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); 3752 3753 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 3754 __sum16 __skb_checksum_complete(struct sk_buff *skb); 3755 3756 static inline int skb_csum_unnecessary(const struct sk_buff *skb) 3757 { 3758 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) || 3759 skb->csum_valid || 3760 (skb->ip_summed == CHECKSUM_PARTIAL && 3761 skb_checksum_start_offset(skb) >= 0)); 3762 } 3763 3764 /** 3765 * skb_checksum_complete - Calculate checksum of an entire packet 3766 * @skb: packet to process 3767 * 3768 * This function calculates the checksum over the entire packet plus 3769 * the value of skb->csum. The latter can be used to supply the 3770 * checksum of a pseudo header as used by TCP/UDP. It returns the 3771 * checksum. 3772 * 3773 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 3774 * this function can be used to verify that checksum on received 3775 * packets. In that case the function should return zero if the 3776 * checksum is correct. In particular, this function will return zero 3777 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 3778 * hardware has already verified the correctness of the checksum. 3779 */ 3780 static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 3781 { 3782 return skb_csum_unnecessary(skb) ? 3783 0 : __skb_checksum_complete(skb); 3784 } 3785 3786 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb) 3787 { 3788 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 3789 if (skb->csum_level == 0) 3790 skb->ip_summed = CHECKSUM_NONE; 3791 else 3792 skb->csum_level--; 3793 } 3794 } 3795 3796 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb) 3797 { 3798 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 3799 if (skb->csum_level < SKB_MAX_CSUM_LEVEL) 3800 skb->csum_level++; 3801 } else if (skb->ip_summed == CHECKSUM_NONE) { 3802 skb->ip_summed = CHECKSUM_UNNECESSARY; 3803 skb->csum_level = 0; 3804 } 3805 } 3806 3807 /* Check if we need to perform checksum complete validation. 3808 * 3809 * Returns true if checksum complete is needed, false otherwise 3810 * (either checksum is unnecessary or zero checksum is allowed). 3811 */ 3812 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb, 3813 bool zero_okay, 3814 __sum16 check) 3815 { 3816 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) { 3817 skb->csum_valid = 1; 3818 __skb_decr_checksum_unnecessary(skb); 3819 return false; 3820 } 3821 3822 return true; 3823 } 3824 3825 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly 3826 * in checksum_init. 3827 */ 3828 #define CHECKSUM_BREAK 76 3829 3830 /* Unset checksum-complete 3831 * 3832 * Unset checksum complete can be done when packet is being modified 3833 * (uncompressed for instance) and checksum-complete value is 3834 * invalidated. 3835 */ 3836 static inline void skb_checksum_complete_unset(struct sk_buff *skb) 3837 { 3838 if (skb->ip_summed == CHECKSUM_COMPLETE) 3839 skb->ip_summed = CHECKSUM_NONE; 3840 } 3841 3842 /* Validate (init) checksum based on checksum complete. 3843 * 3844 * Return values: 3845 * 0: checksum is validated or try to in skb_checksum_complete. In the latter 3846 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo 3847 * checksum is stored in skb->csum for use in __skb_checksum_complete 3848 * non-zero: value of invalid checksum 3849 * 3850 */ 3851 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb, 3852 bool complete, 3853 __wsum psum) 3854 { 3855 if (skb->ip_summed == CHECKSUM_COMPLETE) { 3856 if (!csum_fold(csum_add(psum, skb->csum))) { 3857 skb->csum_valid = 1; 3858 return 0; 3859 } 3860 } 3861 3862 skb->csum = psum; 3863 3864 if (complete || skb->len <= CHECKSUM_BREAK) { 3865 __sum16 csum; 3866 3867 csum = __skb_checksum_complete(skb); 3868 skb->csum_valid = !csum; 3869 return csum; 3870 } 3871 3872 return 0; 3873 } 3874 3875 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto) 3876 { 3877 return 0; 3878 } 3879 3880 /* Perform checksum validate (init). Note that this is a macro since we only 3881 * want to calculate the pseudo header which is an input function if necessary. 3882 * First we try to validate without any computation (checksum unnecessary) and 3883 * then calculate based on checksum complete calling the function to compute 3884 * pseudo header. 3885 * 3886 * Return values: 3887 * 0: checksum is validated or try to in skb_checksum_complete 3888 * non-zero: value of invalid checksum 3889 */ 3890 #define __skb_checksum_validate(skb, proto, complete, \ 3891 zero_okay, check, compute_pseudo) \ 3892 ({ \ 3893 __sum16 __ret = 0; \ 3894 skb->csum_valid = 0; \ 3895 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \ 3896 __ret = __skb_checksum_validate_complete(skb, \ 3897 complete, compute_pseudo(skb, proto)); \ 3898 __ret; \ 3899 }) 3900 3901 #define skb_checksum_init(skb, proto, compute_pseudo) \ 3902 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo) 3903 3904 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \ 3905 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo) 3906 3907 #define skb_checksum_validate(skb, proto, compute_pseudo) \ 3908 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo) 3909 3910 #define skb_checksum_validate_zero_check(skb, proto, check, \ 3911 compute_pseudo) \ 3912 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo) 3913 3914 #define skb_checksum_simple_validate(skb) \ 3915 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo) 3916 3917 static inline bool __skb_checksum_convert_check(struct sk_buff *skb) 3918 { 3919 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid); 3920 } 3921 3922 static inline void __skb_checksum_convert(struct sk_buff *skb, 3923 __sum16 check, __wsum pseudo) 3924 { 3925 skb->csum = ~pseudo; 3926 skb->ip_summed = CHECKSUM_COMPLETE; 3927 } 3928 3929 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo) \ 3930 do { \ 3931 if (__skb_checksum_convert_check(skb)) \ 3932 __skb_checksum_convert(skb, check, \ 3933 compute_pseudo(skb, proto)); \ 3934 } while (0) 3935 3936 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr, 3937 u16 start, u16 offset) 3938 { 3939 skb->ip_summed = CHECKSUM_PARTIAL; 3940 skb->csum_start = ((unsigned char *)ptr + start) - skb->head; 3941 skb->csum_offset = offset - start; 3942 } 3943 3944 /* Update skbuf and packet to reflect the remote checksum offload operation. 3945 * When called, ptr indicates the starting point for skb->csum when 3946 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete 3947 * here, skb_postpull_rcsum is done so skb->csum start is ptr. 3948 */ 3949 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr, 3950 int start, int offset, bool nopartial) 3951 { 3952 __wsum delta; 3953 3954 if (!nopartial) { 3955 skb_remcsum_adjust_partial(skb, ptr, start, offset); 3956 return; 3957 } 3958 3959 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) { 3960 __skb_checksum_complete(skb); 3961 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data); 3962 } 3963 3964 delta = remcsum_adjust(ptr, skb->csum, start, offset); 3965 3966 /* Adjust skb->csum since we changed the packet */ 3967 skb->csum = csum_add(skb->csum, delta); 3968 } 3969 3970 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb) 3971 { 3972 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 3973 return (void *)(skb->_nfct & SKB_NFCT_PTRMASK); 3974 #else 3975 return NULL; 3976 #endif 3977 } 3978 3979 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3980 void nf_conntrack_destroy(struct nf_conntrack *nfct); 3981 static inline void nf_conntrack_put(struct nf_conntrack *nfct) 3982 { 3983 if (nfct && atomic_dec_and_test(&nfct->use)) 3984 nf_conntrack_destroy(nfct); 3985 } 3986 static inline void nf_conntrack_get(struct nf_conntrack *nfct) 3987 { 3988 if (nfct) 3989 atomic_inc(&nfct->use); 3990 } 3991 #endif 3992 3993 #ifdef CONFIG_SKB_EXTENSIONS 3994 enum skb_ext_id { 3995 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3996 SKB_EXT_BRIDGE_NF, 3997 #endif 3998 #ifdef CONFIG_XFRM 3999 SKB_EXT_SEC_PATH, 4000 #endif 4001 SKB_EXT_NUM, /* must be last */ 4002 }; 4003 4004 /** 4005 * struct skb_ext - sk_buff extensions 4006 * @refcnt: 1 on allocation, deallocated on 0 4007 * @offset: offset to add to @data to obtain extension address 4008 * @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units 4009 * @data: start of extension data, variable sized 4010 * 4011 * Note: offsets/lengths are stored in chunks of 8 bytes, this allows 4012 * to use 'u8' types while allowing up to 2kb worth of extension data. 4013 */ 4014 struct skb_ext { 4015 refcount_t refcnt; 4016 u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */ 4017 u8 chunks; /* same */ 4018 char data[0] __aligned(8); 4019 }; 4020 4021 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id); 4022 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id); 4023 void __skb_ext_put(struct skb_ext *ext); 4024 4025 static inline void skb_ext_put(struct sk_buff *skb) 4026 { 4027 if (skb->active_extensions) 4028 __skb_ext_put(skb->extensions); 4029 } 4030 4031 static inline void __skb_ext_copy(struct sk_buff *dst, 4032 const struct sk_buff *src) 4033 { 4034 dst->active_extensions = src->active_extensions; 4035 4036 if (src->active_extensions) { 4037 struct skb_ext *ext = src->extensions; 4038 4039 refcount_inc(&ext->refcnt); 4040 dst->extensions = ext; 4041 } 4042 } 4043 4044 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src) 4045 { 4046 skb_ext_put(dst); 4047 __skb_ext_copy(dst, src); 4048 } 4049 4050 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i) 4051 { 4052 return !!ext->offset[i]; 4053 } 4054 4055 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id) 4056 { 4057 return skb->active_extensions & (1 << id); 4058 } 4059 4060 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 4061 { 4062 if (skb_ext_exist(skb, id)) 4063 __skb_ext_del(skb, id); 4064 } 4065 4066 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id) 4067 { 4068 if (skb_ext_exist(skb, id)) { 4069 struct skb_ext *ext = skb->extensions; 4070 4071 return (void *)ext + (ext->offset[id] << 3); 4072 } 4073 4074 return NULL; 4075 } 4076 #else 4077 static inline void skb_ext_put(struct sk_buff *skb) {} 4078 static inline void skb_ext_del(struct sk_buff *skb, int unused) {} 4079 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {} 4080 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {} 4081 #endif /* CONFIG_SKB_EXTENSIONS */ 4082 4083 static inline void nf_reset(struct sk_buff *skb) 4084 { 4085 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4086 nf_conntrack_put(skb_nfct(skb)); 4087 skb->_nfct = 0; 4088 #endif 4089 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4090 skb_ext_del(skb, SKB_EXT_BRIDGE_NF); 4091 #endif 4092 } 4093 4094 static inline void nf_reset_trace(struct sk_buff *skb) 4095 { 4096 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 4097 skb->nf_trace = 0; 4098 #endif 4099 } 4100 4101 static inline void ipvs_reset(struct sk_buff *skb) 4102 { 4103 #if IS_ENABLED(CONFIG_IP_VS) 4104 skb->ipvs_property = 0; 4105 #endif 4106 } 4107 4108 /* Note: This doesn't put any conntrack info in dst. */ 4109 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src, 4110 bool copy) 4111 { 4112 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4113 dst->_nfct = src->_nfct; 4114 nf_conntrack_get(skb_nfct(src)); 4115 #endif 4116 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 4117 if (copy) 4118 dst->nf_trace = src->nf_trace; 4119 #endif 4120 } 4121 4122 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 4123 { 4124 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4125 nf_conntrack_put(skb_nfct(dst)); 4126 #endif 4127 __nf_copy(dst, src, true); 4128 } 4129 4130 #ifdef CONFIG_NETWORK_SECMARK 4131 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 4132 { 4133 to->secmark = from->secmark; 4134 } 4135 4136 static inline void skb_init_secmark(struct sk_buff *skb) 4137 { 4138 skb->secmark = 0; 4139 } 4140 #else 4141 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 4142 { } 4143 4144 static inline void skb_init_secmark(struct sk_buff *skb) 4145 { } 4146 #endif 4147 4148 static inline int secpath_exists(const struct sk_buff *skb) 4149 { 4150 #ifdef CONFIG_XFRM 4151 return skb_ext_exist(skb, SKB_EXT_SEC_PATH); 4152 #else 4153 return 0; 4154 #endif 4155 } 4156 4157 static inline bool skb_irq_freeable(const struct sk_buff *skb) 4158 { 4159 return !skb->destructor && 4160 !secpath_exists(skb) && 4161 !skb_nfct(skb) && 4162 !skb->_skb_refdst && 4163 !skb_has_frag_list(skb); 4164 } 4165 4166 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 4167 { 4168 skb->queue_mapping = queue_mapping; 4169 } 4170 4171 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 4172 { 4173 return skb->queue_mapping; 4174 } 4175 4176 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 4177 { 4178 to->queue_mapping = from->queue_mapping; 4179 } 4180 4181 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 4182 { 4183 skb->queue_mapping = rx_queue + 1; 4184 } 4185 4186 static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 4187 { 4188 return skb->queue_mapping - 1; 4189 } 4190 4191 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 4192 { 4193 return skb->queue_mapping != 0; 4194 } 4195 4196 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val) 4197 { 4198 skb->dst_pending_confirm = val; 4199 } 4200 4201 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb) 4202 { 4203 return skb->dst_pending_confirm != 0; 4204 } 4205 4206 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb) 4207 { 4208 #ifdef CONFIG_XFRM 4209 return skb_ext_find(skb, SKB_EXT_SEC_PATH); 4210 #else 4211 return NULL; 4212 #endif 4213 } 4214 4215 /* Keeps track of mac header offset relative to skb->head. 4216 * It is useful for TSO of Tunneling protocol. e.g. GRE. 4217 * For non-tunnel skb it points to skb_mac_header() and for 4218 * tunnel skb it points to outer mac header. 4219 * Keeps track of level of encapsulation of network headers. 4220 */ 4221 struct skb_gso_cb { 4222 union { 4223 int mac_offset; 4224 int data_offset; 4225 }; 4226 int encap_level; 4227 __wsum csum; 4228 __u16 csum_start; 4229 }; 4230 #define SKB_SGO_CB_OFFSET 32 4231 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET)) 4232 4233 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb) 4234 { 4235 return (skb_mac_header(inner_skb) - inner_skb->head) - 4236 SKB_GSO_CB(inner_skb)->mac_offset; 4237 } 4238 4239 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra) 4240 { 4241 int new_headroom, headroom; 4242 int ret; 4243 4244 headroom = skb_headroom(skb); 4245 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC); 4246 if (ret) 4247 return ret; 4248 4249 new_headroom = skb_headroom(skb); 4250 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom); 4251 return 0; 4252 } 4253 4254 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res) 4255 { 4256 /* Do not update partial checksums if remote checksum is enabled. */ 4257 if (skb->remcsum_offload) 4258 return; 4259 4260 SKB_GSO_CB(skb)->csum = res; 4261 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head; 4262 } 4263 4264 /* Compute the checksum for a gso segment. First compute the checksum value 4265 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and 4266 * then add in skb->csum (checksum from csum_start to end of packet). 4267 * skb->csum and csum_start are then updated to reflect the checksum of the 4268 * resultant packet starting from the transport header-- the resultant checksum 4269 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo 4270 * header. 4271 */ 4272 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res) 4273 { 4274 unsigned char *csum_start = skb_transport_header(skb); 4275 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start; 4276 __wsum partial = SKB_GSO_CB(skb)->csum; 4277 4278 SKB_GSO_CB(skb)->csum = res; 4279 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head; 4280 4281 return csum_fold(csum_partial(csum_start, plen, partial)); 4282 } 4283 4284 static inline bool skb_is_gso(const struct sk_buff *skb) 4285 { 4286 return skb_shinfo(skb)->gso_size; 4287 } 4288 4289 /* Note: Should be called only if skb_is_gso(skb) is true */ 4290 static inline bool skb_is_gso_v6(const struct sk_buff *skb) 4291 { 4292 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 4293 } 4294 4295 /* Note: Should be called only if skb_is_gso(skb) is true */ 4296 static inline bool skb_is_gso_sctp(const struct sk_buff *skb) 4297 { 4298 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP; 4299 } 4300 4301 /* Note: Should be called only if skb_is_gso(skb) is true */ 4302 static inline bool skb_is_gso_tcp(const struct sk_buff *skb) 4303 { 4304 return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6); 4305 } 4306 4307 static inline void skb_gso_reset(struct sk_buff *skb) 4308 { 4309 skb_shinfo(skb)->gso_size = 0; 4310 skb_shinfo(skb)->gso_segs = 0; 4311 skb_shinfo(skb)->gso_type = 0; 4312 } 4313 4314 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo, 4315 u16 increment) 4316 { 4317 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 4318 return; 4319 shinfo->gso_size += increment; 4320 } 4321 4322 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo, 4323 u16 decrement) 4324 { 4325 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 4326 return; 4327 shinfo->gso_size -= decrement; 4328 } 4329 4330 void __skb_warn_lro_forwarding(const struct sk_buff *skb); 4331 4332 static inline bool skb_warn_if_lro(const struct sk_buff *skb) 4333 { 4334 /* LRO sets gso_size but not gso_type, whereas if GSO is really 4335 * wanted then gso_type will be set. */ 4336 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4337 4338 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 4339 unlikely(shinfo->gso_type == 0)) { 4340 __skb_warn_lro_forwarding(skb); 4341 return true; 4342 } 4343 return false; 4344 } 4345 4346 static inline void skb_forward_csum(struct sk_buff *skb) 4347 { 4348 /* Unfortunately we don't support this one. Any brave souls? */ 4349 if (skb->ip_summed == CHECKSUM_COMPLETE) 4350 skb->ip_summed = CHECKSUM_NONE; 4351 } 4352 4353 /** 4354 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 4355 * @skb: skb to check 4356 * 4357 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 4358 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 4359 * use this helper, to document places where we make this assertion. 4360 */ 4361 static inline void skb_checksum_none_assert(const struct sk_buff *skb) 4362 { 4363 #ifdef DEBUG 4364 BUG_ON(skb->ip_summed != CHECKSUM_NONE); 4365 #endif 4366 } 4367 4368 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 4369 4370 int skb_checksum_setup(struct sk_buff *skb, bool recalculate); 4371 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 4372 unsigned int transport_len, 4373 __sum16(*skb_chkf)(struct sk_buff *skb)); 4374 4375 /** 4376 * skb_head_is_locked - Determine if the skb->head is locked down 4377 * @skb: skb to check 4378 * 4379 * The head on skbs build around a head frag can be removed if they are 4380 * not cloned. This function returns true if the skb head is locked down 4381 * due to either being allocated via kmalloc, or by being a clone with 4382 * multiple references to the head. 4383 */ 4384 static inline bool skb_head_is_locked(const struct sk_buff *skb) 4385 { 4386 return !skb->head_frag || skb_cloned(skb); 4387 } 4388 4389 /* Local Checksum Offload. 4390 * Compute outer checksum based on the assumption that the 4391 * inner checksum will be offloaded later. 4392 * See Documentation/networking/checksum-offloads.rst for 4393 * explanation of how this works. 4394 * Fill in outer checksum adjustment (e.g. with sum of outer 4395 * pseudo-header) before calling. 4396 * Also ensure that inner checksum is in linear data area. 4397 */ 4398 static inline __wsum lco_csum(struct sk_buff *skb) 4399 { 4400 unsigned char *csum_start = skb_checksum_start(skb); 4401 unsigned char *l4_hdr = skb_transport_header(skb); 4402 __wsum partial; 4403 4404 /* Start with complement of inner checksum adjustment */ 4405 partial = ~csum_unfold(*(__force __sum16 *)(csum_start + 4406 skb->csum_offset)); 4407 4408 /* Add in checksum of our headers (incl. outer checksum 4409 * adjustment filled in by caller) and return result. 4410 */ 4411 return csum_partial(l4_hdr, csum_start - l4_hdr, partial); 4412 } 4413 4414 #endif /* __KERNEL__ */ 4415 #endif /* _LINUX_SKBUFF_H */ 4416