xref: /linux-6.15/include/linux/skbuff.h (revision d67b569f)
1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <[email protected]>
6  *		Florian La Roche, <[email protected]>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/config.h>
18 #include <linux/kernel.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/cache.h>
22 
23 #include <asm/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/poll.h>
29 #include <linux/net.h>
30 #include <linux/textsearch.h>
31 #include <net/checksum.h>
32 
33 #define HAVE_ALLOC_SKB		/* For the drivers to know */
34 #define HAVE_ALIGNABLE_SKB	/* Ditto 8)		   */
35 #define SLAB_SKB 		/* Slabified skbuffs 	   */
36 
37 #define CHECKSUM_NONE 0
38 #define CHECKSUM_HW 1
39 #define CHECKSUM_UNNECESSARY 2
40 
41 #define SKB_DATA_ALIGN(X)	(((X) + (SMP_CACHE_BYTES - 1)) & \
42 				 ~(SMP_CACHE_BYTES - 1))
43 #define SKB_MAX_ORDER(X, ORDER)	(((PAGE_SIZE << (ORDER)) - (X) - \
44 				  sizeof(struct skb_shared_info)) & \
45 				  ~(SMP_CACHE_BYTES - 1))
46 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
47 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
48 
49 /* A. Checksumming of received packets by device.
50  *
51  *	NONE: device failed to checksum this packet.
52  *		skb->csum is undefined.
53  *
54  *	UNNECESSARY: device parsed packet and wouldbe verified checksum.
55  *		skb->csum is undefined.
56  *	      It is bad option, but, unfortunately, many of vendors do this.
57  *	      Apparently with secret goal to sell you new device, when you
58  *	      will add new protocol to your host. F.e. IPv6. 8)
59  *
60  *	HW: the most generic way. Device supplied checksum of _all_
61  *	    the packet as seen by netif_rx in skb->csum.
62  *	    NOTE: Even if device supports only some protocols, but
63  *	    is able to produce some skb->csum, it MUST use HW,
64  *	    not UNNECESSARY.
65  *
66  * B. Checksumming on output.
67  *
68  *	NONE: skb is checksummed by protocol or csum is not required.
69  *
70  *	HW: device is required to csum packet as seen by hard_start_xmit
71  *	from skb->h.raw to the end and to record the checksum
72  *	at skb->h.raw+skb->csum.
73  *
74  *	Device must show its capabilities in dev->features, set
75  *	at device setup time.
76  *	NETIF_F_HW_CSUM	- it is clever device, it is able to checksum
77  *			  everything.
78  *	NETIF_F_NO_CSUM - loopback or reliable single hop media.
79  *	NETIF_F_IP_CSUM - device is dumb. It is able to csum only
80  *			  TCP/UDP over IPv4. Sigh. Vendors like this
81  *			  way by an unknown reason. Though, see comment above
82  *			  about CHECKSUM_UNNECESSARY. 8)
83  *
84  *	Any questions? No questions, good. 		--ANK
85  */
86 
87 struct net_device;
88 
89 #ifdef CONFIG_NETFILTER
90 struct nf_conntrack {
91 	atomic_t use;
92 	void (*destroy)(struct nf_conntrack *);
93 };
94 
95 #ifdef CONFIG_BRIDGE_NETFILTER
96 struct nf_bridge_info {
97 	atomic_t use;
98 	struct net_device *physindev;
99 	struct net_device *physoutdev;
100 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
101 	struct net_device *netoutdev;
102 #endif
103 	unsigned int mask;
104 	unsigned long data[32 / sizeof(unsigned long)];
105 };
106 #endif
107 
108 #endif
109 
110 struct sk_buff_head {
111 	/* These two members must be first. */
112 	struct sk_buff	*next;
113 	struct sk_buff	*prev;
114 
115 	__u32		qlen;
116 	spinlock_t	lock;
117 };
118 
119 struct sk_buff;
120 
121 /* To allow 64K frame to be packed as single skb without frag_list */
122 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
123 
124 typedef struct skb_frag_struct skb_frag_t;
125 
126 struct skb_frag_struct {
127 	struct page *page;
128 	__u16 page_offset;
129 	__u16 size;
130 };
131 
132 /* This data is invariant across clones and lives at
133  * the end of the header data, ie. at skb->end.
134  */
135 struct skb_shared_info {
136 	atomic_t	dataref;
137 	unsigned int	nr_frags;
138 	unsigned short	tso_size;
139 	unsigned short	tso_segs;
140 	struct sk_buff	*frag_list;
141 	skb_frag_t	frags[MAX_SKB_FRAGS];
142 };
143 
144 /* We divide dataref into two halves.  The higher 16 bits hold references
145  * to the payload part of skb->data.  The lower 16 bits hold references to
146  * the entire skb->data.  It is up to the users of the skb to agree on
147  * where the payload starts.
148  *
149  * All users must obey the rule that the skb->data reference count must be
150  * greater than or equal to the payload reference count.
151  *
152  * Holding a reference to the payload part means that the user does not
153  * care about modifications to the header part of skb->data.
154  */
155 #define SKB_DATAREF_SHIFT 16
156 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
157 
158 /**
159  *	struct sk_buff - socket buffer
160  *	@next: Next buffer in list
161  *	@prev: Previous buffer in list
162  *	@list: List we are on
163  *	@sk: Socket we are owned by
164  *	@stamp: Time we arrived
165  *	@dev: Device we arrived on/are leaving by
166  *	@input_dev: Device we arrived on
167  *      @real_dev: The real device we are using
168  *	@h: Transport layer header
169  *	@nh: Network layer header
170  *	@mac: Link layer header
171  *	@dst: destination entry
172  *	@sp: the security path, used for xfrm
173  *	@cb: Control buffer. Free for use by every layer. Put private vars here
174  *	@len: Length of actual data
175  *	@data_len: Data length
176  *	@mac_len: Length of link layer header
177  *	@csum: Checksum
178  *	@local_df: allow local fragmentation
179  *	@cloned: Head may be cloned (check refcnt to be sure)
180  *	@nohdr: Payload reference only, must not modify header
181  *	@pkt_type: Packet class
182  *	@ip_summed: Driver fed us an IP checksum
183  *	@priority: Packet queueing priority
184  *	@users: User count - see {datagram,tcp}.c
185  *	@protocol: Packet protocol from driver
186  *	@truesize: Buffer size
187  *	@head: Head of buffer
188  *	@data: Data head pointer
189  *	@tail: Tail pointer
190  *	@end: End pointer
191  *	@destructor: Destruct function
192  *	@nfmark: Can be used for communication between hooks
193  *	@nfcache: Cache info
194  *	@nfct: Associated connection, if any
195  *	@nfctinfo: Relationship of this skb to the connection
196  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
197  *      @private: Data which is private to the HIPPI implementation
198  *	@tc_index: Traffic control index
199  *	@tc_verd: traffic control verdict
200  *	@tc_classid: traffic control classid
201  */
202 
203 struct sk_buff {
204 	/* These two members must be first. */
205 	struct sk_buff		*next;
206 	struct sk_buff		*prev;
207 
208 	struct sk_buff_head	*list;
209 	struct sock		*sk;
210 	struct timeval		stamp;
211 	struct net_device	*dev;
212 	struct net_device	*input_dev;
213 	struct net_device	*real_dev;
214 
215 	union {
216 		struct tcphdr	*th;
217 		struct udphdr	*uh;
218 		struct icmphdr	*icmph;
219 		struct igmphdr	*igmph;
220 		struct iphdr	*ipiph;
221 		struct ipv6hdr	*ipv6h;
222 		unsigned char	*raw;
223 	} h;
224 
225 	union {
226 		struct iphdr	*iph;
227 		struct ipv6hdr	*ipv6h;
228 		struct arphdr	*arph;
229 		unsigned char	*raw;
230 	} nh;
231 
232 	union {
233 	  	unsigned char 	*raw;
234 	} mac;
235 
236 	struct  dst_entry	*dst;
237 	struct	sec_path	*sp;
238 
239 	/*
240 	 * This is the control buffer. It is free to use for every
241 	 * layer. Please put your private variables there. If you
242 	 * want to keep them across layers you have to do a skb_clone()
243 	 * first. This is owned by whoever has the skb queued ATM.
244 	 */
245 	char			cb[40];
246 
247 	unsigned int		len,
248 				data_len,
249 				mac_len,
250 				csum;
251 	__u32			priority;
252 	__u8			local_df:1,
253 				cloned:1,
254 				ip_summed:2,
255 				nohdr:1;
256 				/* 3 bits spare */
257 	__u8			pkt_type;
258 	__u16			protocol;
259 
260 	void			(*destructor)(struct sk_buff *skb);
261 #ifdef CONFIG_NETFILTER
262 	unsigned long		nfmark;
263 	__u32			nfcache;
264 	__u32			nfctinfo;
265 	struct nf_conntrack	*nfct;
266 #ifdef CONFIG_BRIDGE_NETFILTER
267 	struct nf_bridge_info	*nf_bridge;
268 #endif
269 #endif /* CONFIG_NETFILTER */
270 #if defined(CONFIG_HIPPI)
271 	union {
272 		__u32		ifield;
273 	} private;
274 #endif
275 #ifdef CONFIG_NET_SCHED
276        __u32			tc_index;        /* traffic control index */
277 #ifdef CONFIG_NET_CLS_ACT
278 	__u32           tc_verd;               /* traffic control verdict */
279 	__u32           tc_classid;            /* traffic control classid */
280 #endif
281 
282 #endif
283 
284 
285 	/* These elements must be at the end, see alloc_skb() for details.  */
286 	unsigned int		truesize;
287 	atomic_t		users;
288 	unsigned char		*head,
289 				*data,
290 				*tail,
291 				*end;
292 };
293 
294 #ifdef __KERNEL__
295 /*
296  *	Handling routines are only of interest to the kernel
297  */
298 #include <linux/slab.h>
299 
300 #include <asm/system.h>
301 
302 extern void	       __kfree_skb(struct sk_buff *skb);
303 extern struct sk_buff *alloc_skb(unsigned int size, int priority);
304 extern struct sk_buff *alloc_skb_from_cache(kmem_cache_t *cp,
305 					    unsigned int size, int priority);
306 extern void	       kfree_skbmem(struct sk_buff *skb);
307 extern struct sk_buff *skb_clone(struct sk_buff *skb, int priority);
308 extern struct sk_buff *skb_copy(const struct sk_buff *skb, int priority);
309 extern struct sk_buff *pskb_copy(struct sk_buff *skb, int gfp_mask);
310 extern int	       pskb_expand_head(struct sk_buff *skb,
311 					int nhead, int ntail, int gfp_mask);
312 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
313 					    unsigned int headroom);
314 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
315 				       int newheadroom, int newtailroom,
316 				       int priority);
317 extern struct sk_buff *		skb_pad(struct sk_buff *skb, int pad);
318 #define dev_kfree_skb(a)	kfree_skb(a)
319 extern void	      skb_over_panic(struct sk_buff *skb, int len,
320 				     void *here);
321 extern void	      skb_under_panic(struct sk_buff *skb, int len,
322 				      void *here);
323 
324 struct skb_seq_state
325 {
326 	__u32		lower_offset;
327 	__u32		upper_offset;
328 	__u32		frag_idx;
329 	__u32		stepped_offset;
330 	struct sk_buff	*root_skb;
331 	struct sk_buff	*cur_skb;
332 	__u8		*frag_data;
333 };
334 
335 extern void	      skb_prepare_seq_read(struct sk_buff *skb,
336 					   unsigned int from, unsigned int to,
337 					   struct skb_seq_state *st);
338 extern unsigned int   skb_seq_read(unsigned int consumed, const u8 **data,
339 				   struct skb_seq_state *st);
340 extern void	      skb_abort_seq_read(struct skb_seq_state *st);
341 
342 extern unsigned int   skb_find_text(struct sk_buff *skb, unsigned int from,
343 				    unsigned int to, struct ts_config *config,
344 				    struct ts_state *state);
345 
346 /* Internal */
347 #define skb_shinfo(SKB)		((struct skb_shared_info *)((SKB)->end))
348 
349 /**
350  *	skb_queue_empty - check if a queue is empty
351  *	@list: queue head
352  *
353  *	Returns true if the queue is empty, false otherwise.
354  */
355 static inline int skb_queue_empty(const struct sk_buff_head *list)
356 {
357 	return list->next == (struct sk_buff *)list;
358 }
359 
360 /**
361  *	skb_get - reference buffer
362  *	@skb: buffer to reference
363  *
364  *	Makes another reference to a socket buffer and returns a pointer
365  *	to the buffer.
366  */
367 static inline struct sk_buff *skb_get(struct sk_buff *skb)
368 {
369 	atomic_inc(&skb->users);
370 	return skb;
371 }
372 
373 /*
374  * If users == 1, we are the only owner and are can avoid redundant
375  * atomic change.
376  */
377 
378 /**
379  *	kfree_skb - free an sk_buff
380  *	@skb: buffer to free
381  *
382  *	Drop a reference to the buffer and free it if the usage count has
383  *	hit zero.
384  */
385 static inline void kfree_skb(struct sk_buff *skb)
386 {
387 	if (likely(atomic_read(&skb->users) == 1))
388 		smp_rmb();
389 	else if (likely(!atomic_dec_and_test(&skb->users)))
390 		return;
391 	__kfree_skb(skb);
392 }
393 
394 /**
395  *	skb_cloned - is the buffer a clone
396  *	@skb: buffer to check
397  *
398  *	Returns true if the buffer was generated with skb_clone() and is
399  *	one of multiple shared copies of the buffer. Cloned buffers are
400  *	shared data so must not be written to under normal circumstances.
401  */
402 static inline int skb_cloned(const struct sk_buff *skb)
403 {
404 	return skb->cloned &&
405 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
406 }
407 
408 /**
409  *	skb_header_cloned - is the header a clone
410  *	@skb: buffer to check
411  *
412  *	Returns true if modifying the header part of the buffer requires
413  *	the data to be copied.
414  */
415 static inline int skb_header_cloned(const struct sk_buff *skb)
416 {
417 	int dataref;
418 
419 	if (!skb->cloned)
420 		return 0;
421 
422 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
423 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
424 	return dataref != 1;
425 }
426 
427 /**
428  *	skb_header_release - release reference to header
429  *	@skb: buffer to operate on
430  *
431  *	Drop a reference to the header part of the buffer.  This is done
432  *	by acquiring a payload reference.  You must not read from the header
433  *	part of skb->data after this.
434  */
435 static inline void skb_header_release(struct sk_buff *skb)
436 {
437 	BUG_ON(skb->nohdr);
438 	skb->nohdr = 1;
439 	atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
440 }
441 
442 /**
443  *	skb_shared - is the buffer shared
444  *	@skb: buffer to check
445  *
446  *	Returns true if more than one person has a reference to this
447  *	buffer.
448  */
449 static inline int skb_shared(const struct sk_buff *skb)
450 {
451 	return atomic_read(&skb->users) != 1;
452 }
453 
454 /**
455  *	skb_share_check - check if buffer is shared and if so clone it
456  *	@skb: buffer to check
457  *	@pri: priority for memory allocation
458  *
459  *	If the buffer is shared the buffer is cloned and the old copy
460  *	drops a reference. A new clone with a single reference is returned.
461  *	If the buffer is not shared the original buffer is returned. When
462  *	being called from interrupt status or with spinlocks held pri must
463  *	be GFP_ATOMIC.
464  *
465  *	NULL is returned on a memory allocation failure.
466  */
467 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, int pri)
468 {
469 	might_sleep_if(pri & __GFP_WAIT);
470 	if (skb_shared(skb)) {
471 		struct sk_buff *nskb = skb_clone(skb, pri);
472 		kfree_skb(skb);
473 		skb = nskb;
474 	}
475 	return skb;
476 }
477 
478 /*
479  *	Copy shared buffers into a new sk_buff. We effectively do COW on
480  *	packets to handle cases where we have a local reader and forward
481  *	and a couple of other messy ones. The normal one is tcpdumping
482  *	a packet thats being forwarded.
483  */
484 
485 /**
486  *	skb_unshare - make a copy of a shared buffer
487  *	@skb: buffer to check
488  *	@pri: priority for memory allocation
489  *
490  *	If the socket buffer is a clone then this function creates a new
491  *	copy of the data, drops a reference count on the old copy and returns
492  *	the new copy with the reference count at 1. If the buffer is not a clone
493  *	the original buffer is returned. When called with a spinlock held or
494  *	from interrupt state @pri must be %GFP_ATOMIC
495  *
496  *	%NULL is returned on a memory allocation failure.
497  */
498 static inline struct sk_buff *skb_unshare(struct sk_buff *skb, int pri)
499 {
500 	might_sleep_if(pri & __GFP_WAIT);
501 	if (skb_cloned(skb)) {
502 		struct sk_buff *nskb = skb_copy(skb, pri);
503 		kfree_skb(skb);	/* Free our shared copy */
504 		skb = nskb;
505 	}
506 	return skb;
507 }
508 
509 /**
510  *	skb_peek
511  *	@list_: list to peek at
512  *
513  *	Peek an &sk_buff. Unlike most other operations you _MUST_
514  *	be careful with this one. A peek leaves the buffer on the
515  *	list and someone else may run off with it. You must hold
516  *	the appropriate locks or have a private queue to do this.
517  *
518  *	Returns %NULL for an empty list or a pointer to the head element.
519  *	The reference count is not incremented and the reference is therefore
520  *	volatile. Use with caution.
521  */
522 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
523 {
524 	struct sk_buff *list = ((struct sk_buff *)list_)->next;
525 	if (list == (struct sk_buff *)list_)
526 		list = NULL;
527 	return list;
528 }
529 
530 /**
531  *	skb_peek_tail
532  *	@list_: list to peek at
533  *
534  *	Peek an &sk_buff. Unlike most other operations you _MUST_
535  *	be careful with this one. A peek leaves the buffer on the
536  *	list and someone else may run off with it. You must hold
537  *	the appropriate locks or have a private queue to do this.
538  *
539  *	Returns %NULL for an empty list or a pointer to the tail element.
540  *	The reference count is not incremented and the reference is therefore
541  *	volatile. Use with caution.
542  */
543 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
544 {
545 	struct sk_buff *list = ((struct sk_buff *)list_)->prev;
546 	if (list == (struct sk_buff *)list_)
547 		list = NULL;
548 	return list;
549 }
550 
551 /**
552  *	skb_queue_len	- get queue length
553  *	@list_: list to measure
554  *
555  *	Return the length of an &sk_buff queue.
556  */
557 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
558 {
559 	return list_->qlen;
560 }
561 
562 static inline void skb_queue_head_init(struct sk_buff_head *list)
563 {
564 	spin_lock_init(&list->lock);
565 	list->prev = list->next = (struct sk_buff *)list;
566 	list->qlen = 0;
567 }
568 
569 /*
570  *	Insert an sk_buff at the start of a list.
571  *
572  *	The "__skb_xxxx()" functions are the non-atomic ones that
573  *	can only be called with interrupts disabled.
574  */
575 
576 /**
577  *	__skb_queue_head - queue a buffer at the list head
578  *	@list: list to use
579  *	@newsk: buffer to queue
580  *
581  *	Queue a buffer at the start of a list. This function takes no locks
582  *	and you must therefore hold required locks before calling it.
583  *
584  *	A buffer cannot be placed on two lists at the same time.
585  */
586 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
587 static inline void __skb_queue_head(struct sk_buff_head *list,
588 				    struct sk_buff *newsk)
589 {
590 	struct sk_buff *prev, *next;
591 
592 	newsk->list = list;
593 	list->qlen++;
594 	prev = (struct sk_buff *)list;
595 	next = prev->next;
596 	newsk->next = next;
597 	newsk->prev = prev;
598 	next->prev  = prev->next = newsk;
599 }
600 
601 /**
602  *	__skb_queue_tail - queue a buffer at the list tail
603  *	@list: list to use
604  *	@newsk: buffer to queue
605  *
606  *	Queue a buffer at the end of a list. This function takes no locks
607  *	and you must therefore hold required locks before calling it.
608  *
609  *	A buffer cannot be placed on two lists at the same time.
610  */
611 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
612 static inline void __skb_queue_tail(struct sk_buff_head *list,
613 				   struct sk_buff *newsk)
614 {
615 	struct sk_buff *prev, *next;
616 
617 	newsk->list = list;
618 	list->qlen++;
619 	next = (struct sk_buff *)list;
620 	prev = next->prev;
621 	newsk->next = next;
622 	newsk->prev = prev;
623 	next->prev  = prev->next = newsk;
624 }
625 
626 
627 /**
628  *	__skb_dequeue - remove from the head of the queue
629  *	@list: list to dequeue from
630  *
631  *	Remove the head of the list. This function does not take any locks
632  *	so must be used with appropriate locks held only. The head item is
633  *	returned or %NULL if the list is empty.
634  */
635 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
636 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
637 {
638 	struct sk_buff *next, *prev, *result;
639 
640 	prev = (struct sk_buff *) list;
641 	next = prev->next;
642 	result = NULL;
643 	if (next != prev) {
644 		result	     = next;
645 		next	     = next->next;
646 		list->qlen--;
647 		next->prev   = prev;
648 		prev->next   = next;
649 		result->next = result->prev = NULL;
650 		result->list = NULL;
651 	}
652 	return result;
653 }
654 
655 
656 /*
657  *	Insert a packet on a list.
658  */
659 extern void        skb_insert(struct sk_buff *old, struct sk_buff *newsk);
660 static inline void __skb_insert(struct sk_buff *newsk,
661 				struct sk_buff *prev, struct sk_buff *next,
662 				struct sk_buff_head *list)
663 {
664 	newsk->next = next;
665 	newsk->prev = prev;
666 	next->prev  = prev->next = newsk;
667 	newsk->list = list;
668 	list->qlen++;
669 }
670 
671 /*
672  *	Place a packet after a given packet in a list.
673  */
674 extern void	   skb_append(struct sk_buff *old, struct sk_buff *newsk);
675 static inline void __skb_append(struct sk_buff *old, struct sk_buff *newsk)
676 {
677 	__skb_insert(newsk, old, old->next, old->list);
678 }
679 
680 /*
681  * remove sk_buff from list. _Must_ be called atomically, and with
682  * the list known..
683  */
684 extern void	   skb_unlink(struct sk_buff *skb);
685 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
686 {
687 	struct sk_buff *next, *prev;
688 
689 	list->qlen--;
690 	next	   = skb->next;
691 	prev	   = skb->prev;
692 	skb->next  = skb->prev = NULL;
693 	skb->list  = NULL;
694 	next->prev = prev;
695 	prev->next = next;
696 }
697 
698 
699 /* XXX: more streamlined implementation */
700 
701 /**
702  *	__skb_dequeue_tail - remove from the tail of the queue
703  *	@list: list to dequeue from
704  *
705  *	Remove the tail of the list. This function does not take any locks
706  *	so must be used with appropriate locks held only. The tail item is
707  *	returned or %NULL if the list is empty.
708  */
709 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
710 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
711 {
712 	struct sk_buff *skb = skb_peek_tail(list);
713 	if (skb)
714 		__skb_unlink(skb, list);
715 	return skb;
716 }
717 
718 
719 static inline int skb_is_nonlinear(const struct sk_buff *skb)
720 {
721 	return skb->data_len;
722 }
723 
724 static inline unsigned int skb_headlen(const struct sk_buff *skb)
725 {
726 	return skb->len - skb->data_len;
727 }
728 
729 static inline int skb_pagelen(const struct sk_buff *skb)
730 {
731 	int i, len = 0;
732 
733 	for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
734 		len += skb_shinfo(skb)->frags[i].size;
735 	return len + skb_headlen(skb);
736 }
737 
738 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
739 				      struct page *page, int off, int size)
740 {
741 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
742 
743 	frag->page		  = page;
744 	frag->page_offset	  = off;
745 	frag->size		  = size;
746 	skb_shinfo(skb)->nr_frags = i + 1;
747 }
748 
749 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
750 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->frag_list)
751 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
752 
753 /*
754  *	Add data to an sk_buff
755  */
756 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
757 {
758 	unsigned char *tmp = skb->tail;
759 	SKB_LINEAR_ASSERT(skb);
760 	skb->tail += len;
761 	skb->len  += len;
762 	return tmp;
763 }
764 
765 /**
766  *	skb_put - add data to a buffer
767  *	@skb: buffer to use
768  *	@len: amount of data to add
769  *
770  *	This function extends the used data area of the buffer. If this would
771  *	exceed the total buffer size the kernel will panic. A pointer to the
772  *	first byte of the extra data is returned.
773  */
774 static inline unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
775 {
776 	unsigned char *tmp = skb->tail;
777 	SKB_LINEAR_ASSERT(skb);
778 	skb->tail += len;
779 	skb->len  += len;
780 	if (unlikely(skb->tail>skb->end))
781 		skb_over_panic(skb, len, current_text_addr());
782 	return tmp;
783 }
784 
785 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
786 {
787 	skb->data -= len;
788 	skb->len  += len;
789 	return skb->data;
790 }
791 
792 /**
793  *	skb_push - add data to the start of a buffer
794  *	@skb: buffer to use
795  *	@len: amount of data to add
796  *
797  *	This function extends the used data area of the buffer at the buffer
798  *	start. If this would exceed the total buffer headroom the kernel will
799  *	panic. A pointer to the first byte of the extra data is returned.
800  */
801 static inline unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
802 {
803 	skb->data -= len;
804 	skb->len  += len;
805 	if (unlikely(skb->data<skb->head))
806 		skb_under_panic(skb, len, current_text_addr());
807 	return skb->data;
808 }
809 
810 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
811 {
812 	skb->len -= len;
813 	BUG_ON(skb->len < skb->data_len);
814 	return skb->data += len;
815 }
816 
817 /**
818  *	skb_pull - remove data from the start of a buffer
819  *	@skb: buffer to use
820  *	@len: amount of data to remove
821  *
822  *	This function removes data from the start of a buffer, returning
823  *	the memory to the headroom. A pointer to the next data in the buffer
824  *	is returned. Once the data has been pulled future pushes will overwrite
825  *	the old data.
826  */
827 static inline unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
828 {
829 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
830 }
831 
832 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
833 
834 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
835 {
836 	if (len > skb_headlen(skb) &&
837 	    !__pskb_pull_tail(skb, len-skb_headlen(skb)))
838 		return NULL;
839 	skb->len -= len;
840 	return skb->data += len;
841 }
842 
843 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
844 {
845 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
846 }
847 
848 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
849 {
850 	if (likely(len <= skb_headlen(skb)))
851 		return 1;
852 	if (unlikely(len > skb->len))
853 		return 0;
854 	return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL;
855 }
856 
857 /**
858  *	skb_headroom - bytes at buffer head
859  *	@skb: buffer to check
860  *
861  *	Return the number of bytes of free space at the head of an &sk_buff.
862  */
863 static inline int skb_headroom(const struct sk_buff *skb)
864 {
865 	return skb->data - skb->head;
866 }
867 
868 /**
869  *	skb_tailroom - bytes at buffer end
870  *	@skb: buffer to check
871  *
872  *	Return the number of bytes of free space at the tail of an sk_buff
873  */
874 static inline int skb_tailroom(const struct sk_buff *skb)
875 {
876 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
877 }
878 
879 /**
880  *	skb_reserve - adjust headroom
881  *	@skb: buffer to alter
882  *	@len: bytes to move
883  *
884  *	Increase the headroom of an empty &sk_buff by reducing the tail
885  *	room. This is only allowed for an empty buffer.
886  */
887 static inline void skb_reserve(struct sk_buff *skb, unsigned int len)
888 {
889 	skb->data += len;
890 	skb->tail += len;
891 }
892 
893 /*
894  * CPUs often take a performance hit when accessing unaligned memory
895  * locations. The actual performance hit varies, it can be small if the
896  * hardware handles it or large if we have to take an exception and fix it
897  * in software.
898  *
899  * Since an ethernet header is 14 bytes network drivers often end up with
900  * the IP header at an unaligned offset. The IP header can be aligned by
901  * shifting the start of the packet by 2 bytes. Drivers should do this
902  * with:
903  *
904  * skb_reserve(NET_IP_ALIGN);
905  *
906  * The downside to this alignment of the IP header is that the DMA is now
907  * unaligned. On some architectures the cost of an unaligned DMA is high
908  * and this cost outweighs the gains made by aligning the IP header.
909  *
910  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
911  * to be overridden.
912  */
913 #ifndef NET_IP_ALIGN
914 #define NET_IP_ALIGN	2
915 #endif
916 
917 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len, int realloc);
918 
919 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
920 {
921 	if (!skb->data_len) {
922 		skb->len  = len;
923 		skb->tail = skb->data + len;
924 	} else
925 		___pskb_trim(skb, len, 0);
926 }
927 
928 /**
929  *	skb_trim - remove end from a buffer
930  *	@skb: buffer to alter
931  *	@len: new length
932  *
933  *	Cut the length of a buffer down by removing data from the tail. If
934  *	the buffer is already under the length specified it is not modified.
935  */
936 static inline void skb_trim(struct sk_buff *skb, unsigned int len)
937 {
938 	if (skb->len > len)
939 		__skb_trim(skb, len);
940 }
941 
942 
943 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
944 {
945 	if (!skb->data_len) {
946 		skb->len  = len;
947 		skb->tail = skb->data+len;
948 		return 0;
949 	}
950 	return ___pskb_trim(skb, len, 1);
951 }
952 
953 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
954 {
955 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
956 }
957 
958 /**
959  *	skb_orphan - orphan a buffer
960  *	@skb: buffer to orphan
961  *
962  *	If a buffer currently has an owner then we call the owner's
963  *	destructor function and make the @skb unowned. The buffer continues
964  *	to exist but is no longer charged to its former owner.
965  */
966 static inline void skb_orphan(struct sk_buff *skb)
967 {
968 	if (skb->destructor)
969 		skb->destructor(skb);
970 	skb->destructor = NULL;
971 	skb->sk		= NULL;
972 }
973 
974 /**
975  *	__skb_queue_purge - empty a list
976  *	@list: list to empty
977  *
978  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
979  *	the list and one reference dropped. This function does not take the
980  *	list lock and the caller must hold the relevant locks to use it.
981  */
982 extern void skb_queue_purge(struct sk_buff_head *list);
983 static inline void __skb_queue_purge(struct sk_buff_head *list)
984 {
985 	struct sk_buff *skb;
986 	while ((skb = __skb_dequeue(list)) != NULL)
987 		kfree_skb(skb);
988 }
989 
990 #ifndef CONFIG_HAVE_ARCH_DEV_ALLOC_SKB
991 /**
992  *	__dev_alloc_skb - allocate an skbuff for sending
993  *	@length: length to allocate
994  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
995  *
996  *	Allocate a new &sk_buff and assign it a usage count of one. The
997  *	buffer has unspecified headroom built in. Users should allocate
998  *	the headroom they think they need without accounting for the
999  *	built in space. The built in space is used for optimisations.
1000  *
1001  *	%NULL is returned in there is no free memory.
1002  */
1003 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1004 					      int gfp_mask)
1005 {
1006 	struct sk_buff *skb = alloc_skb(length + 16, gfp_mask);
1007 	if (likely(skb))
1008 		skb_reserve(skb, 16);
1009 	return skb;
1010 }
1011 #else
1012 extern struct sk_buff *__dev_alloc_skb(unsigned int length, int gfp_mask);
1013 #endif
1014 
1015 /**
1016  *	dev_alloc_skb - allocate an skbuff for sending
1017  *	@length: length to allocate
1018  *
1019  *	Allocate a new &sk_buff and assign it a usage count of one. The
1020  *	buffer has unspecified headroom built in. Users should allocate
1021  *	the headroom they think they need without accounting for the
1022  *	built in space. The built in space is used for optimisations.
1023  *
1024  *	%NULL is returned in there is no free memory. Although this function
1025  *	allocates memory it can be called from an interrupt.
1026  */
1027 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
1028 {
1029 	return __dev_alloc_skb(length, GFP_ATOMIC);
1030 }
1031 
1032 /**
1033  *	skb_cow - copy header of skb when it is required
1034  *	@skb: buffer to cow
1035  *	@headroom: needed headroom
1036  *
1037  *	If the skb passed lacks sufficient headroom or its data part
1038  *	is shared, data is reallocated. If reallocation fails, an error
1039  *	is returned and original skb is not changed.
1040  *
1041  *	The result is skb with writable area skb->head...skb->tail
1042  *	and at least @headroom of space at head.
1043  */
1044 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1045 {
1046 	int delta = (headroom > 16 ? headroom : 16) - skb_headroom(skb);
1047 
1048 	if (delta < 0)
1049 		delta = 0;
1050 
1051 	if (delta || skb_cloned(skb))
1052 		return pskb_expand_head(skb, (delta + 15) & ~15, 0, GFP_ATOMIC);
1053 	return 0;
1054 }
1055 
1056 /**
1057  *	skb_padto	- pad an skbuff up to a minimal size
1058  *	@skb: buffer to pad
1059  *	@len: minimal length
1060  *
1061  *	Pads up a buffer to ensure the trailing bytes exist and are
1062  *	blanked. If the buffer already contains sufficient data it
1063  *	is untouched. Returns the buffer, which may be a replacement
1064  *	for the original, or NULL for out of memory - in which case
1065  *	the original buffer is still freed.
1066  */
1067 
1068 static inline struct sk_buff *skb_padto(struct sk_buff *skb, unsigned int len)
1069 {
1070 	unsigned int size = skb->len;
1071 	if (likely(size >= len))
1072 		return skb;
1073 	return skb_pad(skb, len-size);
1074 }
1075 
1076 static inline int skb_add_data(struct sk_buff *skb,
1077 			       char __user *from, int copy)
1078 {
1079 	const int off = skb->len;
1080 
1081 	if (skb->ip_summed == CHECKSUM_NONE) {
1082 		int err = 0;
1083 		unsigned int csum = csum_and_copy_from_user(from,
1084 							    skb_put(skb, copy),
1085 							    copy, 0, &err);
1086 		if (!err) {
1087 			skb->csum = csum_block_add(skb->csum, csum, off);
1088 			return 0;
1089 		}
1090 	} else if (!copy_from_user(skb_put(skb, copy), from, copy))
1091 		return 0;
1092 
1093 	__skb_trim(skb, off);
1094 	return -EFAULT;
1095 }
1096 
1097 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1098 				   struct page *page, int off)
1099 {
1100 	if (i) {
1101 		struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1102 
1103 		return page == frag->page &&
1104 		       off == frag->page_offset + frag->size;
1105 	}
1106 	return 0;
1107 }
1108 
1109 /**
1110  *	skb_linearize - convert paged skb to linear one
1111  *	@skb: buffer to linarize
1112  *	@gfp: allocation mode
1113  *
1114  *	If there is no free memory -ENOMEM is returned, otherwise zero
1115  *	is returned and the old skb data released.
1116  */
1117 extern int __skb_linearize(struct sk_buff *skb, int gfp);
1118 static inline int skb_linearize(struct sk_buff *skb, int gfp)
1119 {
1120 	return __skb_linearize(skb, gfp);
1121 }
1122 
1123 /**
1124  *	skb_postpull_rcsum - update checksum for received skb after pull
1125  *	@skb: buffer to update
1126  *	@start: start of data before pull
1127  *	@len: length of data pulled
1128  *
1129  *	After doing a pull on a received packet, you need to call this to
1130  *	update the CHECKSUM_HW checksum, or set ip_summed to CHECKSUM_NONE
1131  *	so that it can be recomputed from scratch.
1132  */
1133 
1134 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1135 					 const void *start, int len)
1136 {
1137 	if (skb->ip_summed == CHECKSUM_HW)
1138 		skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1139 }
1140 
1141 /**
1142  *	pskb_trim_rcsum - trim received skb and update checksum
1143  *	@skb: buffer to trim
1144  *	@len: new length
1145  *
1146  *	This is exactly the same as pskb_trim except that it ensures the
1147  *	checksum of received packets are still valid after the operation.
1148  */
1149 
1150 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1151 {
1152 	if (len >= skb->len)
1153 		return 0;
1154 	if (skb->ip_summed == CHECKSUM_HW)
1155 		skb->ip_summed = CHECKSUM_NONE;
1156 	return __pskb_trim(skb, len);
1157 }
1158 
1159 static inline void *kmap_skb_frag(const skb_frag_t *frag)
1160 {
1161 #ifdef CONFIG_HIGHMEM
1162 	BUG_ON(in_irq());
1163 
1164 	local_bh_disable();
1165 #endif
1166 	return kmap_atomic(frag->page, KM_SKB_DATA_SOFTIRQ);
1167 }
1168 
1169 static inline void kunmap_skb_frag(void *vaddr)
1170 {
1171 	kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
1172 #ifdef CONFIG_HIGHMEM
1173 	local_bh_enable();
1174 #endif
1175 }
1176 
1177 #define skb_queue_walk(queue, skb) \
1178 		for (skb = (queue)->next;					\
1179 		     prefetch(skb->next), (skb != (struct sk_buff *)(queue));	\
1180 		     skb = skb->next)
1181 
1182 
1183 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1184 					 int noblock, int *err);
1185 extern unsigned int    datagram_poll(struct file *file, struct socket *sock,
1186 				     struct poll_table_struct *wait);
1187 extern int	       skb_copy_datagram_iovec(const struct sk_buff *from,
1188 					       int offset, struct iovec *to,
1189 					       int size);
1190 extern int	       skb_copy_and_csum_datagram_iovec(const
1191 							struct sk_buff *skb,
1192 							int hlen,
1193 							struct iovec *iov);
1194 extern void	       skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1195 extern unsigned int    skb_checksum(const struct sk_buff *skb, int offset,
1196 				    int len, unsigned int csum);
1197 extern int	       skb_copy_bits(const struct sk_buff *skb, int offset,
1198 				     void *to, int len);
1199 extern int	       skb_store_bits(const struct sk_buff *skb, int offset,
1200 				      void *from, int len);
1201 extern unsigned int    skb_copy_and_csum_bits(const struct sk_buff *skb,
1202 					      int offset, u8 *to, int len,
1203 					      unsigned int csum);
1204 extern void	       skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1205 extern void	       skb_split(struct sk_buff *skb,
1206 				 struct sk_buff *skb1, const u32 len);
1207 
1208 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1209 				       int len, void *buffer)
1210 {
1211 	int hlen = skb_headlen(skb);
1212 
1213 	if (hlen - offset >= len)
1214 		return skb->data + offset;
1215 
1216 	if (skb_copy_bits(skb, offset, buffer, len) < 0)
1217 		return NULL;
1218 
1219 	return buffer;
1220 }
1221 
1222 extern void skb_init(void);
1223 extern void skb_add_mtu(int mtu);
1224 
1225 #ifdef CONFIG_NETFILTER
1226 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1227 {
1228 	if (nfct && atomic_dec_and_test(&nfct->use))
1229 		nfct->destroy(nfct);
1230 }
1231 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1232 {
1233 	if (nfct)
1234 		atomic_inc(&nfct->use);
1235 }
1236 static inline void nf_reset(struct sk_buff *skb)
1237 {
1238 	nf_conntrack_put(skb->nfct);
1239 	skb->nfct = NULL;
1240 }
1241 
1242 #ifdef CONFIG_BRIDGE_NETFILTER
1243 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1244 {
1245 	if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1246 		kfree(nf_bridge);
1247 }
1248 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1249 {
1250 	if (nf_bridge)
1251 		atomic_inc(&nf_bridge->use);
1252 }
1253 #endif /* CONFIG_BRIDGE_NETFILTER */
1254 #else /* CONFIG_NETFILTER */
1255 static inline void nf_reset(struct sk_buff *skb) {}
1256 #endif /* CONFIG_NETFILTER */
1257 
1258 #endif	/* __KERNEL__ */
1259 #endif	/* _LINUX_SKBUFF_H */
1260