xref: /linux-6.15/include/linux/skbuff.h (revision d3345fec)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  *	Definitions for the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:
6  *		Alan Cox, <[email protected]>
7  *		Florian La Roche, <[email protected]>
8  */
9 
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12 
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
22 
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/hrtimer.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/netdev_features.h>
33 #include <linux/sched.h>
34 #include <linux/sched/clock.h>
35 #include <net/flow_dissector.h>
36 #include <linux/splice.h>
37 #include <linux/in6.h>
38 #include <linux/if_packet.h>
39 #include <linux/llist.h>
40 #include <net/flow.h>
41 #include <net/page_pool.h>
42 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
43 #include <linux/netfilter/nf_conntrack_common.h>
44 #endif
45 #include <net/net_debug.h>
46 
47 /**
48  * DOC: skb checksums
49  *
50  * The interface for checksum offload between the stack and networking drivers
51  * is as follows...
52  *
53  * IP checksum related features
54  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
55  *
56  * Drivers advertise checksum offload capabilities in the features of a device.
57  * From the stack's point of view these are capabilities offered by the driver.
58  * A driver typically only advertises features that it is capable of offloading
59  * to its device.
60  *
61  * .. flat-table:: Checksum related device features
62  *   :widths: 1 10
63  *
64  *   * - %NETIF_F_HW_CSUM
65  *     - The driver (or its device) is able to compute one
66  *	 IP (one's complement) checksum for any combination
67  *	 of protocols or protocol layering. The checksum is
68  *	 computed and set in a packet per the CHECKSUM_PARTIAL
69  *	 interface (see below).
70  *
71  *   * - %NETIF_F_IP_CSUM
72  *     - Driver (device) is only able to checksum plain
73  *	 TCP or UDP packets over IPv4. These are specifically
74  *	 unencapsulated packets of the form IPv4|TCP or
75  *	 IPv4|UDP where the Protocol field in the IPv4 header
76  *	 is TCP or UDP. The IPv4 header may contain IP options.
77  *	 This feature cannot be set in features for a device
78  *	 with NETIF_F_HW_CSUM also set. This feature is being
79  *	 DEPRECATED (see below).
80  *
81  *   * - %NETIF_F_IPV6_CSUM
82  *     - Driver (device) is only able to checksum plain
83  *	 TCP or UDP packets over IPv6. These are specifically
84  *	 unencapsulated packets of the form IPv6|TCP or
85  *	 IPv6|UDP where the Next Header field in the IPv6
86  *	 header is either TCP or UDP. IPv6 extension headers
87  *	 are not supported with this feature. This feature
88  *	 cannot be set in features for a device with
89  *	 NETIF_F_HW_CSUM also set. This feature is being
90  *	 DEPRECATED (see below).
91  *
92  *   * - %NETIF_F_RXCSUM
93  *     - Driver (device) performs receive checksum offload.
94  *	 This flag is only used to disable the RX checksum
95  *	 feature for a device. The stack will accept receive
96  *	 checksum indication in packets received on a device
97  *	 regardless of whether NETIF_F_RXCSUM is set.
98  *
99  * Checksumming of received packets by device
100  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
101  *
102  * Indication of checksum verification is set in &sk_buff.ip_summed.
103  * Possible values are:
104  *
105  * - %CHECKSUM_NONE
106  *
107  *   Device did not checksum this packet e.g. due to lack of capabilities.
108  *   The packet contains full (though not verified) checksum in packet but
109  *   not in skb->csum. Thus, skb->csum is undefined in this case.
110  *
111  * - %CHECKSUM_UNNECESSARY
112  *
113  *   The hardware you're dealing with doesn't calculate the full checksum
114  *   (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums
115  *   for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY
116  *   if their checksums are okay. &sk_buff.csum is still undefined in this case
117  *   though. A driver or device must never modify the checksum field in the
118  *   packet even if checksum is verified.
119  *
120  *   %CHECKSUM_UNNECESSARY is applicable to following protocols:
121  *
122  *     - TCP: IPv6 and IPv4.
123  *     - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
124  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
125  *       may perform further validation in this case.
126  *     - GRE: only if the checksum is present in the header.
127  *     - SCTP: indicates the CRC in SCTP header has been validated.
128  *     - FCOE: indicates the CRC in FC frame has been validated.
129  *
130  *   &sk_buff.csum_level indicates the number of consecutive checksums found in
131  *   the packet minus one that have been verified as %CHECKSUM_UNNECESSARY.
132  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
133  *   and a device is able to verify the checksums for UDP (possibly zero),
134  *   GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to
135  *   two. If the device were only able to verify the UDP checksum and not
136  *   GRE, either because it doesn't support GRE checksum or because GRE
137  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
138  *   not considered in this case).
139  *
140  * - %CHECKSUM_COMPLETE
141  *
142  *   This is the most generic way. The device supplied checksum of the _whole_
143  *   packet as seen by netif_rx() and fills in &sk_buff.csum. This means the
144  *   hardware doesn't need to parse L3/L4 headers to implement this.
145  *
146  *   Notes:
147  *
148  *   - Even if device supports only some protocols, but is able to produce
149  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
150  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
151  *
152  * - %CHECKSUM_PARTIAL
153  *
154  *   A checksum is set up to be offloaded to a device as described in the
155  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
156  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
157  *   on the same host, or it may be set in the input path in GRO or remote
158  *   checksum offload. For the purposes of checksum verification, the checksum
159  *   referred to by skb->csum_start + skb->csum_offset and any preceding
160  *   checksums in the packet are considered verified. Any checksums in the
161  *   packet that are after the checksum being offloaded are not considered to
162  *   be verified.
163  *
164  * Checksumming on transmit for non-GSO
165  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
166  *
167  * The stack requests checksum offload in the &sk_buff.ip_summed for a packet.
168  * Values are:
169  *
170  * - %CHECKSUM_PARTIAL
171  *
172  *   The driver is required to checksum the packet as seen by hard_start_xmit()
173  *   from &sk_buff.csum_start up to the end, and to record/write the checksum at
174  *   offset &sk_buff.csum_start + &sk_buff.csum_offset.
175  *   A driver may verify that the
176  *   csum_start and csum_offset values are valid values given the length and
177  *   offset of the packet, but it should not attempt to validate that the
178  *   checksum refers to a legitimate transport layer checksum -- it is the
179  *   purview of the stack to validate that csum_start and csum_offset are set
180  *   correctly.
181  *
182  *   When the stack requests checksum offload for a packet, the driver MUST
183  *   ensure that the checksum is set correctly. A driver can either offload the
184  *   checksum calculation to the device, or call skb_checksum_help (in the case
185  *   that the device does not support offload for a particular checksum).
186  *
187  *   %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of
188  *   %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate
189  *   checksum offload capability.
190  *   skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based
191  *   on network device checksumming capabilities: if a packet does not match
192  *   them, skb_checksum_help() or skb_crc32c_help() (depending on the value of
193  *   &sk_buff.csum_not_inet, see :ref:`crc`)
194  *   is called to resolve the checksum.
195  *
196  * - %CHECKSUM_NONE
197  *
198  *   The skb was already checksummed by the protocol, or a checksum is not
199  *   required.
200  *
201  * - %CHECKSUM_UNNECESSARY
202  *
203  *   This has the same meaning as CHECKSUM_NONE for checksum offload on
204  *   output.
205  *
206  * - %CHECKSUM_COMPLETE
207  *
208  *   Not used in checksum output. If a driver observes a packet with this value
209  *   set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set.
210  *
211  * .. _crc:
212  *
213  * Non-IP checksum (CRC) offloads
214  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
215  *
216  * .. flat-table::
217  *   :widths: 1 10
218  *
219  *   * - %NETIF_F_SCTP_CRC
220  *     - This feature indicates that a device is capable of
221  *	 offloading the SCTP CRC in a packet. To perform this offload the stack
222  *	 will set csum_start and csum_offset accordingly, set ip_summed to
223  *	 %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication
224  *	 in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c.
225  *	 A driver that supports both IP checksum offload and SCTP CRC32c offload
226  *	 must verify which offload is configured for a packet by testing the
227  *	 value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to
228  *	 resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
229  *
230  *   * - %NETIF_F_FCOE_CRC
231  *     - This feature indicates that a device is capable of offloading the FCOE
232  *	 CRC in a packet. To perform this offload the stack will set ip_summed
233  *	 to %CHECKSUM_PARTIAL and set csum_start and csum_offset
234  *	 accordingly. Note that there is no indication in the skbuff that the
235  *	 %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
236  *	 both IP checksum offload and FCOE CRC offload must verify which offload
237  *	 is configured for a packet, presumably by inspecting packet headers.
238  *
239  * Checksumming on output with GSO
240  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
241  *
242  * In the case of a GSO packet (skb_is_gso() is true), checksum offload
243  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
244  * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as
245  * part of the GSO operation is implied. If a checksum is being offloaded
246  * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and
247  * csum_offset are set to refer to the outermost checksum being offloaded
248  * (two offloaded checksums are possible with UDP encapsulation).
249  */
250 
251 /* Don't change this without changing skb_csum_unnecessary! */
252 #define CHECKSUM_NONE		0
253 #define CHECKSUM_UNNECESSARY	1
254 #define CHECKSUM_COMPLETE	2
255 #define CHECKSUM_PARTIAL	3
256 
257 /* Maximum value in skb->csum_level */
258 #define SKB_MAX_CSUM_LEVEL	3
259 
260 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
261 #define SKB_WITH_OVERHEAD(X)	\
262 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
263 #define SKB_MAX_ORDER(X, ORDER) \
264 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
265 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
266 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
267 
268 /* return minimum truesize of one skb containing X bytes of data */
269 #define SKB_TRUESIZE(X) ((X) +						\
270 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
271 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
272 
273 struct ahash_request;
274 struct net_device;
275 struct scatterlist;
276 struct pipe_inode_info;
277 struct iov_iter;
278 struct napi_struct;
279 struct bpf_prog;
280 union bpf_attr;
281 struct skb_ext;
282 
283 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
284 struct nf_bridge_info {
285 	enum {
286 		BRNF_PROTO_UNCHANGED,
287 		BRNF_PROTO_8021Q,
288 		BRNF_PROTO_PPPOE
289 	} orig_proto:8;
290 	u8			pkt_otherhost:1;
291 	u8			in_prerouting:1;
292 	u8			bridged_dnat:1;
293 	__u16			frag_max_size;
294 	struct net_device	*physindev;
295 
296 	/* always valid & non-NULL from FORWARD on, for physdev match */
297 	struct net_device	*physoutdev;
298 	union {
299 		/* prerouting: detect dnat in orig/reply direction */
300 		__be32          ipv4_daddr;
301 		struct in6_addr ipv6_daddr;
302 
303 		/* after prerouting + nat detected: store original source
304 		 * mac since neigh resolution overwrites it, only used while
305 		 * skb is out in neigh layer.
306 		 */
307 		char neigh_header[8];
308 	};
309 };
310 #endif
311 
312 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
313 /* Chain in tc_skb_ext will be used to share the tc chain with
314  * ovs recirc_id. It will be set to the current chain by tc
315  * and read by ovs to recirc_id.
316  */
317 struct tc_skb_ext {
318 	__u32 chain;
319 	__u16 mru;
320 	__u16 zone;
321 	u8 post_ct:1;
322 	u8 post_ct_snat:1;
323 	u8 post_ct_dnat:1;
324 };
325 #endif
326 
327 struct sk_buff_head {
328 	/* These two members must be first to match sk_buff. */
329 	struct_group_tagged(sk_buff_list, list,
330 		struct sk_buff	*next;
331 		struct sk_buff	*prev;
332 	);
333 
334 	__u32		qlen;
335 	spinlock_t	lock;
336 };
337 
338 struct sk_buff;
339 
340 /* The reason of skb drop, which is used in kfree_skb_reason().
341  * en...maybe they should be splited by group?
342  *
343  * Each item here should also be in 'TRACE_SKB_DROP_REASON', which is
344  * used to translate the reason to string.
345  */
346 enum skb_drop_reason {
347 	SKB_NOT_DROPPED_YET = 0,
348 	SKB_DROP_REASON_NOT_SPECIFIED,	/* drop reason is not specified */
349 	SKB_DROP_REASON_NO_SOCKET,	/* socket not found */
350 	SKB_DROP_REASON_PKT_TOO_SMALL,	/* packet size is too small */
351 	SKB_DROP_REASON_TCP_CSUM,	/* TCP checksum error */
352 	SKB_DROP_REASON_SOCKET_FILTER,	/* dropped by socket filter */
353 	SKB_DROP_REASON_UDP_CSUM,	/* UDP checksum error */
354 	SKB_DROP_REASON_NETFILTER_DROP,	/* dropped by netfilter */
355 	SKB_DROP_REASON_OTHERHOST,	/* packet don't belong to current
356 					 * host (interface is in promisc
357 					 * mode)
358 					 */
359 	SKB_DROP_REASON_IP_CSUM,	/* IP checksum error */
360 	SKB_DROP_REASON_IP_INHDR,	/* there is something wrong with
361 					 * IP header (see
362 					 * IPSTATS_MIB_INHDRERRORS)
363 					 */
364 	SKB_DROP_REASON_IP_RPFILTER,	/* IP rpfilter validate failed.
365 					 * see the document for rp_filter
366 					 * in ip-sysctl.rst for more
367 					 * information
368 					 */
369 	SKB_DROP_REASON_UNICAST_IN_L2_MULTICAST, /* destination address of L2
370 						  * is multicast, but L3 is
371 						  * unicast.
372 						  */
373 	SKB_DROP_REASON_XFRM_POLICY,	/* xfrm policy check failed */
374 	SKB_DROP_REASON_IP_NOPROTO,	/* no support for IP protocol */
375 	SKB_DROP_REASON_SOCKET_RCVBUFF,	/* socket receive buff is full */
376 	SKB_DROP_REASON_PROTO_MEM,	/* proto memory limition, such as
377 					 * udp packet drop out of
378 					 * udp_memory_allocated.
379 					 */
380 	SKB_DROP_REASON_TCP_MD5NOTFOUND,	/* no MD5 hash and one
381 						 * expected, corresponding
382 						 * to LINUX_MIB_TCPMD5NOTFOUND
383 						 */
384 	SKB_DROP_REASON_TCP_MD5UNEXPECTED,	/* MD5 hash and we're not
385 						 * expecting one, corresponding
386 						 * to LINUX_MIB_TCPMD5UNEXPECTED
387 						 */
388 	SKB_DROP_REASON_TCP_MD5FAILURE,	/* MD5 hash and its wrong,
389 					 * corresponding to
390 					 * LINUX_MIB_TCPMD5FAILURE
391 					 */
392 	SKB_DROP_REASON_SOCKET_BACKLOG,	/* failed to add skb to socket
393 					 * backlog (see
394 					 * LINUX_MIB_TCPBACKLOGDROP)
395 					 */
396 	SKB_DROP_REASON_TCP_FLAGS,	/* TCP flags invalid */
397 	SKB_DROP_REASON_TCP_ZEROWINDOW,	/* TCP receive window size is zero,
398 					 * see LINUX_MIB_TCPZEROWINDOWDROP
399 					 */
400 	SKB_DROP_REASON_TCP_OLD_DATA,	/* the TCP data reveived is already
401 					 * received before (spurious retrans
402 					 * may happened), see
403 					 * LINUX_MIB_DELAYEDACKLOST
404 					 */
405 	SKB_DROP_REASON_TCP_OVERWINDOW,	/* the TCP data is out of window,
406 					 * the seq of the first byte exceed
407 					 * the right edges of receive
408 					 * window
409 					 */
410 	SKB_DROP_REASON_TCP_OFOMERGE,	/* the data of skb is already in
411 					 * the ofo queue, corresponding to
412 					 * LINUX_MIB_TCPOFOMERGE
413 					 */
414 	SKB_DROP_REASON_TCP_RFC7323_PAWS, /* PAWS check, corresponding to
415 					   * LINUX_MIB_PAWSESTABREJECTED
416 					   */
417 	SKB_DROP_REASON_TCP_INVALID_SEQUENCE, /* Not acceptable SEQ field */
418 	SKB_DROP_REASON_TCP_RESET,	/* Invalid RST packet */
419 	SKB_DROP_REASON_TCP_INVALID_SYN, /* Incoming packet has unexpected SYN flag */
420 	SKB_DROP_REASON_TCP_CLOSE,	/* TCP socket in CLOSE state */
421 	SKB_DROP_REASON_TCP_FASTOPEN,	/* dropped by FASTOPEN request socket */
422 	SKB_DROP_REASON_TCP_OLD_ACK,	/* TCP ACK is old, but in window */
423 	SKB_DROP_REASON_TCP_TOO_OLD_ACK, /* TCP ACK is too old */
424 	SKB_DROP_REASON_TCP_ACK_UNSENT_DATA, /* TCP ACK for data we haven't sent yet */
425 	SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE, /* pruned from TCP OFO queue */
426 	SKB_DROP_REASON_TCP_OFO_DROP,	/* data already in receive queue */
427 	SKB_DROP_REASON_IP_OUTNOROUTES,	/* route lookup failed */
428 	SKB_DROP_REASON_BPF_CGROUP_EGRESS,	/* dropped by
429 						 * BPF_PROG_TYPE_CGROUP_SKB
430 						 * eBPF program
431 						 */
432 	SKB_DROP_REASON_IPV6DISABLED,	/* IPv6 is disabled on the device */
433 	SKB_DROP_REASON_NEIGH_CREATEFAIL,	/* failed to create neigh
434 						 * entry
435 						 */
436 	SKB_DROP_REASON_NEIGH_FAILED,	/* neigh entry in failed state */
437 	SKB_DROP_REASON_NEIGH_QUEUEFULL,	/* arp_queue for neigh
438 						 * entry is full
439 						 */
440 	SKB_DROP_REASON_NEIGH_DEAD,	/* neigh entry is dead */
441 	SKB_DROP_REASON_TC_EGRESS,	/* dropped in TC egress HOOK */
442 	SKB_DROP_REASON_QDISC_DROP,	/* dropped by qdisc when packet
443 					 * outputting (failed to enqueue to
444 					 * current qdisc)
445 					 */
446 	SKB_DROP_REASON_CPU_BACKLOG,	/* failed to enqueue the skb to
447 					 * the per CPU backlog queue. This
448 					 * can be caused by backlog queue
449 					 * full (see netdev_max_backlog in
450 					 * net.rst) or RPS flow limit
451 					 */
452 	SKB_DROP_REASON_XDP,		/* dropped by XDP in input path */
453 	SKB_DROP_REASON_TC_INGRESS,	/* dropped in TC ingress HOOK */
454 	SKB_DROP_REASON_UNHANDLED_PROTO,	/* protocol not implemented
455 						 * or not supported
456 						 */
457 	SKB_DROP_REASON_SKB_CSUM,	/* sk_buff checksum computation
458 					 * error
459 					 */
460 	SKB_DROP_REASON_SKB_GSO_SEG,	/* gso segmentation error */
461 	SKB_DROP_REASON_SKB_UCOPY_FAULT,	/* failed to copy data from
462 						 * user space, e.g., via
463 						 * zerocopy_sg_from_iter()
464 						 * or skb_orphan_frags_rx()
465 						 */
466 	SKB_DROP_REASON_DEV_HDR,	/* device driver specific
467 					 * header/metadata is invalid
468 					 */
469 	/* the device is not ready to xmit/recv due to any of its data
470 	 * structure that is not up/ready/initialized, e.g., the IFF_UP is
471 	 * not set, or driver specific tun->tfiles[txq] is not initialized
472 	 */
473 	SKB_DROP_REASON_DEV_READY,
474 	SKB_DROP_REASON_FULL_RING,	/* ring buffer is full */
475 	SKB_DROP_REASON_NOMEM,		/* error due to OOM */
476 	SKB_DROP_REASON_HDR_TRUNC,      /* failed to trunc/extract the header
477 					 * from networking data, e.g., failed
478 					 * to pull the protocol header from
479 					 * frags via pskb_may_pull()
480 					 */
481 	SKB_DROP_REASON_TAP_FILTER,     /* dropped by (ebpf) filter directly
482 					 * attached to tun/tap, e.g., via
483 					 * TUNSETFILTEREBPF
484 					 */
485 	SKB_DROP_REASON_TAP_TXFILTER,	/* dropped by tx filter implemented
486 					 * at tun/tap, e.g., check_filter()
487 					 */
488 	SKB_DROP_REASON_ICMP_CSUM,	/* ICMP checksum error */
489 	SKB_DROP_REASON_INVALID_PROTO,	/* the packet doesn't follow RFC
490 					 * 2211, such as a broadcasts
491 					 * ICMP_TIMESTAMP
492 					 */
493 	SKB_DROP_REASON_IP_INADDRERRORS,	/* host unreachable, corresponding
494 						 * to IPSTATS_MIB_INADDRERRORS
495 						 */
496 	SKB_DROP_REASON_IP_INNOROUTES,	/* network unreachable, corresponding
497 					 * to IPSTATS_MIB_INADDRERRORS
498 					 */
499 	SKB_DROP_REASON_PKT_TOO_BIG,	/* packet size is too big (maybe exceed
500 					 * the MTU)
501 					 */
502 	SKB_DROP_REASON_MAX,
503 };
504 
505 #define SKB_DR_INIT(name, reason)				\
506 	enum skb_drop_reason name = SKB_DROP_REASON_##reason
507 #define SKB_DR(name)						\
508 	SKB_DR_INIT(name, NOT_SPECIFIED)
509 #define SKB_DR_SET(name, reason)				\
510 	(name = SKB_DROP_REASON_##reason)
511 #define SKB_DR_OR(name, reason)					\
512 	do {							\
513 		if (name == SKB_DROP_REASON_NOT_SPECIFIED ||	\
514 		    name == SKB_NOT_DROPPED_YET)		\
515 			SKB_DR_SET(name, reason);		\
516 	} while (0)
517 
518 /* To allow 64K frame to be packed as single skb without frag_list we
519  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
520  * buffers which do not start on a page boundary.
521  *
522  * Since GRO uses frags we allocate at least 16 regardless of page
523  * size.
524  */
525 #if (65536/PAGE_SIZE + 1) < 16
526 #define MAX_SKB_FRAGS 16UL
527 #else
528 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
529 #endif
530 extern int sysctl_max_skb_frags;
531 
532 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
533  * segment using its current segmentation instead.
534  */
535 #define GSO_BY_FRAGS	0xFFFF
536 
537 typedef struct bio_vec skb_frag_t;
538 
539 /**
540  * skb_frag_size() - Returns the size of a skb fragment
541  * @frag: skb fragment
542  */
543 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
544 {
545 	return frag->bv_len;
546 }
547 
548 /**
549  * skb_frag_size_set() - Sets the size of a skb fragment
550  * @frag: skb fragment
551  * @size: size of fragment
552  */
553 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
554 {
555 	frag->bv_len = size;
556 }
557 
558 /**
559  * skb_frag_size_add() - Increments the size of a skb fragment by @delta
560  * @frag: skb fragment
561  * @delta: value to add
562  */
563 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
564 {
565 	frag->bv_len += delta;
566 }
567 
568 /**
569  * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
570  * @frag: skb fragment
571  * @delta: value to subtract
572  */
573 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
574 {
575 	frag->bv_len -= delta;
576 }
577 
578 /**
579  * skb_frag_must_loop - Test if %p is a high memory page
580  * @p: fragment's page
581  */
582 static inline bool skb_frag_must_loop(struct page *p)
583 {
584 #if defined(CONFIG_HIGHMEM)
585 	if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p))
586 		return true;
587 #endif
588 	return false;
589 }
590 
591 /**
592  *	skb_frag_foreach_page - loop over pages in a fragment
593  *
594  *	@f:		skb frag to operate on
595  *	@f_off:		offset from start of f->bv_page
596  *	@f_len:		length from f_off to loop over
597  *	@p:		(temp var) current page
598  *	@p_off:		(temp var) offset from start of current page,
599  *	                           non-zero only on first page.
600  *	@p_len:		(temp var) length in current page,
601  *				   < PAGE_SIZE only on first and last page.
602  *	@copied:	(temp var) length so far, excluding current p_len.
603  *
604  *	A fragment can hold a compound page, in which case per-page
605  *	operations, notably kmap_atomic, must be called for each
606  *	regular page.
607  */
608 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
609 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
610 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
611 	     p_len = skb_frag_must_loop(p) ?				\
612 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
613 	     copied = 0;						\
614 	     copied < f_len;						\
615 	     copied += p_len, p++, p_off = 0,				\
616 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
617 
618 #define HAVE_HW_TIME_STAMP
619 
620 /**
621  * struct skb_shared_hwtstamps - hardware time stamps
622  * @hwtstamp:		hardware time stamp transformed into duration
623  *			since arbitrary point in time
624  * @netdev_data:	address/cookie of network device driver used as
625  *			reference to actual hardware time stamp
626  *
627  * Software time stamps generated by ktime_get_real() are stored in
628  * skb->tstamp.
629  *
630  * hwtstamps can only be compared against other hwtstamps from
631  * the same device.
632  *
633  * This structure is attached to packets as part of the
634  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
635  */
636 struct skb_shared_hwtstamps {
637 	union {
638 		ktime_t	hwtstamp;
639 		void *netdev_data;
640 	};
641 };
642 
643 /* Definitions for tx_flags in struct skb_shared_info */
644 enum {
645 	/* generate hardware time stamp */
646 	SKBTX_HW_TSTAMP = 1 << 0,
647 
648 	/* generate software time stamp when queueing packet to NIC */
649 	SKBTX_SW_TSTAMP = 1 << 1,
650 
651 	/* device driver is going to provide hardware time stamp */
652 	SKBTX_IN_PROGRESS = 1 << 2,
653 
654 	/* generate hardware time stamp based on cycles if supported */
655 	SKBTX_HW_TSTAMP_USE_CYCLES = 1 << 3,
656 
657 	/* generate wifi status information (where possible) */
658 	SKBTX_WIFI_STATUS = 1 << 4,
659 
660 	/* determine hardware time stamp based on time or cycles */
661 	SKBTX_HW_TSTAMP_NETDEV = 1 << 5,
662 
663 	/* generate software time stamp when entering packet scheduling */
664 	SKBTX_SCHED_TSTAMP = 1 << 6,
665 };
666 
667 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
668 				 SKBTX_SCHED_TSTAMP)
669 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | \
670 				 SKBTX_HW_TSTAMP_USE_CYCLES | \
671 				 SKBTX_ANY_SW_TSTAMP)
672 
673 /* Definitions for flags in struct skb_shared_info */
674 enum {
675 	/* use zcopy routines */
676 	SKBFL_ZEROCOPY_ENABLE = BIT(0),
677 
678 	/* This indicates at least one fragment might be overwritten
679 	 * (as in vmsplice(), sendfile() ...)
680 	 * If we need to compute a TX checksum, we'll need to copy
681 	 * all frags to avoid possible bad checksum
682 	 */
683 	SKBFL_SHARED_FRAG = BIT(1),
684 
685 	/* segment contains only zerocopy data and should not be
686 	 * charged to the kernel memory.
687 	 */
688 	SKBFL_PURE_ZEROCOPY = BIT(2),
689 };
690 
691 #define SKBFL_ZEROCOPY_FRAG	(SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG)
692 #define SKBFL_ALL_ZEROCOPY	(SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY)
693 
694 /*
695  * The callback notifies userspace to release buffers when skb DMA is done in
696  * lower device, the skb last reference should be 0 when calling this.
697  * The zerocopy_success argument is true if zero copy transmit occurred,
698  * false on data copy or out of memory error caused by data copy attempt.
699  * The ctx field is used to track device context.
700  * The desc field is used to track userspace buffer index.
701  */
702 struct ubuf_info {
703 	void (*callback)(struct sk_buff *, struct ubuf_info *,
704 			 bool zerocopy_success);
705 	union {
706 		struct {
707 			unsigned long desc;
708 			void *ctx;
709 		};
710 		struct {
711 			u32 id;
712 			u16 len;
713 			u16 zerocopy:1;
714 			u32 bytelen;
715 		};
716 	};
717 	refcount_t refcnt;
718 	u8 flags;
719 
720 	struct mmpin {
721 		struct user_struct *user;
722 		unsigned int num_pg;
723 	} mmp;
724 };
725 
726 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
727 
728 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
729 void mm_unaccount_pinned_pages(struct mmpin *mmp);
730 
731 /* This data is invariant across clones and lives at
732  * the end of the header data, ie. at skb->end.
733  */
734 struct skb_shared_info {
735 	__u8		flags;
736 	__u8		meta_len;
737 	__u8		nr_frags;
738 	__u8		tx_flags;
739 	unsigned short	gso_size;
740 	/* Warning: this field is not always filled in (UFO)! */
741 	unsigned short	gso_segs;
742 	struct sk_buff	*frag_list;
743 	struct skb_shared_hwtstamps hwtstamps;
744 	unsigned int	gso_type;
745 	u32		tskey;
746 
747 	/*
748 	 * Warning : all fields before dataref are cleared in __alloc_skb()
749 	 */
750 	atomic_t	dataref;
751 	unsigned int	xdp_frags_size;
752 
753 	/* Intermediate layers must ensure that destructor_arg
754 	 * remains valid until skb destructor */
755 	void *		destructor_arg;
756 
757 	/* must be last field, see pskb_expand_head() */
758 	skb_frag_t	frags[MAX_SKB_FRAGS];
759 };
760 
761 /**
762  * DOC: dataref and headerless skbs
763  *
764  * Transport layers send out clones of payload skbs they hold for
765  * retransmissions. To allow lower layers of the stack to prepend their headers
766  * we split &skb_shared_info.dataref into two halves.
767  * The lower 16 bits count the overall number of references.
768  * The higher 16 bits indicate how many of the references are payload-only.
769  * skb_header_cloned() checks if skb is allowed to add / write the headers.
770  *
771  * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr
772  * (via __skb_header_release()). Any clone created from marked skb will get
773  * &sk_buff.hdr_len populated with the available headroom.
774  * If there's the only clone in existence it's able to modify the headroom
775  * at will. The sequence of calls inside the transport layer is::
776  *
777  *  <alloc skb>
778  *  skb_reserve()
779  *  __skb_header_release()
780  *  skb_clone()
781  *  // send the clone down the stack
782  *
783  * This is not a very generic construct and it depends on the transport layers
784  * doing the right thing. In practice there's usually only one payload-only skb.
785  * Having multiple payload-only skbs with different lengths of hdr_len is not
786  * possible. The payload-only skbs should never leave their owner.
787  */
788 #define SKB_DATAREF_SHIFT 16
789 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
790 
791 
792 enum {
793 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
794 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
795 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
796 };
797 
798 enum {
799 	SKB_GSO_TCPV4 = 1 << 0,
800 
801 	/* This indicates the skb is from an untrusted source. */
802 	SKB_GSO_DODGY = 1 << 1,
803 
804 	/* This indicates the tcp segment has CWR set. */
805 	SKB_GSO_TCP_ECN = 1 << 2,
806 
807 	SKB_GSO_TCP_FIXEDID = 1 << 3,
808 
809 	SKB_GSO_TCPV6 = 1 << 4,
810 
811 	SKB_GSO_FCOE = 1 << 5,
812 
813 	SKB_GSO_GRE = 1 << 6,
814 
815 	SKB_GSO_GRE_CSUM = 1 << 7,
816 
817 	SKB_GSO_IPXIP4 = 1 << 8,
818 
819 	SKB_GSO_IPXIP6 = 1 << 9,
820 
821 	SKB_GSO_UDP_TUNNEL = 1 << 10,
822 
823 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
824 
825 	SKB_GSO_PARTIAL = 1 << 12,
826 
827 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
828 
829 	SKB_GSO_SCTP = 1 << 14,
830 
831 	SKB_GSO_ESP = 1 << 15,
832 
833 	SKB_GSO_UDP = 1 << 16,
834 
835 	SKB_GSO_UDP_L4 = 1 << 17,
836 
837 	SKB_GSO_FRAGLIST = 1 << 18,
838 };
839 
840 #if BITS_PER_LONG > 32
841 #define NET_SKBUFF_DATA_USES_OFFSET 1
842 #endif
843 
844 #ifdef NET_SKBUFF_DATA_USES_OFFSET
845 typedef unsigned int sk_buff_data_t;
846 #else
847 typedef unsigned char *sk_buff_data_t;
848 #endif
849 
850 /**
851  * DOC: Basic sk_buff geometry
852  *
853  * struct sk_buff itself is a metadata structure and does not hold any packet
854  * data. All the data is held in associated buffers.
855  *
856  * &sk_buff.head points to the main "head" buffer. The head buffer is divided
857  * into two parts:
858  *
859  *  - data buffer, containing headers and sometimes payload;
860  *    this is the part of the skb operated on by the common helpers
861  *    such as skb_put() or skb_pull();
862  *  - shared info (struct skb_shared_info) which holds an array of pointers
863  *    to read-only data in the (page, offset, length) format.
864  *
865  * Optionally &skb_shared_info.frag_list may point to another skb.
866  *
867  * Basic diagram may look like this::
868  *
869  *                                  ---------------
870  *                                 | sk_buff       |
871  *                                  ---------------
872  *     ,---------------------------  + head
873  *    /          ,-----------------  + data
874  *   /          /      ,-----------  + tail
875  *  |          |      |            , + end
876  *  |          |      |           |
877  *  v          v      v           v
878  *   -----------------------------------------------
879  *  | headroom | data |  tailroom | skb_shared_info |
880  *   -----------------------------------------------
881  *                                 + [page frag]
882  *                                 + [page frag]
883  *                                 + [page frag]
884  *                                 + [page frag]       ---------
885  *                                 + frag_list    --> | sk_buff |
886  *                                                     ---------
887  *
888  */
889 
890 /**
891  *	struct sk_buff - socket buffer
892  *	@next: Next buffer in list
893  *	@prev: Previous buffer in list
894  *	@tstamp: Time we arrived/left
895  *	@skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
896  *		for retransmit timer
897  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
898  *	@list: queue head
899  *	@ll_node: anchor in an llist (eg socket defer_list)
900  *	@sk: Socket we are owned by
901  *	@ip_defrag_offset: (aka @sk) alternate use of @sk, used in
902  *		fragmentation management
903  *	@dev: Device we arrived on/are leaving by
904  *	@dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
905  *	@cb: Control buffer. Free for use by every layer. Put private vars here
906  *	@_skb_refdst: destination entry (with norefcount bit)
907  *	@sp: the security path, used for xfrm
908  *	@len: Length of actual data
909  *	@data_len: Data length
910  *	@mac_len: Length of link layer header
911  *	@hdr_len: writable header length of cloned skb
912  *	@csum: Checksum (must include start/offset pair)
913  *	@csum_start: Offset from skb->head where checksumming should start
914  *	@csum_offset: Offset from csum_start where checksum should be stored
915  *	@priority: Packet queueing priority
916  *	@ignore_df: allow local fragmentation
917  *	@cloned: Head may be cloned (check refcnt to be sure)
918  *	@ip_summed: Driver fed us an IP checksum
919  *	@nohdr: Payload reference only, must not modify header
920  *	@pkt_type: Packet class
921  *	@fclone: skbuff clone status
922  *	@ipvs_property: skbuff is owned by ipvs
923  *	@inner_protocol_type: whether the inner protocol is
924  *		ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
925  *	@remcsum_offload: remote checksum offload is enabled
926  *	@offload_fwd_mark: Packet was L2-forwarded in hardware
927  *	@offload_l3_fwd_mark: Packet was L3-forwarded in hardware
928  *	@tc_skip_classify: do not classify packet. set by IFB device
929  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
930  *	@redirected: packet was redirected by packet classifier
931  *	@from_ingress: packet was redirected from the ingress path
932  *	@nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h
933  *	@peeked: this packet has been seen already, so stats have been
934  *		done for it, don't do them again
935  *	@nf_trace: netfilter packet trace flag
936  *	@protocol: Packet protocol from driver
937  *	@destructor: Destruct function
938  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
939  *	@_sk_redir: socket redirection information for skmsg
940  *	@_nfct: Associated connection, if any (with nfctinfo bits)
941  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
942  *	@skb_iif: ifindex of device we arrived on
943  *	@tc_index: Traffic control index
944  *	@hash: the packet hash
945  *	@queue_mapping: Queue mapping for multiqueue devices
946  *	@head_frag: skb was allocated from page fragments,
947  *		not allocated by kmalloc() or vmalloc().
948  *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
949  *	@pp_recycle: mark the packet for recycling instead of freeing (implies
950  *		page_pool support on driver)
951  *	@active_extensions: active extensions (skb_ext_id types)
952  *	@ndisc_nodetype: router type (from link layer)
953  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
954  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
955  *		ports.
956  *	@sw_hash: indicates hash was computed in software stack
957  *	@wifi_acked_valid: wifi_acked was set
958  *	@wifi_acked: whether frame was acked on wifi or not
959  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
960  *	@encapsulation: indicates the inner headers in the skbuff are valid
961  *	@encap_hdr_csum: software checksum is needed
962  *	@csum_valid: checksum is already valid
963  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
964  *	@csum_complete_sw: checksum was completed by software
965  *	@csum_level: indicates the number of consecutive checksums found in
966  *		the packet minus one that have been verified as
967  *		CHECKSUM_UNNECESSARY (max 3)
968  *	@dst_pending_confirm: need to confirm neighbour
969  *	@decrypted: Decrypted SKB
970  *	@slow_gro: state present at GRO time, slower prepare step required
971  *	@mono_delivery_time: When set, skb->tstamp has the
972  *		delivery_time in mono clock base (i.e. EDT).  Otherwise, the
973  *		skb->tstamp has the (rcv) timestamp at ingress and
974  *		delivery_time at egress.
975  *	@napi_id: id of the NAPI struct this skb came from
976  *	@sender_cpu: (aka @napi_id) source CPU in XPS
977  *	@alloc_cpu: CPU which did the skb allocation.
978  *	@secmark: security marking
979  *	@mark: Generic packet mark
980  *	@reserved_tailroom: (aka @mark) number of bytes of free space available
981  *		at the tail of an sk_buff
982  *	@vlan_present: VLAN tag is present
983  *	@vlan_proto: vlan encapsulation protocol
984  *	@vlan_tci: vlan tag control information
985  *	@inner_protocol: Protocol (encapsulation)
986  *	@inner_ipproto: (aka @inner_protocol) stores ipproto when
987  *		skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
988  *	@inner_transport_header: Inner transport layer header (encapsulation)
989  *	@inner_network_header: Network layer header (encapsulation)
990  *	@inner_mac_header: Link layer header (encapsulation)
991  *	@transport_header: Transport layer header
992  *	@network_header: Network layer header
993  *	@mac_header: Link layer header
994  *	@kcov_handle: KCOV remote handle for remote coverage collection
995  *	@tail: Tail pointer
996  *	@end: End pointer
997  *	@head: Head of buffer
998  *	@data: Data head pointer
999  *	@truesize: Buffer size
1000  *	@users: User count - see {datagram,tcp}.c
1001  *	@extensions: allocated extensions, valid if active_extensions is nonzero
1002  */
1003 
1004 struct sk_buff {
1005 	union {
1006 		struct {
1007 			/* These two members must be first to match sk_buff_head. */
1008 			struct sk_buff		*next;
1009 			struct sk_buff		*prev;
1010 
1011 			union {
1012 				struct net_device	*dev;
1013 				/* Some protocols might use this space to store information,
1014 				 * while device pointer would be NULL.
1015 				 * UDP receive path is one user.
1016 				 */
1017 				unsigned long		dev_scratch;
1018 			};
1019 		};
1020 		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
1021 		struct list_head	list;
1022 		struct llist_node	ll_node;
1023 	};
1024 
1025 	union {
1026 		struct sock		*sk;
1027 		int			ip_defrag_offset;
1028 	};
1029 
1030 	union {
1031 		ktime_t		tstamp;
1032 		u64		skb_mstamp_ns; /* earliest departure time */
1033 	};
1034 	/*
1035 	 * This is the control buffer. It is free to use for every
1036 	 * layer. Please put your private variables there. If you
1037 	 * want to keep them across layers you have to do a skb_clone()
1038 	 * first. This is owned by whoever has the skb queued ATM.
1039 	 */
1040 	char			cb[48] __aligned(8);
1041 
1042 	union {
1043 		struct {
1044 			unsigned long	_skb_refdst;
1045 			void		(*destructor)(struct sk_buff *skb);
1046 		};
1047 		struct list_head	tcp_tsorted_anchor;
1048 #ifdef CONFIG_NET_SOCK_MSG
1049 		unsigned long		_sk_redir;
1050 #endif
1051 	};
1052 
1053 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1054 	unsigned long		 _nfct;
1055 #endif
1056 	unsigned int		len,
1057 				data_len;
1058 	__u16			mac_len,
1059 				hdr_len;
1060 
1061 	/* Following fields are _not_ copied in __copy_skb_header()
1062 	 * Note that queue_mapping is here mostly to fill a hole.
1063 	 */
1064 	__u16			queue_mapping;
1065 
1066 /* if you move cloned around you also must adapt those constants */
1067 #ifdef __BIG_ENDIAN_BITFIELD
1068 #define CLONED_MASK	(1 << 7)
1069 #else
1070 #define CLONED_MASK	1
1071 #endif
1072 #define CLONED_OFFSET		offsetof(struct sk_buff, __cloned_offset)
1073 
1074 	/* private: */
1075 	__u8			__cloned_offset[0];
1076 	/* public: */
1077 	__u8			cloned:1,
1078 				nohdr:1,
1079 				fclone:2,
1080 				peeked:1,
1081 				head_frag:1,
1082 				pfmemalloc:1,
1083 				pp_recycle:1; /* page_pool recycle indicator */
1084 #ifdef CONFIG_SKB_EXTENSIONS
1085 	__u8			active_extensions;
1086 #endif
1087 
1088 	/* Fields enclosed in headers group are copied
1089 	 * using a single memcpy() in __copy_skb_header()
1090 	 */
1091 	struct_group(headers,
1092 
1093 	/* private: */
1094 	__u8			__pkt_type_offset[0];
1095 	/* public: */
1096 	__u8			pkt_type:3; /* see PKT_TYPE_MAX */
1097 	__u8			ignore_df:1;
1098 	__u8			nf_trace:1;
1099 	__u8			ip_summed:2;
1100 	__u8			ooo_okay:1;
1101 
1102 	__u8			l4_hash:1;
1103 	__u8			sw_hash:1;
1104 	__u8			wifi_acked_valid:1;
1105 	__u8			wifi_acked:1;
1106 	__u8			no_fcs:1;
1107 	/* Indicates the inner headers are valid in the skbuff. */
1108 	__u8			encapsulation:1;
1109 	__u8			encap_hdr_csum:1;
1110 	__u8			csum_valid:1;
1111 
1112 	/* private: */
1113 	__u8			__pkt_vlan_present_offset[0];
1114 	/* public: */
1115 	__u8			vlan_present:1;	/* See PKT_VLAN_PRESENT_BIT */
1116 	__u8			csum_complete_sw:1;
1117 	__u8			csum_level:2;
1118 	__u8			dst_pending_confirm:1;
1119 	__u8			mono_delivery_time:1;	/* See SKB_MONO_DELIVERY_TIME_MASK */
1120 #ifdef CONFIG_NET_CLS_ACT
1121 	__u8			tc_skip_classify:1;
1122 	__u8			tc_at_ingress:1;	/* See TC_AT_INGRESS_MASK */
1123 #endif
1124 #ifdef CONFIG_IPV6_NDISC_NODETYPE
1125 	__u8			ndisc_nodetype:2;
1126 #endif
1127 
1128 	__u8			ipvs_property:1;
1129 	__u8			inner_protocol_type:1;
1130 	__u8			remcsum_offload:1;
1131 #ifdef CONFIG_NET_SWITCHDEV
1132 	__u8			offload_fwd_mark:1;
1133 	__u8			offload_l3_fwd_mark:1;
1134 #endif
1135 	__u8			redirected:1;
1136 #ifdef CONFIG_NET_REDIRECT
1137 	__u8			from_ingress:1;
1138 #endif
1139 #ifdef CONFIG_NETFILTER_SKIP_EGRESS
1140 	__u8			nf_skip_egress:1;
1141 #endif
1142 #ifdef CONFIG_TLS_DEVICE
1143 	__u8			decrypted:1;
1144 #endif
1145 	__u8			slow_gro:1;
1146 	__u8			csum_not_inet:1;
1147 
1148 #ifdef CONFIG_NET_SCHED
1149 	__u16			tc_index;	/* traffic control index */
1150 #endif
1151 
1152 	union {
1153 		__wsum		csum;
1154 		struct {
1155 			__u16	csum_start;
1156 			__u16	csum_offset;
1157 		};
1158 	};
1159 	__u32			priority;
1160 	int			skb_iif;
1161 	__u32			hash;
1162 	__be16			vlan_proto;
1163 	__u16			vlan_tci;
1164 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
1165 	union {
1166 		unsigned int	napi_id;
1167 		unsigned int	sender_cpu;
1168 	};
1169 #endif
1170 	u16			alloc_cpu;
1171 #ifdef CONFIG_NETWORK_SECMARK
1172 	__u32		secmark;
1173 #endif
1174 
1175 	union {
1176 		__u32		mark;
1177 		__u32		reserved_tailroom;
1178 	};
1179 
1180 	union {
1181 		__be16		inner_protocol;
1182 		__u8		inner_ipproto;
1183 	};
1184 
1185 	__u16			inner_transport_header;
1186 	__u16			inner_network_header;
1187 	__u16			inner_mac_header;
1188 
1189 	__be16			protocol;
1190 	__u16			transport_header;
1191 	__u16			network_header;
1192 	__u16			mac_header;
1193 
1194 #ifdef CONFIG_KCOV
1195 	u64			kcov_handle;
1196 #endif
1197 
1198 	); /* end headers group */
1199 
1200 	/* These elements must be at the end, see alloc_skb() for details.  */
1201 	sk_buff_data_t		tail;
1202 	sk_buff_data_t		end;
1203 	unsigned char		*head,
1204 				*data;
1205 	unsigned int		truesize;
1206 	refcount_t		users;
1207 
1208 #ifdef CONFIG_SKB_EXTENSIONS
1209 	/* only useable after checking ->active_extensions != 0 */
1210 	struct skb_ext		*extensions;
1211 #endif
1212 };
1213 
1214 /* if you move pkt_type around you also must adapt those constants */
1215 #ifdef __BIG_ENDIAN_BITFIELD
1216 #define PKT_TYPE_MAX	(7 << 5)
1217 #else
1218 #define PKT_TYPE_MAX	7
1219 #endif
1220 #define PKT_TYPE_OFFSET		offsetof(struct sk_buff, __pkt_type_offset)
1221 
1222 /* if you move pkt_vlan_present, tc_at_ingress, or mono_delivery_time
1223  * around, you also must adapt these constants.
1224  */
1225 #ifdef __BIG_ENDIAN_BITFIELD
1226 #define PKT_VLAN_PRESENT_BIT	7
1227 #define TC_AT_INGRESS_MASK		(1 << 0)
1228 #define SKB_MONO_DELIVERY_TIME_MASK	(1 << 2)
1229 #else
1230 #define PKT_VLAN_PRESENT_BIT	0
1231 #define TC_AT_INGRESS_MASK		(1 << 7)
1232 #define SKB_MONO_DELIVERY_TIME_MASK	(1 << 5)
1233 #endif
1234 #define PKT_VLAN_PRESENT_OFFSET	offsetof(struct sk_buff, __pkt_vlan_present_offset)
1235 
1236 #ifdef __KERNEL__
1237 /*
1238  *	Handling routines are only of interest to the kernel
1239  */
1240 
1241 #define SKB_ALLOC_FCLONE	0x01
1242 #define SKB_ALLOC_RX		0x02
1243 #define SKB_ALLOC_NAPI		0x04
1244 
1245 /**
1246  * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
1247  * @skb: buffer
1248  */
1249 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
1250 {
1251 	return unlikely(skb->pfmemalloc);
1252 }
1253 
1254 /*
1255  * skb might have a dst pointer attached, refcounted or not.
1256  * _skb_refdst low order bit is set if refcount was _not_ taken
1257  */
1258 #define SKB_DST_NOREF	1UL
1259 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
1260 
1261 /**
1262  * skb_dst - returns skb dst_entry
1263  * @skb: buffer
1264  *
1265  * Returns skb dst_entry, regardless of reference taken or not.
1266  */
1267 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
1268 {
1269 	/* If refdst was not refcounted, check we still are in a
1270 	 * rcu_read_lock section
1271 	 */
1272 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
1273 		!rcu_read_lock_held() &&
1274 		!rcu_read_lock_bh_held());
1275 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
1276 }
1277 
1278 /**
1279  * skb_dst_set - sets skb dst
1280  * @skb: buffer
1281  * @dst: dst entry
1282  *
1283  * Sets skb dst, assuming a reference was taken on dst and should
1284  * be released by skb_dst_drop()
1285  */
1286 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
1287 {
1288 	skb->slow_gro |= !!dst;
1289 	skb->_skb_refdst = (unsigned long)dst;
1290 }
1291 
1292 /**
1293  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
1294  * @skb: buffer
1295  * @dst: dst entry
1296  *
1297  * Sets skb dst, assuming a reference was not taken on dst.
1298  * If dst entry is cached, we do not take reference and dst_release
1299  * will be avoided by refdst_drop. If dst entry is not cached, we take
1300  * reference, so that last dst_release can destroy the dst immediately.
1301  */
1302 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
1303 {
1304 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
1305 	skb->slow_gro |= !!dst;
1306 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
1307 }
1308 
1309 /**
1310  * skb_dst_is_noref - Test if skb dst isn't refcounted
1311  * @skb: buffer
1312  */
1313 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1314 {
1315 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1316 }
1317 
1318 /**
1319  * skb_rtable - Returns the skb &rtable
1320  * @skb: buffer
1321  */
1322 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
1323 {
1324 	return (struct rtable *)skb_dst(skb);
1325 }
1326 
1327 /* For mangling skb->pkt_type from user space side from applications
1328  * such as nft, tc, etc, we only allow a conservative subset of
1329  * possible pkt_types to be set.
1330 */
1331 static inline bool skb_pkt_type_ok(u32 ptype)
1332 {
1333 	return ptype <= PACKET_OTHERHOST;
1334 }
1335 
1336 /**
1337  * skb_napi_id - Returns the skb's NAPI id
1338  * @skb: buffer
1339  */
1340 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1341 {
1342 #ifdef CONFIG_NET_RX_BUSY_POLL
1343 	return skb->napi_id;
1344 #else
1345 	return 0;
1346 #endif
1347 }
1348 
1349 /**
1350  * skb_unref - decrement the skb's reference count
1351  * @skb: buffer
1352  *
1353  * Returns true if we can free the skb.
1354  */
1355 static inline bool skb_unref(struct sk_buff *skb)
1356 {
1357 	if (unlikely(!skb))
1358 		return false;
1359 	if (likely(refcount_read(&skb->users) == 1))
1360 		smp_rmb();
1361 	else if (likely(!refcount_dec_and_test(&skb->users)))
1362 		return false;
1363 
1364 	return true;
1365 }
1366 
1367 void kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason);
1368 
1369 /**
1370  *	kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason
1371  *	@skb: buffer to free
1372  */
1373 static inline void kfree_skb(struct sk_buff *skb)
1374 {
1375 	kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1376 }
1377 
1378 void skb_release_head_state(struct sk_buff *skb);
1379 void kfree_skb_list_reason(struct sk_buff *segs,
1380 			   enum skb_drop_reason reason);
1381 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1382 void skb_tx_error(struct sk_buff *skb);
1383 
1384 static inline void kfree_skb_list(struct sk_buff *segs)
1385 {
1386 	kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED);
1387 }
1388 
1389 #ifdef CONFIG_TRACEPOINTS
1390 void consume_skb(struct sk_buff *skb);
1391 #else
1392 static inline void consume_skb(struct sk_buff *skb)
1393 {
1394 	return kfree_skb(skb);
1395 }
1396 #endif
1397 
1398 void __consume_stateless_skb(struct sk_buff *skb);
1399 void  __kfree_skb(struct sk_buff *skb);
1400 extern struct kmem_cache *skbuff_head_cache;
1401 
1402 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1403 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1404 		      bool *fragstolen, int *delta_truesize);
1405 
1406 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1407 			    int node);
1408 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1409 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1410 struct sk_buff *build_skb_around(struct sk_buff *skb,
1411 				 void *data, unsigned int frag_size);
1412 void skb_attempt_defer_free(struct sk_buff *skb);
1413 
1414 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size);
1415 
1416 /**
1417  * alloc_skb - allocate a network buffer
1418  * @size: size to allocate
1419  * @priority: allocation mask
1420  *
1421  * This function is a convenient wrapper around __alloc_skb().
1422  */
1423 static inline struct sk_buff *alloc_skb(unsigned int size,
1424 					gfp_t priority)
1425 {
1426 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1427 }
1428 
1429 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1430 				     unsigned long data_len,
1431 				     int max_page_order,
1432 				     int *errcode,
1433 				     gfp_t gfp_mask);
1434 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1435 
1436 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1437 struct sk_buff_fclones {
1438 	struct sk_buff	skb1;
1439 
1440 	struct sk_buff	skb2;
1441 
1442 	refcount_t	fclone_ref;
1443 };
1444 
1445 /**
1446  *	skb_fclone_busy - check if fclone is busy
1447  *	@sk: socket
1448  *	@skb: buffer
1449  *
1450  * Returns true if skb is a fast clone, and its clone is not freed.
1451  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1452  * so we also check that this didnt happen.
1453  */
1454 static inline bool skb_fclone_busy(const struct sock *sk,
1455 				   const struct sk_buff *skb)
1456 {
1457 	const struct sk_buff_fclones *fclones;
1458 
1459 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1460 
1461 	return skb->fclone == SKB_FCLONE_ORIG &&
1462 	       refcount_read(&fclones->fclone_ref) > 1 &&
1463 	       READ_ONCE(fclones->skb2.sk) == sk;
1464 }
1465 
1466 /**
1467  * alloc_skb_fclone - allocate a network buffer from fclone cache
1468  * @size: size to allocate
1469  * @priority: allocation mask
1470  *
1471  * This function is a convenient wrapper around __alloc_skb().
1472  */
1473 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1474 					       gfp_t priority)
1475 {
1476 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1477 }
1478 
1479 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1480 void skb_headers_offset_update(struct sk_buff *skb, int off);
1481 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1482 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1483 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1484 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1485 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1486 				   gfp_t gfp_mask, bool fclone);
1487 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1488 					  gfp_t gfp_mask)
1489 {
1490 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1491 }
1492 
1493 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1494 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1495 				     unsigned int headroom);
1496 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom);
1497 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1498 				int newtailroom, gfp_t priority);
1499 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1500 				     int offset, int len);
1501 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1502 			      int offset, int len);
1503 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1504 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1505 
1506 /**
1507  *	skb_pad			-	zero pad the tail of an skb
1508  *	@skb: buffer to pad
1509  *	@pad: space to pad
1510  *
1511  *	Ensure that a buffer is followed by a padding area that is zero
1512  *	filled. Used by network drivers which may DMA or transfer data
1513  *	beyond the buffer end onto the wire.
1514  *
1515  *	May return error in out of memory cases. The skb is freed on error.
1516  */
1517 static inline int skb_pad(struct sk_buff *skb, int pad)
1518 {
1519 	return __skb_pad(skb, pad, true);
1520 }
1521 #define dev_kfree_skb(a)	consume_skb(a)
1522 
1523 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1524 			 int offset, size_t size);
1525 
1526 struct skb_seq_state {
1527 	__u32		lower_offset;
1528 	__u32		upper_offset;
1529 	__u32		frag_idx;
1530 	__u32		stepped_offset;
1531 	struct sk_buff	*root_skb;
1532 	struct sk_buff	*cur_skb;
1533 	__u8		*frag_data;
1534 	__u32		frag_off;
1535 };
1536 
1537 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1538 			  unsigned int to, struct skb_seq_state *st);
1539 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1540 			  struct skb_seq_state *st);
1541 void skb_abort_seq_read(struct skb_seq_state *st);
1542 
1543 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1544 			   unsigned int to, struct ts_config *config);
1545 
1546 /*
1547  * Packet hash types specify the type of hash in skb_set_hash.
1548  *
1549  * Hash types refer to the protocol layer addresses which are used to
1550  * construct a packet's hash. The hashes are used to differentiate or identify
1551  * flows of the protocol layer for the hash type. Hash types are either
1552  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1553  *
1554  * Properties of hashes:
1555  *
1556  * 1) Two packets in different flows have different hash values
1557  * 2) Two packets in the same flow should have the same hash value
1558  *
1559  * A hash at a higher layer is considered to be more specific. A driver should
1560  * set the most specific hash possible.
1561  *
1562  * A driver cannot indicate a more specific hash than the layer at which a hash
1563  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1564  *
1565  * A driver may indicate a hash level which is less specific than the
1566  * actual layer the hash was computed on. For instance, a hash computed
1567  * at L4 may be considered an L3 hash. This should only be done if the
1568  * driver can't unambiguously determine that the HW computed the hash at
1569  * the higher layer. Note that the "should" in the second property above
1570  * permits this.
1571  */
1572 enum pkt_hash_types {
1573 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1574 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1575 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1576 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1577 };
1578 
1579 static inline void skb_clear_hash(struct sk_buff *skb)
1580 {
1581 	skb->hash = 0;
1582 	skb->sw_hash = 0;
1583 	skb->l4_hash = 0;
1584 }
1585 
1586 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1587 {
1588 	if (!skb->l4_hash)
1589 		skb_clear_hash(skb);
1590 }
1591 
1592 static inline void
1593 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1594 {
1595 	skb->l4_hash = is_l4;
1596 	skb->sw_hash = is_sw;
1597 	skb->hash = hash;
1598 }
1599 
1600 static inline void
1601 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1602 {
1603 	/* Used by drivers to set hash from HW */
1604 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1605 }
1606 
1607 static inline void
1608 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1609 {
1610 	__skb_set_hash(skb, hash, true, is_l4);
1611 }
1612 
1613 void __skb_get_hash(struct sk_buff *skb);
1614 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1615 u32 skb_get_poff(const struct sk_buff *skb);
1616 u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
1617 		   const struct flow_keys_basic *keys, int hlen);
1618 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1619 			    const void *data, int hlen_proto);
1620 
1621 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1622 					int thoff, u8 ip_proto)
1623 {
1624 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1625 }
1626 
1627 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1628 			     const struct flow_dissector_key *key,
1629 			     unsigned int key_count);
1630 
1631 struct bpf_flow_dissector;
1632 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1633 		      __be16 proto, int nhoff, int hlen, unsigned int flags);
1634 
1635 bool __skb_flow_dissect(const struct net *net,
1636 			const struct sk_buff *skb,
1637 			struct flow_dissector *flow_dissector,
1638 			void *target_container, const void *data,
1639 			__be16 proto, int nhoff, int hlen, unsigned int flags);
1640 
1641 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1642 				    struct flow_dissector *flow_dissector,
1643 				    void *target_container, unsigned int flags)
1644 {
1645 	return __skb_flow_dissect(NULL, skb, flow_dissector,
1646 				  target_container, NULL, 0, 0, 0, flags);
1647 }
1648 
1649 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1650 					      struct flow_keys *flow,
1651 					      unsigned int flags)
1652 {
1653 	memset(flow, 0, sizeof(*flow));
1654 	return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1655 				  flow, NULL, 0, 0, 0, flags);
1656 }
1657 
1658 static inline bool
1659 skb_flow_dissect_flow_keys_basic(const struct net *net,
1660 				 const struct sk_buff *skb,
1661 				 struct flow_keys_basic *flow,
1662 				 const void *data, __be16 proto,
1663 				 int nhoff, int hlen, unsigned int flags)
1664 {
1665 	memset(flow, 0, sizeof(*flow));
1666 	return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1667 				  data, proto, nhoff, hlen, flags);
1668 }
1669 
1670 void skb_flow_dissect_meta(const struct sk_buff *skb,
1671 			   struct flow_dissector *flow_dissector,
1672 			   void *target_container);
1673 
1674 /* Gets a skb connection tracking info, ctinfo map should be a
1675  * map of mapsize to translate enum ip_conntrack_info states
1676  * to user states.
1677  */
1678 void
1679 skb_flow_dissect_ct(const struct sk_buff *skb,
1680 		    struct flow_dissector *flow_dissector,
1681 		    void *target_container,
1682 		    u16 *ctinfo_map, size_t mapsize,
1683 		    bool post_ct, u16 zone);
1684 void
1685 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1686 			     struct flow_dissector *flow_dissector,
1687 			     void *target_container);
1688 
1689 void skb_flow_dissect_hash(const struct sk_buff *skb,
1690 			   struct flow_dissector *flow_dissector,
1691 			   void *target_container);
1692 
1693 static inline __u32 skb_get_hash(struct sk_buff *skb)
1694 {
1695 	if (!skb->l4_hash && !skb->sw_hash)
1696 		__skb_get_hash(skb);
1697 
1698 	return skb->hash;
1699 }
1700 
1701 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1702 {
1703 	if (!skb->l4_hash && !skb->sw_hash) {
1704 		struct flow_keys keys;
1705 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1706 
1707 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1708 	}
1709 
1710 	return skb->hash;
1711 }
1712 
1713 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1714 			   const siphash_key_t *perturb);
1715 
1716 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1717 {
1718 	return skb->hash;
1719 }
1720 
1721 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1722 {
1723 	to->hash = from->hash;
1724 	to->sw_hash = from->sw_hash;
1725 	to->l4_hash = from->l4_hash;
1726 };
1727 
1728 static inline void skb_copy_decrypted(struct sk_buff *to,
1729 				      const struct sk_buff *from)
1730 {
1731 #ifdef CONFIG_TLS_DEVICE
1732 	to->decrypted = from->decrypted;
1733 #endif
1734 }
1735 
1736 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1737 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1738 {
1739 	return skb->head + skb->end;
1740 }
1741 
1742 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1743 {
1744 	return skb->end;
1745 }
1746 
1747 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1748 {
1749 	skb->end = offset;
1750 }
1751 #else
1752 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1753 {
1754 	return skb->end;
1755 }
1756 
1757 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1758 {
1759 	return skb->end - skb->head;
1760 }
1761 
1762 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1763 {
1764 	skb->end = skb->head + offset;
1765 }
1766 #endif
1767 
1768 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1769 				       struct ubuf_info *uarg);
1770 
1771 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
1772 
1773 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1774 			   bool success);
1775 
1776 int __zerocopy_sg_from_iter(struct sock *sk, struct sk_buff *skb,
1777 			    struct iov_iter *from, size_t length);
1778 
1779 static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb,
1780 					  struct msghdr *msg, int len)
1781 {
1782 	return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len);
1783 }
1784 
1785 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1786 			     struct msghdr *msg, int len,
1787 			     struct ubuf_info *uarg);
1788 
1789 /* Internal */
1790 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1791 
1792 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1793 {
1794 	return &skb_shinfo(skb)->hwtstamps;
1795 }
1796 
1797 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1798 {
1799 	bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE;
1800 
1801 	return is_zcopy ? skb_uarg(skb) : NULL;
1802 }
1803 
1804 static inline bool skb_zcopy_pure(const struct sk_buff *skb)
1805 {
1806 	return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY;
1807 }
1808 
1809 static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1,
1810 				       const struct sk_buff *skb2)
1811 {
1812 	return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2);
1813 }
1814 
1815 static inline void net_zcopy_get(struct ubuf_info *uarg)
1816 {
1817 	refcount_inc(&uarg->refcnt);
1818 }
1819 
1820 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg)
1821 {
1822 	skb_shinfo(skb)->destructor_arg = uarg;
1823 	skb_shinfo(skb)->flags |= uarg->flags;
1824 }
1825 
1826 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1827 				 bool *have_ref)
1828 {
1829 	if (skb && uarg && !skb_zcopy(skb)) {
1830 		if (unlikely(have_ref && *have_ref))
1831 			*have_ref = false;
1832 		else
1833 			net_zcopy_get(uarg);
1834 		skb_zcopy_init(skb, uarg);
1835 	}
1836 }
1837 
1838 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1839 {
1840 	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1841 	skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG;
1842 }
1843 
1844 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1845 {
1846 	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1847 }
1848 
1849 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1850 {
1851 	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1852 }
1853 
1854 static inline void net_zcopy_put(struct ubuf_info *uarg)
1855 {
1856 	if (uarg)
1857 		uarg->callback(NULL, uarg, true);
1858 }
1859 
1860 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1861 {
1862 	if (uarg) {
1863 		if (uarg->callback == msg_zerocopy_callback)
1864 			msg_zerocopy_put_abort(uarg, have_uref);
1865 		else if (have_uref)
1866 			net_zcopy_put(uarg);
1867 	}
1868 }
1869 
1870 /* Release a reference on a zerocopy structure */
1871 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success)
1872 {
1873 	struct ubuf_info *uarg = skb_zcopy(skb);
1874 
1875 	if (uarg) {
1876 		if (!skb_zcopy_is_nouarg(skb))
1877 			uarg->callback(skb, uarg, zerocopy_success);
1878 
1879 		skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY;
1880 	}
1881 }
1882 
1883 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1884 {
1885 	skb->next = NULL;
1886 }
1887 
1888 /* Iterate through singly-linked GSO fragments of an skb. */
1889 #define skb_list_walk_safe(first, skb, next_skb)                               \
1890 	for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb);  \
1891 	     (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1892 
1893 static inline void skb_list_del_init(struct sk_buff *skb)
1894 {
1895 	__list_del_entry(&skb->list);
1896 	skb_mark_not_on_list(skb);
1897 }
1898 
1899 /**
1900  *	skb_queue_empty - check if a queue is empty
1901  *	@list: queue head
1902  *
1903  *	Returns true if the queue is empty, false otherwise.
1904  */
1905 static inline int skb_queue_empty(const struct sk_buff_head *list)
1906 {
1907 	return list->next == (const struct sk_buff *) list;
1908 }
1909 
1910 /**
1911  *	skb_queue_empty_lockless - check if a queue is empty
1912  *	@list: queue head
1913  *
1914  *	Returns true if the queue is empty, false otherwise.
1915  *	This variant can be used in lockless contexts.
1916  */
1917 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1918 {
1919 	return READ_ONCE(list->next) == (const struct sk_buff *) list;
1920 }
1921 
1922 
1923 /**
1924  *	skb_queue_is_last - check if skb is the last entry in the queue
1925  *	@list: queue head
1926  *	@skb: buffer
1927  *
1928  *	Returns true if @skb is the last buffer on the list.
1929  */
1930 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1931 				     const struct sk_buff *skb)
1932 {
1933 	return skb->next == (const struct sk_buff *) list;
1934 }
1935 
1936 /**
1937  *	skb_queue_is_first - check if skb is the first entry in the queue
1938  *	@list: queue head
1939  *	@skb: buffer
1940  *
1941  *	Returns true if @skb is the first buffer on the list.
1942  */
1943 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1944 				      const struct sk_buff *skb)
1945 {
1946 	return skb->prev == (const struct sk_buff *) list;
1947 }
1948 
1949 /**
1950  *	skb_queue_next - return the next packet in the queue
1951  *	@list: queue head
1952  *	@skb: current buffer
1953  *
1954  *	Return the next packet in @list after @skb.  It is only valid to
1955  *	call this if skb_queue_is_last() evaluates to false.
1956  */
1957 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1958 					     const struct sk_buff *skb)
1959 {
1960 	/* This BUG_ON may seem severe, but if we just return then we
1961 	 * are going to dereference garbage.
1962 	 */
1963 	BUG_ON(skb_queue_is_last(list, skb));
1964 	return skb->next;
1965 }
1966 
1967 /**
1968  *	skb_queue_prev - return the prev packet in the queue
1969  *	@list: queue head
1970  *	@skb: current buffer
1971  *
1972  *	Return the prev packet in @list before @skb.  It is only valid to
1973  *	call this if skb_queue_is_first() evaluates to false.
1974  */
1975 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1976 					     const struct sk_buff *skb)
1977 {
1978 	/* This BUG_ON may seem severe, but if we just return then we
1979 	 * are going to dereference garbage.
1980 	 */
1981 	BUG_ON(skb_queue_is_first(list, skb));
1982 	return skb->prev;
1983 }
1984 
1985 /**
1986  *	skb_get - reference buffer
1987  *	@skb: buffer to reference
1988  *
1989  *	Makes another reference to a socket buffer and returns a pointer
1990  *	to the buffer.
1991  */
1992 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1993 {
1994 	refcount_inc(&skb->users);
1995 	return skb;
1996 }
1997 
1998 /*
1999  * If users == 1, we are the only owner and can avoid redundant atomic changes.
2000  */
2001 
2002 /**
2003  *	skb_cloned - is the buffer a clone
2004  *	@skb: buffer to check
2005  *
2006  *	Returns true if the buffer was generated with skb_clone() and is
2007  *	one of multiple shared copies of the buffer. Cloned buffers are
2008  *	shared data so must not be written to under normal circumstances.
2009  */
2010 static inline int skb_cloned(const struct sk_buff *skb)
2011 {
2012 	return skb->cloned &&
2013 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
2014 }
2015 
2016 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
2017 {
2018 	might_sleep_if(gfpflags_allow_blocking(pri));
2019 
2020 	if (skb_cloned(skb))
2021 		return pskb_expand_head(skb, 0, 0, pri);
2022 
2023 	return 0;
2024 }
2025 
2026 /* This variant of skb_unclone() makes sure skb->truesize
2027  * and skb_end_offset() are not changed, whenever a new skb->head is needed.
2028  *
2029  * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X))
2030  * when various debugging features are in place.
2031  */
2032 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri);
2033 static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
2034 {
2035 	might_sleep_if(gfpflags_allow_blocking(pri));
2036 
2037 	if (skb_cloned(skb))
2038 		return __skb_unclone_keeptruesize(skb, pri);
2039 	return 0;
2040 }
2041 
2042 /**
2043  *	skb_header_cloned - is the header a clone
2044  *	@skb: buffer to check
2045  *
2046  *	Returns true if modifying the header part of the buffer requires
2047  *	the data to be copied.
2048  */
2049 static inline int skb_header_cloned(const struct sk_buff *skb)
2050 {
2051 	int dataref;
2052 
2053 	if (!skb->cloned)
2054 		return 0;
2055 
2056 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
2057 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
2058 	return dataref != 1;
2059 }
2060 
2061 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
2062 {
2063 	might_sleep_if(gfpflags_allow_blocking(pri));
2064 
2065 	if (skb_header_cloned(skb))
2066 		return pskb_expand_head(skb, 0, 0, pri);
2067 
2068 	return 0;
2069 }
2070 
2071 /**
2072  * __skb_header_release() - allow clones to use the headroom
2073  * @skb: buffer to operate on
2074  *
2075  * See "DOC: dataref and headerless skbs".
2076  */
2077 static inline void __skb_header_release(struct sk_buff *skb)
2078 {
2079 	skb->nohdr = 1;
2080 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
2081 }
2082 
2083 
2084 /**
2085  *	skb_shared - is the buffer shared
2086  *	@skb: buffer to check
2087  *
2088  *	Returns true if more than one person has a reference to this
2089  *	buffer.
2090  */
2091 static inline int skb_shared(const struct sk_buff *skb)
2092 {
2093 	return refcount_read(&skb->users) != 1;
2094 }
2095 
2096 /**
2097  *	skb_share_check - check if buffer is shared and if so clone it
2098  *	@skb: buffer to check
2099  *	@pri: priority for memory allocation
2100  *
2101  *	If the buffer is shared the buffer is cloned and the old copy
2102  *	drops a reference. A new clone with a single reference is returned.
2103  *	If the buffer is not shared the original buffer is returned. When
2104  *	being called from interrupt status or with spinlocks held pri must
2105  *	be GFP_ATOMIC.
2106  *
2107  *	NULL is returned on a memory allocation failure.
2108  */
2109 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
2110 {
2111 	might_sleep_if(gfpflags_allow_blocking(pri));
2112 	if (skb_shared(skb)) {
2113 		struct sk_buff *nskb = skb_clone(skb, pri);
2114 
2115 		if (likely(nskb))
2116 			consume_skb(skb);
2117 		else
2118 			kfree_skb(skb);
2119 		skb = nskb;
2120 	}
2121 	return skb;
2122 }
2123 
2124 /*
2125  *	Copy shared buffers into a new sk_buff. We effectively do COW on
2126  *	packets to handle cases where we have a local reader and forward
2127  *	and a couple of other messy ones. The normal one is tcpdumping
2128  *	a packet thats being forwarded.
2129  */
2130 
2131 /**
2132  *	skb_unshare - make a copy of a shared buffer
2133  *	@skb: buffer to check
2134  *	@pri: priority for memory allocation
2135  *
2136  *	If the socket buffer is a clone then this function creates a new
2137  *	copy of the data, drops a reference count on the old copy and returns
2138  *	the new copy with the reference count at 1. If the buffer is not a clone
2139  *	the original buffer is returned. When called with a spinlock held or
2140  *	from interrupt state @pri must be %GFP_ATOMIC
2141  *
2142  *	%NULL is returned on a memory allocation failure.
2143  */
2144 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
2145 					  gfp_t pri)
2146 {
2147 	might_sleep_if(gfpflags_allow_blocking(pri));
2148 	if (skb_cloned(skb)) {
2149 		struct sk_buff *nskb = skb_copy(skb, pri);
2150 
2151 		/* Free our shared copy */
2152 		if (likely(nskb))
2153 			consume_skb(skb);
2154 		else
2155 			kfree_skb(skb);
2156 		skb = nskb;
2157 	}
2158 	return skb;
2159 }
2160 
2161 /**
2162  *	skb_peek - peek at the head of an &sk_buff_head
2163  *	@list_: list to peek at
2164  *
2165  *	Peek an &sk_buff. Unlike most other operations you _MUST_
2166  *	be careful with this one. A peek leaves the buffer on the
2167  *	list and someone else may run off with it. You must hold
2168  *	the appropriate locks or have a private queue to do this.
2169  *
2170  *	Returns %NULL for an empty list or a pointer to the head element.
2171  *	The reference count is not incremented and the reference is therefore
2172  *	volatile. Use with caution.
2173  */
2174 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
2175 {
2176 	struct sk_buff *skb = list_->next;
2177 
2178 	if (skb == (struct sk_buff *)list_)
2179 		skb = NULL;
2180 	return skb;
2181 }
2182 
2183 /**
2184  *	__skb_peek - peek at the head of a non-empty &sk_buff_head
2185  *	@list_: list to peek at
2186  *
2187  *	Like skb_peek(), but the caller knows that the list is not empty.
2188  */
2189 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
2190 {
2191 	return list_->next;
2192 }
2193 
2194 /**
2195  *	skb_peek_next - peek skb following the given one from a queue
2196  *	@skb: skb to start from
2197  *	@list_: list to peek at
2198  *
2199  *	Returns %NULL when the end of the list is met or a pointer to the
2200  *	next element. The reference count is not incremented and the
2201  *	reference is therefore volatile. Use with caution.
2202  */
2203 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
2204 		const struct sk_buff_head *list_)
2205 {
2206 	struct sk_buff *next = skb->next;
2207 
2208 	if (next == (struct sk_buff *)list_)
2209 		next = NULL;
2210 	return next;
2211 }
2212 
2213 /**
2214  *	skb_peek_tail - peek at the tail of an &sk_buff_head
2215  *	@list_: list to peek at
2216  *
2217  *	Peek an &sk_buff. Unlike most other operations you _MUST_
2218  *	be careful with this one. A peek leaves the buffer on the
2219  *	list and someone else may run off with it. You must hold
2220  *	the appropriate locks or have a private queue to do this.
2221  *
2222  *	Returns %NULL for an empty list or a pointer to the tail element.
2223  *	The reference count is not incremented and the reference is therefore
2224  *	volatile. Use with caution.
2225  */
2226 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
2227 {
2228 	struct sk_buff *skb = READ_ONCE(list_->prev);
2229 
2230 	if (skb == (struct sk_buff *)list_)
2231 		skb = NULL;
2232 	return skb;
2233 
2234 }
2235 
2236 /**
2237  *	skb_queue_len	- get queue length
2238  *	@list_: list to measure
2239  *
2240  *	Return the length of an &sk_buff queue.
2241  */
2242 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
2243 {
2244 	return list_->qlen;
2245 }
2246 
2247 /**
2248  *	skb_queue_len_lockless	- get queue length
2249  *	@list_: list to measure
2250  *
2251  *	Return the length of an &sk_buff queue.
2252  *	This variant can be used in lockless contexts.
2253  */
2254 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
2255 {
2256 	return READ_ONCE(list_->qlen);
2257 }
2258 
2259 /**
2260  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
2261  *	@list: queue to initialize
2262  *
2263  *	This initializes only the list and queue length aspects of
2264  *	an sk_buff_head object.  This allows to initialize the list
2265  *	aspects of an sk_buff_head without reinitializing things like
2266  *	the spinlock.  It can also be used for on-stack sk_buff_head
2267  *	objects where the spinlock is known to not be used.
2268  */
2269 static inline void __skb_queue_head_init(struct sk_buff_head *list)
2270 {
2271 	list->prev = list->next = (struct sk_buff *)list;
2272 	list->qlen = 0;
2273 }
2274 
2275 /*
2276  * This function creates a split out lock class for each invocation;
2277  * this is needed for now since a whole lot of users of the skb-queue
2278  * infrastructure in drivers have different locking usage (in hardirq)
2279  * than the networking core (in softirq only). In the long run either the
2280  * network layer or drivers should need annotation to consolidate the
2281  * main types of usage into 3 classes.
2282  */
2283 static inline void skb_queue_head_init(struct sk_buff_head *list)
2284 {
2285 	spin_lock_init(&list->lock);
2286 	__skb_queue_head_init(list);
2287 }
2288 
2289 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
2290 		struct lock_class_key *class)
2291 {
2292 	skb_queue_head_init(list);
2293 	lockdep_set_class(&list->lock, class);
2294 }
2295 
2296 /*
2297  *	Insert an sk_buff on a list.
2298  *
2299  *	The "__skb_xxxx()" functions are the non-atomic ones that
2300  *	can only be called with interrupts disabled.
2301  */
2302 static inline void __skb_insert(struct sk_buff *newsk,
2303 				struct sk_buff *prev, struct sk_buff *next,
2304 				struct sk_buff_head *list)
2305 {
2306 	/* See skb_queue_empty_lockless() and skb_peek_tail()
2307 	 * for the opposite READ_ONCE()
2308 	 */
2309 	WRITE_ONCE(newsk->next, next);
2310 	WRITE_ONCE(newsk->prev, prev);
2311 	WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk);
2312 	WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk);
2313 	WRITE_ONCE(list->qlen, list->qlen + 1);
2314 }
2315 
2316 static inline void __skb_queue_splice(const struct sk_buff_head *list,
2317 				      struct sk_buff *prev,
2318 				      struct sk_buff *next)
2319 {
2320 	struct sk_buff *first = list->next;
2321 	struct sk_buff *last = list->prev;
2322 
2323 	WRITE_ONCE(first->prev, prev);
2324 	WRITE_ONCE(prev->next, first);
2325 
2326 	WRITE_ONCE(last->next, next);
2327 	WRITE_ONCE(next->prev, last);
2328 }
2329 
2330 /**
2331  *	skb_queue_splice - join two skb lists, this is designed for stacks
2332  *	@list: the new list to add
2333  *	@head: the place to add it in the first list
2334  */
2335 static inline void skb_queue_splice(const struct sk_buff_head *list,
2336 				    struct sk_buff_head *head)
2337 {
2338 	if (!skb_queue_empty(list)) {
2339 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2340 		head->qlen += list->qlen;
2341 	}
2342 }
2343 
2344 /**
2345  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
2346  *	@list: the new list to add
2347  *	@head: the place to add it in the first list
2348  *
2349  *	The list at @list is reinitialised
2350  */
2351 static inline void skb_queue_splice_init(struct sk_buff_head *list,
2352 					 struct sk_buff_head *head)
2353 {
2354 	if (!skb_queue_empty(list)) {
2355 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2356 		head->qlen += list->qlen;
2357 		__skb_queue_head_init(list);
2358 	}
2359 }
2360 
2361 /**
2362  *	skb_queue_splice_tail - join two skb lists, each list being a queue
2363  *	@list: the new list to add
2364  *	@head: the place to add it in the first list
2365  */
2366 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
2367 					 struct sk_buff_head *head)
2368 {
2369 	if (!skb_queue_empty(list)) {
2370 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2371 		head->qlen += list->qlen;
2372 	}
2373 }
2374 
2375 /**
2376  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
2377  *	@list: the new list to add
2378  *	@head: the place to add it in the first list
2379  *
2380  *	Each of the lists is a queue.
2381  *	The list at @list is reinitialised
2382  */
2383 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
2384 					      struct sk_buff_head *head)
2385 {
2386 	if (!skb_queue_empty(list)) {
2387 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2388 		head->qlen += list->qlen;
2389 		__skb_queue_head_init(list);
2390 	}
2391 }
2392 
2393 /**
2394  *	__skb_queue_after - queue a buffer at the list head
2395  *	@list: list to use
2396  *	@prev: place after this buffer
2397  *	@newsk: buffer to queue
2398  *
2399  *	Queue a buffer int the middle of a list. This function takes no locks
2400  *	and you must therefore hold required locks before calling it.
2401  *
2402  *	A buffer cannot be placed on two lists at the same time.
2403  */
2404 static inline void __skb_queue_after(struct sk_buff_head *list,
2405 				     struct sk_buff *prev,
2406 				     struct sk_buff *newsk)
2407 {
2408 	__skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list);
2409 }
2410 
2411 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2412 		struct sk_buff_head *list);
2413 
2414 static inline void __skb_queue_before(struct sk_buff_head *list,
2415 				      struct sk_buff *next,
2416 				      struct sk_buff *newsk)
2417 {
2418 	__skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list);
2419 }
2420 
2421 /**
2422  *	__skb_queue_head - queue a buffer at the list head
2423  *	@list: list to use
2424  *	@newsk: buffer to queue
2425  *
2426  *	Queue a buffer at the start of a list. This function takes no locks
2427  *	and you must therefore hold required locks before calling it.
2428  *
2429  *	A buffer cannot be placed on two lists at the same time.
2430  */
2431 static inline void __skb_queue_head(struct sk_buff_head *list,
2432 				    struct sk_buff *newsk)
2433 {
2434 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
2435 }
2436 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2437 
2438 /**
2439  *	__skb_queue_tail - queue a buffer at the list tail
2440  *	@list: list to use
2441  *	@newsk: buffer to queue
2442  *
2443  *	Queue a buffer at the end of a list. This function takes no locks
2444  *	and you must therefore hold required locks before calling it.
2445  *
2446  *	A buffer cannot be placed on two lists at the same time.
2447  */
2448 static inline void __skb_queue_tail(struct sk_buff_head *list,
2449 				   struct sk_buff *newsk)
2450 {
2451 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
2452 }
2453 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2454 
2455 /*
2456  * remove sk_buff from list. _Must_ be called atomically, and with
2457  * the list known..
2458  */
2459 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
2460 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2461 {
2462 	struct sk_buff *next, *prev;
2463 
2464 	WRITE_ONCE(list->qlen, list->qlen - 1);
2465 	next	   = skb->next;
2466 	prev	   = skb->prev;
2467 	skb->next  = skb->prev = NULL;
2468 	WRITE_ONCE(next->prev, prev);
2469 	WRITE_ONCE(prev->next, next);
2470 }
2471 
2472 /**
2473  *	__skb_dequeue - remove from the head of the queue
2474  *	@list: list to dequeue from
2475  *
2476  *	Remove the head of the list. This function does not take any locks
2477  *	so must be used with appropriate locks held only. The head item is
2478  *	returned or %NULL if the list is empty.
2479  */
2480 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2481 {
2482 	struct sk_buff *skb = skb_peek(list);
2483 	if (skb)
2484 		__skb_unlink(skb, list);
2485 	return skb;
2486 }
2487 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2488 
2489 /**
2490  *	__skb_dequeue_tail - remove from the tail of the queue
2491  *	@list: list to dequeue from
2492  *
2493  *	Remove the tail of the list. This function does not take any locks
2494  *	so must be used with appropriate locks held only. The tail item is
2495  *	returned or %NULL if the list is empty.
2496  */
2497 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2498 {
2499 	struct sk_buff *skb = skb_peek_tail(list);
2500 	if (skb)
2501 		__skb_unlink(skb, list);
2502 	return skb;
2503 }
2504 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2505 
2506 
2507 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2508 {
2509 	return skb->data_len;
2510 }
2511 
2512 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2513 {
2514 	return skb->len - skb->data_len;
2515 }
2516 
2517 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2518 {
2519 	unsigned int i, len = 0;
2520 
2521 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2522 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2523 	return len;
2524 }
2525 
2526 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2527 {
2528 	return skb_headlen(skb) + __skb_pagelen(skb);
2529 }
2530 
2531 /**
2532  * __skb_fill_page_desc - initialise a paged fragment in an skb
2533  * @skb: buffer containing fragment to be initialised
2534  * @i: paged fragment index to initialise
2535  * @page: the page to use for this fragment
2536  * @off: the offset to the data with @page
2537  * @size: the length of the data
2538  *
2539  * Initialises the @i'th fragment of @skb to point to &size bytes at
2540  * offset @off within @page.
2541  *
2542  * Does not take any additional reference on the fragment.
2543  */
2544 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2545 					struct page *page, int off, int size)
2546 {
2547 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2548 
2549 	/*
2550 	 * Propagate page pfmemalloc to the skb if we can. The problem is
2551 	 * that not all callers have unique ownership of the page but rely
2552 	 * on page_is_pfmemalloc doing the right thing(tm).
2553 	 */
2554 	frag->bv_page		  = page;
2555 	frag->bv_offset		  = off;
2556 	skb_frag_size_set(frag, size);
2557 
2558 	page = compound_head(page);
2559 	if (page_is_pfmemalloc(page))
2560 		skb->pfmemalloc	= true;
2561 }
2562 
2563 /**
2564  * skb_fill_page_desc - initialise a paged fragment in an skb
2565  * @skb: buffer containing fragment to be initialised
2566  * @i: paged fragment index to initialise
2567  * @page: the page to use for this fragment
2568  * @off: the offset to the data with @page
2569  * @size: the length of the data
2570  *
2571  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2572  * @skb to point to @size bytes at offset @off within @page. In
2573  * addition updates @skb such that @i is the last fragment.
2574  *
2575  * Does not take any additional reference on the fragment.
2576  */
2577 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2578 				      struct page *page, int off, int size)
2579 {
2580 	__skb_fill_page_desc(skb, i, page, off, size);
2581 	skb_shinfo(skb)->nr_frags = i + 1;
2582 }
2583 
2584 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2585 		     int size, unsigned int truesize);
2586 
2587 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2588 			  unsigned int truesize);
2589 
2590 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2591 
2592 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2593 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2594 {
2595 	return skb->head + skb->tail;
2596 }
2597 
2598 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2599 {
2600 	skb->tail = skb->data - skb->head;
2601 }
2602 
2603 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2604 {
2605 	skb_reset_tail_pointer(skb);
2606 	skb->tail += offset;
2607 }
2608 
2609 #else /* NET_SKBUFF_DATA_USES_OFFSET */
2610 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2611 {
2612 	return skb->tail;
2613 }
2614 
2615 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2616 {
2617 	skb->tail = skb->data;
2618 }
2619 
2620 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2621 {
2622 	skb->tail = skb->data + offset;
2623 }
2624 
2625 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2626 
2627 /*
2628  *	Add data to an sk_buff
2629  */
2630 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2631 void *skb_put(struct sk_buff *skb, unsigned int len);
2632 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2633 {
2634 	void *tmp = skb_tail_pointer(skb);
2635 	SKB_LINEAR_ASSERT(skb);
2636 	skb->tail += len;
2637 	skb->len  += len;
2638 	return tmp;
2639 }
2640 
2641 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2642 {
2643 	void *tmp = __skb_put(skb, len);
2644 
2645 	memset(tmp, 0, len);
2646 	return tmp;
2647 }
2648 
2649 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2650 				   unsigned int len)
2651 {
2652 	void *tmp = __skb_put(skb, len);
2653 
2654 	memcpy(tmp, data, len);
2655 	return tmp;
2656 }
2657 
2658 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2659 {
2660 	*(u8 *)__skb_put(skb, 1) = val;
2661 }
2662 
2663 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2664 {
2665 	void *tmp = skb_put(skb, len);
2666 
2667 	memset(tmp, 0, len);
2668 
2669 	return tmp;
2670 }
2671 
2672 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2673 				 unsigned int len)
2674 {
2675 	void *tmp = skb_put(skb, len);
2676 
2677 	memcpy(tmp, data, len);
2678 
2679 	return tmp;
2680 }
2681 
2682 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2683 {
2684 	*(u8 *)skb_put(skb, 1) = val;
2685 }
2686 
2687 void *skb_push(struct sk_buff *skb, unsigned int len);
2688 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2689 {
2690 	skb->data -= len;
2691 	skb->len  += len;
2692 	return skb->data;
2693 }
2694 
2695 void *skb_pull(struct sk_buff *skb, unsigned int len);
2696 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2697 {
2698 	skb->len -= len;
2699 	BUG_ON(skb->len < skb->data_len);
2700 	return skb->data += len;
2701 }
2702 
2703 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2704 {
2705 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2706 }
2707 
2708 void *skb_pull_data(struct sk_buff *skb, size_t len);
2709 
2710 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2711 
2712 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2713 {
2714 	if (len > skb_headlen(skb) &&
2715 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2716 		return NULL;
2717 	skb->len -= len;
2718 	return skb->data += len;
2719 }
2720 
2721 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2722 {
2723 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2724 }
2725 
2726 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2727 {
2728 	if (likely(len <= skb_headlen(skb)))
2729 		return true;
2730 	if (unlikely(len > skb->len))
2731 		return false;
2732 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2733 }
2734 
2735 void skb_condense(struct sk_buff *skb);
2736 
2737 /**
2738  *	skb_headroom - bytes at buffer head
2739  *	@skb: buffer to check
2740  *
2741  *	Return the number of bytes of free space at the head of an &sk_buff.
2742  */
2743 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2744 {
2745 	return skb->data - skb->head;
2746 }
2747 
2748 /**
2749  *	skb_tailroom - bytes at buffer end
2750  *	@skb: buffer to check
2751  *
2752  *	Return the number of bytes of free space at the tail of an sk_buff
2753  */
2754 static inline int skb_tailroom(const struct sk_buff *skb)
2755 {
2756 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2757 }
2758 
2759 /**
2760  *	skb_availroom - bytes at buffer end
2761  *	@skb: buffer to check
2762  *
2763  *	Return the number of bytes of free space at the tail of an sk_buff
2764  *	allocated by sk_stream_alloc()
2765  */
2766 static inline int skb_availroom(const struct sk_buff *skb)
2767 {
2768 	if (skb_is_nonlinear(skb))
2769 		return 0;
2770 
2771 	return skb->end - skb->tail - skb->reserved_tailroom;
2772 }
2773 
2774 /**
2775  *	skb_reserve - adjust headroom
2776  *	@skb: buffer to alter
2777  *	@len: bytes to move
2778  *
2779  *	Increase the headroom of an empty &sk_buff by reducing the tail
2780  *	room. This is only allowed for an empty buffer.
2781  */
2782 static inline void skb_reserve(struct sk_buff *skb, int len)
2783 {
2784 	skb->data += len;
2785 	skb->tail += len;
2786 }
2787 
2788 /**
2789  *	skb_tailroom_reserve - adjust reserved_tailroom
2790  *	@skb: buffer to alter
2791  *	@mtu: maximum amount of headlen permitted
2792  *	@needed_tailroom: minimum amount of reserved_tailroom
2793  *
2794  *	Set reserved_tailroom so that headlen can be as large as possible but
2795  *	not larger than mtu and tailroom cannot be smaller than
2796  *	needed_tailroom.
2797  *	The required headroom should already have been reserved before using
2798  *	this function.
2799  */
2800 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2801 					unsigned int needed_tailroom)
2802 {
2803 	SKB_LINEAR_ASSERT(skb);
2804 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2805 		/* use at most mtu */
2806 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2807 	else
2808 		/* use up to all available space */
2809 		skb->reserved_tailroom = needed_tailroom;
2810 }
2811 
2812 #define ENCAP_TYPE_ETHER	0
2813 #define ENCAP_TYPE_IPPROTO	1
2814 
2815 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2816 					  __be16 protocol)
2817 {
2818 	skb->inner_protocol = protocol;
2819 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2820 }
2821 
2822 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2823 					 __u8 ipproto)
2824 {
2825 	skb->inner_ipproto = ipproto;
2826 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2827 }
2828 
2829 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2830 {
2831 	skb->inner_mac_header = skb->mac_header;
2832 	skb->inner_network_header = skb->network_header;
2833 	skb->inner_transport_header = skb->transport_header;
2834 }
2835 
2836 static inline void skb_reset_mac_len(struct sk_buff *skb)
2837 {
2838 	skb->mac_len = skb->network_header - skb->mac_header;
2839 }
2840 
2841 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2842 							*skb)
2843 {
2844 	return skb->head + skb->inner_transport_header;
2845 }
2846 
2847 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2848 {
2849 	return skb_inner_transport_header(skb) - skb->data;
2850 }
2851 
2852 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2853 {
2854 	skb->inner_transport_header = skb->data - skb->head;
2855 }
2856 
2857 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2858 						   const int offset)
2859 {
2860 	skb_reset_inner_transport_header(skb);
2861 	skb->inner_transport_header += offset;
2862 }
2863 
2864 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2865 {
2866 	return skb->head + skb->inner_network_header;
2867 }
2868 
2869 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2870 {
2871 	skb->inner_network_header = skb->data - skb->head;
2872 }
2873 
2874 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2875 						const int offset)
2876 {
2877 	skb_reset_inner_network_header(skb);
2878 	skb->inner_network_header += offset;
2879 }
2880 
2881 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2882 {
2883 	return skb->head + skb->inner_mac_header;
2884 }
2885 
2886 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2887 {
2888 	skb->inner_mac_header = skb->data - skb->head;
2889 }
2890 
2891 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2892 					    const int offset)
2893 {
2894 	skb_reset_inner_mac_header(skb);
2895 	skb->inner_mac_header += offset;
2896 }
2897 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2898 {
2899 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2900 }
2901 
2902 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2903 {
2904 	DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb));
2905 	return skb->head + skb->transport_header;
2906 }
2907 
2908 static inline void skb_reset_transport_header(struct sk_buff *skb)
2909 {
2910 	skb->transport_header = skb->data - skb->head;
2911 }
2912 
2913 static inline void skb_set_transport_header(struct sk_buff *skb,
2914 					    const int offset)
2915 {
2916 	skb_reset_transport_header(skb);
2917 	skb->transport_header += offset;
2918 }
2919 
2920 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2921 {
2922 	return skb->head + skb->network_header;
2923 }
2924 
2925 static inline void skb_reset_network_header(struct sk_buff *skb)
2926 {
2927 	skb->network_header = skb->data - skb->head;
2928 }
2929 
2930 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2931 {
2932 	skb_reset_network_header(skb);
2933 	skb->network_header += offset;
2934 }
2935 
2936 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2937 {
2938 	return skb->head + skb->mac_header;
2939 }
2940 
2941 static inline int skb_mac_offset(const struct sk_buff *skb)
2942 {
2943 	return skb_mac_header(skb) - skb->data;
2944 }
2945 
2946 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2947 {
2948 	return skb->network_header - skb->mac_header;
2949 }
2950 
2951 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2952 {
2953 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2954 }
2955 
2956 static inline void skb_unset_mac_header(struct sk_buff *skb)
2957 {
2958 	skb->mac_header = (typeof(skb->mac_header))~0U;
2959 }
2960 
2961 static inline void skb_reset_mac_header(struct sk_buff *skb)
2962 {
2963 	skb->mac_header = skb->data - skb->head;
2964 }
2965 
2966 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2967 {
2968 	skb_reset_mac_header(skb);
2969 	skb->mac_header += offset;
2970 }
2971 
2972 static inline void skb_pop_mac_header(struct sk_buff *skb)
2973 {
2974 	skb->mac_header = skb->network_header;
2975 }
2976 
2977 static inline void skb_probe_transport_header(struct sk_buff *skb)
2978 {
2979 	struct flow_keys_basic keys;
2980 
2981 	if (skb_transport_header_was_set(skb))
2982 		return;
2983 
2984 	if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2985 					     NULL, 0, 0, 0, 0))
2986 		skb_set_transport_header(skb, keys.control.thoff);
2987 }
2988 
2989 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2990 {
2991 	if (skb_mac_header_was_set(skb)) {
2992 		const unsigned char *old_mac = skb_mac_header(skb);
2993 
2994 		skb_set_mac_header(skb, -skb->mac_len);
2995 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2996 	}
2997 }
2998 
2999 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
3000 {
3001 	return skb->csum_start - skb_headroom(skb);
3002 }
3003 
3004 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
3005 {
3006 	return skb->head + skb->csum_start;
3007 }
3008 
3009 static inline int skb_transport_offset(const struct sk_buff *skb)
3010 {
3011 	return skb_transport_header(skb) - skb->data;
3012 }
3013 
3014 static inline u32 skb_network_header_len(const struct sk_buff *skb)
3015 {
3016 	return skb->transport_header - skb->network_header;
3017 }
3018 
3019 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
3020 {
3021 	return skb->inner_transport_header - skb->inner_network_header;
3022 }
3023 
3024 static inline int skb_network_offset(const struct sk_buff *skb)
3025 {
3026 	return skb_network_header(skb) - skb->data;
3027 }
3028 
3029 static inline int skb_inner_network_offset(const struct sk_buff *skb)
3030 {
3031 	return skb_inner_network_header(skb) - skb->data;
3032 }
3033 
3034 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
3035 {
3036 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
3037 }
3038 
3039 /*
3040  * CPUs often take a performance hit when accessing unaligned memory
3041  * locations. The actual performance hit varies, it can be small if the
3042  * hardware handles it or large if we have to take an exception and fix it
3043  * in software.
3044  *
3045  * Since an ethernet header is 14 bytes network drivers often end up with
3046  * the IP header at an unaligned offset. The IP header can be aligned by
3047  * shifting the start of the packet by 2 bytes. Drivers should do this
3048  * with:
3049  *
3050  * skb_reserve(skb, NET_IP_ALIGN);
3051  *
3052  * The downside to this alignment of the IP header is that the DMA is now
3053  * unaligned. On some architectures the cost of an unaligned DMA is high
3054  * and this cost outweighs the gains made by aligning the IP header.
3055  *
3056  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
3057  * to be overridden.
3058  */
3059 #ifndef NET_IP_ALIGN
3060 #define NET_IP_ALIGN	2
3061 #endif
3062 
3063 /*
3064  * The networking layer reserves some headroom in skb data (via
3065  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
3066  * the header has to grow. In the default case, if the header has to grow
3067  * 32 bytes or less we avoid the reallocation.
3068  *
3069  * Unfortunately this headroom changes the DMA alignment of the resulting
3070  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
3071  * on some architectures. An architecture can override this value,
3072  * perhaps setting it to a cacheline in size (since that will maintain
3073  * cacheline alignment of the DMA). It must be a power of 2.
3074  *
3075  * Various parts of the networking layer expect at least 32 bytes of
3076  * headroom, you should not reduce this.
3077  *
3078  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
3079  * to reduce average number of cache lines per packet.
3080  * get_rps_cpu() for example only access one 64 bytes aligned block :
3081  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
3082  */
3083 #ifndef NET_SKB_PAD
3084 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
3085 #endif
3086 
3087 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
3088 
3089 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
3090 {
3091 	if (WARN_ON(skb_is_nonlinear(skb)))
3092 		return;
3093 	skb->len = len;
3094 	skb_set_tail_pointer(skb, len);
3095 }
3096 
3097 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
3098 {
3099 	__skb_set_length(skb, len);
3100 }
3101 
3102 void skb_trim(struct sk_buff *skb, unsigned int len);
3103 
3104 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
3105 {
3106 	if (skb->data_len)
3107 		return ___pskb_trim(skb, len);
3108 	__skb_trim(skb, len);
3109 	return 0;
3110 }
3111 
3112 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
3113 {
3114 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
3115 }
3116 
3117 /**
3118  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
3119  *	@skb: buffer to alter
3120  *	@len: new length
3121  *
3122  *	This is identical to pskb_trim except that the caller knows that
3123  *	the skb is not cloned so we should never get an error due to out-
3124  *	of-memory.
3125  */
3126 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
3127 {
3128 	int err = pskb_trim(skb, len);
3129 	BUG_ON(err);
3130 }
3131 
3132 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
3133 {
3134 	unsigned int diff = len - skb->len;
3135 
3136 	if (skb_tailroom(skb) < diff) {
3137 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
3138 					   GFP_ATOMIC);
3139 		if (ret)
3140 			return ret;
3141 	}
3142 	__skb_set_length(skb, len);
3143 	return 0;
3144 }
3145 
3146 /**
3147  *	skb_orphan - orphan a buffer
3148  *	@skb: buffer to orphan
3149  *
3150  *	If a buffer currently has an owner then we call the owner's
3151  *	destructor function and make the @skb unowned. The buffer continues
3152  *	to exist but is no longer charged to its former owner.
3153  */
3154 static inline void skb_orphan(struct sk_buff *skb)
3155 {
3156 	if (skb->destructor) {
3157 		skb->destructor(skb);
3158 		skb->destructor = NULL;
3159 		skb->sk		= NULL;
3160 	} else {
3161 		BUG_ON(skb->sk);
3162 	}
3163 }
3164 
3165 /**
3166  *	skb_orphan_frags - orphan the frags contained in a buffer
3167  *	@skb: buffer to orphan frags from
3168  *	@gfp_mask: allocation mask for replacement pages
3169  *
3170  *	For each frag in the SKB which needs a destructor (i.e. has an
3171  *	owner) create a copy of that frag and release the original
3172  *	page by calling the destructor.
3173  */
3174 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
3175 {
3176 	if (likely(!skb_zcopy(skb)))
3177 		return 0;
3178 	if (!skb_zcopy_is_nouarg(skb) &&
3179 	    skb_uarg(skb)->callback == msg_zerocopy_callback)
3180 		return 0;
3181 	return skb_copy_ubufs(skb, gfp_mask);
3182 }
3183 
3184 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
3185 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
3186 {
3187 	if (likely(!skb_zcopy(skb)))
3188 		return 0;
3189 	return skb_copy_ubufs(skb, gfp_mask);
3190 }
3191 
3192 /**
3193  *	__skb_queue_purge - empty a list
3194  *	@list: list to empty
3195  *
3196  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3197  *	the list and one reference dropped. This function does not take the
3198  *	list lock and the caller must hold the relevant locks to use it.
3199  */
3200 static inline void __skb_queue_purge(struct sk_buff_head *list)
3201 {
3202 	struct sk_buff *skb;
3203 	while ((skb = __skb_dequeue(list)) != NULL)
3204 		kfree_skb(skb);
3205 }
3206 void skb_queue_purge(struct sk_buff_head *list);
3207 
3208 unsigned int skb_rbtree_purge(struct rb_root *root);
3209 
3210 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3211 
3212 /**
3213  * netdev_alloc_frag - allocate a page fragment
3214  * @fragsz: fragment size
3215  *
3216  * Allocates a frag from a page for receive buffer.
3217  * Uses GFP_ATOMIC allocations.
3218  */
3219 static inline void *netdev_alloc_frag(unsigned int fragsz)
3220 {
3221 	return __netdev_alloc_frag_align(fragsz, ~0u);
3222 }
3223 
3224 static inline void *netdev_alloc_frag_align(unsigned int fragsz,
3225 					    unsigned int align)
3226 {
3227 	WARN_ON_ONCE(!is_power_of_2(align));
3228 	return __netdev_alloc_frag_align(fragsz, -align);
3229 }
3230 
3231 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
3232 				   gfp_t gfp_mask);
3233 
3234 /**
3235  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
3236  *	@dev: network device to receive on
3237  *	@length: length to allocate
3238  *
3239  *	Allocate a new &sk_buff and assign it a usage count of one. The
3240  *	buffer has unspecified headroom built in. Users should allocate
3241  *	the headroom they think they need without accounting for the
3242  *	built in space. The built in space is used for optimisations.
3243  *
3244  *	%NULL is returned if there is no free memory. Although this function
3245  *	allocates memory it can be called from an interrupt.
3246  */
3247 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
3248 					       unsigned int length)
3249 {
3250 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
3251 }
3252 
3253 /* legacy helper around __netdev_alloc_skb() */
3254 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
3255 					      gfp_t gfp_mask)
3256 {
3257 	return __netdev_alloc_skb(NULL, length, gfp_mask);
3258 }
3259 
3260 /* legacy helper around netdev_alloc_skb() */
3261 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
3262 {
3263 	return netdev_alloc_skb(NULL, length);
3264 }
3265 
3266 
3267 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
3268 		unsigned int length, gfp_t gfp)
3269 {
3270 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
3271 
3272 	if (NET_IP_ALIGN && skb)
3273 		skb_reserve(skb, NET_IP_ALIGN);
3274 	return skb;
3275 }
3276 
3277 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
3278 		unsigned int length)
3279 {
3280 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
3281 }
3282 
3283 static inline void skb_free_frag(void *addr)
3284 {
3285 	page_frag_free(addr);
3286 }
3287 
3288 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3289 
3290 static inline void *napi_alloc_frag(unsigned int fragsz)
3291 {
3292 	return __napi_alloc_frag_align(fragsz, ~0u);
3293 }
3294 
3295 static inline void *napi_alloc_frag_align(unsigned int fragsz,
3296 					  unsigned int align)
3297 {
3298 	WARN_ON_ONCE(!is_power_of_2(align));
3299 	return __napi_alloc_frag_align(fragsz, -align);
3300 }
3301 
3302 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
3303 				 unsigned int length, gfp_t gfp_mask);
3304 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
3305 					     unsigned int length)
3306 {
3307 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
3308 }
3309 void napi_consume_skb(struct sk_buff *skb, int budget);
3310 
3311 void napi_skb_free_stolen_head(struct sk_buff *skb);
3312 void __kfree_skb_defer(struct sk_buff *skb);
3313 
3314 /**
3315  * __dev_alloc_pages - allocate page for network Rx
3316  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3317  * @order: size of the allocation
3318  *
3319  * Allocate a new page.
3320  *
3321  * %NULL is returned if there is no free memory.
3322 */
3323 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
3324 					     unsigned int order)
3325 {
3326 	/* This piece of code contains several assumptions.
3327 	 * 1.  This is for device Rx, therefor a cold page is preferred.
3328 	 * 2.  The expectation is the user wants a compound page.
3329 	 * 3.  If requesting a order 0 page it will not be compound
3330 	 *     due to the check to see if order has a value in prep_new_page
3331 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
3332 	 *     code in gfp_to_alloc_flags that should be enforcing this.
3333 	 */
3334 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
3335 
3336 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
3337 }
3338 
3339 static inline struct page *dev_alloc_pages(unsigned int order)
3340 {
3341 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
3342 }
3343 
3344 /**
3345  * __dev_alloc_page - allocate a page for network Rx
3346  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3347  *
3348  * Allocate a new page.
3349  *
3350  * %NULL is returned if there is no free memory.
3351  */
3352 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
3353 {
3354 	return __dev_alloc_pages(gfp_mask, 0);
3355 }
3356 
3357 static inline struct page *dev_alloc_page(void)
3358 {
3359 	return dev_alloc_pages(0);
3360 }
3361 
3362 /**
3363  * dev_page_is_reusable - check whether a page can be reused for network Rx
3364  * @page: the page to test
3365  *
3366  * A page shouldn't be considered for reusing/recycling if it was allocated
3367  * under memory pressure or at a distant memory node.
3368  *
3369  * Returns false if this page should be returned to page allocator, true
3370  * otherwise.
3371  */
3372 static inline bool dev_page_is_reusable(const struct page *page)
3373 {
3374 	return likely(page_to_nid(page) == numa_mem_id() &&
3375 		      !page_is_pfmemalloc(page));
3376 }
3377 
3378 /**
3379  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
3380  *	@page: The page that was allocated from skb_alloc_page
3381  *	@skb: The skb that may need pfmemalloc set
3382  */
3383 static inline void skb_propagate_pfmemalloc(const struct page *page,
3384 					    struct sk_buff *skb)
3385 {
3386 	if (page_is_pfmemalloc(page))
3387 		skb->pfmemalloc = true;
3388 }
3389 
3390 /**
3391  * skb_frag_off() - Returns the offset of a skb fragment
3392  * @frag: the paged fragment
3393  */
3394 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
3395 {
3396 	return frag->bv_offset;
3397 }
3398 
3399 /**
3400  * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
3401  * @frag: skb fragment
3402  * @delta: value to add
3403  */
3404 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
3405 {
3406 	frag->bv_offset += delta;
3407 }
3408 
3409 /**
3410  * skb_frag_off_set() - Sets the offset of a skb fragment
3411  * @frag: skb fragment
3412  * @offset: offset of fragment
3413  */
3414 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
3415 {
3416 	frag->bv_offset = offset;
3417 }
3418 
3419 /**
3420  * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
3421  * @fragto: skb fragment where offset is set
3422  * @fragfrom: skb fragment offset is copied from
3423  */
3424 static inline void skb_frag_off_copy(skb_frag_t *fragto,
3425 				     const skb_frag_t *fragfrom)
3426 {
3427 	fragto->bv_offset = fragfrom->bv_offset;
3428 }
3429 
3430 /**
3431  * skb_frag_page - retrieve the page referred to by a paged fragment
3432  * @frag: the paged fragment
3433  *
3434  * Returns the &struct page associated with @frag.
3435  */
3436 static inline struct page *skb_frag_page(const skb_frag_t *frag)
3437 {
3438 	return frag->bv_page;
3439 }
3440 
3441 /**
3442  * __skb_frag_ref - take an addition reference on a paged fragment.
3443  * @frag: the paged fragment
3444  *
3445  * Takes an additional reference on the paged fragment @frag.
3446  */
3447 static inline void __skb_frag_ref(skb_frag_t *frag)
3448 {
3449 	get_page(skb_frag_page(frag));
3450 }
3451 
3452 /**
3453  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
3454  * @skb: the buffer
3455  * @f: the fragment offset.
3456  *
3457  * Takes an additional reference on the @f'th paged fragment of @skb.
3458  */
3459 static inline void skb_frag_ref(struct sk_buff *skb, int f)
3460 {
3461 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
3462 }
3463 
3464 /**
3465  * __skb_frag_unref - release a reference on a paged fragment.
3466  * @frag: the paged fragment
3467  * @recycle: recycle the page if allocated via page_pool
3468  *
3469  * Releases a reference on the paged fragment @frag
3470  * or recycles the page via the page_pool API.
3471  */
3472 static inline void __skb_frag_unref(skb_frag_t *frag, bool recycle)
3473 {
3474 	struct page *page = skb_frag_page(frag);
3475 
3476 #ifdef CONFIG_PAGE_POOL
3477 	if (recycle && page_pool_return_skb_page(page))
3478 		return;
3479 #endif
3480 	put_page(page);
3481 }
3482 
3483 /**
3484  * skb_frag_unref - release a reference on a paged fragment of an skb.
3485  * @skb: the buffer
3486  * @f: the fragment offset
3487  *
3488  * Releases a reference on the @f'th paged fragment of @skb.
3489  */
3490 static inline void skb_frag_unref(struct sk_buff *skb, int f)
3491 {
3492 	__skb_frag_unref(&skb_shinfo(skb)->frags[f], skb->pp_recycle);
3493 }
3494 
3495 /**
3496  * skb_frag_address - gets the address of the data contained in a paged fragment
3497  * @frag: the paged fragment buffer
3498  *
3499  * Returns the address of the data within @frag. The page must already
3500  * be mapped.
3501  */
3502 static inline void *skb_frag_address(const skb_frag_t *frag)
3503 {
3504 	return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3505 }
3506 
3507 /**
3508  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3509  * @frag: the paged fragment buffer
3510  *
3511  * Returns the address of the data within @frag. Checks that the page
3512  * is mapped and returns %NULL otherwise.
3513  */
3514 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3515 {
3516 	void *ptr = page_address(skb_frag_page(frag));
3517 	if (unlikely(!ptr))
3518 		return NULL;
3519 
3520 	return ptr + skb_frag_off(frag);
3521 }
3522 
3523 /**
3524  * skb_frag_page_copy() - sets the page in a fragment from another fragment
3525  * @fragto: skb fragment where page is set
3526  * @fragfrom: skb fragment page is copied from
3527  */
3528 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3529 				      const skb_frag_t *fragfrom)
3530 {
3531 	fragto->bv_page = fragfrom->bv_page;
3532 }
3533 
3534 /**
3535  * __skb_frag_set_page - sets the page contained in a paged fragment
3536  * @frag: the paged fragment
3537  * @page: the page to set
3538  *
3539  * Sets the fragment @frag to contain @page.
3540  */
3541 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
3542 {
3543 	frag->bv_page = page;
3544 }
3545 
3546 /**
3547  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
3548  * @skb: the buffer
3549  * @f: the fragment offset
3550  * @page: the page to set
3551  *
3552  * Sets the @f'th fragment of @skb to contain @page.
3553  */
3554 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
3555 				     struct page *page)
3556 {
3557 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
3558 }
3559 
3560 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3561 
3562 /**
3563  * skb_frag_dma_map - maps a paged fragment via the DMA API
3564  * @dev: the device to map the fragment to
3565  * @frag: the paged fragment to map
3566  * @offset: the offset within the fragment (starting at the
3567  *          fragment's own offset)
3568  * @size: the number of bytes to map
3569  * @dir: the direction of the mapping (``PCI_DMA_*``)
3570  *
3571  * Maps the page associated with @frag to @device.
3572  */
3573 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3574 					  const skb_frag_t *frag,
3575 					  size_t offset, size_t size,
3576 					  enum dma_data_direction dir)
3577 {
3578 	return dma_map_page(dev, skb_frag_page(frag),
3579 			    skb_frag_off(frag) + offset, size, dir);
3580 }
3581 
3582 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3583 					gfp_t gfp_mask)
3584 {
3585 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3586 }
3587 
3588 
3589 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3590 						  gfp_t gfp_mask)
3591 {
3592 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3593 }
3594 
3595 
3596 /**
3597  *	skb_clone_writable - is the header of a clone writable
3598  *	@skb: buffer to check
3599  *	@len: length up to which to write
3600  *
3601  *	Returns true if modifying the header part of the cloned buffer
3602  *	does not requires the data to be copied.
3603  */
3604 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3605 {
3606 	return !skb_header_cloned(skb) &&
3607 	       skb_headroom(skb) + len <= skb->hdr_len;
3608 }
3609 
3610 static inline int skb_try_make_writable(struct sk_buff *skb,
3611 					unsigned int write_len)
3612 {
3613 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3614 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3615 }
3616 
3617 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3618 			    int cloned)
3619 {
3620 	int delta = 0;
3621 
3622 	if (headroom > skb_headroom(skb))
3623 		delta = headroom - skb_headroom(skb);
3624 
3625 	if (delta || cloned)
3626 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3627 					GFP_ATOMIC);
3628 	return 0;
3629 }
3630 
3631 /**
3632  *	skb_cow - copy header of skb when it is required
3633  *	@skb: buffer to cow
3634  *	@headroom: needed headroom
3635  *
3636  *	If the skb passed lacks sufficient headroom or its data part
3637  *	is shared, data is reallocated. If reallocation fails, an error
3638  *	is returned and original skb is not changed.
3639  *
3640  *	The result is skb with writable area skb->head...skb->tail
3641  *	and at least @headroom of space at head.
3642  */
3643 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3644 {
3645 	return __skb_cow(skb, headroom, skb_cloned(skb));
3646 }
3647 
3648 /**
3649  *	skb_cow_head - skb_cow but only making the head writable
3650  *	@skb: buffer to cow
3651  *	@headroom: needed headroom
3652  *
3653  *	This function is identical to skb_cow except that we replace the
3654  *	skb_cloned check by skb_header_cloned.  It should be used when
3655  *	you only need to push on some header and do not need to modify
3656  *	the data.
3657  */
3658 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3659 {
3660 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
3661 }
3662 
3663 /**
3664  *	skb_padto	- pad an skbuff up to a minimal size
3665  *	@skb: buffer to pad
3666  *	@len: minimal length
3667  *
3668  *	Pads up a buffer to ensure the trailing bytes exist and are
3669  *	blanked. If the buffer already contains sufficient data it
3670  *	is untouched. Otherwise it is extended. Returns zero on
3671  *	success. The skb is freed on error.
3672  */
3673 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3674 {
3675 	unsigned int size = skb->len;
3676 	if (likely(size >= len))
3677 		return 0;
3678 	return skb_pad(skb, len - size);
3679 }
3680 
3681 /**
3682  *	__skb_put_padto - increase size and pad an skbuff up to a minimal size
3683  *	@skb: buffer to pad
3684  *	@len: minimal length
3685  *	@free_on_error: free buffer on error
3686  *
3687  *	Pads up a buffer to ensure the trailing bytes exist and are
3688  *	blanked. If the buffer already contains sufficient data it
3689  *	is untouched. Otherwise it is extended. Returns zero on
3690  *	success. The skb is freed on error if @free_on_error is true.
3691  */
3692 static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3693 					       unsigned int len,
3694 					       bool free_on_error)
3695 {
3696 	unsigned int size = skb->len;
3697 
3698 	if (unlikely(size < len)) {
3699 		len -= size;
3700 		if (__skb_pad(skb, len, free_on_error))
3701 			return -ENOMEM;
3702 		__skb_put(skb, len);
3703 	}
3704 	return 0;
3705 }
3706 
3707 /**
3708  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3709  *	@skb: buffer to pad
3710  *	@len: minimal length
3711  *
3712  *	Pads up a buffer to ensure the trailing bytes exist and are
3713  *	blanked. If the buffer already contains sufficient data it
3714  *	is untouched. Otherwise it is extended. Returns zero on
3715  *	success. The skb is freed on error.
3716  */
3717 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3718 {
3719 	return __skb_put_padto(skb, len, true);
3720 }
3721 
3722 static inline int skb_add_data(struct sk_buff *skb,
3723 			       struct iov_iter *from, int copy)
3724 {
3725 	const int off = skb->len;
3726 
3727 	if (skb->ip_summed == CHECKSUM_NONE) {
3728 		__wsum csum = 0;
3729 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3730 					         &csum, from)) {
3731 			skb->csum = csum_block_add(skb->csum, csum, off);
3732 			return 0;
3733 		}
3734 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3735 		return 0;
3736 
3737 	__skb_trim(skb, off);
3738 	return -EFAULT;
3739 }
3740 
3741 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3742 				    const struct page *page, int off)
3743 {
3744 	if (skb_zcopy(skb))
3745 		return false;
3746 	if (i) {
3747 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3748 
3749 		return page == skb_frag_page(frag) &&
3750 		       off == skb_frag_off(frag) + skb_frag_size(frag);
3751 	}
3752 	return false;
3753 }
3754 
3755 static inline int __skb_linearize(struct sk_buff *skb)
3756 {
3757 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3758 }
3759 
3760 /**
3761  *	skb_linearize - convert paged skb to linear one
3762  *	@skb: buffer to linarize
3763  *
3764  *	If there is no free memory -ENOMEM is returned, otherwise zero
3765  *	is returned and the old skb data released.
3766  */
3767 static inline int skb_linearize(struct sk_buff *skb)
3768 {
3769 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3770 }
3771 
3772 /**
3773  * skb_has_shared_frag - can any frag be overwritten
3774  * @skb: buffer to test
3775  *
3776  * Return true if the skb has at least one frag that might be modified
3777  * by an external entity (as in vmsplice()/sendfile())
3778  */
3779 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3780 {
3781 	return skb_is_nonlinear(skb) &&
3782 	       skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3783 }
3784 
3785 /**
3786  *	skb_linearize_cow - make sure skb is linear and writable
3787  *	@skb: buffer to process
3788  *
3789  *	If there is no free memory -ENOMEM is returned, otherwise zero
3790  *	is returned and the old skb data released.
3791  */
3792 static inline int skb_linearize_cow(struct sk_buff *skb)
3793 {
3794 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3795 	       __skb_linearize(skb) : 0;
3796 }
3797 
3798 static __always_inline void
3799 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3800 		     unsigned int off)
3801 {
3802 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3803 		skb->csum = csum_block_sub(skb->csum,
3804 					   csum_partial(start, len, 0), off);
3805 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3806 		 skb_checksum_start_offset(skb) < 0)
3807 		skb->ip_summed = CHECKSUM_NONE;
3808 }
3809 
3810 /**
3811  *	skb_postpull_rcsum - update checksum for received skb after pull
3812  *	@skb: buffer to update
3813  *	@start: start of data before pull
3814  *	@len: length of data pulled
3815  *
3816  *	After doing a pull on a received packet, you need to call this to
3817  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3818  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3819  */
3820 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3821 				      const void *start, unsigned int len)
3822 {
3823 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3824 		skb->csum = wsum_negate(csum_partial(start, len,
3825 						     wsum_negate(skb->csum)));
3826 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3827 		 skb_checksum_start_offset(skb) < 0)
3828 		skb->ip_summed = CHECKSUM_NONE;
3829 }
3830 
3831 static __always_inline void
3832 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3833 		     unsigned int off)
3834 {
3835 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3836 		skb->csum = csum_block_add(skb->csum,
3837 					   csum_partial(start, len, 0), off);
3838 }
3839 
3840 /**
3841  *	skb_postpush_rcsum - update checksum for received skb after push
3842  *	@skb: buffer to update
3843  *	@start: start of data after push
3844  *	@len: length of data pushed
3845  *
3846  *	After doing a push on a received packet, you need to call this to
3847  *	update the CHECKSUM_COMPLETE checksum.
3848  */
3849 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3850 				      const void *start, unsigned int len)
3851 {
3852 	__skb_postpush_rcsum(skb, start, len, 0);
3853 }
3854 
3855 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3856 
3857 /**
3858  *	skb_push_rcsum - push skb and update receive checksum
3859  *	@skb: buffer to update
3860  *	@len: length of data pulled
3861  *
3862  *	This function performs an skb_push on the packet and updates
3863  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3864  *	receive path processing instead of skb_push unless you know
3865  *	that the checksum difference is zero (e.g., a valid IP header)
3866  *	or you are setting ip_summed to CHECKSUM_NONE.
3867  */
3868 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3869 {
3870 	skb_push(skb, len);
3871 	skb_postpush_rcsum(skb, skb->data, len);
3872 	return skb->data;
3873 }
3874 
3875 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3876 /**
3877  *	pskb_trim_rcsum - trim received skb and update checksum
3878  *	@skb: buffer to trim
3879  *	@len: new length
3880  *
3881  *	This is exactly the same as pskb_trim except that it ensures the
3882  *	checksum of received packets are still valid after the operation.
3883  *	It can change skb pointers.
3884  */
3885 
3886 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3887 {
3888 	if (likely(len >= skb->len))
3889 		return 0;
3890 	return pskb_trim_rcsum_slow(skb, len);
3891 }
3892 
3893 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3894 {
3895 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3896 		skb->ip_summed = CHECKSUM_NONE;
3897 	__skb_trim(skb, len);
3898 	return 0;
3899 }
3900 
3901 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3902 {
3903 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3904 		skb->ip_summed = CHECKSUM_NONE;
3905 	return __skb_grow(skb, len);
3906 }
3907 
3908 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3909 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3910 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3911 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3912 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3913 
3914 #define skb_queue_walk(queue, skb) \
3915 		for (skb = (queue)->next;					\
3916 		     skb != (struct sk_buff *)(queue);				\
3917 		     skb = skb->next)
3918 
3919 #define skb_queue_walk_safe(queue, skb, tmp)					\
3920 		for (skb = (queue)->next, tmp = skb->next;			\
3921 		     skb != (struct sk_buff *)(queue);				\
3922 		     skb = tmp, tmp = skb->next)
3923 
3924 #define skb_queue_walk_from(queue, skb)						\
3925 		for (; skb != (struct sk_buff *)(queue);			\
3926 		     skb = skb->next)
3927 
3928 #define skb_rbtree_walk(skb, root)						\
3929 		for (skb = skb_rb_first(root); skb != NULL;			\
3930 		     skb = skb_rb_next(skb))
3931 
3932 #define skb_rbtree_walk_from(skb)						\
3933 		for (; skb != NULL;						\
3934 		     skb = skb_rb_next(skb))
3935 
3936 #define skb_rbtree_walk_from_safe(skb, tmp)					\
3937 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
3938 		     skb = tmp)
3939 
3940 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3941 		for (tmp = skb->next;						\
3942 		     skb != (struct sk_buff *)(queue);				\
3943 		     skb = tmp, tmp = skb->next)
3944 
3945 #define skb_queue_reverse_walk(queue, skb) \
3946 		for (skb = (queue)->prev;					\
3947 		     skb != (struct sk_buff *)(queue);				\
3948 		     skb = skb->prev)
3949 
3950 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3951 		for (skb = (queue)->prev, tmp = skb->prev;			\
3952 		     skb != (struct sk_buff *)(queue);				\
3953 		     skb = tmp, tmp = skb->prev)
3954 
3955 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3956 		for (tmp = skb->prev;						\
3957 		     skb != (struct sk_buff *)(queue);				\
3958 		     skb = tmp, tmp = skb->prev)
3959 
3960 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3961 {
3962 	return skb_shinfo(skb)->frag_list != NULL;
3963 }
3964 
3965 static inline void skb_frag_list_init(struct sk_buff *skb)
3966 {
3967 	skb_shinfo(skb)->frag_list = NULL;
3968 }
3969 
3970 #define skb_walk_frags(skb, iter)	\
3971 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3972 
3973 
3974 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3975 				int *err, long *timeo_p,
3976 				const struct sk_buff *skb);
3977 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3978 					  struct sk_buff_head *queue,
3979 					  unsigned int flags,
3980 					  int *off, int *err,
3981 					  struct sk_buff **last);
3982 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
3983 					struct sk_buff_head *queue,
3984 					unsigned int flags, int *off, int *err,
3985 					struct sk_buff **last);
3986 struct sk_buff *__skb_recv_datagram(struct sock *sk,
3987 				    struct sk_buff_head *sk_queue,
3988 				    unsigned int flags, int *off, int *err);
3989 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err);
3990 __poll_t datagram_poll(struct file *file, struct socket *sock,
3991 			   struct poll_table_struct *wait);
3992 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3993 			   struct iov_iter *to, int size);
3994 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3995 					struct msghdr *msg, int size)
3996 {
3997 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3998 }
3999 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
4000 				   struct msghdr *msg);
4001 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
4002 			   struct iov_iter *to, int len,
4003 			   struct ahash_request *hash);
4004 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
4005 				 struct iov_iter *from, int len);
4006 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
4007 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
4008 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
4009 static inline void skb_free_datagram_locked(struct sock *sk,
4010 					    struct sk_buff *skb)
4011 {
4012 	__skb_free_datagram_locked(sk, skb, 0);
4013 }
4014 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
4015 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
4016 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
4017 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
4018 			      int len);
4019 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
4020 		    struct pipe_inode_info *pipe, unsigned int len,
4021 		    unsigned int flags);
4022 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
4023 			 int len);
4024 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
4025 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
4026 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
4027 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
4028 		 int len, int hlen);
4029 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
4030 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
4031 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
4032 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
4033 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
4034 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
4035 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
4036 				 unsigned int offset);
4037 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
4038 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len);
4039 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
4040 int skb_vlan_pop(struct sk_buff *skb);
4041 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
4042 int skb_eth_pop(struct sk_buff *skb);
4043 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
4044 		 const unsigned char *src);
4045 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
4046 		  int mac_len, bool ethernet);
4047 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
4048 		 bool ethernet);
4049 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
4050 int skb_mpls_dec_ttl(struct sk_buff *skb);
4051 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
4052 			     gfp_t gfp);
4053 
4054 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
4055 {
4056 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
4057 }
4058 
4059 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
4060 {
4061 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
4062 }
4063 
4064 struct skb_checksum_ops {
4065 	__wsum (*update)(const void *mem, int len, __wsum wsum);
4066 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
4067 };
4068 
4069 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
4070 
4071 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
4072 		      __wsum csum, const struct skb_checksum_ops *ops);
4073 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
4074 		    __wsum csum);
4075 
4076 static inline void * __must_check
4077 __skb_header_pointer(const struct sk_buff *skb, int offset, int len,
4078 		     const void *data, int hlen, void *buffer)
4079 {
4080 	if (likely(hlen - offset >= len))
4081 		return (void *)data + offset;
4082 
4083 	if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0))
4084 		return NULL;
4085 
4086 	return buffer;
4087 }
4088 
4089 static inline void * __must_check
4090 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
4091 {
4092 	return __skb_header_pointer(skb, offset, len, skb->data,
4093 				    skb_headlen(skb), buffer);
4094 }
4095 
4096 /**
4097  *	skb_needs_linearize - check if we need to linearize a given skb
4098  *			      depending on the given device features.
4099  *	@skb: socket buffer to check
4100  *	@features: net device features
4101  *
4102  *	Returns true if either:
4103  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
4104  *	2. skb is fragmented and the device does not support SG.
4105  */
4106 static inline bool skb_needs_linearize(struct sk_buff *skb,
4107 				       netdev_features_t features)
4108 {
4109 	return skb_is_nonlinear(skb) &&
4110 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
4111 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
4112 }
4113 
4114 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
4115 					     void *to,
4116 					     const unsigned int len)
4117 {
4118 	memcpy(to, skb->data, len);
4119 }
4120 
4121 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
4122 						    const int offset, void *to,
4123 						    const unsigned int len)
4124 {
4125 	memcpy(to, skb->data + offset, len);
4126 }
4127 
4128 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
4129 					   const void *from,
4130 					   const unsigned int len)
4131 {
4132 	memcpy(skb->data, from, len);
4133 }
4134 
4135 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
4136 						  const int offset,
4137 						  const void *from,
4138 						  const unsigned int len)
4139 {
4140 	memcpy(skb->data + offset, from, len);
4141 }
4142 
4143 void skb_init(void);
4144 
4145 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
4146 {
4147 	return skb->tstamp;
4148 }
4149 
4150 /**
4151  *	skb_get_timestamp - get timestamp from a skb
4152  *	@skb: skb to get stamp from
4153  *	@stamp: pointer to struct __kernel_old_timeval to store stamp in
4154  *
4155  *	Timestamps are stored in the skb as offsets to a base timestamp.
4156  *	This function converts the offset back to a struct timeval and stores
4157  *	it in stamp.
4158  */
4159 static inline void skb_get_timestamp(const struct sk_buff *skb,
4160 				     struct __kernel_old_timeval *stamp)
4161 {
4162 	*stamp = ns_to_kernel_old_timeval(skb->tstamp);
4163 }
4164 
4165 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
4166 					 struct __kernel_sock_timeval *stamp)
4167 {
4168 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4169 
4170 	stamp->tv_sec = ts.tv_sec;
4171 	stamp->tv_usec = ts.tv_nsec / 1000;
4172 }
4173 
4174 static inline void skb_get_timestampns(const struct sk_buff *skb,
4175 				       struct __kernel_old_timespec *stamp)
4176 {
4177 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4178 
4179 	stamp->tv_sec = ts.tv_sec;
4180 	stamp->tv_nsec = ts.tv_nsec;
4181 }
4182 
4183 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
4184 					   struct __kernel_timespec *stamp)
4185 {
4186 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4187 
4188 	stamp->tv_sec = ts.tv_sec;
4189 	stamp->tv_nsec = ts.tv_nsec;
4190 }
4191 
4192 static inline void __net_timestamp(struct sk_buff *skb)
4193 {
4194 	skb->tstamp = ktime_get_real();
4195 	skb->mono_delivery_time = 0;
4196 }
4197 
4198 static inline ktime_t net_timedelta(ktime_t t)
4199 {
4200 	return ktime_sub(ktime_get_real(), t);
4201 }
4202 
4203 static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt,
4204 					 bool mono)
4205 {
4206 	skb->tstamp = kt;
4207 	skb->mono_delivery_time = kt && mono;
4208 }
4209 
4210 DECLARE_STATIC_KEY_FALSE(netstamp_needed_key);
4211 
4212 /* It is used in the ingress path to clear the delivery_time.
4213  * If needed, set the skb->tstamp to the (rcv) timestamp.
4214  */
4215 static inline void skb_clear_delivery_time(struct sk_buff *skb)
4216 {
4217 	if (skb->mono_delivery_time) {
4218 		skb->mono_delivery_time = 0;
4219 		if (static_branch_unlikely(&netstamp_needed_key))
4220 			skb->tstamp = ktime_get_real();
4221 		else
4222 			skb->tstamp = 0;
4223 	}
4224 }
4225 
4226 static inline void skb_clear_tstamp(struct sk_buff *skb)
4227 {
4228 	if (skb->mono_delivery_time)
4229 		return;
4230 
4231 	skb->tstamp = 0;
4232 }
4233 
4234 static inline ktime_t skb_tstamp(const struct sk_buff *skb)
4235 {
4236 	if (skb->mono_delivery_time)
4237 		return 0;
4238 
4239 	return skb->tstamp;
4240 }
4241 
4242 static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond)
4243 {
4244 	if (!skb->mono_delivery_time && skb->tstamp)
4245 		return skb->tstamp;
4246 
4247 	if (static_branch_unlikely(&netstamp_needed_key) || cond)
4248 		return ktime_get_real();
4249 
4250 	return 0;
4251 }
4252 
4253 static inline u8 skb_metadata_len(const struct sk_buff *skb)
4254 {
4255 	return skb_shinfo(skb)->meta_len;
4256 }
4257 
4258 static inline void *skb_metadata_end(const struct sk_buff *skb)
4259 {
4260 	return skb_mac_header(skb);
4261 }
4262 
4263 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
4264 					  const struct sk_buff *skb_b,
4265 					  u8 meta_len)
4266 {
4267 	const void *a = skb_metadata_end(skb_a);
4268 	const void *b = skb_metadata_end(skb_b);
4269 	/* Using more efficient varaiant than plain call to memcmp(). */
4270 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
4271 	u64 diffs = 0;
4272 
4273 	switch (meta_len) {
4274 #define __it(x, op) (x -= sizeof(u##op))
4275 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
4276 	case 32: diffs |= __it_diff(a, b, 64);
4277 		fallthrough;
4278 	case 24: diffs |= __it_diff(a, b, 64);
4279 		fallthrough;
4280 	case 16: diffs |= __it_diff(a, b, 64);
4281 		fallthrough;
4282 	case  8: diffs |= __it_diff(a, b, 64);
4283 		break;
4284 	case 28: diffs |= __it_diff(a, b, 64);
4285 		fallthrough;
4286 	case 20: diffs |= __it_diff(a, b, 64);
4287 		fallthrough;
4288 	case 12: diffs |= __it_diff(a, b, 64);
4289 		fallthrough;
4290 	case  4: diffs |= __it_diff(a, b, 32);
4291 		break;
4292 	}
4293 	return diffs;
4294 #else
4295 	return memcmp(a - meta_len, b - meta_len, meta_len);
4296 #endif
4297 }
4298 
4299 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
4300 					const struct sk_buff *skb_b)
4301 {
4302 	u8 len_a = skb_metadata_len(skb_a);
4303 	u8 len_b = skb_metadata_len(skb_b);
4304 
4305 	if (!(len_a | len_b))
4306 		return false;
4307 
4308 	return len_a != len_b ?
4309 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
4310 }
4311 
4312 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
4313 {
4314 	skb_shinfo(skb)->meta_len = meta_len;
4315 }
4316 
4317 static inline void skb_metadata_clear(struct sk_buff *skb)
4318 {
4319 	skb_metadata_set(skb, 0);
4320 }
4321 
4322 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
4323 
4324 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
4325 
4326 void skb_clone_tx_timestamp(struct sk_buff *skb);
4327 bool skb_defer_rx_timestamp(struct sk_buff *skb);
4328 
4329 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
4330 
4331 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
4332 {
4333 }
4334 
4335 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
4336 {
4337 	return false;
4338 }
4339 
4340 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
4341 
4342 /**
4343  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
4344  *
4345  * PHY drivers may accept clones of transmitted packets for
4346  * timestamping via their phy_driver.txtstamp method. These drivers
4347  * must call this function to return the skb back to the stack with a
4348  * timestamp.
4349  *
4350  * @skb: clone of the original outgoing packet
4351  * @hwtstamps: hardware time stamps
4352  *
4353  */
4354 void skb_complete_tx_timestamp(struct sk_buff *skb,
4355 			       struct skb_shared_hwtstamps *hwtstamps);
4356 
4357 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb,
4358 		     struct skb_shared_hwtstamps *hwtstamps,
4359 		     struct sock *sk, int tstype);
4360 
4361 /**
4362  * skb_tstamp_tx - queue clone of skb with send time stamps
4363  * @orig_skb:	the original outgoing packet
4364  * @hwtstamps:	hardware time stamps, may be NULL if not available
4365  *
4366  * If the skb has a socket associated, then this function clones the
4367  * skb (thus sharing the actual data and optional structures), stores
4368  * the optional hardware time stamping information (if non NULL) or
4369  * generates a software time stamp (otherwise), then queues the clone
4370  * to the error queue of the socket.  Errors are silently ignored.
4371  */
4372 void skb_tstamp_tx(struct sk_buff *orig_skb,
4373 		   struct skb_shared_hwtstamps *hwtstamps);
4374 
4375 /**
4376  * skb_tx_timestamp() - Driver hook for transmit timestamping
4377  *
4378  * Ethernet MAC Drivers should call this function in their hard_xmit()
4379  * function immediately before giving the sk_buff to the MAC hardware.
4380  *
4381  * Specifically, one should make absolutely sure that this function is
4382  * called before TX completion of this packet can trigger.  Otherwise
4383  * the packet could potentially already be freed.
4384  *
4385  * @skb: A socket buffer.
4386  */
4387 static inline void skb_tx_timestamp(struct sk_buff *skb)
4388 {
4389 	skb_clone_tx_timestamp(skb);
4390 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
4391 		skb_tstamp_tx(skb, NULL);
4392 }
4393 
4394 /**
4395  * skb_complete_wifi_ack - deliver skb with wifi status
4396  *
4397  * @skb: the original outgoing packet
4398  * @acked: ack status
4399  *
4400  */
4401 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
4402 
4403 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
4404 __sum16 __skb_checksum_complete(struct sk_buff *skb);
4405 
4406 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
4407 {
4408 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
4409 		skb->csum_valid ||
4410 		(skb->ip_summed == CHECKSUM_PARTIAL &&
4411 		 skb_checksum_start_offset(skb) >= 0));
4412 }
4413 
4414 /**
4415  *	skb_checksum_complete - Calculate checksum of an entire packet
4416  *	@skb: packet to process
4417  *
4418  *	This function calculates the checksum over the entire packet plus
4419  *	the value of skb->csum.  The latter can be used to supply the
4420  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
4421  *	checksum.
4422  *
4423  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
4424  *	this function can be used to verify that checksum on received
4425  *	packets.  In that case the function should return zero if the
4426  *	checksum is correct.  In particular, this function will return zero
4427  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
4428  *	hardware has already verified the correctness of the checksum.
4429  */
4430 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
4431 {
4432 	return skb_csum_unnecessary(skb) ?
4433 	       0 : __skb_checksum_complete(skb);
4434 }
4435 
4436 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
4437 {
4438 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4439 		if (skb->csum_level == 0)
4440 			skb->ip_summed = CHECKSUM_NONE;
4441 		else
4442 			skb->csum_level--;
4443 	}
4444 }
4445 
4446 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
4447 {
4448 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4449 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
4450 			skb->csum_level++;
4451 	} else if (skb->ip_summed == CHECKSUM_NONE) {
4452 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4453 		skb->csum_level = 0;
4454 	}
4455 }
4456 
4457 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
4458 {
4459 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4460 		skb->ip_summed = CHECKSUM_NONE;
4461 		skb->csum_level = 0;
4462 	}
4463 }
4464 
4465 /* Check if we need to perform checksum complete validation.
4466  *
4467  * Returns true if checksum complete is needed, false otherwise
4468  * (either checksum is unnecessary or zero checksum is allowed).
4469  */
4470 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
4471 						  bool zero_okay,
4472 						  __sum16 check)
4473 {
4474 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
4475 		skb->csum_valid = 1;
4476 		__skb_decr_checksum_unnecessary(skb);
4477 		return false;
4478 	}
4479 
4480 	return true;
4481 }
4482 
4483 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
4484  * in checksum_init.
4485  */
4486 #define CHECKSUM_BREAK 76
4487 
4488 /* Unset checksum-complete
4489  *
4490  * Unset checksum complete can be done when packet is being modified
4491  * (uncompressed for instance) and checksum-complete value is
4492  * invalidated.
4493  */
4494 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
4495 {
4496 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4497 		skb->ip_summed = CHECKSUM_NONE;
4498 }
4499 
4500 /* Validate (init) checksum based on checksum complete.
4501  *
4502  * Return values:
4503  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
4504  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4505  *	checksum is stored in skb->csum for use in __skb_checksum_complete
4506  *   non-zero: value of invalid checksum
4507  *
4508  */
4509 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4510 						       bool complete,
4511 						       __wsum psum)
4512 {
4513 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
4514 		if (!csum_fold(csum_add(psum, skb->csum))) {
4515 			skb->csum_valid = 1;
4516 			return 0;
4517 		}
4518 	}
4519 
4520 	skb->csum = psum;
4521 
4522 	if (complete || skb->len <= CHECKSUM_BREAK) {
4523 		__sum16 csum;
4524 
4525 		csum = __skb_checksum_complete(skb);
4526 		skb->csum_valid = !csum;
4527 		return csum;
4528 	}
4529 
4530 	return 0;
4531 }
4532 
4533 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4534 {
4535 	return 0;
4536 }
4537 
4538 /* Perform checksum validate (init). Note that this is a macro since we only
4539  * want to calculate the pseudo header which is an input function if necessary.
4540  * First we try to validate without any computation (checksum unnecessary) and
4541  * then calculate based on checksum complete calling the function to compute
4542  * pseudo header.
4543  *
4544  * Return values:
4545  *   0: checksum is validated or try to in skb_checksum_complete
4546  *   non-zero: value of invalid checksum
4547  */
4548 #define __skb_checksum_validate(skb, proto, complete,			\
4549 				zero_okay, check, compute_pseudo)	\
4550 ({									\
4551 	__sum16 __ret = 0;						\
4552 	skb->csum_valid = 0;						\
4553 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
4554 		__ret = __skb_checksum_validate_complete(skb,		\
4555 				complete, compute_pseudo(skb, proto));	\
4556 	__ret;								\
4557 })
4558 
4559 #define skb_checksum_init(skb, proto, compute_pseudo)			\
4560 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4561 
4562 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
4563 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4564 
4565 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
4566 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4567 
4568 #define skb_checksum_validate_zero_check(skb, proto, check,		\
4569 					 compute_pseudo)		\
4570 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4571 
4572 #define skb_checksum_simple_validate(skb)				\
4573 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4574 
4575 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4576 {
4577 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4578 }
4579 
4580 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4581 {
4582 	skb->csum = ~pseudo;
4583 	skb->ip_summed = CHECKSUM_COMPLETE;
4584 }
4585 
4586 #define skb_checksum_try_convert(skb, proto, compute_pseudo)	\
4587 do {									\
4588 	if (__skb_checksum_convert_check(skb))				\
4589 		__skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4590 } while (0)
4591 
4592 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4593 					      u16 start, u16 offset)
4594 {
4595 	skb->ip_summed = CHECKSUM_PARTIAL;
4596 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4597 	skb->csum_offset = offset - start;
4598 }
4599 
4600 /* Update skbuf and packet to reflect the remote checksum offload operation.
4601  * When called, ptr indicates the starting point for skb->csum when
4602  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4603  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4604  */
4605 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4606 				       int start, int offset, bool nopartial)
4607 {
4608 	__wsum delta;
4609 
4610 	if (!nopartial) {
4611 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
4612 		return;
4613 	}
4614 
4615 	if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4616 		__skb_checksum_complete(skb);
4617 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4618 	}
4619 
4620 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
4621 
4622 	/* Adjust skb->csum since we changed the packet */
4623 	skb->csum = csum_add(skb->csum, delta);
4624 }
4625 
4626 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4627 {
4628 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4629 	return (void *)(skb->_nfct & NFCT_PTRMASK);
4630 #else
4631 	return NULL;
4632 #endif
4633 }
4634 
4635 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4636 {
4637 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4638 	return skb->_nfct;
4639 #else
4640 	return 0UL;
4641 #endif
4642 }
4643 
4644 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4645 {
4646 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4647 	skb->slow_gro |= !!nfct;
4648 	skb->_nfct = nfct;
4649 #endif
4650 }
4651 
4652 #ifdef CONFIG_SKB_EXTENSIONS
4653 enum skb_ext_id {
4654 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4655 	SKB_EXT_BRIDGE_NF,
4656 #endif
4657 #ifdef CONFIG_XFRM
4658 	SKB_EXT_SEC_PATH,
4659 #endif
4660 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4661 	TC_SKB_EXT,
4662 #endif
4663 #if IS_ENABLED(CONFIG_MPTCP)
4664 	SKB_EXT_MPTCP,
4665 #endif
4666 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4667 	SKB_EXT_MCTP,
4668 #endif
4669 	SKB_EXT_NUM, /* must be last */
4670 };
4671 
4672 /**
4673  *	struct skb_ext - sk_buff extensions
4674  *	@refcnt: 1 on allocation, deallocated on 0
4675  *	@offset: offset to add to @data to obtain extension address
4676  *	@chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4677  *	@data: start of extension data, variable sized
4678  *
4679  *	Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4680  *	to use 'u8' types while allowing up to 2kb worth of extension data.
4681  */
4682 struct skb_ext {
4683 	refcount_t refcnt;
4684 	u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4685 	u8 chunks;		/* same */
4686 	char data[] __aligned(8);
4687 };
4688 
4689 struct skb_ext *__skb_ext_alloc(gfp_t flags);
4690 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4691 		    struct skb_ext *ext);
4692 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4693 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4694 void __skb_ext_put(struct skb_ext *ext);
4695 
4696 static inline void skb_ext_put(struct sk_buff *skb)
4697 {
4698 	if (skb->active_extensions)
4699 		__skb_ext_put(skb->extensions);
4700 }
4701 
4702 static inline void __skb_ext_copy(struct sk_buff *dst,
4703 				  const struct sk_buff *src)
4704 {
4705 	dst->active_extensions = src->active_extensions;
4706 
4707 	if (src->active_extensions) {
4708 		struct skb_ext *ext = src->extensions;
4709 
4710 		refcount_inc(&ext->refcnt);
4711 		dst->extensions = ext;
4712 	}
4713 }
4714 
4715 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4716 {
4717 	skb_ext_put(dst);
4718 	__skb_ext_copy(dst, src);
4719 }
4720 
4721 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4722 {
4723 	return !!ext->offset[i];
4724 }
4725 
4726 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4727 {
4728 	return skb->active_extensions & (1 << id);
4729 }
4730 
4731 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4732 {
4733 	if (skb_ext_exist(skb, id))
4734 		__skb_ext_del(skb, id);
4735 }
4736 
4737 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4738 {
4739 	if (skb_ext_exist(skb, id)) {
4740 		struct skb_ext *ext = skb->extensions;
4741 
4742 		return (void *)ext + (ext->offset[id] << 3);
4743 	}
4744 
4745 	return NULL;
4746 }
4747 
4748 static inline void skb_ext_reset(struct sk_buff *skb)
4749 {
4750 	if (unlikely(skb->active_extensions)) {
4751 		__skb_ext_put(skb->extensions);
4752 		skb->active_extensions = 0;
4753 	}
4754 }
4755 
4756 static inline bool skb_has_extensions(struct sk_buff *skb)
4757 {
4758 	return unlikely(skb->active_extensions);
4759 }
4760 #else
4761 static inline void skb_ext_put(struct sk_buff *skb) {}
4762 static inline void skb_ext_reset(struct sk_buff *skb) {}
4763 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4764 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4765 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4766 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4767 #endif /* CONFIG_SKB_EXTENSIONS */
4768 
4769 static inline void nf_reset_ct(struct sk_buff *skb)
4770 {
4771 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4772 	nf_conntrack_put(skb_nfct(skb));
4773 	skb->_nfct = 0;
4774 #endif
4775 }
4776 
4777 static inline void nf_reset_trace(struct sk_buff *skb)
4778 {
4779 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4780 	skb->nf_trace = 0;
4781 #endif
4782 }
4783 
4784 static inline void ipvs_reset(struct sk_buff *skb)
4785 {
4786 #if IS_ENABLED(CONFIG_IP_VS)
4787 	skb->ipvs_property = 0;
4788 #endif
4789 }
4790 
4791 /* Note: This doesn't put any conntrack info in dst. */
4792 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4793 			     bool copy)
4794 {
4795 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4796 	dst->_nfct = src->_nfct;
4797 	nf_conntrack_get(skb_nfct(src));
4798 #endif
4799 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4800 	if (copy)
4801 		dst->nf_trace = src->nf_trace;
4802 #endif
4803 }
4804 
4805 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4806 {
4807 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4808 	nf_conntrack_put(skb_nfct(dst));
4809 #endif
4810 	dst->slow_gro = src->slow_gro;
4811 	__nf_copy(dst, src, true);
4812 }
4813 
4814 #ifdef CONFIG_NETWORK_SECMARK
4815 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4816 {
4817 	to->secmark = from->secmark;
4818 }
4819 
4820 static inline void skb_init_secmark(struct sk_buff *skb)
4821 {
4822 	skb->secmark = 0;
4823 }
4824 #else
4825 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4826 { }
4827 
4828 static inline void skb_init_secmark(struct sk_buff *skb)
4829 { }
4830 #endif
4831 
4832 static inline int secpath_exists(const struct sk_buff *skb)
4833 {
4834 #ifdef CONFIG_XFRM
4835 	return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4836 #else
4837 	return 0;
4838 #endif
4839 }
4840 
4841 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4842 {
4843 	return !skb->destructor &&
4844 		!secpath_exists(skb) &&
4845 		!skb_nfct(skb) &&
4846 		!skb->_skb_refdst &&
4847 		!skb_has_frag_list(skb);
4848 }
4849 
4850 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4851 {
4852 	skb->queue_mapping = queue_mapping;
4853 }
4854 
4855 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4856 {
4857 	return skb->queue_mapping;
4858 }
4859 
4860 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4861 {
4862 	to->queue_mapping = from->queue_mapping;
4863 }
4864 
4865 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4866 {
4867 	skb->queue_mapping = rx_queue + 1;
4868 }
4869 
4870 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4871 {
4872 	return skb->queue_mapping - 1;
4873 }
4874 
4875 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4876 {
4877 	return skb->queue_mapping != 0;
4878 }
4879 
4880 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4881 {
4882 	skb->dst_pending_confirm = val;
4883 }
4884 
4885 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4886 {
4887 	return skb->dst_pending_confirm != 0;
4888 }
4889 
4890 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4891 {
4892 #ifdef CONFIG_XFRM
4893 	return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4894 #else
4895 	return NULL;
4896 #endif
4897 }
4898 
4899 /* Keeps track of mac header offset relative to skb->head.
4900  * It is useful for TSO of Tunneling protocol. e.g. GRE.
4901  * For non-tunnel skb it points to skb_mac_header() and for
4902  * tunnel skb it points to outer mac header.
4903  * Keeps track of level of encapsulation of network headers.
4904  */
4905 struct skb_gso_cb {
4906 	union {
4907 		int	mac_offset;
4908 		int	data_offset;
4909 	};
4910 	int	encap_level;
4911 	__wsum	csum;
4912 	__u16	csum_start;
4913 };
4914 #define SKB_GSO_CB_OFFSET	32
4915 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET))
4916 
4917 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4918 {
4919 	return (skb_mac_header(inner_skb) - inner_skb->head) -
4920 		SKB_GSO_CB(inner_skb)->mac_offset;
4921 }
4922 
4923 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4924 {
4925 	int new_headroom, headroom;
4926 	int ret;
4927 
4928 	headroom = skb_headroom(skb);
4929 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4930 	if (ret)
4931 		return ret;
4932 
4933 	new_headroom = skb_headroom(skb);
4934 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4935 	return 0;
4936 }
4937 
4938 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4939 {
4940 	/* Do not update partial checksums if remote checksum is enabled. */
4941 	if (skb->remcsum_offload)
4942 		return;
4943 
4944 	SKB_GSO_CB(skb)->csum = res;
4945 	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4946 }
4947 
4948 /* Compute the checksum for a gso segment. First compute the checksum value
4949  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4950  * then add in skb->csum (checksum from csum_start to end of packet).
4951  * skb->csum and csum_start are then updated to reflect the checksum of the
4952  * resultant packet starting from the transport header-- the resultant checksum
4953  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4954  * header.
4955  */
4956 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4957 {
4958 	unsigned char *csum_start = skb_transport_header(skb);
4959 	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4960 	__wsum partial = SKB_GSO_CB(skb)->csum;
4961 
4962 	SKB_GSO_CB(skb)->csum = res;
4963 	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4964 
4965 	return csum_fold(csum_partial(csum_start, plen, partial));
4966 }
4967 
4968 static inline bool skb_is_gso(const struct sk_buff *skb)
4969 {
4970 	return skb_shinfo(skb)->gso_size;
4971 }
4972 
4973 /* Note: Should be called only if skb_is_gso(skb) is true */
4974 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4975 {
4976 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4977 }
4978 
4979 /* Note: Should be called only if skb_is_gso(skb) is true */
4980 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4981 {
4982 	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4983 }
4984 
4985 /* Note: Should be called only if skb_is_gso(skb) is true */
4986 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4987 {
4988 	return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4989 }
4990 
4991 static inline void skb_gso_reset(struct sk_buff *skb)
4992 {
4993 	skb_shinfo(skb)->gso_size = 0;
4994 	skb_shinfo(skb)->gso_segs = 0;
4995 	skb_shinfo(skb)->gso_type = 0;
4996 }
4997 
4998 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4999 					 u16 increment)
5000 {
5001 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
5002 		return;
5003 	shinfo->gso_size += increment;
5004 }
5005 
5006 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
5007 					 u16 decrement)
5008 {
5009 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
5010 		return;
5011 	shinfo->gso_size -= decrement;
5012 }
5013 
5014 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
5015 
5016 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
5017 {
5018 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
5019 	 * wanted then gso_type will be set. */
5020 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5021 
5022 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
5023 	    unlikely(shinfo->gso_type == 0)) {
5024 		__skb_warn_lro_forwarding(skb);
5025 		return true;
5026 	}
5027 	return false;
5028 }
5029 
5030 static inline void skb_forward_csum(struct sk_buff *skb)
5031 {
5032 	/* Unfortunately we don't support this one.  Any brave souls? */
5033 	if (skb->ip_summed == CHECKSUM_COMPLETE)
5034 		skb->ip_summed = CHECKSUM_NONE;
5035 }
5036 
5037 /**
5038  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
5039  * @skb: skb to check
5040  *
5041  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
5042  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
5043  * use this helper, to document places where we make this assertion.
5044  */
5045 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
5046 {
5047 	DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE);
5048 }
5049 
5050 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
5051 
5052 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
5053 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5054 				     unsigned int transport_len,
5055 				     __sum16(*skb_chkf)(struct sk_buff *skb));
5056 
5057 /**
5058  * skb_head_is_locked - Determine if the skb->head is locked down
5059  * @skb: skb to check
5060  *
5061  * The head on skbs build around a head frag can be removed if they are
5062  * not cloned.  This function returns true if the skb head is locked down
5063  * due to either being allocated via kmalloc, or by being a clone with
5064  * multiple references to the head.
5065  */
5066 static inline bool skb_head_is_locked(const struct sk_buff *skb)
5067 {
5068 	return !skb->head_frag || skb_cloned(skb);
5069 }
5070 
5071 /* Local Checksum Offload.
5072  * Compute outer checksum based on the assumption that the
5073  * inner checksum will be offloaded later.
5074  * See Documentation/networking/checksum-offloads.rst for
5075  * explanation of how this works.
5076  * Fill in outer checksum adjustment (e.g. with sum of outer
5077  * pseudo-header) before calling.
5078  * Also ensure that inner checksum is in linear data area.
5079  */
5080 static inline __wsum lco_csum(struct sk_buff *skb)
5081 {
5082 	unsigned char *csum_start = skb_checksum_start(skb);
5083 	unsigned char *l4_hdr = skb_transport_header(skb);
5084 	__wsum partial;
5085 
5086 	/* Start with complement of inner checksum adjustment */
5087 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
5088 						    skb->csum_offset));
5089 
5090 	/* Add in checksum of our headers (incl. outer checksum
5091 	 * adjustment filled in by caller) and return result.
5092 	 */
5093 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
5094 }
5095 
5096 static inline bool skb_is_redirected(const struct sk_buff *skb)
5097 {
5098 	return skb->redirected;
5099 }
5100 
5101 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
5102 {
5103 	skb->redirected = 1;
5104 #ifdef CONFIG_NET_REDIRECT
5105 	skb->from_ingress = from_ingress;
5106 	if (skb->from_ingress)
5107 		skb_clear_tstamp(skb);
5108 #endif
5109 }
5110 
5111 static inline void skb_reset_redirect(struct sk_buff *skb)
5112 {
5113 	skb->redirected = 0;
5114 }
5115 
5116 static inline bool skb_csum_is_sctp(struct sk_buff *skb)
5117 {
5118 	return skb->csum_not_inet;
5119 }
5120 
5121 static inline void skb_set_kcov_handle(struct sk_buff *skb,
5122 				       const u64 kcov_handle)
5123 {
5124 #ifdef CONFIG_KCOV
5125 	skb->kcov_handle = kcov_handle;
5126 #endif
5127 }
5128 
5129 static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
5130 {
5131 #ifdef CONFIG_KCOV
5132 	return skb->kcov_handle;
5133 #else
5134 	return 0;
5135 #endif
5136 }
5137 
5138 #ifdef CONFIG_PAGE_POOL
5139 static inline void skb_mark_for_recycle(struct sk_buff *skb)
5140 {
5141 	skb->pp_recycle = 1;
5142 }
5143 #endif
5144 
5145 static inline bool skb_pp_recycle(struct sk_buff *skb, void *data)
5146 {
5147 	if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
5148 		return false;
5149 	return page_pool_return_skb_page(virt_to_page(data));
5150 }
5151 
5152 #endif	/* __KERNEL__ */
5153 #endif	/* _LINUX_SKBUFF_H */
5154