xref: /linux-6.15/include/linux/skbuff.h (revision d3003d9e)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  *	Definitions for the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:
6  *		Alan Cox, <[email protected]>
7  *		Florian La Roche, <[email protected]>
8  */
9 
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12 
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
22 
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/hrtimer.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/netdev_features.h>
33 #include <linux/sched.h>
34 #include <linux/sched/clock.h>
35 #include <net/flow_dissector.h>
36 #include <linux/splice.h>
37 #include <linux/in6.h>
38 #include <linux/if_packet.h>
39 #include <net/flow.h>
40 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
41 #include <linux/netfilter/nf_conntrack_common.h>
42 #endif
43 
44 /* The interface for checksum offload between the stack and networking drivers
45  * is as follows...
46  *
47  * A. IP checksum related features
48  *
49  * Drivers advertise checksum offload capabilities in the features of a device.
50  * From the stack's point of view these are capabilities offered by the driver.
51  * A driver typically only advertises features that it is capable of offloading
52  * to its device.
53  *
54  * The checksum related features are:
55  *
56  *	NETIF_F_HW_CSUM	- The driver (or its device) is able to compute one
57  *			  IP (one's complement) checksum for any combination
58  *			  of protocols or protocol layering. The checksum is
59  *			  computed and set in a packet per the CHECKSUM_PARTIAL
60  *			  interface (see below).
61  *
62  *	NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
63  *			  TCP or UDP packets over IPv4. These are specifically
64  *			  unencapsulated packets of the form IPv4|TCP or
65  *			  IPv4|UDP where the Protocol field in the IPv4 header
66  *			  is TCP or UDP. The IPv4 header may contain IP options.
67  *			  This feature cannot be set in features for a device
68  *			  with NETIF_F_HW_CSUM also set. This feature is being
69  *			  DEPRECATED (see below).
70  *
71  *	NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
72  *			  TCP or UDP packets over IPv6. These are specifically
73  *			  unencapsulated packets of the form IPv6|TCP or
74  *			  IPv6|UDP where the Next Header field in the IPv6
75  *			  header is either TCP or UDP. IPv6 extension headers
76  *			  are not supported with this feature. This feature
77  *			  cannot be set in features for a device with
78  *			  NETIF_F_HW_CSUM also set. This feature is being
79  *			  DEPRECATED (see below).
80  *
81  *	NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
82  *			 This flag is only used to disable the RX checksum
83  *			 feature for a device. The stack will accept receive
84  *			 checksum indication in packets received on a device
85  *			 regardless of whether NETIF_F_RXCSUM is set.
86  *
87  * B. Checksumming of received packets by device. Indication of checksum
88  *    verification is set in skb->ip_summed. Possible values are:
89  *
90  * CHECKSUM_NONE:
91  *
92  *   Device did not checksum this packet e.g. due to lack of capabilities.
93  *   The packet contains full (though not verified) checksum in packet but
94  *   not in skb->csum. Thus, skb->csum is undefined in this case.
95  *
96  * CHECKSUM_UNNECESSARY:
97  *
98  *   The hardware you're dealing with doesn't calculate the full checksum
99  *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
100  *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
101  *   if their checksums are okay. skb->csum is still undefined in this case
102  *   though. A driver or device must never modify the checksum field in the
103  *   packet even if checksum is verified.
104  *
105  *   CHECKSUM_UNNECESSARY is applicable to following protocols:
106  *     TCP: IPv6 and IPv4.
107  *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
108  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
109  *       may perform further validation in this case.
110  *     GRE: only if the checksum is present in the header.
111  *     SCTP: indicates the CRC in SCTP header has been validated.
112  *     FCOE: indicates the CRC in FC frame has been validated.
113  *
114  *   skb->csum_level indicates the number of consecutive checksums found in
115  *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
116  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
117  *   and a device is able to verify the checksums for UDP (possibly zero),
118  *   GRE (checksum flag is set) and TCP, skb->csum_level would be set to
119  *   two. If the device were only able to verify the UDP checksum and not
120  *   GRE, either because it doesn't support GRE checksum or because GRE
121  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
122  *   not considered in this case).
123  *
124  * CHECKSUM_COMPLETE:
125  *
126  *   This is the most generic way. The device supplied checksum of the _whole_
127  *   packet as seen by netif_rx() and fills in skb->csum. This means the
128  *   hardware doesn't need to parse L3/L4 headers to implement this.
129  *
130  *   Notes:
131  *   - Even if device supports only some protocols, but is able to produce
132  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
133  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
134  *
135  * CHECKSUM_PARTIAL:
136  *
137  *   A checksum is set up to be offloaded to a device as described in the
138  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
139  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
140  *   on the same host, or it may be set in the input path in GRO or remote
141  *   checksum offload. For the purposes of checksum verification, the checksum
142  *   referred to by skb->csum_start + skb->csum_offset and any preceding
143  *   checksums in the packet are considered verified. Any checksums in the
144  *   packet that are after the checksum being offloaded are not considered to
145  *   be verified.
146  *
147  * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
148  *    in the skb->ip_summed for a packet. Values are:
149  *
150  * CHECKSUM_PARTIAL:
151  *
152  *   The driver is required to checksum the packet as seen by hard_start_xmit()
153  *   from skb->csum_start up to the end, and to record/write the checksum at
154  *   offset skb->csum_start + skb->csum_offset. A driver may verify that the
155  *   csum_start and csum_offset values are valid values given the length and
156  *   offset of the packet, but it should not attempt to validate that the
157  *   checksum refers to a legitimate transport layer checksum -- it is the
158  *   purview of the stack to validate that csum_start and csum_offset are set
159  *   correctly.
160  *
161  *   When the stack requests checksum offload for a packet, the driver MUST
162  *   ensure that the checksum is set correctly. A driver can either offload the
163  *   checksum calculation to the device, or call skb_checksum_help (in the case
164  *   that the device does not support offload for a particular checksum).
165  *
166  *   NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
167  *   NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
168  *   checksum offload capability.
169  *   skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
170  *   on network device checksumming capabilities: if a packet does not match
171  *   them, skb_checksum_help or skb_crc32c_help (depending on the value of
172  *   csum_not_inet, see item D.) is called to resolve the checksum.
173  *
174  * CHECKSUM_NONE:
175  *
176  *   The skb was already checksummed by the protocol, or a checksum is not
177  *   required.
178  *
179  * CHECKSUM_UNNECESSARY:
180  *
181  *   This has the same meaning as CHECKSUM_NONE for checksum offload on
182  *   output.
183  *
184  * CHECKSUM_COMPLETE:
185  *   Not used in checksum output. If a driver observes a packet with this value
186  *   set in skbuff, it should treat the packet as if CHECKSUM_NONE were set.
187  *
188  * D. Non-IP checksum (CRC) offloads
189  *
190  *   NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
191  *     offloading the SCTP CRC in a packet. To perform this offload the stack
192  *     will set csum_start and csum_offset accordingly, set ip_summed to
193  *     CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
194  *     the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
195  *     A driver that supports both IP checksum offload and SCTP CRC32c offload
196  *     must verify which offload is configured for a packet by testing the
197  *     value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
198  *     CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
199  *
200  *   NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
201  *     offloading the FCOE CRC in a packet. To perform this offload the stack
202  *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
203  *     accordingly. Note that there is no indication in the skbuff that the
204  *     CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
205  *     both IP checksum offload and FCOE CRC offload must verify which offload
206  *     is configured for a packet, presumably by inspecting packet headers.
207  *
208  * E. Checksumming on output with GSO.
209  *
210  * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
211  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
212  * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
213  * part of the GSO operation is implied. If a checksum is being offloaded
214  * with GSO then ip_summed is CHECKSUM_PARTIAL, and both csum_start and
215  * csum_offset are set to refer to the outermost checksum being offloaded
216  * (two offloaded checksums are possible with UDP encapsulation).
217  */
218 
219 /* Don't change this without changing skb_csum_unnecessary! */
220 #define CHECKSUM_NONE		0
221 #define CHECKSUM_UNNECESSARY	1
222 #define CHECKSUM_COMPLETE	2
223 #define CHECKSUM_PARTIAL	3
224 
225 /* Maximum value in skb->csum_level */
226 #define SKB_MAX_CSUM_LEVEL	3
227 
228 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
229 #define SKB_WITH_OVERHEAD(X)	\
230 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
231 #define SKB_MAX_ORDER(X, ORDER) \
232 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
233 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
234 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
235 
236 /* return minimum truesize of one skb containing X bytes of data */
237 #define SKB_TRUESIZE(X) ((X) +						\
238 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
239 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
240 
241 struct ahash_request;
242 struct net_device;
243 struct scatterlist;
244 struct pipe_inode_info;
245 struct iov_iter;
246 struct napi_struct;
247 struct bpf_prog;
248 union bpf_attr;
249 struct skb_ext;
250 
251 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
252 struct nf_bridge_info {
253 	enum {
254 		BRNF_PROTO_UNCHANGED,
255 		BRNF_PROTO_8021Q,
256 		BRNF_PROTO_PPPOE
257 	} orig_proto:8;
258 	u8			pkt_otherhost:1;
259 	u8			in_prerouting:1;
260 	u8			bridged_dnat:1;
261 	__u16			frag_max_size;
262 	struct net_device	*physindev;
263 
264 	/* always valid & non-NULL from FORWARD on, for physdev match */
265 	struct net_device	*physoutdev;
266 	union {
267 		/* prerouting: detect dnat in orig/reply direction */
268 		__be32          ipv4_daddr;
269 		struct in6_addr ipv6_daddr;
270 
271 		/* after prerouting + nat detected: store original source
272 		 * mac since neigh resolution overwrites it, only used while
273 		 * skb is out in neigh layer.
274 		 */
275 		char neigh_header[8];
276 	};
277 };
278 #endif
279 
280 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
281 /* Chain in tc_skb_ext will be used to share the tc chain with
282  * ovs recirc_id. It will be set to the current chain by tc
283  * and read by ovs to recirc_id.
284  */
285 struct tc_skb_ext {
286 	__u32 chain;
287 	__u16 mru;
288 	bool post_ct;
289 };
290 #endif
291 
292 struct sk_buff_head {
293 	/* These two members must be first. */
294 	struct sk_buff	*next;
295 	struct sk_buff	*prev;
296 
297 	__u32		qlen;
298 	spinlock_t	lock;
299 };
300 
301 struct sk_buff;
302 
303 /* To allow 64K frame to be packed as single skb without frag_list we
304  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
305  * buffers which do not start on a page boundary.
306  *
307  * Since GRO uses frags we allocate at least 16 regardless of page
308  * size.
309  */
310 #if (65536/PAGE_SIZE + 1) < 16
311 #define MAX_SKB_FRAGS 16UL
312 #else
313 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
314 #endif
315 extern int sysctl_max_skb_frags;
316 
317 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
318  * segment using its current segmentation instead.
319  */
320 #define GSO_BY_FRAGS	0xFFFF
321 
322 typedef struct bio_vec skb_frag_t;
323 
324 /**
325  * skb_frag_size() - Returns the size of a skb fragment
326  * @frag: skb fragment
327  */
328 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
329 {
330 	return frag->bv_len;
331 }
332 
333 /**
334  * skb_frag_size_set() - Sets the size of a skb fragment
335  * @frag: skb fragment
336  * @size: size of fragment
337  */
338 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
339 {
340 	frag->bv_len = size;
341 }
342 
343 /**
344  * skb_frag_size_add() - Increments the size of a skb fragment by @delta
345  * @frag: skb fragment
346  * @delta: value to add
347  */
348 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
349 {
350 	frag->bv_len += delta;
351 }
352 
353 /**
354  * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
355  * @frag: skb fragment
356  * @delta: value to subtract
357  */
358 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
359 {
360 	frag->bv_len -= delta;
361 }
362 
363 /**
364  * skb_frag_must_loop - Test if %p is a high memory page
365  * @p: fragment's page
366  */
367 static inline bool skb_frag_must_loop(struct page *p)
368 {
369 #if defined(CONFIG_HIGHMEM)
370 	if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p))
371 		return true;
372 #endif
373 	return false;
374 }
375 
376 /**
377  *	skb_frag_foreach_page - loop over pages in a fragment
378  *
379  *	@f:		skb frag to operate on
380  *	@f_off:		offset from start of f->bv_page
381  *	@f_len:		length from f_off to loop over
382  *	@p:		(temp var) current page
383  *	@p_off:		(temp var) offset from start of current page,
384  *	                           non-zero only on first page.
385  *	@p_len:		(temp var) length in current page,
386  *				   < PAGE_SIZE only on first and last page.
387  *	@copied:	(temp var) length so far, excluding current p_len.
388  *
389  *	A fragment can hold a compound page, in which case per-page
390  *	operations, notably kmap_atomic, must be called for each
391  *	regular page.
392  */
393 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
394 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
395 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
396 	     p_len = skb_frag_must_loop(p) ?				\
397 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
398 	     copied = 0;						\
399 	     copied < f_len;						\
400 	     copied += p_len, p++, p_off = 0,				\
401 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
402 
403 #define HAVE_HW_TIME_STAMP
404 
405 /**
406  * struct skb_shared_hwtstamps - hardware time stamps
407  * @hwtstamp:	hardware time stamp transformed into duration
408  *		since arbitrary point in time
409  *
410  * Software time stamps generated by ktime_get_real() are stored in
411  * skb->tstamp.
412  *
413  * hwtstamps can only be compared against other hwtstamps from
414  * the same device.
415  *
416  * This structure is attached to packets as part of the
417  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
418  */
419 struct skb_shared_hwtstamps {
420 	ktime_t	hwtstamp;
421 };
422 
423 /* Definitions for tx_flags in struct skb_shared_info */
424 enum {
425 	/* generate hardware time stamp */
426 	SKBTX_HW_TSTAMP = 1 << 0,
427 
428 	/* generate software time stamp when queueing packet to NIC */
429 	SKBTX_SW_TSTAMP = 1 << 1,
430 
431 	/* device driver is going to provide hardware time stamp */
432 	SKBTX_IN_PROGRESS = 1 << 2,
433 
434 	/* generate wifi status information (where possible) */
435 	SKBTX_WIFI_STATUS = 1 << 4,
436 
437 	/* generate software time stamp when entering packet scheduling */
438 	SKBTX_SCHED_TSTAMP = 1 << 6,
439 };
440 
441 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
442 				 SKBTX_SCHED_TSTAMP)
443 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
444 
445 /* Definitions for flags in struct skb_shared_info */
446 enum {
447 	/* use zcopy routines */
448 	SKBFL_ZEROCOPY_ENABLE = BIT(0),
449 
450 	/* This indicates at least one fragment might be overwritten
451 	 * (as in vmsplice(), sendfile() ...)
452 	 * If we need to compute a TX checksum, we'll need to copy
453 	 * all frags to avoid possible bad checksum
454 	 */
455 	SKBFL_SHARED_FRAG = BIT(1),
456 };
457 
458 #define SKBFL_ZEROCOPY_FRAG	(SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG)
459 
460 /*
461  * The callback notifies userspace to release buffers when skb DMA is done in
462  * lower device, the skb last reference should be 0 when calling this.
463  * The zerocopy_success argument is true if zero copy transmit occurred,
464  * false on data copy or out of memory error caused by data copy attempt.
465  * The ctx field is used to track device context.
466  * The desc field is used to track userspace buffer index.
467  */
468 struct ubuf_info {
469 	void (*callback)(struct sk_buff *, struct ubuf_info *,
470 			 bool zerocopy_success);
471 	union {
472 		struct {
473 			unsigned long desc;
474 			void *ctx;
475 		};
476 		struct {
477 			u32 id;
478 			u16 len;
479 			u16 zerocopy:1;
480 			u32 bytelen;
481 		};
482 	};
483 	refcount_t refcnt;
484 	u8 flags;
485 
486 	struct mmpin {
487 		struct user_struct *user;
488 		unsigned int num_pg;
489 	} mmp;
490 };
491 
492 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
493 
494 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
495 void mm_unaccount_pinned_pages(struct mmpin *mmp);
496 
497 struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size);
498 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
499 				       struct ubuf_info *uarg);
500 
501 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
502 
503 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
504 			   bool success);
505 
506 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len);
507 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
508 			     struct msghdr *msg, int len,
509 			     struct ubuf_info *uarg);
510 
511 /* This data is invariant across clones and lives at
512  * the end of the header data, ie. at skb->end.
513  */
514 struct skb_shared_info {
515 	__u8		flags;
516 	__u8		meta_len;
517 	__u8		nr_frags;
518 	__u8		tx_flags;
519 	unsigned short	gso_size;
520 	/* Warning: this field is not always filled in (UFO)! */
521 	unsigned short	gso_segs;
522 	struct sk_buff	*frag_list;
523 	struct skb_shared_hwtstamps hwtstamps;
524 	unsigned int	gso_type;
525 	u32		tskey;
526 
527 	/*
528 	 * Warning : all fields before dataref are cleared in __alloc_skb()
529 	 */
530 	atomic_t	dataref;
531 
532 	/* Intermediate layers must ensure that destructor_arg
533 	 * remains valid until skb destructor */
534 	void *		destructor_arg;
535 
536 	/* must be last field, see pskb_expand_head() */
537 	skb_frag_t	frags[MAX_SKB_FRAGS];
538 };
539 
540 /* We divide dataref into two halves.  The higher 16 bits hold references
541  * to the payload part of skb->data.  The lower 16 bits hold references to
542  * the entire skb->data.  A clone of a headerless skb holds the length of
543  * the header in skb->hdr_len.
544  *
545  * All users must obey the rule that the skb->data reference count must be
546  * greater than or equal to the payload reference count.
547  *
548  * Holding a reference to the payload part means that the user does not
549  * care about modifications to the header part of skb->data.
550  */
551 #define SKB_DATAREF_SHIFT 16
552 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
553 
554 
555 enum {
556 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
557 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
558 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
559 };
560 
561 enum {
562 	SKB_GSO_TCPV4 = 1 << 0,
563 
564 	/* This indicates the skb is from an untrusted source. */
565 	SKB_GSO_DODGY = 1 << 1,
566 
567 	/* This indicates the tcp segment has CWR set. */
568 	SKB_GSO_TCP_ECN = 1 << 2,
569 
570 	SKB_GSO_TCP_FIXEDID = 1 << 3,
571 
572 	SKB_GSO_TCPV6 = 1 << 4,
573 
574 	SKB_GSO_FCOE = 1 << 5,
575 
576 	SKB_GSO_GRE = 1 << 6,
577 
578 	SKB_GSO_GRE_CSUM = 1 << 7,
579 
580 	SKB_GSO_IPXIP4 = 1 << 8,
581 
582 	SKB_GSO_IPXIP6 = 1 << 9,
583 
584 	SKB_GSO_UDP_TUNNEL = 1 << 10,
585 
586 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
587 
588 	SKB_GSO_PARTIAL = 1 << 12,
589 
590 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
591 
592 	SKB_GSO_SCTP = 1 << 14,
593 
594 	SKB_GSO_ESP = 1 << 15,
595 
596 	SKB_GSO_UDP = 1 << 16,
597 
598 	SKB_GSO_UDP_L4 = 1 << 17,
599 
600 	SKB_GSO_FRAGLIST = 1 << 18,
601 };
602 
603 #if BITS_PER_LONG > 32
604 #define NET_SKBUFF_DATA_USES_OFFSET 1
605 #endif
606 
607 #ifdef NET_SKBUFF_DATA_USES_OFFSET
608 typedef unsigned int sk_buff_data_t;
609 #else
610 typedef unsigned char *sk_buff_data_t;
611 #endif
612 
613 /**
614  *	struct sk_buff - socket buffer
615  *	@next: Next buffer in list
616  *	@prev: Previous buffer in list
617  *	@tstamp: Time we arrived/left
618  *	@skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
619  *		for retransmit timer
620  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
621  *	@list: queue head
622  *	@sk: Socket we are owned by
623  *	@ip_defrag_offset: (aka @sk) alternate use of @sk, used in
624  *		fragmentation management
625  *	@dev: Device we arrived on/are leaving by
626  *	@dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
627  *	@cb: Control buffer. Free for use by every layer. Put private vars here
628  *	@_skb_refdst: destination entry (with norefcount bit)
629  *	@sp: the security path, used for xfrm
630  *	@len: Length of actual data
631  *	@data_len: Data length
632  *	@mac_len: Length of link layer header
633  *	@hdr_len: writable header length of cloned skb
634  *	@csum: Checksum (must include start/offset pair)
635  *	@csum_start: Offset from skb->head where checksumming should start
636  *	@csum_offset: Offset from csum_start where checksum should be stored
637  *	@priority: Packet queueing priority
638  *	@ignore_df: allow local fragmentation
639  *	@cloned: Head may be cloned (check refcnt to be sure)
640  *	@ip_summed: Driver fed us an IP checksum
641  *	@nohdr: Payload reference only, must not modify header
642  *	@pkt_type: Packet class
643  *	@fclone: skbuff clone status
644  *	@ipvs_property: skbuff is owned by ipvs
645  *	@inner_protocol_type: whether the inner protocol is
646  *		ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
647  *	@remcsum_offload: remote checksum offload is enabled
648  *	@offload_fwd_mark: Packet was L2-forwarded in hardware
649  *	@offload_l3_fwd_mark: Packet was L3-forwarded in hardware
650  *	@tc_skip_classify: do not classify packet. set by IFB device
651  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
652  *	@redirected: packet was redirected by packet classifier
653  *	@from_ingress: packet was redirected from the ingress path
654  *	@peeked: this packet has been seen already, so stats have been
655  *		done for it, don't do them again
656  *	@nf_trace: netfilter packet trace flag
657  *	@protocol: Packet protocol from driver
658  *	@destructor: Destruct function
659  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
660  *	@_nfct: Associated connection, if any (with nfctinfo bits)
661  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
662  *	@skb_iif: ifindex of device we arrived on
663  *	@tc_index: Traffic control index
664  *	@hash: the packet hash
665  *	@queue_mapping: Queue mapping for multiqueue devices
666  *	@head_frag: skb was allocated from page fragments,
667  *		not allocated by kmalloc() or vmalloc().
668  *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
669  *	@active_extensions: active extensions (skb_ext_id types)
670  *	@ndisc_nodetype: router type (from link layer)
671  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
672  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
673  *		ports.
674  *	@sw_hash: indicates hash was computed in software stack
675  *	@wifi_acked_valid: wifi_acked was set
676  *	@wifi_acked: whether frame was acked on wifi or not
677  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
678  *	@encapsulation: indicates the inner headers in the skbuff are valid
679  *	@encap_hdr_csum: software checksum is needed
680  *	@csum_valid: checksum is already valid
681  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
682  *	@csum_complete_sw: checksum was completed by software
683  *	@csum_level: indicates the number of consecutive checksums found in
684  *		the packet minus one that have been verified as
685  *		CHECKSUM_UNNECESSARY (max 3)
686  *	@dst_pending_confirm: need to confirm neighbour
687  *	@decrypted: Decrypted SKB
688  *	@napi_id: id of the NAPI struct this skb came from
689  *	@sender_cpu: (aka @napi_id) source CPU in XPS
690  *	@secmark: security marking
691  *	@mark: Generic packet mark
692  *	@reserved_tailroom: (aka @mark) number of bytes of free space available
693  *		at the tail of an sk_buff
694  *	@vlan_present: VLAN tag is present
695  *	@vlan_proto: vlan encapsulation protocol
696  *	@vlan_tci: vlan tag control information
697  *	@inner_protocol: Protocol (encapsulation)
698  *	@inner_ipproto: (aka @inner_protocol) stores ipproto when
699  *		skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
700  *	@inner_transport_header: Inner transport layer header (encapsulation)
701  *	@inner_network_header: Network layer header (encapsulation)
702  *	@inner_mac_header: Link layer header (encapsulation)
703  *	@transport_header: Transport layer header
704  *	@network_header: Network layer header
705  *	@mac_header: Link layer header
706  *	@kcov_handle: KCOV remote handle for remote coverage collection
707  *	@tail: Tail pointer
708  *	@end: End pointer
709  *	@head: Head of buffer
710  *	@data: Data head pointer
711  *	@truesize: Buffer size
712  *	@users: User count - see {datagram,tcp}.c
713  *	@extensions: allocated extensions, valid if active_extensions is nonzero
714  */
715 
716 struct sk_buff {
717 	union {
718 		struct {
719 			/* These two members must be first. */
720 			struct sk_buff		*next;
721 			struct sk_buff		*prev;
722 
723 			union {
724 				struct net_device	*dev;
725 				/* Some protocols might use this space to store information,
726 				 * while device pointer would be NULL.
727 				 * UDP receive path is one user.
728 				 */
729 				unsigned long		dev_scratch;
730 			};
731 		};
732 		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
733 		struct list_head	list;
734 	};
735 
736 	union {
737 		struct sock		*sk;
738 		int			ip_defrag_offset;
739 	};
740 
741 	union {
742 		ktime_t		tstamp;
743 		u64		skb_mstamp_ns; /* earliest departure time */
744 	};
745 	/*
746 	 * This is the control buffer. It is free to use for every
747 	 * layer. Please put your private variables there. If you
748 	 * want to keep them across layers you have to do a skb_clone()
749 	 * first. This is owned by whoever has the skb queued ATM.
750 	 */
751 	char			cb[48] __aligned(8);
752 
753 	union {
754 		struct {
755 			unsigned long	_skb_refdst;
756 			void		(*destructor)(struct sk_buff *skb);
757 		};
758 		struct list_head	tcp_tsorted_anchor;
759 	};
760 
761 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
762 	unsigned long		 _nfct;
763 #endif
764 	unsigned int		len,
765 				data_len;
766 	__u16			mac_len,
767 				hdr_len;
768 
769 	/* Following fields are _not_ copied in __copy_skb_header()
770 	 * Note that queue_mapping is here mostly to fill a hole.
771 	 */
772 	__u16			queue_mapping;
773 
774 /* if you move cloned around you also must adapt those constants */
775 #ifdef __BIG_ENDIAN_BITFIELD
776 #define CLONED_MASK	(1 << 7)
777 #else
778 #define CLONED_MASK	1
779 #endif
780 #define CLONED_OFFSET()		offsetof(struct sk_buff, __cloned_offset)
781 
782 	/* private: */
783 	__u8			__cloned_offset[0];
784 	/* public: */
785 	__u8			cloned:1,
786 				nohdr:1,
787 				fclone:2,
788 				peeked:1,
789 				head_frag:1,
790 				pfmemalloc:1;
791 #ifdef CONFIG_SKB_EXTENSIONS
792 	__u8			active_extensions;
793 #endif
794 	/* fields enclosed in headers_start/headers_end are copied
795 	 * using a single memcpy() in __copy_skb_header()
796 	 */
797 	/* private: */
798 	__u32			headers_start[0];
799 	/* public: */
800 
801 /* if you move pkt_type around you also must adapt those constants */
802 #ifdef __BIG_ENDIAN_BITFIELD
803 #define PKT_TYPE_MAX	(7 << 5)
804 #else
805 #define PKT_TYPE_MAX	7
806 #endif
807 #define PKT_TYPE_OFFSET()	offsetof(struct sk_buff, __pkt_type_offset)
808 
809 	/* private: */
810 	__u8			__pkt_type_offset[0];
811 	/* public: */
812 	__u8			pkt_type:3;
813 	__u8			ignore_df:1;
814 	__u8			nf_trace:1;
815 	__u8			ip_summed:2;
816 	__u8			ooo_okay:1;
817 
818 	__u8			l4_hash:1;
819 	__u8			sw_hash:1;
820 	__u8			wifi_acked_valid:1;
821 	__u8			wifi_acked:1;
822 	__u8			no_fcs:1;
823 	/* Indicates the inner headers are valid in the skbuff. */
824 	__u8			encapsulation:1;
825 	__u8			encap_hdr_csum:1;
826 	__u8			csum_valid:1;
827 
828 #ifdef __BIG_ENDIAN_BITFIELD
829 #define PKT_VLAN_PRESENT_BIT	7
830 #else
831 #define PKT_VLAN_PRESENT_BIT	0
832 #endif
833 #define PKT_VLAN_PRESENT_OFFSET()	offsetof(struct sk_buff, __pkt_vlan_present_offset)
834 	/* private: */
835 	__u8			__pkt_vlan_present_offset[0];
836 	/* public: */
837 	__u8			vlan_present:1;
838 	__u8			csum_complete_sw:1;
839 	__u8			csum_level:2;
840 	__u8			csum_not_inet:1;
841 	__u8			dst_pending_confirm:1;
842 #ifdef CONFIG_IPV6_NDISC_NODETYPE
843 	__u8			ndisc_nodetype:2;
844 #endif
845 
846 	__u8			ipvs_property:1;
847 	__u8			inner_protocol_type:1;
848 	__u8			remcsum_offload:1;
849 #ifdef CONFIG_NET_SWITCHDEV
850 	__u8			offload_fwd_mark:1;
851 	__u8			offload_l3_fwd_mark:1;
852 #endif
853 #ifdef CONFIG_NET_CLS_ACT
854 	__u8			tc_skip_classify:1;
855 	__u8			tc_at_ingress:1;
856 #endif
857 #ifdef CONFIG_NET_REDIRECT
858 	__u8			redirected:1;
859 	__u8			from_ingress:1;
860 #endif
861 #ifdef CONFIG_TLS_DEVICE
862 	__u8			decrypted:1;
863 #endif
864 
865 #ifdef CONFIG_NET_SCHED
866 	__u16			tc_index;	/* traffic control index */
867 #endif
868 
869 	union {
870 		__wsum		csum;
871 		struct {
872 			__u16	csum_start;
873 			__u16	csum_offset;
874 		};
875 	};
876 	__u32			priority;
877 	int			skb_iif;
878 	__u32			hash;
879 	__be16			vlan_proto;
880 	__u16			vlan_tci;
881 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
882 	union {
883 		unsigned int	napi_id;
884 		unsigned int	sender_cpu;
885 	};
886 #endif
887 #ifdef CONFIG_NETWORK_SECMARK
888 	__u32		secmark;
889 #endif
890 
891 	union {
892 		__u32		mark;
893 		__u32		reserved_tailroom;
894 	};
895 
896 	union {
897 		__be16		inner_protocol;
898 		__u8		inner_ipproto;
899 	};
900 
901 	__u16			inner_transport_header;
902 	__u16			inner_network_header;
903 	__u16			inner_mac_header;
904 
905 	__be16			protocol;
906 	__u16			transport_header;
907 	__u16			network_header;
908 	__u16			mac_header;
909 
910 #ifdef CONFIG_KCOV
911 	u64			kcov_handle;
912 #endif
913 
914 	/* private: */
915 	__u32			headers_end[0];
916 	/* public: */
917 
918 	/* These elements must be at the end, see alloc_skb() for details.  */
919 	sk_buff_data_t		tail;
920 	sk_buff_data_t		end;
921 	unsigned char		*head,
922 				*data;
923 	unsigned int		truesize;
924 	refcount_t		users;
925 
926 #ifdef CONFIG_SKB_EXTENSIONS
927 	/* only useable after checking ->active_extensions != 0 */
928 	struct skb_ext		*extensions;
929 #endif
930 };
931 
932 #ifdef __KERNEL__
933 /*
934  *	Handling routines are only of interest to the kernel
935  */
936 
937 #define SKB_ALLOC_FCLONE	0x01
938 #define SKB_ALLOC_RX		0x02
939 #define SKB_ALLOC_NAPI		0x04
940 
941 /**
942  * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
943  * @skb: buffer
944  */
945 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
946 {
947 	return unlikely(skb->pfmemalloc);
948 }
949 
950 /*
951  * skb might have a dst pointer attached, refcounted or not.
952  * _skb_refdst low order bit is set if refcount was _not_ taken
953  */
954 #define SKB_DST_NOREF	1UL
955 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
956 
957 /**
958  * skb_dst - returns skb dst_entry
959  * @skb: buffer
960  *
961  * Returns skb dst_entry, regardless of reference taken or not.
962  */
963 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
964 {
965 	/* If refdst was not refcounted, check we still are in a
966 	 * rcu_read_lock section
967 	 */
968 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
969 		!rcu_read_lock_held() &&
970 		!rcu_read_lock_bh_held());
971 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
972 }
973 
974 /**
975  * skb_dst_set - sets skb dst
976  * @skb: buffer
977  * @dst: dst entry
978  *
979  * Sets skb dst, assuming a reference was taken on dst and should
980  * be released by skb_dst_drop()
981  */
982 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
983 {
984 	skb->_skb_refdst = (unsigned long)dst;
985 }
986 
987 /**
988  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
989  * @skb: buffer
990  * @dst: dst entry
991  *
992  * Sets skb dst, assuming a reference was not taken on dst.
993  * If dst entry is cached, we do not take reference and dst_release
994  * will be avoided by refdst_drop. If dst entry is not cached, we take
995  * reference, so that last dst_release can destroy the dst immediately.
996  */
997 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
998 {
999 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
1000 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
1001 }
1002 
1003 /**
1004  * skb_dst_is_noref - Test if skb dst isn't refcounted
1005  * @skb: buffer
1006  */
1007 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1008 {
1009 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1010 }
1011 
1012 /**
1013  * skb_rtable - Returns the skb &rtable
1014  * @skb: buffer
1015  */
1016 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
1017 {
1018 	return (struct rtable *)skb_dst(skb);
1019 }
1020 
1021 /* For mangling skb->pkt_type from user space side from applications
1022  * such as nft, tc, etc, we only allow a conservative subset of
1023  * possible pkt_types to be set.
1024 */
1025 static inline bool skb_pkt_type_ok(u32 ptype)
1026 {
1027 	return ptype <= PACKET_OTHERHOST;
1028 }
1029 
1030 /**
1031  * skb_napi_id - Returns the skb's NAPI id
1032  * @skb: buffer
1033  */
1034 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1035 {
1036 #ifdef CONFIG_NET_RX_BUSY_POLL
1037 	return skb->napi_id;
1038 #else
1039 	return 0;
1040 #endif
1041 }
1042 
1043 /**
1044  * skb_unref - decrement the skb's reference count
1045  * @skb: buffer
1046  *
1047  * Returns true if we can free the skb.
1048  */
1049 static inline bool skb_unref(struct sk_buff *skb)
1050 {
1051 	if (unlikely(!skb))
1052 		return false;
1053 	if (likely(refcount_read(&skb->users) == 1))
1054 		smp_rmb();
1055 	else if (likely(!refcount_dec_and_test(&skb->users)))
1056 		return false;
1057 
1058 	return true;
1059 }
1060 
1061 void skb_release_head_state(struct sk_buff *skb);
1062 void kfree_skb(struct sk_buff *skb);
1063 void kfree_skb_list(struct sk_buff *segs);
1064 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1065 void skb_tx_error(struct sk_buff *skb);
1066 
1067 #ifdef CONFIG_TRACEPOINTS
1068 void consume_skb(struct sk_buff *skb);
1069 #else
1070 static inline void consume_skb(struct sk_buff *skb)
1071 {
1072 	return kfree_skb(skb);
1073 }
1074 #endif
1075 
1076 void __consume_stateless_skb(struct sk_buff *skb);
1077 void  __kfree_skb(struct sk_buff *skb);
1078 extern struct kmem_cache *skbuff_head_cache;
1079 
1080 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1081 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1082 		      bool *fragstolen, int *delta_truesize);
1083 
1084 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1085 			    int node);
1086 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1087 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1088 struct sk_buff *build_skb_around(struct sk_buff *skb,
1089 				 void *data, unsigned int frag_size);
1090 
1091 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size);
1092 
1093 /**
1094  * alloc_skb - allocate a network buffer
1095  * @size: size to allocate
1096  * @priority: allocation mask
1097  *
1098  * This function is a convenient wrapper around __alloc_skb().
1099  */
1100 static inline struct sk_buff *alloc_skb(unsigned int size,
1101 					gfp_t priority)
1102 {
1103 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1104 }
1105 
1106 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1107 				     unsigned long data_len,
1108 				     int max_page_order,
1109 				     int *errcode,
1110 				     gfp_t gfp_mask);
1111 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1112 
1113 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1114 struct sk_buff_fclones {
1115 	struct sk_buff	skb1;
1116 
1117 	struct sk_buff	skb2;
1118 
1119 	refcount_t	fclone_ref;
1120 };
1121 
1122 /**
1123  *	skb_fclone_busy - check if fclone is busy
1124  *	@sk: socket
1125  *	@skb: buffer
1126  *
1127  * Returns true if skb is a fast clone, and its clone is not freed.
1128  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1129  * so we also check that this didnt happen.
1130  */
1131 static inline bool skb_fclone_busy(const struct sock *sk,
1132 				   const struct sk_buff *skb)
1133 {
1134 	const struct sk_buff_fclones *fclones;
1135 
1136 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1137 
1138 	return skb->fclone == SKB_FCLONE_ORIG &&
1139 	       refcount_read(&fclones->fclone_ref) > 1 &&
1140 	       fclones->skb2.sk == sk;
1141 }
1142 
1143 /**
1144  * alloc_skb_fclone - allocate a network buffer from fclone cache
1145  * @size: size to allocate
1146  * @priority: allocation mask
1147  *
1148  * This function is a convenient wrapper around __alloc_skb().
1149  */
1150 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1151 					       gfp_t priority)
1152 {
1153 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1154 }
1155 
1156 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1157 void skb_headers_offset_update(struct sk_buff *skb, int off);
1158 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1159 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1160 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1161 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1162 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1163 				   gfp_t gfp_mask, bool fclone);
1164 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1165 					  gfp_t gfp_mask)
1166 {
1167 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1168 }
1169 
1170 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1171 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1172 				     unsigned int headroom);
1173 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1174 				int newtailroom, gfp_t priority);
1175 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1176 				     int offset, int len);
1177 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1178 			      int offset, int len);
1179 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1180 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1181 
1182 /**
1183  *	skb_pad			-	zero pad the tail of an skb
1184  *	@skb: buffer to pad
1185  *	@pad: space to pad
1186  *
1187  *	Ensure that a buffer is followed by a padding area that is zero
1188  *	filled. Used by network drivers which may DMA or transfer data
1189  *	beyond the buffer end onto the wire.
1190  *
1191  *	May return error in out of memory cases. The skb is freed on error.
1192  */
1193 static inline int skb_pad(struct sk_buff *skb, int pad)
1194 {
1195 	return __skb_pad(skb, pad, true);
1196 }
1197 #define dev_kfree_skb(a)	consume_skb(a)
1198 
1199 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1200 			 int offset, size_t size);
1201 
1202 struct skb_seq_state {
1203 	__u32		lower_offset;
1204 	__u32		upper_offset;
1205 	__u32		frag_idx;
1206 	__u32		stepped_offset;
1207 	struct sk_buff	*root_skb;
1208 	struct sk_buff	*cur_skb;
1209 	__u8		*frag_data;
1210 	__u32		frag_off;
1211 };
1212 
1213 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1214 			  unsigned int to, struct skb_seq_state *st);
1215 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1216 			  struct skb_seq_state *st);
1217 void skb_abort_seq_read(struct skb_seq_state *st);
1218 
1219 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1220 			   unsigned int to, struct ts_config *config);
1221 
1222 /*
1223  * Packet hash types specify the type of hash in skb_set_hash.
1224  *
1225  * Hash types refer to the protocol layer addresses which are used to
1226  * construct a packet's hash. The hashes are used to differentiate or identify
1227  * flows of the protocol layer for the hash type. Hash types are either
1228  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1229  *
1230  * Properties of hashes:
1231  *
1232  * 1) Two packets in different flows have different hash values
1233  * 2) Two packets in the same flow should have the same hash value
1234  *
1235  * A hash at a higher layer is considered to be more specific. A driver should
1236  * set the most specific hash possible.
1237  *
1238  * A driver cannot indicate a more specific hash than the layer at which a hash
1239  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1240  *
1241  * A driver may indicate a hash level which is less specific than the
1242  * actual layer the hash was computed on. For instance, a hash computed
1243  * at L4 may be considered an L3 hash. This should only be done if the
1244  * driver can't unambiguously determine that the HW computed the hash at
1245  * the higher layer. Note that the "should" in the second property above
1246  * permits this.
1247  */
1248 enum pkt_hash_types {
1249 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1250 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1251 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1252 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1253 };
1254 
1255 static inline void skb_clear_hash(struct sk_buff *skb)
1256 {
1257 	skb->hash = 0;
1258 	skb->sw_hash = 0;
1259 	skb->l4_hash = 0;
1260 }
1261 
1262 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1263 {
1264 	if (!skb->l4_hash)
1265 		skb_clear_hash(skb);
1266 }
1267 
1268 static inline void
1269 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1270 {
1271 	skb->l4_hash = is_l4;
1272 	skb->sw_hash = is_sw;
1273 	skb->hash = hash;
1274 }
1275 
1276 static inline void
1277 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1278 {
1279 	/* Used by drivers to set hash from HW */
1280 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1281 }
1282 
1283 static inline void
1284 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1285 {
1286 	__skb_set_hash(skb, hash, true, is_l4);
1287 }
1288 
1289 void __skb_get_hash(struct sk_buff *skb);
1290 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1291 u32 skb_get_poff(const struct sk_buff *skb);
1292 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1293 		   const struct flow_keys_basic *keys, int hlen);
1294 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1295 			    void *data, int hlen_proto);
1296 
1297 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1298 					int thoff, u8 ip_proto)
1299 {
1300 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1301 }
1302 
1303 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1304 			     const struct flow_dissector_key *key,
1305 			     unsigned int key_count);
1306 
1307 struct bpf_flow_dissector;
1308 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1309 		      __be16 proto, int nhoff, int hlen, unsigned int flags);
1310 
1311 bool __skb_flow_dissect(const struct net *net,
1312 			const struct sk_buff *skb,
1313 			struct flow_dissector *flow_dissector,
1314 			void *target_container,
1315 			void *data, __be16 proto, int nhoff, int hlen,
1316 			unsigned int flags);
1317 
1318 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1319 				    struct flow_dissector *flow_dissector,
1320 				    void *target_container, unsigned int flags)
1321 {
1322 	return __skb_flow_dissect(NULL, skb, flow_dissector,
1323 				  target_container, NULL, 0, 0, 0, flags);
1324 }
1325 
1326 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1327 					      struct flow_keys *flow,
1328 					      unsigned int flags)
1329 {
1330 	memset(flow, 0, sizeof(*flow));
1331 	return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1332 				  flow, NULL, 0, 0, 0, flags);
1333 }
1334 
1335 static inline bool
1336 skb_flow_dissect_flow_keys_basic(const struct net *net,
1337 				 const struct sk_buff *skb,
1338 				 struct flow_keys_basic *flow, void *data,
1339 				 __be16 proto, int nhoff, int hlen,
1340 				 unsigned int flags)
1341 {
1342 	memset(flow, 0, sizeof(*flow));
1343 	return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1344 				  data, proto, nhoff, hlen, flags);
1345 }
1346 
1347 void skb_flow_dissect_meta(const struct sk_buff *skb,
1348 			   struct flow_dissector *flow_dissector,
1349 			   void *target_container);
1350 
1351 /* Gets a skb connection tracking info, ctinfo map should be a
1352  * map of mapsize to translate enum ip_conntrack_info states
1353  * to user states.
1354  */
1355 void
1356 skb_flow_dissect_ct(const struct sk_buff *skb,
1357 		    struct flow_dissector *flow_dissector,
1358 		    void *target_container,
1359 		    u16 *ctinfo_map, size_t mapsize,
1360 		    bool post_ct);
1361 void
1362 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1363 			     struct flow_dissector *flow_dissector,
1364 			     void *target_container);
1365 
1366 void skb_flow_dissect_hash(const struct sk_buff *skb,
1367 			   struct flow_dissector *flow_dissector,
1368 			   void *target_container);
1369 
1370 static inline __u32 skb_get_hash(struct sk_buff *skb)
1371 {
1372 	if (!skb->l4_hash && !skb->sw_hash)
1373 		__skb_get_hash(skb);
1374 
1375 	return skb->hash;
1376 }
1377 
1378 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1379 {
1380 	if (!skb->l4_hash && !skb->sw_hash) {
1381 		struct flow_keys keys;
1382 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1383 
1384 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1385 	}
1386 
1387 	return skb->hash;
1388 }
1389 
1390 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1391 			   const siphash_key_t *perturb);
1392 
1393 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1394 {
1395 	return skb->hash;
1396 }
1397 
1398 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1399 {
1400 	to->hash = from->hash;
1401 	to->sw_hash = from->sw_hash;
1402 	to->l4_hash = from->l4_hash;
1403 };
1404 
1405 static inline void skb_copy_decrypted(struct sk_buff *to,
1406 				      const struct sk_buff *from)
1407 {
1408 #ifdef CONFIG_TLS_DEVICE
1409 	to->decrypted = from->decrypted;
1410 #endif
1411 }
1412 
1413 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1414 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1415 {
1416 	return skb->head + skb->end;
1417 }
1418 
1419 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1420 {
1421 	return skb->end;
1422 }
1423 #else
1424 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1425 {
1426 	return skb->end;
1427 }
1428 
1429 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1430 {
1431 	return skb->end - skb->head;
1432 }
1433 #endif
1434 
1435 /* Internal */
1436 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1437 
1438 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1439 {
1440 	return &skb_shinfo(skb)->hwtstamps;
1441 }
1442 
1443 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1444 {
1445 	bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE;
1446 
1447 	return is_zcopy ? skb_uarg(skb) : NULL;
1448 }
1449 
1450 static inline void net_zcopy_get(struct ubuf_info *uarg)
1451 {
1452 	refcount_inc(&uarg->refcnt);
1453 }
1454 
1455 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg)
1456 {
1457 	skb_shinfo(skb)->destructor_arg = uarg;
1458 	skb_shinfo(skb)->flags |= uarg->flags;
1459 }
1460 
1461 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1462 				 bool *have_ref)
1463 {
1464 	if (skb && uarg && !skb_zcopy(skb)) {
1465 		if (unlikely(have_ref && *have_ref))
1466 			*have_ref = false;
1467 		else
1468 			net_zcopy_get(uarg);
1469 		skb_zcopy_init(skb, uarg);
1470 	}
1471 }
1472 
1473 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1474 {
1475 	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1476 	skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG;
1477 }
1478 
1479 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1480 {
1481 	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1482 }
1483 
1484 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1485 {
1486 	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1487 }
1488 
1489 static inline void net_zcopy_put(struct ubuf_info *uarg)
1490 {
1491 	if (uarg)
1492 		uarg->callback(NULL, uarg, true);
1493 }
1494 
1495 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1496 {
1497 	if (uarg) {
1498 		if (uarg->callback == msg_zerocopy_callback)
1499 			msg_zerocopy_put_abort(uarg, have_uref);
1500 		else if (have_uref)
1501 			net_zcopy_put(uarg);
1502 	}
1503 }
1504 
1505 /* Release a reference on a zerocopy structure */
1506 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success)
1507 {
1508 	struct ubuf_info *uarg = skb_zcopy(skb);
1509 
1510 	if (uarg) {
1511 		if (!skb_zcopy_is_nouarg(skb))
1512 			uarg->callback(skb, uarg, zerocopy_success);
1513 
1514 		skb_shinfo(skb)->flags &= ~SKBFL_ZEROCOPY_FRAG;
1515 	}
1516 }
1517 
1518 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1519 {
1520 	skb->next = NULL;
1521 }
1522 
1523 /* Iterate through singly-linked GSO fragments of an skb. */
1524 #define skb_list_walk_safe(first, skb, next_skb)                               \
1525 	for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb);  \
1526 	     (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1527 
1528 static inline void skb_list_del_init(struct sk_buff *skb)
1529 {
1530 	__list_del_entry(&skb->list);
1531 	skb_mark_not_on_list(skb);
1532 }
1533 
1534 /**
1535  *	skb_queue_empty - check if a queue is empty
1536  *	@list: queue head
1537  *
1538  *	Returns true if the queue is empty, false otherwise.
1539  */
1540 static inline int skb_queue_empty(const struct sk_buff_head *list)
1541 {
1542 	return list->next == (const struct sk_buff *) list;
1543 }
1544 
1545 /**
1546  *	skb_queue_empty_lockless - check if a queue is empty
1547  *	@list: queue head
1548  *
1549  *	Returns true if the queue is empty, false otherwise.
1550  *	This variant can be used in lockless contexts.
1551  */
1552 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1553 {
1554 	return READ_ONCE(list->next) == (const struct sk_buff *) list;
1555 }
1556 
1557 
1558 /**
1559  *	skb_queue_is_last - check if skb is the last entry in the queue
1560  *	@list: queue head
1561  *	@skb: buffer
1562  *
1563  *	Returns true if @skb is the last buffer on the list.
1564  */
1565 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1566 				     const struct sk_buff *skb)
1567 {
1568 	return skb->next == (const struct sk_buff *) list;
1569 }
1570 
1571 /**
1572  *	skb_queue_is_first - check if skb is the first entry in the queue
1573  *	@list: queue head
1574  *	@skb: buffer
1575  *
1576  *	Returns true if @skb is the first buffer on the list.
1577  */
1578 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1579 				      const struct sk_buff *skb)
1580 {
1581 	return skb->prev == (const struct sk_buff *) list;
1582 }
1583 
1584 /**
1585  *	skb_queue_next - return the next packet in the queue
1586  *	@list: queue head
1587  *	@skb: current buffer
1588  *
1589  *	Return the next packet in @list after @skb.  It is only valid to
1590  *	call this if skb_queue_is_last() evaluates to false.
1591  */
1592 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1593 					     const struct sk_buff *skb)
1594 {
1595 	/* This BUG_ON may seem severe, but if we just return then we
1596 	 * are going to dereference garbage.
1597 	 */
1598 	BUG_ON(skb_queue_is_last(list, skb));
1599 	return skb->next;
1600 }
1601 
1602 /**
1603  *	skb_queue_prev - return the prev packet in the queue
1604  *	@list: queue head
1605  *	@skb: current buffer
1606  *
1607  *	Return the prev packet in @list before @skb.  It is only valid to
1608  *	call this if skb_queue_is_first() evaluates to false.
1609  */
1610 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1611 					     const struct sk_buff *skb)
1612 {
1613 	/* This BUG_ON may seem severe, but if we just return then we
1614 	 * are going to dereference garbage.
1615 	 */
1616 	BUG_ON(skb_queue_is_first(list, skb));
1617 	return skb->prev;
1618 }
1619 
1620 /**
1621  *	skb_get - reference buffer
1622  *	@skb: buffer to reference
1623  *
1624  *	Makes another reference to a socket buffer and returns a pointer
1625  *	to the buffer.
1626  */
1627 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1628 {
1629 	refcount_inc(&skb->users);
1630 	return skb;
1631 }
1632 
1633 /*
1634  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1635  */
1636 
1637 /**
1638  *	skb_cloned - is the buffer a clone
1639  *	@skb: buffer to check
1640  *
1641  *	Returns true if the buffer was generated with skb_clone() and is
1642  *	one of multiple shared copies of the buffer. Cloned buffers are
1643  *	shared data so must not be written to under normal circumstances.
1644  */
1645 static inline int skb_cloned(const struct sk_buff *skb)
1646 {
1647 	return skb->cloned &&
1648 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1649 }
1650 
1651 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1652 {
1653 	might_sleep_if(gfpflags_allow_blocking(pri));
1654 
1655 	if (skb_cloned(skb))
1656 		return pskb_expand_head(skb, 0, 0, pri);
1657 
1658 	return 0;
1659 }
1660 
1661 /**
1662  *	skb_header_cloned - is the header a clone
1663  *	@skb: buffer to check
1664  *
1665  *	Returns true if modifying the header part of the buffer requires
1666  *	the data to be copied.
1667  */
1668 static inline int skb_header_cloned(const struct sk_buff *skb)
1669 {
1670 	int dataref;
1671 
1672 	if (!skb->cloned)
1673 		return 0;
1674 
1675 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1676 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1677 	return dataref != 1;
1678 }
1679 
1680 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1681 {
1682 	might_sleep_if(gfpflags_allow_blocking(pri));
1683 
1684 	if (skb_header_cloned(skb))
1685 		return pskb_expand_head(skb, 0, 0, pri);
1686 
1687 	return 0;
1688 }
1689 
1690 /**
1691  *	__skb_header_release - release reference to header
1692  *	@skb: buffer to operate on
1693  */
1694 static inline void __skb_header_release(struct sk_buff *skb)
1695 {
1696 	skb->nohdr = 1;
1697 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1698 }
1699 
1700 
1701 /**
1702  *	skb_shared - is the buffer shared
1703  *	@skb: buffer to check
1704  *
1705  *	Returns true if more than one person has a reference to this
1706  *	buffer.
1707  */
1708 static inline int skb_shared(const struct sk_buff *skb)
1709 {
1710 	return refcount_read(&skb->users) != 1;
1711 }
1712 
1713 /**
1714  *	skb_share_check - check if buffer is shared and if so clone it
1715  *	@skb: buffer to check
1716  *	@pri: priority for memory allocation
1717  *
1718  *	If the buffer is shared the buffer is cloned and the old copy
1719  *	drops a reference. A new clone with a single reference is returned.
1720  *	If the buffer is not shared the original buffer is returned. When
1721  *	being called from interrupt status or with spinlocks held pri must
1722  *	be GFP_ATOMIC.
1723  *
1724  *	NULL is returned on a memory allocation failure.
1725  */
1726 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1727 {
1728 	might_sleep_if(gfpflags_allow_blocking(pri));
1729 	if (skb_shared(skb)) {
1730 		struct sk_buff *nskb = skb_clone(skb, pri);
1731 
1732 		if (likely(nskb))
1733 			consume_skb(skb);
1734 		else
1735 			kfree_skb(skb);
1736 		skb = nskb;
1737 	}
1738 	return skb;
1739 }
1740 
1741 /*
1742  *	Copy shared buffers into a new sk_buff. We effectively do COW on
1743  *	packets to handle cases where we have a local reader and forward
1744  *	and a couple of other messy ones. The normal one is tcpdumping
1745  *	a packet thats being forwarded.
1746  */
1747 
1748 /**
1749  *	skb_unshare - make a copy of a shared buffer
1750  *	@skb: buffer to check
1751  *	@pri: priority for memory allocation
1752  *
1753  *	If the socket buffer is a clone then this function creates a new
1754  *	copy of the data, drops a reference count on the old copy and returns
1755  *	the new copy with the reference count at 1. If the buffer is not a clone
1756  *	the original buffer is returned. When called with a spinlock held or
1757  *	from interrupt state @pri must be %GFP_ATOMIC
1758  *
1759  *	%NULL is returned on a memory allocation failure.
1760  */
1761 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1762 					  gfp_t pri)
1763 {
1764 	might_sleep_if(gfpflags_allow_blocking(pri));
1765 	if (skb_cloned(skb)) {
1766 		struct sk_buff *nskb = skb_copy(skb, pri);
1767 
1768 		/* Free our shared copy */
1769 		if (likely(nskb))
1770 			consume_skb(skb);
1771 		else
1772 			kfree_skb(skb);
1773 		skb = nskb;
1774 	}
1775 	return skb;
1776 }
1777 
1778 /**
1779  *	skb_peek - peek at the head of an &sk_buff_head
1780  *	@list_: list to peek at
1781  *
1782  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1783  *	be careful with this one. A peek leaves the buffer on the
1784  *	list and someone else may run off with it. You must hold
1785  *	the appropriate locks or have a private queue to do this.
1786  *
1787  *	Returns %NULL for an empty list or a pointer to the head element.
1788  *	The reference count is not incremented and the reference is therefore
1789  *	volatile. Use with caution.
1790  */
1791 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1792 {
1793 	struct sk_buff *skb = list_->next;
1794 
1795 	if (skb == (struct sk_buff *)list_)
1796 		skb = NULL;
1797 	return skb;
1798 }
1799 
1800 /**
1801  *	__skb_peek - peek at the head of a non-empty &sk_buff_head
1802  *	@list_: list to peek at
1803  *
1804  *	Like skb_peek(), but the caller knows that the list is not empty.
1805  */
1806 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
1807 {
1808 	return list_->next;
1809 }
1810 
1811 /**
1812  *	skb_peek_next - peek skb following the given one from a queue
1813  *	@skb: skb to start from
1814  *	@list_: list to peek at
1815  *
1816  *	Returns %NULL when the end of the list is met or a pointer to the
1817  *	next element. The reference count is not incremented and the
1818  *	reference is therefore volatile. Use with caution.
1819  */
1820 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1821 		const struct sk_buff_head *list_)
1822 {
1823 	struct sk_buff *next = skb->next;
1824 
1825 	if (next == (struct sk_buff *)list_)
1826 		next = NULL;
1827 	return next;
1828 }
1829 
1830 /**
1831  *	skb_peek_tail - peek at the tail of an &sk_buff_head
1832  *	@list_: list to peek at
1833  *
1834  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1835  *	be careful with this one. A peek leaves the buffer on the
1836  *	list and someone else may run off with it. You must hold
1837  *	the appropriate locks or have a private queue to do this.
1838  *
1839  *	Returns %NULL for an empty list or a pointer to the tail element.
1840  *	The reference count is not incremented and the reference is therefore
1841  *	volatile. Use with caution.
1842  */
1843 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1844 {
1845 	struct sk_buff *skb = READ_ONCE(list_->prev);
1846 
1847 	if (skb == (struct sk_buff *)list_)
1848 		skb = NULL;
1849 	return skb;
1850 
1851 }
1852 
1853 /**
1854  *	skb_queue_len	- get queue length
1855  *	@list_: list to measure
1856  *
1857  *	Return the length of an &sk_buff queue.
1858  */
1859 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1860 {
1861 	return list_->qlen;
1862 }
1863 
1864 /**
1865  *	skb_queue_len_lockless	- get queue length
1866  *	@list_: list to measure
1867  *
1868  *	Return the length of an &sk_buff queue.
1869  *	This variant can be used in lockless contexts.
1870  */
1871 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
1872 {
1873 	return READ_ONCE(list_->qlen);
1874 }
1875 
1876 /**
1877  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1878  *	@list: queue to initialize
1879  *
1880  *	This initializes only the list and queue length aspects of
1881  *	an sk_buff_head object.  This allows to initialize the list
1882  *	aspects of an sk_buff_head without reinitializing things like
1883  *	the spinlock.  It can also be used for on-stack sk_buff_head
1884  *	objects where the spinlock is known to not be used.
1885  */
1886 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1887 {
1888 	list->prev = list->next = (struct sk_buff *)list;
1889 	list->qlen = 0;
1890 }
1891 
1892 /*
1893  * This function creates a split out lock class for each invocation;
1894  * this is needed for now since a whole lot of users of the skb-queue
1895  * infrastructure in drivers have different locking usage (in hardirq)
1896  * than the networking core (in softirq only). In the long run either the
1897  * network layer or drivers should need annotation to consolidate the
1898  * main types of usage into 3 classes.
1899  */
1900 static inline void skb_queue_head_init(struct sk_buff_head *list)
1901 {
1902 	spin_lock_init(&list->lock);
1903 	__skb_queue_head_init(list);
1904 }
1905 
1906 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1907 		struct lock_class_key *class)
1908 {
1909 	skb_queue_head_init(list);
1910 	lockdep_set_class(&list->lock, class);
1911 }
1912 
1913 /*
1914  *	Insert an sk_buff on a list.
1915  *
1916  *	The "__skb_xxxx()" functions are the non-atomic ones that
1917  *	can only be called with interrupts disabled.
1918  */
1919 static inline void __skb_insert(struct sk_buff *newsk,
1920 				struct sk_buff *prev, struct sk_buff *next,
1921 				struct sk_buff_head *list)
1922 {
1923 	/* See skb_queue_empty_lockless() and skb_peek_tail()
1924 	 * for the opposite READ_ONCE()
1925 	 */
1926 	WRITE_ONCE(newsk->next, next);
1927 	WRITE_ONCE(newsk->prev, prev);
1928 	WRITE_ONCE(next->prev, newsk);
1929 	WRITE_ONCE(prev->next, newsk);
1930 	list->qlen++;
1931 }
1932 
1933 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1934 				      struct sk_buff *prev,
1935 				      struct sk_buff *next)
1936 {
1937 	struct sk_buff *first = list->next;
1938 	struct sk_buff *last = list->prev;
1939 
1940 	WRITE_ONCE(first->prev, prev);
1941 	WRITE_ONCE(prev->next, first);
1942 
1943 	WRITE_ONCE(last->next, next);
1944 	WRITE_ONCE(next->prev, last);
1945 }
1946 
1947 /**
1948  *	skb_queue_splice - join two skb lists, this is designed for stacks
1949  *	@list: the new list to add
1950  *	@head: the place to add it in the first list
1951  */
1952 static inline void skb_queue_splice(const struct sk_buff_head *list,
1953 				    struct sk_buff_head *head)
1954 {
1955 	if (!skb_queue_empty(list)) {
1956 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1957 		head->qlen += list->qlen;
1958 	}
1959 }
1960 
1961 /**
1962  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1963  *	@list: the new list to add
1964  *	@head: the place to add it in the first list
1965  *
1966  *	The list at @list is reinitialised
1967  */
1968 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1969 					 struct sk_buff_head *head)
1970 {
1971 	if (!skb_queue_empty(list)) {
1972 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1973 		head->qlen += list->qlen;
1974 		__skb_queue_head_init(list);
1975 	}
1976 }
1977 
1978 /**
1979  *	skb_queue_splice_tail - join two skb lists, each list being a queue
1980  *	@list: the new list to add
1981  *	@head: the place to add it in the first list
1982  */
1983 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1984 					 struct sk_buff_head *head)
1985 {
1986 	if (!skb_queue_empty(list)) {
1987 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1988 		head->qlen += list->qlen;
1989 	}
1990 }
1991 
1992 /**
1993  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1994  *	@list: the new list to add
1995  *	@head: the place to add it in the first list
1996  *
1997  *	Each of the lists is a queue.
1998  *	The list at @list is reinitialised
1999  */
2000 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
2001 					      struct sk_buff_head *head)
2002 {
2003 	if (!skb_queue_empty(list)) {
2004 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2005 		head->qlen += list->qlen;
2006 		__skb_queue_head_init(list);
2007 	}
2008 }
2009 
2010 /**
2011  *	__skb_queue_after - queue a buffer at the list head
2012  *	@list: list to use
2013  *	@prev: place after this buffer
2014  *	@newsk: buffer to queue
2015  *
2016  *	Queue a buffer int the middle of a list. This function takes no locks
2017  *	and you must therefore hold required locks before calling it.
2018  *
2019  *	A buffer cannot be placed on two lists at the same time.
2020  */
2021 static inline void __skb_queue_after(struct sk_buff_head *list,
2022 				     struct sk_buff *prev,
2023 				     struct sk_buff *newsk)
2024 {
2025 	__skb_insert(newsk, prev, prev->next, list);
2026 }
2027 
2028 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2029 		struct sk_buff_head *list);
2030 
2031 static inline void __skb_queue_before(struct sk_buff_head *list,
2032 				      struct sk_buff *next,
2033 				      struct sk_buff *newsk)
2034 {
2035 	__skb_insert(newsk, next->prev, next, list);
2036 }
2037 
2038 /**
2039  *	__skb_queue_head - queue a buffer at the list head
2040  *	@list: list to use
2041  *	@newsk: buffer to queue
2042  *
2043  *	Queue a buffer at the start of a list. This function takes no locks
2044  *	and you must therefore hold required locks before calling it.
2045  *
2046  *	A buffer cannot be placed on two lists at the same time.
2047  */
2048 static inline void __skb_queue_head(struct sk_buff_head *list,
2049 				    struct sk_buff *newsk)
2050 {
2051 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
2052 }
2053 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2054 
2055 /**
2056  *	__skb_queue_tail - queue a buffer at the list tail
2057  *	@list: list to use
2058  *	@newsk: buffer to queue
2059  *
2060  *	Queue a buffer at the end of a list. This function takes no locks
2061  *	and you must therefore hold required locks before calling it.
2062  *
2063  *	A buffer cannot be placed on two lists at the same time.
2064  */
2065 static inline void __skb_queue_tail(struct sk_buff_head *list,
2066 				   struct sk_buff *newsk)
2067 {
2068 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
2069 }
2070 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2071 
2072 /*
2073  * remove sk_buff from list. _Must_ be called atomically, and with
2074  * the list known..
2075  */
2076 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
2077 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2078 {
2079 	struct sk_buff *next, *prev;
2080 
2081 	WRITE_ONCE(list->qlen, list->qlen - 1);
2082 	next	   = skb->next;
2083 	prev	   = skb->prev;
2084 	skb->next  = skb->prev = NULL;
2085 	WRITE_ONCE(next->prev, prev);
2086 	WRITE_ONCE(prev->next, next);
2087 }
2088 
2089 /**
2090  *	__skb_dequeue - remove from the head of the queue
2091  *	@list: list to dequeue from
2092  *
2093  *	Remove the head of the list. This function does not take any locks
2094  *	so must be used with appropriate locks held only. The head item is
2095  *	returned or %NULL if the list is empty.
2096  */
2097 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2098 {
2099 	struct sk_buff *skb = skb_peek(list);
2100 	if (skb)
2101 		__skb_unlink(skb, list);
2102 	return skb;
2103 }
2104 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2105 
2106 /**
2107  *	__skb_dequeue_tail - remove from the tail of the queue
2108  *	@list: list to dequeue from
2109  *
2110  *	Remove the tail of the list. This function does not take any locks
2111  *	so must be used with appropriate locks held only. The tail item is
2112  *	returned or %NULL if the list is empty.
2113  */
2114 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2115 {
2116 	struct sk_buff *skb = skb_peek_tail(list);
2117 	if (skb)
2118 		__skb_unlink(skb, list);
2119 	return skb;
2120 }
2121 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2122 
2123 
2124 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2125 {
2126 	return skb->data_len;
2127 }
2128 
2129 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2130 {
2131 	return skb->len - skb->data_len;
2132 }
2133 
2134 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2135 {
2136 	unsigned int i, len = 0;
2137 
2138 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2139 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2140 	return len;
2141 }
2142 
2143 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2144 {
2145 	return skb_headlen(skb) + __skb_pagelen(skb);
2146 }
2147 
2148 /**
2149  * __skb_fill_page_desc - initialise a paged fragment in an skb
2150  * @skb: buffer containing fragment to be initialised
2151  * @i: paged fragment index to initialise
2152  * @page: the page to use for this fragment
2153  * @off: the offset to the data with @page
2154  * @size: the length of the data
2155  *
2156  * Initialises the @i'th fragment of @skb to point to &size bytes at
2157  * offset @off within @page.
2158  *
2159  * Does not take any additional reference on the fragment.
2160  */
2161 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2162 					struct page *page, int off, int size)
2163 {
2164 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2165 
2166 	/*
2167 	 * Propagate page pfmemalloc to the skb if we can. The problem is
2168 	 * that not all callers have unique ownership of the page but rely
2169 	 * on page_is_pfmemalloc doing the right thing(tm).
2170 	 */
2171 	frag->bv_page		  = page;
2172 	frag->bv_offset		  = off;
2173 	skb_frag_size_set(frag, size);
2174 
2175 	page = compound_head(page);
2176 	if (page_is_pfmemalloc(page))
2177 		skb->pfmemalloc	= true;
2178 }
2179 
2180 /**
2181  * skb_fill_page_desc - initialise a paged fragment in an skb
2182  * @skb: buffer containing fragment to be initialised
2183  * @i: paged fragment index to initialise
2184  * @page: the page to use for this fragment
2185  * @off: the offset to the data with @page
2186  * @size: the length of the data
2187  *
2188  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2189  * @skb to point to @size bytes at offset @off within @page. In
2190  * addition updates @skb such that @i is the last fragment.
2191  *
2192  * Does not take any additional reference on the fragment.
2193  */
2194 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2195 				      struct page *page, int off, int size)
2196 {
2197 	__skb_fill_page_desc(skb, i, page, off, size);
2198 	skb_shinfo(skb)->nr_frags = i + 1;
2199 }
2200 
2201 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2202 		     int size, unsigned int truesize);
2203 
2204 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2205 			  unsigned int truesize);
2206 
2207 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2208 
2209 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2210 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2211 {
2212 	return skb->head + skb->tail;
2213 }
2214 
2215 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2216 {
2217 	skb->tail = skb->data - skb->head;
2218 }
2219 
2220 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2221 {
2222 	skb_reset_tail_pointer(skb);
2223 	skb->tail += offset;
2224 }
2225 
2226 #else /* NET_SKBUFF_DATA_USES_OFFSET */
2227 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2228 {
2229 	return skb->tail;
2230 }
2231 
2232 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2233 {
2234 	skb->tail = skb->data;
2235 }
2236 
2237 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2238 {
2239 	skb->tail = skb->data + offset;
2240 }
2241 
2242 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2243 
2244 /*
2245  *	Add data to an sk_buff
2246  */
2247 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2248 void *skb_put(struct sk_buff *skb, unsigned int len);
2249 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2250 {
2251 	void *tmp = skb_tail_pointer(skb);
2252 	SKB_LINEAR_ASSERT(skb);
2253 	skb->tail += len;
2254 	skb->len  += len;
2255 	return tmp;
2256 }
2257 
2258 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2259 {
2260 	void *tmp = __skb_put(skb, len);
2261 
2262 	memset(tmp, 0, len);
2263 	return tmp;
2264 }
2265 
2266 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2267 				   unsigned int len)
2268 {
2269 	void *tmp = __skb_put(skb, len);
2270 
2271 	memcpy(tmp, data, len);
2272 	return tmp;
2273 }
2274 
2275 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2276 {
2277 	*(u8 *)__skb_put(skb, 1) = val;
2278 }
2279 
2280 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2281 {
2282 	void *tmp = skb_put(skb, len);
2283 
2284 	memset(tmp, 0, len);
2285 
2286 	return tmp;
2287 }
2288 
2289 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2290 				 unsigned int len)
2291 {
2292 	void *tmp = skb_put(skb, len);
2293 
2294 	memcpy(tmp, data, len);
2295 
2296 	return tmp;
2297 }
2298 
2299 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2300 {
2301 	*(u8 *)skb_put(skb, 1) = val;
2302 }
2303 
2304 void *skb_push(struct sk_buff *skb, unsigned int len);
2305 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2306 {
2307 	skb->data -= len;
2308 	skb->len  += len;
2309 	return skb->data;
2310 }
2311 
2312 void *skb_pull(struct sk_buff *skb, unsigned int len);
2313 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2314 {
2315 	skb->len -= len;
2316 	BUG_ON(skb->len < skb->data_len);
2317 	return skb->data += len;
2318 }
2319 
2320 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2321 {
2322 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2323 }
2324 
2325 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2326 
2327 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2328 {
2329 	if (len > skb_headlen(skb) &&
2330 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2331 		return NULL;
2332 	skb->len -= len;
2333 	return skb->data += len;
2334 }
2335 
2336 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2337 {
2338 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2339 }
2340 
2341 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2342 {
2343 	if (likely(len <= skb_headlen(skb)))
2344 		return true;
2345 	if (unlikely(len > skb->len))
2346 		return false;
2347 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2348 }
2349 
2350 void skb_condense(struct sk_buff *skb);
2351 
2352 /**
2353  *	skb_headroom - bytes at buffer head
2354  *	@skb: buffer to check
2355  *
2356  *	Return the number of bytes of free space at the head of an &sk_buff.
2357  */
2358 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2359 {
2360 	return skb->data - skb->head;
2361 }
2362 
2363 /**
2364  *	skb_tailroom - bytes at buffer end
2365  *	@skb: buffer to check
2366  *
2367  *	Return the number of bytes of free space at the tail of an sk_buff
2368  */
2369 static inline int skb_tailroom(const struct sk_buff *skb)
2370 {
2371 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2372 }
2373 
2374 /**
2375  *	skb_availroom - bytes at buffer end
2376  *	@skb: buffer to check
2377  *
2378  *	Return the number of bytes of free space at the tail of an sk_buff
2379  *	allocated by sk_stream_alloc()
2380  */
2381 static inline int skb_availroom(const struct sk_buff *skb)
2382 {
2383 	if (skb_is_nonlinear(skb))
2384 		return 0;
2385 
2386 	return skb->end - skb->tail - skb->reserved_tailroom;
2387 }
2388 
2389 /**
2390  *	skb_reserve - adjust headroom
2391  *	@skb: buffer to alter
2392  *	@len: bytes to move
2393  *
2394  *	Increase the headroom of an empty &sk_buff by reducing the tail
2395  *	room. This is only allowed for an empty buffer.
2396  */
2397 static inline void skb_reserve(struct sk_buff *skb, int len)
2398 {
2399 	skb->data += len;
2400 	skb->tail += len;
2401 }
2402 
2403 /**
2404  *	skb_tailroom_reserve - adjust reserved_tailroom
2405  *	@skb: buffer to alter
2406  *	@mtu: maximum amount of headlen permitted
2407  *	@needed_tailroom: minimum amount of reserved_tailroom
2408  *
2409  *	Set reserved_tailroom so that headlen can be as large as possible but
2410  *	not larger than mtu and tailroom cannot be smaller than
2411  *	needed_tailroom.
2412  *	The required headroom should already have been reserved before using
2413  *	this function.
2414  */
2415 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2416 					unsigned int needed_tailroom)
2417 {
2418 	SKB_LINEAR_ASSERT(skb);
2419 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2420 		/* use at most mtu */
2421 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2422 	else
2423 		/* use up to all available space */
2424 		skb->reserved_tailroom = needed_tailroom;
2425 }
2426 
2427 #define ENCAP_TYPE_ETHER	0
2428 #define ENCAP_TYPE_IPPROTO	1
2429 
2430 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2431 					  __be16 protocol)
2432 {
2433 	skb->inner_protocol = protocol;
2434 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2435 }
2436 
2437 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2438 					 __u8 ipproto)
2439 {
2440 	skb->inner_ipproto = ipproto;
2441 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2442 }
2443 
2444 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2445 {
2446 	skb->inner_mac_header = skb->mac_header;
2447 	skb->inner_network_header = skb->network_header;
2448 	skb->inner_transport_header = skb->transport_header;
2449 }
2450 
2451 static inline void skb_reset_mac_len(struct sk_buff *skb)
2452 {
2453 	skb->mac_len = skb->network_header - skb->mac_header;
2454 }
2455 
2456 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2457 							*skb)
2458 {
2459 	return skb->head + skb->inner_transport_header;
2460 }
2461 
2462 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2463 {
2464 	return skb_inner_transport_header(skb) - skb->data;
2465 }
2466 
2467 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2468 {
2469 	skb->inner_transport_header = skb->data - skb->head;
2470 }
2471 
2472 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2473 						   const int offset)
2474 {
2475 	skb_reset_inner_transport_header(skb);
2476 	skb->inner_transport_header += offset;
2477 }
2478 
2479 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2480 {
2481 	return skb->head + skb->inner_network_header;
2482 }
2483 
2484 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2485 {
2486 	skb->inner_network_header = skb->data - skb->head;
2487 }
2488 
2489 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2490 						const int offset)
2491 {
2492 	skb_reset_inner_network_header(skb);
2493 	skb->inner_network_header += offset;
2494 }
2495 
2496 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2497 {
2498 	return skb->head + skb->inner_mac_header;
2499 }
2500 
2501 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2502 {
2503 	skb->inner_mac_header = skb->data - skb->head;
2504 }
2505 
2506 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2507 					    const int offset)
2508 {
2509 	skb_reset_inner_mac_header(skb);
2510 	skb->inner_mac_header += offset;
2511 }
2512 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2513 {
2514 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2515 }
2516 
2517 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2518 {
2519 	return skb->head + skb->transport_header;
2520 }
2521 
2522 static inline void skb_reset_transport_header(struct sk_buff *skb)
2523 {
2524 	skb->transport_header = skb->data - skb->head;
2525 }
2526 
2527 static inline void skb_set_transport_header(struct sk_buff *skb,
2528 					    const int offset)
2529 {
2530 	skb_reset_transport_header(skb);
2531 	skb->transport_header += offset;
2532 }
2533 
2534 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2535 {
2536 	return skb->head + skb->network_header;
2537 }
2538 
2539 static inline void skb_reset_network_header(struct sk_buff *skb)
2540 {
2541 	skb->network_header = skb->data - skb->head;
2542 }
2543 
2544 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2545 {
2546 	skb_reset_network_header(skb);
2547 	skb->network_header += offset;
2548 }
2549 
2550 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2551 {
2552 	return skb->head + skb->mac_header;
2553 }
2554 
2555 static inline int skb_mac_offset(const struct sk_buff *skb)
2556 {
2557 	return skb_mac_header(skb) - skb->data;
2558 }
2559 
2560 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2561 {
2562 	return skb->network_header - skb->mac_header;
2563 }
2564 
2565 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2566 {
2567 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2568 }
2569 
2570 static inline void skb_unset_mac_header(struct sk_buff *skb)
2571 {
2572 	skb->mac_header = (typeof(skb->mac_header))~0U;
2573 }
2574 
2575 static inline void skb_reset_mac_header(struct sk_buff *skb)
2576 {
2577 	skb->mac_header = skb->data - skb->head;
2578 }
2579 
2580 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2581 {
2582 	skb_reset_mac_header(skb);
2583 	skb->mac_header += offset;
2584 }
2585 
2586 static inline void skb_pop_mac_header(struct sk_buff *skb)
2587 {
2588 	skb->mac_header = skb->network_header;
2589 }
2590 
2591 static inline void skb_probe_transport_header(struct sk_buff *skb)
2592 {
2593 	struct flow_keys_basic keys;
2594 
2595 	if (skb_transport_header_was_set(skb))
2596 		return;
2597 
2598 	if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2599 					     NULL, 0, 0, 0, 0))
2600 		skb_set_transport_header(skb, keys.control.thoff);
2601 }
2602 
2603 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2604 {
2605 	if (skb_mac_header_was_set(skb)) {
2606 		const unsigned char *old_mac = skb_mac_header(skb);
2607 
2608 		skb_set_mac_header(skb, -skb->mac_len);
2609 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2610 	}
2611 }
2612 
2613 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2614 {
2615 	return skb->csum_start - skb_headroom(skb);
2616 }
2617 
2618 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2619 {
2620 	return skb->head + skb->csum_start;
2621 }
2622 
2623 static inline int skb_transport_offset(const struct sk_buff *skb)
2624 {
2625 	return skb_transport_header(skb) - skb->data;
2626 }
2627 
2628 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2629 {
2630 	return skb->transport_header - skb->network_header;
2631 }
2632 
2633 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2634 {
2635 	return skb->inner_transport_header - skb->inner_network_header;
2636 }
2637 
2638 static inline int skb_network_offset(const struct sk_buff *skb)
2639 {
2640 	return skb_network_header(skb) - skb->data;
2641 }
2642 
2643 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2644 {
2645 	return skb_inner_network_header(skb) - skb->data;
2646 }
2647 
2648 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2649 {
2650 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
2651 }
2652 
2653 /*
2654  * CPUs often take a performance hit when accessing unaligned memory
2655  * locations. The actual performance hit varies, it can be small if the
2656  * hardware handles it or large if we have to take an exception and fix it
2657  * in software.
2658  *
2659  * Since an ethernet header is 14 bytes network drivers often end up with
2660  * the IP header at an unaligned offset. The IP header can be aligned by
2661  * shifting the start of the packet by 2 bytes. Drivers should do this
2662  * with:
2663  *
2664  * skb_reserve(skb, NET_IP_ALIGN);
2665  *
2666  * The downside to this alignment of the IP header is that the DMA is now
2667  * unaligned. On some architectures the cost of an unaligned DMA is high
2668  * and this cost outweighs the gains made by aligning the IP header.
2669  *
2670  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2671  * to be overridden.
2672  */
2673 #ifndef NET_IP_ALIGN
2674 #define NET_IP_ALIGN	2
2675 #endif
2676 
2677 /*
2678  * The networking layer reserves some headroom in skb data (via
2679  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2680  * the header has to grow. In the default case, if the header has to grow
2681  * 32 bytes or less we avoid the reallocation.
2682  *
2683  * Unfortunately this headroom changes the DMA alignment of the resulting
2684  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2685  * on some architectures. An architecture can override this value,
2686  * perhaps setting it to a cacheline in size (since that will maintain
2687  * cacheline alignment of the DMA). It must be a power of 2.
2688  *
2689  * Various parts of the networking layer expect at least 32 bytes of
2690  * headroom, you should not reduce this.
2691  *
2692  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2693  * to reduce average number of cache lines per packet.
2694  * get_rps_cpu() for example only access one 64 bytes aligned block :
2695  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2696  */
2697 #ifndef NET_SKB_PAD
2698 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2699 #endif
2700 
2701 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2702 
2703 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2704 {
2705 	if (WARN_ON(skb_is_nonlinear(skb)))
2706 		return;
2707 	skb->len = len;
2708 	skb_set_tail_pointer(skb, len);
2709 }
2710 
2711 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2712 {
2713 	__skb_set_length(skb, len);
2714 }
2715 
2716 void skb_trim(struct sk_buff *skb, unsigned int len);
2717 
2718 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2719 {
2720 	if (skb->data_len)
2721 		return ___pskb_trim(skb, len);
2722 	__skb_trim(skb, len);
2723 	return 0;
2724 }
2725 
2726 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2727 {
2728 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2729 }
2730 
2731 /**
2732  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2733  *	@skb: buffer to alter
2734  *	@len: new length
2735  *
2736  *	This is identical to pskb_trim except that the caller knows that
2737  *	the skb is not cloned so we should never get an error due to out-
2738  *	of-memory.
2739  */
2740 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2741 {
2742 	int err = pskb_trim(skb, len);
2743 	BUG_ON(err);
2744 }
2745 
2746 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2747 {
2748 	unsigned int diff = len - skb->len;
2749 
2750 	if (skb_tailroom(skb) < diff) {
2751 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2752 					   GFP_ATOMIC);
2753 		if (ret)
2754 			return ret;
2755 	}
2756 	__skb_set_length(skb, len);
2757 	return 0;
2758 }
2759 
2760 /**
2761  *	skb_orphan - orphan a buffer
2762  *	@skb: buffer to orphan
2763  *
2764  *	If a buffer currently has an owner then we call the owner's
2765  *	destructor function and make the @skb unowned. The buffer continues
2766  *	to exist but is no longer charged to its former owner.
2767  */
2768 static inline void skb_orphan(struct sk_buff *skb)
2769 {
2770 	if (skb->destructor) {
2771 		skb->destructor(skb);
2772 		skb->destructor = NULL;
2773 		skb->sk		= NULL;
2774 	} else {
2775 		BUG_ON(skb->sk);
2776 	}
2777 }
2778 
2779 /**
2780  *	skb_orphan_frags - orphan the frags contained in a buffer
2781  *	@skb: buffer to orphan frags from
2782  *	@gfp_mask: allocation mask for replacement pages
2783  *
2784  *	For each frag in the SKB which needs a destructor (i.e. has an
2785  *	owner) create a copy of that frag and release the original
2786  *	page by calling the destructor.
2787  */
2788 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2789 {
2790 	if (likely(!skb_zcopy(skb)))
2791 		return 0;
2792 	if (!skb_zcopy_is_nouarg(skb) &&
2793 	    skb_uarg(skb)->callback == msg_zerocopy_callback)
2794 		return 0;
2795 	return skb_copy_ubufs(skb, gfp_mask);
2796 }
2797 
2798 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
2799 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2800 {
2801 	if (likely(!skb_zcopy(skb)))
2802 		return 0;
2803 	return skb_copy_ubufs(skb, gfp_mask);
2804 }
2805 
2806 /**
2807  *	__skb_queue_purge - empty a list
2808  *	@list: list to empty
2809  *
2810  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2811  *	the list and one reference dropped. This function does not take the
2812  *	list lock and the caller must hold the relevant locks to use it.
2813  */
2814 static inline void __skb_queue_purge(struct sk_buff_head *list)
2815 {
2816 	struct sk_buff *skb;
2817 	while ((skb = __skb_dequeue(list)) != NULL)
2818 		kfree_skb(skb);
2819 }
2820 void skb_queue_purge(struct sk_buff_head *list);
2821 
2822 unsigned int skb_rbtree_purge(struct rb_root *root);
2823 
2824 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
2825 
2826 /**
2827  * netdev_alloc_frag - allocate a page fragment
2828  * @fragsz: fragment size
2829  *
2830  * Allocates a frag from a page for receive buffer.
2831  * Uses GFP_ATOMIC allocations.
2832  */
2833 static inline void *netdev_alloc_frag(unsigned int fragsz)
2834 {
2835 	return __netdev_alloc_frag_align(fragsz, ~0u);
2836 }
2837 
2838 static inline void *netdev_alloc_frag_align(unsigned int fragsz,
2839 					    unsigned int align)
2840 {
2841 	WARN_ON_ONCE(!is_power_of_2(align));
2842 	return __netdev_alloc_frag_align(fragsz, -align);
2843 }
2844 
2845 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2846 				   gfp_t gfp_mask);
2847 
2848 /**
2849  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
2850  *	@dev: network device to receive on
2851  *	@length: length to allocate
2852  *
2853  *	Allocate a new &sk_buff and assign it a usage count of one. The
2854  *	buffer has unspecified headroom built in. Users should allocate
2855  *	the headroom they think they need without accounting for the
2856  *	built in space. The built in space is used for optimisations.
2857  *
2858  *	%NULL is returned if there is no free memory. Although this function
2859  *	allocates memory it can be called from an interrupt.
2860  */
2861 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2862 					       unsigned int length)
2863 {
2864 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2865 }
2866 
2867 /* legacy helper around __netdev_alloc_skb() */
2868 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2869 					      gfp_t gfp_mask)
2870 {
2871 	return __netdev_alloc_skb(NULL, length, gfp_mask);
2872 }
2873 
2874 /* legacy helper around netdev_alloc_skb() */
2875 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2876 {
2877 	return netdev_alloc_skb(NULL, length);
2878 }
2879 
2880 
2881 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2882 		unsigned int length, gfp_t gfp)
2883 {
2884 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2885 
2886 	if (NET_IP_ALIGN && skb)
2887 		skb_reserve(skb, NET_IP_ALIGN);
2888 	return skb;
2889 }
2890 
2891 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2892 		unsigned int length)
2893 {
2894 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2895 }
2896 
2897 static inline void skb_free_frag(void *addr)
2898 {
2899 	page_frag_free(addr);
2900 }
2901 
2902 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
2903 
2904 static inline void *napi_alloc_frag(unsigned int fragsz)
2905 {
2906 	return __napi_alloc_frag_align(fragsz, ~0u);
2907 }
2908 
2909 static inline void *napi_alloc_frag_align(unsigned int fragsz,
2910 					  unsigned int align)
2911 {
2912 	WARN_ON_ONCE(!is_power_of_2(align));
2913 	return __napi_alloc_frag_align(fragsz, -align);
2914 }
2915 
2916 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2917 				 unsigned int length, gfp_t gfp_mask);
2918 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2919 					     unsigned int length)
2920 {
2921 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2922 }
2923 void napi_consume_skb(struct sk_buff *skb, int budget);
2924 
2925 void napi_skb_free_stolen_head(struct sk_buff *skb);
2926 void __kfree_skb_defer(struct sk_buff *skb);
2927 
2928 /**
2929  * __dev_alloc_pages - allocate page for network Rx
2930  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2931  * @order: size of the allocation
2932  *
2933  * Allocate a new page.
2934  *
2935  * %NULL is returned if there is no free memory.
2936 */
2937 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2938 					     unsigned int order)
2939 {
2940 	/* This piece of code contains several assumptions.
2941 	 * 1.  This is for device Rx, therefor a cold page is preferred.
2942 	 * 2.  The expectation is the user wants a compound page.
2943 	 * 3.  If requesting a order 0 page it will not be compound
2944 	 *     due to the check to see if order has a value in prep_new_page
2945 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2946 	 *     code in gfp_to_alloc_flags that should be enforcing this.
2947 	 */
2948 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
2949 
2950 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2951 }
2952 
2953 static inline struct page *dev_alloc_pages(unsigned int order)
2954 {
2955 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2956 }
2957 
2958 /**
2959  * __dev_alloc_page - allocate a page for network Rx
2960  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2961  *
2962  * Allocate a new page.
2963  *
2964  * %NULL is returned if there is no free memory.
2965  */
2966 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2967 {
2968 	return __dev_alloc_pages(gfp_mask, 0);
2969 }
2970 
2971 static inline struct page *dev_alloc_page(void)
2972 {
2973 	return dev_alloc_pages(0);
2974 }
2975 
2976 /**
2977  * dev_page_is_reusable - check whether a page can be reused for network Rx
2978  * @page: the page to test
2979  *
2980  * A page shouldn't be considered for reusing/recycling if it was allocated
2981  * under memory pressure or at a distant memory node.
2982  *
2983  * Returns false if this page should be returned to page allocator, true
2984  * otherwise.
2985  */
2986 static inline bool dev_page_is_reusable(const struct page *page)
2987 {
2988 	return likely(page_to_nid(page) == numa_mem_id() &&
2989 		      !page_is_pfmemalloc(page));
2990 }
2991 
2992 /**
2993  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2994  *	@page: The page that was allocated from skb_alloc_page
2995  *	@skb: The skb that may need pfmemalloc set
2996  */
2997 static inline void skb_propagate_pfmemalloc(const struct page *page,
2998 					    struct sk_buff *skb)
2999 {
3000 	if (page_is_pfmemalloc(page))
3001 		skb->pfmemalloc = true;
3002 }
3003 
3004 /**
3005  * skb_frag_off() - Returns the offset of a skb fragment
3006  * @frag: the paged fragment
3007  */
3008 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
3009 {
3010 	return frag->bv_offset;
3011 }
3012 
3013 /**
3014  * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
3015  * @frag: skb fragment
3016  * @delta: value to add
3017  */
3018 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
3019 {
3020 	frag->bv_offset += delta;
3021 }
3022 
3023 /**
3024  * skb_frag_off_set() - Sets the offset of a skb fragment
3025  * @frag: skb fragment
3026  * @offset: offset of fragment
3027  */
3028 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
3029 {
3030 	frag->bv_offset = offset;
3031 }
3032 
3033 /**
3034  * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
3035  * @fragto: skb fragment where offset is set
3036  * @fragfrom: skb fragment offset is copied from
3037  */
3038 static inline void skb_frag_off_copy(skb_frag_t *fragto,
3039 				     const skb_frag_t *fragfrom)
3040 {
3041 	fragto->bv_offset = fragfrom->bv_offset;
3042 }
3043 
3044 /**
3045  * skb_frag_page - retrieve the page referred to by a paged fragment
3046  * @frag: the paged fragment
3047  *
3048  * Returns the &struct page associated with @frag.
3049  */
3050 static inline struct page *skb_frag_page(const skb_frag_t *frag)
3051 {
3052 	return frag->bv_page;
3053 }
3054 
3055 /**
3056  * __skb_frag_ref - take an addition reference on a paged fragment.
3057  * @frag: the paged fragment
3058  *
3059  * Takes an additional reference on the paged fragment @frag.
3060  */
3061 static inline void __skb_frag_ref(skb_frag_t *frag)
3062 {
3063 	get_page(skb_frag_page(frag));
3064 }
3065 
3066 /**
3067  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
3068  * @skb: the buffer
3069  * @f: the fragment offset.
3070  *
3071  * Takes an additional reference on the @f'th paged fragment of @skb.
3072  */
3073 static inline void skb_frag_ref(struct sk_buff *skb, int f)
3074 {
3075 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
3076 }
3077 
3078 /**
3079  * __skb_frag_unref - release a reference on a paged fragment.
3080  * @frag: the paged fragment
3081  *
3082  * Releases a reference on the paged fragment @frag.
3083  */
3084 static inline void __skb_frag_unref(skb_frag_t *frag)
3085 {
3086 	put_page(skb_frag_page(frag));
3087 }
3088 
3089 /**
3090  * skb_frag_unref - release a reference on a paged fragment of an skb.
3091  * @skb: the buffer
3092  * @f: the fragment offset
3093  *
3094  * Releases a reference on the @f'th paged fragment of @skb.
3095  */
3096 static inline void skb_frag_unref(struct sk_buff *skb, int f)
3097 {
3098 	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
3099 }
3100 
3101 /**
3102  * skb_frag_address - gets the address of the data contained in a paged fragment
3103  * @frag: the paged fragment buffer
3104  *
3105  * Returns the address of the data within @frag. The page must already
3106  * be mapped.
3107  */
3108 static inline void *skb_frag_address(const skb_frag_t *frag)
3109 {
3110 	return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3111 }
3112 
3113 /**
3114  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3115  * @frag: the paged fragment buffer
3116  *
3117  * Returns the address of the data within @frag. Checks that the page
3118  * is mapped and returns %NULL otherwise.
3119  */
3120 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3121 {
3122 	void *ptr = page_address(skb_frag_page(frag));
3123 	if (unlikely(!ptr))
3124 		return NULL;
3125 
3126 	return ptr + skb_frag_off(frag);
3127 }
3128 
3129 /**
3130  * skb_frag_page_copy() - sets the page in a fragment from another fragment
3131  * @fragto: skb fragment where page is set
3132  * @fragfrom: skb fragment page is copied from
3133  */
3134 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3135 				      const skb_frag_t *fragfrom)
3136 {
3137 	fragto->bv_page = fragfrom->bv_page;
3138 }
3139 
3140 /**
3141  * __skb_frag_set_page - sets the page contained in a paged fragment
3142  * @frag: the paged fragment
3143  * @page: the page to set
3144  *
3145  * Sets the fragment @frag to contain @page.
3146  */
3147 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
3148 {
3149 	frag->bv_page = page;
3150 }
3151 
3152 /**
3153  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
3154  * @skb: the buffer
3155  * @f: the fragment offset
3156  * @page: the page to set
3157  *
3158  * Sets the @f'th fragment of @skb to contain @page.
3159  */
3160 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
3161 				     struct page *page)
3162 {
3163 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
3164 }
3165 
3166 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3167 
3168 /**
3169  * skb_frag_dma_map - maps a paged fragment via the DMA API
3170  * @dev: the device to map the fragment to
3171  * @frag: the paged fragment to map
3172  * @offset: the offset within the fragment (starting at the
3173  *          fragment's own offset)
3174  * @size: the number of bytes to map
3175  * @dir: the direction of the mapping (``PCI_DMA_*``)
3176  *
3177  * Maps the page associated with @frag to @device.
3178  */
3179 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3180 					  const skb_frag_t *frag,
3181 					  size_t offset, size_t size,
3182 					  enum dma_data_direction dir)
3183 {
3184 	return dma_map_page(dev, skb_frag_page(frag),
3185 			    skb_frag_off(frag) + offset, size, dir);
3186 }
3187 
3188 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3189 					gfp_t gfp_mask)
3190 {
3191 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3192 }
3193 
3194 
3195 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3196 						  gfp_t gfp_mask)
3197 {
3198 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3199 }
3200 
3201 
3202 /**
3203  *	skb_clone_writable - is the header of a clone writable
3204  *	@skb: buffer to check
3205  *	@len: length up to which to write
3206  *
3207  *	Returns true if modifying the header part of the cloned buffer
3208  *	does not requires the data to be copied.
3209  */
3210 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3211 {
3212 	return !skb_header_cloned(skb) &&
3213 	       skb_headroom(skb) + len <= skb->hdr_len;
3214 }
3215 
3216 static inline int skb_try_make_writable(struct sk_buff *skb,
3217 					unsigned int write_len)
3218 {
3219 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3220 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3221 }
3222 
3223 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3224 			    int cloned)
3225 {
3226 	int delta = 0;
3227 
3228 	if (headroom > skb_headroom(skb))
3229 		delta = headroom - skb_headroom(skb);
3230 
3231 	if (delta || cloned)
3232 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3233 					GFP_ATOMIC);
3234 	return 0;
3235 }
3236 
3237 /**
3238  *	skb_cow - copy header of skb when it is required
3239  *	@skb: buffer to cow
3240  *	@headroom: needed headroom
3241  *
3242  *	If the skb passed lacks sufficient headroom or its data part
3243  *	is shared, data is reallocated. If reallocation fails, an error
3244  *	is returned and original skb is not changed.
3245  *
3246  *	The result is skb with writable area skb->head...skb->tail
3247  *	and at least @headroom of space at head.
3248  */
3249 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3250 {
3251 	return __skb_cow(skb, headroom, skb_cloned(skb));
3252 }
3253 
3254 /**
3255  *	skb_cow_head - skb_cow but only making the head writable
3256  *	@skb: buffer to cow
3257  *	@headroom: needed headroom
3258  *
3259  *	This function is identical to skb_cow except that we replace the
3260  *	skb_cloned check by skb_header_cloned.  It should be used when
3261  *	you only need to push on some header and do not need to modify
3262  *	the data.
3263  */
3264 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3265 {
3266 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
3267 }
3268 
3269 /**
3270  *	skb_padto	- pad an skbuff up to a minimal size
3271  *	@skb: buffer to pad
3272  *	@len: minimal length
3273  *
3274  *	Pads up a buffer to ensure the trailing bytes exist and are
3275  *	blanked. If the buffer already contains sufficient data it
3276  *	is untouched. Otherwise it is extended. Returns zero on
3277  *	success. The skb is freed on error.
3278  */
3279 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3280 {
3281 	unsigned int size = skb->len;
3282 	if (likely(size >= len))
3283 		return 0;
3284 	return skb_pad(skb, len - size);
3285 }
3286 
3287 /**
3288  *	__skb_put_padto - increase size and pad an skbuff up to a minimal size
3289  *	@skb: buffer to pad
3290  *	@len: minimal length
3291  *	@free_on_error: free buffer on error
3292  *
3293  *	Pads up a buffer to ensure the trailing bytes exist and are
3294  *	blanked. If the buffer already contains sufficient data it
3295  *	is untouched. Otherwise it is extended. Returns zero on
3296  *	success. The skb is freed on error if @free_on_error is true.
3297  */
3298 static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3299 					       unsigned int len,
3300 					       bool free_on_error)
3301 {
3302 	unsigned int size = skb->len;
3303 
3304 	if (unlikely(size < len)) {
3305 		len -= size;
3306 		if (__skb_pad(skb, len, free_on_error))
3307 			return -ENOMEM;
3308 		__skb_put(skb, len);
3309 	}
3310 	return 0;
3311 }
3312 
3313 /**
3314  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3315  *	@skb: buffer to pad
3316  *	@len: minimal length
3317  *
3318  *	Pads up a buffer to ensure the trailing bytes exist and are
3319  *	blanked. If the buffer already contains sufficient data it
3320  *	is untouched. Otherwise it is extended. Returns zero on
3321  *	success. The skb is freed on error.
3322  */
3323 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3324 {
3325 	return __skb_put_padto(skb, len, true);
3326 }
3327 
3328 static inline int skb_add_data(struct sk_buff *skb,
3329 			       struct iov_iter *from, int copy)
3330 {
3331 	const int off = skb->len;
3332 
3333 	if (skb->ip_summed == CHECKSUM_NONE) {
3334 		__wsum csum = 0;
3335 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3336 					         &csum, from)) {
3337 			skb->csum = csum_block_add(skb->csum, csum, off);
3338 			return 0;
3339 		}
3340 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3341 		return 0;
3342 
3343 	__skb_trim(skb, off);
3344 	return -EFAULT;
3345 }
3346 
3347 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3348 				    const struct page *page, int off)
3349 {
3350 	if (skb_zcopy(skb))
3351 		return false;
3352 	if (i) {
3353 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3354 
3355 		return page == skb_frag_page(frag) &&
3356 		       off == skb_frag_off(frag) + skb_frag_size(frag);
3357 	}
3358 	return false;
3359 }
3360 
3361 static inline int __skb_linearize(struct sk_buff *skb)
3362 {
3363 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3364 }
3365 
3366 /**
3367  *	skb_linearize - convert paged skb to linear one
3368  *	@skb: buffer to linarize
3369  *
3370  *	If there is no free memory -ENOMEM is returned, otherwise zero
3371  *	is returned and the old skb data released.
3372  */
3373 static inline int skb_linearize(struct sk_buff *skb)
3374 {
3375 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3376 }
3377 
3378 /**
3379  * skb_has_shared_frag - can any frag be overwritten
3380  * @skb: buffer to test
3381  *
3382  * Return true if the skb has at least one frag that might be modified
3383  * by an external entity (as in vmsplice()/sendfile())
3384  */
3385 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3386 {
3387 	return skb_is_nonlinear(skb) &&
3388 	       skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3389 }
3390 
3391 /**
3392  *	skb_linearize_cow - make sure skb is linear and writable
3393  *	@skb: buffer to process
3394  *
3395  *	If there is no free memory -ENOMEM is returned, otherwise zero
3396  *	is returned and the old skb data released.
3397  */
3398 static inline int skb_linearize_cow(struct sk_buff *skb)
3399 {
3400 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3401 	       __skb_linearize(skb) : 0;
3402 }
3403 
3404 static __always_inline void
3405 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3406 		     unsigned int off)
3407 {
3408 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3409 		skb->csum = csum_block_sub(skb->csum,
3410 					   csum_partial(start, len, 0), off);
3411 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3412 		 skb_checksum_start_offset(skb) < 0)
3413 		skb->ip_summed = CHECKSUM_NONE;
3414 }
3415 
3416 /**
3417  *	skb_postpull_rcsum - update checksum for received skb after pull
3418  *	@skb: buffer to update
3419  *	@start: start of data before pull
3420  *	@len: length of data pulled
3421  *
3422  *	After doing a pull on a received packet, you need to call this to
3423  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3424  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3425  */
3426 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3427 				      const void *start, unsigned int len)
3428 {
3429 	__skb_postpull_rcsum(skb, start, len, 0);
3430 }
3431 
3432 static __always_inline void
3433 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3434 		     unsigned int off)
3435 {
3436 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3437 		skb->csum = csum_block_add(skb->csum,
3438 					   csum_partial(start, len, 0), off);
3439 }
3440 
3441 /**
3442  *	skb_postpush_rcsum - update checksum for received skb after push
3443  *	@skb: buffer to update
3444  *	@start: start of data after push
3445  *	@len: length of data pushed
3446  *
3447  *	After doing a push on a received packet, you need to call this to
3448  *	update the CHECKSUM_COMPLETE checksum.
3449  */
3450 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3451 				      const void *start, unsigned int len)
3452 {
3453 	__skb_postpush_rcsum(skb, start, len, 0);
3454 }
3455 
3456 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3457 
3458 /**
3459  *	skb_push_rcsum - push skb and update receive checksum
3460  *	@skb: buffer to update
3461  *	@len: length of data pulled
3462  *
3463  *	This function performs an skb_push on the packet and updates
3464  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3465  *	receive path processing instead of skb_push unless you know
3466  *	that the checksum difference is zero (e.g., a valid IP header)
3467  *	or you are setting ip_summed to CHECKSUM_NONE.
3468  */
3469 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3470 {
3471 	skb_push(skb, len);
3472 	skb_postpush_rcsum(skb, skb->data, len);
3473 	return skb->data;
3474 }
3475 
3476 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3477 /**
3478  *	pskb_trim_rcsum - trim received skb and update checksum
3479  *	@skb: buffer to trim
3480  *	@len: new length
3481  *
3482  *	This is exactly the same as pskb_trim except that it ensures the
3483  *	checksum of received packets are still valid after the operation.
3484  *	It can change skb pointers.
3485  */
3486 
3487 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3488 {
3489 	if (likely(len >= skb->len))
3490 		return 0;
3491 	return pskb_trim_rcsum_slow(skb, len);
3492 }
3493 
3494 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3495 {
3496 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3497 		skb->ip_summed = CHECKSUM_NONE;
3498 	__skb_trim(skb, len);
3499 	return 0;
3500 }
3501 
3502 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3503 {
3504 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3505 		skb->ip_summed = CHECKSUM_NONE;
3506 	return __skb_grow(skb, len);
3507 }
3508 
3509 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3510 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3511 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3512 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3513 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3514 
3515 #define skb_queue_walk(queue, skb) \
3516 		for (skb = (queue)->next;					\
3517 		     skb != (struct sk_buff *)(queue);				\
3518 		     skb = skb->next)
3519 
3520 #define skb_queue_walk_safe(queue, skb, tmp)					\
3521 		for (skb = (queue)->next, tmp = skb->next;			\
3522 		     skb != (struct sk_buff *)(queue);				\
3523 		     skb = tmp, tmp = skb->next)
3524 
3525 #define skb_queue_walk_from(queue, skb)						\
3526 		for (; skb != (struct sk_buff *)(queue);			\
3527 		     skb = skb->next)
3528 
3529 #define skb_rbtree_walk(skb, root)						\
3530 		for (skb = skb_rb_first(root); skb != NULL;			\
3531 		     skb = skb_rb_next(skb))
3532 
3533 #define skb_rbtree_walk_from(skb)						\
3534 		for (; skb != NULL;						\
3535 		     skb = skb_rb_next(skb))
3536 
3537 #define skb_rbtree_walk_from_safe(skb, tmp)					\
3538 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
3539 		     skb = tmp)
3540 
3541 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3542 		for (tmp = skb->next;						\
3543 		     skb != (struct sk_buff *)(queue);				\
3544 		     skb = tmp, tmp = skb->next)
3545 
3546 #define skb_queue_reverse_walk(queue, skb) \
3547 		for (skb = (queue)->prev;					\
3548 		     skb != (struct sk_buff *)(queue);				\
3549 		     skb = skb->prev)
3550 
3551 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3552 		for (skb = (queue)->prev, tmp = skb->prev;			\
3553 		     skb != (struct sk_buff *)(queue);				\
3554 		     skb = tmp, tmp = skb->prev)
3555 
3556 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3557 		for (tmp = skb->prev;						\
3558 		     skb != (struct sk_buff *)(queue);				\
3559 		     skb = tmp, tmp = skb->prev)
3560 
3561 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3562 {
3563 	return skb_shinfo(skb)->frag_list != NULL;
3564 }
3565 
3566 static inline void skb_frag_list_init(struct sk_buff *skb)
3567 {
3568 	skb_shinfo(skb)->frag_list = NULL;
3569 }
3570 
3571 #define skb_walk_frags(skb, iter)	\
3572 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3573 
3574 
3575 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3576 				int *err, long *timeo_p,
3577 				const struct sk_buff *skb);
3578 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3579 					  struct sk_buff_head *queue,
3580 					  unsigned int flags,
3581 					  int *off, int *err,
3582 					  struct sk_buff **last);
3583 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
3584 					struct sk_buff_head *queue,
3585 					unsigned int flags, int *off, int *err,
3586 					struct sk_buff **last);
3587 struct sk_buff *__skb_recv_datagram(struct sock *sk,
3588 				    struct sk_buff_head *sk_queue,
3589 				    unsigned int flags, int *off, int *err);
3590 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3591 				  int *err);
3592 __poll_t datagram_poll(struct file *file, struct socket *sock,
3593 			   struct poll_table_struct *wait);
3594 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3595 			   struct iov_iter *to, int size);
3596 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3597 					struct msghdr *msg, int size)
3598 {
3599 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3600 }
3601 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3602 				   struct msghdr *msg);
3603 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3604 			   struct iov_iter *to, int len,
3605 			   struct ahash_request *hash);
3606 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3607 				 struct iov_iter *from, int len);
3608 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3609 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3610 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3611 static inline void skb_free_datagram_locked(struct sock *sk,
3612 					    struct sk_buff *skb)
3613 {
3614 	__skb_free_datagram_locked(sk, skb, 0);
3615 }
3616 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3617 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3618 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3619 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3620 			      int len);
3621 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3622 		    struct pipe_inode_info *pipe, unsigned int len,
3623 		    unsigned int flags);
3624 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3625 			 int len);
3626 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3627 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3628 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3629 		 int len, int hlen);
3630 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3631 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3632 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3633 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3634 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3635 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3636 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
3637 				 unsigned int offset);
3638 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3639 int skb_ensure_writable(struct sk_buff *skb, int write_len);
3640 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3641 int skb_vlan_pop(struct sk_buff *skb);
3642 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3643 int skb_eth_pop(struct sk_buff *skb);
3644 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
3645 		 const unsigned char *src);
3646 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
3647 		  int mac_len, bool ethernet);
3648 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
3649 		 bool ethernet);
3650 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
3651 int skb_mpls_dec_ttl(struct sk_buff *skb);
3652 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3653 			     gfp_t gfp);
3654 
3655 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3656 {
3657 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3658 }
3659 
3660 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3661 {
3662 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3663 }
3664 
3665 struct skb_checksum_ops {
3666 	__wsum (*update)(const void *mem, int len, __wsum wsum);
3667 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3668 };
3669 
3670 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3671 
3672 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3673 		      __wsum csum, const struct skb_checksum_ops *ops);
3674 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3675 		    __wsum csum);
3676 
3677 static inline void * __must_check
3678 __skb_header_pointer(const struct sk_buff *skb, int offset,
3679 		     int len, void *data, int hlen, void *buffer)
3680 {
3681 	if (hlen - offset >= len)
3682 		return data + offset;
3683 
3684 	if (!skb ||
3685 	    skb_copy_bits(skb, offset, buffer, len) < 0)
3686 		return NULL;
3687 
3688 	return buffer;
3689 }
3690 
3691 static inline void * __must_check
3692 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3693 {
3694 	return __skb_header_pointer(skb, offset, len, skb->data,
3695 				    skb_headlen(skb), buffer);
3696 }
3697 
3698 /**
3699  *	skb_needs_linearize - check if we need to linearize a given skb
3700  *			      depending on the given device features.
3701  *	@skb: socket buffer to check
3702  *	@features: net device features
3703  *
3704  *	Returns true if either:
3705  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
3706  *	2. skb is fragmented and the device does not support SG.
3707  */
3708 static inline bool skb_needs_linearize(struct sk_buff *skb,
3709 				       netdev_features_t features)
3710 {
3711 	return skb_is_nonlinear(skb) &&
3712 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3713 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3714 }
3715 
3716 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3717 					     void *to,
3718 					     const unsigned int len)
3719 {
3720 	memcpy(to, skb->data, len);
3721 }
3722 
3723 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3724 						    const int offset, void *to,
3725 						    const unsigned int len)
3726 {
3727 	memcpy(to, skb->data + offset, len);
3728 }
3729 
3730 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3731 					   const void *from,
3732 					   const unsigned int len)
3733 {
3734 	memcpy(skb->data, from, len);
3735 }
3736 
3737 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3738 						  const int offset,
3739 						  const void *from,
3740 						  const unsigned int len)
3741 {
3742 	memcpy(skb->data + offset, from, len);
3743 }
3744 
3745 void skb_init(void);
3746 
3747 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3748 {
3749 	return skb->tstamp;
3750 }
3751 
3752 /**
3753  *	skb_get_timestamp - get timestamp from a skb
3754  *	@skb: skb to get stamp from
3755  *	@stamp: pointer to struct __kernel_old_timeval to store stamp in
3756  *
3757  *	Timestamps are stored in the skb as offsets to a base timestamp.
3758  *	This function converts the offset back to a struct timeval and stores
3759  *	it in stamp.
3760  */
3761 static inline void skb_get_timestamp(const struct sk_buff *skb,
3762 				     struct __kernel_old_timeval *stamp)
3763 {
3764 	*stamp = ns_to_kernel_old_timeval(skb->tstamp);
3765 }
3766 
3767 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
3768 					 struct __kernel_sock_timeval *stamp)
3769 {
3770 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3771 
3772 	stamp->tv_sec = ts.tv_sec;
3773 	stamp->tv_usec = ts.tv_nsec / 1000;
3774 }
3775 
3776 static inline void skb_get_timestampns(const struct sk_buff *skb,
3777 				       struct __kernel_old_timespec *stamp)
3778 {
3779 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3780 
3781 	stamp->tv_sec = ts.tv_sec;
3782 	stamp->tv_nsec = ts.tv_nsec;
3783 }
3784 
3785 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
3786 					   struct __kernel_timespec *stamp)
3787 {
3788 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3789 
3790 	stamp->tv_sec = ts.tv_sec;
3791 	stamp->tv_nsec = ts.tv_nsec;
3792 }
3793 
3794 static inline void __net_timestamp(struct sk_buff *skb)
3795 {
3796 	skb->tstamp = ktime_get_real();
3797 }
3798 
3799 static inline ktime_t net_timedelta(ktime_t t)
3800 {
3801 	return ktime_sub(ktime_get_real(), t);
3802 }
3803 
3804 static inline ktime_t net_invalid_timestamp(void)
3805 {
3806 	return 0;
3807 }
3808 
3809 static inline u8 skb_metadata_len(const struct sk_buff *skb)
3810 {
3811 	return skb_shinfo(skb)->meta_len;
3812 }
3813 
3814 static inline void *skb_metadata_end(const struct sk_buff *skb)
3815 {
3816 	return skb_mac_header(skb);
3817 }
3818 
3819 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3820 					  const struct sk_buff *skb_b,
3821 					  u8 meta_len)
3822 {
3823 	const void *a = skb_metadata_end(skb_a);
3824 	const void *b = skb_metadata_end(skb_b);
3825 	/* Using more efficient varaiant than plain call to memcmp(). */
3826 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3827 	u64 diffs = 0;
3828 
3829 	switch (meta_len) {
3830 #define __it(x, op) (x -= sizeof(u##op))
3831 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3832 	case 32: diffs |= __it_diff(a, b, 64);
3833 		fallthrough;
3834 	case 24: diffs |= __it_diff(a, b, 64);
3835 		fallthrough;
3836 	case 16: diffs |= __it_diff(a, b, 64);
3837 		fallthrough;
3838 	case  8: diffs |= __it_diff(a, b, 64);
3839 		break;
3840 	case 28: diffs |= __it_diff(a, b, 64);
3841 		fallthrough;
3842 	case 20: diffs |= __it_diff(a, b, 64);
3843 		fallthrough;
3844 	case 12: diffs |= __it_diff(a, b, 64);
3845 		fallthrough;
3846 	case  4: diffs |= __it_diff(a, b, 32);
3847 		break;
3848 	}
3849 	return diffs;
3850 #else
3851 	return memcmp(a - meta_len, b - meta_len, meta_len);
3852 #endif
3853 }
3854 
3855 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3856 					const struct sk_buff *skb_b)
3857 {
3858 	u8 len_a = skb_metadata_len(skb_a);
3859 	u8 len_b = skb_metadata_len(skb_b);
3860 
3861 	if (!(len_a | len_b))
3862 		return false;
3863 
3864 	return len_a != len_b ?
3865 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
3866 }
3867 
3868 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3869 {
3870 	skb_shinfo(skb)->meta_len = meta_len;
3871 }
3872 
3873 static inline void skb_metadata_clear(struct sk_buff *skb)
3874 {
3875 	skb_metadata_set(skb, 0);
3876 }
3877 
3878 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3879 
3880 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3881 
3882 void skb_clone_tx_timestamp(struct sk_buff *skb);
3883 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3884 
3885 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3886 
3887 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3888 {
3889 }
3890 
3891 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3892 {
3893 	return false;
3894 }
3895 
3896 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3897 
3898 /**
3899  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3900  *
3901  * PHY drivers may accept clones of transmitted packets for
3902  * timestamping via their phy_driver.txtstamp method. These drivers
3903  * must call this function to return the skb back to the stack with a
3904  * timestamp.
3905  *
3906  * @skb: clone of the original outgoing packet
3907  * @hwtstamps: hardware time stamps
3908  *
3909  */
3910 void skb_complete_tx_timestamp(struct sk_buff *skb,
3911 			       struct skb_shared_hwtstamps *hwtstamps);
3912 
3913 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb,
3914 		     struct skb_shared_hwtstamps *hwtstamps,
3915 		     struct sock *sk, int tstype);
3916 
3917 /**
3918  * skb_tstamp_tx - queue clone of skb with send time stamps
3919  * @orig_skb:	the original outgoing packet
3920  * @hwtstamps:	hardware time stamps, may be NULL if not available
3921  *
3922  * If the skb has a socket associated, then this function clones the
3923  * skb (thus sharing the actual data and optional structures), stores
3924  * the optional hardware time stamping information (if non NULL) or
3925  * generates a software time stamp (otherwise), then queues the clone
3926  * to the error queue of the socket.  Errors are silently ignored.
3927  */
3928 void skb_tstamp_tx(struct sk_buff *orig_skb,
3929 		   struct skb_shared_hwtstamps *hwtstamps);
3930 
3931 /**
3932  * skb_tx_timestamp() - Driver hook for transmit timestamping
3933  *
3934  * Ethernet MAC Drivers should call this function in their hard_xmit()
3935  * function immediately before giving the sk_buff to the MAC hardware.
3936  *
3937  * Specifically, one should make absolutely sure that this function is
3938  * called before TX completion of this packet can trigger.  Otherwise
3939  * the packet could potentially already be freed.
3940  *
3941  * @skb: A socket buffer.
3942  */
3943 static inline void skb_tx_timestamp(struct sk_buff *skb)
3944 {
3945 	skb_clone_tx_timestamp(skb);
3946 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3947 		skb_tstamp_tx(skb, NULL);
3948 }
3949 
3950 /**
3951  * skb_complete_wifi_ack - deliver skb with wifi status
3952  *
3953  * @skb: the original outgoing packet
3954  * @acked: ack status
3955  *
3956  */
3957 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3958 
3959 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3960 __sum16 __skb_checksum_complete(struct sk_buff *skb);
3961 
3962 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3963 {
3964 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3965 		skb->csum_valid ||
3966 		(skb->ip_summed == CHECKSUM_PARTIAL &&
3967 		 skb_checksum_start_offset(skb) >= 0));
3968 }
3969 
3970 /**
3971  *	skb_checksum_complete - Calculate checksum of an entire packet
3972  *	@skb: packet to process
3973  *
3974  *	This function calculates the checksum over the entire packet plus
3975  *	the value of skb->csum.  The latter can be used to supply the
3976  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
3977  *	checksum.
3978  *
3979  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
3980  *	this function can be used to verify that checksum on received
3981  *	packets.  In that case the function should return zero if the
3982  *	checksum is correct.  In particular, this function will return zero
3983  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3984  *	hardware has already verified the correctness of the checksum.
3985  */
3986 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3987 {
3988 	return skb_csum_unnecessary(skb) ?
3989 	       0 : __skb_checksum_complete(skb);
3990 }
3991 
3992 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3993 {
3994 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3995 		if (skb->csum_level == 0)
3996 			skb->ip_summed = CHECKSUM_NONE;
3997 		else
3998 			skb->csum_level--;
3999 	}
4000 }
4001 
4002 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
4003 {
4004 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4005 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
4006 			skb->csum_level++;
4007 	} else if (skb->ip_summed == CHECKSUM_NONE) {
4008 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4009 		skb->csum_level = 0;
4010 	}
4011 }
4012 
4013 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
4014 {
4015 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4016 		skb->ip_summed = CHECKSUM_NONE;
4017 		skb->csum_level = 0;
4018 	}
4019 }
4020 
4021 /* Check if we need to perform checksum complete validation.
4022  *
4023  * Returns true if checksum complete is needed, false otherwise
4024  * (either checksum is unnecessary or zero checksum is allowed).
4025  */
4026 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
4027 						  bool zero_okay,
4028 						  __sum16 check)
4029 {
4030 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
4031 		skb->csum_valid = 1;
4032 		__skb_decr_checksum_unnecessary(skb);
4033 		return false;
4034 	}
4035 
4036 	return true;
4037 }
4038 
4039 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
4040  * in checksum_init.
4041  */
4042 #define CHECKSUM_BREAK 76
4043 
4044 /* Unset checksum-complete
4045  *
4046  * Unset checksum complete can be done when packet is being modified
4047  * (uncompressed for instance) and checksum-complete value is
4048  * invalidated.
4049  */
4050 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
4051 {
4052 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4053 		skb->ip_summed = CHECKSUM_NONE;
4054 }
4055 
4056 /* Validate (init) checksum based on checksum complete.
4057  *
4058  * Return values:
4059  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
4060  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4061  *	checksum is stored in skb->csum for use in __skb_checksum_complete
4062  *   non-zero: value of invalid checksum
4063  *
4064  */
4065 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4066 						       bool complete,
4067 						       __wsum psum)
4068 {
4069 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
4070 		if (!csum_fold(csum_add(psum, skb->csum))) {
4071 			skb->csum_valid = 1;
4072 			return 0;
4073 		}
4074 	}
4075 
4076 	skb->csum = psum;
4077 
4078 	if (complete || skb->len <= CHECKSUM_BREAK) {
4079 		__sum16 csum;
4080 
4081 		csum = __skb_checksum_complete(skb);
4082 		skb->csum_valid = !csum;
4083 		return csum;
4084 	}
4085 
4086 	return 0;
4087 }
4088 
4089 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4090 {
4091 	return 0;
4092 }
4093 
4094 /* Perform checksum validate (init). Note that this is a macro since we only
4095  * want to calculate the pseudo header which is an input function if necessary.
4096  * First we try to validate without any computation (checksum unnecessary) and
4097  * then calculate based on checksum complete calling the function to compute
4098  * pseudo header.
4099  *
4100  * Return values:
4101  *   0: checksum is validated or try to in skb_checksum_complete
4102  *   non-zero: value of invalid checksum
4103  */
4104 #define __skb_checksum_validate(skb, proto, complete,			\
4105 				zero_okay, check, compute_pseudo)	\
4106 ({									\
4107 	__sum16 __ret = 0;						\
4108 	skb->csum_valid = 0;						\
4109 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
4110 		__ret = __skb_checksum_validate_complete(skb,		\
4111 				complete, compute_pseudo(skb, proto));	\
4112 	__ret;								\
4113 })
4114 
4115 #define skb_checksum_init(skb, proto, compute_pseudo)			\
4116 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4117 
4118 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
4119 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4120 
4121 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
4122 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4123 
4124 #define skb_checksum_validate_zero_check(skb, proto, check,		\
4125 					 compute_pseudo)		\
4126 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4127 
4128 #define skb_checksum_simple_validate(skb)				\
4129 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4130 
4131 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4132 {
4133 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4134 }
4135 
4136 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4137 {
4138 	skb->csum = ~pseudo;
4139 	skb->ip_summed = CHECKSUM_COMPLETE;
4140 }
4141 
4142 #define skb_checksum_try_convert(skb, proto, compute_pseudo)	\
4143 do {									\
4144 	if (__skb_checksum_convert_check(skb))				\
4145 		__skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4146 } while (0)
4147 
4148 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4149 					      u16 start, u16 offset)
4150 {
4151 	skb->ip_summed = CHECKSUM_PARTIAL;
4152 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4153 	skb->csum_offset = offset - start;
4154 }
4155 
4156 /* Update skbuf and packet to reflect the remote checksum offload operation.
4157  * When called, ptr indicates the starting point for skb->csum when
4158  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4159  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4160  */
4161 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4162 				       int start, int offset, bool nopartial)
4163 {
4164 	__wsum delta;
4165 
4166 	if (!nopartial) {
4167 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
4168 		return;
4169 	}
4170 
4171 	 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4172 		__skb_checksum_complete(skb);
4173 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4174 	}
4175 
4176 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
4177 
4178 	/* Adjust skb->csum since we changed the packet */
4179 	skb->csum = csum_add(skb->csum, delta);
4180 }
4181 
4182 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4183 {
4184 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4185 	return (void *)(skb->_nfct & NFCT_PTRMASK);
4186 #else
4187 	return NULL;
4188 #endif
4189 }
4190 
4191 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4192 {
4193 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4194 	return skb->_nfct;
4195 #else
4196 	return 0UL;
4197 #endif
4198 }
4199 
4200 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4201 {
4202 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4203 	skb->_nfct = nfct;
4204 #endif
4205 }
4206 
4207 #ifdef CONFIG_SKB_EXTENSIONS
4208 enum skb_ext_id {
4209 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4210 	SKB_EXT_BRIDGE_NF,
4211 #endif
4212 #ifdef CONFIG_XFRM
4213 	SKB_EXT_SEC_PATH,
4214 #endif
4215 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4216 	TC_SKB_EXT,
4217 #endif
4218 #if IS_ENABLED(CONFIG_MPTCP)
4219 	SKB_EXT_MPTCP,
4220 #endif
4221 	SKB_EXT_NUM, /* must be last */
4222 };
4223 
4224 /**
4225  *	struct skb_ext - sk_buff extensions
4226  *	@refcnt: 1 on allocation, deallocated on 0
4227  *	@offset: offset to add to @data to obtain extension address
4228  *	@chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4229  *	@data: start of extension data, variable sized
4230  *
4231  *	Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4232  *	to use 'u8' types while allowing up to 2kb worth of extension data.
4233  */
4234 struct skb_ext {
4235 	refcount_t refcnt;
4236 	u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4237 	u8 chunks;		/* same */
4238 	char data[] __aligned(8);
4239 };
4240 
4241 struct skb_ext *__skb_ext_alloc(gfp_t flags);
4242 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4243 		    struct skb_ext *ext);
4244 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4245 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4246 void __skb_ext_put(struct skb_ext *ext);
4247 
4248 static inline void skb_ext_put(struct sk_buff *skb)
4249 {
4250 	if (skb->active_extensions)
4251 		__skb_ext_put(skb->extensions);
4252 }
4253 
4254 static inline void __skb_ext_copy(struct sk_buff *dst,
4255 				  const struct sk_buff *src)
4256 {
4257 	dst->active_extensions = src->active_extensions;
4258 
4259 	if (src->active_extensions) {
4260 		struct skb_ext *ext = src->extensions;
4261 
4262 		refcount_inc(&ext->refcnt);
4263 		dst->extensions = ext;
4264 	}
4265 }
4266 
4267 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4268 {
4269 	skb_ext_put(dst);
4270 	__skb_ext_copy(dst, src);
4271 }
4272 
4273 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4274 {
4275 	return !!ext->offset[i];
4276 }
4277 
4278 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4279 {
4280 	return skb->active_extensions & (1 << id);
4281 }
4282 
4283 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4284 {
4285 	if (skb_ext_exist(skb, id))
4286 		__skb_ext_del(skb, id);
4287 }
4288 
4289 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4290 {
4291 	if (skb_ext_exist(skb, id)) {
4292 		struct skb_ext *ext = skb->extensions;
4293 
4294 		return (void *)ext + (ext->offset[id] << 3);
4295 	}
4296 
4297 	return NULL;
4298 }
4299 
4300 static inline void skb_ext_reset(struct sk_buff *skb)
4301 {
4302 	if (unlikely(skb->active_extensions)) {
4303 		__skb_ext_put(skb->extensions);
4304 		skb->active_extensions = 0;
4305 	}
4306 }
4307 
4308 static inline bool skb_has_extensions(struct sk_buff *skb)
4309 {
4310 	return unlikely(skb->active_extensions);
4311 }
4312 #else
4313 static inline void skb_ext_put(struct sk_buff *skb) {}
4314 static inline void skb_ext_reset(struct sk_buff *skb) {}
4315 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4316 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4317 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4318 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4319 #endif /* CONFIG_SKB_EXTENSIONS */
4320 
4321 static inline void nf_reset_ct(struct sk_buff *skb)
4322 {
4323 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4324 	nf_conntrack_put(skb_nfct(skb));
4325 	skb->_nfct = 0;
4326 #endif
4327 }
4328 
4329 static inline void nf_reset_trace(struct sk_buff *skb)
4330 {
4331 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4332 	skb->nf_trace = 0;
4333 #endif
4334 }
4335 
4336 static inline void ipvs_reset(struct sk_buff *skb)
4337 {
4338 #if IS_ENABLED(CONFIG_IP_VS)
4339 	skb->ipvs_property = 0;
4340 #endif
4341 }
4342 
4343 /* Note: This doesn't put any conntrack info in dst. */
4344 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4345 			     bool copy)
4346 {
4347 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4348 	dst->_nfct = src->_nfct;
4349 	nf_conntrack_get(skb_nfct(src));
4350 #endif
4351 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4352 	if (copy)
4353 		dst->nf_trace = src->nf_trace;
4354 #endif
4355 }
4356 
4357 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4358 {
4359 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4360 	nf_conntrack_put(skb_nfct(dst));
4361 #endif
4362 	__nf_copy(dst, src, true);
4363 }
4364 
4365 #ifdef CONFIG_NETWORK_SECMARK
4366 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4367 {
4368 	to->secmark = from->secmark;
4369 }
4370 
4371 static inline void skb_init_secmark(struct sk_buff *skb)
4372 {
4373 	skb->secmark = 0;
4374 }
4375 #else
4376 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4377 { }
4378 
4379 static inline void skb_init_secmark(struct sk_buff *skb)
4380 { }
4381 #endif
4382 
4383 static inline int secpath_exists(const struct sk_buff *skb)
4384 {
4385 #ifdef CONFIG_XFRM
4386 	return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4387 #else
4388 	return 0;
4389 #endif
4390 }
4391 
4392 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4393 {
4394 	return !skb->destructor &&
4395 		!secpath_exists(skb) &&
4396 		!skb_nfct(skb) &&
4397 		!skb->_skb_refdst &&
4398 		!skb_has_frag_list(skb);
4399 }
4400 
4401 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4402 {
4403 	skb->queue_mapping = queue_mapping;
4404 }
4405 
4406 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4407 {
4408 	return skb->queue_mapping;
4409 }
4410 
4411 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4412 {
4413 	to->queue_mapping = from->queue_mapping;
4414 }
4415 
4416 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4417 {
4418 	skb->queue_mapping = rx_queue + 1;
4419 }
4420 
4421 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4422 {
4423 	return skb->queue_mapping - 1;
4424 }
4425 
4426 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4427 {
4428 	return skb->queue_mapping != 0;
4429 }
4430 
4431 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4432 {
4433 	skb->dst_pending_confirm = val;
4434 }
4435 
4436 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4437 {
4438 	return skb->dst_pending_confirm != 0;
4439 }
4440 
4441 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4442 {
4443 #ifdef CONFIG_XFRM
4444 	return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4445 #else
4446 	return NULL;
4447 #endif
4448 }
4449 
4450 /* Keeps track of mac header offset relative to skb->head.
4451  * It is useful for TSO of Tunneling protocol. e.g. GRE.
4452  * For non-tunnel skb it points to skb_mac_header() and for
4453  * tunnel skb it points to outer mac header.
4454  * Keeps track of level of encapsulation of network headers.
4455  */
4456 struct skb_gso_cb {
4457 	union {
4458 		int	mac_offset;
4459 		int	data_offset;
4460 	};
4461 	int	encap_level;
4462 	__wsum	csum;
4463 	__u16	csum_start;
4464 };
4465 #define SKB_GSO_CB_OFFSET	32
4466 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET))
4467 
4468 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4469 {
4470 	return (skb_mac_header(inner_skb) - inner_skb->head) -
4471 		SKB_GSO_CB(inner_skb)->mac_offset;
4472 }
4473 
4474 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4475 {
4476 	int new_headroom, headroom;
4477 	int ret;
4478 
4479 	headroom = skb_headroom(skb);
4480 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4481 	if (ret)
4482 		return ret;
4483 
4484 	new_headroom = skb_headroom(skb);
4485 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4486 	return 0;
4487 }
4488 
4489 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4490 {
4491 	/* Do not update partial checksums if remote checksum is enabled. */
4492 	if (skb->remcsum_offload)
4493 		return;
4494 
4495 	SKB_GSO_CB(skb)->csum = res;
4496 	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4497 }
4498 
4499 /* Compute the checksum for a gso segment. First compute the checksum value
4500  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4501  * then add in skb->csum (checksum from csum_start to end of packet).
4502  * skb->csum and csum_start are then updated to reflect the checksum of the
4503  * resultant packet starting from the transport header-- the resultant checksum
4504  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4505  * header.
4506  */
4507 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4508 {
4509 	unsigned char *csum_start = skb_transport_header(skb);
4510 	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4511 	__wsum partial = SKB_GSO_CB(skb)->csum;
4512 
4513 	SKB_GSO_CB(skb)->csum = res;
4514 	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4515 
4516 	return csum_fold(csum_partial(csum_start, plen, partial));
4517 }
4518 
4519 static inline bool skb_is_gso(const struct sk_buff *skb)
4520 {
4521 	return skb_shinfo(skb)->gso_size;
4522 }
4523 
4524 /* Note: Should be called only if skb_is_gso(skb) is true */
4525 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4526 {
4527 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4528 }
4529 
4530 /* Note: Should be called only if skb_is_gso(skb) is true */
4531 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4532 {
4533 	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4534 }
4535 
4536 /* Note: Should be called only if skb_is_gso(skb) is true */
4537 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4538 {
4539 	return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4540 }
4541 
4542 static inline void skb_gso_reset(struct sk_buff *skb)
4543 {
4544 	skb_shinfo(skb)->gso_size = 0;
4545 	skb_shinfo(skb)->gso_segs = 0;
4546 	skb_shinfo(skb)->gso_type = 0;
4547 }
4548 
4549 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4550 					 u16 increment)
4551 {
4552 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4553 		return;
4554 	shinfo->gso_size += increment;
4555 }
4556 
4557 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4558 					 u16 decrement)
4559 {
4560 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4561 		return;
4562 	shinfo->gso_size -= decrement;
4563 }
4564 
4565 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4566 
4567 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4568 {
4569 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
4570 	 * wanted then gso_type will be set. */
4571 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4572 
4573 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4574 	    unlikely(shinfo->gso_type == 0)) {
4575 		__skb_warn_lro_forwarding(skb);
4576 		return true;
4577 	}
4578 	return false;
4579 }
4580 
4581 static inline void skb_forward_csum(struct sk_buff *skb)
4582 {
4583 	/* Unfortunately we don't support this one.  Any brave souls? */
4584 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4585 		skb->ip_summed = CHECKSUM_NONE;
4586 }
4587 
4588 /**
4589  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4590  * @skb: skb to check
4591  *
4592  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4593  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4594  * use this helper, to document places where we make this assertion.
4595  */
4596 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4597 {
4598 #ifdef DEBUG
4599 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4600 #endif
4601 }
4602 
4603 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4604 
4605 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4606 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4607 				     unsigned int transport_len,
4608 				     __sum16(*skb_chkf)(struct sk_buff *skb));
4609 
4610 /**
4611  * skb_head_is_locked - Determine if the skb->head is locked down
4612  * @skb: skb to check
4613  *
4614  * The head on skbs build around a head frag can be removed if they are
4615  * not cloned.  This function returns true if the skb head is locked down
4616  * due to either being allocated via kmalloc, or by being a clone with
4617  * multiple references to the head.
4618  */
4619 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4620 {
4621 	return !skb->head_frag || skb_cloned(skb);
4622 }
4623 
4624 /* Local Checksum Offload.
4625  * Compute outer checksum based on the assumption that the
4626  * inner checksum will be offloaded later.
4627  * See Documentation/networking/checksum-offloads.rst for
4628  * explanation of how this works.
4629  * Fill in outer checksum adjustment (e.g. with sum of outer
4630  * pseudo-header) before calling.
4631  * Also ensure that inner checksum is in linear data area.
4632  */
4633 static inline __wsum lco_csum(struct sk_buff *skb)
4634 {
4635 	unsigned char *csum_start = skb_checksum_start(skb);
4636 	unsigned char *l4_hdr = skb_transport_header(skb);
4637 	__wsum partial;
4638 
4639 	/* Start with complement of inner checksum adjustment */
4640 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4641 						    skb->csum_offset));
4642 
4643 	/* Add in checksum of our headers (incl. outer checksum
4644 	 * adjustment filled in by caller) and return result.
4645 	 */
4646 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4647 }
4648 
4649 static inline bool skb_is_redirected(const struct sk_buff *skb)
4650 {
4651 #ifdef CONFIG_NET_REDIRECT
4652 	return skb->redirected;
4653 #else
4654 	return false;
4655 #endif
4656 }
4657 
4658 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
4659 {
4660 #ifdef CONFIG_NET_REDIRECT
4661 	skb->redirected = 1;
4662 	skb->from_ingress = from_ingress;
4663 	if (skb->from_ingress)
4664 		skb->tstamp = 0;
4665 #endif
4666 }
4667 
4668 static inline void skb_reset_redirect(struct sk_buff *skb)
4669 {
4670 #ifdef CONFIG_NET_REDIRECT
4671 	skb->redirected = 0;
4672 #endif
4673 }
4674 
4675 static inline bool skb_csum_is_sctp(struct sk_buff *skb)
4676 {
4677 	return skb->csum_not_inet;
4678 }
4679 
4680 static inline void skb_set_kcov_handle(struct sk_buff *skb,
4681 				       const u64 kcov_handle)
4682 {
4683 #ifdef CONFIG_KCOV
4684 	skb->kcov_handle = kcov_handle;
4685 #endif
4686 }
4687 
4688 static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
4689 {
4690 #ifdef CONFIG_KCOV
4691 	return skb->kcov_handle;
4692 #else
4693 	return 0;
4694 #endif
4695 }
4696 
4697 #endif	/* __KERNEL__ */
4698 #endif	/* _LINUX_SKBUFF_H */
4699