1 /* 2 * Definitions for the 'struct sk_buff' memory handlers. 3 * 4 * Authors: 5 * Alan Cox, <[email protected]> 6 * Florian La Roche, <[email protected]> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14 #ifndef _LINUX_SKBUFF_H 15 #define _LINUX_SKBUFF_H 16 17 #include <linux/kernel.h> 18 #include <linux/compiler.h> 19 #include <linux/time.h> 20 #include <linux/cache.h> 21 22 #include <asm/atomic.h> 23 #include <asm/types.h> 24 #include <linux/spinlock.h> 25 #include <linux/net.h> 26 #include <linux/textsearch.h> 27 #include <net/checksum.h> 28 #include <linux/rcupdate.h> 29 #include <linux/dmaengine.h> 30 #include <linux/hrtimer.h> 31 32 #define HAVE_ALLOC_SKB /* For the drivers to know */ 33 #define HAVE_ALIGNABLE_SKB /* Ditto 8) */ 34 35 /* Don't change this without changing skb_csum_unnecessary! */ 36 #define CHECKSUM_NONE 0 37 #define CHECKSUM_UNNECESSARY 1 38 #define CHECKSUM_COMPLETE 2 39 #define CHECKSUM_PARTIAL 3 40 41 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \ 42 ~(SMP_CACHE_BYTES - 1)) 43 #define SKB_WITH_OVERHEAD(X) \ 44 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 45 #define SKB_MAX_ORDER(X, ORDER) \ 46 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 47 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 48 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 49 50 /* A. Checksumming of received packets by device. 51 * 52 * NONE: device failed to checksum this packet. 53 * skb->csum is undefined. 54 * 55 * UNNECESSARY: device parsed packet and wouldbe verified checksum. 56 * skb->csum is undefined. 57 * It is bad option, but, unfortunately, many of vendors do this. 58 * Apparently with secret goal to sell you new device, when you 59 * will add new protocol to your host. F.e. IPv6. 8) 60 * 61 * COMPLETE: the most generic way. Device supplied checksum of _all_ 62 * the packet as seen by netif_rx in skb->csum. 63 * NOTE: Even if device supports only some protocols, but 64 * is able to produce some skb->csum, it MUST use COMPLETE, 65 * not UNNECESSARY. 66 * 67 * PARTIAL: identical to the case for output below. This may occur 68 * on a packet received directly from another Linux OS, e.g., 69 * a virtualised Linux kernel on the same host. The packet can 70 * be treated in the same way as UNNECESSARY except that on 71 * output (i.e., forwarding) the checksum must be filled in 72 * by the OS or the hardware. 73 * 74 * B. Checksumming on output. 75 * 76 * NONE: skb is checksummed by protocol or csum is not required. 77 * 78 * PARTIAL: device is required to csum packet as seen by hard_start_xmit 79 * from skb->csum_start to the end and to record the checksum 80 * at skb->csum_start + skb->csum_offset. 81 * 82 * Device must show its capabilities in dev->features, set 83 * at device setup time. 84 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum 85 * everything. 86 * NETIF_F_NO_CSUM - loopback or reliable single hop media. 87 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only 88 * TCP/UDP over IPv4. Sigh. Vendors like this 89 * way by an unknown reason. Though, see comment above 90 * about CHECKSUM_UNNECESSARY. 8) 91 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead. 92 * 93 * Any questions? No questions, good. --ANK 94 */ 95 96 struct net_device; 97 struct scatterlist; 98 struct pipe_inode_info; 99 100 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 101 struct nf_conntrack { 102 atomic_t use; 103 }; 104 #endif 105 106 #ifdef CONFIG_BRIDGE_NETFILTER 107 struct nf_bridge_info { 108 atomic_t use; 109 struct net_device *physindev; 110 struct net_device *physoutdev; 111 unsigned int mask; 112 unsigned long data[32 / sizeof(unsigned long)]; 113 }; 114 #endif 115 116 struct sk_buff_head { 117 /* These two members must be first. */ 118 struct sk_buff *next; 119 struct sk_buff *prev; 120 121 __u32 qlen; 122 spinlock_t lock; 123 }; 124 125 struct sk_buff; 126 127 /* To allow 64K frame to be packed as single skb without frag_list */ 128 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2) 129 130 typedef struct skb_frag_struct skb_frag_t; 131 132 struct skb_frag_struct { 133 struct page *page; 134 __u32 page_offset; 135 __u32 size; 136 }; 137 138 /* This data is invariant across clones and lives at 139 * the end of the header data, ie. at skb->end. 140 */ 141 struct skb_shared_info { 142 atomic_t dataref; 143 unsigned short nr_frags; 144 unsigned short gso_size; 145 /* Warning: this field is not always filled in (UFO)! */ 146 unsigned short gso_segs; 147 unsigned short gso_type; 148 __be32 ip6_frag_id; 149 struct sk_buff *frag_list; 150 skb_frag_t frags[MAX_SKB_FRAGS]; 151 }; 152 153 /* We divide dataref into two halves. The higher 16 bits hold references 154 * to the payload part of skb->data. The lower 16 bits hold references to 155 * the entire skb->data. A clone of a headerless skb holds the length of 156 * the header in skb->hdr_len. 157 * 158 * All users must obey the rule that the skb->data reference count must be 159 * greater than or equal to the payload reference count. 160 * 161 * Holding a reference to the payload part means that the user does not 162 * care about modifications to the header part of skb->data. 163 */ 164 #define SKB_DATAREF_SHIFT 16 165 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 166 167 168 enum { 169 SKB_FCLONE_UNAVAILABLE, 170 SKB_FCLONE_ORIG, 171 SKB_FCLONE_CLONE, 172 }; 173 174 enum { 175 SKB_GSO_TCPV4 = 1 << 0, 176 SKB_GSO_UDP = 1 << 1, 177 178 /* This indicates the skb is from an untrusted source. */ 179 SKB_GSO_DODGY = 1 << 2, 180 181 /* This indicates the tcp segment has CWR set. */ 182 SKB_GSO_TCP_ECN = 1 << 3, 183 184 SKB_GSO_TCPV6 = 1 << 4, 185 }; 186 187 #if BITS_PER_LONG > 32 188 #define NET_SKBUFF_DATA_USES_OFFSET 1 189 #endif 190 191 #ifdef NET_SKBUFF_DATA_USES_OFFSET 192 typedef unsigned int sk_buff_data_t; 193 #else 194 typedef unsigned char *sk_buff_data_t; 195 #endif 196 197 /** 198 * struct sk_buff - socket buffer 199 * @next: Next buffer in list 200 * @prev: Previous buffer in list 201 * @sk: Socket we are owned by 202 * @tstamp: Time we arrived 203 * @dev: Device we arrived on/are leaving by 204 * @transport_header: Transport layer header 205 * @network_header: Network layer header 206 * @mac_header: Link layer header 207 * @dst: destination entry 208 * @sp: the security path, used for xfrm 209 * @cb: Control buffer. Free for use by every layer. Put private vars here 210 * @len: Length of actual data 211 * @data_len: Data length 212 * @mac_len: Length of link layer header 213 * @hdr_len: writable header length of cloned skb 214 * @csum: Checksum (must include start/offset pair) 215 * @csum_start: Offset from skb->head where checksumming should start 216 * @csum_offset: Offset from csum_start where checksum should be stored 217 * @local_df: allow local fragmentation 218 * @cloned: Head may be cloned (check refcnt to be sure) 219 * @nohdr: Payload reference only, must not modify header 220 * @pkt_type: Packet class 221 * @fclone: skbuff clone status 222 * @ip_summed: Driver fed us an IP checksum 223 * @priority: Packet queueing priority 224 * @users: User count - see {datagram,tcp}.c 225 * @protocol: Packet protocol from driver 226 * @truesize: Buffer size 227 * @head: Head of buffer 228 * @data: Data head pointer 229 * @tail: Tail pointer 230 * @end: End pointer 231 * @destructor: Destruct function 232 * @mark: Generic packet mark 233 * @nfct: Associated connection, if any 234 * @ipvs_property: skbuff is owned by ipvs 235 * @peeked: this packet has been seen already, so stats have been 236 * done for it, don't do them again 237 * @nf_trace: netfilter packet trace flag 238 * @nfctinfo: Relationship of this skb to the connection 239 * @nfct_reasm: netfilter conntrack re-assembly pointer 240 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 241 * @iif: ifindex of device we arrived on 242 * @queue_mapping: Queue mapping for multiqueue devices 243 * @tc_index: Traffic control index 244 * @tc_verd: traffic control verdict 245 * @dma_cookie: a cookie to one of several possible DMA operations 246 * done by skb DMA functions 247 * @secmark: security marking 248 */ 249 250 struct sk_buff { 251 /* These two members must be first. */ 252 struct sk_buff *next; 253 struct sk_buff *prev; 254 255 struct sock *sk; 256 ktime_t tstamp; 257 struct net_device *dev; 258 259 union { 260 struct dst_entry *dst; 261 struct rtable *rtable; 262 }; 263 struct sec_path *sp; 264 265 /* 266 * This is the control buffer. It is free to use for every 267 * layer. Please put your private variables there. If you 268 * want to keep them across layers you have to do a skb_clone() 269 * first. This is owned by whoever has the skb queued ATM. 270 */ 271 char cb[48]; 272 273 unsigned int len, 274 data_len; 275 __u16 mac_len, 276 hdr_len; 277 union { 278 __wsum csum; 279 struct { 280 __u16 csum_start; 281 __u16 csum_offset; 282 }; 283 }; 284 __u32 priority; 285 __u8 local_df:1, 286 cloned:1, 287 ip_summed:2, 288 nohdr:1, 289 nfctinfo:3; 290 __u8 pkt_type:3, 291 fclone:2, 292 ipvs_property:1, 293 peeked:1, 294 nf_trace:1; 295 __be16 protocol; 296 297 void (*destructor)(struct sk_buff *skb); 298 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 299 struct nf_conntrack *nfct; 300 struct sk_buff *nfct_reasm; 301 #endif 302 #ifdef CONFIG_BRIDGE_NETFILTER 303 struct nf_bridge_info *nf_bridge; 304 #endif 305 306 int iif; 307 #ifdef CONFIG_NETDEVICES_MULTIQUEUE 308 __u16 queue_mapping; 309 #endif 310 #ifdef CONFIG_NET_SCHED 311 __u16 tc_index; /* traffic control index */ 312 #ifdef CONFIG_NET_CLS_ACT 313 __u16 tc_verd; /* traffic control verdict */ 314 #endif 315 #endif 316 #ifdef CONFIG_IPV6_NDISC_NODETYPE 317 __u8 ndisc_nodetype:2; 318 #endif 319 /* 14 bit hole */ 320 321 #ifdef CONFIG_NET_DMA 322 dma_cookie_t dma_cookie; 323 #endif 324 #ifdef CONFIG_NETWORK_SECMARK 325 __u32 secmark; 326 #endif 327 328 __u32 mark; 329 330 sk_buff_data_t transport_header; 331 sk_buff_data_t network_header; 332 sk_buff_data_t mac_header; 333 /* These elements must be at the end, see alloc_skb() for details. */ 334 sk_buff_data_t tail; 335 sk_buff_data_t end; 336 unsigned char *head, 337 *data; 338 unsigned int truesize; 339 atomic_t users; 340 }; 341 342 #ifdef __KERNEL__ 343 /* 344 * Handling routines are only of interest to the kernel 345 */ 346 #include <linux/slab.h> 347 348 #include <asm/system.h> 349 350 extern void kfree_skb(struct sk_buff *skb); 351 extern void __kfree_skb(struct sk_buff *skb); 352 extern struct sk_buff *__alloc_skb(unsigned int size, 353 gfp_t priority, int fclone, int node); 354 static inline struct sk_buff *alloc_skb(unsigned int size, 355 gfp_t priority) 356 { 357 return __alloc_skb(size, priority, 0, -1); 358 } 359 360 static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 361 gfp_t priority) 362 { 363 return __alloc_skb(size, priority, 1, -1); 364 } 365 366 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 367 extern struct sk_buff *skb_clone(struct sk_buff *skb, 368 gfp_t priority); 369 extern struct sk_buff *skb_copy(const struct sk_buff *skb, 370 gfp_t priority); 371 extern struct sk_buff *pskb_copy(struct sk_buff *skb, 372 gfp_t gfp_mask); 373 extern int pskb_expand_head(struct sk_buff *skb, 374 int nhead, int ntail, 375 gfp_t gfp_mask); 376 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 377 unsigned int headroom); 378 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 379 int newheadroom, int newtailroom, 380 gfp_t priority); 381 extern int skb_to_sgvec(struct sk_buff *skb, 382 struct scatterlist *sg, int offset, 383 int len); 384 extern int skb_cow_data(struct sk_buff *skb, int tailbits, 385 struct sk_buff **trailer); 386 extern int skb_pad(struct sk_buff *skb, int pad); 387 #define dev_kfree_skb(a) kfree_skb(a) 388 extern void skb_over_panic(struct sk_buff *skb, int len, 389 void *here); 390 extern void skb_under_panic(struct sk_buff *skb, int len, 391 void *here); 392 extern void skb_truesize_bug(struct sk_buff *skb); 393 394 static inline void skb_truesize_check(struct sk_buff *skb) 395 { 396 int len = sizeof(struct sk_buff) + skb->len; 397 398 if (unlikely((int)skb->truesize < len)) 399 skb_truesize_bug(skb); 400 } 401 402 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 403 int getfrag(void *from, char *to, int offset, 404 int len,int odd, struct sk_buff *skb), 405 void *from, int length); 406 407 struct skb_seq_state 408 { 409 __u32 lower_offset; 410 __u32 upper_offset; 411 __u32 frag_idx; 412 __u32 stepped_offset; 413 struct sk_buff *root_skb; 414 struct sk_buff *cur_skb; 415 __u8 *frag_data; 416 }; 417 418 extern void skb_prepare_seq_read(struct sk_buff *skb, 419 unsigned int from, unsigned int to, 420 struct skb_seq_state *st); 421 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 422 struct skb_seq_state *st); 423 extern void skb_abort_seq_read(struct skb_seq_state *st); 424 425 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 426 unsigned int to, struct ts_config *config, 427 struct ts_state *state); 428 429 #ifdef NET_SKBUFF_DATA_USES_OFFSET 430 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 431 { 432 return skb->head + skb->end; 433 } 434 #else 435 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 436 { 437 return skb->end; 438 } 439 #endif 440 441 /* Internal */ 442 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 443 444 /** 445 * skb_queue_empty - check if a queue is empty 446 * @list: queue head 447 * 448 * Returns true if the queue is empty, false otherwise. 449 */ 450 static inline int skb_queue_empty(const struct sk_buff_head *list) 451 { 452 return list->next == (struct sk_buff *)list; 453 } 454 455 /** 456 * skb_get - reference buffer 457 * @skb: buffer to reference 458 * 459 * Makes another reference to a socket buffer and returns a pointer 460 * to the buffer. 461 */ 462 static inline struct sk_buff *skb_get(struct sk_buff *skb) 463 { 464 atomic_inc(&skb->users); 465 return skb; 466 } 467 468 /* 469 * If users == 1, we are the only owner and are can avoid redundant 470 * atomic change. 471 */ 472 473 /** 474 * skb_cloned - is the buffer a clone 475 * @skb: buffer to check 476 * 477 * Returns true if the buffer was generated with skb_clone() and is 478 * one of multiple shared copies of the buffer. Cloned buffers are 479 * shared data so must not be written to under normal circumstances. 480 */ 481 static inline int skb_cloned(const struct sk_buff *skb) 482 { 483 return skb->cloned && 484 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 485 } 486 487 /** 488 * skb_header_cloned - is the header a clone 489 * @skb: buffer to check 490 * 491 * Returns true if modifying the header part of the buffer requires 492 * the data to be copied. 493 */ 494 static inline int skb_header_cloned(const struct sk_buff *skb) 495 { 496 int dataref; 497 498 if (!skb->cloned) 499 return 0; 500 501 dataref = atomic_read(&skb_shinfo(skb)->dataref); 502 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 503 return dataref != 1; 504 } 505 506 /** 507 * skb_header_release - release reference to header 508 * @skb: buffer to operate on 509 * 510 * Drop a reference to the header part of the buffer. This is done 511 * by acquiring a payload reference. You must not read from the header 512 * part of skb->data after this. 513 */ 514 static inline void skb_header_release(struct sk_buff *skb) 515 { 516 BUG_ON(skb->nohdr); 517 skb->nohdr = 1; 518 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref); 519 } 520 521 /** 522 * skb_shared - is the buffer shared 523 * @skb: buffer to check 524 * 525 * Returns true if more than one person has a reference to this 526 * buffer. 527 */ 528 static inline int skb_shared(const struct sk_buff *skb) 529 { 530 return atomic_read(&skb->users) != 1; 531 } 532 533 /** 534 * skb_share_check - check if buffer is shared and if so clone it 535 * @skb: buffer to check 536 * @pri: priority for memory allocation 537 * 538 * If the buffer is shared the buffer is cloned and the old copy 539 * drops a reference. A new clone with a single reference is returned. 540 * If the buffer is not shared the original buffer is returned. When 541 * being called from interrupt status or with spinlocks held pri must 542 * be GFP_ATOMIC. 543 * 544 * NULL is returned on a memory allocation failure. 545 */ 546 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, 547 gfp_t pri) 548 { 549 might_sleep_if(pri & __GFP_WAIT); 550 if (skb_shared(skb)) { 551 struct sk_buff *nskb = skb_clone(skb, pri); 552 kfree_skb(skb); 553 skb = nskb; 554 } 555 return skb; 556 } 557 558 /* 559 * Copy shared buffers into a new sk_buff. We effectively do COW on 560 * packets to handle cases where we have a local reader and forward 561 * and a couple of other messy ones. The normal one is tcpdumping 562 * a packet thats being forwarded. 563 */ 564 565 /** 566 * skb_unshare - make a copy of a shared buffer 567 * @skb: buffer to check 568 * @pri: priority for memory allocation 569 * 570 * If the socket buffer is a clone then this function creates a new 571 * copy of the data, drops a reference count on the old copy and returns 572 * the new copy with the reference count at 1. If the buffer is not a clone 573 * the original buffer is returned. When called with a spinlock held or 574 * from interrupt state @pri must be %GFP_ATOMIC 575 * 576 * %NULL is returned on a memory allocation failure. 577 */ 578 static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 579 gfp_t pri) 580 { 581 might_sleep_if(pri & __GFP_WAIT); 582 if (skb_cloned(skb)) { 583 struct sk_buff *nskb = skb_copy(skb, pri); 584 kfree_skb(skb); /* Free our shared copy */ 585 skb = nskb; 586 } 587 return skb; 588 } 589 590 /** 591 * skb_peek 592 * @list_: list to peek at 593 * 594 * Peek an &sk_buff. Unlike most other operations you _MUST_ 595 * be careful with this one. A peek leaves the buffer on the 596 * list and someone else may run off with it. You must hold 597 * the appropriate locks or have a private queue to do this. 598 * 599 * Returns %NULL for an empty list or a pointer to the head element. 600 * The reference count is not incremented and the reference is therefore 601 * volatile. Use with caution. 602 */ 603 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_) 604 { 605 struct sk_buff *list = ((struct sk_buff *)list_)->next; 606 if (list == (struct sk_buff *)list_) 607 list = NULL; 608 return list; 609 } 610 611 /** 612 * skb_peek_tail 613 * @list_: list to peek at 614 * 615 * Peek an &sk_buff. Unlike most other operations you _MUST_ 616 * be careful with this one. A peek leaves the buffer on the 617 * list and someone else may run off with it. You must hold 618 * the appropriate locks or have a private queue to do this. 619 * 620 * Returns %NULL for an empty list or a pointer to the tail element. 621 * The reference count is not incremented and the reference is therefore 622 * volatile. Use with caution. 623 */ 624 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_) 625 { 626 struct sk_buff *list = ((struct sk_buff *)list_)->prev; 627 if (list == (struct sk_buff *)list_) 628 list = NULL; 629 return list; 630 } 631 632 /** 633 * skb_queue_len - get queue length 634 * @list_: list to measure 635 * 636 * Return the length of an &sk_buff queue. 637 */ 638 static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 639 { 640 return list_->qlen; 641 } 642 643 /* 644 * This function creates a split out lock class for each invocation; 645 * this is needed for now since a whole lot of users of the skb-queue 646 * infrastructure in drivers have different locking usage (in hardirq) 647 * than the networking core (in softirq only). In the long run either the 648 * network layer or drivers should need annotation to consolidate the 649 * main types of usage into 3 classes. 650 */ 651 static inline void skb_queue_head_init(struct sk_buff_head *list) 652 { 653 spin_lock_init(&list->lock); 654 list->prev = list->next = (struct sk_buff *)list; 655 list->qlen = 0; 656 } 657 658 static inline void skb_queue_head_init_class(struct sk_buff_head *list, 659 struct lock_class_key *class) 660 { 661 skb_queue_head_init(list); 662 lockdep_set_class(&list->lock, class); 663 } 664 665 /* 666 * Insert an sk_buff on a list. 667 * 668 * The "__skb_xxxx()" functions are the non-atomic ones that 669 * can only be called with interrupts disabled. 670 */ 671 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list); 672 static inline void __skb_insert(struct sk_buff *newsk, 673 struct sk_buff *prev, struct sk_buff *next, 674 struct sk_buff_head *list) 675 { 676 newsk->next = next; 677 newsk->prev = prev; 678 next->prev = prev->next = newsk; 679 list->qlen++; 680 } 681 682 /** 683 * __skb_queue_after - queue a buffer at the list head 684 * @list: list to use 685 * @prev: place after this buffer 686 * @newsk: buffer to queue 687 * 688 * Queue a buffer int the middle of a list. This function takes no locks 689 * and you must therefore hold required locks before calling it. 690 * 691 * A buffer cannot be placed on two lists at the same time. 692 */ 693 static inline void __skb_queue_after(struct sk_buff_head *list, 694 struct sk_buff *prev, 695 struct sk_buff *newsk) 696 { 697 __skb_insert(newsk, prev, prev->next, list); 698 } 699 700 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, 701 struct sk_buff_head *list); 702 703 static inline void __skb_queue_before(struct sk_buff_head *list, 704 struct sk_buff *next, 705 struct sk_buff *newsk) 706 { 707 __skb_insert(newsk, next->prev, next, list); 708 } 709 710 /** 711 * __skb_queue_head - queue a buffer at the list head 712 * @list: list to use 713 * @newsk: buffer to queue 714 * 715 * Queue a buffer at the start of a list. This function takes no locks 716 * and you must therefore hold required locks before calling it. 717 * 718 * A buffer cannot be placed on two lists at the same time. 719 */ 720 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 721 static inline void __skb_queue_head(struct sk_buff_head *list, 722 struct sk_buff *newsk) 723 { 724 __skb_queue_after(list, (struct sk_buff *)list, newsk); 725 } 726 727 /** 728 * __skb_queue_tail - queue a buffer at the list tail 729 * @list: list to use 730 * @newsk: buffer to queue 731 * 732 * Queue a buffer at the end of a list. This function takes no locks 733 * and you must therefore hold required locks before calling it. 734 * 735 * A buffer cannot be placed on two lists at the same time. 736 */ 737 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 738 static inline void __skb_queue_tail(struct sk_buff_head *list, 739 struct sk_buff *newsk) 740 { 741 __skb_queue_before(list, (struct sk_buff *)list, newsk); 742 } 743 744 /* 745 * remove sk_buff from list. _Must_ be called atomically, and with 746 * the list known.. 747 */ 748 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 749 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 750 { 751 struct sk_buff *next, *prev; 752 753 list->qlen--; 754 next = skb->next; 755 prev = skb->prev; 756 skb->next = skb->prev = NULL; 757 next->prev = prev; 758 prev->next = next; 759 } 760 761 /** 762 * __skb_dequeue - remove from the head of the queue 763 * @list: list to dequeue from 764 * 765 * Remove the head of the list. This function does not take any locks 766 * so must be used with appropriate locks held only. The head item is 767 * returned or %NULL if the list is empty. 768 */ 769 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list); 770 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 771 { 772 struct sk_buff *skb = skb_peek(list); 773 if (skb) 774 __skb_unlink(skb, list); 775 return skb; 776 } 777 778 /** 779 * __skb_dequeue_tail - remove from the tail of the queue 780 * @list: list to dequeue from 781 * 782 * Remove the tail of the list. This function does not take any locks 783 * so must be used with appropriate locks held only. The tail item is 784 * returned or %NULL if the list is empty. 785 */ 786 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 787 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 788 { 789 struct sk_buff *skb = skb_peek_tail(list); 790 if (skb) 791 __skb_unlink(skb, list); 792 return skb; 793 } 794 795 796 static inline int skb_is_nonlinear(const struct sk_buff *skb) 797 { 798 return skb->data_len; 799 } 800 801 static inline unsigned int skb_headlen(const struct sk_buff *skb) 802 { 803 return skb->len - skb->data_len; 804 } 805 806 static inline int skb_pagelen(const struct sk_buff *skb) 807 { 808 int i, len = 0; 809 810 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--) 811 len += skb_shinfo(skb)->frags[i].size; 812 return len + skb_headlen(skb); 813 } 814 815 static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 816 struct page *page, int off, int size) 817 { 818 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 819 820 frag->page = page; 821 frag->page_offset = off; 822 frag->size = size; 823 skb_shinfo(skb)->nr_frags = i + 1; 824 } 825 826 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags) 827 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list) 828 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 829 830 #ifdef NET_SKBUFF_DATA_USES_OFFSET 831 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 832 { 833 return skb->head + skb->tail; 834 } 835 836 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 837 { 838 skb->tail = skb->data - skb->head; 839 } 840 841 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 842 { 843 skb_reset_tail_pointer(skb); 844 skb->tail += offset; 845 } 846 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 847 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 848 { 849 return skb->tail; 850 } 851 852 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 853 { 854 skb->tail = skb->data; 855 } 856 857 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 858 { 859 skb->tail = skb->data + offset; 860 } 861 862 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 863 864 /* 865 * Add data to an sk_buff 866 */ 867 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len); 868 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len) 869 { 870 unsigned char *tmp = skb_tail_pointer(skb); 871 SKB_LINEAR_ASSERT(skb); 872 skb->tail += len; 873 skb->len += len; 874 return tmp; 875 } 876 877 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len); 878 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len) 879 { 880 skb->data -= len; 881 skb->len += len; 882 return skb->data; 883 } 884 885 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len); 886 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len) 887 { 888 skb->len -= len; 889 BUG_ON(skb->len < skb->data_len); 890 return skb->data += len; 891 } 892 893 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta); 894 895 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len) 896 { 897 if (len > skb_headlen(skb) && 898 !__pskb_pull_tail(skb, len-skb_headlen(skb))) 899 return NULL; 900 skb->len -= len; 901 return skb->data += len; 902 } 903 904 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len) 905 { 906 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 907 } 908 909 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) 910 { 911 if (likely(len <= skb_headlen(skb))) 912 return 1; 913 if (unlikely(len > skb->len)) 914 return 0; 915 return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL; 916 } 917 918 /** 919 * skb_headroom - bytes at buffer head 920 * @skb: buffer to check 921 * 922 * Return the number of bytes of free space at the head of an &sk_buff. 923 */ 924 static inline unsigned int skb_headroom(const struct sk_buff *skb) 925 { 926 return skb->data - skb->head; 927 } 928 929 /** 930 * skb_tailroom - bytes at buffer end 931 * @skb: buffer to check 932 * 933 * Return the number of bytes of free space at the tail of an sk_buff 934 */ 935 static inline int skb_tailroom(const struct sk_buff *skb) 936 { 937 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 938 } 939 940 /** 941 * skb_reserve - adjust headroom 942 * @skb: buffer to alter 943 * @len: bytes to move 944 * 945 * Increase the headroom of an empty &sk_buff by reducing the tail 946 * room. This is only allowed for an empty buffer. 947 */ 948 static inline void skb_reserve(struct sk_buff *skb, int len) 949 { 950 skb->data += len; 951 skb->tail += len; 952 } 953 954 #ifdef NET_SKBUFF_DATA_USES_OFFSET 955 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 956 { 957 return skb->head + skb->transport_header; 958 } 959 960 static inline void skb_reset_transport_header(struct sk_buff *skb) 961 { 962 skb->transport_header = skb->data - skb->head; 963 } 964 965 static inline void skb_set_transport_header(struct sk_buff *skb, 966 const int offset) 967 { 968 skb_reset_transport_header(skb); 969 skb->transport_header += offset; 970 } 971 972 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 973 { 974 return skb->head + skb->network_header; 975 } 976 977 static inline void skb_reset_network_header(struct sk_buff *skb) 978 { 979 skb->network_header = skb->data - skb->head; 980 } 981 982 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 983 { 984 skb_reset_network_header(skb); 985 skb->network_header += offset; 986 } 987 988 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 989 { 990 return skb->head + skb->mac_header; 991 } 992 993 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 994 { 995 return skb->mac_header != ~0U; 996 } 997 998 static inline void skb_reset_mac_header(struct sk_buff *skb) 999 { 1000 skb->mac_header = skb->data - skb->head; 1001 } 1002 1003 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1004 { 1005 skb_reset_mac_header(skb); 1006 skb->mac_header += offset; 1007 } 1008 1009 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 1010 1011 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 1012 { 1013 return skb->transport_header; 1014 } 1015 1016 static inline void skb_reset_transport_header(struct sk_buff *skb) 1017 { 1018 skb->transport_header = skb->data; 1019 } 1020 1021 static inline void skb_set_transport_header(struct sk_buff *skb, 1022 const int offset) 1023 { 1024 skb->transport_header = skb->data + offset; 1025 } 1026 1027 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 1028 { 1029 return skb->network_header; 1030 } 1031 1032 static inline void skb_reset_network_header(struct sk_buff *skb) 1033 { 1034 skb->network_header = skb->data; 1035 } 1036 1037 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 1038 { 1039 skb->network_header = skb->data + offset; 1040 } 1041 1042 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 1043 { 1044 return skb->mac_header; 1045 } 1046 1047 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 1048 { 1049 return skb->mac_header != NULL; 1050 } 1051 1052 static inline void skb_reset_mac_header(struct sk_buff *skb) 1053 { 1054 skb->mac_header = skb->data; 1055 } 1056 1057 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1058 { 1059 skb->mac_header = skb->data + offset; 1060 } 1061 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1062 1063 static inline int skb_transport_offset(const struct sk_buff *skb) 1064 { 1065 return skb_transport_header(skb) - skb->data; 1066 } 1067 1068 static inline u32 skb_network_header_len(const struct sk_buff *skb) 1069 { 1070 return skb->transport_header - skb->network_header; 1071 } 1072 1073 static inline int skb_network_offset(const struct sk_buff *skb) 1074 { 1075 return skb_network_header(skb) - skb->data; 1076 } 1077 1078 /* 1079 * CPUs often take a performance hit when accessing unaligned memory 1080 * locations. The actual performance hit varies, it can be small if the 1081 * hardware handles it or large if we have to take an exception and fix it 1082 * in software. 1083 * 1084 * Since an ethernet header is 14 bytes network drivers often end up with 1085 * the IP header at an unaligned offset. The IP header can be aligned by 1086 * shifting the start of the packet by 2 bytes. Drivers should do this 1087 * with: 1088 * 1089 * skb_reserve(NET_IP_ALIGN); 1090 * 1091 * The downside to this alignment of the IP header is that the DMA is now 1092 * unaligned. On some architectures the cost of an unaligned DMA is high 1093 * and this cost outweighs the gains made by aligning the IP header. 1094 * 1095 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 1096 * to be overridden. 1097 */ 1098 #ifndef NET_IP_ALIGN 1099 #define NET_IP_ALIGN 2 1100 #endif 1101 1102 /* 1103 * The networking layer reserves some headroom in skb data (via 1104 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 1105 * the header has to grow. In the default case, if the header has to grow 1106 * 16 bytes or less we avoid the reallocation. 1107 * 1108 * Unfortunately this headroom changes the DMA alignment of the resulting 1109 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 1110 * on some architectures. An architecture can override this value, 1111 * perhaps setting it to a cacheline in size (since that will maintain 1112 * cacheline alignment of the DMA). It must be a power of 2. 1113 * 1114 * Various parts of the networking layer expect at least 16 bytes of 1115 * headroom, you should not reduce this. 1116 */ 1117 #ifndef NET_SKB_PAD 1118 #define NET_SKB_PAD 16 1119 #endif 1120 1121 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len); 1122 1123 static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 1124 { 1125 if (unlikely(skb->data_len)) { 1126 WARN_ON(1); 1127 return; 1128 } 1129 skb->len = len; 1130 skb_set_tail_pointer(skb, len); 1131 } 1132 1133 extern void skb_trim(struct sk_buff *skb, unsigned int len); 1134 1135 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 1136 { 1137 if (skb->data_len) 1138 return ___pskb_trim(skb, len); 1139 __skb_trim(skb, len); 1140 return 0; 1141 } 1142 1143 static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 1144 { 1145 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 1146 } 1147 1148 /** 1149 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 1150 * @skb: buffer to alter 1151 * @len: new length 1152 * 1153 * This is identical to pskb_trim except that the caller knows that 1154 * the skb is not cloned so we should never get an error due to out- 1155 * of-memory. 1156 */ 1157 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 1158 { 1159 int err = pskb_trim(skb, len); 1160 BUG_ON(err); 1161 } 1162 1163 /** 1164 * skb_orphan - orphan a buffer 1165 * @skb: buffer to orphan 1166 * 1167 * If a buffer currently has an owner then we call the owner's 1168 * destructor function and make the @skb unowned. The buffer continues 1169 * to exist but is no longer charged to its former owner. 1170 */ 1171 static inline void skb_orphan(struct sk_buff *skb) 1172 { 1173 if (skb->destructor) 1174 skb->destructor(skb); 1175 skb->destructor = NULL; 1176 skb->sk = NULL; 1177 } 1178 1179 /** 1180 * __skb_queue_purge - empty a list 1181 * @list: list to empty 1182 * 1183 * Delete all buffers on an &sk_buff list. Each buffer is removed from 1184 * the list and one reference dropped. This function does not take the 1185 * list lock and the caller must hold the relevant locks to use it. 1186 */ 1187 extern void skb_queue_purge(struct sk_buff_head *list); 1188 static inline void __skb_queue_purge(struct sk_buff_head *list) 1189 { 1190 struct sk_buff *skb; 1191 while ((skb = __skb_dequeue(list)) != NULL) 1192 kfree_skb(skb); 1193 } 1194 1195 /** 1196 * __dev_alloc_skb - allocate an skbuff for receiving 1197 * @length: length to allocate 1198 * @gfp_mask: get_free_pages mask, passed to alloc_skb 1199 * 1200 * Allocate a new &sk_buff and assign it a usage count of one. The 1201 * buffer has unspecified headroom built in. Users should allocate 1202 * the headroom they think they need without accounting for the 1203 * built in space. The built in space is used for optimisations. 1204 * 1205 * %NULL is returned if there is no free memory. 1206 */ 1207 static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 1208 gfp_t gfp_mask) 1209 { 1210 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask); 1211 if (likely(skb)) 1212 skb_reserve(skb, NET_SKB_PAD); 1213 return skb; 1214 } 1215 1216 extern struct sk_buff *dev_alloc_skb(unsigned int length); 1217 1218 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev, 1219 unsigned int length, gfp_t gfp_mask); 1220 1221 /** 1222 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 1223 * @dev: network device to receive on 1224 * @length: length to allocate 1225 * 1226 * Allocate a new &sk_buff and assign it a usage count of one. The 1227 * buffer has unspecified headroom built in. Users should allocate 1228 * the headroom they think they need without accounting for the 1229 * built in space. The built in space is used for optimisations. 1230 * 1231 * %NULL is returned if there is no free memory. Although this function 1232 * allocates memory it can be called from an interrupt. 1233 */ 1234 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 1235 unsigned int length) 1236 { 1237 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 1238 } 1239 1240 /** 1241 * skb_clone_writable - is the header of a clone writable 1242 * @skb: buffer to check 1243 * @len: length up to which to write 1244 * 1245 * Returns true if modifying the header part of the cloned buffer 1246 * does not requires the data to be copied. 1247 */ 1248 static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len) 1249 { 1250 return !skb_header_cloned(skb) && 1251 skb_headroom(skb) + len <= skb->hdr_len; 1252 } 1253 1254 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 1255 int cloned) 1256 { 1257 int delta = 0; 1258 1259 if (headroom < NET_SKB_PAD) 1260 headroom = NET_SKB_PAD; 1261 if (headroom > skb_headroom(skb)) 1262 delta = headroom - skb_headroom(skb); 1263 1264 if (delta || cloned) 1265 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 1266 GFP_ATOMIC); 1267 return 0; 1268 } 1269 1270 /** 1271 * skb_cow - copy header of skb when it is required 1272 * @skb: buffer to cow 1273 * @headroom: needed headroom 1274 * 1275 * If the skb passed lacks sufficient headroom or its data part 1276 * is shared, data is reallocated. If reallocation fails, an error 1277 * is returned and original skb is not changed. 1278 * 1279 * The result is skb with writable area skb->head...skb->tail 1280 * and at least @headroom of space at head. 1281 */ 1282 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 1283 { 1284 return __skb_cow(skb, headroom, skb_cloned(skb)); 1285 } 1286 1287 /** 1288 * skb_cow_head - skb_cow but only making the head writable 1289 * @skb: buffer to cow 1290 * @headroom: needed headroom 1291 * 1292 * This function is identical to skb_cow except that we replace the 1293 * skb_cloned check by skb_header_cloned. It should be used when 1294 * you only need to push on some header and do not need to modify 1295 * the data. 1296 */ 1297 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 1298 { 1299 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 1300 } 1301 1302 /** 1303 * skb_padto - pad an skbuff up to a minimal size 1304 * @skb: buffer to pad 1305 * @len: minimal length 1306 * 1307 * Pads up a buffer to ensure the trailing bytes exist and are 1308 * blanked. If the buffer already contains sufficient data it 1309 * is untouched. Otherwise it is extended. Returns zero on 1310 * success. The skb is freed on error. 1311 */ 1312 1313 static inline int skb_padto(struct sk_buff *skb, unsigned int len) 1314 { 1315 unsigned int size = skb->len; 1316 if (likely(size >= len)) 1317 return 0; 1318 return skb_pad(skb, len-size); 1319 } 1320 1321 static inline int skb_add_data(struct sk_buff *skb, 1322 char __user *from, int copy) 1323 { 1324 const int off = skb->len; 1325 1326 if (skb->ip_summed == CHECKSUM_NONE) { 1327 int err = 0; 1328 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy), 1329 copy, 0, &err); 1330 if (!err) { 1331 skb->csum = csum_block_add(skb->csum, csum, off); 1332 return 0; 1333 } 1334 } else if (!copy_from_user(skb_put(skb, copy), from, copy)) 1335 return 0; 1336 1337 __skb_trim(skb, off); 1338 return -EFAULT; 1339 } 1340 1341 static inline int skb_can_coalesce(struct sk_buff *skb, int i, 1342 struct page *page, int off) 1343 { 1344 if (i) { 1345 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 1346 1347 return page == frag->page && 1348 off == frag->page_offset + frag->size; 1349 } 1350 return 0; 1351 } 1352 1353 static inline int __skb_linearize(struct sk_buff *skb) 1354 { 1355 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 1356 } 1357 1358 /** 1359 * skb_linearize - convert paged skb to linear one 1360 * @skb: buffer to linarize 1361 * 1362 * If there is no free memory -ENOMEM is returned, otherwise zero 1363 * is returned and the old skb data released. 1364 */ 1365 static inline int skb_linearize(struct sk_buff *skb) 1366 { 1367 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 1368 } 1369 1370 /** 1371 * skb_linearize_cow - make sure skb is linear and writable 1372 * @skb: buffer to process 1373 * 1374 * If there is no free memory -ENOMEM is returned, otherwise zero 1375 * is returned and the old skb data released. 1376 */ 1377 static inline int skb_linearize_cow(struct sk_buff *skb) 1378 { 1379 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 1380 __skb_linearize(skb) : 0; 1381 } 1382 1383 /** 1384 * skb_postpull_rcsum - update checksum for received skb after pull 1385 * @skb: buffer to update 1386 * @start: start of data before pull 1387 * @len: length of data pulled 1388 * 1389 * After doing a pull on a received packet, you need to call this to 1390 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 1391 * CHECKSUM_NONE so that it can be recomputed from scratch. 1392 */ 1393 1394 static inline void skb_postpull_rcsum(struct sk_buff *skb, 1395 const void *start, unsigned int len) 1396 { 1397 if (skb->ip_summed == CHECKSUM_COMPLETE) 1398 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0)); 1399 } 1400 1401 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 1402 1403 /** 1404 * pskb_trim_rcsum - trim received skb and update checksum 1405 * @skb: buffer to trim 1406 * @len: new length 1407 * 1408 * This is exactly the same as pskb_trim except that it ensures the 1409 * checksum of received packets are still valid after the operation. 1410 */ 1411 1412 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 1413 { 1414 if (likely(len >= skb->len)) 1415 return 0; 1416 if (skb->ip_summed == CHECKSUM_COMPLETE) 1417 skb->ip_summed = CHECKSUM_NONE; 1418 return __pskb_trim(skb, len); 1419 } 1420 1421 #define skb_queue_walk(queue, skb) \ 1422 for (skb = (queue)->next; \ 1423 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \ 1424 skb = skb->next) 1425 1426 #define skb_queue_walk_safe(queue, skb, tmp) \ 1427 for (skb = (queue)->next, tmp = skb->next; \ 1428 skb != (struct sk_buff *)(queue); \ 1429 skb = tmp, tmp = skb->next) 1430 1431 #define skb_queue_reverse_walk(queue, skb) \ 1432 for (skb = (queue)->prev; \ 1433 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \ 1434 skb = skb->prev) 1435 1436 1437 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags, 1438 int *peeked, int *err); 1439 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, 1440 int noblock, int *err); 1441 extern unsigned int datagram_poll(struct file *file, struct socket *sock, 1442 struct poll_table_struct *wait); 1443 extern int skb_copy_datagram_iovec(const struct sk_buff *from, 1444 int offset, struct iovec *to, 1445 int size); 1446 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb, 1447 int hlen, 1448 struct iovec *iov); 1449 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 1450 extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, 1451 unsigned int flags); 1452 extern __wsum skb_checksum(const struct sk_buff *skb, int offset, 1453 int len, __wsum csum); 1454 extern int skb_copy_bits(const struct sk_buff *skb, int offset, 1455 void *to, int len); 1456 extern int skb_store_bits(struct sk_buff *skb, int offset, 1457 const void *from, int len); 1458 extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, 1459 int offset, u8 *to, int len, 1460 __wsum csum); 1461 extern int skb_splice_bits(struct sk_buff *skb, 1462 unsigned int offset, 1463 struct pipe_inode_info *pipe, 1464 unsigned int len, 1465 unsigned int flags); 1466 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 1467 extern void skb_split(struct sk_buff *skb, 1468 struct sk_buff *skb1, const u32 len); 1469 1470 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features); 1471 1472 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset, 1473 int len, void *buffer) 1474 { 1475 int hlen = skb_headlen(skb); 1476 1477 if (hlen - offset >= len) 1478 return skb->data + offset; 1479 1480 if (skb_copy_bits(skb, offset, buffer, len) < 0) 1481 return NULL; 1482 1483 return buffer; 1484 } 1485 1486 static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 1487 void *to, 1488 const unsigned int len) 1489 { 1490 memcpy(to, skb->data, len); 1491 } 1492 1493 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 1494 const int offset, void *to, 1495 const unsigned int len) 1496 { 1497 memcpy(to, skb->data + offset, len); 1498 } 1499 1500 static inline void skb_copy_to_linear_data(struct sk_buff *skb, 1501 const void *from, 1502 const unsigned int len) 1503 { 1504 memcpy(skb->data, from, len); 1505 } 1506 1507 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 1508 const int offset, 1509 const void *from, 1510 const unsigned int len) 1511 { 1512 memcpy(skb->data + offset, from, len); 1513 } 1514 1515 extern void skb_init(void); 1516 1517 /** 1518 * skb_get_timestamp - get timestamp from a skb 1519 * @skb: skb to get stamp from 1520 * @stamp: pointer to struct timeval to store stamp in 1521 * 1522 * Timestamps are stored in the skb as offsets to a base timestamp. 1523 * This function converts the offset back to a struct timeval and stores 1524 * it in stamp. 1525 */ 1526 static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp) 1527 { 1528 *stamp = ktime_to_timeval(skb->tstamp); 1529 } 1530 1531 static inline void __net_timestamp(struct sk_buff *skb) 1532 { 1533 skb->tstamp = ktime_get_real(); 1534 } 1535 1536 static inline ktime_t net_timedelta(ktime_t t) 1537 { 1538 return ktime_sub(ktime_get_real(), t); 1539 } 1540 1541 static inline ktime_t net_invalid_timestamp(void) 1542 { 1543 return ktime_set(0, 0); 1544 } 1545 1546 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 1547 extern __sum16 __skb_checksum_complete(struct sk_buff *skb); 1548 1549 static inline int skb_csum_unnecessary(const struct sk_buff *skb) 1550 { 1551 return skb->ip_summed & CHECKSUM_UNNECESSARY; 1552 } 1553 1554 /** 1555 * skb_checksum_complete - Calculate checksum of an entire packet 1556 * @skb: packet to process 1557 * 1558 * This function calculates the checksum over the entire packet plus 1559 * the value of skb->csum. The latter can be used to supply the 1560 * checksum of a pseudo header as used by TCP/UDP. It returns the 1561 * checksum. 1562 * 1563 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 1564 * this function can be used to verify that checksum on received 1565 * packets. In that case the function should return zero if the 1566 * checksum is correct. In particular, this function will return zero 1567 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 1568 * hardware has already verified the correctness of the checksum. 1569 */ 1570 static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 1571 { 1572 return skb_csum_unnecessary(skb) ? 1573 0 : __skb_checksum_complete(skb); 1574 } 1575 1576 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 1577 extern void nf_conntrack_destroy(struct nf_conntrack *nfct); 1578 static inline void nf_conntrack_put(struct nf_conntrack *nfct) 1579 { 1580 if (nfct && atomic_dec_and_test(&nfct->use)) 1581 nf_conntrack_destroy(nfct); 1582 } 1583 static inline void nf_conntrack_get(struct nf_conntrack *nfct) 1584 { 1585 if (nfct) 1586 atomic_inc(&nfct->use); 1587 } 1588 static inline void nf_conntrack_get_reasm(struct sk_buff *skb) 1589 { 1590 if (skb) 1591 atomic_inc(&skb->users); 1592 } 1593 static inline void nf_conntrack_put_reasm(struct sk_buff *skb) 1594 { 1595 if (skb) 1596 kfree_skb(skb); 1597 } 1598 #endif 1599 #ifdef CONFIG_BRIDGE_NETFILTER 1600 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge) 1601 { 1602 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use)) 1603 kfree(nf_bridge); 1604 } 1605 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge) 1606 { 1607 if (nf_bridge) 1608 atomic_inc(&nf_bridge->use); 1609 } 1610 #endif /* CONFIG_BRIDGE_NETFILTER */ 1611 static inline void nf_reset(struct sk_buff *skb) 1612 { 1613 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 1614 nf_conntrack_put(skb->nfct); 1615 skb->nfct = NULL; 1616 nf_conntrack_put_reasm(skb->nfct_reasm); 1617 skb->nfct_reasm = NULL; 1618 #endif 1619 #ifdef CONFIG_BRIDGE_NETFILTER 1620 nf_bridge_put(skb->nf_bridge); 1621 skb->nf_bridge = NULL; 1622 #endif 1623 } 1624 1625 /* Note: This doesn't put any conntrack and bridge info in dst. */ 1626 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src) 1627 { 1628 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 1629 dst->nfct = src->nfct; 1630 nf_conntrack_get(src->nfct); 1631 dst->nfctinfo = src->nfctinfo; 1632 dst->nfct_reasm = src->nfct_reasm; 1633 nf_conntrack_get_reasm(src->nfct_reasm); 1634 #endif 1635 #ifdef CONFIG_BRIDGE_NETFILTER 1636 dst->nf_bridge = src->nf_bridge; 1637 nf_bridge_get(src->nf_bridge); 1638 #endif 1639 } 1640 1641 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 1642 { 1643 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 1644 nf_conntrack_put(dst->nfct); 1645 nf_conntrack_put_reasm(dst->nfct_reasm); 1646 #endif 1647 #ifdef CONFIG_BRIDGE_NETFILTER 1648 nf_bridge_put(dst->nf_bridge); 1649 #endif 1650 __nf_copy(dst, src); 1651 } 1652 1653 #ifdef CONFIG_NETWORK_SECMARK 1654 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 1655 { 1656 to->secmark = from->secmark; 1657 } 1658 1659 static inline void skb_init_secmark(struct sk_buff *skb) 1660 { 1661 skb->secmark = 0; 1662 } 1663 #else 1664 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 1665 { } 1666 1667 static inline void skb_init_secmark(struct sk_buff *skb) 1668 { } 1669 #endif 1670 1671 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 1672 { 1673 #ifdef CONFIG_NETDEVICES_MULTIQUEUE 1674 skb->queue_mapping = queue_mapping; 1675 #endif 1676 } 1677 1678 static inline u16 skb_get_queue_mapping(struct sk_buff *skb) 1679 { 1680 #ifdef CONFIG_NETDEVICES_MULTIQUEUE 1681 return skb->queue_mapping; 1682 #else 1683 return 0; 1684 #endif 1685 } 1686 1687 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 1688 { 1689 #ifdef CONFIG_NETDEVICES_MULTIQUEUE 1690 to->queue_mapping = from->queue_mapping; 1691 #endif 1692 } 1693 1694 static inline int skb_is_gso(const struct sk_buff *skb) 1695 { 1696 return skb_shinfo(skb)->gso_size; 1697 } 1698 1699 static inline int skb_is_gso_v6(const struct sk_buff *skb) 1700 { 1701 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 1702 } 1703 1704 static inline void skb_forward_csum(struct sk_buff *skb) 1705 { 1706 /* Unfortunately we don't support this one. Any brave souls? */ 1707 if (skb->ip_summed == CHECKSUM_COMPLETE) 1708 skb->ip_summed = CHECKSUM_NONE; 1709 } 1710 1711 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 1712 #endif /* __KERNEL__ */ 1713 #endif /* _LINUX_SKBUFF_H */ 1714