xref: /linux-6.15/include/linux/skbuff.h (revision cfd6ed45)
1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <[email protected]>
6  *		Florian La Roche, <[email protected]>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/bug.h>
22 #include <linux/cache.h>
23 #include <linux/rbtree.h>
24 #include <linux/socket.h>
25 
26 #include <linux/atomic.h>
27 #include <asm/types.h>
28 #include <linux/spinlock.h>
29 #include <linux/net.h>
30 #include <linux/textsearch.h>
31 #include <net/checksum.h>
32 #include <linux/rcupdate.h>
33 #include <linux/hrtimer.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/netdev_features.h>
36 #include <linux/sched.h>
37 #include <linux/sched/clock.h>
38 #include <net/flow_dissector.h>
39 #include <linux/splice.h>
40 #include <linux/in6.h>
41 #include <linux/if_packet.h>
42 #include <net/flow.h>
43 
44 /* The interface for checksum offload between the stack and networking drivers
45  * is as follows...
46  *
47  * A. IP checksum related features
48  *
49  * Drivers advertise checksum offload capabilities in the features of a device.
50  * From the stack's point of view these are capabilities offered by the driver,
51  * a driver typically only advertises features that it is capable of offloading
52  * to its device.
53  *
54  * The checksum related features are:
55  *
56  *	NETIF_F_HW_CSUM	- The driver (or its device) is able to compute one
57  *			  IP (one's complement) checksum for any combination
58  *			  of protocols or protocol layering. The checksum is
59  *			  computed and set in a packet per the CHECKSUM_PARTIAL
60  *			  interface (see below).
61  *
62  *	NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
63  *			  TCP or UDP packets over IPv4. These are specifically
64  *			  unencapsulated packets of the form IPv4|TCP or
65  *			  IPv4|UDP where the Protocol field in the IPv4 header
66  *			  is TCP or UDP. The IPv4 header may contain IP options
67  *			  This feature cannot be set in features for a device
68  *			  with NETIF_F_HW_CSUM also set. This feature is being
69  *			  DEPRECATED (see below).
70  *
71  *	NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
72  *			  TCP or UDP packets over IPv6. These are specifically
73  *			  unencapsulated packets of the form IPv6|TCP or
74  *			  IPv4|UDP where the Next Header field in the IPv6
75  *			  header is either TCP or UDP. IPv6 extension headers
76  *			  are not supported with this feature. This feature
77  *			  cannot be set in features for a device with
78  *			  NETIF_F_HW_CSUM also set. This feature is being
79  *			  DEPRECATED (see below).
80  *
81  *	NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
82  *			 This flag is used only used to disable the RX checksum
83  *			 feature for a device. The stack will accept receive
84  *			 checksum indication in packets received on a device
85  *			 regardless of whether NETIF_F_RXCSUM is set.
86  *
87  * B. Checksumming of received packets by device. Indication of checksum
88  *    verification is in set skb->ip_summed. Possible values are:
89  *
90  * CHECKSUM_NONE:
91  *
92  *   Device did not checksum this packet e.g. due to lack of capabilities.
93  *   The packet contains full (though not verified) checksum in packet but
94  *   not in skb->csum. Thus, skb->csum is undefined in this case.
95  *
96  * CHECKSUM_UNNECESSARY:
97  *
98  *   The hardware you're dealing with doesn't calculate the full checksum
99  *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
100  *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
101  *   if their checksums are okay. skb->csum is still undefined in this case
102  *   though. A driver or device must never modify the checksum field in the
103  *   packet even if checksum is verified.
104  *
105  *   CHECKSUM_UNNECESSARY is applicable to following protocols:
106  *     TCP: IPv6 and IPv4.
107  *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
108  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
109  *       may perform further validation in this case.
110  *     GRE: only if the checksum is present in the header.
111  *     SCTP: indicates the CRC in SCTP header has been validated.
112  *
113  *   skb->csum_level indicates the number of consecutive checksums found in
114  *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
115  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
116  *   and a device is able to verify the checksums for UDP (possibly zero),
117  *   GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
118  *   two. If the device were only able to verify the UDP checksum and not
119  *   GRE, either because it doesn't support GRE checksum of because GRE
120  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
121  *   not considered in this case).
122  *
123  * CHECKSUM_COMPLETE:
124  *
125  *   This is the most generic way. The device supplied checksum of the _whole_
126  *   packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
127  *   hardware doesn't need to parse L3/L4 headers to implement this.
128  *
129  *   Note: Even if device supports only some protocols, but is able to produce
130  *   skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
131  *
132  * CHECKSUM_PARTIAL:
133  *
134  *   A checksum is set up to be offloaded to a device as described in the
135  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
136  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
137  *   on the same host, or it may be set in the input path in GRO or remote
138  *   checksum offload. For the purposes of checksum verification, the checksum
139  *   referred to by skb->csum_start + skb->csum_offset and any preceding
140  *   checksums in the packet are considered verified. Any checksums in the
141  *   packet that are after the checksum being offloaded are not considered to
142  *   be verified.
143  *
144  * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
145  *    in the skb->ip_summed for a packet. Values are:
146  *
147  * CHECKSUM_PARTIAL:
148  *
149  *   The driver is required to checksum the packet as seen by hard_start_xmit()
150  *   from skb->csum_start up to the end, and to record/write the checksum at
151  *   offset skb->csum_start + skb->csum_offset. A driver may verify that the
152  *   csum_start and csum_offset values are valid values given the length and
153  *   offset of the packet, however they should not attempt to validate that the
154  *   checksum refers to a legitimate transport layer checksum-- it is the
155  *   purview of the stack to validate that csum_start and csum_offset are set
156  *   correctly.
157  *
158  *   When the stack requests checksum offload for a packet, the driver MUST
159  *   ensure that the checksum is set correctly. A driver can either offload the
160  *   checksum calculation to the device, or call skb_checksum_help (in the case
161  *   that the device does not support offload for a particular checksum).
162  *
163  *   NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
164  *   NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
165  *   checksum offload capability. If a	device has limited checksum capabilities
166  *   (for instance can only perform NETIF_F_IP_CSUM or NETIF_F_IPV6_CSUM as
167  *   described above) a helper function can be called to resolve
168  *   CHECKSUM_PARTIAL. The helper functions are skb_csum_off_chk*. The helper
169  *   function takes a spec argument that describes the protocol layer that is
170  *   supported for checksum offload and can be called for each packet. If a
171  *   packet does not match the specification for offload, skb_checksum_help
172  *   is called to resolve the checksum.
173  *
174  * CHECKSUM_NONE:
175  *
176  *   The skb was already checksummed by the protocol, or a checksum is not
177  *   required.
178  *
179  * CHECKSUM_UNNECESSARY:
180  *
181  *   This has the same meaning on as CHECKSUM_NONE for checksum offload on
182  *   output.
183  *
184  * CHECKSUM_COMPLETE:
185  *   Not used in checksum output. If a driver observes a packet with this value
186  *   set in skbuff, if should treat as CHECKSUM_NONE being set.
187  *
188  * D. Non-IP checksum (CRC) offloads
189  *
190  *   NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
191  *     offloading the SCTP CRC in a packet. To perform this offload the stack
192  *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
193  *     accordingly. Note the there is no indication in the skbuff that the
194  *     CHECKSUM_PARTIAL refers to an SCTP checksum, a driver that supports
195  *     both IP checksum offload and SCTP CRC offload must verify which offload
196  *     is configured for a packet presumably by inspecting packet headers.
197  *
198  *   NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
199  *     offloading the FCOE CRC in a packet. To perform this offload the stack
200  *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
201  *     accordingly. Note the there is no indication in the skbuff that the
202  *     CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
203  *     both IP checksum offload and FCOE CRC offload must verify which offload
204  *     is configured for a packet presumably by inspecting packet headers.
205  *
206  * E. Checksumming on output with GSO.
207  *
208  * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
209  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
210  * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
211  * part of the GSO operation is implied. If a checksum is being offloaded
212  * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
213  * are set to refer to the outermost checksum being offload (two offloaded
214  * checksums are possible with UDP encapsulation).
215  */
216 
217 /* Don't change this without changing skb_csum_unnecessary! */
218 #define CHECKSUM_NONE		0
219 #define CHECKSUM_UNNECESSARY	1
220 #define CHECKSUM_COMPLETE	2
221 #define CHECKSUM_PARTIAL	3
222 
223 /* Maximum value in skb->csum_level */
224 #define SKB_MAX_CSUM_LEVEL	3
225 
226 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
227 #define SKB_WITH_OVERHEAD(X)	\
228 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
229 #define SKB_MAX_ORDER(X, ORDER) \
230 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
231 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
232 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
233 
234 /* return minimum truesize of one skb containing X bytes of data */
235 #define SKB_TRUESIZE(X) ((X) +						\
236 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
237 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
238 
239 struct net_device;
240 struct scatterlist;
241 struct pipe_inode_info;
242 struct iov_iter;
243 struct napi_struct;
244 
245 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
246 struct nf_conntrack {
247 	atomic_t use;
248 };
249 #endif
250 
251 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
252 struct nf_bridge_info {
253 	atomic_t		use;
254 	enum {
255 		BRNF_PROTO_UNCHANGED,
256 		BRNF_PROTO_8021Q,
257 		BRNF_PROTO_PPPOE
258 	} orig_proto:8;
259 	u8			pkt_otherhost:1;
260 	u8			in_prerouting:1;
261 	u8			bridged_dnat:1;
262 	__u16			frag_max_size;
263 	struct net_device	*physindev;
264 
265 	/* always valid & non-NULL from FORWARD on, for physdev match */
266 	struct net_device	*physoutdev;
267 	union {
268 		/* prerouting: detect dnat in orig/reply direction */
269 		__be32          ipv4_daddr;
270 		struct in6_addr ipv6_daddr;
271 
272 		/* after prerouting + nat detected: store original source
273 		 * mac since neigh resolution overwrites it, only used while
274 		 * skb is out in neigh layer.
275 		 */
276 		char neigh_header[8];
277 	};
278 };
279 #endif
280 
281 struct sk_buff_head {
282 	/* These two members must be first. */
283 	struct sk_buff	*next;
284 	struct sk_buff	*prev;
285 
286 	__u32		qlen;
287 	spinlock_t	lock;
288 };
289 
290 struct sk_buff;
291 
292 /* To allow 64K frame to be packed as single skb without frag_list we
293  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
294  * buffers which do not start on a page boundary.
295  *
296  * Since GRO uses frags we allocate at least 16 regardless of page
297  * size.
298  */
299 #if (65536/PAGE_SIZE + 1) < 16
300 #define MAX_SKB_FRAGS 16UL
301 #else
302 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
303 #endif
304 extern int sysctl_max_skb_frags;
305 
306 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
307  * segment using its current segmentation instead.
308  */
309 #define GSO_BY_FRAGS	0xFFFF
310 
311 typedef struct skb_frag_struct skb_frag_t;
312 
313 struct skb_frag_struct {
314 	struct {
315 		struct page *p;
316 	} page;
317 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
318 	__u32 page_offset;
319 	__u32 size;
320 #else
321 	__u16 page_offset;
322 	__u16 size;
323 #endif
324 };
325 
326 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
327 {
328 	return frag->size;
329 }
330 
331 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
332 {
333 	frag->size = size;
334 }
335 
336 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
337 {
338 	frag->size += delta;
339 }
340 
341 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
342 {
343 	frag->size -= delta;
344 }
345 
346 #define HAVE_HW_TIME_STAMP
347 
348 /**
349  * struct skb_shared_hwtstamps - hardware time stamps
350  * @hwtstamp:	hardware time stamp transformed into duration
351  *		since arbitrary point in time
352  *
353  * Software time stamps generated by ktime_get_real() are stored in
354  * skb->tstamp.
355  *
356  * hwtstamps can only be compared against other hwtstamps from
357  * the same device.
358  *
359  * This structure is attached to packets as part of the
360  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
361  */
362 struct skb_shared_hwtstamps {
363 	ktime_t	hwtstamp;
364 };
365 
366 /* Definitions for tx_flags in struct skb_shared_info */
367 enum {
368 	/* generate hardware time stamp */
369 	SKBTX_HW_TSTAMP = 1 << 0,
370 
371 	/* generate software time stamp when queueing packet to NIC */
372 	SKBTX_SW_TSTAMP = 1 << 1,
373 
374 	/* device driver is going to provide hardware time stamp */
375 	SKBTX_IN_PROGRESS = 1 << 2,
376 
377 	/* device driver supports TX zero-copy buffers */
378 	SKBTX_DEV_ZEROCOPY = 1 << 3,
379 
380 	/* generate wifi status information (where possible) */
381 	SKBTX_WIFI_STATUS = 1 << 4,
382 
383 	/* This indicates at least one fragment might be overwritten
384 	 * (as in vmsplice(), sendfile() ...)
385 	 * If we need to compute a TX checksum, we'll need to copy
386 	 * all frags to avoid possible bad checksum
387 	 */
388 	SKBTX_SHARED_FRAG = 1 << 5,
389 
390 	/* generate software time stamp when entering packet scheduling */
391 	SKBTX_SCHED_TSTAMP = 1 << 6,
392 };
393 
394 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
395 				 SKBTX_SCHED_TSTAMP)
396 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
397 
398 /*
399  * The callback notifies userspace to release buffers when skb DMA is done in
400  * lower device, the skb last reference should be 0 when calling this.
401  * The zerocopy_success argument is true if zero copy transmit occurred,
402  * false on data copy or out of memory error caused by data copy attempt.
403  * The ctx field is used to track device context.
404  * The desc field is used to track userspace buffer index.
405  */
406 struct ubuf_info {
407 	void (*callback)(struct ubuf_info *, bool zerocopy_success);
408 	void *ctx;
409 	unsigned long desc;
410 };
411 
412 /* This data is invariant across clones and lives at
413  * the end of the header data, ie. at skb->end.
414  */
415 struct skb_shared_info {
416 	unsigned char	nr_frags;
417 	__u8		tx_flags;
418 	unsigned short	gso_size;
419 	/* Warning: this field is not always filled in (UFO)! */
420 	unsigned short	gso_segs;
421 	unsigned short  gso_type;
422 	struct sk_buff	*frag_list;
423 	struct skb_shared_hwtstamps hwtstamps;
424 	u32		tskey;
425 	__be32          ip6_frag_id;
426 
427 	/*
428 	 * Warning : all fields before dataref are cleared in __alloc_skb()
429 	 */
430 	atomic_t	dataref;
431 
432 	/* Intermediate layers must ensure that destructor_arg
433 	 * remains valid until skb destructor */
434 	void *		destructor_arg;
435 
436 	/* must be last field, see pskb_expand_head() */
437 	skb_frag_t	frags[MAX_SKB_FRAGS];
438 };
439 
440 /* We divide dataref into two halves.  The higher 16 bits hold references
441  * to the payload part of skb->data.  The lower 16 bits hold references to
442  * the entire skb->data.  A clone of a headerless skb holds the length of
443  * the header in skb->hdr_len.
444  *
445  * All users must obey the rule that the skb->data reference count must be
446  * greater than or equal to the payload reference count.
447  *
448  * Holding a reference to the payload part means that the user does not
449  * care about modifications to the header part of skb->data.
450  */
451 #define SKB_DATAREF_SHIFT 16
452 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
453 
454 
455 enum {
456 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
457 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
458 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
459 };
460 
461 enum {
462 	SKB_GSO_TCPV4 = 1 << 0,
463 	SKB_GSO_UDP = 1 << 1,
464 
465 	/* This indicates the skb is from an untrusted source. */
466 	SKB_GSO_DODGY = 1 << 2,
467 
468 	/* This indicates the tcp segment has CWR set. */
469 	SKB_GSO_TCP_ECN = 1 << 3,
470 
471 	SKB_GSO_TCP_FIXEDID = 1 << 4,
472 
473 	SKB_GSO_TCPV6 = 1 << 5,
474 
475 	SKB_GSO_FCOE = 1 << 6,
476 
477 	SKB_GSO_GRE = 1 << 7,
478 
479 	SKB_GSO_GRE_CSUM = 1 << 8,
480 
481 	SKB_GSO_IPXIP4 = 1 << 9,
482 
483 	SKB_GSO_IPXIP6 = 1 << 10,
484 
485 	SKB_GSO_UDP_TUNNEL = 1 << 11,
486 
487 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 12,
488 
489 	SKB_GSO_PARTIAL = 1 << 13,
490 
491 	SKB_GSO_TUNNEL_REMCSUM = 1 << 14,
492 
493 	SKB_GSO_SCTP = 1 << 15,
494 };
495 
496 #if BITS_PER_LONG > 32
497 #define NET_SKBUFF_DATA_USES_OFFSET 1
498 #endif
499 
500 #ifdef NET_SKBUFF_DATA_USES_OFFSET
501 typedef unsigned int sk_buff_data_t;
502 #else
503 typedef unsigned char *sk_buff_data_t;
504 #endif
505 
506 /**
507  * struct skb_mstamp - multi resolution time stamps
508  * @stamp_us: timestamp in us resolution
509  * @stamp_jiffies: timestamp in jiffies
510  */
511 struct skb_mstamp {
512 	union {
513 		u64		v64;
514 		struct {
515 			u32	stamp_us;
516 			u32	stamp_jiffies;
517 		};
518 	};
519 };
520 
521 /**
522  * skb_mstamp_get - get current timestamp
523  * @cl: place to store timestamps
524  */
525 static inline void skb_mstamp_get(struct skb_mstamp *cl)
526 {
527 	u64 val = local_clock();
528 
529 	do_div(val, NSEC_PER_USEC);
530 	cl->stamp_us = (u32)val;
531 	cl->stamp_jiffies = (u32)jiffies;
532 }
533 
534 /**
535  * skb_mstamp_delta - compute the difference in usec between two skb_mstamp
536  * @t1: pointer to newest sample
537  * @t0: pointer to oldest sample
538  */
539 static inline u32 skb_mstamp_us_delta(const struct skb_mstamp *t1,
540 				      const struct skb_mstamp *t0)
541 {
542 	s32 delta_us = t1->stamp_us - t0->stamp_us;
543 	u32 delta_jiffies = t1->stamp_jiffies - t0->stamp_jiffies;
544 
545 	/* If delta_us is negative, this might be because interval is too big,
546 	 * or local_clock() drift is too big : fallback using jiffies.
547 	 */
548 	if (delta_us <= 0 ||
549 	    delta_jiffies >= (INT_MAX / (USEC_PER_SEC / HZ)))
550 
551 		delta_us = jiffies_to_usecs(delta_jiffies);
552 
553 	return delta_us;
554 }
555 
556 static inline bool skb_mstamp_after(const struct skb_mstamp *t1,
557 				    const struct skb_mstamp *t0)
558 {
559 	s32 diff = t1->stamp_jiffies - t0->stamp_jiffies;
560 
561 	if (!diff)
562 		diff = t1->stamp_us - t0->stamp_us;
563 	return diff > 0;
564 }
565 
566 /**
567  *	struct sk_buff - socket buffer
568  *	@next: Next buffer in list
569  *	@prev: Previous buffer in list
570  *	@tstamp: Time we arrived/left
571  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
572  *	@sk: Socket we are owned by
573  *	@dev: Device we arrived on/are leaving by
574  *	@cb: Control buffer. Free for use by every layer. Put private vars here
575  *	@_skb_refdst: destination entry (with norefcount bit)
576  *	@sp: the security path, used for xfrm
577  *	@len: Length of actual data
578  *	@data_len: Data length
579  *	@mac_len: Length of link layer header
580  *	@hdr_len: writable header length of cloned skb
581  *	@csum: Checksum (must include start/offset pair)
582  *	@csum_start: Offset from skb->head where checksumming should start
583  *	@csum_offset: Offset from csum_start where checksum should be stored
584  *	@priority: Packet queueing priority
585  *	@ignore_df: allow local fragmentation
586  *	@cloned: Head may be cloned (check refcnt to be sure)
587  *	@ip_summed: Driver fed us an IP checksum
588  *	@nohdr: Payload reference only, must not modify header
589  *	@pkt_type: Packet class
590  *	@fclone: skbuff clone status
591  *	@ipvs_property: skbuff is owned by ipvs
592  *	@tc_skip_classify: do not classify packet. set by IFB device
593  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
594  *	@tc_redirected: packet was redirected by a tc action
595  *	@tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect
596  *	@peeked: this packet has been seen already, so stats have been
597  *		done for it, don't do them again
598  *	@nf_trace: netfilter packet trace flag
599  *	@protocol: Packet protocol from driver
600  *	@destructor: Destruct function
601  *	@_nfct: Associated connection, if any (with nfctinfo bits)
602  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
603  *	@skb_iif: ifindex of device we arrived on
604  *	@tc_index: Traffic control index
605  *	@hash: the packet hash
606  *	@queue_mapping: Queue mapping for multiqueue devices
607  *	@xmit_more: More SKBs are pending for this queue
608  *	@ndisc_nodetype: router type (from link layer)
609  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
610  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
611  *		ports.
612  *	@sw_hash: indicates hash was computed in software stack
613  *	@wifi_acked_valid: wifi_acked was set
614  *	@wifi_acked: whether frame was acked on wifi or not
615  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
616  *	@dst_pending_confirm: need to confirm neighbour
617   *	@napi_id: id of the NAPI struct this skb came from
618  *	@secmark: security marking
619  *	@mark: Generic packet mark
620  *	@vlan_proto: vlan encapsulation protocol
621  *	@vlan_tci: vlan tag control information
622  *	@inner_protocol: Protocol (encapsulation)
623  *	@inner_transport_header: Inner transport layer header (encapsulation)
624  *	@inner_network_header: Network layer header (encapsulation)
625  *	@inner_mac_header: Link layer header (encapsulation)
626  *	@transport_header: Transport layer header
627  *	@network_header: Network layer header
628  *	@mac_header: Link layer header
629  *	@tail: Tail pointer
630  *	@end: End pointer
631  *	@head: Head of buffer
632  *	@data: Data head pointer
633  *	@truesize: Buffer size
634  *	@users: User count - see {datagram,tcp}.c
635  */
636 
637 struct sk_buff {
638 	union {
639 		struct {
640 			/* These two members must be first. */
641 			struct sk_buff		*next;
642 			struct sk_buff		*prev;
643 
644 			union {
645 				ktime_t		tstamp;
646 				struct skb_mstamp skb_mstamp;
647 			};
648 		};
649 		struct rb_node	rbnode; /* used in netem & tcp stack */
650 	};
651 	struct sock		*sk;
652 
653 	union {
654 		struct net_device	*dev;
655 		/* Some protocols might use this space to store information,
656 		 * while device pointer would be NULL.
657 		 * UDP receive path is one user.
658 		 */
659 		unsigned long		dev_scratch;
660 	};
661 	/*
662 	 * This is the control buffer. It is free to use for every
663 	 * layer. Please put your private variables there. If you
664 	 * want to keep them across layers you have to do a skb_clone()
665 	 * first. This is owned by whoever has the skb queued ATM.
666 	 */
667 	char			cb[48] __aligned(8);
668 
669 	unsigned long		_skb_refdst;
670 	void			(*destructor)(struct sk_buff *skb);
671 #ifdef CONFIG_XFRM
672 	struct	sec_path	*sp;
673 #endif
674 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
675 	unsigned long		 _nfct;
676 #endif
677 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
678 	struct nf_bridge_info	*nf_bridge;
679 #endif
680 	unsigned int		len,
681 				data_len;
682 	__u16			mac_len,
683 				hdr_len;
684 
685 	/* Following fields are _not_ copied in __copy_skb_header()
686 	 * Note that queue_mapping is here mostly to fill a hole.
687 	 */
688 	kmemcheck_bitfield_begin(flags1);
689 	__u16			queue_mapping;
690 
691 /* if you move cloned around you also must adapt those constants */
692 #ifdef __BIG_ENDIAN_BITFIELD
693 #define CLONED_MASK	(1 << 7)
694 #else
695 #define CLONED_MASK	1
696 #endif
697 #define CLONED_OFFSET()		offsetof(struct sk_buff, __cloned_offset)
698 
699 	__u8			__cloned_offset[0];
700 	__u8			cloned:1,
701 				nohdr:1,
702 				fclone:2,
703 				peeked:1,
704 				head_frag:1,
705 				xmit_more:1,
706 				__unused:1; /* one bit hole */
707 	kmemcheck_bitfield_end(flags1);
708 
709 	/* fields enclosed in headers_start/headers_end are copied
710 	 * using a single memcpy() in __copy_skb_header()
711 	 */
712 	/* private: */
713 	__u32			headers_start[0];
714 	/* public: */
715 
716 /* if you move pkt_type around you also must adapt those constants */
717 #ifdef __BIG_ENDIAN_BITFIELD
718 #define PKT_TYPE_MAX	(7 << 5)
719 #else
720 #define PKT_TYPE_MAX	7
721 #endif
722 #define PKT_TYPE_OFFSET()	offsetof(struct sk_buff, __pkt_type_offset)
723 
724 	__u8			__pkt_type_offset[0];
725 	__u8			pkt_type:3;
726 	__u8			pfmemalloc:1;
727 	__u8			ignore_df:1;
728 
729 	__u8			nf_trace:1;
730 	__u8			ip_summed:2;
731 	__u8			ooo_okay:1;
732 	__u8			l4_hash:1;
733 	__u8			sw_hash:1;
734 	__u8			wifi_acked_valid:1;
735 	__u8			wifi_acked:1;
736 
737 	__u8			no_fcs:1;
738 	/* Indicates the inner headers are valid in the skbuff. */
739 	__u8			encapsulation:1;
740 	__u8			encap_hdr_csum:1;
741 	__u8			csum_valid:1;
742 	__u8			csum_complete_sw:1;
743 	__u8			csum_level:2;
744 	__u8			csum_bad:1;
745 
746 	__u8			dst_pending_confirm:1;
747 #ifdef CONFIG_IPV6_NDISC_NODETYPE
748 	__u8			ndisc_nodetype:2;
749 #endif
750 	__u8			ipvs_property:1;
751 	__u8			inner_protocol_type:1;
752 	__u8			remcsum_offload:1;
753 #ifdef CONFIG_NET_SWITCHDEV
754 	__u8			offload_fwd_mark:1;
755 #endif
756 #ifdef CONFIG_NET_CLS_ACT
757 	__u8			tc_skip_classify:1;
758 	__u8			tc_at_ingress:1;
759 	__u8			tc_redirected:1;
760 	__u8			tc_from_ingress:1;
761 #endif
762 
763 #ifdef CONFIG_NET_SCHED
764 	__u16			tc_index;	/* traffic control index */
765 #endif
766 
767 	union {
768 		__wsum		csum;
769 		struct {
770 			__u16	csum_start;
771 			__u16	csum_offset;
772 		};
773 	};
774 	__u32			priority;
775 	int			skb_iif;
776 	__u32			hash;
777 	__be16			vlan_proto;
778 	__u16			vlan_tci;
779 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
780 	union {
781 		unsigned int	napi_id;
782 		unsigned int	sender_cpu;
783 	};
784 #endif
785 #ifdef CONFIG_NETWORK_SECMARK
786 	__u32		secmark;
787 #endif
788 
789 	union {
790 		__u32		mark;
791 		__u32		reserved_tailroom;
792 	};
793 
794 	union {
795 		__be16		inner_protocol;
796 		__u8		inner_ipproto;
797 	};
798 
799 	__u16			inner_transport_header;
800 	__u16			inner_network_header;
801 	__u16			inner_mac_header;
802 
803 	__be16			protocol;
804 	__u16			transport_header;
805 	__u16			network_header;
806 	__u16			mac_header;
807 
808 	/* private: */
809 	__u32			headers_end[0];
810 	/* public: */
811 
812 	/* These elements must be at the end, see alloc_skb() for details.  */
813 	sk_buff_data_t		tail;
814 	sk_buff_data_t		end;
815 	unsigned char		*head,
816 				*data;
817 	unsigned int		truesize;
818 	atomic_t		users;
819 };
820 
821 #ifdef __KERNEL__
822 /*
823  *	Handling routines are only of interest to the kernel
824  */
825 #include <linux/slab.h>
826 
827 
828 #define SKB_ALLOC_FCLONE	0x01
829 #define SKB_ALLOC_RX		0x02
830 #define SKB_ALLOC_NAPI		0x04
831 
832 /* Returns true if the skb was allocated from PFMEMALLOC reserves */
833 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
834 {
835 	return unlikely(skb->pfmemalloc);
836 }
837 
838 /*
839  * skb might have a dst pointer attached, refcounted or not.
840  * _skb_refdst low order bit is set if refcount was _not_ taken
841  */
842 #define SKB_DST_NOREF	1UL
843 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
844 
845 #define SKB_NFCT_PTRMASK	~(7UL)
846 /**
847  * skb_dst - returns skb dst_entry
848  * @skb: buffer
849  *
850  * Returns skb dst_entry, regardless of reference taken or not.
851  */
852 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
853 {
854 	/* If refdst was not refcounted, check we still are in a
855 	 * rcu_read_lock section
856 	 */
857 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
858 		!rcu_read_lock_held() &&
859 		!rcu_read_lock_bh_held());
860 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
861 }
862 
863 /**
864  * skb_dst_set - sets skb dst
865  * @skb: buffer
866  * @dst: dst entry
867  *
868  * Sets skb dst, assuming a reference was taken on dst and should
869  * be released by skb_dst_drop()
870  */
871 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
872 {
873 	skb->_skb_refdst = (unsigned long)dst;
874 }
875 
876 /**
877  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
878  * @skb: buffer
879  * @dst: dst entry
880  *
881  * Sets skb dst, assuming a reference was not taken on dst.
882  * If dst entry is cached, we do not take reference and dst_release
883  * will be avoided by refdst_drop. If dst entry is not cached, we take
884  * reference, so that last dst_release can destroy the dst immediately.
885  */
886 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
887 {
888 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
889 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
890 }
891 
892 /**
893  * skb_dst_is_noref - Test if skb dst isn't refcounted
894  * @skb: buffer
895  */
896 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
897 {
898 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
899 }
900 
901 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
902 {
903 	return (struct rtable *)skb_dst(skb);
904 }
905 
906 /* For mangling skb->pkt_type from user space side from applications
907  * such as nft, tc, etc, we only allow a conservative subset of
908  * possible pkt_types to be set.
909 */
910 static inline bool skb_pkt_type_ok(u32 ptype)
911 {
912 	return ptype <= PACKET_OTHERHOST;
913 }
914 
915 void kfree_skb(struct sk_buff *skb);
916 void kfree_skb_list(struct sk_buff *segs);
917 void skb_tx_error(struct sk_buff *skb);
918 void consume_skb(struct sk_buff *skb);
919 void  __kfree_skb(struct sk_buff *skb);
920 extern struct kmem_cache *skbuff_head_cache;
921 
922 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
923 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
924 		      bool *fragstolen, int *delta_truesize);
925 
926 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
927 			    int node);
928 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
929 struct sk_buff *build_skb(void *data, unsigned int frag_size);
930 static inline struct sk_buff *alloc_skb(unsigned int size,
931 					gfp_t priority)
932 {
933 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
934 }
935 
936 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
937 				     unsigned long data_len,
938 				     int max_page_order,
939 				     int *errcode,
940 				     gfp_t gfp_mask);
941 
942 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
943 struct sk_buff_fclones {
944 	struct sk_buff	skb1;
945 
946 	struct sk_buff	skb2;
947 
948 	atomic_t	fclone_ref;
949 };
950 
951 /**
952  *	skb_fclone_busy - check if fclone is busy
953  *	@sk: socket
954  *	@skb: buffer
955  *
956  * Returns true if skb is a fast clone, and its clone is not freed.
957  * Some drivers call skb_orphan() in their ndo_start_xmit(),
958  * so we also check that this didnt happen.
959  */
960 static inline bool skb_fclone_busy(const struct sock *sk,
961 				   const struct sk_buff *skb)
962 {
963 	const struct sk_buff_fclones *fclones;
964 
965 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
966 
967 	return skb->fclone == SKB_FCLONE_ORIG &&
968 	       atomic_read(&fclones->fclone_ref) > 1 &&
969 	       fclones->skb2.sk == sk;
970 }
971 
972 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
973 					       gfp_t priority)
974 {
975 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
976 }
977 
978 struct sk_buff *__alloc_skb_head(gfp_t priority, int node);
979 static inline struct sk_buff *alloc_skb_head(gfp_t priority)
980 {
981 	return __alloc_skb_head(priority, -1);
982 }
983 
984 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
985 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
986 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
987 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
988 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
989 				   gfp_t gfp_mask, bool fclone);
990 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
991 					  gfp_t gfp_mask)
992 {
993 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
994 }
995 
996 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
997 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
998 				     unsigned int headroom);
999 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1000 				int newtailroom, gfp_t priority);
1001 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1002 			int offset, int len);
1003 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset,
1004 		 int len);
1005 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1006 int skb_pad(struct sk_buff *skb, int pad);
1007 #define dev_kfree_skb(a)	consume_skb(a)
1008 
1009 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
1010 			    int getfrag(void *from, char *to, int offset,
1011 					int len, int odd, struct sk_buff *skb),
1012 			    void *from, int length);
1013 
1014 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1015 			 int offset, size_t size);
1016 
1017 struct skb_seq_state {
1018 	__u32		lower_offset;
1019 	__u32		upper_offset;
1020 	__u32		frag_idx;
1021 	__u32		stepped_offset;
1022 	struct sk_buff	*root_skb;
1023 	struct sk_buff	*cur_skb;
1024 	__u8		*frag_data;
1025 };
1026 
1027 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1028 			  unsigned int to, struct skb_seq_state *st);
1029 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1030 			  struct skb_seq_state *st);
1031 void skb_abort_seq_read(struct skb_seq_state *st);
1032 
1033 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1034 			   unsigned int to, struct ts_config *config);
1035 
1036 /*
1037  * Packet hash types specify the type of hash in skb_set_hash.
1038  *
1039  * Hash types refer to the protocol layer addresses which are used to
1040  * construct a packet's hash. The hashes are used to differentiate or identify
1041  * flows of the protocol layer for the hash type. Hash types are either
1042  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1043  *
1044  * Properties of hashes:
1045  *
1046  * 1) Two packets in different flows have different hash values
1047  * 2) Two packets in the same flow should have the same hash value
1048  *
1049  * A hash at a higher layer is considered to be more specific. A driver should
1050  * set the most specific hash possible.
1051  *
1052  * A driver cannot indicate a more specific hash than the layer at which a hash
1053  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1054  *
1055  * A driver may indicate a hash level which is less specific than the
1056  * actual layer the hash was computed on. For instance, a hash computed
1057  * at L4 may be considered an L3 hash. This should only be done if the
1058  * driver can't unambiguously determine that the HW computed the hash at
1059  * the higher layer. Note that the "should" in the second property above
1060  * permits this.
1061  */
1062 enum pkt_hash_types {
1063 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1064 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1065 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1066 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1067 };
1068 
1069 static inline void skb_clear_hash(struct sk_buff *skb)
1070 {
1071 	skb->hash = 0;
1072 	skb->sw_hash = 0;
1073 	skb->l4_hash = 0;
1074 }
1075 
1076 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1077 {
1078 	if (!skb->l4_hash)
1079 		skb_clear_hash(skb);
1080 }
1081 
1082 static inline void
1083 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1084 {
1085 	skb->l4_hash = is_l4;
1086 	skb->sw_hash = is_sw;
1087 	skb->hash = hash;
1088 }
1089 
1090 static inline void
1091 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1092 {
1093 	/* Used by drivers to set hash from HW */
1094 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1095 }
1096 
1097 static inline void
1098 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1099 {
1100 	__skb_set_hash(skb, hash, true, is_l4);
1101 }
1102 
1103 void __skb_get_hash(struct sk_buff *skb);
1104 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1105 u32 skb_get_poff(const struct sk_buff *skb);
1106 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1107 		   const struct flow_keys *keys, int hlen);
1108 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1109 			    void *data, int hlen_proto);
1110 
1111 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1112 					int thoff, u8 ip_proto)
1113 {
1114 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1115 }
1116 
1117 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1118 			     const struct flow_dissector_key *key,
1119 			     unsigned int key_count);
1120 
1121 bool __skb_flow_dissect(const struct sk_buff *skb,
1122 			struct flow_dissector *flow_dissector,
1123 			void *target_container,
1124 			void *data, __be16 proto, int nhoff, int hlen,
1125 			unsigned int flags);
1126 
1127 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1128 				    struct flow_dissector *flow_dissector,
1129 				    void *target_container, unsigned int flags)
1130 {
1131 	return __skb_flow_dissect(skb, flow_dissector, target_container,
1132 				  NULL, 0, 0, 0, flags);
1133 }
1134 
1135 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1136 					      struct flow_keys *flow,
1137 					      unsigned int flags)
1138 {
1139 	memset(flow, 0, sizeof(*flow));
1140 	return __skb_flow_dissect(skb, &flow_keys_dissector, flow,
1141 				  NULL, 0, 0, 0, flags);
1142 }
1143 
1144 static inline bool skb_flow_dissect_flow_keys_buf(struct flow_keys *flow,
1145 						  void *data, __be16 proto,
1146 						  int nhoff, int hlen,
1147 						  unsigned int flags)
1148 {
1149 	memset(flow, 0, sizeof(*flow));
1150 	return __skb_flow_dissect(NULL, &flow_keys_buf_dissector, flow,
1151 				  data, proto, nhoff, hlen, flags);
1152 }
1153 
1154 static inline __u32 skb_get_hash(struct sk_buff *skb)
1155 {
1156 	if (!skb->l4_hash && !skb->sw_hash)
1157 		__skb_get_hash(skb);
1158 
1159 	return skb->hash;
1160 }
1161 
1162 __u32 __skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6);
1163 
1164 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1165 {
1166 	if (!skb->l4_hash && !skb->sw_hash) {
1167 		struct flow_keys keys;
1168 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1169 
1170 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1171 	}
1172 
1173 	return skb->hash;
1174 }
1175 
1176 __u32 __skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl);
1177 
1178 static inline __u32 skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl4)
1179 {
1180 	if (!skb->l4_hash && !skb->sw_hash) {
1181 		struct flow_keys keys;
1182 		__u32 hash = __get_hash_from_flowi4(fl4, &keys);
1183 
1184 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1185 	}
1186 
1187 	return skb->hash;
1188 }
1189 
1190 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);
1191 
1192 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1193 {
1194 	return skb->hash;
1195 }
1196 
1197 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1198 {
1199 	to->hash = from->hash;
1200 	to->sw_hash = from->sw_hash;
1201 	to->l4_hash = from->l4_hash;
1202 };
1203 
1204 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1205 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1206 {
1207 	return skb->head + skb->end;
1208 }
1209 
1210 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1211 {
1212 	return skb->end;
1213 }
1214 #else
1215 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1216 {
1217 	return skb->end;
1218 }
1219 
1220 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1221 {
1222 	return skb->end - skb->head;
1223 }
1224 #endif
1225 
1226 /* Internal */
1227 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1228 
1229 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1230 {
1231 	return &skb_shinfo(skb)->hwtstamps;
1232 }
1233 
1234 /**
1235  *	skb_queue_empty - check if a queue is empty
1236  *	@list: queue head
1237  *
1238  *	Returns true if the queue is empty, false otherwise.
1239  */
1240 static inline int skb_queue_empty(const struct sk_buff_head *list)
1241 {
1242 	return list->next == (const struct sk_buff *) list;
1243 }
1244 
1245 /**
1246  *	skb_queue_is_last - check if skb is the last entry in the queue
1247  *	@list: queue head
1248  *	@skb: buffer
1249  *
1250  *	Returns true if @skb is the last buffer on the list.
1251  */
1252 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1253 				     const struct sk_buff *skb)
1254 {
1255 	return skb->next == (const struct sk_buff *) list;
1256 }
1257 
1258 /**
1259  *	skb_queue_is_first - check if skb is the first entry in the queue
1260  *	@list: queue head
1261  *	@skb: buffer
1262  *
1263  *	Returns true if @skb is the first buffer on the list.
1264  */
1265 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1266 				      const struct sk_buff *skb)
1267 {
1268 	return skb->prev == (const struct sk_buff *) list;
1269 }
1270 
1271 /**
1272  *	skb_queue_next - return the next packet in the queue
1273  *	@list: queue head
1274  *	@skb: current buffer
1275  *
1276  *	Return the next packet in @list after @skb.  It is only valid to
1277  *	call this if skb_queue_is_last() evaluates to false.
1278  */
1279 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1280 					     const struct sk_buff *skb)
1281 {
1282 	/* This BUG_ON may seem severe, but if we just return then we
1283 	 * are going to dereference garbage.
1284 	 */
1285 	BUG_ON(skb_queue_is_last(list, skb));
1286 	return skb->next;
1287 }
1288 
1289 /**
1290  *	skb_queue_prev - return the prev packet in the queue
1291  *	@list: queue head
1292  *	@skb: current buffer
1293  *
1294  *	Return the prev packet in @list before @skb.  It is only valid to
1295  *	call this if skb_queue_is_first() evaluates to false.
1296  */
1297 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1298 					     const struct sk_buff *skb)
1299 {
1300 	/* This BUG_ON may seem severe, but if we just return then we
1301 	 * are going to dereference garbage.
1302 	 */
1303 	BUG_ON(skb_queue_is_first(list, skb));
1304 	return skb->prev;
1305 }
1306 
1307 /**
1308  *	skb_get - reference buffer
1309  *	@skb: buffer to reference
1310  *
1311  *	Makes another reference to a socket buffer and returns a pointer
1312  *	to the buffer.
1313  */
1314 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1315 {
1316 	atomic_inc(&skb->users);
1317 	return skb;
1318 }
1319 
1320 /*
1321  * If users == 1, we are the only owner and are can avoid redundant
1322  * atomic change.
1323  */
1324 
1325 /**
1326  *	skb_cloned - is the buffer a clone
1327  *	@skb: buffer to check
1328  *
1329  *	Returns true if the buffer was generated with skb_clone() and is
1330  *	one of multiple shared copies of the buffer. Cloned buffers are
1331  *	shared data so must not be written to under normal circumstances.
1332  */
1333 static inline int skb_cloned(const struct sk_buff *skb)
1334 {
1335 	return skb->cloned &&
1336 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1337 }
1338 
1339 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1340 {
1341 	might_sleep_if(gfpflags_allow_blocking(pri));
1342 
1343 	if (skb_cloned(skb))
1344 		return pskb_expand_head(skb, 0, 0, pri);
1345 
1346 	return 0;
1347 }
1348 
1349 /**
1350  *	skb_header_cloned - is the header a clone
1351  *	@skb: buffer to check
1352  *
1353  *	Returns true if modifying the header part of the buffer requires
1354  *	the data to be copied.
1355  */
1356 static inline int skb_header_cloned(const struct sk_buff *skb)
1357 {
1358 	int dataref;
1359 
1360 	if (!skb->cloned)
1361 		return 0;
1362 
1363 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1364 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1365 	return dataref != 1;
1366 }
1367 
1368 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1369 {
1370 	might_sleep_if(gfpflags_allow_blocking(pri));
1371 
1372 	if (skb_header_cloned(skb))
1373 		return pskb_expand_head(skb, 0, 0, pri);
1374 
1375 	return 0;
1376 }
1377 
1378 /**
1379  *	skb_header_release - release reference to header
1380  *	@skb: buffer to operate on
1381  *
1382  *	Drop a reference to the header part of the buffer.  This is done
1383  *	by acquiring a payload reference.  You must not read from the header
1384  *	part of skb->data after this.
1385  *	Note : Check if you can use __skb_header_release() instead.
1386  */
1387 static inline void skb_header_release(struct sk_buff *skb)
1388 {
1389 	BUG_ON(skb->nohdr);
1390 	skb->nohdr = 1;
1391 	atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
1392 }
1393 
1394 /**
1395  *	__skb_header_release - release reference to header
1396  *	@skb: buffer to operate on
1397  *
1398  *	Variant of skb_header_release() assuming skb is private to caller.
1399  *	We can avoid one atomic operation.
1400  */
1401 static inline void __skb_header_release(struct sk_buff *skb)
1402 {
1403 	skb->nohdr = 1;
1404 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1405 }
1406 
1407 
1408 /**
1409  *	skb_shared - is the buffer shared
1410  *	@skb: buffer to check
1411  *
1412  *	Returns true if more than one person has a reference to this
1413  *	buffer.
1414  */
1415 static inline int skb_shared(const struct sk_buff *skb)
1416 {
1417 	return atomic_read(&skb->users) != 1;
1418 }
1419 
1420 /**
1421  *	skb_share_check - check if buffer is shared and if so clone it
1422  *	@skb: buffer to check
1423  *	@pri: priority for memory allocation
1424  *
1425  *	If the buffer is shared the buffer is cloned and the old copy
1426  *	drops a reference. A new clone with a single reference is returned.
1427  *	If the buffer is not shared the original buffer is returned. When
1428  *	being called from interrupt status or with spinlocks held pri must
1429  *	be GFP_ATOMIC.
1430  *
1431  *	NULL is returned on a memory allocation failure.
1432  */
1433 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1434 {
1435 	might_sleep_if(gfpflags_allow_blocking(pri));
1436 	if (skb_shared(skb)) {
1437 		struct sk_buff *nskb = skb_clone(skb, pri);
1438 
1439 		if (likely(nskb))
1440 			consume_skb(skb);
1441 		else
1442 			kfree_skb(skb);
1443 		skb = nskb;
1444 	}
1445 	return skb;
1446 }
1447 
1448 /*
1449  *	Copy shared buffers into a new sk_buff. We effectively do COW on
1450  *	packets to handle cases where we have a local reader and forward
1451  *	and a couple of other messy ones. The normal one is tcpdumping
1452  *	a packet thats being forwarded.
1453  */
1454 
1455 /**
1456  *	skb_unshare - make a copy of a shared buffer
1457  *	@skb: buffer to check
1458  *	@pri: priority for memory allocation
1459  *
1460  *	If the socket buffer is a clone then this function creates a new
1461  *	copy of the data, drops a reference count on the old copy and returns
1462  *	the new copy with the reference count at 1. If the buffer is not a clone
1463  *	the original buffer is returned. When called with a spinlock held or
1464  *	from interrupt state @pri must be %GFP_ATOMIC
1465  *
1466  *	%NULL is returned on a memory allocation failure.
1467  */
1468 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1469 					  gfp_t pri)
1470 {
1471 	might_sleep_if(gfpflags_allow_blocking(pri));
1472 	if (skb_cloned(skb)) {
1473 		struct sk_buff *nskb = skb_copy(skb, pri);
1474 
1475 		/* Free our shared copy */
1476 		if (likely(nskb))
1477 			consume_skb(skb);
1478 		else
1479 			kfree_skb(skb);
1480 		skb = nskb;
1481 	}
1482 	return skb;
1483 }
1484 
1485 /**
1486  *	skb_peek - peek at the head of an &sk_buff_head
1487  *	@list_: list to peek at
1488  *
1489  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1490  *	be careful with this one. A peek leaves the buffer on the
1491  *	list and someone else may run off with it. You must hold
1492  *	the appropriate locks or have a private queue to do this.
1493  *
1494  *	Returns %NULL for an empty list or a pointer to the head element.
1495  *	The reference count is not incremented and the reference is therefore
1496  *	volatile. Use with caution.
1497  */
1498 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1499 {
1500 	struct sk_buff *skb = list_->next;
1501 
1502 	if (skb == (struct sk_buff *)list_)
1503 		skb = NULL;
1504 	return skb;
1505 }
1506 
1507 /**
1508  *	skb_peek_next - peek skb following the given one from a queue
1509  *	@skb: skb to start from
1510  *	@list_: list to peek at
1511  *
1512  *	Returns %NULL when the end of the list is met or a pointer to the
1513  *	next element. The reference count is not incremented and the
1514  *	reference is therefore volatile. Use with caution.
1515  */
1516 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1517 		const struct sk_buff_head *list_)
1518 {
1519 	struct sk_buff *next = skb->next;
1520 
1521 	if (next == (struct sk_buff *)list_)
1522 		next = NULL;
1523 	return next;
1524 }
1525 
1526 /**
1527  *	skb_peek_tail - peek at the tail of an &sk_buff_head
1528  *	@list_: list to peek at
1529  *
1530  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1531  *	be careful with this one. A peek leaves the buffer on the
1532  *	list and someone else may run off with it. You must hold
1533  *	the appropriate locks or have a private queue to do this.
1534  *
1535  *	Returns %NULL for an empty list or a pointer to the tail element.
1536  *	The reference count is not incremented and the reference is therefore
1537  *	volatile. Use with caution.
1538  */
1539 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1540 {
1541 	struct sk_buff *skb = list_->prev;
1542 
1543 	if (skb == (struct sk_buff *)list_)
1544 		skb = NULL;
1545 	return skb;
1546 
1547 }
1548 
1549 /**
1550  *	skb_queue_len	- get queue length
1551  *	@list_: list to measure
1552  *
1553  *	Return the length of an &sk_buff queue.
1554  */
1555 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1556 {
1557 	return list_->qlen;
1558 }
1559 
1560 /**
1561  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1562  *	@list: queue to initialize
1563  *
1564  *	This initializes only the list and queue length aspects of
1565  *	an sk_buff_head object.  This allows to initialize the list
1566  *	aspects of an sk_buff_head without reinitializing things like
1567  *	the spinlock.  It can also be used for on-stack sk_buff_head
1568  *	objects where the spinlock is known to not be used.
1569  */
1570 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1571 {
1572 	list->prev = list->next = (struct sk_buff *)list;
1573 	list->qlen = 0;
1574 }
1575 
1576 /*
1577  * This function creates a split out lock class for each invocation;
1578  * this is needed for now since a whole lot of users of the skb-queue
1579  * infrastructure in drivers have different locking usage (in hardirq)
1580  * than the networking core (in softirq only). In the long run either the
1581  * network layer or drivers should need annotation to consolidate the
1582  * main types of usage into 3 classes.
1583  */
1584 static inline void skb_queue_head_init(struct sk_buff_head *list)
1585 {
1586 	spin_lock_init(&list->lock);
1587 	__skb_queue_head_init(list);
1588 }
1589 
1590 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1591 		struct lock_class_key *class)
1592 {
1593 	skb_queue_head_init(list);
1594 	lockdep_set_class(&list->lock, class);
1595 }
1596 
1597 /*
1598  *	Insert an sk_buff on a list.
1599  *
1600  *	The "__skb_xxxx()" functions are the non-atomic ones that
1601  *	can only be called with interrupts disabled.
1602  */
1603 void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1604 		struct sk_buff_head *list);
1605 static inline void __skb_insert(struct sk_buff *newsk,
1606 				struct sk_buff *prev, struct sk_buff *next,
1607 				struct sk_buff_head *list)
1608 {
1609 	newsk->next = next;
1610 	newsk->prev = prev;
1611 	next->prev  = prev->next = newsk;
1612 	list->qlen++;
1613 }
1614 
1615 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1616 				      struct sk_buff *prev,
1617 				      struct sk_buff *next)
1618 {
1619 	struct sk_buff *first = list->next;
1620 	struct sk_buff *last = list->prev;
1621 
1622 	first->prev = prev;
1623 	prev->next = first;
1624 
1625 	last->next = next;
1626 	next->prev = last;
1627 }
1628 
1629 /**
1630  *	skb_queue_splice - join two skb lists, this is designed for stacks
1631  *	@list: the new list to add
1632  *	@head: the place to add it in the first list
1633  */
1634 static inline void skb_queue_splice(const struct sk_buff_head *list,
1635 				    struct sk_buff_head *head)
1636 {
1637 	if (!skb_queue_empty(list)) {
1638 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1639 		head->qlen += list->qlen;
1640 	}
1641 }
1642 
1643 /**
1644  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1645  *	@list: the new list to add
1646  *	@head: the place to add it in the first list
1647  *
1648  *	The list at @list is reinitialised
1649  */
1650 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1651 					 struct sk_buff_head *head)
1652 {
1653 	if (!skb_queue_empty(list)) {
1654 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1655 		head->qlen += list->qlen;
1656 		__skb_queue_head_init(list);
1657 	}
1658 }
1659 
1660 /**
1661  *	skb_queue_splice_tail - join two skb lists, each list being a queue
1662  *	@list: the new list to add
1663  *	@head: the place to add it in the first list
1664  */
1665 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1666 					 struct sk_buff_head *head)
1667 {
1668 	if (!skb_queue_empty(list)) {
1669 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1670 		head->qlen += list->qlen;
1671 	}
1672 }
1673 
1674 /**
1675  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1676  *	@list: the new list to add
1677  *	@head: the place to add it in the first list
1678  *
1679  *	Each of the lists is a queue.
1680  *	The list at @list is reinitialised
1681  */
1682 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1683 					      struct sk_buff_head *head)
1684 {
1685 	if (!skb_queue_empty(list)) {
1686 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1687 		head->qlen += list->qlen;
1688 		__skb_queue_head_init(list);
1689 	}
1690 }
1691 
1692 /**
1693  *	__skb_queue_after - queue a buffer at the list head
1694  *	@list: list to use
1695  *	@prev: place after this buffer
1696  *	@newsk: buffer to queue
1697  *
1698  *	Queue a buffer int the middle of a list. This function takes no locks
1699  *	and you must therefore hold required locks before calling it.
1700  *
1701  *	A buffer cannot be placed on two lists at the same time.
1702  */
1703 static inline void __skb_queue_after(struct sk_buff_head *list,
1704 				     struct sk_buff *prev,
1705 				     struct sk_buff *newsk)
1706 {
1707 	__skb_insert(newsk, prev, prev->next, list);
1708 }
1709 
1710 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1711 		struct sk_buff_head *list);
1712 
1713 static inline void __skb_queue_before(struct sk_buff_head *list,
1714 				      struct sk_buff *next,
1715 				      struct sk_buff *newsk)
1716 {
1717 	__skb_insert(newsk, next->prev, next, list);
1718 }
1719 
1720 /**
1721  *	__skb_queue_head - queue a buffer at the list head
1722  *	@list: list to use
1723  *	@newsk: buffer to queue
1724  *
1725  *	Queue a buffer at the start of a list. This function takes no locks
1726  *	and you must therefore hold required locks before calling it.
1727  *
1728  *	A buffer cannot be placed on two lists at the same time.
1729  */
1730 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1731 static inline void __skb_queue_head(struct sk_buff_head *list,
1732 				    struct sk_buff *newsk)
1733 {
1734 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
1735 }
1736 
1737 /**
1738  *	__skb_queue_tail - queue a buffer at the list tail
1739  *	@list: list to use
1740  *	@newsk: buffer to queue
1741  *
1742  *	Queue a buffer at the end of a list. This function takes no locks
1743  *	and you must therefore hold required locks before calling it.
1744  *
1745  *	A buffer cannot be placed on two lists at the same time.
1746  */
1747 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1748 static inline void __skb_queue_tail(struct sk_buff_head *list,
1749 				   struct sk_buff *newsk)
1750 {
1751 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
1752 }
1753 
1754 /*
1755  * remove sk_buff from list. _Must_ be called atomically, and with
1756  * the list known..
1757  */
1758 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1759 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1760 {
1761 	struct sk_buff *next, *prev;
1762 
1763 	list->qlen--;
1764 	next	   = skb->next;
1765 	prev	   = skb->prev;
1766 	skb->next  = skb->prev = NULL;
1767 	next->prev = prev;
1768 	prev->next = next;
1769 }
1770 
1771 /**
1772  *	__skb_dequeue - remove from the head of the queue
1773  *	@list: list to dequeue from
1774  *
1775  *	Remove the head of the list. This function does not take any locks
1776  *	so must be used with appropriate locks held only. The head item is
1777  *	returned or %NULL if the list is empty.
1778  */
1779 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1780 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1781 {
1782 	struct sk_buff *skb = skb_peek(list);
1783 	if (skb)
1784 		__skb_unlink(skb, list);
1785 	return skb;
1786 }
1787 
1788 /**
1789  *	__skb_dequeue_tail - remove from the tail of the queue
1790  *	@list: list to dequeue from
1791  *
1792  *	Remove the tail of the list. This function does not take any locks
1793  *	so must be used with appropriate locks held only. The tail item is
1794  *	returned or %NULL if the list is empty.
1795  */
1796 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1797 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1798 {
1799 	struct sk_buff *skb = skb_peek_tail(list);
1800 	if (skb)
1801 		__skb_unlink(skb, list);
1802 	return skb;
1803 }
1804 
1805 
1806 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1807 {
1808 	return skb->data_len;
1809 }
1810 
1811 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1812 {
1813 	return skb->len - skb->data_len;
1814 }
1815 
1816 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
1817 {
1818 	unsigned int i, len = 0;
1819 
1820 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
1821 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1822 	return len + skb_headlen(skb);
1823 }
1824 
1825 /**
1826  * __skb_fill_page_desc - initialise a paged fragment in an skb
1827  * @skb: buffer containing fragment to be initialised
1828  * @i: paged fragment index to initialise
1829  * @page: the page to use for this fragment
1830  * @off: the offset to the data with @page
1831  * @size: the length of the data
1832  *
1833  * Initialises the @i'th fragment of @skb to point to &size bytes at
1834  * offset @off within @page.
1835  *
1836  * Does not take any additional reference on the fragment.
1837  */
1838 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1839 					struct page *page, int off, int size)
1840 {
1841 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1842 
1843 	/*
1844 	 * Propagate page pfmemalloc to the skb if we can. The problem is
1845 	 * that not all callers have unique ownership of the page but rely
1846 	 * on page_is_pfmemalloc doing the right thing(tm).
1847 	 */
1848 	frag->page.p		  = page;
1849 	frag->page_offset	  = off;
1850 	skb_frag_size_set(frag, size);
1851 
1852 	page = compound_head(page);
1853 	if (page_is_pfmemalloc(page))
1854 		skb->pfmemalloc	= true;
1855 }
1856 
1857 /**
1858  * skb_fill_page_desc - initialise a paged fragment in an skb
1859  * @skb: buffer containing fragment to be initialised
1860  * @i: paged fragment index to initialise
1861  * @page: the page to use for this fragment
1862  * @off: the offset to the data with @page
1863  * @size: the length of the data
1864  *
1865  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1866  * @skb to point to @size bytes at offset @off within @page. In
1867  * addition updates @skb such that @i is the last fragment.
1868  *
1869  * Does not take any additional reference on the fragment.
1870  */
1871 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1872 				      struct page *page, int off, int size)
1873 {
1874 	__skb_fill_page_desc(skb, i, page, off, size);
1875 	skb_shinfo(skb)->nr_frags = i + 1;
1876 }
1877 
1878 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
1879 		     int size, unsigned int truesize);
1880 
1881 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
1882 			  unsigned int truesize);
1883 
1884 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
1885 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_has_frag_list(skb))
1886 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
1887 
1888 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1889 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1890 {
1891 	return skb->head + skb->tail;
1892 }
1893 
1894 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1895 {
1896 	skb->tail = skb->data - skb->head;
1897 }
1898 
1899 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1900 {
1901 	skb_reset_tail_pointer(skb);
1902 	skb->tail += offset;
1903 }
1904 
1905 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1906 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1907 {
1908 	return skb->tail;
1909 }
1910 
1911 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1912 {
1913 	skb->tail = skb->data;
1914 }
1915 
1916 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1917 {
1918 	skb->tail = skb->data + offset;
1919 }
1920 
1921 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1922 
1923 /*
1924  *	Add data to an sk_buff
1925  */
1926 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
1927 unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1928 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1929 {
1930 	unsigned char *tmp = skb_tail_pointer(skb);
1931 	SKB_LINEAR_ASSERT(skb);
1932 	skb->tail += len;
1933 	skb->len  += len;
1934 	return tmp;
1935 }
1936 
1937 unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1938 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1939 {
1940 	skb->data -= len;
1941 	skb->len  += len;
1942 	return skb->data;
1943 }
1944 
1945 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1946 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1947 {
1948 	skb->len -= len;
1949 	BUG_ON(skb->len < skb->data_len);
1950 	return skb->data += len;
1951 }
1952 
1953 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1954 {
1955 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1956 }
1957 
1958 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1959 
1960 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1961 {
1962 	if (len > skb_headlen(skb) &&
1963 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1964 		return NULL;
1965 	skb->len -= len;
1966 	return skb->data += len;
1967 }
1968 
1969 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1970 {
1971 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1972 }
1973 
1974 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1975 {
1976 	if (likely(len <= skb_headlen(skb)))
1977 		return 1;
1978 	if (unlikely(len > skb->len))
1979 		return 0;
1980 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1981 }
1982 
1983 void skb_condense(struct sk_buff *skb);
1984 
1985 /**
1986  *	skb_headroom - bytes at buffer head
1987  *	@skb: buffer to check
1988  *
1989  *	Return the number of bytes of free space at the head of an &sk_buff.
1990  */
1991 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1992 {
1993 	return skb->data - skb->head;
1994 }
1995 
1996 /**
1997  *	skb_tailroom - bytes at buffer end
1998  *	@skb: buffer to check
1999  *
2000  *	Return the number of bytes of free space at the tail of an sk_buff
2001  */
2002 static inline int skb_tailroom(const struct sk_buff *skb)
2003 {
2004 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2005 }
2006 
2007 /**
2008  *	skb_availroom - bytes at buffer end
2009  *	@skb: buffer to check
2010  *
2011  *	Return the number of bytes of free space at the tail of an sk_buff
2012  *	allocated by sk_stream_alloc()
2013  */
2014 static inline int skb_availroom(const struct sk_buff *skb)
2015 {
2016 	if (skb_is_nonlinear(skb))
2017 		return 0;
2018 
2019 	return skb->end - skb->tail - skb->reserved_tailroom;
2020 }
2021 
2022 /**
2023  *	skb_reserve - adjust headroom
2024  *	@skb: buffer to alter
2025  *	@len: bytes to move
2026  *
2027  *	Increase the headroom of an empty &sk_buff by reducing the tail
2028  *	room. This is only allowed for an empty buffer.
2029  */
2030 static inline void skb_reserve(struct sk_buff *skb, int len)
2031 {
2032 	skb->data += len;
2033 	skb->tail += len;
2034 }
2035 
2036 /**
2037  *	skb_tailroom_reserve - adjust reserved_tailroom
2038  *	@skb: buffer to alter
2039  *	@mtu: maximum amount of headlen permitted
2040  *	@needed_tailroom: minimum amount of reserved_tailroom
2041  *
2042  *	Set reserved_tailroom so that headlen can be as large as possible but
2043  *	not larger than mtu and tailroom cannot be smaller than
2044  *	needed_tailroom.
2045  *	The required headroom should already have been reserved before using
2046  *	this function.
2047  */
2048 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2049 					unsigned int needed_tailroom)
2050 {
2051 	SKB_LINEAR_ASSERT(skb);
2052 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2053 		/* use at most mtu */
2054 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2055 	else
2056 		/* use up to all available space */
2057 		skb->reserved_tailroom = needed_tailroom;
2058 }
2059 
2060 #define ENCAP_TYPE_ETHER	0
2061 #define ENCAP_TYPE_IPPROTO	1
2062 
2063 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2064 					  __be16 protocol)
2065 {
2066 	skb->inner_protocol = protocol;
2067 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2068 }
2069 
2070 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2071 					 __u8 ipproto)
2072 {
2073 	skb->inner_ipproto = ipproto;
2074 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2075 }
2076 
2077 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2078 {
2079 	skb->inner_mac_header = skb->mac_header;
2080 	skb->inner_network_header = skb->network_header;
2081 	skb->inner_transport_header = skb->transport_header;
2082 }
2083 
2084 static inline void skb_reset_mac_len(struct sk_buff *skb)
2085 {
2086 	skb->mac_len = skb->network_header - skb->mac_header;
2087 }
2088 
2089 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2090 							*skb)
2091 {
2092 	return skb->head + skb->inner_transport_header;
2093 }
2094 
2095 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2096 {
2097 	return skb_inner_transport_header(skb) - skb->data;
2098 }
2099 
2100 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2101 {
2102 	skb->inner_transport_header = skb->data - skb->head;
2103 }
2104 
2105 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2106 						   const int offset)
2107 {
2108 	skb_reset_inner_transport_header(skb);
2109 	skb->inner_transport_header += offset;
2110 }
2111 
2112 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2113 {
2114 	return skb->head + skb->inner_network_header;
2115 }
2116 
2117 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2118 {
2119 	skb->inner_network_header = skb->data - skb->head;
2120 }
2121 
2122 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2123 						const int offset)
2124 {
2125 	skb_reset_inner_network_header(skb);
2126 	skb->inner_network_header += offset;
2127 }
2128 
2129 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2130 {
2131 	return skb->head + skb->inner_mac_header;
2132 }
2133 
2134 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2135 {
2136 	skb->inner_mac_header = skb->data - skb->head;
2137 }
2138 
2139 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2140 					    const int offset)
2141 {
2142 	skb_reset_inner_mac_header(skb);
2143 	skb->inner_mac_header += offset;
2144 }
2145 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2146 {
2147 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2148 }
2149 
2150 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2151 {
2152 	return skb->head + skb->transport_header;
2153 }
2154 
2155 static inline void skb_reset_transport_header(struct sk_buff *skb)
2156 {
2157 	skb->transport_header = skb->data - skb->head;
2158 }
2159 
2160 static inline void skb_set_transport_header(struct sk_buff *skb,
2161 					    const int offset)
2162 {
2163 	skb_reset_transport_header(skb);
2164 	skb->transport_header += offset;
2165 }
2166 
2167 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2168 {
2169 	return skb->head + skb->network_header;
2170 }
2171 
2172 static inline void skb_reset_network_header(struct sk_buff *skb)
2173 {
2174 	skb->network_header = skb->data - skb->head;
2175 }
2176 
2177 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2178 {
2179 	skb_reset_network_header(skb);
2180 	skb->network_header += offset;
2181 }
2182 
2183 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2184 {
2185 	return skb->head + skb->mac_header;
2186 }
2187 
2188 static inline int skb_mac_offset(const struct sk_buff *skb)
2189 {
2190 	return skb_mac_header(skb) - skb->data;
2191 }
2192 
2193 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2194 {
2195 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2196 }
2197 
2198 static inline void skb_reset_mac_header(struct sk_buff *skb)
2199 {
2200 	skb->mac_header = skb->data - skb->head;
2201 }
2202 
2203 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2204 {
2205 	skb_reset_mac_header(skb);
2206 	skb->mac_header += offset;
2207 }
2208 
2209 static inline void skb_pop_mac_header(struct sk_buff *skb)
2210 {
2211 	skb->mac_header = skb->network_header;
2212 }
2213 
2214 static inline void skb_probe_transport_header(struct sk_buff *skb,
2215 					      const int offset_hint)
2216 {
2217 	struct flow_keys keys;
2218 
2219 	if (skb_transport_header_was_set(skb))
2220 		return;
2221 	else if (skb_flow_dissect_flow_keys(skb, &keys, 0))
2222 		skb_set_transport_header(skb, keys.control.thoff);
2223 	else
2224 		skb_set_transport_header(skb, offset_hint);
2225 }
2226 
2227 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2228 {
2229 	if (skb_mac_header_was_set(skb)) {
2230 		const unsigned char *old_mac = skb_mac_header(skb);
2231 
2232 		skb_set_mac_header(skb, -skb->mac_len);
2233 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2234 	}
2235 }
2236 
2237 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2238 {
2239 	return skb->csum_start - skb_headroom(skb);
2240 }
2241 
2242 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2243 {
2244 	return skb->head + skb->csum_start;
2245 }
2246 
2247 static inline int skb_transport_offset(const struct sk_buff *skb)
2248 {
2249 	return skb_transport_header(skb) - skb->data;
2250 }
2251 
2252 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2253 {
2254 	return skb->transport_header - skb->network_header;
2255 }
2256 
2257 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2258 {
2259 	return skb->inner_transport_header - skb->inner_network_header;
2260 }
2261 
2262 static inline int skb_network_offset(const struct sk_buff *skb)
2263 {
2264 	return skb_network_header(skb) - skb->data;
2265 }
2266 
2267 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2268 {
2269 	return skb_inner_network_header(skb) - skb->data;
2270 }
2271 
2272 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2273 {
2274 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
2275 }
2276 
2277 /*
2278  * CPUs often take a performance hit when accessing unaligned memory
2279  * locations. The actual performance hit varies, it can be small if the
2280  * hardware handles it or large if we have to take an exception and fix it
2281  * in software.
2282  *
2283  * Since an ethernet header is 14 bytes network drivers often end up with
2284  * the IP header at an unaligned offset. The IP header can be aligned by
2285  * shifting the start of the packet by 2 bytes. Drivers should do this
2286  * with:
2287  *
2288  * skb_reserve(skb, NET_IP_ALIGN);
2289  *
2290  * The downside to this alignment of the IP header is that the DMA is now
2291  * unaligned. On some architectures the cost of an unaligned DMA is high
2292  * and this cost outweighs the gains made by aligning the IP header.
2293  *
2294  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2295  * to be overridden.
2296  */
2297 #ifndef NET_IP_ALIGN
2298 #define NET_IP_ALIGN	2
2299 #endif
2300 
2301 /*
2302  * The networking layer reserves some headroom in skb data (via
2303  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2304  * the header has to grow. In the default case, if the header has to grow
2305  * 32 bytes or less we avoid the reallocation.
2306  *
2307  * Unfortunately this headroom changes the DMA alignment of the resulting
2308  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2309  * on some architectures. An architecture can override this value,
2310  * perhaps setting it to a cacheline in size (since that will maintain
2311  * cacheline alignment of the DMA). It must be a power of 2.
2312  *
2313  * Various parts of the networking layer expect at least 32 bytes of
2314  * headroom, you should not reduce this.
2315  *
2316  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2317  * to reduce average number of cache lines per packet.
2318  * get_rps_cpus() for example only access one 64 bytes aligned block :
2319  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2320  */
2321 #ifndef NET_SKB_PAD
2322 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2323 #endif
2324 
2325 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2326 
2327 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2328 {
2329 	if (unlikely(skb_is_nonlinear(skb))) {
2330 		WARN_ON(1);
2331 		return;
2332 	}
2333 	skb->len = len;
2334 	skb_set_tail_pointer(skb, len);
2335 }
2336 
2337 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2338 {
2339 	__skb_set_length(skb, len);
2340 }
2341 
2342 void skb_trim(struct sk_buff *skb, unsigned int len);
2343 
2344 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2345 {
2346 	if (skb->data_len)
2347 		return ___pskb_trim(skb, len);
2348 	__skb_trim(skb, len);
2349 	return 0;
2350 }
2351 
2352 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2353 {
2354 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2355 }
2356 
2357 /**
2358  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2359  *	@skb: buffer to alter
2360  *	@len: new length
2361  *
2362  *	This is identical to pskb_trim except that the caller knows that
2363  *	the skb is not cloned so we should never get an error due to out-
2364  *	of-memory.
2365  */
2366 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2367 {
2368 	int err = pskb_trim(skb, len);
2369 	BUG_ON(err);
2370 }
2371 
2372 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2373 {
2374 	unsigned int diff = len - skb->len;
2375 
2376 	if (skb_tailroom(skb) < diff) {
2377 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2378 					   GFP_ATOMIC);
2379 		if (ret)
2380 			return ret;
2381 	}
2382 	__skb_set_length(skb, len);
2383 	return 0;
2384 }
2385 
2386 /**
2387  *	skb_orphan - orphan a buffer
2388  *	@skb: buffer to orphan
2389  *
2390  *	If a buffer currently has an owner then we call the owner's
2391  *	destructor function and make the @skb unowned. The buffer continues
2392  *	to exist but is no longer charged to its former owner.
2393  */
2394 static inline void skb_orphan(struct sk_buff *skb)
2395 {
2396 	if (skb->destructor) {
2397 		skb->destructor(skb);
2398 		skb->destructor = NULL;
2399 		skb->sk		= NULL;
2400 	} else {
2401 		BUG_ON(skb->sk);
2402 	}
2403 }
2404 
2405 /**
2406  *	skb_orphan_frags - orphan the frags contained in a buffer
2407  *	@skb: buffer to orphan frags from
2408  *	@gfp_mask: allocation mask for replacement pages
2409  *
2410  *	For each frag in the SKB which needs a destructor (i.e. has an
2411  *	owner) create a copy of that frag and release the original
2412  *	page by calling the destructor.
2413  */
2414 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2415 {
2416 	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
2417 		return 0;
2418 	return skb_copy_ubufs(skb, gfp_mask);
2419 }
2420 
2421 /**
2422  *	__skb_queue_purge - empty a list
2423  *	@list: list to empty
2424  *
2425  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2426  *	the list and one reference dropped. This function does not take the
2427  *	list lock and the caller must hold the relevant locks to use it.
2428  */
2429 void skb_queue_purge(struct sk_buff_head *list);
2430 static inline void __skb_queue_purge(struct sk_buff_head *list)
2431 {
2432 	struct sk_buff *skb;
2433 	while ((skb = __skb_dequeue(list)) != NULL)
2434 		kfree_skb(skb);
2435 }
2436 
2437 void skb_rbtree_purge(struct rb_root *root);
2438 
2439 void *netdev_alloc_frag(unsigned int fragsz);
2440 
2441 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2442 				   gfp_t gfp_mask);
2443 
2444 /**
2445  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
2446  *	@dev: network device to receive on
2447  *	@length: length to allocate
2448  *
2449  *	Allocate a new &sk_buff and assign it a usage count of one. The
2450  *	buffer has unspecified headroom built in. Users should allocate
2451  *	the headroom they think they need without accounting for the
2452  *	built in space. The built in space is used for optimisations.
2453  *
2454  *	%NULL is returned if there is no free memory. Although this function
2455  *	allocates memory it can be called from an interrupt.
2456  */
2457 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2458 					       unsigned int length)
2459 {
2460 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2461 }
2462 
2463 /* legacy helper around __netdev_alloc_skb() */
2464 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2465 					      gfp_t gfp_mask)
2466 {
2467 	return __netdev_alloc_skb(NULL, length, gfp_mask);
2468 }
2469 
2470 /* legacy helper around netdev_alloc_skb() */
2471 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2472 {
2473 	return netdev_alloc_skb(NULL, length);
2474 }
2475 
2476 
2477 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2478 		unsigned int length, gfp_t gfp)
2479 {
2480 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2481 
2482 	if (NET_IP_ALIGN && skb)
2483 		skb_reserve(skb, NET_IP_ALIGN);
2484 	return skb;
2485 }
2486 
2487 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2488 		unsigned int length)
2489 {
2490 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2491 }
2492 
2493 static inline void skb_free_frag(void *addr)
2494 {
2495 	page_frag_free(addr);
2496 }
2497 
2498 void *napi_alloc_frag(unsigned int fragsz);
2499 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2500 				 unsigned int length, gfp_t gfp_mask);
2501 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2502 					     unsigned int length)
2503 {
2504 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2505 }
2506 void napi_consume_skb(struct sk_buff *skb, int budget);
2507 
2508 void __kfree_skb_flush(void);
2509 void __kfree_skb_defer(struct sk_buff *skb);
2510 
2511 /**
2512  * __dev_alloc_pages - allocate page for network Rx
2513  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2514  * @order: size of the allocation
2515  *
2516  * Allocate a new page.
2517  *
2518  * %NULL is returned if there is no free memory.
2519 */
2520 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2521 					     unsigned int order)
2522 {
2523 	/* This piece of code contains several assumptions.
2524 	 * 1.  This is for device Rx, therefor a cold page is preferred.
2525 	 * 2.  The expectation is the user wants a compound page.
2526 	 * 3.  If requesting a order 0 page it will not be compound
2527 	 *     due to the check to see if order has a value in prep_new_page
2528 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2529 	 *     code in gfp_to_alloc_flags that should be enforcing this.
2530 	 */
2531 	gfp_mask |= __GFP_COLD | __GFP_COMP | __GFP_MEMALLOC;
2532 
2533 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2534 }
2535 
2536 static inline struct page *dev_alloc_pages(unsigned int order)
2537 {
2538 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2539 }
2540 
2541 /**
2542  * __dev_alloc_page - allocate a page for network Rx
2543  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2544  *
2545  * Allocate a new page.
2546  *
2547  * %NULL is returned if there is no free memory.
2548  */
2549 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2550 {
2551 	return __dev_alloc_pages(gfp_mask, 0);
2552 }
2553 
2554 static inline struct page *dev_alloc_page(void)
2555 {
2556 	return dev_alloc_pages(0);
2557 }
2558 
2559 /**
2560  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2561  *	@page: The page that was allocated from skb_alloc_page
2562  *	@skb: The skb that may need pfmemalloc set
2563  */
2564 static inline void skb_propagate_pfmemalloc(struct page *page,
2565 					     struct sk_buff *skb)
2566 {
2567 	if (page_is_pfmemalloc(page))
2568 		skb->pfmemalloc = true;
2569 }
2570 
2571 /**
2572  * skb_frag_page - retrieve the page referred to by a paged fragment
2573  * @frag: the paged fragment
2574  *
2575  * Returns the &struct page associated with @frag.
2576  */
2577 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2578 {
2579 	return frag->page.p;
2580 }
2581 
2582 /**
2583  * __skb_frag_ref - take an addition reference on a paged fragment.
2584  * @frag: the paged fragment
2585  *
2586  * Takes an additional reference on the paged fragment @frag.
2587  */
2588 static inline void __skb_frag_ref(skb_frag_t *frag)
2589 {
2590 	get_page(skb_frag_page(frag));
2591 }
2592 
2593 /**
2594  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2595  * @skb: the buffer
2596  * @f: the fragment offset.
2597  *
2598  * Takes an additional reference on the @f'th paged fragment of @skb.
2599  */
2600 static inline void skb_frag_ref(struct sk_buff *skb, int f)
2601 {
2602 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2603 }
2604 
2605 /**
2606  * __skb_frag_unref - release a reference on a paged fragment.
2607  * @frag: the paged fragment
2608  *
2609  * Releases a reference on the paged fragment @frag.
2610  */
2611 static inline void __skb_frag_unref(skb_frag_t *frag)
2612 {
2613 	put_page(skb_frag_page(frag));
2614 }
2615 
2616 /**
2617  * skb_frag_unref - release a reference on a paged fragment of an skb.
2618  * @skb: the buffer
2619  * @f: the fragment offset
2620  *
2621  * Releases a reference on the @f'th paged fragment of @skb.
2622  */
2623 static inline void skb_frag_unref(struct sk_buff *skb, int f)
2624 {
2625 	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2626 }
2627 
2628 /**
2629  * skb_frag_address - gets the address of the data contained in a paged fragment
2630  * @frag: the paged fragment buffer
2631  *
2632  * Returns the address of the data within @frag. The page must already
2633  * be mapped.
2634  */
2635 static inline void *skb_frag_address(const skb_frag_t *frag)
2636 {
2637 	return page_address(skb_frag_page(frag)) + frag->page_offset;
2638 }
2639 
2640 /**
2641  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2642  * @frag: the paged fragment buffer
2643  *
2644  * Returns the address of the data within @frag. Checks that the page
2645  * is mapped and returns %NULL otherwise.
2646  */
2647 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2648 {
2649 	void *ptr = page_address(skb_frag_page(frag));
2650 	if (unlikely(!ptr))
2651 		return NULL;
2652 
2653 	return ptr + frag->page_offset;
2654 }
2655 
2656 /**
2657  * __skb_frag_set_page - sets the page contained in a paged fragment
2658  * @frag: the paged fragment
2659  * @page: the page to set
2660  *
2661  * Sets the fragment @frag to contain @page.
2662  */
2663 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2664 {
2665 	frag->page.p = page;
2666 }
2667 
2668 /**
2669  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2670  * @skb: the buffer
2671  * @f: the fragment offset
2672  * @page: the page to set
2673  *
2674  * Sets the @f'th fragment of @skb to contain @page.
2675  */
2676 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2677 				     struct page *page)
2678 {
2679 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2680 }
2681 
2682 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2683 
2684 /**
2685  * skb_frag_dma_map - maps a paged fragment via the DMA API
2686  * @dev: the device to map the fragment to
2687  * @frag: the paged fragment to map
2688  * @offset: the offset within the fragment (starting at the
2689  *          fragment's own offset)
2690  * @size: the number of bytes to map
2691  * @dir: the direction of the mapping (%PCI_DMA_*)
2692  *
2693  * Maps the page associated with @frag to @device.
2694  */
2695 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2696 					  const skb_frag_t *frag,
2697 					  size_t offset, size_t size,
2698 					  enum dma_data_direction dir)
2699 {
2700 	return dma_map_page(dev, skb_frag_page(frag),
2701 			    frag->page_offset + offset, size, dir);
2702 }
2703 
2704 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2705 					gfp_t gfp_mask)
2706 {
2707 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2708 }
2709 
2710 
2711 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2712 						  gfp_t gfp_mask)
2713 {
2714 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2715 }
2716 
2717 
2718 /**
2719  *	skb_clone_writable - is the header of a clone writable
2720  *	@skb: buffer to check
2721  *	@len: length up to which to write
2722  *
2723  *	Returns true if modifying the header part of the cloned buffer
2724  *	does not requires the data to be copied.
2725  */
2726 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2727 {
2728 	return !skb_header_cloned(skb) &&
2729 	       skb_headroom(skb) + len <= skb->hdr_len;
2730 }
2731 
2732 static inline int skb_try_make_writable(struct sk_buff *skb,
2733 					unsigned int write_len)
2734 {
2735 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
2736 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2737 }
2738 
2739 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2740 			    int cloned)
2741 {
2742 	int delta = 0;
2743 
2744 	if (headroom > skb_headroom(skb))
2745 		delta = headroom - skb_headroom(skb);
2746 
2747 	if (delta || cloned)
2748 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2749 					GFP_ATOMIC);
2750 	return 0;
2751 }
2752 
2753 /**
2754  *	skb_cow - copy header of skb when it is required
2755  *	@skb: buffer to cow
2756  *	@headroom: needed headroom
2757  *
2758  *	If the skb passed lacks sufficient headroom or its data part
2759  *	is shared, data is reallocated. If reallocation fails, an error
2760  *	is returned and original skb is not changed.
2761  *
2762  *	The result is skb with writable area skb->head...skb->tail
2763  *	and at least @headroom of space at head.
2764  */
2765 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2766 {
2767 	return __skb_cow(skb, headroom, skb_cloned(skb));
2768 }
2769 
2770 /**
2771  *	skb_cow_head - skb_cow but only making the head writable
2772  *	@skb: buffer to cow
2773  *	@headroom: needed headroom
2774  *
2775  *	This function is identical to skb_cow except that we replace the
2776  *	skb_cloned check by skb_header_cloned.  It should be used when
2777  *	you only need to push on some header and do not need to modify
2778  *	the data.
2779  */
2780 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2781 {
2782 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
2783 }
2784 
2785 /**
2786  *	skb_padto	- pad an skbuff up to a minimal size
2787  *	@skb: buffer to pad
2788  *	@len: minimal length
2789  *
2790  *	Pads up a buffer to ensure the trailing bytes exist and are
2791  *	blanked. If the buffer already contains sufficient data it
2792  *	is untouched. Otherwise it is extended. Returns zero on
2793  *	success. The skb is freed on error.
2794  */
2795 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
2796 {
2797 	unsigned int size = skb->len;
2798 	if (likely(size >= len))
2799 		return 0;
2800 	return skb_pad(skb, len - size);
2801 }
2802 
2803 /**
2804  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
2805  *	@skb: buffer to pad
2806  *	@len: minimal length
2807  *
2808  *	Pads up a buffer to ensure the trailing bytes exist and are
2809  *	blanked. If the buffer already contains sufficient data it
2810  *	is untouched. Otherwise it is extended. Returns zero on
2811  *	success. The skb is freed on error.
2812  */
2813 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
2814 {
2815 	unsigned int size = skb->len;
2816 
2817 	if (unlikely(size < len)) {
2818 		len -= size;
2819 		if (skb_pad(skb, len))
2820 			return -ENOMEM;
2821 		__skb_put(skb, len);
2822 	}
2823 	return 0;
2824 }
2825 
2826 static inline int skb_add_data(struct sk_buff *skb,
2827 			       struct iov_iter *from, int copy)
2828 {
2829 	const int off = skb->len;
2830 
2831 	if (skb->ip_summed == CHECKSUM_NONE) {
2832 		__wsum csum = 0;
2833 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
2834 					         &csum, from)) {
2835 			skb->csum = csum_block_add(skb->csum, csum, off);
2836 			return 0;
2837 		}
2838 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
2839 		return 0;
2840 
2841 	__skb_trim(skb, off);
2842 	return -EFAULT;
2843 }
2844 
2845 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
2846 				    const struct page *page, int off)
2847 {
2848 	if (i) {
2849 		const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
2850 
2851 		return page == skb_frag_page(frag) &&
2852 		       off == frag->page_offset + skb_frag_size(frag);
2853 	}
2854 	return false;
2855 }
2856 
2857 static inline int __skb_linearize(struct sk_buff *skb)
2858 {
2859 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
2860 }
2861 
2862 /**
2863  *	skb_linearize - convert paged skb to linear one
2864  *	@skb: buffer to linarize
2865  *
2866  *	If there is no free memory -ENOMEM is returned, otherwise zero
2867  *	is returned and the old skb data released.
2868  */
2869 static inline int skb_linearize(struct sk_buff *skb)
2870 {
2871 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
2872 }
2873 
2874 /**
2875  * skb_has_shared_frag - can any frag be overwritten
2876  * @skb: buffer to test
2877  *
2878  * Return true if the skb has at least one frag that might be modified
2879  * by an external entity (as in vmsplice()/sendfile())
2880  */
2881 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
2882 {
2883 	return skb_is_nonlinear(skb) &&
2884 	       skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2885 }
2886 
2887 /**
2888  *	skb_linearize_cow - make sure skb is linear and writable
2889  *	@skb: buffer to process
2890  *
2891  *	If there is no free memory -ENOMEM is returned, otherwise zero
2892  *	is returned and the old skb data released.
2893  */
2894 static inline int skb_linearize_cow(struct sk_buff *skb)
2895 {
2896 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
2897 	       __skb_linearize(skb) : 0;
2898 }
2899 
2900 static __always_inline void
2901 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
2902 		     unsigned int off)
2903 {
2904 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2905 		skb->csum = csum_block_sub(skb->csum,
2906 					   csum_partial(start, len, 0), off);
2907 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
2908 		 skb_checksum_start_offset(skb) < 0)
2909 		skb->ip_summed = CHECKSUM_NONE;
2910 }
2911 
2912 /**
2913  *	skb_postpull_rcsum - update checksum for received skb after pull
2914  *	@skb: buffer to update
2915  *	@start: start of data before pull
2916  *	@len: length of data pulled
2917  *
2918  *	After doing a pull on a received packet, you need to call this to
2919  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
2920  *	CHECKSUM_NONE so that it can be recomputed from scratch.
2921  */
2922 static inline void skb_postpull_rcsum(struct sk_buff *skb,
2923 				      const void *start, unsigned int len)
2924 {
2925 	__skb_postpull_rcsum(skb, start, len, 0);
2926 }
2927 
2928 static __always_inline void
2929 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
2930 		     unsigned int off)
2931 {
2932 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2933 		skb->csum = csum_block_add(skb->csum,
2934 					   csum_partial(start, len, 0), off);
2935 }
2936 
2937 /**
2938  *	skb_postpush_rcsum - update checksum for received skb after push
2939  *	@skb: buffer to update
2940  *	@start: start of data after push
2941  *	@len: length of data pushed
2942  *
2943  *	After doing a push on a received packet, you need to call this to
2944  *	update the CHECKSUM_COMPLETE checksum.
2945  */
2946 static inline void skb_postpush_rcsum(struct sk_buff *skb,
2947 				      const void *start, unsigned int len)
2948 {
2949 	__skb_postpush_rcsum(skb, start, len, 0);
2950 }
2951 
2952 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
2953 
2954 /**
2955  *	skb_push_rcsum - push skb and update receive checksum
2956  *	@skb: buffer to update
2957  *	@len: length of data pulled
2958  *
2959  *	This function performs an skb_push on the packet and updates
2960  *	the CHECKSUM_COMPLETE checksum.  It should be used on
2961  *	receive path processing instead of skb_push unless you know
2962  *	that the checksum difference is zero (e.g., a valid IP header)
2963  *	or you are setting ip_summed to CHECKSUM_NONE.
2964  */
2965 static inline unsigned char *skb_push_rcsum(struct sk_buff *skb,
2966 					    unsigned int len)
2967 {
2968 	skb_push(skb, len);
2969 	skb_postpush_rcsum(skb, skb->data, len);
2970 	return skb->data;
2971 }
2972 
2973 /**
2974  *	pskb_trim_rcsum - trim received skb and update checksum
2975  *	@skb: buffer to trim
2976  *	@len: new length
2977  *
2978  *	This is exactly the same as pskb_trim except that it ensures the
2979  *	checksum of received packets are still valid after the operation.
2980  */
2981 
2982 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2983 {
2984 	if (likely(len >= skb->len))
2985 		return 0;
2986 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2987 		skb->ip_summed = CHECKSUM_NONE;
2988 	return __pskb_trim(skb, len);
2989 }
2990 
2991 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2992 {
2993 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2994 		skb->ip_summed = CHECKSUM_NONE;
2995 	__skb_trim(skb, len);
2996 	return 0;
2997 }
2998 
2999 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3000 {
3001 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3002 		skb->ip_summed = CHECKSUM_NONE;
3003 	return __skb_grow(skb, len);
3004 }
3005 
3006 #define skb_queue_walk(queue, skb) \
3007 		for (skb = (queue)->next;					\
3008 		     skb != (struct sk_buff *)(queue);				\
3009 		     skb = skb->next)
3010 
3011 #define skb_queue_walk_safe(queue, skb, tmp)					\
3012 		for (skb = (queue)->next, tmp = skb->next;			\
3013 		     skb != (struct sk_buff *)(queue);				\
3014 		     skb = tmp, tmp = skb->next)
3015 
3016 #define skb_queue_walk_from(queue, skb)						\
3017 		for (; skb != (struct sk_buff *)(queue);			\
3018 		     skb = skb->next)
3019 
3020 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3021 		for (tmp = skb->next;						\
3022 		     skb != (struct sk_buff *)(queue);				\
3023 		     skb = tmp, tmp = skb->next)
3024 
3025 #define skb_queue_reverse_walk(queue, skb) \
3026 		for (skb = (queue)->prev;					\
3027 		     skb != (struct sk_buff *)(queue);				\
3028 		     skb = skb->prev)
3029 
3030 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3031 		for (skb = (queue)->prev, tmp = skb->prev;			\
3032 		     skb != (struct sk_buff *)(queue);				\
3033 		     skb = tmp, tmp = skb->prev)
3034 
3035 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3036 		for (tmp = skb->prev;						\
3037 		     skb != (struct sk_buff *)(queue);				\
3038 		     skb = tmp, tmp = skb->prev)
3039 
3040 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3041 {
3042 	return skb_shinfo(skb)->frag_list != NULL;
3043 }
3044 
3045 static inline void skb_frag_list_init(struct sk_buff *skb)
3046 {
3047 	skb_shinfo(skb)->frag_list = NULL;
3048 }
3049 
3050 #define skb_walk_frags(skb, iter)	\
3051 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3052 
3053 
3054 int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
3055 				const struct sk_buff *skb);
3056 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
3057 					void (*destructor)(struct sock *sk,
3058 							   struct sk_buff *skb),
3059 					int *peeked, int *off, int *err,
3060 					struct sk_buff **last);
3061 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
3062 				    void (*destructor)(struct sock *sk,
3063 						       struct sk_buff *skb),
3064 				    int *peeked, int *off, int *err);
3065 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3066 				  int *err);
3067 unsigned int datagram_poll(struct file *file, struct socket *sock,
3068 			   struct poll_table_struct *wait);
3069 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3070 			   struct iov_iter *to, int size);
3071 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3072 					struct msghdr *msg, int size)
3073 {
3074 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3075 }
3076 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3077 				   struct msghdr *msg);
3078 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3079 				 struct iov_iter *from, int len);
3080 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3081 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3082 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3083 static inline void skb_free_datagram_locked(struct sock *sk,
3084 					    struct sk_buff *skb)
3085 {
3086 	__skb_free_datagram_locked(sk, skb, 0);
3087 }
3088 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3089 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3090 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3091 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3092 			      int len, __wsum csum);
3093 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3094 		    struct pipe_inode_info *pipe, unsigned int len,
3095 		    unsigned int flags);
3096 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3097 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3098 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3099 		 int len, int hlen);
3100 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3101 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3102 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3103 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
3104 bool skb_gso_validate_mtu(const struct sk_buff *skb, unsigned int mtu);
3105 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3106 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3107 int skb_ensure_writable(struct sk_buff *skb, int write_len);
3108 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3109 int skb_vlan_pop(struct sk_buff *skb);
3110 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3111 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3112 			     gfp_t gfp);
3113 
3114 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3115 {
3116 	return copy_from_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3117 }
3118 
3119 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3120 {
3121 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3122 }
3123 
3124 struct skb_checksum_ops {
3125 	__wsum (*update)(const void *mem, int len, __wsum wsum);
3126 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3127 };
3128 
3129 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3130 		      __wsum csum, const struct skb_checksum_ops *ops);
3131 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3132 		    __wsum csum);
3133 
3134 static inline void * __must_check
3135 __skb_header_pointer(const struct sk_buff *skb, int offset,
3136 		     int len, void *data, int hlen, void *buffer)
3137 {
3138 	if (hlen - offset >= len)
3139 		return data + offset;
3140 
3141 	if (!skb ||
3142 	    skb_copy_bits(skb, offset, buffer, len) < 0)
3143 		return NULL;
3144 
3145 	return buffer;
3146 }
3147 
3148 static inline void * __must_check
3149 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3150 {
3151 	return __skb_header_pointer(skb, offset, len, skb->data,
3152 				    skb_headlen(skb), buffer);
3153 }
3154 
3155 /**
3156  *	skb_needs_linearize - check if we need to linearize a given skb
3157  *			      depending on the given device features.
3158  *	@skb: socket buffer to check
3159  *	@features: net device features
3160  *
3161  *	Returns true if either:
3162  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
3163  *	2. skb is fragmented and the device does not support SG.
3164  */
3165 static inline bool skb_needs_linearize(struct sk_buff *skb,
3166 				       netdev_features_t features)
3167 {
3168 	return skb_is_nonlinear(skb) &&
3169 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3170 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3171 }
3172 
3173 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3174 					     void *to,
3175 					     const unsigned int len)
3176 {
3177 	memcpy(to, skb->data, len);
3178 }
3179 
3180 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3181 						    const int offset, void *to,
3182 						    const unsigned int len)
3183 {
3184 	memcpy(to, skb->data + offset, len);
3185 }
3186 
3187 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3188 					   const void *from,
3189 					   const unsigned int len)
3190 {
3191 	memcpy(skb->data, from, len);
3192 }
3193 
3194 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3195 						  const int offset,
3196 						  const void *from,
3197 						  const unsigned int len)
3198 {
3199 	memcpy(skb->data + offset, from, len);
3200 }
3201 
3202 void skb_init(void);
3203 
3204 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3205 {
3206 	return skb->tstamp;
3207 }
3208 
3209 /**
3210  *	skb_get_timestamp - get timestamp from a skb
3211  *	@skb: skb to get stamp from
3212  *	@stamp: pointer to struct timeval to store stamp in
3213  *
3214  *	Timestamps are stored in the skb as offsets to a base timestamp.
3215  *	This function converts the offset back to a struct timeval and stores
3216  *	it in stamp.
3217  */
3218 static inline void skb_get_timestamp(const struct sk_buff *skb,
3219 				     struct timeval *stamp)
3220 {
3221 	*stamp = ktime_to_timeval(skb->tstamp);
3222 }
3223 
3224 static inline void skb_get_timestampns(const struct sk_buff *skb,
3225 				       struct timespec *stamp)
3226 {
3227 	*stamp = ktime_to_timespec(skb->tstamp);
3228 }
3229 
3230 static inline void __net_timestamp(struct sk_buff *skb)
3231 {
3232 	skb->tstamp = ktime_get_real();
3233 }
3234 
3235 static inline ktime_t net_timedelta(ktime_t t)
3236 {
3237 	return ktime_sub(ktime_get_real(), t);
3238 }
3239 
3240 static inline ktime_t net_invalid_timestamp(void)
3241 {
3242 	return 0;
3243 }
3244 
3245 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3246 
3247 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3248 
3249 void skb_clone_tx_timestamp(struct sk_buff *skb);
3250 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3251 
3252 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3253 
3254 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3255 {
3256 }
3257 
3258 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3259 {
3260 	return false;
3261 }
3262 
3263 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3264 
3265 /**
3266  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3267  *
3268  * PHY drivers may accept clones of transmitted packets for
3269  * timestamping via their phy_driver.txtstamp method. These drivers
3270  * must call this function to return the skb back to the stack with a
3271  * timestamp.
3272  *
3273  * @skb: clone of the the original outgoing packet
3274  * @hwtstamps: hardware time stamps
3275  *
3276  */
3277 void skb_complete_tx_timestamp(struct sk_buff *skb,
3278 			       struct skb_shared_hwtstamps *hwtstamps);
3279 
3280 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3281 		     struct skb_shared_hwtstamps *hwtstamps,
3282 		     struct sock *sk, int tstype);
3283 
3284 /**
3285  * skb_tstamp_tx - queue clone of skb with send time stamps
3286  * @orig_skb:	the original outgoing packet
3287  * @hwtstamps:	hardware time stamps, may be NULL if not available
3288  *
3289  * If the skb has a socket associated, then this function clones the
3290  * skb (thus sharing the actual data and optional structures), stores
3291  * the optional hardware time stamping information (if non NULL) or
3292  * generates a software time stamp (otherwise), then queues the clone
3293  * to the error queue of the socket.  Errors are silently ignored.
3294  */
3295 void skb_tstamp_tx(struct sk_buff *orig_skb,
3296 		   struct skb_shared_hwtstamps *hwtstamps);
3297 
3298 static inline void sw_tx_timestamp(struct sk_buff *skb)
3299 {
3300 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
3301 	    !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
3302 		skb_tstamp_tx(skb, NULL);
3303 }
3304 
3305 /**
3306  * skb_tx_timestamp() - Driver hook for transmit timestamping
3307  *
3308  * Ethernet MAC Drivers should call this function in their hard_xmit()
3309  * function immediately before giving the sk_buff to the MAC hardware.
3310  *
3311  * Specifically, one should make absolutely sure that this function is
3312  * called before TX completion of this packet can trigger.  Otherwise
3313  * the packet could potentially already be freed.
3314  *
3315  * @skb: A socket buffer.
3316  */
3317 static inline void skb_tx_timestamp(struct sk_buff *skb)
3318 {
3319 	skb_clone_tx_timestamp(skb);
3320 	sw_tx_timestamp(skb);
3321 }
3322 
3323 /**
3324  * skb_complete_wifi_ack - deliver skb with wifi status
3325  *
3326  * @skb: the original outgoing packet
3327  * @acked: ack status
3328  *
3329  */
3330 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3331 
3332 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3333 __sum16 __skb_checksum_complete(struct sk_buff *skb);
3334 
3335 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3336 {
3337 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3338 		skb->csum_valid ||
3339 		(skb->ip_summed == CHECKSUM_PARTIAL &&
3340 		 skb_checksum_start_offset(skb) >= 0));
3341 }
3342 
3343 /**
3344  *	skb_checksum_complete - Calculate checksum of an entire packet
3345  *	@skb: packet to process
3346  *
3347  *	This function calculates the checksum over the entire packet plus
3348  *	the value of skb->csum.  The latter can be used to supply the
3349  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
3350  *	checksum.
3351  *
3352  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
3353  *	this function can be used to verify that checksum on received
3354  *	packets.  In that case the function should return zero if the
3355  *	checksum is correct.  In particular, this function will return zero
3356  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3357  *	hardware has already verified the correctness of the checksum.
3358  */
3359 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3360 {
3361 	return skb_csum_unnecessary(skb) ?
3362 	       0 : __skb_checksum_complete(skb);
3363 }
3364 
3365 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3366 {
3367 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3368 		if (skb->csum_level == 0)
3369 			skb->ip_summed = CHECKSUM_NONE;
3370 		else
3371 			skb->csum_level--;
3372 	}
3373 }
3374 
3375 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3376 {
3377 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3378 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3379 			skb->csum_level++;
3380 	} else if (skb->ip_summed == CHECKSUM_NONE) {
3381 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3382 		skb->csum_level = 0;
3383 	}
3384 }
3385 
3386 static inline void __skb_mark_checksum_bad(struct sk_buff *skb)
3387 {
3388 	/* Mark current checksum as bad (typically called from GRO
3389 	 * path). In the case that ip_summed is CHECKSUM_NONE
3390 	 * this must be the first checksum encountered in the packet.
3391 	 * When ip_summed is CHECKSUM_UNNECESSARY, this is the first
3392 	 * checksum after the last one validated. For UDP, a zero
3393 	 * checksum can not be marked as bad.
3394 	 */
3395 
3396 	if (skb->ip_summed == CHECKSUM_NONE ||
3397 	    skb->ip_summed == CHECKSUM_UNNECESSARY)
3398 		skb->csum_bad = 1;
3399 }
3400 
3401 /* Check if we need to perform checksum complete validation.
3402  *
3403  * Returns true if checksum complete is needed, false otherwise
3404  * (either checksum is unnecessary or zero checksum is allowed).
3405  */
3406 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3407 						  bool zero_okay,
3408 						  __sum16 check)
3409 {
3410 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3411 		skb->csum_valid = 1;
3412 		__skb_decr_checksum_unnecessary(skb);
3413 		return false;
3414 	}
3415 
3416 	return true;
3417 }
3418 
3419 /* For small packets <= CHECKSUM_BREAK peform checksum complete directly
3420  * in checksum_init.
3421  */
3422 #define CHECKSUM_BREAK 76
3423 
3424 /* Unset checksum-complete
3425  *
3426  * Unset checksum complete can be done when packet is being modified
3427  * (uncompressed for instance) and checksum-complete value is
3428  * invalidated.
3429  */
3430 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3431 {
3432 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3433 		skb->ip_summed = CHECKSUM_NONE;
3434 }
3435 
3436 /* Validate (init) checksum based on checksum complete.
3437  *
3438  * Return values:
3439  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
3440  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3441  *	checksum is stored in skb->csum for use in __skb_checksum_complete
3442  *   non-zero: value of invalid checksum
3443  *
3444  */
3445 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3446 						       bool complete,
3447 						       __wsum psum)
3448 {
3449 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
3450 		if (!csum_fold(csum_add(psum, skb->csum))) {
3451 			skb->csum_valid = 1;
3452 			return 0;
3453 		}
3454 	} else if (skb->csum_bad) {
3455 		/* ip_summed == CHECKSUM_NONE in this case */
3456 		return (__force __sum16)1;
3457 	}
3458 
3459 	skb->csum = psum;
3460 
3461 	if (complete || skb->len <= CHECKSUM_BREAK) {
3462 		__sum16 csum;
3463 
3464 		csum = __skb_checksum_complete(skb);
3465 		skb->csum_valid = !csum;
3466 		return csum;
3467 	}
3468 
3469 	return 0;
3470 }
3471 
3472 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3473 {
3474 	return 0;
3475 }
3476 
3477 /* Perform checksum validate (init). Note that this is a macro since we only
3478  * want to calculate the pseudo header which is an input function if necessary.
3479  * First we try to validate without any computation (checksum unnecessary) and
3480  * then calculate based on checksum complete calling the function to compute
3481  * pseudo header.
3482  *
3483  * Return values:
3484  *   0: checksum is validated or try to in skb_checksum_complete
3485  *   non-zero: value of invalid checksum
3486  */
3487 #define __skb_checksum_validate(skb, proto, complete,			\
3488 				zero_okay, check, compute_pseudo)	\
3489 ({									\
3490 	__sum16 __ret = 0;						\
3491 	skb->csum_valid = 0;						\
3492 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
3493 		__ret = __skb_checksum_validate_complete(skb,		\
3494 				complete, compute_pseudo(skb, proto));	\
3495 	__ret;								\
3496 })
3497 
3498 #define skb_checksum_init(skb, proto, compute_pseudo)			\
3499 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3500 
3501 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
3502 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3503 
3504 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
3505 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3506 
3507 #define skb_checksum_validate_zero_check(skb, proto, check,		\
3508 					 compute_pseudo)		\
3509 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
3510 
3511 #define skb_checksum_simple_validate(skb)				\
3512 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3513 
3514 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3515 {
3516 	return (skb->ip_summed == CHECKSUM_NONE &&
3517 		skb->csum_valid && !skb->csum_bad);
3518 }
3519 
3520 static inline void __skb_checksum_convert(struct sk_buff *skb,
3521 					  __sum16 check, __wsum pseudo)
3522 {
3523 	skb->csum = ~pseudo;
3524 	skb->ip_summed = CHECKSUM_COMPLETE;
3525 }
3526 
3527 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo)	\
3528 do {									\
3529 	if (__skb_checksum_convert_check(skb))				\
3530 		__skb_checksum_convert(skb, check,			\
3531 				       compute_pseudo(skb, proto));	\
3532 } while (0)
3533 
3534 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3535 					      u16 start, u16 offset)
3536 {
3537 	skb->ip_summed = CHECKSUM_PARTIAL;
3538 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3539 	skb->csum_offset = offset - start;
3540 }
3541 
3542 /* Update skbuf and packet to reflect the remote checksum offload operation.
3543  * When called, ptr indicates the starting point for skb->csum when
3544  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3545  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3546  */
3547 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
3548 				       int start, int offset, bool nopartial)
3549 {
3550 	__wsum delta;
3551 
3552 	if (!nopartial) {
3553 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
3554 		return;
3555 	}
3556 
3557 	 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3558 		__skb_checksum_complete(skb);
3559 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3560 	}
3561 
3562 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
3563 
3564 	/* Adjust skb->csum since we changed the packet */
3565 	skb->csum = csum_add(skb->csum, delta);
3566 }
3567 
3568 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
3569 {
3570 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
3571 	return (void *)(skb->_nfct & SKB_NFCT_PTRMASK);
3572 #else
3573 	return NULL;
3574 #endif
3575 }
3576 
3577 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3578 void nf_conntrack_destroy(struct nf_conntrack *nfct);
3579 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3580 {
3581 	if (nfct && atomic_dec_and_test(&nfct->use))
3582 		nf_conntrack_destroy(nfct);
3583 }
3584 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3585 {
3586 	if (nfct)
3587 		atomic_inc(&nfct->use);
3588 }
3589 #endif
3590 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3591 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
3592 {
3593 	if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
3594 		kfree(nf_bridge);
3595 }
3596 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
3597 {
3598 	if (nf_bridge)
3599 		atomic_inc(&nf_bridge->use);
3600 }
3601 #endif /* CONFIG_BRIDGE_NETFILTER */
3602 static inline void nf_reset(struct sk_buff *skb)
3603 {
3604 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3605 	nf_conntrack_put(skb_nfct(skb));
3606 	skb->_nfct = 0;
3607 #endif
3608 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3609 	nf_bridge_put(skb->nf_bridge);
3610 	skb->nf_bridge = NULL;
3611 #endif
3612 }
3613 
3614 static inline void nf_reset_trace(struct sk_buff *skb)
3615 {
3616 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3617 	skb->nf_trace = 0;
3618 #endif
3619 }
3620 
3621 /* Note: This doesn't put any conntrack and bridge info in dst. */
3622 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
3623 			     bool copy)
3624 {
3625 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3626 	dst->_nfct = src->_nfct;
3627 	nf_conntrack_get(skb_nfct(src));
3628 #endif
3629 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3630 	dst->nf_bridge  = src->nf_bridge;
3631 	nf_bridge_get(src->nf_bridge);
3632 #endif
3633 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3634 	if (copy)
3635 		dst->nf_trace = src->nf_trace;
3636 #endif
3637 }
3638 
3639 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
3640 {
3641 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3642 	nf_conntrack_put(skb_nfct(dst));
3643 #endif
3644 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3645 	nf_bridge_put(dst->nf_bridge);
3646 #endif
3647 	__nf_copy(dst, src, true);
3648 }
3649 
3650 #ifdef CONFIG_NETWORK_SECMARK
3651 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3652 {
3653 	to->secmark = from->secmark;
3654 }
3655 
3656 static inline void skb_init_secmark(struct sk_buff *skb)
3657 {
3658 	skb->secmark = 0;
3659 }
3660 #else
3661 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3662 { }
3663 
3664 static inline void skb_init_secmark(struct sk_buff *skb)
3665 { }
3666 #endif
3667 
3668 static inline bool skb_irq_freeable(const struct sk_buff *skb)
3669 {
3670 	return !skb->destructor &&
3671 #if IS_ENABLED(CONFIG_XFRM)
3672 		!skb->sp &&
3673 #endif
3674 		!skb_nfct(skb) &&
3675 		!skb->_skb_refdst &&
3676 		!skb_has_frag_list(skb);
3677 }
3678 
3679 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
3680 {
3681 	skb->queue_mapping = queue_mapping;
3682 }
3683 
3684 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
3685 {
3686 	return skb->queue_mapping;
3687 }
3688 
3689 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
3690 {
3691 	to->queue_mapping = from->queue_mapping;
3692 }
3693 
3694 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
3695 {
3696 	skb->queue_mapping = rx_queue + 1;
3697 }
3698 
3699 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
3700 {
3701 	return skb->queue_mapping - 1;
3702 }
3703 
3704 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
3705 {
3706 	return skb->queue_mapping != 0;
3707 }
3708 
3709 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
3710 {
3711 	skb->dst_pending_confirm = val;
3712 }
3713 
3714 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
3715 {
3716 	return skb->dst_pending_confirm != 0;
3717 }
3718 
3719 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
3720 {
3721 #ifdef CONFIG_XFRM
3722 	return skb->sp;
3723 #else
3724 	return NULL;
3725 #endif
3726 }
3727 
3728 /* Keeps track of mac header offset relative to skb->head.
3729  * It is useful for TSO of Tunneling protocol. e.g. GRE.
3730  * For non-tunnel skb it points to skb_mac_header() and for
3731  * tunnel skb it points to outer mac header.
3732  * Keeps track of level of encapsulation of network headers.
3733  */
3734 struct skb_gso_cb {
3735 	union {
3736 		int	mac_offset;
3737 		int	data_offset;
3738 	};
3739 	int	encap_level;
3740 	__wsum	csum;
3741 	__u16	csum_start;
3742 };
3743 #define SKB_SGO_CB_OFFSET	32
3744 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
3745 
3746 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
3747 {
3748 	return (skb_mac_header(inner_skb) - inner_skb->head) -
3749 		SKB_GSO_CB(inner_skb)->mac_offset;
3750 }
3751 
3752 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
3753 {
3754 	int new_headroom, headroom;
3755 	int ret;
3756 
3757 	headroom = skb_headroom(skb);
3758 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
3759 	if (ret)
3760 		return ret;
3761 
3762 	new_headroom = skb_headroom(skb);
3763 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
3764 	return 0;
3765 }
3766 
3767 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
3768 {
3769 	/* Do not update partial checksums if remote checksum is enabled. */
3770 	if (skb->remcsum_offload)
3771 		return;
3772 
3773 	SKB_GSO_CB(skb)->csum = res;
3774 	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
3775 }
3776 
3777 /* Compute the checksum for a gso segment. First compute the checksum value
3778  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
3779  * then add in skb->csum (checksum from csum_start to end of packet).
3780  * skb->csum and csum_start are then updated to reflect the checksum of the
3781  * resultant packet starting from the transport header-- the resultant checksum
3782  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
3783  * header.
3784  */
3785 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
3786 {
3787 	unsigned char *csum_start = skb_transport_header(skb);
3788 	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
3789 	__wsum partial = SKB_GSO_CB(skb)->csum;
3790 
3791 	SKB_GSO_CB(skb)->csum = res;
3792 	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
3793 
3794 	return csum_fold(csum_partial(csum_start, plen, partial));
3795 }
3796 
3797 static inline bool skb_is_gso(const struct sk_buff *skb)
3798 {
3799 	return skb_shinfo(skb)->gso_size;
3800 }
3801 
3802 /* Note: Should be called only if skb_is_gso(skb) is true */
3803 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
3804 {
3805 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
3806 }
3807 
3808 static inline void skb_gso_reset(struct sk_buff *skb)
3809 {
3810 	skb_shinfo(skb)->gso_size = 0;
3811 	skb_shinfo(skb)->gso_segs = 0;
3812 	skb_shinfo(skb)->gso_type = 0;
3813 }
3814 
3815 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
3816 
3817 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
3818 {
3819 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
3820 	 * wanted then gso_type will be set. */
3821 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3822 
3823 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
3824 	    unlikely(shinfo->gso_type == 0)) {
3825 		__skb_warn_lro_forwarding(skb);
3826 		return true;
3827 	}
3828 	return false;
3829 }
3830 
3831 static inline void skb_forward_csum(struct sk_buff *skb)
3832 {
3833 	/* Unfortunately we don't support this one.  Any brave souls? */
3834 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3835 		skb->ip_summed = CHECKSUM_NONE;
3836 }
3837 
3838 /**
3839  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
3840  * @skb: skb to check
3841  *
3842  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
3843  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
3844  * use this helper, to document places where we make this assertion.
3845  */
3846 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
3847 {
3848 #ifdef DEBUG
3849 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
3850 #endif
3851 }
3852 
3853 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
3854 
3855 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
3856 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
3857 				     unsigned int transport_len,
3858 				     __sum16(*skb_chkf)(struct sk_buff *skb));
3859 
3860 /**
3861  * skb_head_is_locked - Determine if the skb->head is locked down
3862  * @skb: skb to check
3863  *
3864  * The head on skbs build around a head frag can be removed if they are
3865  * not cloned.  This function returns true if the skb head is locked down
3866  * due to either being allocated via kmalloc, or by being a clone with
3867  * multiple references to the head.
3868  */
3869 static inline bool skb_head_is_locked(const struct sk_buff *skb)
3870 {
3871 	return !skb->head_frag || skb_cloned(skb);
3872 }
3873 
3874 /**
3875  * skb_gso_network_seglen - Return length of individual segments of a gso packet
3876  *
3877  * @skb: GSO skb
3878  *
3879  * skb_gso_network_seglen is used to determine the real size of the
3880  * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
3881  *
3882  * The MAC/L2 header is not accounted for.
3883  */
3884 static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
3885 {
3886 	unsigned int hdr_len = skb_transport_header(skb) -
3887 			       skb_network_header(skb);
3888 	return hdr_len + skb_gso_transport_seglen(skb);
3889 }
3890 
3891 /* Local Checksum Offload.
3892  * Compute outer checksum based on the assumption that the
3893  * inner checksum will be offloaded later.
3894  * See Documentation/networking/checksum-offloads.txt for
3895  * explanation of how this works.
3896  * Fill in outer checksum adjustment (e.g. with sum of outer
3897  * pseudo-header) before calling.
3898  * Also ensure that inner checksum is in linear data area.
3899  */
3900 static inline __wsum lco_csum(struct sk_buff *skb)
3901 {
3902 	unsigned char *csum_start = skb_checksum_start(skb);
3903 	unsigned char *l4_hdr = skb_transport_header(skb);
3904 	__wsum partial;
3905 
3906 	/* Start with complement of inner checksum adjustment */
3907 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
3908 						    skb->csum_offset));
3909 
3910 	/* Add in checksum of our headers (incl. outer checksum
3911 	 * adjustment filled in by caller) and return result.
3912 	 */
3913 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
3914 }
3915 
3916 #endif	/* __KERNEL__ */
3917 #endif	/* _LINUX_SKBUFF_H */
3918