1 /* 2 * Definitions for the 'struct sk_buff' memory handlers. 3 * 4 * Authors: 5 * Alan Cox, <[email protected]> 6 * Florian La Roche, <[email protected]> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14 #ifndef _LINUX_SKBUFF_H 15 #define _LINUX_SKBUFF_H 16 17 #include <linux/kernel.h> 18 #include <linux/kmemcheck.h> 19 #include <linux/compiler.h> 20 #include <linux/time.h> 21 #include <linux/bug.h> 22 #include <linux/cache.h> 23 #include <linux/rbtree.h> 24 #include <linux/socket.h> 25 26 #include <linux/atomic.h> 27 #include <asm/types.h> 28 #include <linux/spinlock.h> 29 #include <linux/net.h> 30 #include <linux/textsearch.h> 31 #include <net/checksum.h> 32 #include <linux/rcupdate.h> 33 #include <linux/hrtimer.h> 34 #include <linux/dma-mapping.h> 35 #include <linux/netdev_features.h> 36 #include <linux/sched.h> 37 #include <net/flow_dissector.h> 38 #include <linux/splice.h> 39 #include <linux/in6.h> 40 #include <linux/if_packet.h> 41 #include <net/flow.h> 42 43 /* The interface for checksum offload between the stack and networking drivers 44 * is as follows... 45 * 46 * A. IP checksum related features 47 * 48 * Drivers advertise checksum offload capabilities in the features of a device. 49 * From the stack's point of view these are capabilities offered by the driver, 50 * a driver typically only advertises features that it is capable of offloading 51 * to its device. 52 * 53 * The checksum related features are: 54 * 55 * NETIF_F_HW_CSUM - The driver (or its device) is able to compute one 56 * IP (one's complement) checksum for any combination 57 * of protocols or protocol layering. The checksum is 58 * computed and set in a packet per the CHECKSUM_PARTIAL 59 * interface (see below). 60 * 61 * NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain 62 * TCP or UDP packets over IPv4. These are specifically 63 * unencapsulated packets of the form IPv4|TCP or 64 * IPv4|UDP where the Protocol field in the IPv4 header 65 * is TCP or UDP. The IPv4 header may contain IP options 66 * This feature cannot be set in features for a device 67 * with NETIF_F_HW_CSUM also set. This feature is being 68 * DEPRECATED (see below). 69 * 70 * NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain 71 * TCP or UDP packets over IPv6. These are specifically 72 * unencapsulated packets of the form IPv6|TCP or 73 * IPv4|UDP where the Next Header field in the IPv6 74 * header is either TCP or UDP. IPv6 extension headers 75 * are not supported with this feature. This feature 76 * cannot be set in features for a device with 77 * NETIF_F_HW_CSUM also set. This feature is being 78 * DEPRECATED (see below). 79 * 80 * NETIF_F_RXCSUM - Driver (device) performs receive checksum offload. 81 * This flag is used only used to disable the RX checksum 82 * feature for a device. The stack will accept receive 83 * checksum indication in packets received on a device 84 * regardless of whether NETIF_F_RXCSUM is set. 85 * 86 * B. Checksumming of received packets by device. Indication of checksum 87 * verification is in set skb->ip_summed. Possible values are: 88 * 89 * CHECKSUM_NONE: 90 * 91 * Device did not checksum this packet e.g. due to lack of capabilities. 92 * The packet contains full (though not verified) checksum in packet but 93 * not in skb->csum. Thus, skb->csum is undefined in this case. 94 * 95 * CHECKSUM_UNNECESSARY: 96 * 97 * The hardware you're dealing with doesn't calculate the full checksum 98 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums 99 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY 100 * if their checksums are okay. skb->csum is still undefined in this case 101 * though. A driver or device must never modify the checksum field in the 102 * packet even if checksum is verified. 103 * 104 * CHECKSUM_UNNECESSARY is applicable to following protocols: 105 * TCP: IPv6 and IPv4. 106 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a 107 * zero UDP checksum for either IPv4 or IPv6, the networking stack 108 * may perform further validation in this case. 109 * GRE: only if the checksum is present in the header. 110 * SCTP: indicates the CRC in SCTP header has been validated. 111 * 112 * skb->csum_level indicates the number of consecutive checksums found in 113 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY. 114 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet 115 * and a device is able to verify the checksums for UDP (possibly zero), 116 * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to 117 * two. If the device were only able to verify the UDP checksum and not 118 * GRE, either because it doesn't support GRE checksum of because GRE 119 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is 120 * not considered in this case). 121 * 122 * CHECKSUM_COMPLETE: 123 * 124 * This is the most generic way. The device supplied checksum of the _whole_ 125 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the 126 * hardware doesn't need to parse L3/L4 headers to implement this. 127 * 128 * Note: Even if device supports only some protocols, but is able to produce 129 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY. 130 * 131 * CHECKSUM_PARTIAL: 132 * 133 * A checksum is set up to be offloaded to a device as described in the 134 * output description for CHECKSUM_PARTIAL. This may occur on a packet 135 * received directly from another Linux OS, e.g., a virtualized Linux kernel 136 * on the same host, or it may be set in the input path in GRO or remote 137 * checksum offload. For the purposes of checksum verification, the checksum 138 * referred to by skb->csum_start + skb->csum_offset and any preceding 139 * checksums in the packet are considered verified. Any checksums in the 140 * packet that are after the checksum being offloaded are not considered to 141 * be verified. 142 * 143 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload 144 * in the skb->ip_summed for a packet. Values are: 145 * 146 * CHECKSUM_PARTIAL: 147 * 148 * The driver is required to checksum the packet as seen by hard_start_xmit() 149 * from skb->csum_start up to the end, and to record/write the checksum at 150 * offset skb->csum_start + skb->csum_offset. A driver may verify that the 151 * csum_start and csum_offset values are valid values given the length and 152 * offset of the packet, however they should not attempt to validate that the 153 * checksum refers to a legitimate transport layer checksum-- it is the 154 * purview of the stack to validate that csum_start and csum_offset are set 155 * correctly. 156 * 157 * When the stack requests checksum offload for a packet, the driver MUST 158 * ensure that the checksum is set correctly. A driver can either offload the 159 * checksum calculation to the device, or call skb_checksum_help (in the case 160 * that the device does not support offload for a particular checksum). 161 * 162 * NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of 163 * NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate 164 * checksum offload capability. If a device has limited checksum capabilities 165 * (for instance can only perform NETIF_F_IP_CSUM or NETIF_F_IPV6_CSUM as 166 * described above) a helper function can be called to resolve 167 * CHECKSUM_PARTIAL. The helper functions are skb_csum_off_chk*. The helper 168 * function takes a spec argument that describes the protocol layer that is 169 * supported for checksum offload and can be called for each packet. If a 170 * packet does not match the specification for offload, skb_checksum_help 171 * is called to resolve the checksum. 172 * 173 * CHECKSUM_NONE: 174 * 175 * The skb was already checksummed by the protocol, or a checksum is not 176 * required. 177 * 178 * CHECKSUM_UNNECESSARY: 179 * 180 * This has the same meaning on as CHECKSUM_NONE for checksum offload on 181 * output. 182 * 183 * CHECKSUM_COMPLETE: 184 * Not used in checksum output. If a driver observes a packet with this value 185 * set in skbuff, if should treat as CHECKSUM_NONE being set. 186 * 187 * D. Non-IP checksum (CRC) offloads 188 * 189 * NETIF_F_SCTP_CRC - This feature indicates that a device is capable of 190 * offloading the SCTP CRC in a packet. To perform this offload the stack 191 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset 192 * accordingly. Note the there is no indication in the skbuff that the 193 * CHECKSUM_PARTIAL refers to an SCTP checksum, a driver that supports 194 * both IP checksum offload and SCTP CRC offload must verify which offload 195 * is configured for a packet presumably by inspecting packet headers. 196 * 197 * NETIF_F_FCOE_CRC - This feature indicates that a device is capable of 198 * offloading the FCOE CRC in a packet. To perform this offload the stack 199 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset 200 * accordingly. Note the there is no indication in the skbuff that the 201 * CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports 202 * both IP checksum offload and FCOE CRC offload must verify which offload 203 * is configured for a packet presumably by inspecting packet headers. 204 * 205 * E. Checksumming on output with GSO. 206 * 207 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload 208 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the 209 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as 210 * part of the GSO operation is implied. If a checksum is being offloaded 211 * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset 212 * are set to refer to the outermost checksum being offload (two offloaded 213 * checksums are possible with UDP encapsulation). 214 */ 215 216 /* Don't change this without changing skb_csum_unnecessary! */ 217 #define CHECKSUM_NONE 0 218 #define CHECKSUM_UNNECESSARY 1 219 #define CHECKSUM_COMPLETE 2 220 #define CHECKSUM_PARTIAL 3 221 222 /* Maximum value in skb->csum_level */ 223 #define SKB_MAX_CSUM_LEVEL 3 224 225 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES) 226 #define SKB_WITH_OVERHEAD(X) \ 227 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 228 #define SKB_MAX_ORDER(X, ORDER) \ 229 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 230 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 231 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 232 233 /* return minimum truesize of one skb containing X bytes of data */ 234 #define SKB_TRUESIZE(X) ((X) + \ 235 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ 236 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 237 238 struct net_device; 239 struct scatterlist; 240 struct pipe_inode_info; 241 struct iov_iter; 242 struct napi_struct; 243 244 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 245 struct nf_conntrack { 246 atomic_t use; 247 }; 248 #endif 249 250 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 251 struct nf_bridge_info { 252 atomic_t use; 253 enum { 254 BRNF_PROTO_UNCHANGED, 255 BRNF_PROTO_8021Q, 256 BRNF_PROTO_PPPOE 257 } orig_proto:8; 258 u8 pkt_otherhost:1; 259 u8 in_prerouting:1; 260 u8 bridged_dnat:1; 261 __u16 frag_max_size; 262 struct net_device *physindev; 263 264 /* always valid & non-NULL from FORWARD on, for physdev match */ 265 struct net_device *physoutdev; 266 union { 267 /* prerouting: detect dnat in orig/reply direction */ 268 __be32 ipv4_daddr; 269 struct in6_addr ipv6_daddr; 270 271 /* after prerouting + nat detected: store original source 272 * mac since neigh resolution overwrites it, only used while 273 * skb is out in neigh layer. 274 */ 275 char neigh_header[8]; 276 }; 277 }; 278 #endif 279 280 struct sk_buff_head { 281 /* These two members must be first. */ 282 struct sk_buff *next; 283 struct sk_buff *prev; 284 285 __u32 qlen; 286 spinlock_t lock; 287 }; 288 289 struct sk_buff; 290 291 /* To allow 64K frame to be packed as single skb without frag_list we 292 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for 293 * buffers which do not start on a page boundary. 294 * 295 * Since GRO uses frags we allocate at least 16 regardless of page 296 * size. 297 */ 298 #if (65536/PAGE_SIZE + 1) < 16 299 #define MAX_SKB_FRAGS 16UL 300 #else 301 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1) 302 #endif 303 extern int sysctl_max_skb_frags; 304 305 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to 306 * segment using its current segmentation instead. 307 */ 308 #define GSO_BY_FRAGS 0xFFFF 309 310 typedef struct skb_frag_struct skb_frag_t; 311 312 struct skb_frag_struct { 313 struct { 314 struct page *p; 315 } page; 316 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536) 317 __u32 page_offset; 318 __u32 size; 319 #else 320 __u16 page_offset; 321 __u16 size; 322 #endif 323 }; 324 325 static inline unsigned int skb_frag_size(const skb_frag_t *frag) 326 { 327 return frag->size; 328 } 329 330 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) 331 { 332 frag->size = size; 333 } 334 335 static inline void skb_frag_size_add(skb_frag_t *frag, int delta) 336 { 337 frag->size += delta; 338 } 339 340 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) 341 { 342 frag->size -= delta; 343 } 344 345 #define HAVE_HW_TIME_STAMP 346 347 /** 348 * struct skb_shared_hwtstamps - hardware time stamps 349 * @hwtstamp: hardware time stamp transformed into duration 350 * since arbitrary point in time 351 * 352 * Software time stamps generated by ktime_get_real() are stored in 353 * skb->tstamp. 354 * 355 * hwtstamps can only be compared against other hwtstamps from 356 * the same device. 357 * 358 * This structure is attached to packets as part of the 359 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 360 */ 361 struct skb_shared_hwtstamps { 362 ktime_t hwtstamp; 363 }; 364 365 /* Definitions for tx_flags in struct skb_shared_info */ 366 enum { 367 /* generate hardware time stamp */ 368 SKBTX_HW_TSTAMP = 1 << 0, 369 370 /* generate software time stamp when queueing packet to NIC */ 371 SKBTX_SW_TSTAMP = 1 << 1, 372 373 /* device driver is going to provide hardware time stamp */ 374 SKBTX_IN_PROGRESS = 1 << 2, 375 376 /* device driver supports TX zero-copy buffers */ 377 SKBTX_DEV_ZEROCOPY = 1 << 3, 378 379 /* generate wifi status information (where possible) */ 380 SKBTX_WIFI_STATUS = 1 << 4, 381 382 /* This indicates at least one fragment might be overwritten 383 * (as in vmsplice(), sendfile() ...) 384 * If we need to compute a TX checksum, we'll need to copy 385 * all frags to avoid possible bad checksum 386 */ 387 SKBTX_SHARED_FRAG = 1 << 5, 388 389 /* generate software time stamp when entering packet scheduling */ 390 SKBTX_SCHED_TSTAMP = 1 << 6, 391 }; 392 393 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \ 394 SKBTX_SCHED_TSTAMP) 395 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP) 396 397 /* 398 * The callback notifies userspace to release buffers when skb DMA is done in 399 * lower device, the skb last reference should be 0 when calling this. 400 * The zerocopy_success argument is true if zero copy transmit occurred, 401 * false on data copy or out of memory error caused by data copy attempt. 402 * The ctx field is used to track device context. 403 * The desc field is used to track userspace buffer index. 404 */ 405 struct ubuf_info { 406 void (*callback)(struct ubuf_info *, bool zerocopy_success); 407 void *ctx; 408 unsigned long desc; 409 }; 410 411 /* This data is invariant across clones and lives at 412 * the end of the header data, ie. at skb->end. 413 */ 414 struct skb_shared_info { 415 unsigned char nr_frags; 416 __u8 tx_flags; 417 unsigned short gso_size; 418 /* Warning: this field is not always filled in (UFO)! */ 419 unsigned short gso_segs; 420 unsigned short gso_type; 421 struct sk_buff *frag_list; 422 struct skb_shared_hwtstamps hwtstamps; 423 u32 tskey; 424 __be32 ip6_frag_id; 425 426 /* 427 * Warning : all fields before dataref are cleared in __alloc_skb() 428 */ 429 atomic_t dataref; 430 431 /* Intermediate layers must ensure that destructor_arg 432 * remains valid until skb destructor */ 433 void * destructor_arg; 434 435 /* must be last field, see pskb_expand_head() */ 436 skb_frag_t frags[MAX_SKB_FRAGS]; 437 }; 438 439 /* We divide dataref into two halves. The higher 16 bits hold references 440 * to the payload part of skb->data. The lower 16 bits hold references to 441 * the entire skb->data. A clone of a headerless skb holds the length of 442 * the header in skb->hdr_len. 443 * 444 * All users must obey the rule that the skb->data reference count must be 445 * greater than or equal to the payload reference count. 446 * 447 * Holding a reference to the payload part means that the user does not 448 * care about modifications to the header part of skb->data. 449 */ 450 #define SKB_DATAREF_SHIFT 16 451 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 452 453 454 enum { 455 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */ 456 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */ 457 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */ 458 }; 459 460 enum { 461 SKB_GSO_TCPV4 = 1 << 0, 462 SKB_GSO_UDP = 1 << 1, 463 464 /* This indicates the skb is from an untrusted source. */ 465 SKB_GSO_DODGY = 1 << 2, 466 467 /* This indicates the tcp segment has CWR set. */ 468 SKB_GSO_TCP_ECN = 1 << 3, 469 470 SKB_GSO_TCP_FIXEDID = 1 << 4, 471 472 SKB_GSO_TCPV6 = 1 << 5, 473 474 SKB_GSO_FCOE = 1 << 6, 475 476 SKB_GSO_GRE = 1 << 7, 477 478 SKB_GSO_GRE_CSUM = 1 << 8, 479 480 SKB_GSO_IPXIP4 = 1 << 9, 481 482 SKB_GSO_IPXIP6 = 1 << 10, 483 484 SKB_GSO_UDP_TUNNEL = 1 << 11, 485 486 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 12, 487 488 SKB_GSO_PARTIAL = 1 << 13, 489 490 SKB_GSO_TUNNEL_REMCSUM = 1 << 14, 491 492 SKB_GSO_SCTP = 1 << 15, 493 }; 494 495 #if BITS_PER_LONG > 32 496 #define NET_SKBUFF_DATA_USES_OFFSET 1 497 #endif 498 499 #ifdef NET_SKBUFF_DATA_USES_OFFSET 500 typedef unsigned int sk_buff_data_t; 501 #else 502 typedef unsigned char *sk_buff_data_t; 503 #endif 504 505 /** 506 * struct skb_mstamp - multi resolution time stamps 507 * @stamp_us: timestamp in us resolution 508 * @stamp_jiffies: timestamp in jiffies 509 */ 510 struct skb_mstamp { 511 union { 512 u64 v64; 513 struct { 514 u32 stamp_us; 515 u32 stamp_jiffies; 516 }; 517 }; 518 }; 519 520 /** 521 * skb_mstamp_get - get current timestamp 522 * @cl: place to store timestamps 523 */ 524 static inline void skb_mstamp_get(struct skb_mstamp *cl) 525 { 526 u64 val = local_clock(); 527 528 do_div(val, NSEC_PER_USEC); 529 cl->stamp_us = (u32)val; 530 cl->stamp_jiffies = (u32)jiffies; 531 } 532 533 /** 534 * skb_mstamp_delta - compute the difference in usec between two skb_mstamp 535 * @t1: pointer to newest sample 536 * @t0: pointer to oldest sample 537 */ 538 static inline u32 skb_mstamp_us_delta(const struct skb_mstamp *t1, 539 const struct skb_mstamp *t0) 540 { 541 s32 delta_us = t1->stamp_us - t0->stamp_us; 542 u32 delta_jiffies = t1->stamp_jiffies - t0->stamp_jiffies; 543 544 /* If delta_us is negative, this might be because interval is too big, 545 * or local_clock() drift is too big : fallback using jiffies. 546 */ 547 if (delta_us <= 0 || 548 delta_jiffies >= (INT_MAX / (USEC_PER_SEC / HZ))) 549 550 delta_us = jiffies_to_usecs(delta_jiffies); 551 552 return delta_us; 553 } 554 555 static inline bool skb_mstamp_after(const struct skb_mstamp *t1, 556 const struct skb_mstamp *t0) 557 { 558 s32 diff = t1->stamp_jiffies - t0->stamp_jiffies; 559 560 if (!diff) 561 diff = t1->stamp_us - t0->stamp_us; 562 return diff > 0; 563 } 564 565 /** 566 * struct sk_buff - socket buffer 567 * @next: Next buffer in list 568 * @prev: Previous buffer in list 569 * @tstamp: Time we arrived/left 570 * @rbnode: RB tree node, alternative to next/prev for netem/tcp 571 * @sk: Socket we are owned by 572 * @dev: Device we arrived on/are leaving by 573 * @cb: Control buffer. Free for use by every layer. Put private vars here 574 * @_skb_refdst: destination entry (with norefcount bit) 575 * @sp: the security path, used for xfrm 576 * @len: Length of actual data 577 * @data_len: Data length 578 * @mac_len: Length of link layer header 579 * @hdr_len: writable header length of cloned skb 580 * @csum: Checksum (must include start/offset pair) 581 * @csum_start: Offset from skb->head where checksumming should start 582 * @csum_offset: Offset from csum_start where checksum should be stored 583 * @priority: Packet queueing priority 584 * @ignore_df: allow local fragmentation 585 * @cloned: Head may be cloned (check refcnt to be sure) 586 * @ip_summed: Driver fed us an IP checksum 587 * @nohdr: Payload reference only, must not modify header 588 * @nfctinfo: Relationship of this skb to the connection 589 * @pkt_type: Packet class 590 * @fclone: skbuff clone status 591 * @ipvs_property: skbuff is owned by ipvs 592 * @peeked: this packet has been seen already, so stats have been 593 * done for it, don't do them again 594 * @nf_trace: netfilter packet trace flag 595 * @protocol: Packet protocol from driver 596 * @destructor: Destruct function 597 * @nfct: Associated connection, if any 598 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 599 * @skb_iif: ifindex of device we arrived on 600 * @tc_index: Traffic control index 601 * @tc_verd: traffic control verdict 602 * @hash: the packet hash 603 * @queue_mapping: Queue mapping for multiqueue devices 604 * @xmit_more: More SKBs are pending for this queue 605 * @ndisc_nodetype: router type (from link layer) 606 * @ooo_okay: allow the mapping of a socket to a queue to be changed 607 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport 608 * ports. 609 * @sw_hash: indicates hash was computed in software stack 610 * @wifi_acked_valid: wifi_acked was set 611 * @wifi_acked: whether frame was acked on wifi or not 612 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS 613 * @napi_id: id of the NAPI struct this skb came from 614 * @secmark: security marking 615 * @mark: Generic packet mark 616 * @vlan_proto: vlan encapsulation protocol 617 * @vlan_tci: vlan tag control information 618 * @inner_protocol: Protocol (encapsulation) 619 * @inner_transport_header: Inner transport layer header (encapsulation) 620 * @inner_network_header: Network layer header (encapsulation) 621 * @inner_mac_header: Link layer header (encapsulation) 622 * @transport_header: Transport layer header 623 * @network_header: Network layer header 624 * @mac_header: Link layer header 625 * @tail: Tail pointer 626 * @end: End pointer 627 * @head: Head of buffer 628 * @data: Data head pointer 629 * @truesize: Buffer size 630 * @users: User count - see {datagram,tcp}.c 631 */ 632 633 struct sk_buff { 634 union { 635 struct { 636 /* These two members must be first. */ 637 struct sk_buff *next; 638 struct sk_buff *prev; 639 640 union { 641 ktime_t tstamp; 642 struct skb_mstamp skb_mstamp; 643 }; 644 }; 645 struct rb_node rbnode; /* used in netem & tcp stack */ 646 }; 647 struct sock *sk; 648 649 union { 650 struct net_device *dev; 651 /* Some protocols might use this space to store information, 652 * while device pointer would be NULL. 653 * UDP receive path is one user. 654 */ 655 unsigned long dev_scratch; 656 }; 657 /* 658 * This is the control buffer. It is free to use for every 659 * layer. Please put your private variables there. If you 660 * want to keep them across layers you have to do a skb_clone() 661 * first. This is owned by whoever has the skb queued ATM. 662 */ 663 char cb[48] __aligned(8); 664 665 unsigned long _skb_refdst; 666 void (*destructor)(struct sk_buff *skb); 667 #ifdef CONFIG_XFRM 668 struct sec_path *sp; 669 #endif 670 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 671 struct nf_conntrack *nfct; 672 #endif 673 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 674 struct nf_bridge_info *nf_bridge; 675 #endif 676 unsigned int len, 677 data_len; 678 __u16 mac_len, 679 hdr_len; 680 681 /* Following fields are _not_ copied in __copy_skb_header() 682 * Note that queue_mapping is here mostly to fill a hole. 683 */ 684 kmemcheck_bitfield_begin(flags1); 685 __u16 queue_mapping; 686 687 /* if you move cloned around you also must adapt those constants */ 688 #ifdef __BIG_ENDIAN_BITFIELD 689 #define CLONED_MASK (1 << 7) 690 #else 691 #define CLONED_MASK 1 692 #endif 693 #define CLONED_OFFSET() offsetof(struct sk_buff, __cloned_offset) 694 695 __u8 __cloned_offset[0]; 696 __u8 cloned:1, 697 nohdr:1, 698 fclone:2, 699 peeked:1, 700 head_frag:1, 701 xmit_more:1, 702 __unused:1; /* one bit hole */ 703 kmemcheck_bitfield_end(flags1); 704 705 /* fields enclosed in headers_start/headers_end are copied 706 * using a single memcpy() in __copy_skb_header() 707 */ 708 /* private: */ 709 __u32 headers_start[0]; 710 /* public: */ 711 712 /* if you move pkt_type around you also must adapt those constants */ 713 #ifdef __BIG_ENDIAN_BITFIELD 714 #define PKT_TYPE_MAX (7 << 5) 715 #else 716 #define PKT_TYPE_MAX 7 717 #endif 718 #define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset) 719 720 __u8 __pkt_type_offset[0]; 721 __u8 pkt_type:3; 722 __u8 pfmemalloc:1; 723 __u8 ignore_df:1; 724 __u8 nfctinfo:3; 725 726 __u8 nf_trace:1; 727 __u8 ip_summed:2; 728 __u8 ooo_okay:1; 729 __u8 l4_hash:1; 730 __u8 sw_hash:1; 731 __u8 wifi_acked_valid:1; 732 __u8 wifi_acked:1; 733 734 __u8 no_fcs:1; 735 /* Indicates the inner headers are valid in the skbuff. */ 736 __u8 encapsulation:1; 737 __u8 encap_hdr_csum:1; 738 __u8 csum_valid:1; 739 __u8 csum_complete_sw:1; 740 __u8 csum_level:2; 741 __u8 csum_bad:1; 742 743 #ifdef CONFIG_IPV6_NDISC_NODETYPE 744 __u8 ndisc_nodetype:2; 745 #endif 746 __u8 ipvs_property:1; 747 __u8 inner_protocol_type:1; 748 __u8 remcsum_offload:1; 749 #ifdef CONFIG_NET_SWITCHDEV 750 __u8 offload_fwd_mark:1; 751 #endif 752 /* 2, 4 or 5 bit hole */ 753 754 #ifdef CONFIG_NET_SCHED 755 __u16 tc_index; /* traffic control index */ 756 #ifdef CONFIG_NET_CLS_ACT 757 __u16 tc_verd; /* traffic control verdict */ 758 #endif 759 #endif 760 761 union { 762 __wsum csum; 763 struct { 764 __u16 csum_start; 765 __u16 csum_offset; 766 }; 767 }; 768 __u32 priority; 769 int skb_iif; 770 __u32 hash; 771 __be16 vlan_proto; 772 __u16 vlan_tci; 773 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS) 774 union { 775 unsigned int napi_id; 776 unsigned int sender_cpu; 777 }; 778 #endif 779 #ifdef CONFIG_NETWORK_SECMARK 780 __u32 secmark; 781 #endif 782 783 union { 784 __u32 mark; 785 __u32 reserved_tailroom; 786 }; 787 788 union { 789 __be16 inner_protocol; 790 __u8 inner_ipproto; 791 }; 792 793 __u16 inner_transport_header; 794 __u16 inner_network_header; 795 __u16 inner_mac_header; 796 797 __be16 protocol; 798 __u16 transport_header; 799 __u16 network_header; 800 __u16 mac_header; 801 802 /* private: */ 803 __u32 headers_end[0]; 804 /* public: */ 805 806 /* These elements must be at the end, see alloc_skb() for details. */ 807 sk_buff_data_t tail; 808 sk_buff_data_t end; 809 unsigned char *head, 810 *data; 811 unsigned int truesize; 812 atomic_t users; 813 }; 814 815 #ifdef __KERNEL__ 816 /* 817 * Handling routines are only of interest to the kernel 818 */ 819 #include <linux/slab.h> 820 821 822 #define SKB_ALLOC_FCLONE 0x01 823 #define SKB_ALLOC_RX 0x02 824 #define SKB_ALLOC_NAPI 0x04 825 826 /* Returns true if the skb was allocated from PFMEMALLOC reserves */ 827 static inline bool skb_pfmemalloc(const struct sk_buff *skb) 828 { 829 return unlikely(skb->pfmemalloc); 830 } 831 832 /* 833 * skb might have a dst pointer attached, refcounted or not. 834 * _skb_refdst low order bit is set if refcount was _not_ taken 835 */ 836 #define SKB_DST_NOREF 1UL 837 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 838 839 /** 840 * skb_dst - returns skb dst_entry 841 * @skb: buffer 842 * 843 * Returns skb dst_entry, regardless of reference taken or not. 844 */ 845 static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 846 { 847 /* If refdst was not refcounted, check we still are in a 848 * rcu_read_lock section 849 */ 850 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 851 !rcu_read_lock_held() && 852 !rcu_read_lock_bh_held()); 853 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 854 } 855 856 /** 857 * skb_dst_set - sets skb dst 858 * @skb: buffer 859 * @dst: dst entry 860 * 861 * Sets skb dst, assuming a reference was taken on dst and should 862 * be released by skb_dst_drop() 863 */ 864 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 865 { 866 skb->_skb_refdst = (unsigned long)dst; 867 } 868 869 /** 870 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference 871 * @skb: buffer 872 * @dst: dst entry 873 * 874 * Sets skb dst, assuming a reference was not taken on dst. 875 * If dst entry is cached, we do not take reference and dst_release 876 * will be avoided by refdst_drop. If dst entry is not cached, we take 877 * reference, so that last dst_release can destroy the dst immediately. 878 */ 879 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) 880 { 881 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 882 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF; 883 } 884 885 /** 886 * skb_dst_is_noref - Test if skb dst isn't refcounted 887 * @skb: buffer 888 */ 889 static inline bool skb_dst_is_noref(const struct sk_buff *skb) 890 { 891 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 892 } 893 894 static inline struct rtable *skb_rtable(const struct sk_buff *skb) 895 { 896 return (struct rtable *)skb_dst(skb); 897 } 898 899 /* For mangling skb->pkt_type from user space side from applications 900 * such as nft, tc, etc, we only allow a conservative subset of 901 * possible pkt_types to be set. 902 */ 903 static inline bool skb_pkt_type_ok(u32 ptype) 904 { 905 return ptype <= PACKET_OTHERHOST; 906 } 907 908 void kfree_skb(struct sk_buff *skb); 909 void kfree_skb_list(struct sk_buff *segs); 910 void skb_tx_error(struct sk_buff *skb); 911 void consume_skb(struct sk_buff *skb); 912 void __kfree_skb(struct sk_buff *skb); 913 extern struct kmem_cache *skbuff_head_cache; 914 915 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); 916 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 917 bool *fragstolen, int *delta_truesize); 918 919 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags, 920 int node); 921 struct sk_buff *__build_skb(void *data, unsigned int frag_size); 922 struct sk_buff *build_skb(void *data, unsigned int frag_size); 923 static inline struct sk_buff *alloc_skb(unsigned int size, 924 gfp_t priority) 925 { 926 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 927 } 928 929 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 930 unsigned long data_len, 931 int max_page_order, 932 int *errcode, 933 gfp_t gfp_mask); 934 935 /* Layout of fast clones : [skb1][skb2][fclone_ref] */ 936 struct sk_buff_fclones { 937 struct sk_buff skb1; 938 939 struct sk_buff skb2; 940 941 atomic_t fclone_ref; 942 }; 943 944 /** 945 * skb_fclone_busy - check if fclone is busy 946 * @sk: socket 947 * @skb: buffer 948 * 949 * Returns true if skb is a fast clone, and its clone is not freed. 950 * Some drivers call skb_orphan() in their ndo_start_xmit(), 951 * so we also check that this didnt happen. 952 */ 953 static inline bool skb_fclone_busy(const struct sock *sk, 954 const struct sk_buff *skb) 955 { 956 const struct sk_buff_fclones *fclones; 957 958 fclones = container_of(skb, struct sk_buff_fclones, skb1); 959 960 return skb->fclone == SKB_FCLONE_ORIG && 961 atomic_read(&fclones->fclone_ref) > 1 && 962 fclones->skb2.sk == sk; 963 } 964 965 static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 966 gfp_t priority) 967 { 968 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); 969 } 970 971 struct sk_buff *__alloc_skb_head(gfp_t priority, int node); 972 static inline struct sk_buff *alloc_skb_head(gfp_t priority) 973 { 974 return __alloc_skb_head(priority, -1); 975 } 976 977 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 978 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); 979 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority); 980 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority); 981 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 982 gfp_t gfp_mask, bool fclone); 983 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, 984 gfp_t gfp_mask) 985 { 986 return __pskb_copy_fclone(skb, headroom, gfp_mask, false); 987 } 988 989 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask); 990 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 991 unsigned int headroom); 992 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, 993 int newtailroom, gfp_t priority); 994 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 995 int offset, int len); 996 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, 997 int len); 998 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer); 999 int skb_pad(struct sk_buff *skb, int pad); 1000 #define dev_kfree_skb(a) consume_skb(a) 1001 1002 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 1003 int getfrag(void *from, char *to, int offset, 1004 int len, int odd, struct sk_buff *skb), 1005 void *from, int length); 1006 1007 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 1008 int offset, size_t size); 1009 1010 struct skb_seq_state { 1011 __u32 lower_offset; 1012 __u32 upper_offset; 1013 __u32 frag_idx; 1014 __u32 stepped_offset; 1015 struct sk_buff *root_skb; 1016 struct sk_buff *cur_skb; 1017 __u8 *frag_data; 1018 }; 1019 1020 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 1021 unsigned int to, struct skb_seq_state *st); 1022 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 1023 struct skb_seq_state *st); 1024 void skb_abort_seq_read(struct skb_seq_state *st); 1025 1026 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 1027 unsigned int to, struct ts_config *config); 1028 1029 /* 1030 * Packet hash types specify the type of hash in skb_set_hash. 1031 * 1032 * Hash types refer to the protocol layer addresses which are used to 1033 * construct a packet's hash. The hashes are used to differentiate or identify 1034 * flows of the protocol layer for the hash type. Hash types are either 1035 * layer-2 (L2), layer-3 (L3), or layer-4 (L4). 1036 * 1037 * Properties of hashes: 1038 * 1039 * 1) Two packets in different flows have different hash values 1040 * 2) Two packets in the same flow should have the same hash value 1041 * 1042 * A hash at a higher layer is considered to be more specific. A driver should 1043 * set the most specific hash possible. 1044 * 1045 * A driver cannot indicate a more specific hash than the layer at which a hash 1046 * was computed. For instance an L3 hash cannot be set as an L4 hash. 1047 * 1048 * A driver may indicate a hash level which is less specific than the 1049 * actual layer the hash was computed on. For instance, a hash computed 1050 * at L4 may be considered an L3 hash. This should only be done if the 1051 * driver can't unambiguously determine that the HW computed the hash at 1052 * the higher layer. Note that the "should" in the second property above 1053 * permits this. 1054 */ 1055 enum pkt_hash_types { 1056 PKT_HASH_TYPE_NONE, /* Undefined type */ 1057 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */ 1058 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */ 1059 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */ 1060 }; 1061 1062 static inline void skb_clear_hash(struct sk_buff *skb) 1063 { 1064 skb->hash = 0; 1065 skb->sw_hash = 0; 1066 skb->l4_hash = 0; 1067 } 1068 1069 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb) 1070 { 1071 if (!skb->l4_hash) 1072 skb_clear_hash(skb); 1073 } 1074 1075 static inline void 1076 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4) 1077 { 1078 skb->l4_hash = is_l4; 1079 skb->sw_hash = is_sw; 1080 skb->hash = hash; 1081 } 1082 1083 static inline void 1084 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type) 1085 { 1086 /* Used by drivers to set hash from HW */ 1087 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4); 1088 } 1089 1090 static inline void 1091 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4) 1092 { 1093 __skb_set_hash(skb, hash, true, is_l4); 1094 } 1095 1096 void __skb_get_hash(struct sk_buff *skb); 1097 u32 __skb_get_hash_symmetric(const struct sk_buff *skb); 1098 u32 skb_get_poff(const struct sk_buff *skb); 1099 u32 __skb_get_poff(const struct sk_buff *skb, void *data, 1100 const struct flow_keys *keys, int hlen); 1101 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto, 1102 void *data, int hlen_proto); 1103 1104 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb, 1105 int thoff, u8 ip_proto) 1106 { 1107 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0); 1108 } 1109 1110 void skb_flow_dissector_init(struct flow_dissector *flow_dissector, 1111 const struct flow_dissector_key *key, 1112 unsigned int key_count); 1113 1114 bool __skb_flow_dissect(const struct sk_buff *skb, 1115 struct flow_dissector *flow_dissector, 1116 void *target_container, 1117 void *data, __be16 proto, int nhoff, int hlen, 1118 unsigned int flags); 1119 1120 static inline bool skb_flow_dissect(const struct sk_buff *skb, 1121 struct flow_dissector *flow_dissector, 1122 void *target_container, unsigned int flags) 1123 { 1124 return __skb_flow_dissect(skb, flow_dissector, target_container, 1125 NULL, 0, 0, 0, flags); 1126 } 1127 1128 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb, 1129 struct flow_keys *flow, 1130 unsigned int flags) 1131 { 1132 memset(flow, 0, sizeof(*flow)); 1133 return __skb_flow_dissect(skb, &flow_keys_dissector, flow, 1134 NULL, 0, 0, 0, flags); 1135 } 1136 1137 static inline bool skb_flow_dissect_flow_keys_buf(struct flow_keys *flow, 1138 void *data, __be16 proto, 1139 int nhoff, int hlen, 1140 unsigned int flags) 1141 { 1142 memset(flow, 0, sizeof(*flow)); 1143 return __skb_flow_dissect(NULL, &flow_keys_buf_dissector, flow, 1144 data, proto, nhoff, hlen, flags); 1145 } 1146 1147 static inline __u32 skb_get_hash(struct sk_buff *skb) 1148 { 1149 if (!skb->l4_hash && !skb->sw_hash) 1150 __skb_get_hash(skb); 1151 1152 return skb->hash; 1153 } 1154 1155 __u32 __skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6); 1156 1157 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6) 1158 { 1159 if (!skb->l4_hash && !skb->sw_hash) { 1160 struct flow_keys keys; 1161 __u32 hash = __get_hash_from_flowi6(fl6, &keys); 1162 1163 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys)); 1164 } 1165 1166 return skb->hash; 1167 } 1168 1169 __u32 __skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl); 1170 1171 static inline __u32 skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl4) 1172 { 1173 if (!skb->l4_hash && !skb->sw_hash) { 1174 struct flow_keys keys; 1175 __u32 hash = __get_hash_from_flowi4(fl4, &keys); 1176 1177 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys)); 1178 } 1179 1180 return skb->hash; 1181 } 1182 1183 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb); 1184 1185 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb) 1186 { 1187 return skb->hash; 1188 } 1189 1190 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from) 1191 { 1192 to->hash = from->hash; 1193 to->sw_hash = from->sw_hash; 1194 to->l4_hash = from->l4_hash; 1195 }; 1196 1197 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1198 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1199 { 1200 return skb->head + skb->end; 1201 } 1202 1203 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1204 { 1205 return skb->end; 1206 } 1207 #else 1208 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1209 { 1210 return skb->end; 1211 } 1212 1213 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1214 { 1215 return skb->end - skb->head; 1216 } 1217 #endif 1218 1219 /* Internal */ 1220 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 1221 1222 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 1223 { 1224 return &skb_shinfo(skb)->hwtstamps; 1225 } 1226 1227 /** 1228 * skb_queue_empty - check if a queue is empty 1229 * @list: queue head 1230 * 1231 * Returns true if the queue is empty, false otherwise. 1232 */ 1233 static inline int skb_queue_empty(const struct sk_buff_head *list) 1234 { 1235 return list->next == (const struct sk_buff *) list; 1236 } 1237 1238 /** 1239 * skb_queue_is_last - check if skb is the last entry in the queue 1240 * @list: queue head 1241 * @skb: buffer 1242 * 1243 * Returns true if @skb is the last buffer on the list. 1244 */ 1245 static inline bool skb_queue_is_last(const struct sk_buff_head *list, 1246 const struct sk_buff *skb) 1247 { 1248 return skb->next == (const struct sk_buff *) list; 1249 } 1250 1251 /** 1252 * skb_queue_is_first - check if skb is the first entry in the queue 1253 * @list: queue head 1254 * @skb: buffer 1255 * 1256 * Returns true if @skb is the first buffer on the list. 1257 */ 1258 static inline bool skb_queue_is_first(const struct sk_buff_head *list, 1259 const struct sk_buff *skb) 1260 { 1261 return skb->prev == (const struct sk_buff *) list; 1262 } 1263 1264 /** 1265 * skb_queue_next - return the next packet in the queue 1266 * @list: queue head 1267 * @skb: current buffer 1268 * 1269 * Return the next packet in @list after @skb. It is only valid to 1270 * call this if skb_queue_is_last() evaluates to false. 1271 */ 1272 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 1273 const struct sk_buff *skb) 1274 { 1275 /* This BUG_ON may seem severe, but if we just return then we 1276 * are going to dereference garbage. 1277 */ 1278 BUG_ON(skb_queue_is_last(list, skb)); 1279 return skb->next; 1280 } 1281 1282 /** 1283 * skb_queue_prev - return the prev packet in the queue 1284 * @list: queue head 1285 * @skb: current buffer 1286 * 1287 * Return the prev packet in @list before @skb. It is only valid to 1288 * call this if skb_queue_is_first() evaluates to false. 1289 */ 1290 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 1291 const struct sk_buff *skb) 1292 { 1293 /* This BUG_ON may seem severe, but if we just return then we 1294 * are going to dereference garbage. 1295 */ 1296 BUG_ON(skb_queue_is_first(list, skb)); 1297 return skb->prev; 1298 } 1299 1300 /** 1301 * skb_get - reference buffer 1302 * @skb: buffer to reference 1303 * 1304 * Makes another reference to a socket buffer and returns a pointer 1305 * to the buffer. 1306 */ 1307 static inline struct sk_buff *skb_get(struct sk_buff *skb) 1308 { 1309 atomic_inc(&skb->users); 1310 return skb; 1311 } 1312 1313 /* 1314 * If users == 1, we are the only owner and are can avoid redundant 1315 * atomic change. 1316 */ 1317 1318 /** 1319 * skb_cloned - is the buffer a clone 1320 * @skb: buffer to check 1321 * 1322 * Returns true if the buffer was generated with skb_clone() and is 1323 * one of multiple shared copies of the buffer. Cloned buffers are 1324 * shared data so must not be written to under normal circumstances. 1325 */ 1326 static inline int skb_cloned(const struct sk_buff *skb) 1327 { 1328 return skb->cloned && 1329 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 1330 } 1331 1332 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) 1333 { 1334 might_sleep_if(gfpflags_allow_blocking(pri)); 1335 1336 if (skb_cloned(skb)) 1337 return pskb_expand_head(skb, 0, 0, pri); 1338 1339 return 0; 1340 } 1341 1342 /** 1343 * skb_header_cloned - is the header a clone 1344 * @skb: buffer to check 1345 * 1346 * Returns true if modifying the header part of the buffer requires 1347 * the data to be copied. 1348 */ 1349 static inline int skb_header_cloned(const struct sk_buff *skb) 1350 { 1351 int dataref; 1352 1353 if (!skb->cloned) 1354 return 0; 1355 1356 dataref = atomic_read(&skb_shinfo(skb)->dataref); 1357 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 1358 return dataref != 1; 1359 } 1360 1361 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri) 1362 { 1363 might_sleep_if(gfpflags_allow_blocking(pri)); 1364 1365 if (skb_header_cloned(skb)) 1366 return pskb_expand_head(skb, 0, 0, pri); 1367 1368 return 0; 1369 } 1370 1371 /** 1372 * skb_header_release - release reference to header 1373 * @skb: buffer to operate on 1374 * 1375 * Drop a reference to the header part of the buffer. This is done 1376 * by acquiring a payload reference. You must not read from the header 1377 * part of skb->data after this. 1378 * Note : Check if you can use __skb_header_release() instead. 1379 */ 1380 static inline void skb_header_release(struct sk_buff *skb) 1381 { 1382 BUG_ON(skb->nohdr); 1383 skb->nohdr = 1; 1384 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref); 1385 } 1386 1387 /** 1388 * __skb_header_release - release reference to header 1389 * @skb: buffer to operate on 1390 * 1391 * Variant of skb_header_release() assuming skb is private to caller. 1392 * We can avoid one atomic operation. 1393 */ 1394 static inline void __skb_header_release(struct sk_buff *skb) 1395 { 1396 skb->nohdr = 1; 1397 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT)); 1398 } 1399 1400 1401 /** 1402 * skb_shared - is the buffer shared 1403 * @skb: buffer to check 1404 * 1405 * Returns true if more than one person has a reference to this 1406 * buffer. 1407 */ 1408 static inline int skb_shared(const struct sk_buff *skb) 1409 { 1410 return atomic_read(&skb->users) != 1; 1411 } 1412 1413 /** 1414 * skb_share_check - check if buffer is shared and if so clone it 1415 * @skb: buffer to check 1416 * @pri: priority for memory allocation 1417 * 1418 * If the buffer is shared the buffer is cloned and the old copy 1419 * drops a reference. A new clone with a single reference is returned. 1420 * If the buffer is not shared the original buffer is returned. When 1421 * being called from interrupt status or with spinlocks held pri must 1422 * be GFP_ATOMIC. 1423 * 1424 * NULL is returned on a memory allocation failure. 1425 */ 1426 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) 1427 { 1428 might_sleep_if(gfpflags_allow_blocking(pri)); 1429 if (skb_shared(skb)) { 1430 struct sk_buff *nskb = skb_clone(skb, pri); 1431 1432 if (likely(nskb)) 1433 consume_skb(skb); 1434 else 1435 kfree_skb(skb); 1436 skb = nskb; 1437 } 1438 return skb; 1439 } 1440 1441 /* 1442 * Copy shared buffers into a new sk_buff. We effectively do COW on 1443 * packets to handle cases where we have a local reader and forward 1444 * and a couple of other messy ones. The normal one is tcpdumping 1445 * a packet thats being forwarded. 1446 */ 1447 1448 /** 1449 * skb_unshare - make a copy of a shared buffer 1450 * @skb: buffer to check 1451 * @pri: priority for memory allocation 1452 * 1453 * If the socket buffer is a clone then this function creates a new 1454 * copy of the data, drops a reference count on the old copy and returns 1455 * the new copy with the reference count at 1. If the buffer is not a clone 1456 * the original buffer is returned. When called with a spinlock held or 1457 * from interrupt state @pri must be %GFP_ATOMIC 1458 * 1459 * %NULL is returned on a memory allocation failure. 1460 */ 1461 static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 1462 gfp_t pri) 1463 { 1464 might_sleep_if(gfpflags_allow_blocking(pri)); 1465 if (skb_cloned(skb)) { 1466 struct sk_buff *nskb = skb_copy(skb, pri); 1467 1468 /* Free our shared copy */ 1469 if (likely(nskb)) 1470 consume_skb(skb); 1471 else 1472 kfree_skb(skb); 1473 skb = nskb; 1474 } 1475 return skb; 1476 } 1477 1478 /** 1479 * skb_peek - peek at the head of an &sk_buff_head 1480 * @list_: list to peek at 1481 * 1482 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1483 * be careful with this one. A peek leaves the buffer on the 1484 * list and someone else may run off with it. You must hold 1485 * the appropriate locks or have a private queue to do this. 1486 * 1487 * Returns %NULL for an empty list or a pointer to the head element. 1488 * The reference count is not incremented and the reference is therefore 1489 * volatile. Use with caution. 1490 */ 1491 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) 1492 { 1493 struct sk_buff *skb = list_->next; 1494 1495 if (skb == (struct sk_buff *)list_) 1496 skb = NULL; 1497 return skb; 1498 } 1499 1500 /** 1501 * skb_peek_next - peek skb following the given one from a queue 1502 * @skb: skb to start from 1503 * @list_: list to peek at 1504 * 1505 * Returns %NULL when the end of the list is met or a pointer to the 1506 * next element. The reference count is not incremented and the 1507 * reference is therefore volatile. Use with caution. 1508 */ 1509 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, 1510 const struct sk_buff_head *list_) 1511 { 1512 struct sk_buff *next = skb->next; 1513 1514 if (next == (struct sk_buff *)list_) 1515 next = NULL; 1516 return next; 1517 } 1518 1519 /** 1520 * skb_peek_tail - peek at the tail of an &sk_buff_head 1521 * @list_: list to peek at 1522 * 1523 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1524 * be careful with this one. A peek leaves the buffer on the 1525 * list and someone else may run off with it. You must hold 1526 * the appropriate locks or have a private queue to do this. 1527 * 1528 * Returns %NULL for an empty list or a pointer to the tail element. 1529 * The reference count is not incremented and the reference is therefore 1530 * volatile. Use with caution. 1531 */ 1532 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) 1533 { 1534 struct sk_buff *skb = list_->prev; 1535 1536 if (skb == (struct sk_buff *)list_) 1537 skb = NULL; 1538 return skb; 1539 1540 } 1541 1542 /** 1543 * skb_queue_len - get queue length 1544 * @list_: list to measure 1545 * 1546 * Return the length of an &sk_buff queue. 1547 */ 1548 static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 1549 { 1550 return list_->qlen; 1551 } 1552 1553 /** 1554 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 1555 * @list: queue to initialize 1556 * 1557 * This initializes only the list and queue length aspects of 1558 * an sk_buff_head object. This allows to initialize the list 1559 * aspects of an sk_buff_head without reinitializing things like 1560 * the spinlock. It can also be used for on-stack sk_buff_head 1561 * objects where the spinlock is known to not be used. 1562 */ 1563 static inline void __skb_queue_head_init(struct sk_buff_head *list) 1564 { 1565 list->prev = list->next = (struct sk_buff *)list; 1566 list->qlen = 0; 1567 } 1568 1569 /* 1570 * This function creates a split out lock class for each invocation; 1571 * this is needed for now since a whole lot of users of the skb-queue 1572 * infrastructure in drivers have different locking usage (in hardirq) 1573 * than the networking core (in softirq only). In the long run either the 1574 * network layer or drivers should need annotation to consolidate the 1575 * main types of usage into 3 classes. 1576 */ 1577 static inline void skb_queue_head_init(struct sk_buff_head *list) 1578 { 1579 spin_lock_init(&list->lock); 1580 __skb_queue_head_init(list); 1581 } 1582 1583 static inline void skb_queue_head_init_class(struct sk_buff_head *list, 1584 struct lock_class_key *class) 1585 { 1586 skb_queue_head_init(list); 1587 lockdep_set_class(&list->lock, class); 1588 } 1589 1590 /* 1591 * Insert an sk_buff on a list. 1592 * 1593 * The "__skb_xxxx()" functions are the non-atomic ones that 1594 * can only be called with interrupts disabled. 1595 */ 1596 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, 1597 struct sk_buff_head *list); 1598 static inline void __skb_insert(struct sk_buff *newsk, 1599 struct sk_buff *prev, struct sk_buff *next, 1600 struct sk_buff_head *list) 1601 { 1602 newsk->next = next; 1603 newsk->prev = prev; 1604 next->prev = prev->next = newsk; 1605 list->qlen++; 1606 } 1607 1608 static inline void __skb_queue_splice(const struct sk_buff_head *list, 1609 struct sk_buff *prev, 1610 struct sk_buff *next) 1611 { 1612 struct sk_buff *first = list->next; 1613 struct sk_buff *last = list->prev; 1614 1615 first->prev = prev; 1616 prev->next = first; 1617 1618 last->next = next; 1619 next->prev = last; 1620 } 1621 1622 /** 1623 * skb_queue_splice - join two skb lists, this is designed for stacks 1624 * @list: the new list to add 1625 * @head: the place to add it in the first list 1626 */ 1627 static inline void skb_queue_splice(const struct sk_buff_head *list, 1628 struct sk_buff_head *head) 1629 { 1630 if (!skb_queue_empty(list)) { 1631 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1632 head->qlen += list->qlen; 1633 } 1634 } 1635 1636 /** 1637 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list 1638 * @list: the new list to add 1639 * @head: the place to add it in the first list 1640 * 1641 * The list at @list is reinitialised 1642 */ 1643 static inline void skb_queue_splice_init(struct sk_buff_head *list, 1644 struct sk_buff_head *head) 1645 { 1646 if (!skb_queue_empty(list)) { 1647 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1648 head->qlen += list->qlen; 1649 __skb_queue_head_init(list); 1650 } 1651 } 1652 1653 /** 1654 * skb_queue_splice_tail - join two skb lists, each list being a queue 1655 * @list: the new list to add 1656 * @head: the place to add it in the first list 1657 */ 1658 static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 1659 struct sk_buff_head *head) 1660 { 1661 if (!skb_queue_empty(list)) { 1662 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1663 head->qlen += list->qlen; 1664 } 1665 } 1666 1667 /** 1668 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list 1669 * @list: the new list to add 1670 * @head: the place to add it in the first list 1671 * 1672 * Each of the lists is a queue. 1673 * The list at @list is reinitialised 1674 */ 1675 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 1676 struct sk_buff_head *head) 1677 { 1678 if (!skb_queue_empty(list)) { 1679 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1680 head->qlen += list->qlen; 1681 __skb_queue_head_init(list); 1682 } 1683 } 1684 1685 /** 1686 * __skb_queue_after - queue a buffer at the list head 1687 * @list: list to use 1688 * @prev: place after this buffer 1689 * @newsk: buffer to queue 1690 * 1691 * Queue a buffer int the middle of a list. This function takes no locks 1692 * and you must therefore hold required locks before calling it. 1693 * 1694 * A buffer cannot be placed on two lists at the same time. 1695 */ 1696 static inline void __skb_queue_after(struct sk_buff_head *list, 1697 struct sk_buff *prev, 1698 struct sk_buff *newsk) 1699 { 1700 __skb_insert(newsk, prev, prev->next, list); 1701 } 1702 1703 void skb_append(struct sk_buff *old, struct sk_buff *newsk, 1704 struct sk_buff_head *list); 1705 1706 static inline void __skb_queue_before(struct sk_buff_head *list, 1707 struct sk_buff *next, 1708 struct sk_buff *newsk) 1709 { 1710 __skb_insert(newsk, next->prev, next, list); 1711 } 1712 1713 /** 1714 * __skb_queue_head - queue a buffer at the list head 1715 * @list: list to use 1716 * @newsk: buffer to queue 1717 * 1718 * Queue a buffer at the start of a list. This function takes no locks 1719 * and you must therefore hold required locks before calling it. 1720 * 1721 * A buffer cannot be placed on two lists at the same time. 1722 */ 1723 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 1724 static inline void __skb_queue_head(struct sk_buff_head *list, 1725 struct sk_buff *newsk) 1726 { 1727 __skb_queue_after(list, (struct sk_buff *)list, newsk); 1728 } 1729 1730 /** 1731 * __skb_queue_tail - queue a buffer at the list tail 1732 * @list: list to use 1733 * @newsk: buffer to queue 1734 * 1735 * Queue a buffer at the end of a list. This function takes no locks 1736 * and you must therefore hold required locks before calling it. 1737 * 1738 * A buffer cannot be placed on two lists at the same time. 1739 */ 1740 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 1741 static inline void __skb_queue_tail(struct sk_buff_head *list, 1742 struct sk_buff *newsk) 1743 { 1744 __skb_queue_before(list, (struct sk_buff *)list, newsk); 1745 } 1746 1747 /* 1748 * remove sk_buff from list. _Must_ be called atomically, and with 1749 * the list known.. 1750 */ 1751 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 1752 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 1753 { 1754 struct sk_buff *next, *prev; 1755 1756 list->qlen--; 1757 next = skb->next; 1758 prev = skb->prev; 1759 skb->next = skb->prev = NULL; 1760 next->prev = prev; 1761 prev->next = next; 1762 } 1763 1764 /** 1765 * __skb_dequeue - remove from the head of the queue 1766 * @list: list to dequeue from 1767 * 1768 * Remove the head of the list. This function does not take any locks 1769 * so must be used with appropriate locks held only. The head item is 1770 * returned or %NULL if the list is empty. 1771 */ 1772 struct sk_buff *skb_dequeue(struct sk_buff_head *list); 1773 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 1774 { 1775 struct sk_buff *skb = skb_peek(list); 1776 if (skb) 1777 __skb_unlink(skb, list); 1778 return skb; 1779 } 1780 1781 /** 1782 * __skb_dequeue_tail - remove from the tail of the queue 1783 * @list: list to dequeue from 1784 * 1785 * Remove the tail of the list. This function does not take any locks 1786 * so must be used with appropriate locks held only. The tail item is 1787 * returned or %NULL if the list is empty. 1788 */ 1789 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 1790 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 1791 { 1792 struct sk_buff *skb = skb_peek_tail(list); 1793 if (skb) 1794 __skb_unlink(skb, list); 1795 return skb; 1796 } 1797 1798 1799 static inline bool skb_is_nonlinear(const struct sk_buff *skb) 1800 { 1801 return skb->data_len; 1802 } 1803 1804 static inline unsigned int skb_headlen(const struct sk_buff *skb) 1805 { 1806 return skb->len - skb->data_len; 1807 } 1808 1809 static inline unsigned int skb_pagelen(const struct sk_buff *skb) 1810 { 1811 unsigned int i, len = 0; 1812 1813 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--) 1814 len += skb_frag_size(&skb_shinfo(skb)->frags[i]); 1815 return len + skb_headlen(skb); 1816 } 1817 1818 /** 1819 * __skb_fill_page_desc - initialise a paged fragment in an skb 1820 * @skb: buffer containing fragment to be initialised 1821 * @i: paged fragment index to initialise 1822 * @page: the page to use for this fragment 1823 * @off: the offset to the data with @page 1824 * @size: the length of the data 1825 * 1826 * Initialises the @i'th fragment of @skb to point to &size bytes at 1827 * offset @off within @page. 1828 * 1829 * Does not take any additional reference on the fragment. 1830 */ 1831 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, 1832 struct page *page, int off, int size) 1833 { 1834 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1835 1836 /* 1837 * Propagate page pfmemalloc to the skb if we can. The problem is 1838 * that not all callers have unique ownership of the page but rely 1839 * on page_is_pfmemalloc doing the right thing(tm). 1840 */ 1841 frag->page.p = page; 1842 frag->page_offset = off; 1843 skb_frag_size_set(frag, size); 1844 1845 page = compound_head(page); 1846 if (page_is_pfmemalloc(page)) 1847 skb->pfmemalloc = true; 1848 } 1849 1850 /** 1851 * skb_fill_page_desc - initialise a paged fragment in an skb 1852 * @skb: buffer containing fragment to be initialised 1853 * @i: paged fragment index to initialise 1854 * @page: the page to use for this fragment 1855 * @off: the offset to the data with @page 1856 * @size: the length of the data 1857 * 1858 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of 1859 * @skb to point to @size bytes at offset @off within @page. In 1860 * addition updates @skb such that @i is the last fragment. 1861 * 1862 * Does not take any additional reference on the fragment. 1863 */ 1864 static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 1865 struct page *page, int off, int size) 1866 { 1867 __skb_fill_page_desc(skb, i, page, off, size); 1868 skb_shinfo(skb)->nr_frags = i + 1; 1869 } 1870 1871 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 1872 int size, unsigned int truesize); 1873 1874 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 1875 unsigned int truesize); 1876 1877 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags) 1878 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb)) 1879 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 1880 1881 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1882 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1883 { 1884 return skb->head + skb->tail; 1885 } 1886 1887 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1888 { 1889 skb->tail = skb->data - skb->head; 1890 } 1891 1892 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1893 { 1894 skb_reset_tail_pointer(skb); 1895 skb->tail += offset; 1896 } 1897 1898 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 1899 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1900 { 1901 return skb->tail; 1902 } 1903 1904 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1905 { 1906 skb->tail = skb->data; 1907 } 1908 1909 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1910 { 1911 skb->tail = skb->data + offset; 1912 } 1913 1914 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1915 1916 /* 1917 * Add data to an sk_buff 1918 */ 1919 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len); 1920 unsigned char *skb_put(struct sk_buff *skb, unsigned int len); 1921 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len) 1922 { 1923 unsigned char *tmp = skb_tail_pointer(skb); 1924 SKB_LINEAR_ASSERT(skb); 1925 skb->tail += len; 1926 skb->len += len; 1927 return tmp; 1928 } 1929 1930 unsigned char *skb_push(struct sk_buff *skb, unsigned int len); 1931 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len) 1932 { 1933 skb->data -= len; 1934 skb->len += len; 1935 return skb->data; 1936 } 1937 1938 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len); 1939 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len) 1940 { 1941 skb->len -= len; 1942 BUG_ON(skb->len < skb->data_len); 1943 return skb->data += len; 1944 } 1945 1946 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len) 1947 { 1948 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 1949 } 1950 1951 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta); 1952 1953 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len) 1954 { 1955 if (len > skb_headlen(skb) && 1956 !__pskb_pull_tail(skb, len - skb_headlen(skb))) 1957 return NULL; 1958 skb->len -= len; 1959 return skb->data += len; 1960 } 1961 1962 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len) 1963 { 1964 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 1965 } 1966 1967 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) 1968 { 1969 if (likely(len <= skb_headlen(skb))) 1970 return 1; 1971 if (unlikely(len > skb->len)) 1972 return 0; 1973 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; 1974 } 1975 1976 void skb_condense(struct sk_buff *skb); 1977 1978 /** 1979 * skb_headroom - bytes at buffer head 1980 * @skb: buffer to check 1981 * 1982 * Return the number of bytes of free space at the head of an &sk_buff. 1983 */ 1984 static inline unsigned int skb_headroom(const struct sk_buff *skb) 1985 { 1986 return skb->data - skb->head; 1987 } 1988 1989 /** 1990 * skb_tailroom - bytes at buffer end 1991 * @skb: buffer to check 1992 * 1993 * Return the number of bytes of free space at the tail of an sk_buff 1994 */ 1995 static inline int skb_tailroom(const struct sk_buff *skb) 1996 { 1997 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 1998 } 1999 2000 /** 2001 * skb_availroom - bytes at buffer end 2002 * @skb: buffer to check 2003 * 2004 * Return the number of bytes of free space at the tail of an sk_buff 2005 * allocated by sk_stream_alloc() 2006 */ 2007 static inline int skb_availroom(const struct sk_buff *skb) 2008 { 2009 if (skb_is_nonlinear(skb)) 2010 return 0; 2011 2012 return skb->end - skb->tail - skb->reserved_tailroom; 2013 } 2014 2015 /** 2016 * skb_reserve - adjust headroom 2017 * @skb: buffer to alter 2018 * @len: bytes to move 2019 * 2020 * Increase the headroom of an empty &sk_buff by reducing the tail 2021 * room. This is only allowed for an empty buffer. 2022 */ 2023 static inline void skb_reserve(struct sk_buff *skb, int len) 2024 { 2025 skb->data += len; 2026 skb->tail += len; 2027 } 2028 2029 /** 2030 * skb_tailroom_reserve - adjust reserved_tailroom 2031 * @skb: buffer to alter 2032 * @mtu: maximum amount of headlen permitted 2033 * @needed_tailroom: minimum amount of reserved_tailroom 2034 * 2035 * Set reserved_tailroom so that headlen can be as large as possible but 2036 * not larger than mtu and tailroom cannot be smaller than 2037 * needed_tailroom. 2038 * The required headroom should already have been reserved before using 2039 * this function. 2040 */ 2041 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu, 2042 unsigned int needed_tailroom) 2043 { 2044 SKB_LINEAR_ASSERT(skb); 2045 if (mtu < skb_tailroom(skb) - needed_tailroom) 2046 /* use at most mtu */ 2047 skb->reserved_tailroom = skb_tailroom(skb) - mtu; 2048 else 2049 /* use up to all available space */ 2050 skb->reserved_tailroom = needed_tailroom; 2051 } 2052 2053 #define ENCAP_TYPE_ETHER 0 2054 #define ENCAP_TYPE_IPPROTO 1 2055 2056 static inline void skb_set_inner_protocol(struct sk_buff *skb, 2057 __be16 protocol) 2058 { 2059 skb->inner_protocol = protocol; 2060 skb->inner_protocol_type = ENCAP_TYPE_ETHER; 2061 } 2062 2063 static inline void skb_set_inner_ipproto(struct sk_buff *skb, 2064 __u8 ipproto) 2065 { 2066 skb->inner_ipproto = ipproto; 2067 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO; 2068 } 2069 2070 static inline void skb_reset_inner_headers(struct sk_buff *skb) 2071 { 2072 skb->inner_mac_header = skb->mac_header; 2073 skb->inner_network_header = skb->network_header; 2074 skb->inner_transport_header = skb->transport_header; 2075 } 2076 2077 static inline void skb_reset_mac_len(struct sk_buff *skb) 2078 { 2079 skb->mac_len = skb->network_header - skb->mac_header; 2080 } 2081 2082 static inline unsigned char *skb_inner_transport_header(const struct sk_buff 2083 *skb) 2084 { 2085 return skb->head + skb->inner_transport_header; 2086 } 2087 2088 static inline int skb_inner_transport_offset(const struct sk_buff *skb) 2089 { 2090 return skb_inner_transport_header(skb) - skb->data; 2091 } 2092 2093 static inline void skb_reset_inner_transport_header(struct sk_buff *skb) 2094 { 2095 skb->inner_transport_header = skb->data - skb->head; 2096 } 2097 2098 static inline void skb_set_inner_transport_header(struct sk_buff *skb, 2099 const int offset) 2100 { 2101 skb_reset_inner_transport_header(skb); 2102 skb->inner_transport_header += offset; 2103 } 2104 2105 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) 2106 { 2107 return skb->head + skb->inner_network_header; 2108 } 2109 2110 static inline void skb_reset_inner_network_header(struct sk_buff *skb) 2111 { 2112 skb->inner_network_header = skb->data - skb->head; 2113 } 2114 2115 static inline void skb_set_inner_network_header(struct sk_buff *skb, 2116 const int offset) 2117 { 2118 skb_reset_inner_network_header(skb); 2119 skb->inner_network_header += offset; 2120 } 2121 2122 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) 2123 { 2124 return skb->head + skb->inner_mac_header; 2125 } 2126 2127 static inline void skb_reset_inner_mac_header(struct sk_buff *skb) 2128 { 2129 skb->inner_mac_header = skb->data - skb->head; 2130 } 2131 2132 static inline void skb_set_inner_mac_header(struct sk_buff *skb, 2133 const int offset) 2134 { 2135 skb_reset_inner_mac_header(skb); 2136 skb->inner_mac_header += offset; 2137 } 2138 static inline bool skb_transport_header_was_set(const struct sk_buff *skb) 2139 { 2140 return skb->transport_header != (typeof(skb->transport_header))~0U; 2141 } 2142 2143 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 2144 { 2145 return skb->head + skb->transport_header; 2146 } 2147 2148 static inline void skb_reset_transport_header(struct sk_buff *skb) 2149 { 2150 skb->transport_header = skb->data - skb->head; 2151 } 2152 2153 static inline void skb_set_transport_header(struct sk_buff *skb, 2154 const int offset) 2155 { 2156 skb_reset_transport_header(skb); 2157 skb->transport_header += offset; 2158 } 2159 2160 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 2161 { 2162 return skb->head + skb->network_header; 2163 } 2164 2165 static inline void skb_reset_network_header(struct sk_buff *skb) 2166 { 2167 skb->network_header = skb->data - skb->head; 2168 } 2169 2170 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 2171 { 2172 skb_reset_network_header(skb); 2173 skb->network_header += offset; 2174 } 2175 2176 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 2177 { 2178 return skb->head + skb->mac_header; 2179 } 2180 2181 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 2182 { 2183 return skb->mac_header != (typeof(skb->mac_header))~0U; 2184 } 2185 2186 static inline void skb_reset_mac_header(struct sk_buff *skb) 2187 { 2188 skb->mac_header = skb->data - skb->head; 2189 } 2190 2191 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 2192 { 2193 skb_reset_mac_header(skb); 2194 skb->mac_header += offset; 2195 } 2196 2197 static inline void skb_pop_mac_header(struct sk_buff *skb) 2198 { 2199 skb->mac_header = skb->network_header; 2200 } 2201 2202 static inline void skb_probe_transport_header(struct sk_buff *skb, 2203 const int offset_hint) 2204 { 2205 struct flow_keys keys; 2206 2207 if (skb_transport_header_was_set(skb)) 2208 return; 2209 else if (skb_flow_dissect_flow_keys(skb, &keys, 0)) 2210 skb_set_transport_header(skb, keys.control.thoff); 2211 else 2212 skb_set_transport_header(skb, offset_hint); 2213 } 2214 2215 static inline void skb_mac_header_rebuild(struct sk_buff *skb) 2216 { 2217 if (skb_mac_header_was_set(skb)) { 2218 const unsigned char *old_mac = skb_mac_header(skb); 2219 2220 skb_set_mac_header(skb, -skb->mac_len); 2221 memmove(skb_mac_header(skb), old_mac, skb->mac_len); 2222 } 2223 } 2224 2225 static inline int skb_checksum_start_offset(const struct sk_buff *skb) 2226 { 2227 return skb->csum_start - skb_headroom(skb); 2228 } 2229 2230 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb) 2231 { 2232 return skb->head + skb->csum_start; 2233 } 2234 2235 static inline int skb_transport_offset(const struct sk_buff *skb) 2236 { 2237 return skb_transport_header(skb) - skb->data; 2238 } 2239 2240 static inline u32 skb_network_header_len(const struct sk_buff *skb) 2241 { 2242 return skb->transport_header - skb->network_header; 2243 } 2244 2245 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) 2246 { 2247 return skb->inner_transport_header - skb->inner_network_header; 2248 } 2249 2250 static inline int skb_network_offset(const struct sk_buff *skb) 2251 { 2252 return skb_network_header(skb) - skb->data; 2253 } 2254 2255 static inline int skb_inner_network_offset(const struct sk_buff *skb) 2256 { 2257 return skb_inner_network_header(skb) - skb->data; 2258 } 2259 2260 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 2261 { 2262 return pskb_may_pull(skb, skb_network_offset(skb) + len); 2263 } 2264 2265 /* 2266 * CPUs often take a performance hit when accessing unaligned memory 2267 * locations. The actual performance hit varies, it can be small if the 2268 * hardware handles it or large if we have to take an exception and fix it 2269 * in software. 2270 * 2271 * Since an ethernet header is 14 bytes network drivers often end up with 2272 * the IP header at an unaligned offset. The IP header can be aligned by 2273 * shifting the start of the packet by 2 bytes. Drivers should do this 2274 * with: 2275 * 2276 * skb_reserve(skb, NET_IP_ALIGN); 2277 * 2278 * The downside to this alignment of the IP header is that the DMA is now 2279 * unaligned. On some architectures the cost of an unaligned DMA is high 2280 * and this cost outweighs the gains made by aligning the IP header. 2281 * 2282 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 2283 * to be overridden. 2284 */ 2285 #ifndef NET_IP_ALIGN 2286 #define NET_IP_ALIGN 2 2287 #endif 2288 2289 /* 2290 * The networking layer reserves some headroom in skb data (via 2291 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 2292 * the header has to grow. In the default case, if the header has to grow 2293 * 32 bytes or less we avoid the reallocation. 2294 * 2295 * Unfortunately this headroom changes the DMA alignment of the resulting 2296 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 2297 * on some architectures. An architecture can override this value, 2298 * perhaps setting it to a cacheline in size (since that will maintain 2299 * cacheline alignment of the DMA). It must be a power of 2. 2300 * 2301 * Various parts of the networking layer expect at least 32 bytes of 2302 * headroom, you should not reduce this. 2303 * 2304 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 2305 * to reduce average number of cache lines per packet. 2306 * get_rps_cpus() for example only access one 64 bytes aligned block : 2307 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 2308 */ 2309 #ifndef NET_SKB_PAD 2310 #define NET_SKB_PAD max(32, L1_CACHE_BYTES) 2311 #endif 2312 2313 int ___pskb_trim(struct sk_buff *skb, unsigned int len); 2314 2315 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len) 2316 { 2317 if (unlikely(skb_is_nonlinear(skb))) { 2318 WARN_ON(1); 2319 return; 2320 } 2321 skb->len = len; 2322 skb_set_tail_pointer(skb, len); 2323 } 2324 2325 static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 2326 { 2327 __skb_set_length(skb, len); 2328 } 2329 2330 void skb_trim(struct sk_buff *skb, unsigned int len); 2331 2332 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 2333 { 2334 if (skb->data_len) 2335 return ___pskb_trim(skb, len); 2336 __skb_trim(skb, len); 2337 return 0; 2338 } 2339 2340 static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 2341 { 2342 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 2343 } 2344 2345 /** 2346 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 2347 * @skb: buffer to alter 2348 * @len: new length 2349 * 2350 * This is identical to pskb_trim except that the caller knows that 2351 * the skb is not cloned so we should never get an error due to out- 2352 * of-memory. 2353 */ 2354 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 2355 { 2356 int err = pskb_trim(skb, len); 2357 BUG_ON(err); 2358 } 2359 2360 static inline int __skb_grow(struct sk_buff *skb, unsigned int len) 2361 { 2362 unsigned int diff = len - skb->len; 2363 2364 if (skb_tailroom(skb) < diff) { 2365 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb), 2366 GFP_ATOMIC); 2367 if (ret) 2368 return ret; 2369 } 2370 __skb_set_length(skb, len); 2371 return 0; 2372 } 2373 2374 /** 2375 * skb_orphan - orphan a buffer 2376 * @skb: buffer to orphan 2377 * 2378 * If a buffer currently has an owner then we call the owner's 2379 * destructor function and make the @skb unowned. The buffer continues 2380 * to exist but is no longer charged to its former owner. 2381 */ 2382 static inline void skb_orphan(struct sk_buff *skb) 2383 { 2384 if (skb->destructor) { 2385 skb->destructor(skb); 2386 skb->destructor = NULL; 2387 skb->sk = NULL; 2388 } else { 2389 BUG_ON(skb->sk); 2390 } 2391 } 2392 2393 /** 2394 * skb_orphan_frags - orphan the frags contained in a buffer 2395 * @skb: buffer to orphan frags from 2396 * @gfp_mask: allocation mask for replacement pages 2397 * 2398 * For each frag in the SKB which needs a destructor (i.e. has an 2399 * owner) create a copy of that frag and release the original 2400 * page by calling the destructor. 2401 */ 2402 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) 2403 { 2404 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY))) 2405 return 0; 2406 return skb_copy_ubufs(skb, gfp_mask); 2407 } 2408 2409 /** 2410 * __skb_queue_purge - empty a list 2411 * @list: list to empty 2412 * 2413 * Delete all buffers on an &sk_buff list. Each buffer is removed from 2414 * the list and one reference dropped. This function does not take the 2415 * list lock and the caller must hold the relevant locks to use it. 2416 */ 2417 void skb_queue_purge(struct sk_buff_head *list); 2418 static inline void __skb_queue_purge(struct sk_buff_head *list) 2419 { 2420 struct sk_buff *skb; 2421 while ((skb = __skb_dequeue(list)) != NULL) 2422 kfree_skb(skb); 2423 } 2424 2425 void skb_rbtree_purge(struct rb_root *root); 2426 2427 void *netdev_alloc_frag(unsigned int fragsz); 2428 2429 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length, 2430 gfp_t gfp_mask); 2431 2432 /** 2433 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 2434 * @dev: network device to receive on 2435 * @length: length to allocate 2436 * 2437 * Allocate a new &sk_buff and assign it a usage count of one. The 2438 * buffer has unspecified headroom built in. Users should allocate 2439 * the headroom they think they need without accounting for the 2440 * built in space. The built in space is used for optimisations. 2441 * 2442 * %NULL is returned if there is no free memory. Although this function 2443 * allocates memory it can be called from an interrupt. 2444 */ 2445 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 2446 unsigned int length) 2447 { 2448 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 2449 } 2450 2451 /* legacy helper around __netdev_alloc_skb() */ 2452 static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 2453 gfp_t gfp_mask) 2454 { 2455 return __netdev_alloc_skb(NULL, length, gfp_mask); 2456 } 2457 2458 /* legacy helper around netdev_alloc_skb() */ 2459 static inline struct sk_buff *dev_alloc_skb(unsigned int length) 2460 { 2461 return netdev_alloc_skb(NULL, length); 2462 } 2463 2464 2465 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, 2466 unsigned int length, gfp_t gfp) 2467 { 2468 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); 2469 2470 if (NET_IP_ALIGN && skb) 2471 skb_reserve(skb, NET_IP_ALIGN); 2472 return skb; 2473 } 2474 2475 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 2476 unsigned int length) 2477 { 2478 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); 2479 } 2480 2481 static inline void skb_free_frag(void *addr) 2482 { 2483 page_frag_free(addr); 2484 } 2485 2486 void *napi_alloc_frag(unsigned int fragsz); 2487 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, 2488 unsigned int length, gfp_t gfp_mask); 2489 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi, 2490 unsigned int length) 2491 { 2492 return __napi_alloc_skb(napi, length, GFP_ATOMIC); 2493 } 2494 void napi_consume_skb(struct sk_buff *skb, int budget); 2495 2496 void __kfree_skb_flush(void); 2497 void __kfree_skb_defer(struct sk_buff *skb); 2498 2499 /** 2500 * __dev_alloc_pages - allocate page for network Rx 2501 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 2502 * @order: size of the allocation 2503 * 2504 * Allocate a new page. 2505 * 2506 * %NULL is returned if there is no free memory. 2507 */ 2508 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask, 2509 unsigned int order) 2510 { 2511 /* This piece of code contains several assumptions. 2512 * 1. This is for device Rx, therefor a cold page is preferred. 2513 * 2. The expectation is the user wants a compound page. 2514 * 3. If requesting a order 0 page it will not be compound 2515 * due to the check to see if order has a value in prep_new_page 2516 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to 2517 * code in gfp_to_alloc_flags that should be enforcing this. 2518 */ 2519 gfp_mask |= __GFP_COLD | __GFP_COMP | __GFP_MEMALLOC; 2520 2521 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order); 2522 } 2523 2524 static inline struct page *dev_alloc_pages(unsigned int order) 2525 { 2526 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order); 2527 } 2528 2529 /** 2530 * __dev_alloc_page - allocate a page for network Rx 2531 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 2532 * 2533 * Allocate a new page. 2534 * 2535 * %NULL is returned if there is no free memory. 2536 */ 2537 static inline struct page *__dev_alloc_page(gfp_t gfp_mask) 2538 { 2539 return __dev_alloc_pages(gfp_mask, 0); 2540 } 2541 2542 static inline struct page *dev_alloc_page(void) 2543 { 2544 return dev_alloc_pages(0); 2545 } 2546 2547 /** 2548 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page 2549 * @page: The page that was allocated from skb_alloc_page 2550 * @skb: The skb that may need pfmemalloc set 2551 */ 2552 static inline void skb_propagate_pfmemalloc(struct page *page, 2553 struct sk_buff *skb) 2554 { 2555 if (page_is_pfmemalloc(page)) 2556 skb->pfmemalloc = true; 2557 } 2558 2559 /** 2560 * skb_frag_page - retrieve the page referred to by a paged fragment 2561 * @frag: the paged fragment 2562 * 2563 * Returns the &struct page associated with @frag. 2564 */ 2565 static inline struct page *skb_frag_page(const skb_frag_t *frag) 2566 { 2567 return frag->page.p; 2568 } 2569 2570 /** 2571 * __skb_frag_ref - take an addition reference on a paged fragment. 2572 * @frag: the paged fragment 2573 * 2574 * Takes an additional reference on the paged fragment @frag. 2575 */ 2576 static inline void __skb_frag_ref(skb_frag_t *frag) 2577 { 2578 get_page(skb_frag_page(frag)); 2579 } 2580 2581 /** 2582 * skb_frag_ref - take an addition reference on a paged fragment of an skb. 2583 * @skb: the buffer 2584 * @f: the fragment offset. 2585 * 2586 * Takes an additional reference on the @f'th paged fragment of @skb. 2587 */ 2588 static inline void skb_frag_ref(struct sk_buff *skb, int f) 2589 { 2590 __skb_frag_ref(&skb_shinfo(skb)->frags[f]); 2591 } 2592 2593 /** 2594 * __skb_frag_unref - release a reference on a paged fragment. 2595 * @frag: the paged fragment 2596 * 2597 * Releases a reference on the paged fragment @frag. 2598 */ 2599 static inline void __skb_frag_unref(skb_frag_t *frag) 2600 { 2601 put_page(skb_frag_page(frag)); 2602 } 2603 2604 /** 2605 * skb_frag_unref - release a reference on a paged fragment of an skb. 2606 * @skb: the buffer 2607 * @f: the fragment offset 2608 * 2609 * Releases a reference on the @f'th paged fragment of @skb. 2610 */ 2611 static inline void skb_frag_unref(struct sk_buff *skb, int f) 2612 { 2613 __skb_frag_unref(&skb_shinfo(skb)->frags[f]); 2614 } 2615 2616 /** 2617 * skb_frag_address - gets the address of the data contained in a paged fragment 2618 * @frag: the paged fragment buffer 2619 * 2620 * Returns the address of the data within @frag. The page must already 2621 * be mapped. 2622 */ 2623 static inline void *skb_frag_address(const skb_frag_t *frag) 2624 { 2625 return page_address(skb_frag_page(frag)) + frag->page_offset; 2626 } 2627 2628 /** 2629 * skb_frag_address_safe - gets the address of the data contained in a paged fragment 2630 * @frag: the paged fragment buffer 2631 * 2632 * Returns the address of the data within @frag. Checks that the page 2633 * is mapped and returns %NULL otherwise. 2634 */ 2635 static inline void *skb_frag_address_safe(const skb_frag_t *frag) 2636 { 2637 void *ptr = page_address(skb_frag_page(frag)); 2638 if (unlikely(!ptr)) 2639 return NULL; 2640 2641 return ptr + frag->page_offset; 2642 } 2643 2644 /** 2645 * __skb_frag_set_page - sets the page contained in a paged fragment 2646 * @frag: the paged fragment 2647 * @page: the page to set 2648 * 2649 * Sets the fragment @frag to contain @page. 2650 */ 2651 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page) 2652 { 2653 frag->page.p = page; 2654 } 2655 2656 /** 2657 * skb_frag_set_page - sets the page contained in a paged fragment of an skb 2658 * @skb: the buffer 2659 * @f: the fragment offset 2660 * @page: the page to set 2661 * 2662 * Sets the @f'th fragment of @skb to contain @page. 2663 */ 2664 static inline void skb_frag_set_page(struct sk_buff *skb, int f, 2665 struct page *page) 2666 { 2667 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page); 2668 } 2669 2670 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio); 2671 2672 /** 2673 * skb_frag_dma_map - maps a paged fragment via the DMA API 2674 * @dev: the device to map the fragment to 2675 * @frag: the paged fragment to map 2676 * @offset: the offset within the fragment (starting at the 2677 * fragment's own offset) 2678 * @size: the number of bytes to map 2679 * @dir: the direction of the mapping (%PCI_DMA_*) 2680 * 2681 * Maps the page associated with @frag to @device. 2682 */ 2683 static inline dma_addr_t skb_frag_dma_map(struct device *dev, 2684 const skb_frag_t *frag, 2685 size_t offset, size_t size, 2686 enum dma_data_direction dir) 2687 { 2688 return dma_map_page(dev, skb_frag_page(frag), 2689 frag->page_offset + offset, size, dir); 2690 } 2691 2692 static inline struct sk_buff *pskb_copy(struct sk_buff *skb, 2693 gfp_t gfp_mask) 2694 { 2695 return __pskb_copy(skb, skb_headroom(skb), gfp_mask); 2696 } 2697 2698 2699 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb, 2700 gfp_t gfp_mask) 2701 { 2702 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true); 2703 } 2704 2705 2706 /** 2707 * skb_clone_writable - is the header of a clone writable 2708 * @skb: buffer to check 2709 * @len: length up to which to write 2710 * 2711 * Returns true if modifying the header part of the cloned buffer 2712 * does not requires the data to be copied. 2713 */ 2714 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) 2715 { 2716 return !skb_header_cloned(skb) && 2717 skb_headroom(skb) + len <= skb->hdr_len; 2718 } 2719 2720 static inline int skb_try_make_writable(struct sk_buff *skb, 2721 unsigned int write_len) 2722 { 2723 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) && 2724 pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2725 } 2726 2727 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 2728 int cloned) 2729 { 2730 int delta = 0; 2731 2732 if (headroom > skb_headroom(skb)) 2733 delta = headroom - skb_headroom(skb); 2734 2735 if (delta || cloned) 2736 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 2737 GFP_ATOMIC); 2738 return 0; 2739 } 2740 2741 /** 2742 * skb_cow - copy header of skb when it is required 2743 * @skb: buffer to cow 2744 * @headroom: needed headroom 2745 * 2746 * If the skb passed lacks sufficient headroom or its data part 2747 * is shared, data is reallocated. If reallocation fails, an error 2748 * is returned and original skb is not changed. 2749 * 2750 * The result is skb with writable area skb->head...skb->tail 2751 * and at least @headroom of space at head. 2752 */ 2753 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 2754 { 2755 return __skb_cow(skb, headroom, skb_cloned(skb)); 2756 } 2757 2758 /** 2759 * skb_cow_head - skb_cow but only making the head writable 2760 * @skb: buffer to cow 2761 * @headroom: needed headroom 2762 * 2763 * This function is identical to skb_cow except that we replace the 2764 * skb_cloned check by skb_header_cloned. It should be used when 2765 * you only need to push on some header and do not need to modify 2766 * the data. 2767 */ 2768 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 2769 { 2770 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 2771 } 2772 2773 /** 2774 * skb_padto - pad an skbuff up to a minimal size 2775 * @skb: buffer to pad 2776 * @len: minimal length 2777 * 2778 * Pads up a buffer to ensure the trailing bytes exist and are 2779 * blanked. If the buffer already contains sufficient data it 2780 * is untouched. Otherwise it is extended. Returns zero on 2781 * success. The skb is freed on error. 2782 */ 2783 static inline int skb_padto(struct sk_buff *skb, unsigned int len) 2784 { 2785 unsigned int size = skb->len; 2786 if (likely(size >= len)) 2787 return 0; 2788 return skb_pad(skb, len - size); 2789 } 2790 2791 /** 2792 * skb_put_padto - increase size and pad an skbuff up to a minimal size 2793 * @skb: buffer to pad 2794 * @len: minimal length 2795 * 2796 * Pads up a buffer to ensure the trailing bytes exist and are 2797 * blanked. If the buffer already contains sufficient data it 2798 * is untouched. Otherwise it is extended. Returns zero on 2799 * success. The skb is freed on error. 2800 */ 2801 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len) 2802 { 2803 unsigned int size = skb->len; 2804 2805 if (unlikely(size < len)) { 2806 len -= size; 2807 if (skb_pad(skb, len)) 2808 return -ENOMEM; 2809 __skb_put(skb, len); 2810 } 2811 return 0; 2812 } 2813 2814 static inline int skb_add_data(struct sk_buff *skb, 2815 struct iov_iter *from, int copy) 2816 { 2817 const int off = skb->len; 2818 2819 if (skb->ip_summed == CHECKSUM_NONE) { 2820 __wsum csum = 0; 2821 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy, 2822 &csum, from)) { 2823 skb->csum = csum_block_add(skb->csum, csum, off); 2824 return 0; 2825 } 2826 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from)) 2827 return 0; 2828 2829 __skb_trim(skb, off); 2830 return -EFAULT; 2831 } 2832 2833 static inline bool skb_can_coalesce(struct sk_buff *skb, int i, 2834 const struct page *page, int off) 2835 { 2836 if (i) { 2837 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 2838 2839 return page == skb_frag_page(frag) && 2840 off == frag->page_offset + skb_frag_size(frag); 2841 } 2842 return false; 2843 } 2844 2845 static inline int __skb_linearize(struct sk_buff *skb) 2846 { 2847 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 2848 } 2849 2850 /** 2851 * skb_linearize - convert paged skb to linear one 2852 * @skb: buffer to linarize 2853 * 2854 * If there is no free memory -ENOMEM is returned, otherwise zero 2855 * is returned and the old skb data released. 2856 */ 2857 static inline int skb_linearize(struct sk_buff *skb) 2858 { 2859 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 2860 } 2861 2862 /** 2863 * skb_has_shared_frag - can any frag be overwritten 2864 * @skb: buffer to test 2865 * 2866 * Return true if the skb has at least one frag that might be modified 2867 * by an external entity (as in vmsplice()/sendfile()) 2868 */ 2869 static inline bool skb_has_shared_frag(const struct sk_buff *skb) 2870 { 2871 return skb_is_nonlinear(skb) && 2872 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG; 2873 } 2874 2875 /** 2876 * skb_linearize_cow - make sure skb is linear and writable 2877 * @skb: buffer to process 2878 * 2879 * If there is no free memory -ENOMEM is returned, otherwise zero 2880 * is returned and the old skb data released. 2881 */ 2882 static inline int skb_linearize_cow(struct sk_buff *skb) 2883 { 2884 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 2885 __skb_linearize(skb) : 0; 2886 } 2887 2888 static __always_inline void 2889 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 2890 unsigned int off) 2891 { 2892 if (skb->ip_summed == CHECKSUM_COMPLETE) 2893 skb->csum = csum_block_sub(skb->csum, 2894 csum_partial(start, len, 0), off); 2895 else if (skb->ip_summed == CHECKSUM_PARTIAL && 2896 skb_checksum_start_offset(skb) < 0) 2897 skb->ip_summed = CHECKSUM_NONE; 2898 } 2899 2900 /** 2901 * skb_postpull_rcsum - update checksum for received skb after pull 2902 * @skb: buffer to update 2903 * @start: start of data before pull 2904 * @len: length of data pulled 2905 * 2906 * After doing a pull on a received packet, you need to call this to 2907 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 2908 * CHECKSUM_NONE so that it can be recomputed from scratch. 2909 */ 2910 static inline void skb_postpull_rcsum(struct sk_buff *skb, 2911 const void *start, unsigned int len) 2912 { 2913 __skb_postpull_rcsum(skb, start, len, 0); 2914 } 2915 2916 static __always_inline void 2917 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 2918 unsigned int off) 2919 { 2920 if (skb->ip_summed == CHECKSUM_COMPLETE) 2921 skb->csum = csum_block_add(skb->csum, 2922 csum_partial(start, len, 0), off); 2923 } 2924 2925 /** 2926 * skb_postpush_rcsum - update checksum for received skb after push 2927 * @skb: buffer to update 2928 * @start: start of data after push 2929 * @len: length of data pushed 2930 * 2931 * After doing a push on a received packet, you need to call this to 2932 * update the CHECKSUM_COMPLETE checksum. 2933 */ 2934 static inline void skb_postpush_rcsum(struct sk_buff *skb, 2935 const void *start, unsigned int len) 2936 { 2937 __skb_postpush_rcsum(skb, start, len, 0); 2938 } 2939 2940 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 2941 2942 /** 2943 * skb_push_rcsum - push skb and update receive checksum 2944 * @skb: buffer to update 2945 * @len: length of data pulled 2946 * 2947 * This function performs an skb_push on the packet and updates 2948 * the CHECKSUM_COMPLETE checksum. It should be used on 2949 * receive path processing instead of skb_push unless you know 2950 * that the checksum difference is zero (e.g., a valid IP header) 2951 * or you are setting ip_summed to CHECKSUM_NONE. 2952 */ 2953 static inline unsigned char *skb_push_rcsum(struct sk_buff *skb, 2954 unsigned int len) 2955 { 2956 skb_push(skb, len); 2957 skb_postpush_rcsum(skb, skb->data, len); 2958 return skb->data; 2959 } 2960 2961 /** 2962 * pskb_trim_rcsum - trim received skb and update checksum 2963 * @skb: buffer to trim 2964 * @len: new length 2965 * 2966 * This is exactly the same as pskb_trim except that it ensures the 2967 * checksum of received packets are still valid after the operation. 2968 */ 2969 2970 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 2971 { 2972 if (likely(len >= skb->len)) 2973 return 0; 2974 if (skb->ip_summed == CHECKSUM_COMPLETE) 2975 skb->ip_summed = CHECKSUM_NONE; 2976 return __pskb_trim(skb, len); 2977 } 2978 2979 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len) 2980 { 2981 if (skb->ip_summed == CHECKSUM_COMPLETE) 2982 skb->ip_summed = CHECKSUM_NONE; 2983 __skb_trim(skb, len); 2984 return 0; 2985 } 2986 2987 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len) 2988 { 2989 if (skb->ip_summed == CHECKSUM_COMPLETE) 2990 skb->ip_summed = CHECKSUM_NONE; 2991 return __skb_grow(skb, len); 2992 } 2993 2994 #define skb_queue_walk(queue, skb) \ 2995 for (skb = (queue)->next; \ 2996 skb != (struct sk_buff *)(queue); \ 2997 skb = skb->next) 2998 2999 #define skb_queue_walk_safe(queue, skb, tmp) \ 3000 for (skb = (queue)->next, tmp = skb->next; \ 3001 skb != (struct sk_buff *)(queue); \ 3002 skb = tmp, tmp = skb->next) 3003 3004 #define skb_queue_walk_from(queue, skb) \ 3005 for (; skb != (struct sk_buff *)(queue); \ 3006 skb = skb->next) 3007 3008 #define skb_queue_walk_from_safe(queue, skb, tmp) \ 3009 for (tmp = skb->next; \ 3010 skb != (struct sk_buff *)(queue); \ 3011 skb = tmp, tmp = skb->next) 3012 3013 #define skb_queue_reverse_walk(queue, skb) \ 3014 for (skb = (queue)->prev; \ 3015 skb != (struct sk_buff *)(queue); \ 3016 skb = skb->prev) 3017 3018 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \ 3019 for (skb = (queue)->prev, tmp = skb->prev; \ 3020 skb != (struct sk_buff *)(queue); \ 3021 skb = tmp, tmp = skb->prev) 3022 3023 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ 3024 for (tmp = skb->prev; \ 3025 skb != (struct sk_buff *)(queue); \ 3026 skb = tmp, tmp = skb->prev) 3027 3028 static inline bool skb_has_frag_list(const struct sk_buff *skb) 3029 { 3030 return skb_shinfo(skb)->frag_list != NULL; 3031 } 3032 3033 static inline void skb_frag_list_init(struct sk_buff *skb) 3034 { 3035 skb_shinfo(skb)->frag_list = NULL; 3036 } 3037 3038 #define skb_walk_frags(skb, iter) \ 3039 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 3040 3041 3042 int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p, 3043 const struct sk_buff *skb); 3044 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags, 3045 void (*destructor)(struct sock *sk, 3046 struct sk_buff *skb), 3047 int *peeked, int *off, int *err, 3048 struct sk_buff **last); 3049 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags, 3050 void (*destructor)(struct sock *sk, 3051 struct sk_buff *skb), 3052 int *peeked, int *off, int *err); 3053 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock, 3054 int *err); 3055 unsigned int datagram_poll(struct file *file, struct socket *sock, 3056 struct poll_table_struct *wait); 3057 int skb_copy_datagram_iter(const struct sk_buff *from, int offset, 3058 struct iov_iter *to, int size); 3059 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset, 3060 struct msghdr *msg, int size) 3061 { 3062 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size); 3063 } 3064 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen, 3065 struct msghdr *msg); 3066 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset, 3067 struct iov_iter *from, int len); 3068 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm); 3069 void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 3070 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len); 3071 static inline void skb_free_datagram_locked(struct sock *sk, 3072 struct sk_buff *skb) 3073 { 3074 __skb_free_datagram_locked(sk, skb, 0); 3075 } 3076 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags); 3077 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len); 3078 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len); 3079 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, 3080 int len, __wsum csum); 3081 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 3082 struct pipe_inode_info *pipe, unsigned int len, 3083 unsigned int flags); 3084 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 3085 unsigned int skb_zerocopy_headlen(const struct sk_buff *from); 3086 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from, 3087 int len, int hlen); 3088 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len); 3089 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen); 3090 void skb_scrub_packet(struct sk_buff *skb, bool xnet); 3091 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb); 3092 bool skb_gso_validate_mtu(const struct sk_buff *skb, unsigned int mtu); 3093 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features); 3094 struct sk_buff *skb_vlan_untag(struct sk_buff *skb); 3095 int skb_ensure_writable(struct sk_buff *skb, int write_len); 3096 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci); 3097 int skb_vlan_pop(struct sk_buff *skb); 3098 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci); 3099 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy, 3100 gfp_t gfp); 3101 3102 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len) 3103 { 3104 return copy_from_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT; 3105 } 3106 3107 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len) 3108 { 3109 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT; 3110 } 3111 3112 struct skb_checksum_ops { 3113 __wsum (*update)(const void *mem, int len, __wsum wsum); 3114 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len); 3115 }; 3116 3117 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 3118 __wsum csum, const struct skb_checksum_ops *ops); 3119 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len, 3120 __wsum csum); 3121 3122 static inline void * __must_check 3123 __skb_header_pointer(const struct sk_buff *skb, int offset, 3124 int len, void *data, int hlen, void *buffer) 3125 { 3126 if (hlen - offset >= len) 3127 return data + offset; 3128 3129 if (!skb || 3130 skb_copy_bits(skb, offset, buffer, len) < 0) 3131 return NULL; 3132 3133 return buffer; 3134 } 3135 3136 static inline void * __must_check 3137 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer) 3138 { 3139 return __skb_header_pointer(skb, offset, len, skb->data, 3140 skb_headlen(skb), buffer); 3141 } 3142 3143 /** 3144 * skb_needs_linearize - check if we need to linearize a given skb 3145 * depending on the given device features. 3146 * @skb: socket buffer to check 3147 * @features: net device features 3148 * 3149 * Returns true if either: 3150 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 3151 * 2. skb is fragmented and the device does not support SG. 3152 */ 3153 static inline bool skb_needs_linearize(struct sk_buff *skb, 3154 netdev_features_t features) 3155 { 3156 return skb_is_nonlinear(skb) && 3157 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) || 3158 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG))); 3159 } 3160 3161 static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 3162 void *to, 3163 const unsigned int len) 3164 { 3165 memcpy(to, skb->data, len); 3166 } 3167 3168 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 3169 const int offset, void *to, 3170 const unsigned int len) 3171 { 3172 memcpy(to, skb->data + offset, len); 3173 } 3174 3175 static inline void skb_copy_to_linear_data(struct sk_buff *skb, 3176 const void *from, 3177 const unsigned int len) 3178 { 3179 memcpy(skb->data, from, len); 3180 } 3181 3182 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 3183 const int offset, 3184 const void *from, 3185 const unsigned int len) 3186 { 3187 memcpy(skb->data + offset, from, len); 3188 } 3189 3190 void skb_init(void); 3191 3192 static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 3193 { 3194 return skb->tstamp; 3195 } 3196 3197 /** 3198 * skb_get_timestamp - get timestamp from a skb 3199 * @skb: skb to get stamp from 3200 * @stamp: pointer to struct timeval to store stamp in 3201 * 3202 * Timestamps are stored in the skb as offsets to a base timestamp. 3203 * This function converts the offset back to a struct timeval and stores 3204 * it in stamp. 3205 */ 3206 static inline void skb_get_timestamp(const struct sk_buff *skb, 3207 struct timeval *stamp) 3208 { 3209 *stamp = ktime_to_timeval(skb->tstamp); 3210 } 3211 3212 static inline void skb_get_timestampns(const struct sk_buff *skb, 3213 struct timespec *stamp) 3214 { 3215 *stamp = ktime_to_timespec(skb->tstamp); 3216 } 3217 3218 static inline void __net_timestamp(struct sk_buff *skb) 3219 { 3220 skb->tstamp = ktime_get_real(); 3221 } 3222 3223 static inline ktime_t net_timedelta(ktime_t t) 3224 { 3225 return ktime_sub(ktime_get_real(), t); 3226 } 3227 3228 static inline ktime_t net_invalid_timestamp(void) 3229 { 3230 return 0; 3231 } 3232 3233 struct sk_buff *skb_clone_sk(struct sk_buff *skb); 3234 3235 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 3236 3237 void skb_clone_tx_timestamp(struct sk_buff *skb); 3238 bool skb_defer_rx_timestamp(struct sk_buff *skb); 3239 3240 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 3241 3242 static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 3243 { 3244 } 3245 3246 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 3247 { 3248 return false; 3249 } 3250 3251 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 3252 3253 /** 3254 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 3255 * 3256 * PHY drivers may accept clones of transmitted packets for 3257 * timestamping via their phy_driver.txtstamp method. These drivers 3258 * must call this function to return the skb back to the stack with a 3259 * timestamp. 3260 * 3261 * @skb: clone of the the original outgoing packet 3262 * @hwtstamps: hardware time stamps 3263 * 3264 */ 3265 void skb_complete_tx_timestamp(struct sk_buff *skb, 3266 struct skb_shared_hwtstamps *hwtstamps); 3267 3268 void __skb_tstamp_tx(struct sk_buff *orig_skb, 3269 struct skb_shared_hwtstamps *hwtstamps, 3270 struct sock *sk, int tstype); 3271 3272 /** 3273 * skb_tstamp_tx - queue clone of skb with send time stamps 3274 * @orig_skb: the original outgoing packet 3275 * @hwtstamps: hardware time stamps, may be NULL if not available 3276 * 3277 * If the skb has a socket associated, then this function clones the 3278 * skb (thus sharing the actual data and optional structures), stores 3279 * the optional hardware time stamping information (if non NULL) or 3280 * generates a software time stamp (otherwise), then queues the clone 3281 * to the error queue of the socket. Errors are silently ignored. 3282 */ 3283 void skb_tstamp_tx(struct sk_buff *orig_skb, 3284 struct skb_shared_hwtstamps *hwtstamps); 3285 3286 static inline void sw_tx_timestamp(struct sk_buff *skb) 3287 { 3288 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP && 3289 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) 3290 skb_tstamp_tx(skb, NULL); 3291 } 3292 3293 /** 3294 * skb_tx_timestamp() - Driver hook for transmit timestamping 3295 * 3296 * Ethernet MAC Drivers should call this function in their hard_xmit() 3297 * function immediately before giving the sk_buff to the MAC hardware. 3298 * 3299 * Specifically, one should make absolutely sure that this function is 3300 * called before TX completion of this packet can trigger. Otherwise 3301 * the packet could potentially already be freed. 3302 * 3303 * @skb: A socket buffer. 3304 */ 3305 static inline void skb_tx_timestamp(struct sk_buff *skb) 3306 { 3307 skb_clone_tx_timestamp(skb); 3308 sw_tx_timestamp(skb); 3309 } 3310 3311 /** 3312 * skb_complete_wifi_ack - deliver skb with wifi status 3313 * 3314 * @skb: the original outgoing packet 3315 * @acked: ack status 3316 * 3317 */ 3318 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); 3319 3320 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 3321 __sum16 __skb_checksum_complete(struct sk_buff *skb); 3322 3323 static inline int skb_csum_unnecessary(const struct sk_buff *skb) 3324 { 3325 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) || 3326 skb->csum_valid || 3327 (skb->ip_summed == CHECKSUM_PARTIAL && 3328 skb_checksum_start_offset(skb) >= 0)); 3329 } 3330 3331 /** 3332 * skb_checksum_complete - Calculate checksum of an entire packet 3333 * @skb: packet to process 3334 * 3335 * This function calculates the checksum over the entire packet plus 3336 * the value of skb->csum. The latter can be used to supply the 3337 * checksum of a pseudo header as used by TCP/UDP. It returns the 3338 * checksum. 3339 * 3340 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 3341 * this function can be used to verify that checksum on received 3342 * packets. In that case the function should return zero if the 3343 * checksum is correct. In particular, this function will return zero 3344 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 3345 * hardware has already verified the correctness of the checksum. 3346 */ 3347 static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 3348 { 3349 return skb_csum_unnecessary(skb) ? 3350 0 : __skb_checksum_complete(skb); 3351 } 3352 3353 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb) 3354 { 3355 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 3356 if (skb->csum_level == 0) 3357 skb->ip_summed = CHECKSUM_NONE; 3358 else 3359 skb->csum_level--; 3360 } 3361 } 3362 3363 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb) 3364 { 3365 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 3366 if (skb->csum_level < SKB_MAX_CSUM_LEVEL) 3367 skb->csum_level++; 3368 } else if (skb->ip_summed == CHECKSUM_NONE) { 3369 skb->ip_summed = CHECKSUM_UNNECESSARY; 3370 skb->csum_level = 0; 3371 } 3372 } 3373 3374 static inline void __skb_mark_checksum_bad(struct sk_buff *skb) 3375 { 3376 /* Mark current checksum as bad (typically called from GRO 3377 * path). In the case that ip_summed is CHECKSUM_NONE 3378 * this must be the first checksum encountered in the packet. 3379 * When ip_summed is CHECKSUM_UNNECESSARY, this is the first 3380 * checksum after the last one validated. For UDP, a zero 3381 * checksum can not be marked as bad. 3382 */ 3383 3384 if (skb->ip_summed == CHECKSUM_NONE || 3385 skb->ip_summed == CHECKSUM_UNNECESSARY) 3386 skb->csum_bad = 1; 3387 } 3388 3389 /* Check if we need to perform checksum complete validation. 3390 * 3391 * Returns true if checksum complete is needed, false otherwise 3392 * (either checksum is unnecessary or zero checksum is allowed). 3393 */ 3394 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb, 3395 bool zero_okay, 3396 __sum16 check) 3397 { 3398 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) { 3399 skb->csum_valid = 1; 3400 __skb_decr_checksum_unnecessary(skb); 3401 return false; 3402 } 3403 3404 return true; 3405 } 3406 3407 /* For small packets <= CHECKSUM_BREAK peform checksum complete directly 3408 * in checksum_init. 3409 */ 3410 #define CHECKSUM_BREAK 76 3411 3412 /* Unset checksum-complete 3413 * 3414 * Unset checksum complete can be done when packet is being modified 3415 * (uncompressed for instance) and checksum-complete value is 3416 * invalidated. 3417 */ 3418 static inline void skb_checksum_complete_unset(struct sk_buff *skb) 3419 { 3420 if (skb->ip_summed == CHECKSUM_COMPLETE) 3421 skb->ip_summed = CHECKSUM_NONE; 3422 } 3423 3424 /* Validate (init) checksum based on checksum complete. 3425 * 3426 * Return values: 3427 * 0: checksum is validated or try to in skb_checksum_complete. In the latter 3428 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo 3429 * checksum is stored in skb->csum for use in __skb_checksum_complete 3430 * non-zero: value of invalid checksum 3431 * 3432 */ 3433 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb, 3434 bool complete, 3435 __wsum psum) 3436 { 3437 if (skb->ip_summed == CHECKSUM_COMPLETE) { 3438 if (!csum_fold(csum_add(psum, skb->csum))) { 3439 skb->csum_valid = 1; 3440 return 0; 3441 } 3442 } else if (skb->csum_bad) { 3443 /* ip_summed == CHECKSUM_NONE in this case */ 3444 return (__force __sum16)1; 3445 } 3446 3447 skb->csum = psum; 3448 3449 if (complete || skb->len <= CHECKSUM_BREAK) { 3450 __sum16 csum; 3451 3452 csum = __skb_checksum_complete(skb); 3453 skb->csum_valid = !csum; 3454 return csum; 3455 } 3456 3457 return 0; 3458 } 3459 3460 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto) 3461 { 3462 return 0; 3463 } 3464 3465 /* Perform checksum validate (init). Note that this is a macro since we only 3466 * want to calculate the pseudo header which is an input function if necessary. 3467 * First we try to validate without any computation (checksum unnecessary) and 3468 * then calculate based on checksum complete calling the function to compute 3469 * pseudo header. 3470 * 3471 * Return values: 3472 * 0: checksum is validated or try to in skb_checksum_complete 3473 * non-zero: value of invalid checksum 3474 */ 3475 #define __skb_checksum_validate(skb, proto, complete, \ 3476 zero_okay, check, compute_pseudo) \ 3477 ({ \ 3478 __sum16 __ret = 0; \ 3479 skb->csum_valid = 0; \ 3480 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \ 3481 __ret = __skb_checksum_validate_complete(skb, \ 3482 complete, compute_pseudo(skb, proto)); \ 3483 __ret; \ 3484 }) 3485 3486 #define skb_checksum_init(skb, proto, compute_pseudo) \ 3487 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo) 3488 3489 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \ 3490 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo) 3491 3492 #define skb_checksum_validate(skb, proto, compute_pseudo) \ 3493 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo) 3494 3495 #define skb_checksum_validate_zero_check(skb, proto, check, \ 3496 compute_pseudo) \ 3497 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo) 3498 3499 #define skb_checksum_simple_validate(skb) \ 3500 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo) 3501 3502 static inline bool __skb_checksum_convert_check(struct sk_buff *skb) 3503 { 3504 return (skb->ip_summed == CHECKSUM_NONE && 3505 skb->csum_valid && !skb->csum_bad); 3506 } 3507 3508 static inline void __skb_checksum_convert(struct sk_buff *skb, 3509 __sum16 check, __wsum pseudo) 3510 { 3511 skb->csum = ~pseudo; 3512 skb->ip_summed = CHECKSUM_COMPLETE; 3513 } 3514 3515 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo) \ 3516 do { \ 3517 if (__skb_checksum_convert_check(skb)) \ 3518 __skb_checksum_convert(skb, check, \ 3519 compute_pseudo(skb, proto)); \ 3520 } while (0) 3521 3522 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr, 3523 u16 start, u16 offset) 3524 { 3525 skb->ip_summed = CHECKSUM_PARTIAL; 3526 skb->csum_start = ((unsigned char *)ptr + start) - skb->head; 3527 skb->csum_offset = offset - start; 3528 } 3529 3530 /* Update skbuf and packet to reflect the remote checksum offload operation. 3531 * When called, ptr indicates the starting point for skb->csum when 3532 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete 3533 * here, skb_postpull_rcsum is done so skb->csum start is ptr. 3534 */ 3535 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr, 3536 int start, int offset, bool nopartial) 3537 { 3538 __wsum delta; 3539 3540 if (!nopartial) { 3541 skb_remcsum_adjust_partial(skb, ptr, start, offset); 3542 return; 3543 } 3544 3545 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) { 3546 __skb_checksum_complete(skb); 3547 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data); 3548 } 3549 3550 delta = remcsum_adjust(ptr, skb->csum, start, offset); 3551 3552 /* Adjust skb->csum since we changed the packet */ 3553 skb->csum = csum_add(skb->csum, delta); 3554 } 3555 3556 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3557 void nf_conntrack_destroy(struct nf_conntrack *nfct); 3558 static inline void nf_conntrack_put(struct nf_conntrack *nfct) 3559 { 3560 if (nfct && atomic_dec_and_test(&nfct->use)) 3561 nf_conntrack_destroy(nfct); 3562 } 3563 static inline void nf_conntrack_get(struct nf_conntrack *nfct) 3564 { 3565 if (nfct) 3566 atomic_inc(&nfct->use); 3567 } 3568 #endif 3569 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3570 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge) 3571 { 3572 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use)) 3573 kfree(nf_bridge); 3574 } 3575 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge) 3576 { 3577 if (nf_bridge) 3578 atomic_inc(&nf_bridge->use); 3579 } 3580 #endif /* CONFIG_BRIDGE_NETFILTER */ 3581 static inline void nf_reset(struct sk_buff *skb) 3582 { 3583 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3584 nf_conntrack_put(skb->nfct); 3585 skb->nfct = NULL; 3586 #endif 3587 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3588 nf_bridge_put(skb->nf_bridge); 3589 skb->nf_bridge = NULL; 3590 #endif 3591 } 3592 3593 static inline void nf_reset_trace(struct sk_buff *skb) 3594 { 3595 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 3596 skb->nf_trace = 0; 3597 #endif 3598 } 3599 3600 /* Note: This doesn't put any conntrack and bridge info in dst. */ 3601 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src, 3602 bool copy) 3603 { 3604 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3605 dst->nfct = src->nfct; 3606 nf_conntrack_get(src->nfct); 3607 if (copy) 3608 dst->nfctinfo = src->nfctinfo; 3609 #endif 3610 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3611 dst->nf_bridge = src->nf_bridge; 3612 nf_bridge_get(src->nf_bridge); 3613 #endif 3614 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 3615 if (copy) 3616 dst->nf_trace = src->nf_trace; 3617 #endif 3618 } 3619 3620 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 3621 { 3622 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3623 nf_conntrack_put(dst->nfct); 3624 #endif 3625 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3626 nf_bridge_put(dst->nf_bridge); 3627 #endif 3628 __nf_copy(dst, src, true); 3629 } 3630 3631 #ifdef CONFIG_NETWORK_SECMARK 3632 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 3633 { 3634 to->secmark = from->secmark; 3635 } 3636 3637 static inline void skb_init_secmark(struct sk_buff *skb) 3638 { 3639 skb->secmark = 0; 3640 } 3641 #else 3642 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 3643 { } 3644 3645 static inline void skb_init_secmark(struct sk_buff *skb) 3646 { } 3647 #endif 3648 3649 static inline bool skb_irq_freeable(const struct sk_buff *skb) 3650 { 3651 return !skb->destructor && 3652 #if IS_ENABLED(CONFIG_XFRM) 3653 !skb->sp && 3654 #endif 3655 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 3656 !skb->nfct && 3657 #endif 3658 !skb->_skb_refdst && 3659 !skb_has_frag_list(skb); 3660 } 3661 3662 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 3663 { 3664 skb->queue_mapping = queue_mapping; 3665 } 3666 3667 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 3668 { 3669 return skb->queue_mapping; 3670 } 3671 3672 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 3673 { 3674 to->queue_mapping = from->queue_mapping; 3675 } 3676 3677 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 3678 { 3679 skb->queue_mapping = rx_queue + 1; 3680 } 3681 3682 static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 3683 { 3684 return skb->queue_mapping - 1; 3685 } 3686 3687 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 3688 { 3689 return skb->queue_mapping != 0; 3690 } 3691 3692 static inline struct sec_path *skb_sec_path(struct sk_buff *skb) 3693 { 3694 #ifdef CONFIG_XFRM 3695 return skb->sp; 3696 #else 3697 return NULL; 3698 #endif 3699 } 3700 3701 /* Keeps track of mac header offset relative to skb->head. 3702 * It is useful for TSO of Tunneling protocol. e.g. GRE. 3703 * For non-tunnel skb it points to skb_mac_header() and for 3704 * tunnel skb it points to outer mac header. 3705 * Keeps track of level of encapsulation of network headers. 3706 */ 3707 struct skb_gso_cb { 3708 union { 3709 int mac_offset; 3710 int data_offset; 3711 }; 3712 int encap_level; 3713 __wsum csum; 3714 __u16 csum_start; 3715 }; 3716 #define SKB_SGO_CB_OFFSET 32 3717 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET)) 3718 3719 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb) 3720 { 3721 return (skb_mac_header(inner_skb) - inner_skb->head) - 3722 SKB_GSO_CB(inner_skb)->mac_offset; 3723 } 3724 3725 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra) 3726 { 3727 int new_headroom, headroom; 3728 int ret; 3729 3730 headroom = skb_headroom(skb); 3731 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC); 3732 if (ret) 3733 return ret; 3734 3735 new_headroom = skb_headroom(skb); 3736 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom); 3737 return 0; 3738 } 3739 3740 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res) 3741 { 3742 /* Do not update partial checksums if remote checksum is enabled. */ 3743 if (skb->remcsum_offload) 3744 return; 3745 3746 SKB_GSO_CB(skb)->csum = res; 3747 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head; 3748 } 3749 3750 /* Compute the checksum for a gso segment. First compute the checksum value 3751 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and 3752 * then add in skb->csum (checksum from csum_start to end of packet). 3753 * skb->csum and csum_start are then updated to reflect the checksum of the 3754 * resultant packet starting from the transport header-- the resultant checksum 3755 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo 3756 * header. 3757 */ 3758 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res) 3759 { 3760 unsigned char *csum_start = skb_transport_header(skb); 3761 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start; 3762 __wsum partial = SKB_GSO_CB(skb)->csum; 3763 3764 SKB_GSO_CB(skb)->csum = res; 3765 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head; 3766 3767 return csum_fold(csum_partial(csum_start, plen, partial)); 3768 } 3769 3770 static inline bool skb_is_gso(const struct sk_buff *skb) 3771 { 3772 return skb_shinfo(skb)->gso_size; 3773 } 3774 3775 /* Note: Should be called only if skb_is_gso(skb) is true */ 3776 static inline bool skb_is_gso_v6(const struct sk_buff *skb) 3777 { 3778 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 3779 } 3780 3781 static inline void skb_gso_reset(struct sk_buff *skb) 3782 { 3783 skb_shinfo(skb)->gso_size = 0; 3784 skb_shinfo(skb)->gso_segs = 0; 3785 skb_shinfo(skb)->gso_type = 0; 3786 } 3787 3788 void __skb_warn_lro_forwarding(const struct sk_buff *skb); 3789 3790 static inline bool skb_warn_if_lro(const struct sk_buff *skb) 3791 { 3792 /* LRO sets gso_size but not gso_type, whereas if GSO is really 3793 * wanted then gso_type will be set. */ 3794 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3795 3796 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 3797 unlikely(shinfo->gso_type == 0)) { 3798 __skb_warn_lro_forwarding(skb); 3799 return true; 3800 } 3801 return false; 3802 } 3803 3804 static inline void skb_forward_csum(struct sk_buff *skb) 3805 { 3806 /* Unfortunately we don't support this one. Any brave souls? */ 3807 if (skb->ip_summed == CHECKSUM_COMPLETE) 3808 skb->ip_summed = CHECKSUM_NONE; 3809 } 3810 3811 /** 3812 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 3813 * @skb: skb to check 3814 * 3815 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 3816 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 3817 * use this helper, to document places where we make this assertion. 3818 */ 3819 static inline void skb_checksum_none_assert(const struct sk_buff *skb) 3820 { 3821 #ifdef DEBUG 3822 BUG_ON(skb->ip_summed != CHECKSUM_NONE); 3823 #endif 3824 } 3825 3826 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 3827 3828 int skb_checksum_setup(struct sk_buff *skb, bool recalculate); 3829 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 3830 unsigned int transport_len, 3831 __sum16(*skb_chkf)(struct sk_buff *skb)); 3832 3833 /** 3834 * skb_head_is_locked - Determine if the skb->head is locked down 3835 * @skb: skb to check 3836 * 3837 * The head on skbs build around a head frag can be removed if they are 3838 * not cloned. This function returns true if the skb head is locked down 3839 * due to either being allocated via kmalloc, or by being a clone with 3840 * multiple references to the head. 3841 */ 3842 static inline bool skb_head_is_locked(const struct sk_buff *skb) 3843 { 3844 return !skb->head_frag || skb_cloned(skb); 3845 } 3846 3847 /** 3848 * skb_gso_network_seglen - Return length of individual segments of a gso packet 3849 * 3850 * @skb: GSO skb 3851 * 3852 * skb_gso_network_seglen is used to determine the real size of the 3853 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP). 3854 * 3855 * The MAC/L2 header is not accounted for. 3856 */ 3857 static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb) 3858 { 3859 unsigned int hdr_len = skb_transport_header(skb) - 3860 skb_network_header(skb); 3861 return hdr_len + skb_gso_transport_seglen(skb); 3862 } 3863 3864 /* Local Checksum Offload. 3865 * Compute outer checksum based on the assumption that the 3866 * inner checksum will be offloaded later. 3867 * See Documentation/networking/checksum-offloads.txt for 3868 * explanation of how this works. 3869 * Fill in outer checksum adjustment (e.g. with sum of outer 3870 * pseudo-header) before calling. 3871 * Also ensure that inner checksum is in linear data area. 3872 */ 3873 static inline __wsum lco_csum(struct sk_buff *skb) 3874 { 3875 unsigned char *csum_start = skb_checksum_start(skb); 3876 unsigned char *l4_hdr = skb_transport_header(skb); 3877 __wsum partial; 3878 3879 /* Start with complement of inner checksum adjustment */ 3880 partial = ~csum_unfold(*(__force __sum16 *)(csum_start + 3881 skb->csum_offset)); 3882 3883 /* Add in checksum of our headers (incl. outer checksum 3884 * adjustment filled in by caller) and return result. 3885 */ 3886 return csum_partial(l4_hdr, csum_start - l4_hdr, partial); 3887 } 3888 3889 #endif /* __KERNEL__ */ 3890 #endif /* _LINUX_SKBUFF_H */ 3891