xref: /linux-6.15/include/linux/skbuff.h (revision cee2cfb7)
1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <[email protected]>
6  *		Florian La Roche, <[email protected]>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/bug.h>
22 #include <linux/cache.h>
23 #include <linux/rbtree.h>
24 #include <linux/socket.h>
25 
26 #include <linux/atomic.h>
27 #include <asm/types.h>
28 #include <linux/spinlock.h>
29 #include <linux/net.h>
30 #include <linux/textsearch.h>
31 #include <net/checksum.h>
32 #include <linux/rcupdate.h>
33 #include <linux/hrtimer.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/netdev_features.h>
36 #include <linux/sched.h>
37 #include <net/flow_dissector.h>
38 #include <linux/splice.h>
39 #include <linux/in6.h>
40 #include <linux/if_packet.h>
41 #include <net/flow.h>
42 
43 /* The interface for checksum offload between the stack and networking drivers
44  * is as follows...
45  *
46  * A. IP checksum related features
47  *
48  * Drivers advertise checksum offload capabilities in the features of a device.
49  * From the stack's point of view these are capabilities offered by the driver,
50  * a driver typically only advertises features that it is capable of offloading
51  * to its device.
52  *
53  * The checksum related features are:
54  *
55  *	NETIF_F_HW_CSUM	- The driver (or its device) is able to compute one
56  *			  IP (one's complement) checksum for any combination
57  *			  of protocols or protocol layering. The checksum is
58  *			  computed and set in a packet per the CHECKSUM_PARTIAL
59  *			  interface (see below).
60  *
61  *	NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
62  *			  TCP or UDP packets over IPv4. These are specifically
63  *			  unencapsulated packets of the form IPv4|TCP or
64  *			  IPv4|UDP where the Protocol field in the IPv4 header
65  *			  is TCP or UDP. The IPv4 header may contain IP options
66  *			  This feature cannot be set in features for a device
67  *			  with NETIF_F_HW_CSUM also set. This feature is being
68  *			  DEPRECATED (see below).
69  *
70  *	NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
71  *			  TCP or UDP packets over IPv6. These are specifically
72  *			  unencapsulated packets of the form IPv6|TCP or
73  *			  IPv4|UDP where the Next Header field in the IPv6
74  *			  header is either TCP or UDP. IPv6 extension headers
75  *			  are not supported with this feature. This feature
76  *			  cannot be set in features for a device with
77  *			  NETIF_F_HW_CSUM also set. This feature is being
78  *			  DEPRECATED (see below).
79  *
80  *	NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
81  *			 This flag is used only used to disable the RX checksum
82  *			 feature for a device. The stack will accept receive
83  *			 checksum indication in packets received on a device
84  *			 regardless of whether NETIF_F_RXCSUM is set.
85  *
86  * B. Checksumming of received packets by device. Indication of checksum
87  *    verification is in set skb->ip_summed. Possible values are:
88  *
89  * CHECKSUM_NONE:
90  *
91  *   Device did not checksum this packet e.g. due to lack of capabilities.
92  *   The packet contains full (though not verified) checksum in packet but
93  *   not in skb->csum. Thus, skb->csum is undefined in this case.
94  *
95  * CHECKSUM_UNNECESSARY:
96  *
97  *   The hardware you're dealing with doesn't calculate the full checksum
98  *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
99  *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
100  *   if their checksums are okay. skb->csum is still undefined in this case
101  *   though. A driver or device must never modify the checksum field in the
102  *   packet even if checksum is verified.
103  *
104  *   CHECKSUM_UNNECESSARY is applicable to following protocols:
105  *     TCP: IPv6 and IPv4.
106  *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
107  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
108  *       may perform further validation in this case.
109  *     GRE: only if the checksum is present in the header.
110  *     SCTP: indicates the CRC in SCTP header has been validated.
111  *
112  *   skb->csum_level indicates the number of consecutive checksums found in
113  *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
114  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
115  *   and a device is able to verify the checksums for UDP (possibly zero),
116  *   GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
117  *   two. If the device were only able to verify the UDP checksum and not
118  *   GRE, either because it doesn't support GRE checksum of because GRE
119  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
120  *   not considered in this case).
121  *
122  * CHECKSUM_COMPLETE:
123  *
124  *   This is the most generic way. The device supplied checksum of the _whole_
125  *   packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
126  *   hardware doesn't need to parse L3/L4 headers to implement this.
127  *
128  *   Note: Even if device supports only some protocols, but is able to produce
129  *   skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
130  *
131  * CHECKSUM_PARTIAL:
132  *
133  *   A checksum is set up to be offloaded to a device as described in the
134  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
135  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
136  *   on the same host, or it may be set in the input path in GRO or remote
137  *   checksum offload. For the purposes of checksum verification, the checksum
138  *   referred to by skb->csum_start + skb->csum_offset and any preceding
139  *   checksums in the packet are considered verified. Any checksums in the
140  *   packet that are after the checksum being offloaded are not considered to
141  *   be verified.
142  *
143  * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
144  *    in the skb->ip_summed for a packet. Values are:
145  *
146  * CHECKSUM_PARTIAL:
147  *
148  *   The driver is required to checksum the packet as seen by hard_start_xmit()
149  *   from skb->csum_start up to the end, and to record/write the checksum at
150  *   offset skb->csum_start + skb->csum_offset. A driver may verify that the
151  *   csum_start and csum_offset values are valid values given the length and
152  *   offset of the packet, however they should not attempt to validate that the
153  *   checksum refers to a legitimate transport layer checksum-- it is the
154  *   purview of the stack to validate that csum_start and csum_offset are set
155  *   correctly.
156  *
157  *   When the stack requests checksum offload for a packet, the driver MUST
158  *   ensure that the checksum is set correctly. A driver can either offload the
159  *   checksum calculation to the device, or call skb_checksum_help (in the case
160  *   that the device does not support offload for a particular checksum).
161  *
162  *   NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
163  *   NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
164  *   checksum offload capability. If a	device has limited checksum capabilities
165  *   (for instance can only perform NETIF_F_IP_CSUM or NETIF_F_IPV6_CSUM as
166  *   described above) a helper function can be called to resolve
167  *   CHECKSUM_PARTIAL. The helper functions are skb_csum_off_chk*. The helper
168  *   function takes a spec argument that describes the protocol layer that is
169  *   supported for checksum offload and can be called for each packet. If a
170  *   packet does not match the specification for offload, skb_checksum_help
171  *   is called to resolve the checksum.
172  *
173  * CHECKSUM_NONE:
174  *
175  *   The skb was already checksummed by the protocol, or a checksum is not
176  *   required.
177  *
178  * CHECKSUM_UNNECESSARY:
179  *
180  *   This has the same meaning on as CHECKSUM_NONE for checksum offload on
181  *   output.
182  *
183  * CHECKSUM_COMPLETE:
184  *   Not used in checksum output. If a driver observes a packet with this value
185  *   set in skbuff, if should treat as CHECKSUM_NONE being set.
186  *
187  * D. Non-IP checksum (CRC) offloads
188  *
189  *   NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
190  *     offloading the SCTP CRC in a packet. To perform this offload the stack
191  *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
192  *     accordingly. Note the there is no indication in the skbuff that the
193  *     CHECKSUM_PARTIAL refers to an SCTP checksum, a driver that supports
194  *     both IP checksum offload and SCTP CRC offload must verify which offload
195  *     is configured for a packet presumably by inspecting packet headers.
196  *
197  *   NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
198  *     offloading the FCOE CRC in a packet. To perform this offload the stack
199  *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
200  *     accordingly. Note the there is no indication in the skbuff that the
201  *     CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
202  *     both IP checksum offload and FCOE CRC offload must verify which offload
203  *     is configured for a packet presumably by inspecting packet headers.
204  *
205  * E. Checksumming on output with GSO.
206  *
207  * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
208  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
209  * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
210  * part of the GSO operation is implied. If a checksum is being offloaded
211  * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
212  * are set to refer to the outermost checksum being offload (two offloaded
213  * checksums are possible with UDP encapsulation).
214  */
215 
216 /* Don't change this without changing skb_csum_unnecessary! */
217 #define CHECKSUM_NONE		0
218 #define CHECKSUM_UNNECESSARY	1
219 #define CHECKSUM_COMPLETE	2
220 #define CHECKSUM_PARTIAL	3
221 
222 /* Maximum value in skb->csum_level */
223 #define SKB_MAX_CSUM_LEVEL	3
224 
225 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
226 #define SKB_WITH_OVERHEAD(X)	\
227 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
228 #define SKB_MAX_ORDER(X, ORDER) \
229 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
230 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
231 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
232 
233 /* return minimum truesize of one skb containing X bytes of data */
234 #define SKB_TRUESIZE(X) ((X) +						\
235 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
236 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
237 
238 struct net_device;
239 struct scatterlist;
240 struct pipe_inode_info;
241 struct iov_iter;
242 struct napi_struct;
243 
244 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
245 struct nf_conntrack {
246 	atomic_t use;
247 };
248 #endif
249 
250 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
251 struct nf_bridge_info {
252 	atomic_t		use;
253 	enum {
254 		BRNF_PROTO_UNCHANGED,
255 		BRNF_PROTO_8021Q,
256 		BRNF_PROTO_PPPOE
257 	} orig_proto:8;
258 	u8			pkt_otherhost:1;
259 	u8			in_prerouting:1;
260 	u8			bridged_dnat:1;
261 	__u16			frag_max_size;
262 	struct net_device	*physindev;
263 
264 	/* always valid & non-NULL from FORWARD on, for physdev match */
265 	struct net_device	*physoutdev;
266 	union {
267 		/* prerouting: detect dnat in orig/reply direction */
268 		__be32          ipv4_daddr;
269 		struct in6_addr ipv6_daddr;
270 
271 		/* after prerouting + nat detected: store original source
272 		 * mac since neigh resolution overwrites it, only used while
273 		 * skb is out in neigh layer.
274 		 */
275 		char neigh_header[8];
276 	};
277 };
278 #endif
279 
280 struct sk_buff_head {
281 	/* These two members must be first. */
282 	struct sk_buff	*next;
283 	struct sk_buff	*prev;
284 
285 	__u32		qlen;
286 	spinlock_t	lock;
287 };
288 
289 struct sk_buff;
290 
291 /* To allow 64K frame to be packed as single skb without frag_list we
292  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
293  * buffers which do not start on a page boundary.
294  *
295  * Since GRO uses frags we allocate at least 16 regardless of page
296  * size.
297  */
298 #if (65536/PAGE_SIZE + 1) < 16
299 #define MAX_SKB_FRAGS 16UL
300 #else
301 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
302 #endif
303 extern int sysctl_max_skb_frags;
304 
305 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
306  * segment using its current segmentation instead.
307  */
308 #define GSO_BY_FRAGS	0xFFFF
309 
310 typedef struct skb_frag_struct skb_frag_t;
311 
312 struct skb_frag_struct {
313 	struct {
314 		struct page *p;
315 	} page;
316 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
317 	__u32 page_offset;
318 	__u32 size;
319 #else
320 	__u16 page_offset;
321 	__u16 size;
322 #endif
323 };
324 
325 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
326 {
327 	return frag->size;
328 }
329 
330 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
331 {
332 	frag->size = size;
333 }
334 
335 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
336 {
337 	frag->size += delta;
338 }
339 
340 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
341 {
342 	frag->size -= delta;
343 }
344 
345 #define HAVE_HW_TIME_STAMP
346 
347 /**
348  * struct skb_shared_hwtstamps - hardware time stamps
349  * @hwtstamp:	hardware time stamp transformed into duration
350  *		since arbitrary point in time
351  *
352  * Software time stamps generated by ktime_get_real() are stored in
353  * skb->tstamp.
354  *
355  * hwtstamps can only be compared against other hwtstamps from
356  * the same device.
357  *
358  * This structure is attached to packets as part of the
359  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
360  */
361 struct skb_shared_hwtstamps {
362 	ktime_t	hwtstamp;
363 };
364 
365 /* Definitions for tx_flags in struct skb_shared_info */
366 enum {
367 	/* generate hardware time stamp */
368 	SKBTX_HW_TSTAMP = 1 << 0,
369 
370 	/* generate software time stamp when queueing packet to NIC */
371 	SKBTX_SW_TSTAMP = 1 << 1,
372 
373 	/* device driver is going to provide hardware time stamp */
374 	SKBTX_IN_PROGRESS = 1 << 2,
375 
376 	/* device driver supports TX zero-copy buffers */
377 	SKBTX_DEV_ZEROCOPY = 1 << 3,
378 
379 	/* generate wifi status information (where possible) */
380 	SKBTX_WIFI_STATUS = 1 << 4,
381 
382 	/* This indicates at least one fragment might be overwritten
383 	 * (as in vmsplice(), sendfile() ...)
384 	 * If we need to compute a TX checksum, we'll need to copy
385 	 * all frags to avoid possible bad checksum
386 	 */
387 	SKBTX_SHARED_FRAG = 1 << 5,
388 
389 	/* generate software time stamp when entering packet scheduling */
390 	SKBTX_SCHED_TSTAMP = 1 << 6,
391 };
392 
393 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
394 				 SKBTX_SCHED_TSTAMP)
395 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
396 
397 /*
398  * The callback notifies userspace to release buffers when skb DMA is done in
399  * lower device, the skb last reference should be 0 when calling this.
400  * The zerocopy_success argument is true if zero copy transmit occurred,
401  * false on data copy or out of memory error caused by data copy attempt.
402  * The ctx field is used to track device context.
403  * The desc field is used to track userspace buffer index.
404  */
405 struct ubuf_info {
406 	void (*callback)(struct ubuf_info *, bool zerocopy_success);
407 	void *ctx;
408 	unsigned long desc;
409 };
410 
411 /* This data is invariant across clones and lives at
412  * the end of the header data, ie. at skb->end.
413  */
414 struct skb_shared_info {
415 	unsigned char	nr_frags;
416 	__u8		tx_flags;
417 	unsigned short	gso_size;
418 	/* Warning: this field is not always filled in (UFO)! */
419 	unsigned short	gso_segs;
420 	unsigned short  gso_type;
421 	struct sk_buff	*frag_list;
422 	struct skb_shared_hwtstamps hwtstamps;
423 	u32		tskey;
424 	__be32          ip6_frag_id;
425 
426 	/*
427 	 * Warning : all fields before dataref are cleared in __alloc_skb()
428 	 */
429 	atomic_t	dataref;
430 
431 	/* Intermediate layers must ensure that destructor_arg
432 	 * remains valid until skb destructor */
433 	void *		destructor_arg;
434 
435 	/* must be last field, see pskb_expand_head() */
436 	skb_frag_t	frags[MAX_SKB_FRAGS];
437 };
438 
439 /* We divide dataref into two halves.  The higher 16 bits hold references
440  * to the payload part of skb->data.  The lower 16 bits hold references to
441  * the entire skb->data.  A clone of a headerless skb holds the length of
442  * the header in skb->hdr_len.
443  *
444  * All users must obey the rule that the skb->data reference count must be
445  * greater than or equal to the payload reference count.
446  *
447  * Holding a reference to the payload part means that the user does not
448  * care about modifications to the header part of skb->data.
449  */
450 #define SKB_DATAREF_SHIFT 16
451 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
452 
453 
454 enum {
455 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
456 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
457 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
458 };
459 
460 enum {
461 	SKB_GSO_TCPV4 = 1 << 0,
462 	SKB_GSO_UDP = 1 << 1,
463 
464 	/* This indicates the skb is from an untrusted source. */
465 	SKB_GSO_DODGY = 1 << 2,
466 
467 	/* This indicates the tcp segment has CWR set. */
468 	SKB_GSO_TCP_ECN = 1 << 3,
469 
470 	SKB_GSO_TCP_FIXEDID = 1 << 4,
471 
472 	SKB_GSO_TCPV6 = 1 << 5,
473 
474 	SKB_GSO_FCOE = 1 << 6,
475 
476 	SKB_GSO_GRE = 1 << 7,
477 
478 	SKB_GSO_GRE_CSUM = 1 << 8,
479 
480 	SKB_GSO_IPXIP4 = 1 << 9,
481 
482 	SKB_GSO_IPXIP6 = 1 << 10,
483 
484 	SKB_GSO_UDP_TUNNEL = 1 << 11,
485 
486 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 12,
487 
488 	SKB_GSO_PARTIAL = 1 << 13,
489 
490 	SKB_GSO_TUNNEL_REMCSUM = 1 << 14,
491 
492 	SKB_GSO_SCTP = 1 << 15,
493 };
494 
495 #if BITS_PER_LONG > 32
496 #define NET_SKBUFF_DATA_USES_OFFSET 1
497 #endif
498 
499 #ifdef NET_SKBUFF_DATA_USES_OFFSET
500 typedef unsigned int sk_buff_data_t;
501 #else
502 typedef unsigned char *sk_buff_data_t;
503 #endif
504 
505 /**
506  * struct skb_mstamp - multi resolution time stamps
507  * @stamp_us: timestamp in us resolution
508  * @stamp_jiffies: timestamp in jiffies
509  */
510 struct skb_mstamp {
511 	union {
512 		u64		v64;
513 		struct {
514 			u32	stamp_us;
515 			u32	stamp_jiffies;
516 		};
517 	};
518 };
519 
520 /**
521  * skb_mstamp_get - get current timestamp
522  * @cl: place to store timestamps
523  */
524 static inline void skb_mstamp_get(struct skb_mstamp *cl)
525 {
526 	u64 val = local_clock();
527 
528 	do_div(val, NSEC_PER_USEC);
529 	cl->stamp_us = (u32)val;
530 	cl->stamp_jiffies = (u32)jiffies;
531 }
532 
533 /**
534  * skb_mstamp_delta - compute the difference in usec between two skb_mstamp
535  * @t1: pointer to newest sample
536  * @t0: pointer to oldest sample
537  */
538 static inline u32 skb_mstamp_us_delta(const struct skb_mstamp *t1,
539 				      const struct skb_mstamp *t0)
540 {
541 	s32 delta_us = t1->stamp_us - t0->stamp_us;
542 	u32 delta_jiffies = t1->stamp_jiffies - t0->stamp_jiffies;
543 
544 	/* If delta_us is negative, this might be because interval is too big,
545 	 * or local_clock() drift is too big : fallback using jiffies.
546 	 */
547 	if (delta_us <= 0 ||
548 	    delta_jiffies >= (INT_MAX / (USEC_PER_SEC / HZ)))
549 
550 		delta_us = jiffies_to_usecs(delta_jiffies);
551 
552 	return delta_us;
553 }
554 
555 static inline bool skb_mstamp_after(const struct skb_mstamp *t1,
556 				    const struct skb_mstamp *t0)
557 {
558 	s32 diff = t1->stamp_jiffies - t0->stamp_jiffies;
559 
560 	if (!diff)
561 		diff = t1->stamp_us - t0->stamp_us;
562 	return diff > 0;
563 }
564 
565 /**
566  *	struct sk_buff - socket buffer
567  *	@next: Next buffer in list
568  *	@prev: Previous buffer in list
569  *	@tstamp: Time we arrived/left
570  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
571  *	@sk: Socket we are owned by
572  *	@dev: Device we arrived on/are leaving by
573  *	@cb: Control buffer. Free for use by every layer. Put private vars here
574  *	@_skb_refdst: destination entry (with norefcount bit)
575  *	@sp: the security path, used for xfrm
576  *	@len: Length of actual data
577  *	@data_len: Data length
578  *	@mac_len: Length of link layer header
579  *	@hdr_len: writable header length of cloned skb
580  *	@csum: Checksum (must include start/offset pair)
581  *	@csum_start: Offset from skb->head where checksumming should start
582  *	@csum_offset: Offset from csum_start where checksum should be stored
583  *	@priority: Packet queueing priority
584  *	@ignore_df: allow local fragmentation
585  *	@cloned: Head may be cloned (check refcnt to be sure)
586  *	@ip_summed: Driver fed us an IP checksum
587  *	@nohdr: Payload reference only, must not modify header
588  *	@nfctinfo: Relationship of this skb to the connection
589  *	@pkt_type: Packet class
590  *	@fclone: skbuff clone status
591  *	@ipvs_property: skbuff is owned by ipvs
592  *	@peeked: this packet has been seen already, so stats have been
593  *		done for it, don't do them again
594  *	@nf_trace: netfilter packet trace flag
595  *	@protocol: Packet protocol from driver
596  *	@destructor: Destruct function
597  *	@nfct: Associated connection, if any
598  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
599  *	@skb_iif: ifindex of device we arrived on
600  *	@tc_index: Traffic control index
601  *	@tc_verd: traffic control verdict
602  *	@hash: the packet hash
603  *	@queue_mapping: Queue mapping for multiqueue devices
604  *	@xmit_more: More SKBs are pending for this queue
605  *	@ndisc_nodetype: router type (from link layer)
606  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
607  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
608  *		ports.
609  *	@sw_hash: indicates hash was computed in software stack
610  *	@wifi_acked_valid: wifi_acked was set
611  *	@wifi_acked: whether frame was acked on wifi or not
612  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
613   *	@napi_id: id of the NAPI struct this skb came from
614  *	@secmark: security marking
615  *	@mark: Generic packet mark
616  *	@vlan_proto: vlan encapsulation protocol
617  *	@vlan_tci: vlan tag control information
618  *	@inner_protocol: Protocol (encapsulation)
619  *	@inner_transport_header: Inner transport layer header (encapsulation)
620  *	@inner_network_header: Network layer header (encapsulation)
621  *	@inner_mac_header: Link layer header (encapsulation)
622  *	@transport_header: Transport layer header
623  *	@network_header: Network layer header
624  *	@mac_header: Link layer header
625  *	@tail: Tail pointer
626  *	@end: End pointer
627  *	@head: Head of buffer
628  *	@data: Data head pointer
629  *	@truesize: Buffer size
630  *	@users: User count - see {datagram,tcp}.c
631  */
632 
633 struct sk_buff {
634 	union {
635 		struct {
636 			/* These two members must be first. */
637 			struct sk_buff		*next;
638 			struct sk_buff		*prev;
639 
640 			union {
641 				ktime_t		tstamp;
642 				struct skb_mstamp skb_mstamp;
643 			};
644 		};
645 		struct rb_node	rbnode; /* used in netem & tcp stack */
646 	};
647 	struct sock		*sk;
648 
649 	union {
650 		struct net_device	*dev;
651 		/* Some protocols might use this space to store information,
652 		 * while device pointer would be NULL.
653 		 * UDP receive path is one user.
654 		 */
655 		unsigned long		dev_scratch;
656 	};
657 	/*
658 	 * This is the control buffer. It is free to use for every
659 	 * layer. Please put your private variables there. If you
660 	 * want to keep them across layers you have to do a skb_clone()
661 	 * first. This is owned by whoever has the skb queued ATM.
662 	 */
663 	char			cb[48] __aligned(8);
664 
665 	unsigned long		_skb_refdst;
666 	void			(*destructor)(struct sk_buff *skb);
667 #ifdef CONFIG_XFRM
668 	struct	sec_path	*sp;
669 #endif
670 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
671 	struct nf_conntrack	*nfct;
672 #endif
673 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
674 	struct nf_bridge_info	*nf_bridge;
675 #endif
676 	unsigned int		len,
677 				data_len;
678 	__u16			mac_len,
679 				hdr_len;
680 
681 	/* Following fields are _not_ copied in __copy_skb_header()
682 	 * Note that queue_mapping is here mostly to fill a hole.
683 	 */
684 	kmemcheck_bitfield_begin(flags1);
685 	__u16			queue_mapping;
686 
687 /* if you move cloned around you also must adapt those constants */
688 #ifdef __BIG_ENDIAN_BITFIELD
689 #define CLONED_MASK	(1 << 7)
690 #else
691 #define CLONED_MASK	1
692 #endif
693 #define CLONED_OFFSET()		offsetof(struct sk_buff, __cloned_offset)
694 
695 	__u8			__cloned_offset[0];
696 	__u8			cloned:1,
697 				nohdr:1,
698 				fclone:2,
699 				peeked:1,
700 				head_frag:1,
701 				xmit_more:1,
702 				__unused:1; /* one bit hole */
703 	kmemcheck_bitfield_end(flags1);
704 
705 	/* fields enclosed in headers_start/headers_end are copied
706 	 * using a single memcpy() in __copy_skb_header()
707 	 */
708 	/* private: */
709 	__u32			headers_start[0];
710 	/* public: */
711 
712 /* if you move pkt_type around you also must adapt those constants */
713 #ifdef __BIG_ENDIAN_BITFIELD
714 #define PKT_TYPE_MAX	(7 << 5)
715 #else
716 #define PKT_TYPE_MAX	7
717 #endif
718 #define PKT_TYPE_OFFSET()	offsetof(struct sk_buff, __pkt_type_offset)
719 
720 	__u8			__pkt_type_offset[0];
721 	__u8			pkt_type:3;
722 	__u8			pfmemalloc:1;
723 	__u8			ignore_df:1;
724 	__u8			nfctinfo:3;
725 
726 	__u8			nf_trace:1;
727 	__u8			ip_summed:2;
728 	__u8			ooo_okay:1;
729 	__u8			l4_hash:1;
730 	__u8			sw_hash:1;
731 	__u8			wifi_acked_valid:1;
732 	__u8			wifi_acked:1;
733 
734 	__u8			no_fcs:1;
735 	/* Indicates the inner headers are valid in the skbuff. */
736 	__u8			encapsulation:1;
737 	__u8			encap_hdr_csum:1;
738 	__u8			csum_valid:1;
739 	__u8			csum_complete_sw:1;
740 	__u8			csum_level:2;
741 	__u8			csum_bad:1;
742 
743 #ifdef CONFIG_IPV6_NDISC_NODETYPE
744 	__u8			ndisc_nodetype:2;
745 #endif
746 	__u8			ipvs_property:1;
747 	__u8			inner_protocol_type:1;
748 	__u8			remcsum_offload:1;
749 #ifdef CONFIG_NET_SWITCHDEV
750 	__u8			offload_fwd_mark:1;
751 #endif
752 	/* 2, 4 or 5 bit hole */
753 
754 #ifdef CONFIG_NET_SCHED
755 	__u16			tc_index;	/* traffic control index */
756 #ifdef CONFIG_NET_CLS_ACT
757 	__u16			tc_verd;	/* traffic control verdict */
758 #endif
759 #endif
760 
761 	union {
762 		__wsum		csum;
763 		struct {
764 			__u16	csum_start;
765 			__u16	csum_offset;
766 		};
767 	};
768 	__u32			priority;
769 	int			skb_iif;
770 	__u32			hash;
771 	__be16			vlan_proto;
772 	__u16			vlan_tci;
773 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
774 	union {
775 		unsigned int	napi_id;
776 		unsigned int	sender_cpu;
777 	};
778 #endif
779 #ifdef CONFIG_NETWORK_SECMARK
780 	__u32		secmark;
781 #endif
782 
783 	union {
784 		__u32		mark;
785 		__u32		reserved_tailroom;
786 	};
787 
788 	union {
789 		__be16		inner_protocol;
790 		__u8		inner_ipproto;
791 	};
792 
793 	__u16			inner_transport_header;
794 	__u16			inner_network_header;
795 	__u16			inner_mac_header;
796 
797 	__be16			protocol;
798 	__u16			transport_header;
799 	__u16			network_header;
800 	__u16			mac_header;
801 
802 	/* private: */
803 	__u32			headers_end[0];
804 	/* public: */
805 
806 	/* These elements must be at the end, see alloc_skb() for details.  */
807 	sk_buff_data_t		tail;
808 	sk_buff_data_t		end;
809 	unsigned char		*head,
810 				*data;
811 	unsigned int		truesize;
812 	atomic_t		users;
813 };
814 
815 #ifdef __KERNEL__
816 /*
817  *	Handling routines are only of interest to the kernel
818  */
819 #include <linux/slab.h>
820 
821 
822 #define SKB_ALLOC_FCLONE	0x01
823 #define SKB_ALLOC_RX		0x02
824 #define SKB_ALLOC_NAPI		0x04
825 
826 /* Returns true if the skb was allocated from PFMEMALLOC reserves */
827 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
828 {
829 	return unlikely(skb->pfmemalloc);
830 }
831 
832 /*
833  * skb might have a dst pointer attached, refcounted or not.
834  * _skb_refdst low order bit is set if refcount was _not_ taken
835  */
836 #define SKB_DST_NOREF	1UL
837 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
838 
839 /**
840  * skb_dst - returns skb dst_entry
841  * @skb: buffer
842  *
843  * Returns skb dst_entry, regardless of reference taken or not.
844  */
845 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
846 {
847 	/* If refdst was not refcounted, check we still are in a
848 	 * rcu_read_lock section
849 	 */
850 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
851 		!rcu_read_lock_held() &&
852 		!rcu_read_lock_bh_held());
853 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
854 }
855 
856 /**
857  * skb_dst_set - sets skb dst
858  * @skb: buffer
859  * @dst: dst entry
860  *
861  * Sets skb dst, assuming a reference was taken on dst and should
862  * be released by skb_dst_drop()
863  */
864 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
865 {
866 	skb->_skb_refdst = (unsigned long)dst;
867 }
868 
869 /**
870  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
871  * @skb: buffer
872  * @dst: dst entry
873  *
874  * Sets skb dst, assuming a reference was not taken on dst.
875  * If dst entry is cached, we do not take reference and dst_release
876  * will be avoided by refdst_drop. If dst entry is not cached, we take
877  * reference, so that last dst_release can destroy the dst immediately.
878  */
879 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
880 {
881 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
882 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
883 }
884 
885 /**
886  * skb_dst_is_noref - Test if skb dst isn't refcounted
887  * @skb: buffer
888  */
889 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
890 {
891 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
892 }
893 
894 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
895 {
896 	return (struct rtable *)skb_dst(skb);
897 }
898 
899 /* For mangling skb->pkt_type from user space side from applications
900  * such as nft, tc, etc, we only allow a conservative subset of
901  * possible pkt_types to be set.
902 */
903 static inline bool skb_pkt_type_ok(u32 ptype)
904 {
905 	return ptype <= PACKET_OTHERHOST;
906 }
907 
908 void kfree_skb(struct sk_buff *skb);
909 void kfree_skb_list(struct sk_buff *segs);
910 void skb_tx_error(struct sk_buff *skb);
911 void consume_skb(struct sk_buff *skb);
912 void  __kfree_skb(struct sk_buff *skb);
913 extern struct kmem_cache *skbuff_head_cache;
914 
915 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
916 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
917 		      bool *fragstolen, int *delta_truesize);
918 
919 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
920 			    int node);
921 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
922 struct sk_buff *build_skb(void *data, unsigned int frag_size);
923 static inline struct sk_buff *alloc_skb(unsigned int size,
924 					gfp_t priority)
925 {
926 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
927 }
928 
929 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
930 				     unsigned long data_len,
931 				     int max_page_order,
932 				     int *errcode,
933 				     gfp_t gfp_mask);
934 
935 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
936 struct sk_buff_fclones {
937 	struct sk_buff	skb1;
938 
939 	struct sk_buff	skb2;
940 
941 	atomic_t	fclone_ref;
942 };
943 
944 /**
945  *	skb_fclone_busy - check if fclone is busy
946  *	@sk: socket
947  *	@skb: buffer
948  *
949  * Returns true if skb is a fast clone, and its clone is not freed.
950  * Some drivers call skb_orphan() in their ndo_start_xmit(),
951  * so we also check that this didnt happen.
952  */
953 static inline bool skb_fclone_busy(const struct sock *sk,
954 				   const struct sk_buff *skb)
955 {
956 	const struct sk_buff_fclones *fclones;
957 
958 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
959 
960 	return skb->fclone == SKB_FCLONE_ORIG &&
961 	       atomic_read(&fclones->fclone_ref) > 1 &&
962 	       fclones->skb2.sk == sk;
963 }
964 
965 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
966 					       gfp_t priority)
967 {
968 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
969 }
970 
971 struct sk_buff *__alloc_skb_head(gfp_t priority, int node);
972 static inline struct sk_buff *alloc_skb_head(gfp_t priority)
973 {
974 	return __alloc_skb_head(priority, -1);
975 }
976 
977 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
978 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
979 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
980 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
981 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
982 				   gfp_t gfp_mask, bool fclone);
983 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
984 					  gfp_t gfp_mask)
985 {
986 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
987 }
988 
989 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
990 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
991 				     unsigned int headroom);
992 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
993 				int newtailroom, gfp_t priority);
994 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
995 			int offset, int len);
996 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset,
997 		 int len);
998 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
999 int skb_pad(struct sk_buff *skb, int pad);
1000 #define dev_kfree_skb(a)	consume_skb(a)
1001 
1002 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
1003 			    int getfrag(void *from, char *to, int offset,
1004 					int len, int odd, struct sk_buff *skb),
1005 			    void *from, int length);
1006 
1007 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1008 			 int offset, size_t size);
1009 
1010 struct skb_seq_state {
1011 	__u32		lower_offset;
1012 	__u32		upper_offset;
1013 	__u32		frag_idx;
1014 	__u32		stepped_offset;
1015 	struct sk_buff	*root_skb;
1016 	struct sk_buff	*cur_skb;
1017 	__u8		*frag_data;
1018 };
1019 
1020 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1021 			  unsigned int to, struct skb_seq_state *st);
1022 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1023 			  struct skb_seq_state *st);
1024 void skb_abort_seq_read(struct skb_seq_state *st);
1025 
1026 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1027 			   unsigned int to, struct ts_config *config);
1028 
1029 /*
1030  * Packet hash types specify the type of hash in skb_set_hash.
1031  *
1032  * Hash types refer to the protocol layer addresses which are used to
1033  * construct a packet's hash. The hashes are used to differentiate or identify
1034  * flows of the protocol layer for the hash type. Hash types are either
1035  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1036  *
1037  * Properties of hashes:
1038  *
1039  * 1) Two packets in different flows have different hash values
1040  * 2) Two packets in the same flow should have the same hash value
1041  *
1042  * A hash at a higher layer is considered to be more specific. A driver should
1043  * set the most specific hash possible.
1044  *
1045  * A driver cannot indicate a more specific hash than the layer at which a hash
1046  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1047  *
1048  * A driver may indicate a hash level which is less specific than the
1049  * actual layer the hash was computed on. For instance, a hash computed
1050  * at L4 may be considered an L3 hash. This should only be done if the
1051  * driver can't unambiguously determine that the HW computed the hash at
1052  * the higher layer. Note that the "should" in the second property above
1053  * permits this.
1054  */
1055 enum pkt_hash_types {
1056 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1057 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1058 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1059 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1060 };
1061 
1062 static inline void skb_clear_hash(struct sk_buff *skb)
1063 {
1064 	skb->hash = 0;
1065 	skb->sw_hash = 0;
1066 	skb->l4_hash = 0;
1067 }
1068 
1069 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1070 {
1071 	if (!skb->l4_hash)
1072 		skb_clear_hash(skb);
1073 }
1074 
1075 static inline void
1076 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1077 {
1078 	skb->l4_hash = is_l4;
1079 	skb->sw_hash = is_sw;
1080 	skb->hash = hash;
1081 }
1082 
1083 static inline void
1084 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1085 {
1086 	/* Used by drivers to set hash from HW */
1087 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1088 }
1089 
1090 static inline void
1091 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1092 {
1093 	__skb_set_hash(skb, hash, true, is_l4);
1094 }
1095 
1096 void __skb_get_hash(struct sk_buff *skb);
1097 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1098 u32 skb_get_poff(const struct sk_buff *skb);
1099 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1100 		   const struct flow_keys *keys, int hlen);
1101 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1102 			    void *data, int hlen_proto);
1103 
1104 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1105 					int thoff, u8 ip_proto)
1106 {
1107 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1108 }
1109 
1110 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1111 			     const struct flow_dissector_key *key,
1112 			     unsigned int key_count);
1113 
1114 bool __skb_flow_dissect(const struct sk_buff *skb,
1115 			struct flow_dissector *flow_dissector,
1116 			void *target_container,
1117 			void *data, __be16 proto, int nhoff, int hlen,
1118 			unsigned int flags);
1119 
1120 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1121 				    struct flow_dissector *flow_dissector,
1122 				    void *target_container, unsigned int flags)
1123 {
1124 	return __skb_flow_dissect(skb, flow_dissector, target_container,
1125 				  NULL, 0, 0, 0, flags);
1126 }
1127 
1128 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1129 					      struct flow_keys *flow,
1130 					      unsigned int flags)
1131 {
1132 	memset(flow, 0, sizeof(*flow));
1133 	return __skb_flow_dissect(skb, &flow_keys_dissector, flow,
1134 				  NULL, 0, 0, 0, flags);
1135 }
1136 
1137 static inline bool skb_flow_dissect_flow_keys_buf(struct flow_keys *flow,
1138 						  void *data, __be16 proto,
1139 						  int nhoff, int hlen,
1140 						  unsigned int flags)
1141 {
1142 	memset(flow, 0, sizeof(*flow));
1143 	return __skb_flow_dissect(NULL, &flow_keys_buf_dissector, flow,
1144 				  data, proto, nhoff, hlen, flags);
1145 }
1146 
1147 static inline __u32 skb_get_hash(struct sk_buff *skb)
1148 {
1149 	if (!skb->l4_hash && !skb->sw_hash)
1150 		__skb_get_hash(skb);
1151 
1152 	return skb->hash;
1153 }
1154 
1155 __u32 __skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6);
1156 
1157 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1158 {
1159 	if (!skb->l4_hash && !skb->sw_hash) {
1160 		struct flow_keys keys;
1161 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1162 
1163 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1164 	}
1165 
1166 	return skb->hash;
1167 }
1168 
1169 __u32 __skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl);
1170 
1171 static inline __u32 skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl4)
1172 {
1173 	if (!skb->l4_hash && !skb->sw_hash) {
1174 		struct flow_keys keys;
1175 		__u32 hash = __get_hash_from_flowi4(fl4, &keys);
1176 
1177 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1178 	}
1179 
1180 	return skb->hash;
1181 }
1182 
1183 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);
1184 
1185 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1186 {
1187 	return skb->hash;
1188 }
1189 
1190 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1191 {
1192 	to->hash = from->hash;
1193 	to->sw_hash = from->sw_hash;
1194 	to->l4_hash = from->l4_hash;
1195 };
1196 
1197 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1198 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1199 {
1200 	return skb->head + skb->end;
1201 }
1202 
1203 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1204 {
1205 	return skb->end;
1206 }
1207 #else
1208 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1209 {
1210 	return skb->end;
1211 }
1212 
1213 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1214 {
1215 	return skb->end - skb->head;
1216 }
1217 #endif
1218 
1219 /* Internal */
1220 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1221 
1222 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1223 {
1224 	return &skb_shinfo(skb)->hwtstamps;
1225 }
1226 
1227 /**
1228  *	skb_queue_empty - check if a queue is empty
1229  *	@list: queue head
1230  *
1231  *	Returns true if the queue is empty, false otherwise.
1232  */
1233 static inline int skb_queue_empty(const struct sk_buff_head *list)
1234 {
1235 	return list->next == (const struct sk_buff *) list;
1236 }
1237 
1238 /**
1239  *	skb_queue_is_last - check if skb is the last entry in the queue
1240  *	@list: queue head
1241  *	@skb: buffer
1242  *
1243  *	Returns true if @skb is the last buffer on the list.
1244  */
1245 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1246 				     const struct sk_buff *skb)
1247 {
1248 	return skb->next == (const struct sk_buff *) list;
1249 }
1250 
1251 /**
1252  *	skb_queue_is_first - check if skb is the first entry in the queue
1253  *	@list: queue head
1254  *	@skb: buffer
1255  *
1256  *	Returns true if @skb is the first buffer on the list.
1257  */
1258 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1259 				      const struct sk_buff *skb)
1260 {
1261 	return skb->prev == (const struct sk_buff *) list;
1262 }
1263 
1264 /**
1265  *	skb_queue_next - return the next packet in the queue
1266  *	@list: queue head
1267  *	@skb: current buffer
1268  *
1269  *	Return the next packet in @list after @skb.  It is only valid to
1270  *	call this if skb_queue_is_last() evaluates to false.
1271  */
1272 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1273 					     const struct sk_buff *skb)
1274 {
1275 	/* This BUG_ON may seem severe, but if we just return then we
1276 	 * are going to dereference garbage.
1277 	 */
1278 	BUG_ON(skb_queue_is_last(list, skb));
1279 	return skb->next;
1280 }
1281 
1282 /**
1283  *	skb_queue_prev - return the prev packet in the queue
1284  *	@list: queue head
1285  *	@skb: current buffer
1286  *
1287  *	Return the prev packet in @list before @skb.  It is only valid to
1288  *	call this if skb_queue_is_first() evaluates to false.
1289  */
1290 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1291 					     const struct sk_buff *skb)
1292 {
1293 	/* This BUG_ON may seem severe, but if we just return then we
1294 	 * are going to dereference garbage.
1295 	 */
1296 	BUG_ON(skb_queue_is_first(list, skb));
1297 	return skb->prev;
1298 }
1299 
1300 /**
1301  *	skb_get - reference buffer
1302  *	@skb: buffer to reference
1303  *
1304  *	Makes another reference to a socket buffer and returns a pointer
1305  *	to the buffer.
1306  */
1307 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1308 {
1309 	atomic_inc(&skb->users);
1310 	return skb;
1311 }
1312 
1313 /*
1314  * If users == 1, we are the only owner and are can avoid redundant
1315  * atomic change.
1316  */
1317 
1318 /**
1319  *	skb_cloned - is the buffer a clone
1320  *	@skb: buffer to check
1321  *
1322  *	Returns true if the buffer was generated with skb_clone() and is
1323  *	one of multiple shared copies of the buffer. Cloned buffers are
1324  *	shared data so must not be written to under normal circumstances.
1325  */
1326 static inline int skb_cloned(const struct sk_buff *skb)
1327 {
1328 	return skb->cloned &&
1329 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1330 }
1331 
1332 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1333 {
1334 	might_sleep_if(gfpflags_allow_blocking(pri));
1335 
1336 	if (skb_cloned(skb))
1337 		return pskb_expand_head(skb, 0, 0, pri);
1338 
1339 	return 0;
1340 }
1341 
1342 /**
1343  *	skb_header_cloned - is the header a clone
1344  *	@skb: buffer to check
1345  *
1346  *	Returns true if modifying the header part of the buffer requires
1347  *	the data to be copied.
1348  */
1349 static inline int skb_header_cloned(const struct sk_buff *skb)
1350 {
1351 	int dataref;
1352 
1353 	if (!skb->cloned)
1354 		return 0;
1355 
1356 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1357 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1358 	return dataref != 1;
1359 }
1360 
1361 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1362 {
1363 	might_sleep_if(gfpflags_allow_blocking(pri));
1364 
1365 	if (skb_header_cloned(skb))
1366 		return pskb_expand_head(skb, 0, 0, pri);
1367 
1368 	return 0;
1369 }
1370 
1371 /**
1372  *	skb_header_release - release reference to header
1373  *	@skb: buffer to operate on
1374  *
1375  *	Drop a reference to the header part of the buffer.  This is done
1376  *	by acquiring a payload reference.  You must not read from the header
1377  *	part of skb->data after this.
1378  *	Note : Check if you can use __skb_header_release() instead.
1379  */
1380 static inline void skb_header_release(struct sk_buff *skb)
1381 {
1382 	BUG_ON(skb->nohdr);
1383 	skb->nohdr = 1;
1384 	atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
1385 }
1386 
1387 /**
1388  *	__skb_header_release - release reference to header
1389  *	@skb: buffer to operate on
1390  *
1391  *	Variant of skb_header_release() assuming skb is private to caller.
1392  *	We can avoid one atomic operation.
1393  */
1394 static inline void __skb_header_release(struct sk_buff *skb)
1395 {
1396 	skb->nohdr = 1;
1397 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1398 }
1399 
1400 
1401 /**
1402  *	skb_shared - is the buffer shared
1403  *	@skb: buffer to check
1404  *
1405  *	Returns true if more than one person has a reference to this
1406  *	buffer.
1407  */
1408 static inline int skb_shared(const struct sk_buff *skb)
1409 {
1410 	return atomic_read(&skb->users) != 1;
1411 }
1412 
1413 /**
1414  *	skb_share_check - check if buffer is shared and if so clone it
1415  *	@skb: buffer to check
1416  *	@pri: priority for memory allocation
1417  *
1418  *	If the buffer is shared the buffer is cloned and the old copy
1419  *	drops a reference. A new clone with a single reference is returned.
1420  *	If the buffer is not shared the original buffer is returned. When
1421  *	being called from interrupt status or with spinlocks held pri must
1422  *	be GFP_ATOMIC.
1423  *
1424  *	NULL is returned on a memory allocation failure.
1425  */
1426 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1427 {
1428 	might_sleep_if(gfpflags_allow_blocking(pri));
1429 	if (skb_shared(skb)) {
1430 		struct sk_buff *nskb = skb_clone(skb, pri);
1431 
1432 		if (likely(nskb))
1433 			consume_skb(skb);
1434 		else
1435 			kfree_skb(skb);
1436 		skb = nskb;
1437 	}
1438 	return skb;
1439 }
1440 
1441 /*
1442  *	Copy shared buffers into a new sk_buff. We effectively do COW on
1443  *	packets to handle cases where we have a local reader and forward
1444  *	and a couple of other messy ones. The normal one is tcpdumping
1445  *	a packet thats being forwarded.
1446  */
1447 
1448 /**
1449  *	skb_unshare - make a copy of a shared buffer
1450  *	@skb: buffer to check
1451  *	@pri: priority for memory allocation
1452  *
1453  *	If the socket buffer is a clone then this function creates a new
1454  *	copy of the data, drops a reference count on the old copy and returns
1455  *	the new copy with the reference count at 1. If the buffer is not a clone
1456  *	the original buffer is returned. When called with a spinlock held or
1457  *	from interrupt state @pri must be %GFP_ATOMIC
1458  *
1459  *	%NULL is returned on a memory allocation failure.
1460  */
1461 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1462 					  gfp_t pri)
1463 {
1464 	might_sleep_if(gfpflags_allow_blocking(pri));
1465 	if (skb_cloned(skb)) {
1466 		struct sk_buff *nskb = skb_copy(skb, pri);
1467 
1468 		/* Free our shared copy */
1469 		if (likely(nskb))
1470 			consume_skb(skb);
1471 		else
1472 			kfree_skb(skb);
1473 		skb = nskb;
1474 	}
1475 	return skb;
1476 }
1477 
1478 /**
1479  *	skb_peek - peek at the head of an &sk_buff_head
1480  *	@list_: list to peek at
1481  *
1482  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1483  *	be careful with this one. A peek leaves the buffer on the
1484  *	list and someone else may run off with it. You must hold
1485  *	the appropriate locks or have a private queue to do this.
1486  *
1487  *	Returns %NULL for an empty list or a pointer to the head element.
1488  *	The reference count is not incremented and the reference is therefore
1489  *	volatile. Use with caution.
1490  */
1491 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1492 {
1493 	struct sk_buff *skb = list_->next;
1494 
1495 	if (skb == (struct sk_buff *)list_)
1496 		skb = NULL;
1497 	return skb;
1498 }
1499 
1500 /**
1501  *	skb_peek_next - peek skb following the given one from a queue
1502  *	@skb: skb to start from
1503  *	@list_: list to peek at
1504  *
1505  *	Returns %NULL when the end of the list is met or a pointer to the
1506  *	next element. The reference count is not incremented and the
1507  *	reference is therefore volatile. Use with caution.
1508  */
1509 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1510 		const struct sk_buff_head *list_)
1511 {
1512 	struct sk_buff *next = skb->next;
1513 
1514 	if (next == (struct sk_buff *)list_)
1515 		next = NULL;
1516 	return next;
1517 }
1518 
1519 /**
1520  *	skb_peek_tail - peek at the tail of an &sk_buff_head
1521  *	@list_: list to peek at
1522  *
1523  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1524  *	be careful with this one. A peek leaves the buffer on the
1525  *	list and someone else may run off with it. You must hold
1526  *	the appropriate locks or have a private queue to do this.
1527  *
1528  *	Returns %NULL for an empty list or a pointer to the tail element.
1529  *	The reference count is not incremented and the reference is therefore
1530  *	volatile. Use with caution.
1531  */
1532 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1533 {
1534 	struct sk_buff *skb = list_->prev;
1535 
1536 	if (skb == (struct sk_buff *)list_)
1537 		skb = NULL;
1538 	return skb;
1539 
1540 }
1541 
1542 /**
1543  *	skb_queue_len	- get queue length
1544  *	@list_: list to measure
1545  *
1546  *	Return the length of an &sk_buff queue.
1547  */
1548 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1549 {
1550 	return list_->qlen;
1551 }
1552 
1553 /**
1554  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1555  *	@list: queue to initialize
1556  *
1557  *	This initializes only the list and queue length aspects of
1558  *	an sk_buff_head object.  This allows to initialize the list
1559  *	aspects of an sk_buff_head without reinitializing things like
1560  *	the spinlock.  It can also be used for on-stack sk_buff_head
1561  *	objects where the spinlock is known to not be used.
1562  */
1563 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1564 {
1565 	list->prev = list->next = (struct sk_buff *)list;
1566 	list->qlen = 0;
1567 }
1568 
1569 /*
1570  * This function creates a split out lock class for each invocation;
1571  * this is needed for now since a whole lot of users of the skb-queue
1572  * infrastructure in drivers have different locking usage (in hardirq)
1573  * than the networking core (in softirq only). In the long run either the
1574  * network layer or drivers should need annotation to consolidate the
1575  * main types of usage into 3 classes.
1576  */
1577 static inline void skb_queue_head_init(struct sk_buff_head *list)
1578 {
1579 	spin_lock_init(&list->lock);
1580 	__skb_queue_head_init(list);
1581 }
1582 
1583 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1584 		struct lock_class_key *class)
1585 {
1586 	skb_queue_head_init(list);
1587 	lockdep_set_class(&list->lock, class);
1588 }
1589 
1590 /*
1591  *	Insert an sk_buff on a list.
1592  *
1593  *	The "__skb_xxxx()" functions are the non-atomic ones that
1594  *	can only be called with interrupts disabled.
1595  */
1596 void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1597 		struct sk_buff_head *list);
1598 static inline void __skb_insert(struct sk_buff *newsk,
1599 				struct sk_buff *prev, struct sk_buff *next,
1600 				struct sk_buff_head *list)
1601 {
1602 	newsk->next = next;
1603 	newsk->prev = prev;
1604 	next->prev  = prev->next = newsk;
1605 	list->qlen++;
1606 }
1607 
1608 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1609 				      struct sk_buff *prev,
1610 				      struct sk_buff *next)
1611 {
1612 	struct sk_buff *first = list->next;
1613 	struct sk_buff *last = list->prev;
1614 
1615 	first->prev = prev;
1616 	prev->next = first;
1617 
1618 	last->next = next;
1619 	next->prev = last;
1620 }
1621 
1622 /**
1623  *	skb_queue_splice - join two skb lists, this is designed for stacks
1624  *	@list: the new list to add
1625  *	@head: the place to add it in the first list
1626  */
1627 static inline void skb_queue_splice(const struct sk_buff_head *list,
1628 				    struct sk_buff_head *head)
1629 {
1630 	if (!skb_queue_empty(list)) {
1631 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1632 		head->qlen += list->qlen;
1633 	}
1634 }
1635 
1636 /**
1637  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1638  *	@list: the new list to add
1639  *	@head: the place to add it in the first list
1640  *
1641  *	The list at @list is reinitialised
1642  */
1643 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1644 					 struct sk_buff_head *head)
1645 {
1646 	if (!skb_queue_empty(list)) {
1647 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1648 		head->qlen += list->qlen;
1649 		__skb_queue_head_init(list);
1650 	}
1651 }
1652 
1653 /**
1654  *	skb_queue_splice_tail - join two skb lists, each list being a queue
1655  *	@list: the new list to add
1656  *	@head: the place to add it in the first list
1657  */
1658 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1659 					 struct sk_buff_head *head)
1660 {
1661 	if (!skb_queue_empty(list)) {
1662 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1663 		head->qlen += list->qlen;
1664 	}
1665 }
1666 
1667 /**
1668  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1669  *	@list: the new list to add
1670  *	@head: the place to add it in the first list
1671  *
1672  *	Each of the lists is a queue.
1673  *	The list at @list is reinitialised
1674  */
1675 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1676 					      struct sk_buff_head *head)
1677 {
1678 	if (!skb_queue_empty(list)) {
1679 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1680 		head->qlen += list->qlen;
1681 		__skb_queue_head_init(list);
1682 	}
1683 }
1684 
1685 /**
1686  *	__skb_queue_after - queue a buffer at the list head
1687  *	@list: list to use
1688  *	@prev: place after this buffer
1689  *	@newsk: buffer to queue
1690  *
1691  *	Queue a buffer int the middle of a list. This function takes no locks
1692  *	and you must therefore hold required locks before calling it.
1693  *
1694  *	A buffer cannot be placed on two lists at the same time.
1695  */
1696 static inline void __skb_queue_after(struct sk_buff_head *list,
1697 				     struct sk_buff *prev,
1698 				     struct sk_buff *newsk)
1699 {
1700 	__skb_insert(newsk, prev, prev->next, list);
1701 }
1702 
1703 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1704 		struct sk_buff_head *list);
1705 
1706 static inline void __skb_queue_before(struct sk_buff_head *list,
1707 				      struct sk_buff *next,
1708 				      struct sk_buff *newsk)
1709 {
1710 	__skb_insert(newsk, next->prev, next, list);
1711 }
1712 
1713 /**
1714  *	__skb_queue_head - queue a buffer at the list head
1715  *	@list: list to use
1716  *	@newsk: buffer to queue
1717  *
1718  *	Queue a buffer at the start of a list. This function takes no locks
1719  *	and you must therefore hold required locks before calling it.
1720  *
1721  *	A buffer cannot be placed on two lists at the same time.
1722  */
1723 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1724 static inline void __skb_queue_head(struct sk_buff_head *list,
1725 				    struct sk_buff *newsk)
1726 {
1727 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
1728 }
1729 
1730 /**
1731  *	__skb_queue_tail - queue a buffer at the list tail
1732  *	@list: list to use
1733  *	@newsk: buffer to queue
1734  *
1735  *	Queue a buffer at the end of a list. This function takes no locks
1736  *	and you must therefore hold required locks before calling it.
1737  *
1738  *	A buffer cannot be placed on two lists at the same time.
1739  */
1740 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1741 static inline void __skb_queue_tail(struct sk_buff_head *list,
1742 				   struct sk_buff *newsk)
1743 {
1744 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
1745 }
1746 
1747 /*
1748  * remove sk_buff from list. _Must_ be called atomically, and with
1749  * the list known..
1750  */
1751 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1752 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1753 {
1754 	struct sk_buff *next, *prev;
1755 
1756 	list->qlen--;
1757 	next	   = skb->next;
1758 	prev	   = skb->prev;
1759 	skb->next  = skb->prev = NULL;
1760 	next->prev = prev;
1761 	prev->next = next;
1762 }
1763 
1764 /**
1765  *	__skb_dequeue - remove from the head of the queue
1766  *	@list: list to dequeue from
1767  *
1768  *	Remove the head of the list. This function does not take any locks
1769  *	so must be used with appropriate locks held only. The head item is
1770  *	returned or %NULL if the list is empty.
1771  */
1772 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1773 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1774 {
1775 	struct sk_buff *skb = skb_peek(list);
1776 	if (skb)
1777 		__skb_unlink(skb, list);
1778 	return skb;
1779 }
1780 
1781 /**
1782  *	__skb_dequeue_tail - remove from the tail of the queue
1783  *	@list: list to dequeue from
1784  *
1785  *	Remove the tail of the list. This function does not take any locks
1786  *	so must be used with appropriate locks held only. The tail item is
1787  *	returned or %NULL if the list is empty.
1788  */
1789 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1790 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1791 {
1792 	struct sk_buff *skb = skb_peek_tail(list);
1793 	if (skb)
1794 		__skb_unlink(skb, list);
1795 	return skb;
1796 }
1797 
1798 
1799 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1800 {
1801 	return skb->data_len;
1802 }
1803 
1804 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1805 {
1806 	return skb->len - skb->data_len;
1807 }
1808 
1809 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
1810 {
1811 	unsigned int i, len = 0;
1812 
1813 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
1814 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1815 	return len + skb_headlen(skb);
1816 }
1817 
1818 /**
1819  * __skb_fill_page_desc - initialise a paged fragment in an skb
1820  * @skb: buffer containing fragment to be initialised
1821  * @i: paged fragment index to initialise
1822  * @page: the page to use for this fragment
1823  * @off: the offset to the data with @page
1824  * @size: the length of the data
1825  *
1826  * Initialises the @i'th fragment of @skb to point to &size bytes at
1827  * offset @off within @page.
1828  *
1829  * Does not take any additional reference on the fragment.
1830  */
1831 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1832 					struct page *page, int off, int size)
1833 {
1834 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1835 
1836 	/*
1837 	 * Propagate page pfmemalloc to the skb if we can. The problem is
1838 	 * that not all callers have unique ownership of the page but rely
1839 	 * on page_is_pfmemalloc doing the right thing(tm).
1840 	 */
1841 	frag->page.p		  = page;
1842 	frag->page_offset	  = off;
1843 	skb_frag_size_set(frag, size);
1844 
1845 	page = compound_head(page);
1846 	if (page_is_pfmemalloc(page))
1847 		skb->pfmemalloc	= true;
1848 }
1849 
1850 /**
1851  * skb_fill_page_desc - initialise a paged fragment in an skb
1852  * @skb: buffer containing fragment to be initialised
1853  * @i: paged fragment index to initialise
1854  * @page: the page to use for this fragment
1855  * @off: the offset to the data with @page
1856  * @size: the length of the data
1857  *
1858  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1859  * @skb to point to @size bytes at offset @off within @page. In
1860  * addition updates @skb such that @i is the last fragment.
1861  *
1862  * Does not take any additional reference on the fragment.
1863  */
1864 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1865 				      struct page *page, int off, int size)
1866 {
1867 	__skb_fill_page_desc(skb, i, page, off, size);
1868 	skb_shinfo(skb)->nr_frags = i + 1;
1869 }
1870 
1871 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
1872 		     int size, unsigned int truesize);
1873 
1874 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
1875 			  unsigned int truesize);
1876 
1877 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
1878 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_has_frag_list(skb))
1879 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
1880 
1881 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1882 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1883 {
1884 	return skb->head + skb->tail;
1885 }
1886 
1887 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1888 {
1889 	skb->tail = skb->data - skb->head;
1890 }
1891 
1892 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1893 {
1894 	skb_reset_tail_pointer(skb);
1895 	skb->tail += offset;
1896 }
1897 
1898 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1899 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1900 {
1901 	return skb->tail;
1902 }
1903 
1904 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1905 {
1906 	skb->tail = skb->data;
1907 }
1908 
1909 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1910 {
1911 	skb->tail = skb->data + offset;
1912 }
1913 
1914 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1915 
1916 /*
1917  *	Add data to an sk_buff
1918  */
1919 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
1920 unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1921 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1922 {
1923 	unsigned char *tmp = skb_tail_pointer(skb);
1924 	SKB_LINEAR_ASSERT(skb);
1925 	skb->tail += len;
1926 	skb->len  += len;
1927 	return tmp;
1928 }
1929 
1930 unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1931 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1932 {
1933 	skb->data -= len;
1934 	skb->len  += len;
1935 	return skb->data;
1936 }
1937 
1938 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1939 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1940 {
1941 	skb->len -= len;
1942 	BUG_ON(skb->len < skb->data_len);
1943 	return skb->data += len;
1944 }
1945 
1946 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1947 {
1948 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1949 }
1950 
1951 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1952 
1953 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1954 {
1955 	if (len > skb_headlen(skb) &&
1956 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1957 		return NULL;
1958 	skb->len -= len;
1959 	return skb->data += len;
1960 }
1961 
1962 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1963 {
1964 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1965 }
1966 
1967 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1968 {
1969 	if (likely(len <= skb_headlen(skb)))
1970 		return 1;
1971 	if (unlikely(len > skb->len))
1972 		return 0;
1973 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1974 }
1975 
1976 void skb_condense(struct sk_buff *skb);
1977 
1978 /**
1979  *	skb_headroom - bytes at buffer head
1980  *	@skb: buffer to check
1981  *
1982  *	Return the number of bytes of free space at the head of an &sk_buff.
1983  */
1984 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1985 {
1986 	return skb->data - skb->head;
1987 }
1988 
1989 /**
1990  *	skb_tailroom - bytes at buffer end
1991  *	@skb: buffer to check
1992  *
1993  *	Return the number of bytes of free space at the tail of an sk_buff
1994  */
1995 static inline int skb_tailroom(const struct sk_buff *skb)
1996 {
1997 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1998 }
1999 
2000 /**
2001  *	skb_availroom - bytes at buffer end
2002  *	@skb: buffer to check
2003  *
2004  *	Return the number of bytes of free space at the tail of an sk_buff
2005  *	allocated by sk_stream_alloc()
2006  */
2007 static inline int skb_availroom(const struct sk_buff *skb)
2008 {
2009 	if (skb_is_nonlinear(skb))
2010 		return 0;
2011 
2012 	return skb->end - skb->tail - skb->reserved_tailroom;
2013 }
2014 
2015 /**
2016  *	skb_reserve - adjust headroom
2017  *	@skb: buffer to alter
2018  *	@len: bytes to move
2019  *
2020  *	Increase the headroom of an empty &sk_buff by reducing the tail
2021  *	room. This is only allowed for an empty buffer.
2022  */
2023 static inline void skb_reserve(struct sk_buff *skb, int len)
2024 {
2025 	skb->data += len;
2026 	skb->tail += len;
2027 }
2028 
2029 /**
2030  *	skb_tailroom_reserve - adjust reserved_tailroom
2031  *	@skb: buffer to alter
2032  *	@mtu: maximum amount of headlen permitted
2033  *	@needed_tailroom: minimum amount of reserved_tailroom
2034  *
2035  *	Set reserved_tailroom so that headlen can be as large as possible but
2036  *	not larger than mtu and tailroom cannot be smaller than
2037  *	needed_tailroom.
2038  *	The required headroom should already have been reserved before using
2039  *	this function.
2040  */
2041 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2042 					unsigned int needed_tailroom)
2043 {
2044 	SKB_LINEAR_ASSERT(skb);
2045 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2046 		/* use at most mtu */
2047 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2048 	else
2049 		/* use up to all available space */
2050 		skb->reserved_tailroom = needed_tailroom;
2051 }
2052 
2053 #define ENCAP_TYPE_ETHER	0
2054 #define ENCAP_TYPE_IPPROTO	1
2055 
2056 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2057 					  __be16 protocol)
2058 {
2059 	skb->inner_protocol = protocol;
2060 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2061 }
2062 
2063 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2064 					 __u8 ipproto)
2065 {
2066 	skb->inner_ipproto = ipproto;
2067 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2068 }
2069 
2070 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2071 {
2072 	skb->inner_mac_header = skb->mac_header;
2073 	skb->inner_network_header = skb->network_header;
2074 	skb->inner_transport_header = skb->transport_header;
2075 }
2076 
2077 static inline void skb_reset_mac_len(struct sk_buff *skb)
2078 {
2079 	skb->mac_len = skb->network_header - skb->mac_header;
2080 }
2081 
2082 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2083 							*skb)
2084 {
2085 	return skb->head + skb->inner_transport_header;
2086 }
2087 
2088 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2089 {
2090 	return skb_inner_transport_header(skb) - skb->data;
2091 }
2092 
2093 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2094 {
2095 	skb->inner_transport_header = skb->data - skb->head;
2096 }
2097 
2098 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2099 						   const int offset)
2100 {
2101 	skb_reset_inner_transport_header(skb);
2102 	skb->inner_transport_header += offset;
2103 }
2104 
2105 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2106 {
2107 	return skb->head + skb->inner_network_header;
2108 }
2109 
2110 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2111 {
2112 	skb->inner_network_header = skb->data - skb->head;
2113 }
2114 
2115 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2116 						const int offset)
2117 {
2118 	skb_reset_inner_network_header(skb);
2119 	skb->inner_network_header += offset;
2120 }
2121 
2122 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2123 {
2124 	return skb->head + skb->inner_mac_header;
2125 }
2126 
2127 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2128 {
2129 	skb->inner_mac_header = skb->data - skb->head;
2130 }
2131 
2132 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2133 					    const int offset)
2134 {
2135 	skb_reset_inner_mac_header(skb);
2136 	skb->inner_mac_header += offset;
2137 }
2138 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2139 {
2140 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2141 }
2142 
2143 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2144 {
2145 	return skb->head + skb->transport_header;
2146 }
2147 
2148 static inline void skb_reset_transport_header(struct sk_buff *skb)
2149 {
2150 	skb->transport_header = skb->data - skb->head;
2151 }
2152 
2153 static inline void skb_set_transport_header(struct sk_buff *skb,
2154 					    const int offset)
2155 {
2156 	skb_reset_transport_header(skb);
2157 	skb->transport_header += offset;
2158 }
2159 
2160 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2161 {
2162 	return skb->head + skb->network_header;
2163 }
2164 
2165 static inline void skb_reset_network_header(struct sk_buff *skb)
2166 {
2167 	skb->network_header = skb->data - skb->head;
2168 }
2169 
2170 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2171 {
2172 	skb_reset_network_header(skb);
2173 	skb->network_header += offset;
2174 }
2175 
2176 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2177 {
2178 	return skb->head + skb->mac_header;
2179 }
2180 
2181 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2182 {
2183 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2184 }
2185 
2186 static inline void skb_reset_mac_header(struct sk_buff *skb)
2187 {
2188 	skb->mac_header = skb->data - skb->head;
2189 }
2190 
2191 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2192 {
2193 	skb_reset_mac_header(skb);
2194 	skb->mac_header += offset;
2195 }
2196 
2197 static inline void skb_pop_mac_header(struct sk_buff *skb)
2198 {
2199 	skb->mac_header = skb->network_header;
2200 }
2201 
2202 static inline void skb_probe_transport_header(struct sk_buff *skb,
2203 					      const int offset_hint)
2204 {
2205 	struct flow_keys keys;
2206 
2207 	if (skb_transport_header_was_set(skb))
2208 		return;
2209 	else if (skb_flow_dissect_flow_keys(skb, &keys, 0))
2210 		skb_set_transport_header(skb, keys.control.thoff);
2211 	else
2212 		skb_set_transport_header(skb, offset_hint);
2213 }
2214 
2215 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2216 {
2217 	if (skb_mac_header_was_set(skb)) {
2218 		const unsigned char *old_mac = skb_mac_header(skb);
2219 
2220 		skb_set_mac_header(skb, -skb->mac_len);
2221 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2222 	}
2223 }
2224 
2225 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2226 {
2227 	return skb->csum_start - skb_headroom(skb);
2228 }
2229 
2230 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2231 {
2232 	return skb->head + skb->csum_start;
2233 }
2234 
2235 static inline int skb_transport_offset(const struct sk_buff *skb)
2236 {
2237 	return skb_transport_header(skb) - skb->data;
2238 }
2239 
2240 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2241 {
2242 	return skb->transport_header - skb->network_header;
2243 }
2244 
2245 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2246 {
2247 	return skb->inner_transport_header - skb->inner_network_header;
2248 }
2249 
2250 static inline int skb_network_offset(const struct sk_buff *skb)
2251 {
2252 	return skb_network_header(skb) - skb->data;
2253 }
2254 
2255 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2256 {
2257 	return skb_inner_network_header(skb) - skb->data;
2258 }
2259 
2260 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2261 {
2262 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
2263 }
2264 
2265 /*
2266  * CPUs often take a performance hit when accessing unaligned memory
2267  * locations. The actual performance hit varies, it can be small if the
2268  * hardware handles it or large if we have to take an exception and fix it
2269  * in software.
2270  *
2271  * Since an ethernet header is 14 bytes network drivers often end up with
2272  * the IP header at an unaligned offset. The IP header can be aligned by
2273  * shifting the start of the packet by 2 bytes. Drivers should do this
2274  * with:
2275  *
2276  * skb_reserve(skb, NET_IP_ALIGN);
2277  *
2278  * The downside to this alignment of the IP header is that the DMA is now
2279  * unaligned. On some architectures the cost of an unaligned DMA is high
2280  * and this cost outweighs the gains made by aligning the IP header.
2281  *
2282  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2283  * to be overridden.
2284  */
2285 #ifndef NET_IP_ALIGN
2286 #define NET_IP_ALIGN	2
2287 #endif
2288 
2289 /*
2290  * The networking layer reserves some headroom in skb data (via
2291  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2292  * the header has to grow. In the default case, if the header has to grow
2293  * 32 bytes or less we avoid the reallocation.
2294  *
2295  * Unfortunately this headroom changes the DMA alignment of the resulting
2296  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2297  * on some architectures. An architecture can override this value,
2298  * perhaps setting it to a cacheline in size (since that will maintain
2299  * cacheline alignment of the DMA). It must be a power of 2.
2300  *
2301  * Various parts of the networking layer expect at least 32 bytes of
2302  * headroom, you should not reduce this.
2303  *
2304  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2305  * to reduce average number of cache lines per packet.
2306  * get_rps_cpus() for example only access one 64 bytes aligned block :
2307  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2308  */
2309 #ifndef NET_SKB_PAD
2310 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2311 #endif
2312 
2313 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2314 
2315 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2316 {
2317 	if (unlikely(skb_is_nonlinear(skb))) {
2318 		WARN_ON(1);
2319 		return;
2320 	}
2321 	skb->len = len;
2322 	skb_set_tail_pointer(skb, len);
2323 }
2324 
2325 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2326 {
2327 	__skb_set_length(skb, len);
2328 }
2329 
2330 void skb_trim(struct sk_buff *skb, unsigned int len);
2331 
2332 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2333 {
2334 	if (skb->data_len)
2335 		return ___pskb_trim(skb, len);
2336 	__skb_trim(skb, len);
2337 	return 0;
2338 }
2339 
2340 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2341 {
2342 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2343 }
2344 
2345 /**
2346  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2347  *	@skb: buffer to alter
2348  *	@len: new length
2349  *
2350  *	This is identical to pskb_trim except that the caller knows that
2351  *	the skb is not cloned so we should never get an error due to out-
2352  *	of-memory.
2353  */
2354 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2355 {
2356 	int err = pskb_trim(skb, len);
2357 	BUG_ON(err);
2358 }
2359 
2360 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2361 {
2362 	unsigned int diff = len - skb->len;
2363 
2364 	if (skb_tailroom(skb) < diff) {
2365 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2366 					   GFP_ATOMIC);
2367 		if (ret)
2368 			return ret;
2369 	}
2370 	__skb_set_length(skb, len);
2371 	return 0;
2372 }
2373 
2374 /**
2375  *	skb_orphan - orphan a buffer
2376  *	@skb: buffer to orphan
2377  *
2378  *	If a buffer currently has an owner then we call the owner's
2379  *	destructor function and make the @skb unowned. The buffer continues
2380  *	to exist but is no longer charged to its former owner.
2381  */
2382 static inline void skb_orphan(struct sk_buff *skb)
2383 {
2384 	if (skb->destructor) {
2385 		skb->destructor(skb);
2386 		skb->destructor = NULL;
2387 		skb->sk		= NULL;
2388 	} else {
2389 		BUG_ON(skb->sk);
2390 	}
2391 }
2392 
2393 /**
2394  *	skb_orphan_frags - orphan the frags contained in a buffer
2395  *	@skb: buffer to orphan frags from
2396  *	@gfp_mask: allocation mask for replacement pages
2397  *
2398  *	For each frag in the SKB which needs a destructor (i.e. has an
2399  *	owner) create a copy of that frag and release the original
2400  *	page by calling the destructor.
2401  */
2402 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2403 {
2404 	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
2405 		return 0;
2406 	return skb_copy_ubufs(skb, gfp_mask);
2407 }
2408 
2409 /**
2410  *	__skb_queue_purge - empty a list
2411  *	@list: list to empty
2412  *
2413  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2414  *	the list and one reference dropped. This function does not take the
2415  *	list lock and the caller must hold the relevant locks to use it.
2416  */
2417 void skb_queue_purge(struct sk_buff_head *list);
2418 static inline void __skb_queue_purge(struct sk_buff_head *list)
2419 {
2420 	struct sk_buff *skb;
2421 	while ((skb = __skb_dequeue(list)) != NULL)
2422 		kfree_skb(skb);
2423 }
2424 
2425 void skb_rbtree_purge(struct rb_root *root);
2426 
2427 void *netdev_alloc_frag(unsigned int fragsz);
2428 
2429 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2430 				   gfp_t gfp_mask);
2431 
2432 /**
2433  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
2434  *	@dev: network device to receive on
2435  *	@length: length to allocate
2436  *
2437  *	Allocate a new &sk_buff and assign it a usage count of one. The
2438  *	buffer has unspecified headroom built in. Users should allocate
2439  *	the headroom they think they need without accounting for the
2440  *	built in space. The built in space is used for optimisations.
2441  *
2442  *	%NULL is returned if there is no free memory. Although this function
2443  *	allocates memory it can be called from an interrupt.
2444  */
2445 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2446 					       unsigned int length)
2447 {
2448 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2449 }
2450 
2451 /* legacy helper around __netdev_alloc_skb() */
2452 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2453 					      gfp_t gfp_mask)
2454 {
2455 	return __netdev_alloc_skb(NULL, length, gfp_mask);
2456 }
2457 
2458 /* legacy helper around netdev_alloc_skb() */
2459 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2460 {
2461 	return netdev_alloc_skb(NULL, length);
2462 }
2463 
2464 
2465 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2466 		unsigned int length, gfp_t gfp)
2467 {
2468 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2469 
2470 	if (NET_IP_ALIGN && skb)
2471 		skb_reserve(skb, NET_IP_ALIGN);
2472 	return skb;
2473 }
2474 
2475 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2476 		unsigned int length)
2477 {
2478 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2479 }
2480 
2481 static inline void skb_free_frag(void *addr)
2482 {
2483 	page_frag_free(addr);
2484 }
2485 
2486 void *napi_alloc_frag(unsigned int fragsz);
2487 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2488 				 unsigned int length, gfp_t gfp_mask);
2489 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2490 					     unsigned int length)
2491 {
2492 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2493 }
2494 void napi_consume_skb(struct sk_buff *skb, int budget);
2495 
2496 void __kfree_skb_flush(void);
2497 void __kfree_skb_defer(struct sk_buff *skb);
2498 
2499 /**
2500  * __dev_alloc_pages - allocate page for network Rx
2501  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2502  * @order: size of the allocation
2503  *
2504  * Allocate a new page.
2505  *
2506  * %NULL is returned if there is no free memory.
2507 */
2508 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2509 					     unsigned int order)
2510 {
2511 	/* This piece of code contains several assumptions.
2512 	 * 1.  This is for device Rx, therefor a cold page is preferred.
2513 	 * 2.  The expectation is the user wants a compound page.
2514 	 * 3.  If requesting a order 0 page it will not be compound
2515 	 *     due to the check to see if order has a value in prep_new_page
2516 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2517 	 *     code in gfp_to_alloc_flags that should be enforcing this.
2518 	 */
2519 	gfp_mask |= __GFP_COLD | __GFP_COMP | __GFP_MEMALLOC;
2520 
2521 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2522 }
2523 
2524 static inline struct page *dev_alloc_pages(unsigned int order)
2525 {
2526 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2527 }
2528 
2529 /**
2530  * __dev_alloc_page - allocate a page for network Rx
2531  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2532  *
2533  * Allocate a new page.
2534  *
2535  * %NULL is returned if there is no free memory.
2536  */
2537 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2538 {
2539 	return __dev_alloc_pages(gfp_mask, 0);
2540 }
2541 
2542 static inline struct page *dev_alloc_page(void)
2543 {
2544 	return dev_alloc_pages(0);
2545 }
2546 
2547 /**
2548  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2549  *	@page: The page that was allocated from skb_alloc_page
2550  *	@skb: The skb that may need pfmemalloc set
2551  */
2552 static inline void skb_propagate_pfmemalloc(struct page *page,
2553 					     struct sk_buff *skb)
2554 {
2555 	if (page_is_pfmemalloc(page))
2556 		skb->pfmemalloc = true;
2557 }
2558 
2559 /**
2560  * skb_frag_page - retrieve the page referred to by a paged fragment
2561  * @frag: the paged fragment
2562  *
2563  * Returns the &struct page associated with @frag.
2564  */
2565 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2566 {
2567 	return frag->page.p;
2568 }
2569 
2570 /**
2571  * __skb_frag_ref - take an addition reference on a paged fragment.
2572  * @frag: the paged fragment
2573  *
2574  * Takes an additional reference on the paged fragment @frag.
2575  */
2576 static inline void __skb_frag_ref(skb_frag_t *frag)
2577 {
2578 	get_page(skb_frag_page(frag));
2579 }
2580 
2581 /**
2582  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2583  * @skb: the buffer
2584  * @f: the fragment offset.
2585  *
2586  * Takes an additional reference on the @f'th paged fragment of @skb.
2587  */
2588 static inline void skb_frag_ref(struct sk_buff *skb, int f)
2589 {
2590 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2591 }
2592 
2593 /**
2594  * __skb_frag_unref - release a reference on a paged fragment.
2595  * @frag: the paged fragment
2596  *
2597  * Releases a reference on the paged fragment @frag.
2598  */
2599 static inline void __skb_frag_unref(skb_frag_t *frag)
2600 {
2601 	put_page(skb_frag_page(frag));
2602 }
2603 
2604 /**
2605  * skb_frag_unref - release a reference on a paged fragment of an skb.
2606  * @skb: the buffer
2607  * @f: the fragment offset
2608  *
2609  * Releases a reference on the @f'th paged fragment of @skb.
2610  */
2611 static inline void skb_frag_unref(struct sk_buff *skb, int f)
2612 {
2613 	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2614 }
2615 
2616 /**
2617  * skb_frag_address - gets the address of the data contained in a paged fragment
2618  * @frag: the paged fragment buffer
2619  *
2620  * Returns the address of the data within @frag. The page must already
2621  * be mapped.
2622  */
2623 static inline void *skb_frag_address(const skb_frag_t *frag)
2624 {
2625 	return page_address(skb_frag_page(frag)) + frag->page_offset;
2626 }
2627 
2628 /**
2629  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2630  * @frag: the paged fragment buffer
2631  *
2632  * Returns the address of the data within @frag. Checks that the page
2633  * is mapped and returns %NULL otherwise.
2634  */
2635 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2636 {
2637 	void *ptr = page_address(skb_frag_page(frag));
2638 	if (unlikely(!ptr))
2639 		return NULL;
2640 
2641 	return ptr + frag->page_offset;
2642 }
2643 
2644 /**
2645  * __skb_frag_set_page - sets the page contained in a paged fragment
2646  * @frag: the paged fragment
2647  * @page: the page to set
2648  *
2649  * Sets the fragment @frag to contain @page.
2650  */
2651 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2652 {
2653 	frag->page.p = page;
2654 }
2655 
2656 /**
2657  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2658  * @skb: the buffer
2659  * @f: the fragment offset
2660  * @page: the page to set
2661  *
2662  * Sets the @f'th fragment of @skb to contain @page.
2663  */
2664 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2665 				     struct page *page)
2666 {
2667 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2668 }
2669 
2670 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2671 
2672 /**
2673  * skb_frag_dma_map - maps a paged fragment via the DMA API
2674  * @dev: the device to map the fragment to
2675  * @frag: the paged fragment to map
2676  * @offset: the offset within the fragment (starting at the
2677  *          fragment's own offset)
2678  * @size: the number of bytes to map
2679  * @dir: the direction of the mapping (%PCI_DMA_*)
2680  *
2681  * Maps the page associated with @frag to @device.
2682  */
2683 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2684 					  const skb_frag_t *frag,
2685 					  size_t offset, size_t size,
2686 					  enum dma_data_direction dir)
2687 {
2688 	return dma_map_page(dev, skb_frag_page(frag),
2689 			    frag->page_offset + offset, size, dir);
2690 }
2691 
2692 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2693 					gfp_t gfp_mask)
2694 {
2695 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2696 }
2697 
2698 
2699 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2700 						  gfp_t gfp_mask)
2701 {
2702 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2703 }
2704 
2705 
2706 /**
2707  *	skb_clone_writable - is the header of a clone writable
2708  *	@skb: buffer to check
2709  *	@len: length up to which to write
2710  *
2711  *	Returns true if modifying the header part of the cloned buffer
2712  *	does not requires the data to be copied.
2713  */
2714 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2715 {
2716 	return !skb_header_cloned(skb) &&
2717 	       skb_headroom(skb) + len <= skb->hdr_len;
2718 }
2719 
2720 static inline int skb_try_make_writable(struct sk_buff *skb,
2721 					unsigned int write_len)
2722 {
2723 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
2724 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2725 }
2726 
2727 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2728 			    int cloned)
2729 {
2730 	int delta = 0;
2731 
2732 	if (headroom > skb_headroom(skb))
2733 		delta = headroom - skb_headroom(skb);
2734 
2735 	if (delta || cloned)
2736 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2737 					GFP_ATOMIC);
2738 	return 0;
2739 }
2740 
2741 /**
2742  *	skb_cow - copy header of skb when it is required
2743  *	@skb: buffer to cow
2744  *	@headroom: needed headroom
2745  *
2746  *	If the skb passed lacks sufficient headroom or its data part
2747  *	is shared, data is reallocated. If reallocation fails, an error
2748  *	is returned and original skb is not changed.
2749  *
2750  *	The result is skb with writable area skb->head...skb->tail
2751  *	and at least @headroom of space at head.
2752  */
2753 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2754 {
2755 	return __skb_cow(skb, headroom, skb_cloned(skb));
2756 }
2757 
2758 /**
2759  *	skb_cow_head - skb_cow but only making the head writable
2760  *	@skb: buffer to cow
2761  *	@headroom: needed headroom
2762  *
2763  *	This function is identical to skb_cow except that we replace the
2764  *	skb_cloned check by skb_header_cloned.  It should be used when
2765  *	you only need to push on some header and do not need to modify
2766  *	the data.
2767  */
2768 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2769 {
2770 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
2771 }
2772 
2773 /**
2774  *	skb_padto	- pad an skbuff up to a minimal size
2775  *	@skb: buffer to pad
2776  *	@len: minimal length
2777  *
2778  *	Pads up a buffer to ensure the trailing bytes exist and are
2779  *	blanked. If the buffer already contains sufficient data it
2780  *	is untouched. Otherwise it is extended. Returns zero on
2781  *	success. The skb is freed on error.
2782  */
2783 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
2784 {
2785 	unsigned int size = skb->len;
2786 	if (likely(size >= len))
2787 		return 0;
2788 	return skb_pad(skb, len - size);
2789 }
2790 
2791 /**
2792  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
2793  *	@skb: buffer to pad
2794  *	@len: minimal length
2795  *
2796  *	Pads up a buffer to ensure the trailing bytes exist and are
2797  *	blanked. If the buffer already contains sufficient data it
2798  *	is untouched. Otherwise it is extended. Returns zero on
2799  *	success. The skb is freed on error.
2800  */
2801 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
2802 {
2803 	unsigned int size = skb->len;
2804 
2805 	if (unlikely(size < len)) {
2806 		len -= size;
2807 		if (skb_pad(skb, len))
2808 			return -ENOMEM;
2809 		__skb_put(skb, len);
2810 	}
2811 	return 0;
2812 }
2813 
2814 static inline int skb_add_data(struct sk_buff *skb,
2815 			       struct iov_iter *from, int copy)
2816 {
2817 	const int off = skb->len;
2818 
2819 	if (skb->ip_summed == CHECKSUM_NONE) {
2820 		__wsum csum = 0;
2821 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
2822 					         &csum, from)) {
2823 			skb->csum = csum_block_add(skb->csum, csum, off);
2824 			return 0;
2825 		}
2826 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
2827 		return 0;
2828 
2829 	__skb_trim(skb, off);
2830 	return -EFAULT;
2831 }
2832 
2833 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
2834 				    const struct page *page, int off)
2835 {
2836 	if (i) {
2837 		const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
2838 
2839 		return page == skb_frag_page(frag) &&
2840 		       off == frag->page_offset + skb_frag_size(frag);
2841 	}
2842 	return false;
2843 }
2844 
2845 static inline int __skb_linearize(struct sk_buff *skb)
2846 {
2847 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
2848 }
2849 
2850 /**
2851  *	skb_linearize - convert paged skb to linear one
2852  *	@skb: buffer to linarize
2853  *
2854  *	If there is no free memory -ENOMEM is returned, otherwise zero
2855  *	is returned and the old skb data released.
2856  */
2857 static inline int skb_linearize(struct sk_buff *skb)
2858 {
2859 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
2860 }
2861 
2862 /**
2863  * skb_has_shared_frag - can any frag be overwritten
2864  * @skb: buffer to test
2865  *
2866  * Return true if the skb has at least one frag that might be modified
2867  * by an external entity (as in vmsplice()/sendfile())
2868  */
2869 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
2870 {
2871 	return skb_is_nonlinear(skb) &&
2872 	       skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2873 }
2874 
2875 /**
2876  *	skb_linearize_cow - make sure skb is linear and writable
2877  *	@skb: buffer to process
2878  *
2879  *	If there is no free memory -ENOMEM is returned, otherwise zero
2880  *	is returned and the old skb data released.
2881  */
2882 static inline int skb_linearize_cow(struct sk_buff *skb)
2883 {
2884 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
2885 	       __skb_linearize(skb) : 0;
2886 }
2887 
2888 static __always_inline void
2889 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
2890 		     unsigned int off)
2891 {
2892 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2893 		skb->csum = csum_block_sub(skb->csum,
2894 					   csum_partial(start, len, 0), off);
2895 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
2896 		 skb_checksum_start_offset(skb) < 0)
2897 		skb->ip_summed = CHECKSUM_NONE;
2898 }
2899 
2900 /**
2901  *	skb_postpull_rcsum - update checksum for received skb after pull
2902  *	@skb: buffer to update
2903  *	@start: start of data before pull
2904  *	@len: length of data pulled
2905  *
2906  *	After doing a pull on a received packet, you need to call this to
2907  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
2908  *	CHECKSUM_NONE so that it can be recomputed from scratch.
2909  */
2910 static inline void skb_postpull_rcsum(struct sk_buff *skb,
2911 				      const void *start, unsigned int len)
2912 {
2913 	__skb_postpull_rcsum(skb, start, len, 0);
2914 }
2915 
2916 static __always_inline void
2917 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
2918 		     unsigned int off)
2919 {
2920 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2921 		skb->csum = csum_block_add(skb->csum,
2922 					   csum_partial(start, len, 0), off);
2923 }
2924 
2925 /**
2926  *	skb_postpush_rcsum - update checksum for received skb after push
2927  *	@skb: buffer to update
2928  *	@start: start of data after push
2929  *	@len: length of data pushed
2930  *
2931  *	After doing a push on a received packet, you need to call this to
2932  *	update the CHECKSUM_COMPLETE checksum.
2933  */
2934 static inline void skb_postpush_rcsum(struct sk_buff *skb,
2935 				      const void *start, unsigned int len)
2936 {
2937 	__skb_postpush_rcsum(skb, start, len, 0);
2938 }
2939 
2940 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
2941 
2942 /**
2943  *	skb_push_rcsum - push skb and update receive checksum
2944  *	@skb: buffer to update
2945  *	@len: length of data pulled
2946  *
2947  *	This function performs an skb_push on the packet and updates
2948  *	the CHECKSUM_COMPLETE checksum.  It should be used on
2949  *	receive path processing instead of skb_push unless you know
2950  *	that the checksum difference is zero (e.g., a valid IP header)
2951  *	or you are setting ip_summed to CHECKSUM_NONE.
2952  */
2953 static inline unsigned char *skb_push_rcsum(struct sk_buff *skb,
2954 					    unsigned int len)
2955 {
2956 	skb_push(skb, len);
2957 	skb_postpush_rcsum(skb, skb->data, len);
2958 	return skb->data;
2959 }
2960 
2961 /**
2962  *	pskb_trim_rcsum - trim received skb and update checksum
2963  *	@skb: buffer to trim
2964  *	@len: new length
2965  *
2966  *	This is exactly the same as pskb_trim except that it ensures the
2967  *	checksum of received packets are still valid after the operation.
2968  */
2969 
2970 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2971 {
2972 	if (likely(len >= skb->len))
2973 		return 0;
2974 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2975 		skb->ip_summed = CHECKSUM_NONE;
2976 	return __pskb_trim(skb, len);
2977 }
2978 
2979 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2980 {
2981 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2982 		skb->ip_summed = CHECKSUM_NONE;
2983 	__skb_trim(skb, len);
2984 	return 0;
2985 }
2986 
2987 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
2988 {
2989 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2990 		skb->ip_summed = CHECKSUM_NONE;
2991 	return __skb_grow(skb, len);
2992 }
2993 
2994 #define skb_queue_walk(queue, skb) \
2995 		for (skb = (queue)->next;					\
2996 		     skb != (struct sk_buff *)(queue);				\
2997 		     skb = skb->next)
2998 
2999 #define skb_queue_walk_safe(queue, skb, tmp)					\
3000 		for (skb = (queue)->next, tmp = skb->next;			\
3001 		     skb != (struct sk_buff *)(queue);				\
3002 		     skb = tmp, tmp = skb->next)
3003 
3004 #define skb_queue_walk_from(queue, skb)						\
3005 		for (; skb != (struct sk_buff *)(queue);			\
3006 		     skb = skb->next)
3007 
3008 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3009 		for (tmp = skb->next;						\
3010 		     skb != (struct sk_buff *)(queue);				\
3011 		     skb = tmp, tmp = skb->next)
3012 
3013 #define skb_queue_reverse_walk(queue, skb) \
3014 		for (skb = (queue)->prev;					\
3015 		     skb != (struct sk_buff *)(queue);				\
3016 		     skb = skb->prev)
3017 
3018 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3019 		for (skb = (queue)->prev, tmp = skb->prev;			\
3020 		     skb != (struct sk_buff *)(queue);				\
3021 		     skb = tmp, tmp = skb->prev)
3022 
3023 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3024 		for (tmp = skb->prev;						\
3025 		     skb != (struct sk_buff *)(queue);				\
3026 		     skb = tmp, tmp = skb->prev)
3027 
3028 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3029 {
3030 	return skb_shinfo(skb)->frag_list != NULL;
3031 }
3032 
3033 static inline void skb_frag_list_init(struct sk_buff *skb)
3034 {
3035 	skb_shinfo(skb)->frag_list = NULL;
3036 }
3037 
3038 #define skb_walk_frags(skb, iter)	\
3039 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3040 
3041 
3042 int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
3043 				const struct sk_buff *skb);
3044 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
3045 					void (*destructor)(struct sock *sk,
3046 							   struct sk_buff *skb),
3047 					int *peeked, int *off, int *err,
3048 					struct sk_buff **last);
3049 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
3050 				    void (*destructor)(struct sock *sk,
3051 						       struct sk_buff *skb),
3052 				    int *peeked, int *off, int *err);
3053 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3054 				  int *err);
3055 unsigned int datagram_poll(struct file *file, struct socket *sock,
3056 			   struct poll_table_struct *wait);
3057 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3058 			   struct iov_iter *to, int size);
3059 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3060 					struct msghdr *msg, int size)
3061 {
3062 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3063 }
3064 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3065 				   struct msghdr *msg);
3066 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3067 				 struct iov_iter *from, int len);
3068 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3069 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3070 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3071 static inline void skb_free_datagram_locked(struct sock *sk,
3072 					    struct sk_buff *skb)
3073 {
3074 	__skb_free_datagram_locked(sk, skb, 0);
3075 }
3076 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3077 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3078 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3079 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3080 			      int len, __wsum csum);
3081 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3082 		    struct pipe_inode_info *pipe, unsigned int len,
3083 		    unsigned int flags);
3084 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3085 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3086 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3087 		 int len, int hlen);
3088 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3089 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3090 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3091 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
3092 bool skb_gso_validate_mtu(const struct sk_buff *skb, unsigned int mtu);
3093 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3094 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3095 int skb_ensure_writable(struct sk_buff *skb, int write_len);
3096 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3097 int skb_vlan_pop(struct sk_buff *skb);
3098 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3099 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3100 			     gfp_t gfp);
3101 
3102 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3103 {
3104 	return copy_from_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3105 }
3106 
3107 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3108 {
3109 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3110 }
3111 
3112 struct skb_checksum_ops {
3113 	__wsum (*update)(const void *mem, int len, __wsum wsum);
3114 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3115 };
3116 
3117 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3118 		      __wsum csum, const struct skb_checksum_ops *ops);
3119 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3120 		    __wsum csum);
3121 
3122 static inline void * __must_check
3123 __skb_header_pointer(const struct sk_buff *skb, int offset,
3124 		     int len, void *data, int hlen, void *buffer)
3125 {
3126 	if (hlen - offset >= len)
3127 		return data + offset;
3128 
3129 	if (!skb ||
3130 	    skb_copy_bits(skb, offset, buffer, len) < 0)
3131 		return NULL;
3132 
3133 	return buffer;
3134 }
3135 
3136 static inline void * __must_check
3137 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3138 {
3139 	return __skb_header_pointer(skb, offset, len, skb->data,
3140 				    skb_headlen(skb), buffer);
3141 }
3142 
3143 /**
3144  *	skb_needs_linearize - check if we need to linearize a given skb
3145  *			      depending on the given device features.
3146  *	@skb: socket buffer to check
3147  *	@features: net device features
3148  *
3149  *	Returns true if either:
3150  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
3151  *	2. skb is fragmented and the device does not support SG.
3152  */
3153 static inline bool skb_needs_linearize(struct sk_buff *skb,
3154 				       netdev_features_t features)
3155 {
3156 	return skb_is_nonlinear(skb) &&
3157 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3158 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3159 }
3160 
3161 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3162 					     void *to,
3163 					     const unsigned int len)
3164 {
3165 	memcpy(to, skb->data, len);
3166 }
3167 
3168 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3169 						    const int offset, void *to,
3170 						    const unsigned int len)
3171 {
3172 	memcpy(to, skb->data + offset, len);
3173 }
3174 
3175 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3176 					   const void *from,
3177 					   const unsigned int len)
3178 {
3179 	memcpy(skb->data, from, len);
3180 }
3181 
3182 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3183 						  const int offset,
3184 						  const void *from,
3185 						  const unsigned int len)
3186 {
3187 	memcpy(skb->data + offset, from, len);
3188 }
3189 
3190 void skb_init(void);
3191 
3192 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3193 {
3194 	return skb->tstamp;
3195 }
3196 
3197 /**
3198  *	skb_get_timestamp - get timestamp from a skb
3199  *	@skb: skb to get stamp from
3200  *	@stamp: pointer to struct timeval to store stamp in
3201  *
3202  *	Timestamps are stored in the skb as offsets to a base timestamp.
3203  *	This function converts the offset back to a struct timeval and stores
3204  *	it in stamp.
3205  */
3206 static inline void skb_get_timestamp(const struct sk_buff *skb,
3207 				     struct timeval *stamp)
3208 {
3209 	*stamp = ktime_to_timeval(skb->tstamp);
3210 }
3211 
3212 static inline void skb_get_timestampns(const struct sk_buff *skb,
3213 				       struct timespec *stamp)
3214 {
3215 	*stamp = ktime_to_timespec(skb->tstamp);
3216 }
3217 
3218 static inline void __net_timestamp(struct sk_buff *skb)
3219 {
3220 	skb->tstamp = ktime_get_real();
3221 }
3222 
3223 static inline ktime_t net_timedelta(ktime_t t)
3224 {
3225 	return ktime_sub(ktime_get_real(), t);
3226 }
3227 
3228 static inline ktime_t net_invalid_timestamp(void)
3229 {
3230 	return 0;
3231 }
3232 
3233 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3234 
3235 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3236 
3237 void skb_clone_tx_timestamp(struct sk_buff *skb);
3238 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3239 
3240 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3241 
3242 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3243 {
3244 }
3245 
3246 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3247 {
3248 	return false;
3249 }
3250 
3251 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3252 
3253 /**
3254  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3255  *
3256  * PHY drivers may accept clones of transmitted packets for
3257  * timestamping via their phy_driver.txtstamp method. These drivers
3258  * must call this function to return the skb back to the stack with a
3259  * timestamp.
3260  *
3261  * @skb: clone of the the original outgoing packet
3262  * @hwtstamps: hardware time stamps
3263  *
3264  */
3265 void skb_complete_tx_timestamp(struct sk_buff *skb,
3266 			       struct skb_shared_hwtstamps *hwtstamps);
3267 
3268 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3269 		     struct skb_shared_hwtstamps *hwtstamps,
3270 		     struct sock *sk, int tstype);
3271 
3272 /**
3273  * skb_tstamp_tx - queue clone of skb with send time stamps
3274  * @orig_skb:	the original outgoing packet
3275  * @hwtstamps:	hardware time stamps, may be NULL if not available
3276  *
3277  * If the skb has a socket associated, then this function clones the
3278  * skb (thus sharing the actual data and optional structures), stores
3279  * the optional hardware time stamping information (if non NULL) or
3280  * generates a software time stamp (otherwise), then queues the clone
3281  * to the error queue of the socket.  Errors are silently ignored.
3282  */
3283 void skb_tstamp_tx(struct sk_buff *orig_skb,
3284 		   struct skb_shared_hwtstamps *hwtstamps);
3285 
3286 static inline void sw_tx_timestamp(struct sk_buff *skb)
3287 {
3288 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
3289 	    !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
3290 		skb_tstamp_tx(skb, NULL);
3291 }
3292 
3293 /**
3294  * skb_tx_timestamp() - Driver hook for transmit timestamping
3295  *
3296  * Ethernet MAC Drivers should call this function in their hard_xmit()
3297  * function immediately before giving the sk_buff to the MAC hardware.
3298  *
3299  * Specifically, one should make absolutely sure that this function is
3300  * called before TX completion of this packet can trigger.  Otherwise
3301  * the packet could potentially already be freed.
3302  *
3303  * @skb: A socket buffer.
3304  */
3305 static inline void skb_tx_timestamp(struct sk_buff *skb)
3306 {
3307 	skb_clone_tx_timestamp(skb);
3308 	sw_tx_timestamp(skb);
3309 }
3310 
3311 /**
3312  * skb_complete_wifi_ack - deliver skb with wifi status
3313  *
3314  * @skb: the original outgoing packet
3315  * @acked: ack status
3316  *
3317  */
3318 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3319 
3320 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3321 __sum16 __skb_checksum_complete(struct sk_buff *skb);
3322 
3323 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3324 {
3325 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3326 		skb->csum_valid ||
3327 		(skb->ip_summed == CHECKSUM_PARTIAL &&
3328 		 skb_checksum_start_offset(skb) >= 0));
3329 }
3330 
3331 /**
3332  *	skb_checksum_complete - Calculate checksum of an entire packet
3333  *	@skb: packet to process
3334  *
3335  *	This function calculates the checksum over the entire packet plus
3336  *	the value of skb->csum.  The latter can be used to supply the
3337  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
3338  *	checksum.
3339  *
3340  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
3341  *	this function can be used to verify that checksum on received
3342  *	packets.  In that case the function should return zero if the
3343  *	checksum is correct.  In particular, this function will return zero
3344  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3345  *	hardware has already verified the correctness of the checksum.
3346  */
3347 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3348 {
3349 	return skb_csum_unnecessary(skb) ?
3350 	       0 : __skb_checksum_complete(skb);
3351 }
3352 
3353 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3354 {
3355 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3356 		if (skb->csum_level == 0)
3357 			skb->ip_summed = CHECKSUM_NONE;
3358 		else
3359 			skb->csum_level--;
3360 	}
3361 }
3362 
3363 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3364 {
3365 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3366 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3367 			skb->csum_level++;
3368 	} else if (skb->ip_summed == CHECKSUM_NONE) {
3369 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3370 		skb->csum_level = 0;
3371 	}
3372 }
3373 
3374 static inline void __skb_mark_checksum_bad(struct sk_buff *skb)
3375 {
3376 	/* Mark current checksum as bad (typically called from GRO
3377 	 * path). In the case that ip_summed is CHECKSUM_NONE
3378 	 * this must be the first checksum encountered in the packet.
3379 	 * When ip_summed is CHECKSUM_UNNECESSARY, this is the first
3380 	 * checksum after the last one validated. For UDP, a zero
3381 	 * checksum can not be marked as bad.
3382 	 */
3383 
3384 	if (skb->ip_summed == CHECKSUM_NONE ||
3385 	    skb->ip_summed == CHECKSUM_UNNECESSARY)
3386 		skb->csum_bad = 1;
3387 }
3388 
3389 /* Check if we need to perform checksum complete validation.
3390  *
3391  * Returns true if checksum complete is needed, false otherwise
3392  * (either checksum is unnecessary or zero checksum is allowed).
3393  */
3394 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3395 						  bool zero_okay,
3396 						  __sum16 check)
3397 {
3398 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3399 		skb->csum_valid = 1;
3400 		__skb_decr_checksum_unnecessary(skb);
3401 		return false;
3402 	}
3403 
3404 	return true;
3405 }
3406 
3407 /* For small packets <= CHECKSUM_BREAK peform checksum complete directly
3408  * in checksum_init.
3409  */
3410 #define CHECKSUM_BREAK 76
3411 
3412 /* Unset checksum-complete
3413  *
3414  * Unset checksum complete can be done when packet is being modified
3415  * (uncompressed for instance) and checksum-complete value is
3416  * invalidated.
3417  */
3418 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3419 {
3420 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3421 		skb->ip_summed = CHECKSUM_NONE;
3422 }
3423 
3424 /* Validate (init) checksum based on checksum complete.
3425  *
3426  * Return values:
3427  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
3428  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3429  *	checksum is stored in skb->csum for use in __skb_checksum_complete
3430  *   non-zero: value of invalid checksum
3431  *
3432  */
3433 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3434 						       bool complete,
3435 						       __wsum psum)
3436 {
3437 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
3438 		if (!csum_fold(csum_add(psum, skb->csum))) {
3439 			skb->csum_valid = 1;
3440 			return 0;
3441 		}
3442 	} else if (skb->csum_bad) {
3443 		/* ip_summed == CHECKSUM_NONE in this case */
3444 		return (__force __sum16)1;
3445 	}
3446 
3447 	skb->csum = psum;
3448 
3449 	if (complete || skb->len <= CHECKSUM_BREAK) {
3450 		__sum16 csum;
3451 
3452 		csum = __skb_checksum_complete(skb);
3453 		skb->csum_valid = !csum;
3454 		return csum;
3455 	}
3456 
3457 	return 0;
3458 }
3459 
3460 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3461 {
3462 	return 0;
3463 }
3464 
3465 /* Perform checksum validate (init). Note that this is a macro since we only
3466  * want to calculate the pseudo header which is an input function if necessary.
3467  * First we try to validate without any computation (checksum unnecessary) and
3468  * then calculate based on checksum complete calling the function to compute
3469  * pseudo header.
3470  *
3471  * Return values:
3472  *   0: checksum is validated or try to in skb_checksum_complete
3473  *   non-zero: value of invalid checksum
3474  */
3475 #define __skb_checksum_validate(skb, proto, complete,			\
3476 				zero_okay, check, compute_pseudo)	\
3477 ({									\
3478 	__sum16 __ret = 0;						\
3479 	skb->csum_valid = 0;						\
3480 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
3481 		__ret = __skb_checksum_validate_complete(skb,		\
3482 				complete, compute_pseudo(skb, proto));	\
3483 	__ret;								\
3484 })
3485 
3486 #define skb_checksum_init(skb, proto, compute_pseudo)			\
3487 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3488 
3489 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
3490 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3491 
3492 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
3493 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3494 
3495 #define skb_checksum_validate_zero_check(skb, proto, check,		\
3496 					 compute_pseudo)		\
3497 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
3498 
3499 #define skb_checksum_simple_validate(skb)				\
3500 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3501 
3502 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3503 {
3504 	return (skb->ip_summed == CHECKSUM_NONE &&
3505 		skb->csum_valid && !skb->csum_bad);
3506 }
3507 
3508 static inline void __skb_checksum_convert(struct sk_buff *skb,
3509 					  __sum16 check, __wsum pseudo)
3510 {
3511 	skb->csum = ~pseudo;
3512 	skb->ip_summed = CHECKSUM_COMPLETE;
3513 }
3514 
3515 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo)	\
3516 do {									\
3517 	if (__skb_checksum_convert_check(skb))				\
3518 		__skb_checksum_convert(skb, check,			\
3519 				       compute_pseudo(skb, proto));	\
3520 } while (0)
3521 
3522 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3523 					      u16 start, u16 offset)
3524 {
3525 	skb->ip_summed = CHECKSUM_PARTIAL;
3526 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3527 	skb->csum_offset = offset - start;
3528 }
3529 
3530 /* Update skbuf and packet to reflect the remote checksum offload operation.
3531  * When called, ptr indicates the starting point for skb->csum when
3532  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3533  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3534  */
3535 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
3536 				       int start, int offset, bool nopartial)
3537 {
3538 	__wsum delta;
3539 
3540 	if (!nopartial) {
3541 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
3542 		return;
3543 	}
3544 
3545 	 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3546 		__skb_checksum_complete(skb);
3547 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3548 	}
3549 
3550 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
3551 
3552 	/* Adjust skb->csum since we changed the packet */
3553 	skb->csum = csum_add(skb->csum, delta);
3554 }
3555 
3556 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3557 void nf_conntrack_destroy(struct nf_conntrack *nfct);
3558 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3559 {
3560 	if (nfct && atomic_dec_and_test(&nfct->use))
3561 		nf_conntrack_destroy(nfct);
3562 }
3563 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3564 {
3565 	if (nfct)
3566 		atomic_inc(&nfct->use);
3567 }
3568 #endif
3569 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3570 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
3571 {
3572 	if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
3573 		kfree(nf_bridge);
3574 }
3575 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
3576 {
3577 	if (nf_bridge)
3578 		atomic_inc(&nf_bridge->use);
3579 }
3580 #endif /* CONFIG_BRIDGE_NETFILTER */
3581 static inline void nf_reset(struct sk_buff *skb)
3582 {
3583 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3584 	nf_conntrack_put(skb->nfct);
3585 	skb->nfct = NULL;
3586 #endif
3587 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3588 	nf_bridge_put(skb->nf_bridge);
3589 	skb->nf_bridge = NULL;
3590 #endif
3591 }
3592 
3593 static inline void nf_reset_trace(struct sk_buff *skb)
3594 {
3595 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3596 	skb->nf_trace = 0;
3597 #endif
3598 }
3599 
3600 /* Note: This doesn't put any conntrack and bridge info in dst. */
3601 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
3602 			     bool copy)
3603 {
3604 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3605 	dst->nfct = src->nfct;
3606 	nf_conntrack_get(src->nfct);
3607 	if (copy)
3608 		dst->nfctinfo = src->nfctinfo;
3609 #endif
3610 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3611 	dst->nf_bridge  = src->nf_bridge;
3612 	nf_bridge_get(src->nf_bridge);
3613 #endif
3614 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3615 	if (copy)
3616 		dst->nf_trace = src->nf_trace;
3617 #endif
3618 }
3619 
3620 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
3621 {
3622 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3623 	nf_conntrack_put(dst->nfct);
3624 #endif
3625 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3626 	nf_bridge_put(dst->nf_bridge);
3627 #endif
3628 	__nf_copy(dst, src, true);
3629 }
3630 
3631 #ifdef CONFIG_NETWORK_SECMARK
3632 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3633 {
3634 	to->secmark = from->secmark;
3635 }
3636 
3637 static inline void skb_init_secmark(struct sk_buff *skb)
3638 {
3639 	skb->secmark = 0;
3640 }
3641 #else
3642 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3643 { }
3644 
3645 static inline void skb_init_secmark(struct sk_buff *skb)
3646 { }
3647 #endif
3648 
3649 static inline bool skb_irq_freeable(const struct sk_buff *skb)
3650 {
3651 	return !skb->destructor &&
3652 #if IS_ENABLED(CONFIG_XFRM)
3653 		!skb->sp &&
3654 #endif
3655 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
3656 		!skb->nfct &&
3657 #endif
3658 		!skb->_skb_refdst &&
3659 		!skb_has_frag_list(skb);
3660 }
3661 
3662 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
3663 {
3664 	skb->queue_mapping = queue_mapping;
3665 }
3666 
3667 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
3668 {
3669 	return skb->queue_mapping;
3670 }
3671 
3672 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
3673 {
3674 	to->queue_mapping = from->queue_mapping;
3675 }
3676 
3677 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
3678 {
3679 	skb->queue_mapping = rx_queue + 1;
3680 }
3681 
3682 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
3683 {
3684 	return skb->queue_mapping - 1;
3685 }
3686 
3687 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
3688 {
3689 	return skb->queue_mapping != 0;
3690 }
3691 
3692 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
3693 {
3694 #ifdef CONFIG_XFRM
3695 	return skb->sp;
3696 #else
3697 	return NULL;
3698 #endif
3699 }
3700 
3701 /* Keeps track of mac header offset relative to skb->head.
3702  * It is useful for TSO of Tunneling protocol. e.g. GRE.
3703  * For non-tunnel skb it points to skb_mac_header() and for
3704  * tunnel skb it points to outer mac header.
3705  * Keeps track of level of encapsulation of network headers.
3706  */
3707 struct skb_gso_cb {
3708 	union {
3709 		int	mac_offset;
3710 		int	data_offset;
3711 	};
3712 	int	encap_level;
3713 	__wsum	csum;
3714 	__u16	csum_start;
3715 };
3716 #define SKB_SGO_CB_OFFSET	32
3717 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
3718 
3719 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
3720 {
3721 	return (skb_mac_header(inner_skb) - inner_skb->head) -
3722 		SKB_GSO_CB(inner_skb)->mac_offset;
3723 }
3724 
3725 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
3726 {
3727 	int new_headroom, headroom;
3728 	int ret;
3729 
3730 	headroom = skb_headroom(skb);
3731 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
3732 	if (ret)
3733 		return ret;
3734 
3735 	new_headroom = skb_headroom(skb);
3736 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
3737 	return 0;
3738 }
3739 
3740 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
3741 {
3742 	/* Do not update partial checksums if remote checksum is enabled. */
3743 	if (skb->remcsum_offload)
3744 		return;
3745 
3746 	SKB_GSO_CB(skb)->csum = res;
3747 	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
3748 }
3749 
3750 /* Compute the checksum for a gso segment. First compute the checksum value
3751  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
3752  * then add in skb->csum (checksum from csum_start to end of packet).
3753  * skb->csum and csum_start are then updated to reflect the checksum of the
3754  * resultant packet starting from the transport header-- the resultant checksum
3755  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
3756  * header.
3757  */
3758 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
3759 {
3760 	unsigned char *csum_start = skb_transport_header(skb);
3761 	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
3762 	__wsum partial = SKB_GSO_CB(skb)->csum;
3763 
3764 	SKB_GSO_CB(skb)->csum = res;
3765 	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
3766 
3767 	return csum_fold(csum_partial(csum_start, plen, partial));
3768 }
3769 
3770 static inline bool skb_is_gso(const struct sk_buff *skb)
3771 {
3772 	return skb_shinfo(skb)->gso_size;
3773 }
3774 
3775 /* Note: Should be called only if skb_is_gso(skb) is true */
3776 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
3777 {
3778 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
3779 }
3780 
3781 static inline void skb_gso_reset(struct sk_buff *skb)
3782 {
3783 	skb_shinfo(skb)->gso_size = 0;
3784 	skb_shinfo(skb)->gso_segs = 0;
3785 	skb_shinfo(skb)->gso_type = 0;
3786 }
3787 
3788 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
3789 
3790 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
3791 {
3792 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
3793 	 * wanted then gso_type will be set. */
3794 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3795 
3796 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
3797 	    unlikely(shinfo->gso_type == 0)) {
3798 		__skb_warn_lro_forwarding(skb);
3799 		return true;
3800 	}
3801 	return false;
3802 }
3803 
3804 static inline void skb_forward_csum(struct sk_buff *skb)
3805 {
3806 	/* Unfortunately we don't support this one.  Any brave souls? */
3807 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3808 		skb->ip_summed = CHECKSUM_NONE;
3809 }
3810 
3811 /**
3812  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
3813  * @skb: skb to check
3814  *
3815  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
3816  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
3817  * use this helper, to document places where we make this assertion.
3818  */
3819 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
3820 {
3821 #ifdef DEBUG
3822 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
3823 #endif
3824 }
3825 
3826 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
3827 
3828 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
3829 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
3830 				     unsigned int transport_len,
3831 				     __sum16(*skb_chkf)(struct sk_buff *skb));
3832 
3833 /**
3834  * skb_head_is_locked - Determine if the skb->head is locked down
3835  * @skb: skb to check
3836  *
3837  * The head on skbs build around a head frag can be removed if they are
3838  * not cloned.  This function returns true if the skb head is locked down
3839  * due to either being allocated via kmalloc, or by being a clone with
3840  * multiple references to the head.
3841  */
3842 static inline bool skb_head_is_locked(const struct sk_buff *skb)
3843 {
3844 	return !skb->head_frag || skb_cloned(skb);
3845 }
3846 
3847 /**
3848  * skb_gso_network_seglen - Return length of individual segments of a gso packet
3849  *
3850  * @skb: GSO skb
3851  *
3852  * skb_gso_network_seglen is used to determine the real size of the
3853  * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
3854  *
3855  * The MAC/L2 header is not accounted for.
3856  */
3857 static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
3858 {
3859 	unsigned int hdr_len = skb_transport_header(skb) -
3860 			       skb_network_header(skb);
3861 	return hdr_len + skb_gso_transport_seglen(skb);
3862 }
3863 
3864 /* Local Checksum Offload.
3865  * Compute outer checksum based on the assumption that the
3866  * inner checksum will be offloaded later.
3867  * See Documentation/networking/checksum-offloads.txt for
3868  * explanation of how this works.
3869  * Fill in outer checksum adjustment (e.g. with sum of outer
3870  * pseudo-header) before calling.
3871  * Also ensure that inner checksum is in linear data area.
3872  */
3873 static inline __wsum lco_csum(struct sk_buff *skb)
3874 {
3875 	unsigned char *csum_start = skb_checksum_start(skb);
3876 	unsigned char *l4_hdr = skb_transport_header(skb);
3877 	__wsum partial;
3878 
3879 	/* Start with complement of inner checksum adjustment */
3880 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
3881 						    skb->csum_offset));
3882 
3883 	/* Add in checksum of our headers (incl. outer checksum
3884 	 * adjustment filled in by caller) and return result.
3885 	 */
3886 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
3887 }
3888 
3889 #endif	/* __KERNEL__ */
3890 #endif	/* _LINUX_SKBUFF_H */
3891