xref: /linux-6.15/include/linux/skbuff.h (revision cebdb737)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  *	Definitions for the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:
6  *		Alan Cox, <[email protected]>
7  *		Florian La Roche, <[email protected]>
8  */
9 
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12 
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
22 
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/hrtimer.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/netdev_features.h>
33 #include <linux/sched.h>
34 #include <linux/sched/clock.h>
35 #include <net/flow_dissector.h>
36 #include <linux/splice.h>
37 #include <linux/in6.h>
38 #include <linux/if_packet.h>
39 #include <linux/llist.h>
40 #include <net/flow.h>
41 #include <net/page_pool.h>
42 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
43 #include <linux/netfilter/nf_conntrack_common.h>
44 #endif
45 
46 /* The interface for checksum offload between the stack and networking drivers
47  * is as follows...
48  *
49  * A. IP checksum related features
50  *
51  * Drivers advertise checksum offload capabilities in the features of a device.
52  * From the stack's point of view these are capabilities offered by the driver.
53  * A driver typically only advertises features that it is capable of offloading
54  * to its device.
55  *
56  * The checksum related features are:
57  *
58  *	NETIF_F_HW_CSUM	- The driver (or its device) is able to compute one
59  *			  IP (one's complement) checksum for any combination
60  *			  of protocols or protocol layering. The checksum is
61  *			  computed and set in a packet per the CHECKSUM_PARTIAL
62  *			  interface (see below).
63  *
64  *	NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
65  *			  TCP or UDP packets over IPv4. These are specifically
66  *			  unencapsulated packets of the form IPv4|TCP or
67  *			  IPv4|UDP where the Protocol field in the IPv4 header
68  *			  is TCP or UDP. The IPv4 header may contain IP options.
69  *			  This feature cannot be set in features for a device
70  *			  with NETIF_F_HW_CSUM also set. This feature is being
71  *			  DEPRECATED (see below).
72  *
73  *	NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
74  *			  TCP or UDP packets over IPv6. These are specifically
75  *			  unencapsulated packets of the form IPv6|TCP or
76  *			  IPv6|UDP where the Next Header field in the IPv6
77  *			  header is either TCP or UDP. IPv6 extension headers
78  *			  are not supported with this feature. This feature
79  *			  cannot be set in features for a device with
80  *			  NETIF_F_HW_CSUM also set. This feature is being
81  *			  DEPRECATED (see below).
82  *
83  *	NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
84  *			 This flag is only used to disable the RX checksum
85  *			 feature for a device. The stack will accept receive
86  *			 checksum indication in packets received on a device
87  *			 regardless of whether NETIF_F_RXCSUM is set.
88  *
89  * B. Checksumming of received packets by device. Indication of checksum
90  *    verification is set in skb->ip_summed. Possible values are:
91  *
92  * CHECKSUM_NONE:
93  *
94  *   Device did not checksum this packet e.g. due to lack of capabilities.
95  *   The packet contains full (though not verified) checksum in packet but
96  *   not in skb->csum. Thus, skb->csum is undefined in this case.
97  *
98  * CHECKSUM_UNNECESSARY:
99  *
100  *   The hardware you're dealing with doesn't calculate the full checksum
101  *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
102  *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
103  *   if their checksums are okay. skb->csum is still undefined in this case
104  *   though. A driver or device must never modify the checksum field in the
105  *   packet even if checksum is verified.
106  *
107  *   CHECKSUM_UNNECESSARY is applicable to following protocols:
108  *     TCP: IPv6 and IPv4.
109  *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
110  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
111  *       may perform further validation in this case.
112  *     GRE: only if the checksum is present in the header.
113  *     SCTP: indicates the CRC in SCTP header has been validated.
114  *     FCOE: indicates the CRC in FC frame has been validated.
115  *
116  *   skb->csum_level indicates the number of consecutive checksums found in
117  *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
118  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
119  *   and a device is able to verify the checksums for UDP (possibly zero),
120  *   GRE (checksum flag is set) and TCP, skb->csum_level would be set to
121  *   two. If the device were only able to verify the UDP checksum and not
122  *   GRE, either because it doesn't support GRE checksum or because GRE
123  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
124  *   not considered in this case).
125  *
126  * CHECKSUM_COMPLETE:
127  *
128  *   This is the most generic way. The device supplied checksum of the _whole_
129  *   packet as seen by netif_rx() and fills in skb->csum. This means the
130  *   hardware doesn't need to parse L3/L4 headers to implement this.
131  *
132  *   Notes:
133  *   - Even if device supports only some protocols, but is able to produce
134  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
135  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
136  *
137  * CHECKSUM_PARTIAL:
138  *
139  *   A checksum is set up to be offloaded to a device as described in the
140  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
141  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
142  *   on the same host, or it may be set in the input path in GRO or remote
143  *   checksum offload. For the purposes of checksum verification, the checksum
144  *   referred to by skb->csum_start + skb->csum_offset and any preceding
145  *   checksums in the packet are considered verified. Any checksums in the
146  *   packet that are after the checksum being offloaded are not considered to
147  *   be verified.
148  *
149  * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
150  *    in the skb->ip_summed for a packet. Values are:
151  *
152  * CHECKSUM_PARTIAL:
153  *
154  *   The driver is required to checksum the packet as seen by hard_start_xmit()
155  *   from skb->csum_start up to the end, and to record/write the checksum at
156  *   offset skb->csum_start + skb->csum_offset. A driver may verify that the
157  *   csum_start and csum_offset values are valid values given the length and
158  *   offset of the packet, but it should not attempt to validate that the
159  *   checksum refers to a legitimate transport layer checksum -- it is the
160  *   purview of the stack to validate that csum_start and csum_offset are set
161  *   correctly.
162  *
163  *   When the stack requests checksum offload for a packet, the driver MUST
164  *   ensure that the checksum is set correctly. A driver can either offload the
165  *   checksum calculation to the device, or call skb_checksum_help (in the case
166  *   that the device does not support offload for a particular checksum).
167  *
168  *   NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
169  *   NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
170  *   checksum offload capability.
171  *   skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
172  *   on network device checksumming capabilities: if a packet does not match
173  *   them, skb_checksum_help or skb_crc32c_help (depending on the value of
174  *   csum_not_inet, see item D.) is called to resolve the checksum.
175  *
176  * CHECKSUM_NONE:
177  *
178  *   The skb was already checksummed by the protocol, or a checksum is not
179  *   required.
180  *
181  * CHECKSUM_UNNECESSARY:
182  *
183  *   This has the same meaning as CHECKSUM_NONE for checksum offload on
184  *   output.
185  *
186  * CHECKSUM_COMPLETE:
187  *   Not used in checksum output. If a driver observes a packet with this value
188  *   set in skbuff, it should treat the packet as if CHECKSUM_NONE were set.
189  *
190  * D. Non-IP checksum (CRC) offloads
191  *
192  *   NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
193  *     offloading the SCTP CRC in a packet. To perform this offload the stack
194  *     will set csum_start and csum_offset accordingly, set ip_summed to
195  *     CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
196  *     the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
197  *     A driver that supports both IP checksum offload and SCTP CRC32c offload
198  *     must verify which offload is configured for a packet by testing the
199  *     value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
200  *     CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
201  *
202  *   NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
203  *     offloading the FCOE CRC in a packet. To perform this offload the stack
204  *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
205  *     accordingly. Note that there is no indication in the skbuff that the
206  *     CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
207  *     both IP checksum offload and FCOE CRC offload must verify which offload
208  *     is configured for a packet, presumably by inspecting packet headers.
209  *
210  * E. Checksumming on output with GSO.
211  *
212  * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
213  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
214  * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
215  * part of the GSO operation is implied. If a checksum is being offloaded
216  * with GSO then ip_summed is CHECKSUM_PARTIAL, and both csum_start and
217  * csum_offset are set to refer to the outermost checksum being offloaded
218  * (two offloaded checksums are possible with UDP encapsulation).
219  */
220 
221 /* Don't change this without changing skb_csum_unnecessary! */
222 #define CHECKSUM_NONE		0
223 #define CHECKSUM_UNNECESSARY	1
224 #define CHECKSUM_COMPLETE	2
225 #define CHECKSUM_PARTIAL	3
226 
227 /* Maximum value in skb->csum_level */
228 #define SKB_MAX_CSUM_LEVEL	3
229 
230 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
231 #define SKB_WITH_OVERHEAD(X)	\
232 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
233 #define SKB_MAX_ORDER(X, ORDER) \
234 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
235 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
236 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
237 
238 /* return minimum truesize of one skb containing X bytes of data */
239 #define SKB_TRUESIZE(X) ((X) +						\
240 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
241 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
242 
243 struct ahash_request;
244 struct net_device;
245 struct scatterlist;
246 struct pipe_inode_info;
247 struct iov_iter;
248 struct napi_struct;
249 struct bpf_prog;
250 union bpf_attr;
251 struct skb_ext;
252 
253 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
254 struct nf_bridge_info {
255 	enum {
256 		BRNF_PROTO_UNCHANGED,
257 		BRNF_PROTO_8021Q,
258 		BRNF_PROTO_PPPOE
259 	} orig_proto:8;
260 	u8			pkt_otherhost:1;
261 	u8			in_prerouting:1;
262 	u8			bridged_dnat:1;
263 	__u16			frag_max_size;
264 	struct net_device	*physindev;
265 
266 	/* always valid & non-NULL from FORWARD on, for physdev match */
267 	struct net_device	*physoutdev;
268 	union {
269 		/* prerouting: detect dnat in orig/reply direction */
270 		__be32          ipv4_daddr;
271 		struct in6_addr ipv6_daddr;
272 
273 		/* after prerouting + nat detected: store original source
274 		 * mac since neigh resolution overwrites it, only used while
275 		 * skb is out in neigh layer.
276 		 */
277 		char neigh_header[8];
278 	};
279 };
280 #endif
281 
282 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
283 /* Chain in tc_skb_ext will be used to share the tc chain with
284  * ovs recirc_id. It will be set to the current chain by tc
285  * and read by ovs to recirc_id.
286  */
287 struct tc_skb_ext {
288 	__u32 chain;
289 	__u16 mru;
290 	bool post_ct;
291 };
292 #endif
293 
294 struct sk_buff_head {
295 	/* These two members must be first to match sk_buff. */
296 	struct_group_tagged(sk_buff_list, list,
297 		struct sk_buff	*next;
298 		struct sk_buff	*prev;
299 	);
300 
301 	__u32		qlen;
302 	spinlock_t	lock;
303 };
304 
305 struct sk_buff;
306 
307 /* To allow 64K frame to be packed as single skb without frag_list we
308  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
309  * buffers which do not start on a page boundary.
310  *
311  * Since GRO uses frags we allocate at least 16 regardless of page
312  * size.
313  */
314 #if (65536/PAGE_SIZE + 1) < 16
315 #define MAX_SKB_FRAGS 16UL
316 #else
317 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
318 #endif
319 extern int sysctl_max_skb_frags;
320 
321 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
322  * segment using its current segmentation instead.
323  */
324 #define GSO_BY_FRAGS	0xFFFF
325 
326 typedef struct bio_vec skb_frag_t;
327 
328 /**
329  * skb_frag_size() - Returns the size of a skb fragment
330  * @frag: skb fragment
331  */
332 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
333 {
334 	return frag->bv_len;
335 }
336 
337 /**
338  * skb_frag_size_set() - Sets the size of a skb fragment
339  * @frag: skb fragment
340  * @size: size of fragment
341  */
342 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
343 {
344 	frag->bv_len = size;
345 }
346 
347 /**
348  * skb_frag_size_add() - Increments the size of a skb fragment by @delta
349  * @frag: skb fragment
350  * @delta: value to add
351  */
352 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
353 {
354 	frag->bv_len += delta;
355 }
356 
357 /**
358  * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
359  * @frag: skb fragment
360  * @delta: value to subtract
361  */
362 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
363 {
364 	frag->bv_len -= delta;
365 }
366 
367 /**
368  * skb_frag_must_loop - Test if %p is a high memory page
369  * @p: fragment's page
370  */
371 static inline bool skb_frag_must_loop(struct page *p)
372 {
373 #if defined(CONFIG_HIGHMEM)
374 	if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p))
375 		return true;
376 #endif
377 	return false;
378 }
379 
380 /**
381  *	skb_frag_foreach_page - loop over pages in a fragment
382  *
383  *	@f:		skb frag to operate on
384  *	@f_off:		offset from start of f->bv_page
385  *	@f_len:		length from f_off to loop over
386  *	@p:		(temp var) current page
387  *	@p_off:		(temp var) offset from start of current page,
388  *	                           non-zero only on first page.
389  *	@p_len:		(temp var) length in current page,
390  *				   < PAGE_SIZE only on first and last page.
391  *	@copied:	(temp var) length so far, excluding current p_len.
392  *
393  *	A fragment can hold a compound page, in which case per-page
394  *	operations, notably kmap_atomic, must be called for each
395  *	regular page.
396  */
397 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
398 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
399 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
400 	     p_len = skb_frag_must_loop(p) ?				\
401 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
402 	     copied = 0;						\
403 	     copied < f_len;						\
404 	     copied += p_len, p++, p_off = 0,				\
405 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
406 
407 #define HAVE_HW_TIME_STAMP
408 
409 /**
410  * struct skb_shared_hwtstamps - hardware time stamps
411  * @hwtstamp:	hardware time stamp transformed into duration
412  *		since arbitrary point in time
413  *
414  * Software time stamps generated by ktime_get_real() are stored in
415  * skb->tstamp.
416  *
417  * hwtstamps can only be compared against other hwtstamps from
418  * the same device.
419  *
420  * This structure is attached to packets as part of the
421  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
422  */
423 struct skb_shared_hwtstamps {
424 	ktime_t	hwtstamp;
425 };
426 
427 /* Definitions for tx_flags in struct skb_shared_info */
428 enum {
429 	/* generate hardware time stamp */
430 	SKBTX_HW_TSTAMP = 1 << 0,
431 
432 	/* generate software time stamp when queueing packet to NIC */
433 	SKBTX_SW_TSTAMP = 1 << 1,
434 
435 	/* device driver is going to provide hardware time stamp */
436 	SKBTX_IN_PROGRESS = 1 << 2,
437 
438 	/* generate wifi status information (where possible) */
439 	SKBTX_WIFI_STATUS = 1 << 4,
440 
441 	/* generate software time stamp when entering packet scheduling */
442 	SKBTX_SCHED_TSTAMP = 1 << 6,
443 };
444 
445 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
446 				 SKBTX_SCHED_TSTAMP)
447 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
448 
449 /* Definitions for flags in struct skb_shared_info */
450 enum {
451 	/* use zcopy routines */
452 	SKBFL_ZEROCOPY_ENABLE = BIT(0),
453 
454 	/* This indicates at least one fragment might be overwritten
455 	 * (as in vmsplice(), sendfile() ...)
456 	 * If we need to compute a TX checksum, we'll need to copy
457 	 * all frags to avoid possible bad checksum
458 	 */
459 	SKBFL_SHARED_FRAG = BIT(1),
460 
461 	/* segment contains only zerocopy data and should not be
462 	 * charged to the kernel memory.
463 	 */
464 	SKBFL_PURE_ZEROCOPY = BIT(2),
465 };
466 
467 #define SKBFL_ZEROCOPY_FRAG	(SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG)
468 #define SKBFL_ALL_ZEROCOPY	(SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY)
469 
470 /*
471  * The callback notifies userspace to release buffers when skb DMA is done in
472  * lower device, the skb last reference should be 0 when calling this.
473  * The zerocopy_success argument is true if zero copy transmit occurred,
474  * false on data copy or out of memory error caused by data copy attempt.
475  * The ctx field is used to track device context.
476  * The desc field is used to track userspace buffer index.
477  */
478 struct ubuf_info {
479 	void (*callback)(struct sk_buff *, struct ubuf_info *,
480 			 bool zerocopy_success);
481 	union {
482 		struct {
483 			unsigned long desc;
484 			void *ctx;
485 		};
486 		struct {
487 			u32 id;
488 			u16 len;
489 			u16 zerocopy:1;
490 			u32 bytelen;
491 		};
492 	};
493 	refcount_t refcnt;
494 	u8 flags;
495 
496 	struct mmpin {
497 		struct user_struct *user;
498 		unsigned int num_pg;
499 	} mmp;
500 };
501 
502 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
503 
504 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
505 void mm_unaccount_pinned_pages(struct mmpin *mmp);
506 
507 struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size);
508 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
509 				       struct ubuf_info *uarg);
510 
511 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
512 
513 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
514 			   bool success);
515 
516 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len);
517 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
518 			     struct msghdr *msg, int len,
519 			     struct ubuf_info *uarg);
520 
521 /* This data is invariant across clones and lives at
522  * the end of the header data, ie. at skb->end.
523  */
524 struct skb_shared_info {
525 	__u8		flags;
526 	__u8		meta_len;
527 	__u8		nr_frags;
528 	__u8		tx_flags;
529 	unsigned short	gso_size;
530 	/* Warning: this field is not always filled in (UFO)! */
531 	unsigned short	gso_segs;
532 	struct sk_buff	*frag_list;
533 	struct skb_shared_hwtstamps hwtstamps;
534 	unsigned int	gso_type;
535 	u32		tskey;
536 
537 	/*
538 	 * Warning : all fields before dataref are cleared in __alloc_skb()
539 	 */
540 	atomic_t	dataref;
541 
542 	/* Intermediate layers must ensure that destructor_arg
543 	 * remains valid until skb destructor */
544 	void *		destructor_arg;
545 
546 	/* must be last field, see pskb_expand_head() */
547 	skb_frag_t	frags[MAX_SKB_FRAGS];
548 };
549 
550 /* We divide dataref into two halves.  The higher 16 bits hold references
551  * to the payload part of skb->data.  The lower 16 bits hold references to
552  * the entire skb->data.  A clone of a headerless skb holds the length of
553  * the header in skb->hdr_len.
554  *
555  * All users must obey the rule that the skb->data reference count must be
556  * greater than or equal to the payload reference count.
557  *
558  * Holding a reference to the payload part means that the user does not
559  * care about modifications to the header part of skb->data.
560  */
561 #define SKB_DATAREF_SHIFT 16
562 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
563 
564 
565 enum {
566 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
567 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
568 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
569 };
570 
571 enum {
572 	SKB_GSO_TCPV4 = 1 << 0,
573 
574 	/* This indicates the skb is from an untrusted source. */
575 	SKB_GSO_DODGY = 1 << 1,
576 
577 	/* This indicates the tcp segment has CWR set. */
578 	SKB_GSO_TCP_ECN = 1 << 2,
579 
580 	SKB_GSO_TCP_FIXEDID = 1 << 3,
581 
582 	SKB_GSO_TCPV6 = 1 << 4,
583 
584 	SKB_GSO_FCOE = 1 << 5,
585 
586 	SKB_GSO_GRE = 1 << 6,
587 
588 	SKB_GSO_GRE_CSUM = 1 << 7,
589 
590 	SKB_GSO_IPXIP4 = 1 << 8,
591 
592 	SKB_GSO_IPXIP6 = 1 << 9,
593 
594 	SKB_GSO_UDP_TUNNEL = 1 << 10,
595 
596 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
597 
598 	SKB_GSO_PARTIAL = 1 << 12,
599 
600 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
601 
602 	SKB_GSO_SCTP = 1 << 14,
603 
604 	SKB_GSO_ESP = 1 << 15,
605 
606 	SKB_GSO_UDP = 1 << 16,
607 
608 	SKB_GSO_UDP_L4 = 1 << 17,
609 
610 	SKB_GSO_FRAGLIST = 1 << 18,
611 };
612 
613 #if BITS_PER_LONG > 32
614 #define NET_SKBUFF_DATA_USES_OFFSET 1
615 #endif
616 
617 #ifdef NET_SKBUFF_DATA_USES_OFFSET
618 typedef unsigned int sk_buff_data_t;
619 #else
620 typedef unsigned char *sk_buff_data_t;
621 #endif
622 
623 /**
624  *	struct sk_buff - socket buffer
625  *	@next: Next buffer in list
626  *	@prev: Previous buffer in list
627  *	@tstamp: Time we arrived/left
628  *	@skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
629  *		for retransmit timer
630  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
631  *	@list: queue head
632  *	@ll_node: anchor in an llist (eg socket defer_list)
633  *	@sk: Socket we are owned by
634  *	@ip_defrag_offset: (aka @sk) alternate use of @sk, used in
635  *		fragmentation management
636  *	@dev: Device we arrived on/are leaving by
637  *	@dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
638  *	@cb: Control buffer. Free for use by every layer. Put private vars here
639  *	@_skb_refdst: destination entry (with norefcount bit)
640  *	@sp: the security path, used for xfrm
641  *	@len: Length of actual data
642  *	@data_len: Data length
643  *	@mac_len: Length of link layer header
644  *	@hdr_len: writable header length of cloned skb
645  *	@csum: Checksum (must include start/offset pair)
646  *	@csum_start: Offset from skb->head where checksumming should start
647  *	@csum_offset: Offset from csum_start where checksum should be stored
648  *	@priority: Packet queueing priority
649  *	@ignore_df: allow local fragmentation
650  *	@cloned: Head may be cloned (check refcnt to be sure)
651  *	@ip_summed: Driver fed us an IP checksum
652  *	@nohdr: Payload reference only, must not modify header
653  *	@pkt_type: Packet class
654  *	@fclone: skbuff clone status
655  *	@ipvs_property: skbuff is owned by ipvs
656  *	@inner_protocol_type: whether the inner protocol is
657  *		ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
658  *	@remcsum_offload: remote checksum offload is enabled
659  *	@offload_fwd_mark: Packet was L2-forwarded in hardware
660  *	@offload_l3_fwd_mark: Packet was L3-forwarded in hardware
661  *	@tc_skip_classify: do not classify packet. set by IFB device
662  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
663  *	@redirected: packet was redirected by packet classifier
664  *	@from_ingress: packet was redirected from the ingress path
665  *	@nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h
666  *	@peeked: this packet has been seen already, so stats have been
667  *		done for it, don't do them again
668  *	@nf_trace: netfilter packet trace flag
669  *	@protocol: Packet protocol from driver
670  *	@destructor: Destruct function
671  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
672  *	@_sk_redir: socket redirection information for skmsg
673  *	@_nfct: Associated connection, if any (with nfctinfo bits)
674  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
675  *	@skb_iif: ifindex of device we arrived on
676  *	@tc_index: Traffic control index
677  *	@hash: the packet hash
678  *	@queue_mapping: Queue mapping for multiqueue devices
679  *	@head_frag: skb was allocated from page fragments,
680  *		not allocated by kmalloc() or vmalloc().
681  *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
682  *	@pp_recycle: mark the packet for recycling instead of freeing (implies
683  *		page_pool support on driver)
684  *	@active_extensions: active extensions (skb_ext_id types)
685  *	@ndisc_nodetype: router type (from link layer)
686  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
687  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
688  *		ports.
689  *	@sw_hash: indicates hash was computed in software stack
690  *	@wifi_acked_valid: wifi_acked was set
691  *	@wifi_acked: whether frame was acked on wifi or not
692  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
693  *	@encapsulation: indicates the inner headers in the skbuff are valid
694  *	@encap_hdr_csum: software checksum is needed
695  *	@csum_valid: checksum is already valid
696  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
697  *	@csum_complete_sw: checksum was completed by software
698  *	@csum_level: indicates the number of consecutive checksums found in
699  *		the packet minus one that have been verified as
700  *		CHECKSUM_UNNECESSARY (max 3)
701  *	@dst_pending_confirm: need to confirm neighbour
702  *	@decrypted: Decrypted SKB
703  *	@slow_gro: state present at GRO time, slower prepare step required
704  *	@napi_id: id of the NAPI struct this skb came from
705  *	@sender_cpu: (aka @napi_id) source CPU in XPS
706  *	@secmark: security marking
707  *	@mark: Generic packet mark
708  *	@reserved_tailroom: (aka @mark) number of bytes of free space available
709  *		at the tail of an sk_buff
710  *	@vlan_present: VLAN tag is present
711  *	@vlan_proto: vlan encapsulation protocol
712  *	@vlan_tci: vlan tag control information
713  *	@inner_protocol: Protocol (encapsulation)
714  *	@inner_ipproto: (aka @inner_protocol) stores ipproto when
715  *		skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
716  *	@inner_transport_header: Inner transport layer header (encapsulation)
717  *	@inner_network_header: Network layer header (encapsulation)
718  *	@inner_mac_header: Link layer header (encapsulation)
719  *	@transport_header: Transport layer header
720  *	@network_header: Network layer header
721  *	@mac_header: Link layer header
722  *	@kcov_handle: KCOV remote handle for remote coverage collection
723  *	@tail: Tail pointer
724  *	@end: End pointer
725  *	@head: Head of buffer
726  *	@data: Data head pointer
727  *	@truesize: Buffer size
728  *	@users: User count - see {datagram,tcp}.c
729  *	@extensions: allocated extensions, valid if active_extensions is nonzero
730  */
731 
732 struct sk_buff {
733 	union {
734 		struct {
735 			/* These two members must be first to match sk_buff_head. */
736 			struct sk_buff		*next;
737 			struct sk_buff		*prev;
738 
739 			union {
740 				struct net_device	*dev;
741 				/* Some protocols might use this space to store information,
742 				 * while device pointer would be NULL.
743 				 * UDP receive path is one user.
744 				 */
745 				unsigned long		dev_scratch;
746 			};
747 		};
748 		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
749 		struct list_head	list;
750 		struct llist_node	ll_node;
751 	};
752 
753 	union {
754 		struct sock		*sk;
755 		int			ip_defrag_offset;
756 	};
757 
758 	union {
759 		ktime_t		tstamp;
760 		u64		skb_mstamp_ns; /* earliest departure time */
761 	};
762 	/*
763 	 * This is the control buffer. It is free to use for every
764 	 * layer. Please put your private variables there. If you
765 	 * want to keep them across layers you have to do a skb_clone()
766 	 * first. This is owned by whoever has the skb queued ATM.
767 	 */
768 	char			cb[48] __aligned(8);
769 
770 	union {
771 		struct {
772 			unsigned long	_skb_refdst;
773 			void		(*destructor)(struct sk_buff *skb);
774 		};
775 		struct list_head	tcp_tsorted_anchor;
776 #ifdef CONFIG_NET_SOCK_MSG
777 		unsigned long		_sk_redir;
778 #endif
779 	};
780 
781 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
782 	unsigned long		 _nfct;
783 #endif
784 	unsigned int		len,
785 				data_len;
786 	__u16			mac_len,
787 				hdr_len;
788 
789 	/* Following fields are _not_ copied in __copy_skb_header()
790 	 * Note that queue_mapping is here mostly to fill a hole.
791 	 */
792 	__u16			queue_mapping;
793 
794 /* if you move cloned around you also must adapt those constants */
795 #ifdef __BIG_ENDIAN_BITFIELD
796 #define CLONED_MASK	(1 << 7)
797 #else
798 #define CLONED_MASK	1
799 #endif
800 #define CLONED_OFFSET		offsetof(struct sk_buff, __cloned_offset)
801 
802 	/* private: */
803 	__u8			__cloned_offset[0];
804 	/* public: */
805 	__u8			cloned:1,
806 				nohdr:1,
807 				fclone:2,
808 				peeked:1,
809 				head_frag:1,
810 				pfmemalloc:1,
811 				pp_recycle:1; /* page_pool recycle indicator */
812 #ifdef CONFIG_SKB_EXTENSIONS
813 	__u8			active_extensions;
814 #endif
815 
816 	/* Fields enclosed in headers group are copied
817 	 * using a single memcpy() in __copy_skb_header()
818 	 */
819 	struct_group(headers,
820 
821 	/* private: */
822 	__u8			__pkt_type_offset[0];
823 	/* public: */
824 	__u8			pkt_type:3; /* see PKT_TYPE_MAX */
825 	__u8			ignore_df:1;
826 	__u8			nf_trace:1;
827 	__u8			ip_summed:2;
828 	__u8			ooo_okay:1;
829 
830 	__u8			l4_hash:1;
831 	__u8			sw_hash:1;
832 	__u8			wifi_acked_valid:1;
833 	__u8			wifi_acked:1;
834 	__u8			no_fcs:1;
835 	/* Indicates the inner headers are valid in the skbuff. */
836 	__u8			encapsulation:1;
837 	__u8			encap_hdr_csum:1;
838 	__u8			csum_valid:1;
839 
840 	/* private: */
841 	__u8			__pkt_vlan_present_offset[0];
842 	/* public: */
843 	__u8			vlan_present:1;	/* See PKT_VLAN_PRESENT_BIT */
844 	__u8			csum_complete_sw:1;
845 	__u8			csum_level:2;
846 	__u8			csum_not_inet:1;
847 	__u8			dst_pending_confirm:1;
848 #ifdef CONFIG_IPV6_NDISC_NODETYPE
849 	__u8			ndisc_nodetype:2;
850 #endif
851 
852 	__u8			ipvs_property:1;
853 	__u8			inner_protocol_type:1;
854 	__u8			remcsum_offload:1;
855 #ifdef CONFIG_NET_SWITCHDEV
856 	__u8			offload_fwd_mark:1;
857 	__u8			offload_l3_fwd_mark:1;
858 #endif
859 #ifdef CONFIG_NET_CLS_ACT
860 	__u8			tc_skip_classify:1;
861 	__u8			tc_at_ingress:1;
862 #endif
863 	__u8			redirected:1;
864 #ifdef CONFIG_NET_REDIRECT
865 	__u8			from_ingress:1;
866 #endif
867 #ifdef CONFIG_NETFILTER_SKIP_EGRESS
868 	__u8			nf_skip_egress:1;
869 #endif
870 #ifdef CONFIG_TLS_DEVICE
871 	__u8			decrypted:1;
872 #endif
873 	__u8			slow_gro:1;
874 
875 #ifdef CONFIG_NET_SCHED
876 	__u16			tc_index;	/* traffic control index */
877 #endif
878 
879 	union {
880 		__wsum		csum;
881 		struct {
882 			__u16	csum_start;
883 			__u16	csum_offset;
884 		};
885 	};
886 	__u32			priority;
887 	int			skb_iif;
888 	__u32			hash;
889 	__be16			vlan_proto;
890 	__u16			vlan_tci;
891 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
892 	union {
893 		unsigned int	napi_id;
894 		unsigned int	sender_cpu;
895 	};
896 #endif
897 #ifdef CONFIG_NETWORK_SECMARK
898 	__u32		secmark;
899 #endif
900 
901 	union {
902 		__u32		mark;
903 		__u32		reserved_tailroom;
904 	};
905 
906 	union {
907 		__be16		inner_protocol;
908 		__u8		inner_ipproto;
909 	};
910 
911 	__u16			inner_transport_header;
912 	__u16			inner_network_header;
913 	__u16			inner_mac_header;
914 
915 	__be16			protocol;
916 	__u16			transport_header;
917 	__u16			network_header;
918 	__u16			mac_header;
919 
920 #ifdef CONFIG_KCOV
921 	u64			kcov_handle;
922 #endif
923 
924 	); /* end headers group */
925 
926 	/* These elements must be at the end, see alloc_skb() for details.  */
927 	sk_buff_data_t		tail;
928 	sk_buff_data_t		end;
929 	unsigned char		*head,
930 				*data;
931 	unsigned int		truesize;
932 	refcount_t		users;
933 
934 #ifdef CONFIG_SKB_EXTENSIONS
935 	/* only useable after checking ->active_extensions != 0 */
936 	struct skb_ext		*extensions;
937 #endif
938 };
939 
940 /* if you move pkt_type around you also must adapt those constants */
941 #ifdef __BIG_ENDIAN_BITFIELD
942 #define PKT_TYPE_MAX	(7 << 5)
943 #else
944 #define PKT_TYPE_MAX	7
945 #endif
946 #define PKT_TYPE_OFFSET		offsetof(struct sk_buff, __pkt_type_offset)
947 
948 /* if you move pkt_vlan_present around you also must adapt these constants */
949 #ifdef __BIG_ENDIAN_BITFIELD
950 #define PKT_VLAN_PRESENT_BIT	7
951 #else
952 #define PKT_VLAN_PRESENT_BIT	0
953 #endif
954 #define PKT_VLAN_PRESENT_OFFSET	offsetof(struct sk_buff, __pkt_vlan_present_offset)
955 
956 #ifdef __KERNEL__
957 /*
958  *	Handling routines are only of interest to the kernel
959  */
960 
961 #define SKB_ALLOC_FCLONE	0x01
962 #define SKB_ALLOC_RX		0x02
963 #define SKB_ALLOC_NAPI		0x04
964 
965 /**
966  * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
967  * @skb: buffer
968  */
969 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
970 {
971 	return unlikely(skb->pfmemalloc);
972 }
973 
974 /*
975  * skb might have a dst pointer attached, refcounted or not.
976  * _skb_refdst low order bit is set if refcount was _not_ taken
977  */
978 #define SKB_DST_NOREF	1UL
979 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
980 
981 /**
982  * skb_dst - returns skb dst_entry
983  * @skb: buffer
984  *
985  * Returns skb dst_entry, regardless of reference taken or not.
986  */
987 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
988 {
989 	/* If refdst was not refcounted, check we still are in a
990 	 * rcu_read_lock section
991 	 */
992 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
993 		!rcu_read_lock_held() &&
994 		!rcu_read_lock_bh_held());
995 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
996 }
997 
998 /**
999  * skb_dst_set - sets skb dst
1000  * @skb: buffer
1001  * @dst: dst entry
1002  *
1003  * Sets skb dst, assuming a reference was taken on dst and should
1004  * be released by skb_dst_drop()
1005  */
1006 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
1007 {
1008 	skb->slow_gro |= !!dst;
1009 	skb->_skb_refdst = (unsigned long)dst;
1010 }
1011 
1012 /**
1013  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
1014  * @skb: buffer
1015  * @dst: dst entry
1016  *
1017  * Sets skb dst, assuming a reference was not taken on dst.
1018  * If dst entry is cached, we do not take reference and dst_release
1019  * will be avoided by refdst_drop. If dst entry is not cached, we take
1020  * reference, so that last dst_release can destroy the dst immediately.
1021  */
1022 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
1023 {
1024 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
1025 	skb->slow_gro |= !!dst;
1026 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
1027 }
1028 
1029 /**
1030  * skb_dst_is_noref - Test if skb dst isn't refcounted
1031  * @skb: buffer
1032  */
1033 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1034 {
1035 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1036 }
1037 
1038 /**
1039  * skb_rtable - Returns the skb &rtable
1040  * @skb: buffer
1041  */
1042 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
1043 {
1044 	return (struct rtable *)skb_dst(skb);
1045 }
1046 
1047 /* For mangling skb->pkt_type from user space side from applications
1048  * such as nft, tc, etc, we only allow a conservative subset of
1049  * possible pkt_types to be set.
1050 */
1051 static inline bool skb_pkt_type_ok(u32 ptype)
1052 {
1053 	return ptype <= PACKET_OTHERHOST;
1054 }
1055 
1056 /**
1057  * skb_napi_id - Returns the skb's NAPI id
1058  * @skb: buffer
1059  */
1060 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1061 {
1062 #ifdef CONFIG_NET_RX_BUSY_POLL
1063 	return skb->napi_id;
1064 #else
1065 	return 0;
1066 #endif
1067 }
1068 
1069 /**
1070  * skb_unref - decrement the skb's reference count
1071  * @skb: buffer
1072  *
1073  * Returns true if we can free the skb.
1074  */
1075 static inline bool skb_unref(struct sk_buff *skb)
1076 {
1077 	if (unlikely(!skb))
1078 		return false;
1079 	if (likely(refcount_read(&skb->users) == 1))
1080 		smp_rmb();
1081 	else if (likely(!refcount_dec_and_test(&skb->users)))
1082 		return false;
1083 
1084 	return true;
1085 }
1086 
1087 void skb_release_head_state(struct sk_buff *skb);
1088 void kfree_skb(struct sk_buff *skb);
1089 void kfree_skb_list(struct sk_buff *segs);
1090 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1091 void skb_tx_error(struct sk_buff *skb);
1092 
1093 #ifdef CONFIG_TRACEPOINTS
1094 void consume_skb(struct sk_buff *skb);
1095 #else
1096 static inline void consume_skb(struct sk_buff *skb)
1097 {
1098 	return kfree_skb(skb);
1099 }
1100 #endif
1101 
1102 void __consume_stateless_skb(struct sk_buff *skb);
1103 void  __kfree_skb(struct sk_buff *skb);
1104 extern struct kmem_cache *skbuff_head_cache;
1105 
1106 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1107 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1108 		      bool *fragstolen, int *delta_truesize);
1109 
1110 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1111 			    int node);
1112 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1113 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1114 struct sk_buff *build_skb_around(struct sk_buff *skb,
1115 				 void *data, unsigned int frag_size);
1116 
1117 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size);
1118 
1119 /**
1120  * alloc_skb - allocate a network buffer
1121  * @size: size to allocate
1122  * @priority: allocation mask
1123  *
1124  * This function is a convenient wrapper around __alloc_skb().
1125  */
1126 static inline struct sk_buff *alloc_skb(unsigned int size,
1127 					gfp_t priority)
1128 {
1129 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1130 }
1131 
1132 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1133 				     unsigned long data_len,
1134 				     int max_page_order,
1135 				     int *errcode,
1136 				     gfp_t gfp_mask);
1137 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1138 
1139 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1140 struct sk_buff_fclones {
1141 	struct sk_buff	skb1;
1142 
1143 	struct sk_buff	skb2;
1144 
1145 	refcount_t	fclone_ref;
1146 };
1147 
1148 /**
1149  *	skb_fclone_busy - check if fclone is busy
1150  *	@sk: socket
1151  *	@skb: buffer
1152  *
1153  * Returns true if skb is a fast clone, and its clone is not freed.
1154  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1155  * so we also check that this didnt happen.
1156  */
1157 static inline bool skb_fclone_busy(const struct sock *sk,
1158 				   const struct sk_buff *skb)
1159 {
1160 	const struct sk_buff_fclones *fclones;
1161 
1162 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1163 
1164 	return skb->fclone == SKB_FCLONE_ORIG &&
1165 	       refcount_read(&fclones->fclone_ref) > 1 &&
1166 	       READ_ONCE(fclones->skb2.sk) == sk;
1167 }
1168 
1169 /**
1170  * alloc_skb_fclone - allocate a network buffer from fclone cache
1171  * @size: size to allocate
1172  * @priority: allocation mask
1173  *
1174  * This function is a convenient wrapper around __alloc_skb().
1175  */
1176 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1177 					       gfp_t priority)
1178 {
1179 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1180 }
1181 
1182 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1183 void skb_headers_offset_update(struct sk_buff *skb, int off);
1184 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1185 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1186 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1187 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1188 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1189 				   gfp_t gfp_mask, bool fclone);
1190 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1191 					  gfp_t gfp_mask)
1192 {
1193 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1194 }
1195 
1196 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1197 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1198 				     unsigned int headroom);
1199 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom);
1200 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1201 				int newtailroom, gfp_t priority);
1202 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1203 				     int offset, int len);
1204 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1205 			      int offset, int len);
1206 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1207 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1208 
1209 /**
1210  *	skb_pad			-	zero pad the tail of an skb
1211  *	@skb: buffer to pad
1212  *	@pad: space to pad
1213  *
1214  *	Ensure that a buffer is followed by a padding area that is zero
1215  *	filled. Used by network drivers which may DMA or transfer data
1216  *	beyond the buffer end onto the wire.
1217  *
1218  *	May return error in out of memory cases. The skb is freed on error.
1219  */
1220 static inline int skb_pad(struct sk_buff *skb, int pad)
1221 {
1222 	return __skb_pad(skb, pad, true);
1223 }
1224 #define dev_kfree_skb(a)	consume_skb(a)
1225 
1226 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1227 			 int offset, size_t size);
1228 
1229 struct skb_seq_state {
1230 	__u32		lower_offset;
1231 	__u32		upper_offset;
1232 	__u32		frag_idx;
1233 	__u32		stepped_offset;
1234 	struct sk_buff	*root_skb;
1235 	struct sk_buff	*cur_skb;
1236 	__u8		*frag_data;
1237 	__u32		frag_off;
1238 };
1239 
1240 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1241 			  unsigned int to, struct skb_seq_state *st);
1242 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1243 			  struct skb_seq_state *st);
1244 void skb_abort_seq_read(struct skb_seq_state *st);
1245 
1246 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1247 			   unsigned int to, struct ts_config *config);
1248 
1249 /*
1250  * Packet hash types specify the type of hash in skb_set_hash.
1251  *
1252  * Hash types refer to the protocol layer addresses which are used to
1253  * construct a packet's hash. The hashes are used to differentiate or identify
1254  * flows of the protocol layer for the hash type. Hash types are either
1255  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1256  *
1257  * Properties of hashes:
1258  *
1259  * 1) Two packets in different flows have different hash values
1260  * 2) Two packets in the same flow should have the same hash value
1261  *
1262  * A hash at a higher layer is considered to be more specific. A driver should
1263  * set the most specific hash possible.
1264  *
1265  * A driver cannot indicate a more specific hash than the layer at which a hash
1266  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1267  *
1268  * A driver may indicate a hash level which is less specific than the
1269  * actual layer the hash was computed on. For instance, a hash computed
1270  * at L4 may be considered an L3 hash. This should only be done if the
1271  * driver can't unambiguously determine that the HW computed the hash at
1272  * the higher layer. Note that the "should" in the second property above
1273  * permits this.
1274  */
1275 enum pkt_hash_types {
1276 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1277 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1278 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1279 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1280 };
1281 
1282 static inline void skb_clear_hash(struct sk_buff *skb)
1283 {
1284 	skb->hash = 0;
1285 	skb->sw_hash = 0;
1286 	skb->l4_hash = 0;
1287 }
1288 
1289 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1290 {
1291 	if (!skb->l4_hash)
1292 		skb_clear_hash(skb);
1293 }
1294 
1295 static inline void
1296 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1297 {
1298 	skb->l4_hash = is_l4;
1299 	skb->sw_hash = is_sw;
1300 	skb->hash = hash;
1301 }
1302 
1303 static inline void
1304 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1305 {
1306 	/* Used by drivers to set hash from HW */
1307 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1308 }
1309 
1310 static inline void
1311 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1312 {
1313 	__skb_set_hash(skb, hash, true, is_l4);
1314 }
1315 
1316 void __skb_get_hash(struct sk_buff *skb);
1317 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1318 u32 skb_get_poff(const struct sk_buff *skb);
1319 u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
1320 		   const struct flow_keys_basic *keys, int hlen);
1321 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1322 			    const void *data, int hlen_proto);
1323 
1324 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1325 					int thoff, u8 ip_proto)
1326 {
1327 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1328 }
1329 
1330 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1331 			     const struct flow_dissector_key *key,
1332 			     unsigned int key_count);
1333 
1334 struct bpf_flow_dissector;
1335 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1336 		      __be16 proto, int nhoff, int hlen, unsigned int flags);
1337 
1338 bool __skb_flow_dissect(const struct net *net,
1339 			const struct sk_buff *skb,
1340 			struct flow_dissector *flow_dissector,
1341 			void *target_container, const void *data,
1342 			__be16 proto, int nhoff, int hlen, unsigned int flags);
1343 
1344 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1345 				    struct flow_dissector *flow_dissector,
1346 				    void *target_container, unsigned int flags)
1347 {
1348 	return __skb_flow_dissect(NULL, skb, flow_dissector,
1349 				  target_container, NULL, 0, 0, 0, flags);
1350 }
1351 
1352 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1353 					      struct flow_keys *flow,
1354 					      unsigned int flags)
1355 {
1356 	memset(flow, 0, sizeof(*flow));
1357 	return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1358 				  flow, NULL, 0, 0, 0, flags);
1359 }
1360 
1361 static inline bool
1362 skb_flow_dissect_flow_keys_basic(const struct net *net,
1363 				 const struct sk_buff *skb,
1364 				 struct flow_keys_basic *flow,
1365 				 const void *data, __be16 proto,
1366 				 int nhoff, int hlen, unsigned int flags)
1367 {
1368 	memset(flow, 0, sizeof(*flow));
1369 	return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1370 				  data, proto, nhoff, hlen, flags);
1371 }
1372 
1373 void skb_flow_dissect_meta(const struct sk_buff *skb,
1374 			   struct flow_dissector *flow_dissector,
1375 			   void *target_container);
1376 
1377 /* Gets a skb connection tracking info, ctinfo map should be a
1378  * map of mapsize to translate enum ip_conntrack_info states
1379  * to user states.
1380  */
1381 void
1382 skb_flow_dissect_ct(const struct sk_buff *skb,
1383 		    struct flow_dissector *flow_dissector,
1384 		    void *target_container,
1385 		    u16 *ctinfo_map, size_t mapsize,
1386 		    bool post_ct);
1387 void
1388 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1389 			     struct flow_dissector *flow_dissector,
1390 			     void *target_container);
1391 
1392 void skb_flow_dissect_hash(const struct sk_buff *skb,
1393 			   struct flow_dissector *flow_dissector,
1394 			   void *target_container);
1395 
1396 static inline __u32 skb_get_hash(struct sk_buff *skb)
1397 {
1398 	if (!skb->l4_hash && !skb->sw_hash)
1399 		__skb_get_hash(skb);
1400 
1401 	return skb->hash;
1402 }
1403 
1404 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1405 {
1406 	if (!skb->l4_hash && !skb->sw_hash) {
1407 		struct flow_keys keys;
1408 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1409 
1410 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1411 	}
1412 
1413 	return skb->hash;
1414 }
1415 
1416 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1417 			   const siphash_key_t *perturb);
1418 
1419 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1420 {
1421 	return skb->hash;
1422 }
1423 
1424 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1425 {
1426 	to->hash = from->hash;
1427 	to->sw_hash = from->sw_hash;
1428 	to->l4_hash = from->l4_hash;
1429 };
1430 
1431 static inline void skb_copy_decrypted(struct sk_buff *to,
1432 				      const struct sk_buff *from)
1433 {
1434 #ifdef CONFIG_TLS_DEVICE
1435 	to->decrypted = from->decrypted;
1436 #endif
1437 }
1438 
1439 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1440 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1441 {
1442 	return skb->head + skb->end;
1443 }
1444 
1445 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1446 {
1447 	return skb->end;
1448 }
1449 #else
1450 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1451 {
1452 	return skb->end;
1453 }
1454 
1455 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1456 {
1457 	return skb->end - skb->head;
1458 }
1459 #endif
1460 
1461 /* Internal */
1462 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1463 
1464 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1465 {
1466 	return &skb_shinfo(skb)->hwtstamps;
1467 }
1468 
1469 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1470 {
1471 	bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE;
1472 
1473 	return is_zcopy ? skb_uarg(skb) : NULL;
1474 }
1475 
1476 static inline bool skb_zcopy_pure(const struct sk_buff *skb)
1477 {
1478 	return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY;
1479 }
1480 
1481 static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1,
1482 				       const struct sk_buff *skb2)
1483 {
1484 	return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2);
1485 }
1486 
1487 static inline void net_zcopy_get(struct ubuf_info *uarg)
1488 {
1489 	refcount_inc(&uarg->refcnt);
1490 }
1491 
1492 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg)
1493 {
1494 	skb_shinfo(skb)->destructor_arg = uarg;
1495 	skb_shinfo(skb)->flags |= uarg->flags;
1496 }
1497 
1498 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1499 				 bool *have_ref)
1500 {
1501 	if (skb && uarg && !skb_zcopy(skb)) {
1502 		if (unlikely(have_ref && *have_ref))
1503 			*have_ref = false;
1504 		else
1505 			net_zcopy_get(uarg);
1506 		skb_zcopy_init(skb, uarg);
1507 	}
1508 }
1509 
1510 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1511 {
1512 	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1513 	skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG;
1514 }
1515 
1516 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1517 {
1518 	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1519 }
1520 
1521 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1522 {
1523 	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1524 }
1525 
1526 static inline void net_zcopy_put(struct ubuf_info *uarg)
1527 {
1528 	if (uarg)
1529 		uarg->callback(NULL, uarg, true);
1530 }
1531 
1532 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1533 {
1534 	if (uarg) {
1535 		if (uarg->callback == msg_zerocopy_callback)
1536 			msg_zerocopy_put_abort(uarg, have_uref);
1537 		else if (have_uref)
1538 			net_zcopy_put(uarg);
1539 	}
1540 }
1541 
1542 /* Release a reference on a zerocopy structure */
1543 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success)
1544 {
1545 	struct ubuf_info *uarg = skb_zcopy(skb);
1546 
1547 	if (uarg) {
1548 		if (!skb_zcopy_is_nouarg(skb))
1549 			uarg->callback(skb, uarg, zerocopy_success);
1550 
1551 		skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY;
1552 	}
1553 }
1554 
1555 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1556 {
1557 	skb->next = NULL;
1558 }
1559 
1560 /* Iterate through singly-linked GSO fragments of an skb. */
1561 #define skb_list_walk_safe(first, skb, next_skb)                               \
1562 	for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb);  \
1563 	     (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1564 
1565 static inline void skb_list_del_init(struct sk_buff *skb)
1566 {
1567 	__list_del_entry(&skb->list);
1568 	skb_mark_not_on_list(skb);
1569 }
1570 
1571 /**
1572  *	skb_queue_empty - check if a queue is empty
1573  *	@list: queue head
1574  *
1575  *	Returns true if the queue is empty, false otherwise.
1576  */
1577 static inline int skb_queue_empty(const struct sk_buff_head *list)
1578 {
1579 	return list->next == (const struct sk_buff *) list;
1580 }
1581 
1582 /**
1583  *	skb_queue_empty_lockless - check if a queue is empty
1584  *	@list: queue head
1585  *
1586  *	Returns true if the queue is empty, false otherwise.
1587  *	This variant can be used in lockless contexts.
1588  */
1589 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1590 {
1591 	return READ_ONCE(list->next) == (const struct sk_buff *) list;
1592 }
1593 
1594 
1595 /**
1596  *	skb_queue_is_last - check if skb is the last entry in the queue
1597  *	@list: queue head
1598  *	@skb: buffer
1599  *
1600  *	Returns true if @skb is the last buffer on the list.
1601  */
1602 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1603 				     const struct sk_buff *skb)
1604 {
1605 	return skb->next == (const struct sk_buff *) list;
1606 }
1607 
1608 /**
1609  *	skb_queue_is_first - check if skb is the first entry in the queue
1610  *	@list: queue head
1611  *	@skb: buffer
1612  *
1613  *	Returns true if @skb is the first buffer on the list.
1614  */
1615 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1616 				      const struct sk_buff *skb)
1617 {
1618 	return skb->prev == (const struct sk_buff *) list;
1619 }
1620 
1621 /**
1622  *	skb_queue_next - return the next packet in the queue
1623  *	@list: queue head
1624  *	@skb: current buffer
1625  *
1626  *	Return the next packet in @list after @skb.  It is only valid to
1627  *	call this if skb_queue_is_last() evaluates to false.
1628  */
1629 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1630 					     const struct sk_buff *skb)
1631 {
1632 	/* This BUG_ON may seem severe, but if we just return then we
1633 	 * are going to dereference garbage.
1634 	 */
1635 	BUG_ON(skb_queue_is_last(list, skb));
1636 	return skb->next;
1637 }
1638 
1639 /**
1640  *	skb_queue_prev - return the prev packet in the queue
1641  *	@list: queue head
1642  *	@skb: current buffer
1643  *
1644  *	Return the prev packet in @list before @skb.  It is only valid to
1645  *	call this if skb_queue_is_first() evaluates to false.
1646  */
1647 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1648 					     const struct sk_buff *skb)
1649 {
1650 	/* This BUG_ON may seem severe, but if we just return then we
1651 	 * are going to dereference garbage.
1652 	 */
1653 	BUG_ON(skb_queue_is_first(list, skb));
1654 	return skb->prev;
1655 }
1656 
1657 /**
1658  *	skb_get - reference buffer
1659  *	@skb: buffer to reference
1660  *
1661  *	Makes another reference to a socket buffer and returns a pointer
1662  *	to the buffer.
1663  */
1664 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1665 {
1666 	refcount_inc(&skb->users);
1667 	return skb;
1668 }
1669 
1670 /*
1671  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1672  */
1673 
1674 /**
1675  *	skb_cloned - is the buffer a clone
1676  *	@skb: buffer to check
1677  *
1678  *	Returns true if the buffer was generated with skb_clone() and is
1679  *	one of multiple shared copies of the buffer. Cloned buffers are
1680  *	shared data so must not be written to under normal circumstances.
1681  */
1682 static inline int skb_cloned(const struct sk_buff *skb)
1683 {
1684 	return skb->cloned &&
1685 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1686 }
1687 
1688 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1689 {
1690 	might_sleep_if(gfpflags_allow_blocking(pri));
1691 
1692 	if (skb_cloned(skb))
1693 		return pskb_expand_head(skb, 0, 0, pri);
1694 
1695 	return 0;
1696 }
1697 
1698 /* This variant of skb_unclone() makes sure skb->truesize is not changed */
1699 static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1700 {
1701 	might_sleep_if(gfpflags_allow_blocking(pri));
1702 
1703 	if (skb_cloned(skb)) {
1704 		unsigned int save = skb->truesize;
1705 		int res;
1706 
1707 		res = pskb_expand_head(skb, 0, 0, pri);
1708 		skb->truesize = save;
1709 		return res;
1710 	}
1711 	return 0;
1712 }
1713 
1714 /**
1715  *	skb_header_cloned - is the header a clone
1716  *	@skb: buffer to check
1717  *
1718  *	Returns true if modifying the header part of the buffer requires
1719  *	the data to be copied.
1720  */
1721 static inline int skb_header_cloned(const struct sk_buff *skb)
1722 {
1723 	int dataref;
1724 
1725 	if (!skb->cloned)
1726 		return 0;
1727 
1728 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1729 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1730 	return dataref != 1;
1731 }
1732 
1733 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1734 {
1735 	might_sleep_if(gfpflags_allow_blocking(pri));
1736 
1737 	if (skb_header_cloned(skb))
1738 		return pskb_expand_head(skb, 0, 0, pri);
1739 
1740 	return 0;
1741 }
1742 
1743 /**
1744  *	__skb_header_release - release reference to header
1745  *	@skb: buffer to operate on
1746  */
1747 static inline void __skb_header_release(struct sk_buff *skb)
1748 {
1749 	skb->nohdr = 1;
1750 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1751 }
1752 
1753 
1754 /**
1755  *	skb_shared - is the buffer shared
1756  *	@skb: buffer to check
1757  *
1758  *	Returns true if more than one person has a reference to this
1759  *	buffer.
1760  */
1761 static inline int skb_shared(const struct sk_buff *skb)
1762 {
1763 	return refcount_read(&skb->users) != 1;
1764 }
1765 
1766 /**
1767  *	skb_share_check - check if buffer is shared and if so clone it
1768  *	@skb: buffer to check
1769  *	@pri: priority for memory allocation
1770  *
1771  *	If the buffer is shared the buffer is cloned and the old copy
1772  *	drops a reference. A new clone with a single reference is returned.
1773  *	If the buffer is not shared the original buffer is returned. When
1774  *	being called from interrupt status or with spinlocks held pri must
1775  *	be GFP_ATOMIC.
1776  *
1777  *	NULL is returned on a memory allocation failure.
1778  */
1779 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1780 {
1781 	might_sleep_if(gfpflags_allow_blocking(pri));
1782 	if (skb_shared(skb)) {
1783 		struct sk_buff *nskb = skb_clone(skb, pri);
1784 
1785 		if (likely(nskb))
1786 			consume_skb(skb);
1787 		else
1788 			kfree_skb(skb);
1789 		skb = nskb;
1790 	}
1791 	return skb;
1792 }
1793 
1794 /*
1795  *	Copy shared buffers into a new sk_buff. We effectively do COW on
1796  *	packets to handle cases where we have a local reader and forward
1797  *	and a couple of other messy ones. The normal one is tcpdumping
1798  *	a packet thats being forwarded.
1799  */
1800 
1801 /**
1802  *	skb_unshare - make a copy of a shared buffer
1803  *	@skb: buffer to check
1804  *	@pri: priority for memory allocation
1805  *
1806  *	If the socket buffer is a clone then this function creates a new
1807  *	copy of the data, drops a reference count on the old copy and returns
1808  *	the new copy with the reference count at 1. If the buffer is not a clone
1809  *	the original buffer is returned. When called with a spinlock held or
1810  *	from interrupt state @pri must be %GFP_ATOMIC
1811  *
1812  *	%NULL is returned on a memory allocation failure.
1813  */
1814 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1815 					  gfp_t pri)
1816 {
1817 	might_sleep_if(gfpflags_allow_blocking(pri));
1818 	if (skb_cloned(skb)) {
1819 		struct sk_buff *nskb = skb_copy(skb, pri);
1820 
1821 		/* Free our shared copy */
1822 		if (likely(nskb))
1823 			consume_skb(skb);
1824 		else
1825 			kfree_skb(skb);
1826 		skb = nskb;
1827 	}
1828 	return skb;
1829 }
1830 
1831 /**
1832  *	skb_peek - peek at the head of an &sk_buff_head
1833  *	@list_: list to peek at
1834  *
1835  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1836  *	be careful with this one. A peek leaves the buffer on the
1837  *	list and someone else may run off with it. You must hold
1838  *	the appropriate locks or have a private queue to do this.
1839  *
1840  *	Returns %NULL for an empty list or a pointer to the head element.
1841  *	The reference count is not incremented and the reference is therefore
1842  *	volatile. Use with caution.
1843  */
1844 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1845 {
1846 	struct sk_buff *skb = list_->next;
1847 
1848 	if (skb == (struct sk_buff *)list_)
1849 		skb = NULL;
1850 	return skb;
1851 }
1852 
1853 /**
1854  *	__skb_peek - peek at the head of a non-empty &sk_buff_head
1855  *	@list_: list to peek at
1856  *
1857  *	Like skb_peek(), but the caller knows that the list is not empty.
1858  */
1859 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
1860 {
1861 	return list_->next;
1862 }
1863 
1864 /**
1865  *	skb_peek_next - peek skb following the given one from a queue
1866  *	@skb: skb to start from
1867  *	@list_: list to peek at
1868  *
1869  *	Returns %NULL when the end of the list is met or a pointer to the
1870  *	next element. The reference count is not incremented and the
1871  *	reference is therefore volatile. Use with caution.
1872  */
1873 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1874 		const struct sk_buff_head *list_)
1875 {
1876 	struct sk_buff *next = skb->next;
1877 
1878 	if (next == (struct sk_buff *)list_)
1879 		next = NULL;
1880 	return next;
1881 }
1882 
1883 /**
1884  *	skb_peek_tail - peek at the tail of an &sk_buff_head
1885  *	@list_: list to peek at
1886  *
1887  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1888  *	be careful with this one. A peek leaves the buffer on the
1889  *	list and someone else may run off with it. You must hold
1890  *	the appropriate locks or have a private queue to do this.
1891  *
1892  *	Returns %NULL for an empty list or a pointer to the tail element.
1893  *	The reference count is not incremented and the reference is therefore
1894  *	volatile. Use with caution.
1895  */
1896 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1897 {
1898 	struct sk_buff *skb = READ_ONCE(list_->prev);
1899 
1900 	if (skb == (struct sk_buff *)list_)
1901 		skb = NULL;
1902 	return skb;
1903 
1904 }
1905 
1906 /**
1907  *	skb_queue_len	- get queue length
1908  *	@list_: list to measure
1909  *
1910  *	Return the length of an &sk_buff queue.
1911  */
1912 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1913 {
1914 	return list_->qlen;
1915 }
1916 
1917 /**
1918  *	skb_queue_len_lockless	- get queue length
1919  *	@list_: list to measure
1920  *
1921  *	Return the length of an &sk_buff queue.
1922  *	This variant can be used in lockless contexts.
1923  */
1924 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
1925 {
1926 	return READ_ONCE(list_->qlen);
1927 }
1928 
1929 /**
1930  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1931  *	@list: queue to initialize
1932  *
1933  *	This initializes only the list and queue length aspects of
1934  *	an sk_buff_head object.  This allows to initialize the list
1935  *	aspects of an sk_buff_head without reinitializing things like
1936  *	the spinlock.  It can also be used for on-stack sk_buff_head
1937  *	objects where the spinlock is known to not be used.
1938  */
1939 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1940 {
1941 	list->prev = list->next = (struct sk_buff *)list;
1942 	list->qlen = 0;
1943 }
1944 
1945 /*
1946  * This function creates a split out lock class for each invocation;
1947  * this is needed for now since a whole lot of users of the skb-queue
1948  * infrastructure in drivers have different locking usage (in hardirq)
1949  * than the networking core (in softirq only). In the long run either the
1950  * network layer or drivers should need annotation to consolidate the
1951  * main types of usage into 3 classes.
1952  */
1953 static inline void skb_queue_head_init(struct sk_buff_head *list)
1954 {
1955 	spin_lock_init(&list->lock);
1956 	__skb_queue_head_init(list);
1957 }
1958 
1959 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1960 		struct lock_class_key *class)
1961 {
1962 	skb_queue_head_init(list);
1963 	lockdep_set_class(&list->lock, class);
1964 }
1965 
1966 /*
1967  *	Insert an sk_buff on a list.
1968  *
1969  *	The "__skb_xxxx()" functions are the non-atomic ones that
1970  *	can only be called with interrupts disabled.
1971  */
1972 static inline void __skb_insert(struct sk_buff *newsk,
1973 				struct sk_buff *prev, struct sk_buff *next,
1974 				struct sk_buff_head *list)
1975 {
1976 	/* See skb_queue_empty_lockless() and skb_peek_tail()
1977 	 * for the opposite READ_ONCE()
1978 	 */
1979 	WRITE_ONCE(newsk->next, next);
1980 	WRITE_ONCE(newsk->prev, prev);
1981 	WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk);
1982 	WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk);
1983 	WRITE_ONCE(list->qlen, list->qlen + 1);
1984 }
1985 
1986 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1987 				      struct sk_buff *prev,
1988 				      struct sk_buff *next)
1989 {
1990 	struct sk_buff *first = list->next;
1991 	struct sk_buff *last = list->prev;
1992 
1993 	WRITE_ONCE(first->prev, prev);
1994 	WRITE_ONCE(prev->next, first);
1995 
1996 	WRITE_ONCE(last->next, next);
1997 	WRITE_ONCE(next->prev, last);
1998 }
1999 
2000 /**
2001  *	skb_queue_splice - join two skb lists, this is designed for stacks
2002  *	@list: the new list to add
2003  *	@head: the place to add it in the first list
2004  */
2005 static inline void skb_queue_splice(const struct sk_buff_head *list,
2006 				    struct sk_buff_head *head)
2007 {
2008 	if (!skb_queue_empty(list)) {
2009 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2010 		head->qlen += list->qlen;
2011 	}
2012 }
2013 
2014 /**
2015  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
2016  *	@list: the new list to add
2017  *	@head: the place to add it in the first list
2018  *
2019  *	The list at @list is reinitialised
2020  */
2021 static inline void skb_queue_splice_init(struct sk_buff_head *list,
2022 					 struct sk_buff_head *head)
2023 {
2024 	if (!skb_queue_empty(list)) {
2025 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2026 		head->qlen += list->qlen;
2027 		__skb_queue_head_init(list);
2028 	}
2029 }
2030 
2031 /**
2032  *	skb_queue_splice_tail - join two skb lists, each list being a queue
2033  *	@list: the new list to add
2034  *	@head: the place to add it in the first list
2035  */
2036 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
2037 					 struct sk_buff_head *head)
2038 {
2039 	if (!skb_queue_empty(list)) {
2040 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2041 		head->qlen += list->qlen;
2042 	}
2043 }
2044 
2045 /**
2046  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
2047  *	@list: the new list to add
2048  *	@head: the place to add it in the first list
2049  *
2050  *	Each of the lists is a queue.
2051  *	The list at @list is reinitialised
2052  */
2053 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
2054 					      struct sk_buff_head *head)
2055 {
2056 	if (!skb_queue_empty(list)) {
2057 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2058 		head->qlen += list->qlen;
2059 		__skb_queue_head_init(list);
2060 	}
2061 }
2062 
2063 /**
2064  *	__skb_queue_after - queue a buffer at the list head
2065  *	@list: list to use
2066  *	@prev: place after this buffer
2067  *	@newsk: buffer to queue
2068  *
2069  *	Queue a buffer int the middle of a list. This function takes no locks
2070  *	and you must therefore hold required locks before calling it.
2071  *
2072  *	A buffer cannot be placed on two lists at the same time.
2073  */
2074 static inline void __skb_queue_after(struct sk_buff_head *list,
2075 				     struct sk_buff *prev,
2076 				     struct sk_buff *newsk)
2077 {
2078 	__skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list);
2079 }
2080 
2081 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2082 		struct sk_buff_head *list);
2083 
2084 static inline void __skb_queue_before(struct sk_buff_head *list,
2085 				      struct sk_buff *next,
2086 				      struct sk_buff *newsk)
2087 {
2088 	__skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list);
2089 }
2090 
2091 /**
2092  *	__skb_queue_head - queue a buffer at the list head
2093  *	@list: list to use
2094  *	@newsk: buffer to queue
2095  *
2096  *	Queue a buffer at the start of a list. This function takes no locks
2097  *	and you must therefore hold required locks before calling it.
2098  *
2099  *	A buffer cannot be placed on two lists at the same time.
2100  */
2101 static inline void __skb_queue_head(struct sk_buff_head *list,
2102 				    struct sk_buff *newsk)
2103 {
2104 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
2105 }
2106 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2107 
2108 /**
2109  *	__skb_queue_tail - queue a buffer at the list tail
2110  *	@list: list to use
2111  *	@newsk: buffer to queue
2112  *
2113  *	Queue a buffer at the end of a list. This function takes no locks
2114  *	and you must therefore hold required locks before calling it.
2115  *
2116  *	A buffer cannot be placed on two lists at the same time.
2117  */
2118 static inline void __skb_queue_tail(struct sk_buff_head *list,
2119 				   struct sk_buff *newsk)
2120 {
2121 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
2122 }
2123 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2124 
2125 /*
2126  * remove sk_buff from list. _Must_ be called atomically, and with
2127  * the list known..
2128  */
2129 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
2130 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2131 {
2132 	struct sk_buff *next, *prev;
2133 
2134 	WRITE_ONCE(list->qlen, list->qlen - 1);
2135 	next	   = skb->next;
2136 	prev	   = skb->prev;
2137 	skb->next  = skb->prev = NULL;
2138 	WRITE_ONCE(next->prev, prev);
2139 	WRITE_ONCE(prev->next, next);
2140 }
2141 
2142 /**
2143  *	__skb_dequeue - remove from the head of the queue
2144  *	@list: list to dequeue from
2145  *
2146  *	Remove the head of the list. This function does not take any locks
2147  *	so must be used with appropriate locks held only. The head item is
2148  *	returned or %NULL if the list is empty.
2149  */
2150 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2151 {
2152 	struct sk_buff *skb = skb_peek(list);
2153 	if (skb)
2154 		__skb_unlink(skb, list);
2155 	return skb;
2156 }
2157 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2158 
2159 /**
2160  *	__skb_dequeue_tail - remove from the tail of the queue
2161  *	@list: list to dequeue from
2162  *
2163  *	Remove the tail of the list. This function does not take any locks
2164  *	so must be used with appropriate locks held only. The tail item is
2165  *	returned or %NULL if the list is empty.
2166  */
2167 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2168 {
2169 	struct sk_buff *skb = skb_peek_tail(list);
2170 	if (skb)
2171 		__skb_unlink(skb, list);
2172 	return skb;
2173 }
2174 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2175 
2176 
2177 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2178 {
2179 	return skb->data_len;
2180 }
2181 
2182 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2183 {
2184 	return skb->len - skb->data_len;
2185 }
2186 
2187 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2188 {
2189 	unsigned int i, len = 0;
2190 
2191 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2192 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2193 	return len;
2194 }
2195 
2196 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2197 {
2198 	return skb_headlen(skb) + __skb_pagelen(skb);
2199 }
2200 
2201 /**
2202  * __skb_fill_page_desc - initialise a paged fragment in an skb
2203  * @skb: buffer containing fragment to be initialised
2204  * @i: paged fragment index to initialise
2205  * @page: the page to use for this fragment
2206  * @off: the offset to the data with @page
2207  * @size: the length of the data
2208  *
2209  * Initialises the @i'th fragment of @skb to point to &size bytes at
2210  * offset @off within @page.
2211  *
2212  * Does not take any additional reference on the fragment.
2213  */
2214 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2215 					struct page *page, int off, int size)
2216 {
2217 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2218 
2219 	/*
2220 	 * Propagate page pfmemalloc to the skb if we can. The problem is
2221 	 * that not all callers have unique ownership of the page but rely
2222 	 * on page_is_pfmemalloc doing the right thing(tm).
2223 	 */
2224 	frag->bv_page		  = page;
2225 	frag->bv_offset		  = off;
2226 	skb_frag_size_set(frag, size);
2227 
2228 	page = compound_head(page);
2229 	if (page_is_pfmemalloc(page))
2230 		skb->pfmemalloc	= true;
2231 }
2232 
2233 /**
2234  * skb_fill_page_desc - initialise a paged fragment in an skb
2235  * @skb: buffer containing fragment to be initialised
2236  * @i: paged fragment index to initialise
2237  * @page: the page to use for this fragment
2238  * @off: the offset to the data with @page
2239  * @size: the length of the data
2240  *
2241  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2242  * @skb to point to @size bytes at offset @off within @page. In
2243  * addition updates @skb such that @i is the last fragment.
2244  *
2245  * Does not take any additional reference on the fragment.
2246  */
2247 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2248 				      struct page *page, int off, int size)
2249 {
2250 	__skb_fill_page_desc(skb, i, page, off, size);
2251 	skb_shinfo(skb)->nr_frags = i + 1;
2252 }
2253 
2254 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2255 		     int size, unsigned int truesize);
2256 
2257 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2258 			  unsigned int truesize);
2259 
2260 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2261 
2262 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2263 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2264 {
2265 	return skb->head + skb->tail;
2266 }
2267 
2268 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2269 {
2270 	skb->tail = skb->data - skb->head;
2271 }
2272 
2273 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2274 {
2275 	skb_reset_tail_pointer(skb);
2276 	skb->tail += offset;
2277 }
2278 
2279 #else /* NET_SKBUFF_DATA_USES_OFFSET */
2280 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2281 {
2282 	return skb->tail;
2283 }
2284 
2285 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2286 {
2287 	skb->tail = skb->data;
2288 }
2289 
2290 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2291 {
2292 	skb->tail = skb->data + offset;
2293 }
2294 
2295 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2296 
2297 /*
2298  *	Add data to an sk_buff
2299  */
2300 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2301 void *skb_put(struct sk_buff *skb, unsigned int len);
2302 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2303 {
2304 	void *tmp = skb_tail_pointer(skb);
2305 	SKB_LINEAR_ASSERT(skb);
2306 	skb->tail += len;
2307 	skb->len  += len;
2308 	return tmp;
2309 }
2310 
2311 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2312 {
2313 	void *tmp = __skb_put(skb, len);
2314 
2315 	memset(tmp, 0, len);
2316 	return tmp;
2317 }
2318 
2319 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2320 				   unsigned int len)
2321 {
2322 	void *tmp = __skb_put(skb, len);
2323 
2324 	memcpy(tmp, data, len);
2325 	return tmp;
2326 }
2327 
2328 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2329 {
2330 	*(u8 *)__skb_put(skb, 1) = val;
2331 }
2332 
2333 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2334 {
2335 	void *tmp = skb_put(skb, len);
2336 
2337 	memset(tmp, 0, len);
2338 
2339 	return tmp;
2340 }
2341 
2342 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2343 				 unsigned int len)
2344 {
2345 	void *tmp = skb_put(skb, len);
2346 
2347 	memcpy(tmp, data, len);
2348 
2349 	return tmp;
2350 }
2351 
2352 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2353 {
2354 	*(u8 *)skb_put(skb, 1) = val;
2355 }
2356 
2357 void *skb_push(struct sk_buff *skb, unsigned int len);
2358 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2359 {
2360 	skb->data -= len;
2361 	skb->len  += len;
2362 	return skb->data;
2363 }
2364 
2365 void *skb_pull(struct sk_buff *skb, unsigned int len);
2366 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2367 {
2368 	skb->len -= len;
2369 	BUG_ON(skb->len < skb->data_len);
2370 	return skb->data += len;
2371 }
2372 
2373 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2374 {
2375 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2376 }
2377 
2378 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2379 
2380 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2381 {
2382 	if (len > skb_headlen(skb) &&
2383 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2384 		return NULL;
2385 	skb->len -= len;
2386 	return skb->data += len;
2387 }
2388 
2389 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2390 {
2391 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2392 }
2393 
2394 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2395 {
2396 	if (likely(len <= skb_headlen(skb)))
2397 		return true;
2398 	if (unlikely(len > skb->len))
2399 		return false;
2400 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2401 }
2402 
2403 void skb_condense(struct sk_buff *skb);
2404 
2405 /**
2406  *	skb_headroom - bytes at buffer head
2407  *	@skb: buffer to check
2408  *
2409  *	Return the number of bytes of free space at the head of an &sk_buff.
2410  */
2411 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2412 {
2413 	return skb->data - skb->head;
2414 }
2415 
2416 /**
2417  *	skb_tailroom - bytes at buffer end
2418  *	@skb: buffer to check
2419  *
2420  *	Return the number of bytes of free space at the tail of an sk_buff
2421  */
2422 static inline int skb_tailroom(const struct sk_buff *skb)
2423 {
2424 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2425 }
2426 
2427 /**
2428  *	skb_availroom - bytes at buffer end
2429  *	@skb: buffer to check
2430  *
2431  *	Return the number of bytes of free space at the tail of an sk_buff
2432  *	allocated by sk_stream_alloc()
2433  */
2434 static inline int skb_availroom(const struct sk_buff *skb)
2435 {
2436 	if (skb_is_nonlinear(skb))
2437 		return 0;
2438 
2439 	return skb->end - skb->tail - skb->reserved_tailroom;
2440 }
2441 
2442 /**
2443  *	skb_reserve - adjust headroom
2444  *	@skb: buffer to alter
2445  *	@len: bytes to move
2446  *
2447  *	Increase the headroom of an empty &sk_buff by reducing the tail
2448  *	room. This is only allowed for an empty buffer.
2449  */
2450 static inline void skb_reserve(struct sk_buff *skb, int len)
2451 {
2452 	skb->data += len;
2453 	skb->tail += len;
2454 }
2455 
2456 /**
2457  *	skb_tailroom_reserve - adjust reserved_tailroom
2458  *	@skb: buffer to alter
2459  *	@mtu: maximum amount of headlen permitted
2460  *	@needed_tailroom: minimum amount of reserved_tailroom
2461  *
2462  *	Set reserved_tailroom so that headlen can be as large as possible but
2463  *	not larger than mtu and tailroom cannot be smaller than
2464  *	needed_tailroom.
2465  *	The required headroom should already have been reserved before using
2466  *	this function.
2467  */
2468 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2469 					unsigned int needed_tailroom)
2470 {
2471 	SKB_LINEAR_ASSERT(skb);
2472 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2473 		/* use at most mtu */
2474 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2475 	else
2476 		/* use up to all available space */
2477 		skb->reserved_tailroom = needed_tailroom;
2478 }
2479 
2480 #define ENCAP_TYPE_ETHER	0
2481 #define ENCAP_TYPE_IPPROTO	1
2482 
2483 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2484 					  __be16 protocol)
2485 {
2486 	skb->inner_protocol = protocol;
2487 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2488 }
2489 
2490 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2491 					 __u8 ipproto)
2492 {
2493 	skb->inner_ipproto = ipproto;
2494 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2495 }
2496 
2497 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2498 {
2499 	skb->inner_mac_header = skb->mac_header;
2500 	skb->inner_network_header = skb->network_header;
2501 	skb->inner_transport_header = skb->transport_header;
2502 }
2503 
2504 static inline void skb_reset_mac_len(struct sk_buff *skb)
2505 {
2506 	skb->mac_len = skb->network_header - skb->mac_header;
2507 }
2508 
2509 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2510 							*skb)
2511 {
2512 	return skb->head + skb->inner_transport_header;
2513 }
2514 
2515 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2516 {
2517 	return skb_inner_transport_header(skb) - skb->data;
2518 }
2519 
2520 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2521 {
2522 	skb->inner_transport_header = skb->data - skb->head;
2523 }
2524 
2525 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2526 						   const int offset)
2527 {
2528 	skb_reset_inner_transport_header(skb);
2529 	skb->inner_transport_header += offset;
2530 }
2531 
2532 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2533 {
2534 	return skb->head + skb->inner_network_header;
2535 }
2536 
2537 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2538 {
2539 	skb->inner_network_header = skb->data - skb->head;
2540 }
2541 
2542 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2543 						const int offset)
2544 {
2545 	skb_reset_inner_network_header(skb);
2546 	skb->inner_network_header += offset;
2547 }
2548 
2549 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2550 {
2551 	return skb->head + skb->inner_mac_header;
2552 }
2553 
2554 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2555 {
2556 	skb->inner_mac_header = skb->data - skb->head;
2557 }
2558 
2559 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2560 					    const int offset)
2561 {
2562 	skb_reset_inner_mac_header(skb);
2563 	skb->inner_mac_header += offset;
2564 }
2565 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2566 {
2567 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2568 }
2569 
2570 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2571 {
2572 	return skb->head + skb->transport_header;
2573 }
2574 
2575 static inline void skb_reset_transport_header(struct sk_buff *skb)
2576 {
2577 	skb->transport_header = skb->data - skb->head;
2578 }
2579 
2580 static inline void skb_set_transport_header(struct sk_buff *skb,
2581 					    const int offset)
2582 {
2583 	skb_reset_transport_header(skb);
2584 	skb->transport_header += offset;
2585 }
2586 
2587 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2588 {
2589 	return skb->head + skb->network_header;
2590 }
2591 
2592 static inline void skb_reset_network_header(struct sk_buff *skb)
2593 {
2594 	skb->network_header = skb->data - skb->head;
2595 }
2596 
2597 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2598 {
2599 	skb_reset_network_header(skb);
2600 	skb->network_header += offset;
2601 }
2602 
2603 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2604 {
2605 	return skb->head + skb->mac_header;
2606 }
2607 
2608 static inline int skb_mac_offset(const struct sk_buff *skb)
2609 {
2610 	return skb_mac_header(skb) - skb->data;
2611 }
2612 
2613 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2614 {
2615 	return skb->network_header - skb->mac_header;
2616 }
2617 
2618 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2619 {
2620 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2621 }
2622 
2623 static inline void skb_unset_mac_header(struct sk_buff *skb)
2624 {
2625 	skb->mac_header = (typeof(skb->mac_header))~0U;
2626 }
2627 
2628 static inline void skb_reset_mac_header(struct sk_buff *skb)
2629 {
2630 	skb->mac_header = skb->data - skb->head;
2631 }
2632 
2633 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2634 {
2635 	skb_reset_mac_header(skb);
2636 	skb->mac_header += offset;
2637 }
2638 
2639 static inline void skb_pop_mac_header(struct sk_buff *skb)
2640 {
2641 	skb->mac_header = skb->network_header;
2642 }
2643 
2644 static inline void skb_probe_transport_header(struct sk_buff *skb)
2645 {
2646 	struct flow_keys_basic keys;
2647 
2648 	if (skb_transport_header_was_set(skb))
2649 		return;
2650 
2651 	if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2652 					     NULL, 0, 0, 0, 0))
2653 		skb_set_transport_header(skb, keys.control.thoff);
2654 }
2655 
2656 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2657 {
2658 	if (skb_mac_header_was_set(skb)) {
2659 		const unsigned char *old_mac = skb_mac_header(skb);
2660 
2661 		skb_set_mac_header(skb, -skb->mac_len);
2662 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2663 	}
2664 }
2665 
2666 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2667 {
2668 	return skb->csum_start - skb_headroom(skb);
2669 }
2670 
2671 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2672 {
2673 	return skb->head + skb->csum_start;
2674 }
2675 
2676 static inline int skb_transport_offset(const struct sk_buff *skb)
2677 {
2678 	return skb_transport_header(skb) - skb->data;
2679 }
2680 
2681 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2682 {
2683 	return skb->transport_header - skb->network_header;
2684 }
2685 
2686 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2687 {
2688 	return skb->inner_transport_header - skb->inner_network_header;
2689 }
2690 
2691 static inline int skb_network_offset(const struct sk_buff *skb)
2692 {
2693 	return skb_network_header(skb) - skb->data;
2694 }
2695 
2696 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2697 {
2698 	return skb_inner_network_header(skb) - skb->data;
2699 }
2700 
2701 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2702 {
2703 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
2704 }
2705 
2706 /*
2707  * CPUs often take a performance hit when accessing unaligned memory
2708  * locations. The actual performance hit varies, it can be small if the
2709  * hardware handles it or large if we have to take an exception and fix it
2710  * in software.
2711  *
2712  * Since an ethernet header is 14 bytes network drivers often end up with
2713  * the IP header at an unaligned offset. The IP header can be aligned by
2714  * shifting the start of the packet by 2 bytes. Drivers should do this
2715  * with:
2716  *
2717  * skb_reserve(skb, NET_IP_ALIGN);
2718  *
2719  * The downside to this alignment of the IP header is that the DMA is now
2720  * unaligned. On some architectures the cost of an unaligned DMA is high
2721  * and this cost outweighs the gains made by aligning the IP header.
2722  *
2723  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2724  * to be overridden.
2725  */
2726 #ifndef NET_IP_ALIGN
2727 #define NET_IP_ALIGN	2
2728 #endif
2729 
2730 /*
2731  * The networking layer reserves some headroom in skb data (via
2732  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2733  * the header has to grow. In the default case, if the header has to grow
2734  * 32 bytes or less we avoid the reallocation.
2735  *
2736  * Unfortunately this headroom changes the DMA alignment of the resulting
2737  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2738  * on some architectures. An architecture can override this value,
2739  * perhaps setting it to a cacheline in size (since that will maintain
2740  * cacheline alignment of the DMA). It must be a power of 2.
2741  *
2742  * Various parts of the networking layer expect at least 32 bytes of
2743  * headroom, you should not reduce this.
2744  *
2745  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2746  * to reduce average number of cache lines per packet.
2747  * get_rps_cpu() for example only access one 64 bytes aligned block :
2748  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2749  */
2750 #ifndef NET_SKB_PAD
2751 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2752 #endif
2753 
2754 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2755 
2756 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2757 {
2758 	if (WARN_ON(skb_is_nonlinear(skb)))
2759 		return;
2760 	skb->len = len;
2761 	skb_set_tail_pointer(skb, len);
2762 }
2763 
2764 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2765 {
2766 	__skb_set_length(skb, len);
2767 }
2768 
2769 void skb_trim(struct sk_buff *skb, unsigned int len);
2770 
2771 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2772 {
2773 	if (skb->data_len)
2774 		return ___pskb_trim(skb, len);
2775 	__skb_trim(skb, len);
2776 	return 0;
2777 }
2778 
2779 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2780 {
2781 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2782 }
2783 
2784 /**
2785  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2786  *	@skb: buffer to alter
2787  *	@len: new length
2788  *
2789  *	This is identical to pskb_trim except that the caller knows that
2790  *	the skb is not cloned so we should never get an error due to out-
2791  *	of-memory.
2792  */
2793 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2794 {
2795 	int err = pskb_trim(skb, len);
2796 	BUG_ON(err);
2797 }
2798 
2799 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2800 {
2801 	unsigned int diff = len - skb->len;
2802 
2803 	if (skb_tailroom(skb) < diff) {
2804 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2805 					   GFP_ATOMIC);
2806 		if (ret)
2807 			return ret;
2808 	}
2809 	__skb_set_length(skb, len);
2810 	return 0;
2811 }
2812 
2813 /**
2814  *	skb_orphan - orphan a buffer
2815  *	@skb: buffer to orphan
2816  *
2817  *	If a buffer currently has an owner then we call the owner's
2818  *	destructor function and make the @skb unowned. The buffer continues
2819  *	to exist but is no longer charged to its former owner.
2820  */
2821 static inline void skb_orphan(struct sk_buff *skb)
2822 {
2823 	if (skb->destructor) {
2824 		skb->destructor(skb);
2825 		skb->destructor = NULL;
2826 		skb->sk		= NULL;
2827 	} else {
2828 		BUG_ON(skb->sk);
2829 	}
2830 }
2831 
2832 /**
2833  *	skb_orphan_frags - orphan the frags contained in a buffer
2834  *	@skb: buffer to orphan frags from
2835  *	@gfp_mask: allocation mask for replacement pages
2836  *
2837  *	For each frag in the SKB which needs a destructor (i.e. has an
2838  *	owner) create a copy of that frag and release the original
2839  *	page by calling the destructor.
2840  */
2841 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2842 {
2843 	if (likely(!skb_zcopy(skb)))
2844 		return 0;
2845 	if (!skb_zcopy_is_nouarg(skb) &&
2846 	    skb_uarg(skb)->callback == msg_zerocopy_callback)
2847 		return 0;
2848 	return skb_copy_ubufs(skb, gfp_mask);
2849 }
2850 
2851 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
2852 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2853 {
2854 	if (likely(!skb_zcopy(skb)))
2855 		return 0;
2856 	return skb_copy_ubufs(skb, gfp_mask);
2857 }
2858 
2859 /**
2860  *	__skb_queue_purge - empty a list
2861  *	@list: list to empty
2862  *
2863  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2864  *	the list and one reference dropped. This function does not take the
2865  *	list lock and the caller must hold the relevant locks to use it.
2866  */
2867 static inline void __skb_queue_purge(struct sk_buff_head *list)
2868 {
2869 	struct sk_buff *skb;
2870 	while ((skb = __skb_dequeue(list)) != NULL)
2871 		kfree_skb(skb);
2872 }
2873 void skb_queue_purge(struct sk_buff_head *list);
2874 
2875 unsigned int skb_rbtree_purge(struct rb_root *root);
2876 
2877 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
2878 
2879 /**
2880  * netdev_alloc_frag - allocate a page fragment
2881  * @fragsz: fragment size
2882  *
2883  * Allocates a frag from a page for receive buffer.
2884  * Uses GFP_ATOMIC allocations.
2885  */
2886 static inline void *netdev_alloc_frag(unsigned int fragsz)
2887 {
2888 	return __netdev_alloc_frag_align(fragsz, ~0u);
2889 }
2890 
2891 static inline void *netdev_alloc_frag_align(unsigned int fragsz,
2892 					    unsigned int align)
2893 {
2894 	WARN_ON_ONCE(!is_power_of_2(align));
2895 	return __netdev_alloc_frag_align(fragsz, -align);
2896 }
2897 
2898 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2899 				   gfp_t gfp_mask);
2900 
2901 /**
2902  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
2903  *	@dev: network device to receive on
2904  *	@length: length to allocate
2905  *
2906  *	Allocate a new &sk_buff and assign it a usage count of one. The
2907  *	buffer has unspecified headroom built in. Users should allocate
2908  *	the headroom they think they need without accounting for the
2909  *	built in space. The built in space is used for optimisations.
2910  *
2911  *	%NULL is returned if there is no free memory. Although this function
2912  *	allocates memory it can be called from an interrupt.
2913  */
2914 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2915 					       unsigned int length)
2916 {
2917 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2918 }
2919 
2920 /* legacy helper around __netdev_alloc_skb() */
2921 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2922 					      gfp_t gfp_mask)
2923 {
2924 	return __netdev_alloc_skb(NULL, length, gfp_mask);
2925 }
2926 
2927 /* legacy helper around netdev_alloc_skb() */
2928 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2929 {
2930 	return netdev_alloc_skb(NULL, length);
2931 }
2932 
2933 
2934 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2935 		unsigned int length, gfp_t gfp)
2936 {
2937 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2938 
2939 	if (NET_IP_ALIGN && skb)
2940 		skb_reserve(skb, NET_IP_ALIGN);
2941 	return skb;
2942 }
2943 
2944 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2945 		unsigned int length)
2946 {
2947 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2948 }
2949 
2950 static inline void skb_free_frag(void *addr)
2951 {
2952 	page_frag_free(addr);
2953 }
2954 
2955 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
2956 
2957 static inline void *napi_alloc_frag(unsigned int fragsz)
2958 {
2959 	return __napi_alloc_frag_align(fragsz, ~0u);
2960 }
2961 
2962 static inline void *napi_alloc_frag_align(unsigned int fragsz,
2963 					  unsigned int align)
2964 {
2965 	WARN_ON_ONCE(!is_power_of_2(align));
2966 	return __napi_alloc_frag_align(fragsz, -align);
2967 }
2968 
2969 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2970 				 unsigned int length, gfp_t gfp_mask);
2971 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2972 					     unsigned int length)
2973 {
2974 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2975 }
2976 void napi_consume_skb(struct sk_buff *skb, int budget);
2977 
2978 void napi_skb_free_stolen_head(struct sk_buff *skb);
2979 void __kfree_skb_defer(struct sk_buff *skb);
2980 
2981 /**
2982  * __dev_alloc_pages - allocate page for network Rx
2983  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2984  * @order: size of the allocation
2985  *
2986  * Allocate a new page.
2987  *
2988  * %NULL is returned if there is no free memory.
2989 */
2990 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2991 					     unsigned int order)
2992 {
2993 	/* This piece of code contains several assumptions.
2994 	 * 1.  This is for device Rx, therefor a cold page is preferred.
2995 	 * 2.  The expectation is the user wants a compound page.
2996 	 * 3.  If requesting a order 0 page it will not be compound
2997 	 *     due to the check to see if order has a value in prep_new_page
2998 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2999 	 *     code in gfp_to_alloc_flags that should be enforcing this.
3000 	 */
3001 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
3002 
3003 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
3004 }
3005 
3006 static inline struct page *dev_alloc_pages(unsigned int order)
3007 {
3008 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
3009 }
3010 
3011 /**
3012  * __dev_alloc_page - allocate a page for network Rx
3013  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3014  *
3015  * Allocate a new page.
3016  *
3017  * %NULL is returned if there is no free memory.
3018  */
3019 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
3020 {
3021 	return __dev_alloc_pages(gfp_mask, 0);
3022 }
3023 
3024 static inline struct page *dev_alloc_page(void)
3025 {
3026 	return dev_alloc_pages(0);
3027 }
3028 
3029 /**
3030  * dev_page_is_reusable - check whether a page can be reused for network Rx
3031  * @page: the page to test
3032  *
3033  * A page shouldn't be considered for reusing/recycling if it was allocated
3034  * under memory pressure or at a distant memory node.
3035  *
3036  * Returns false if this page should be returned to page allocator, true
3037  * otherwise.
3038  */
3039 static inline bool dev_page_is_reusable(const struct page *page)
3040 {
3041 	return likely(page_to_nid(page) == numa_mem_id() &&
3042 		      !page_is_pfmemalloc(page));
3043 }
3044 
3045 /**
3046  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
3047  *	@page: The page that was allocated from skb_alloc_page
3048  *	@skb: The skb that may need pfmemalloc set
3049  */
3050 static inline void skb_propagate_pfmemalloc(const struct page *page,
3051 					    struct sk_buff *skb)
3052 {
3053 	if (page_is_pfmemalloc(page))
3054 		skb->pfmemalloc = true;
3055 }
3056 
3057 /**
3058  * skb_frag_off() - Returns the offset of a skb fragment
3059  * @frag: the paged fragment
3060  */
3061 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
3062 {
3063 	return frag->bv_offset;
3064 }
3065 
3066 /**
3067  * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
3068  * @frag: skb fragment
3069  * @delta: value to add
3070  */
3071 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
3072 {
3073 	frag->bv_offset += delta;
3074 }
3075 
3076 /**
3077  * skb_frag_off_set() - Sets the offset of a skb fragment
3078  * @frag: skb fragment
3079  * @offset: offset of fragment
3080  */
3081 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
3082 {
3083 	frag->bv_offset = offset;
3084 }
3085 
3086 /**
3087  * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
3088  * @fragto: skb fragment where offset is set
3089  * @fragfrom: skb fragment offset is copied from
3090  */
3091 static inline void skb_frag_off_copy(skb_frag_t *fragto,
3092 				     const skb_frag_t *fragfrom)
3093 {
3094 	fragto->bv_offset = fragfrom->bv_offset;
3095 }
3096 
3097 /**
3098  * skb_frag_page - retrieve the page referred to by a paged fragment
3099  * @frag: the paged fragment
3100  *
3101  * Returns the &struct page associated with @frag.
3102  */
3103 static inline struct page *skb_frag_page(const skb_frag_t *frag)
3104 {
3105 	return frag->bv_page;
3106 }
3107 
3108 /**
3109  * __skb_frag_ref - take an addition reference on a paged fragment.
3110  * @frag: the paged fragment
3111  *
3112  * Takes an additional reference on the paged fragment @frag.
3113  */
3114 static inline void __skb_frag_ref(skb_frag_t *frag)
3115 {
3116 	get_page(skb_frag_page(frag));
3117 }
3118 
3119 /**
3120  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
3121  * @skb: the buffer
3122  * @f: the fragment offset.
3123  *
3124  * Takes an additional reference on the @f'th paged fragment of @skb.
3125  */
3126 static inline void skb_frag_ref(struct sk_buff *skb, int f)
3127 {
3128 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
3129 }
3130 
3131 /**
3132  * __skb_frag_unref - release a reference on a paged fragment.
3133  * @frag: the paged fragment
3134  * @recycle: recycle the page if allocated via page_pool
3135  *
3136  * Releases a reference on the paged fragment @frag
3137  * or recycles the page via the page_pool API.
3138  */
3139 static inline void __skb_frag_unref(skb_frag_t *frag, bool recycle)
3140 {
3141 	struct page *page = skb_frag_page(frag);
3142 
3143 #ifdef CONFIG_PAGE_POOL
3144 	if (recycle && page_pool_return_skb_page(page))
3145 		return;
3146 #endif
3147 	put_page(page);
3148 }
3149 
3150 /**
3151  * skb_frag_unref - release a reference on a paged fragment of an skb.
3152  * @skb: the buffer
3153  * @f: the fragment offset
3154  *
3155  * Releases a reference on the @f'th paged fragment of @skb.
3156  */
3157 static inline void skb_frag_unref(struct sk_buff *skb, int f)
3158 {
3159 	__skb_frag_unref(&skb_shinfo(skb)->frags[f], skb->pp_recycle);
3160 }
3161 
3162 /**
3163  * skb_frag_address - gets the address of the data contained in a paged fragment
3164  * @frag: the paged fragment buffer
3165  *
3166  * Returns the address of the data within @frag. The page must already
3167  * be mapped.
3168  */
3169 static inline void *skb_frag_address(const skb_frag_t *frag)
3170 {
3171 	return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3172 }
3173 
3174 /**
3175  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3176  * @frag: the paged fragment buffer
3177  *
3178  * Returns the address of the data within @frag. Checks that the page
3179  * is mapped and returns %NULL otherwise.
3180  */
3181 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3182 {
3183 	void *ptr = page_address(skb_frag_page(frag));
3184 	if (unlikely(!ptr))
3185 		return NULL;
3186 
3187 	return ptr + skb_frag_off(frag);
3188 }
3189 
3190 /**
3191  * skb_frag_page_copy() - sets the page in a fragment from another fragment
3192  * @fragto: skb fragment where page is set
3193  * @fragfrom: skb fragment page is copied from
3194  */
3195 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3196 				      const skb_frag_t *fragfrom)
3197 {
3198 	fragto->bv_page = fragfrom->bv_page;
3199 }
3200 
3201 /**
3202  * __skb_frag_set_page - sets the page contained in a paged fragment
3203  * @frag: the paged fragment
3204  * @page: the page to set
3205  *
3206  * Sets the fragment @frag to contain @page.
3207  */
3208 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
3209 {
3210 	frag->bv_page = page;
3211 }
3212 
3213 /**
3214  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
3215  * @skb: the buffer
3216  * @f: the fragment offset
3217  * @page: the page to set
3218  *
3219  * Sets the @f'th fragment of @skb to contain @page.
3220  */
3221 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
3222 				     struct page *page)
3223 {
3224 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
3225 }
3226 
3227 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3228 
3229 /**
3230  * skb_frag_dma_map - maps a paged fragment via the DMA API
3231  * @dev: the device to map the fragment to
3232  * @frag: the paged fragment to map
3233  * @offset: the offset within the fragment (starting at the
3234  *          fragment's own offset)
3235  * @size: the number of bytes to map
3236  * @dir: the direction of the mapping (``PCI_DMA_*``)
3237  *
3238  * Maps the page associated with @frag to @device.
3239  */
3240 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3241 					  const skb_frag_t *frag,
3242 					  size_t offset, size_t size,
3243 					  enum dma_data_direction dir)
3244 {
3245 	return dma_map_page(dev, skb_frag_page(frag),
3246 			    skb_frag_off(frag) + offset, size, dir);
3247 }
3248 
3249 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3250 					gfp_t gfp_mask)
3251 {
3252 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3253 }
3254 
3255 
3256 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3257 						  gfp_t gfp_mask)
3258 {
3259 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3260 }
3261 
3262 
3263 /**
3264  *	skb_clone_writable - is the header of a clone writable
3265  *	@skb: buffer to check
3266  *	@len: length up to which to write
3267  *
3268  *	Returns true if modifying the header part of the cloned buffer
3269  *	does not requires the data to be copied.
3270  */
3271 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3272 {
3273 	return !skb_header_cloned(skb) &&
3274 	       skb_headroom(skb) + len <= skb->hdr_len;
3275 }
3276 
3277 static inline int skb_try_make_writable(struct sk_buff *skb,
3278 					unsigned int write_len)
3279 {
3280 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3281 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3282 }
3283 
3284 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3285 			    int cloned)
3286 {
3287 	int delta = 0;
3288 
3289 	if (headroom > skb_headroom(skb))
3290 		delta = headroom - skb_headroom(skb);
3291 
3292 	if (delta || cloned)
3293 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3294 					GFP_ATOMIC);
3295 	return 0;
3296 }
3297 
3298 /**
3299  *	skb_cow - copy header of skb when it is required
3300  *	@skb: buffer to cow
3301  *	@headroom: needed headroom
3302  *
3303  *	If the skb passed lacks sufficient headroom or its data part
3304  *	is shared, data is reallocated. If reallocation fails, an error
3305  *	is returned and original skb is not changed.
3306  *
3307  *	The result is skb with writable area skb->head...skb->tail
3308  *	and at least @headroom of space at head.
3309  */
3310 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3311 {
3312 	return __skb_cow(skb, headroom, skb_cloned(skb));
3313 }
3314 
3315 /**
3316  *	skb_cow_head - skb_cow but only making the head writable
3317  *	@skb: buffer to cow
3318  *	@headroom: needed headroom
3319  *
3320  *	This function is identical to skb_cow except that we replace the
3321  *	skb_cloned check by skb_header_cloned.  It should be used when
3322  *	you only need to push on some header and do not need to modify
3323  *	the data.
3324  */
3325 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3326 {
3327 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
3328 }
3329 
3330 /**
3331  *	skb_padto	- pad an skbuff up to a minimal size
3332  *	@skb: buffer to pad
3333  *	@len: minimal length
3334  *
3335  *	Pads up a buffer to ensure the trailing bytes exist and are
3336  *	blanked. If the buffer already contains sufficient data it
3337  *	is untouched. Otherwise it is extended. Returns zero on
3338  *	success. The skb is freed on error.
3339  */
3340 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3341 {
3342 	unsigned int size = skb->len;
3343 	if (likely(size >= len))
3344 		return 0;
3345 	return skb_pad(skb, len - size);
3346 }
3347 
3348 /**
3349  *	__skb_put_padto - increase size and pad an skbuff up to a minimal size
3350  *	@skb: buffer to pad
3351  *	@len: minimal length
3352  *	@free_on_error: free buffer on error
3353  *
3354  *	Pads up a buffer to ensure the trailing bytes exist and are
3355  *	blanked. If the buffer already contains sufficient data it
3356  *	is untouched. Otherwise it is extended. Returns zero on
3357  *	success. The skb is freed on error if @free_on_error is true.
3358  */
3359 static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3360 					       unsigned int len,
3361 					       bool free_on_error)
3362 {
3363 	unsigned int size = skb->len;
3364 
3365 	if (unlikely(size < len)) {
3366 		len -= size;
3367 		if (__skb_pad(skb, len, free_on_error))
3368 			return -ENOMEM;
3369 		__skb_put(skb, len);
3370 	}
3371 	return 0;
3372 }
3373 
3374 /**
3375  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3376  *	@skb: buffer to pad
3377  *	@len: minimal length
3378  *
3379  *	Pads up a buffer to ensure the trailing bytes exist and are
3380  *	blanked. If the buffer already contains sufficient data it
3381  *	is untouched. Otherwise it is extended. Returns zero on
3382  *	success. The skb is freed on error.
3383  */
3384 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3385 {
3386 	return __skb_put_padto(skb, len, true);
3387 }
3388 
3389 static inline int skb_add_data(struct sk_buff *skb,
3390 			       struct iov_iter *from, int copy)
3391 {
3392 	const int off = skb->len;
3393 
3394 	if (skb->ip_summed == CHECKSUM_NONE) {
3395 		__wsum csum = 0;
3396 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3397 					         &csum, from)) {
3398 			skb->csum = csum_block_add(skb->csum, csum, off);
3399 			return 0;
3400 		}
3401 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3402 		return 0;
3403 
3404 	__skb_trim(skb, off);
3405 	return -EFAULT;
3406 }
3407 
3408 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3409 				    const struct page *page, int off)
3410 {
3411 	if (skb_zcopy(skb))
3412 		return false;
3413 	if (i) {
3414 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3415 
3416 		return page == skb_frag_page(frag) &&
3417 		       off == skb_frag_off(frag) + skb_frag_size(frag);
3418 	}
3419 	return false;
3420 }
3421 
3422 static inline int __skb_linearize(struct sk_buff *skb)
3423 {
3424 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3425 }
3426 
3427 /**
3428  *	skb_linearize - convert paged skb to linear one
3429  *	@skb: buffer to linarize
3430  *
3431  *	If there is no free memory -ENOMEM is returned, otherwise zero
3432  *	is returned and the old skb data released.
3433  */
3434 static inline int skb_linearize(struct sk_buff *skb)
3435 {
3436 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3437 }
3438 
3439 /**
3440  * skb_has_shared_frag - can any frag be overwritten
3441  * @skb: buffer to test
3442  *
3443  * Return true if the skb has at least one frag that might be modified
3444  * by an external entity (as in vmsplice()/sendfile())
3445  */
3446 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3447 {
3448 	return skb_is_nonlinear(skb) &&
3449 	       skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3450 }
3451 
3452 /**
3453  *	skb_linearize_cow - make sure skb is linear and writable
3454  *	@skb: buffer to process
3455  *
3456  *	If there is no free memory -ENOMEM is returned, otherwise zero
3457  *	is returned and the old skb data released.
3458  */
3459 static inline int skb_linearize_cow(struct sk_buff *skb)
3460 {
3461 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3462 	       __skb_linearize(skb) : 0;
3463 }
3464 
3465 static __always_inline void
3466 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3467 		     unsigned int off)
3468 {
3469 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3470 		skb->csum = csum_block_sub(skb->csum,
3471 					   csum_partial(start, len, 0), off);
3472 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3473 		 skb_checksum_start_offset(skb) < 0)
3474 		skb->ip_summed = CHECKSUM_NONE;
3475 }
3476 
3477 /**
3478  *	skb_postpull_rcsum - update checksum for received skb after pull
3479  *	@skb: buffer to update
3480  *	@start: start of data before pull
3481  *	@len: length of data pulled
3482  *
3483  *	After doing a pull on a received packet, you need to call this to
3484  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3485  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3486  */
3487 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3488 				      const void *start, unsigned int len)
3489 {
3490 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3491 		skb->csum = wsum_negate(csum_partial(start, len,
3492 						     wsum_negate(skb->csum)));
3493 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3494 		 skb_checksum_start_offset(skb) < 0)
3495 		skb->ip_summed = CHECKSUM_NONE;
3496 }
3497 
3498 static __always_inline void
3499 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3500 		     unsigned int off)
3501 {
3502 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3503 		skb->csum = csum_block_add(skb->csum,
3504 					   csum_partial(start, len, 0), off);
3505 }
3506 
3507 /**
3508  *	skb_postpush_rcsum - update checksum for received skb after push
3509  *	@skb: buffer to update
3510  *	@start: start of data after push
3511  *	@len: length of data pushed
3512  *
3513  *	After doing a push on a received packet, you need to call this to
3514  *	update the CHECKSUM_COMPLETE checksum.
3515  */
3516 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3517 				      const void *start, unsigned int len)
3518 {
3519 	__skb_postpush_rcsum(skb, start, len, 0);
3520 }
3521 
3522 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3523 
3524 /**
3525  *	skb_push_rcsum - push skb and update receive checksum
3526  *	@skb: buffer to update
3527  *	@len: length of data pulled
3528  *
3529  *	This function performs an skb_push on the packet and updates
3530  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3531  *	receive path processing instead of skb_push unless you know
3532  *	that the checksum difference is zero (e.g., a valid IP header)
3533  *	or you are setting ip_summed to CHECKSUM_NONE.
3534  */
3535 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3536 {
3537 	skb_push(skb, len);
3538 	skb_postpush_rcsum(skb, skb->data, len);
3539 	return skb->data;
3540 }
3541 
3542 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3543 /**
3544  *	pskb_trim_rcsum - trim received skb and update checksum
3545  *	@skb: buffer to trim
3546  *	@len: new length
3547  *
3548  *	This is exactly the same as pskb_trim except that it ensures the
3549  *	checksum of received packets are still valid after the operation.
3550  *	It can change skb pointers.
3551  */
3552 
3553 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3554 {
3555 	if (likely(len >= skb->len))
3556 		return 0;
3557 	return pskb_trim_rcsum_slow(skb, len);
3558 }
3559 
3560 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3561 {
3562 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3563 		skb->ip_summed = CHECKSUM_NONE;
3564 	__skb_trim(skb, len);
3565 	return 0;
3566 }
3567 
3568 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3569 {
3570 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3571 		skb->ip_summed = CHECKSUM_NONE;
3572 	return __skb_grow(skb, len);
3573 }
3574 
3575 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3576 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3577 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3578 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3579 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3580 
3581 #define skb_queue_walk(queue, skb) \
3582 		for (skb = (queue)->next;					\
3583 		     skb != (struct sk_buff *)(queue);				\
3584 		     skb = skb->next)
3585 
3586 #define skb_queue_walk_safe(queue, skb, tmp)					\
3587 		for (skb = (queue)->next, tmp = skb->next;			\
3588 		     skb != (struct sk_buff *)(queue);				\
3589 		     skb = tmp, tmp = skb->next)
3590 
3591 #define skb_queue_walk_from(queue, skb)						\
3592 		for (; skb != (struct sk_buff *)(queue);			\
3593 		     skb = skb->next)
3594 
3595 #define skb_rbtree_walk(skb, root)						\
3596 		for (skb = skb_rb_first(root); skb != NULL;			\
3597 		     skb = skb_rb_next(skb))
3598 
3599 #define skb_rbtree_walk_from(skb)						\
3600 		for (; skb != NULL;						\
3601 		     skb = skb_rb_next(skb))
3602 
3603 #define skb_rbtree_walk_from_safe(skb, tmp)					\
3604 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
3605 		     skb = tmp)
3606 
3607 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3608 		for (tmp = skb->next;						\
3609 		     skb != (struct sk_buff *)(queue);				\
3610 		     skb = tmp, tmp = skb->next)
3611 
3612 #define skb_queue_reverse_walk(queue, skb) \
3613 		for (skb = (queue)->prev;					\
3614 		     skb != (struct sk_buff *)(queue);				\
3615 		     skb = skb->prev)
3616 
3617 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3618 		for (skb = (queue)->prev, tmp = skb->prev;			\
3619 		     skb != (struct sk_buff *)(queue);				\
3620 		     skb = tmp, tmp = skb->prev)
3621 
3622 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3623 		for (tmp = skb->prev;						\
3624 		     skb != (struct sk_buff *)(queue);				\
3625 		     skb = tmp, tmp = skb->prev)
3626 
3627 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3628 {
3629 	return skb_shinfo(skb)->frag_list != NULL;
3630 }
3631 
3632 static inline void skb_frag_list_init(struct sk_buff *skb)
3633 {
3634 	skb_shinfo(skb)->frag_list = NULL;
3635 }
3636 
3637 #define skb_walk_frags(skb, iter)	\
3638 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3639 
3640 
3641 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3642 				int *err, long *timeo_p,
3643 				const struct sk_buff *skb);
3644 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3645 					  struct sk_buff_head *queue,
3646 					  unsigned int flags,
3647 					  int *off, int *err,
3648 					  struct sk_buff **last);
3649 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
3650 					struct sk_buff_head *queue,
3651 					unsigned int flags, int *off, int *err,
3652 					struct sk_buff **last);
3653 struct sk_buff *__skb_recv_datagram(struct sock *sk,
3654 				    struct sk_buff_head *sk_queue,
3655 				    unsigned int flags, int *off, int *err);
3656 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3657 				  int *err);
3658 __poll_t datagram_poll(struct file *file, struct socket *sock,
3659 			   struct poll_table_struct *wait);
3660 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3661 			   struct iov_iter *to, int size);
3662 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3663 					struct msghdr *msg, int size)
3664 {
3665 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3666 }
3667 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3668 				   struct msghdr *msg);
3669 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3670 			   struct iov_iter *to, int len,
3671 			   struct ahash_request *hash);
3672 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3673 				 struct iov_iter *from, int len);
3674 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3675 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3676 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3677 static inline void skb_free_datagram_locked(struct sock *sk,
3678 					    struct sk_buff *skb)
3679 {
3680 	__skb_free_datagram_locked(sk, skb, 0);
3681 }
3682 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3683 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3684 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3685 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3686 			      int len);
3687 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3688 		    struct pipe_inode_info *pipe, unsigned int len,
3689 		    unsigned int flags);
3690 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3691 			 int len);
3692 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
3693 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3694 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3695 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3696 		 int len, int hlen);
3697 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3698 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3699 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3700 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3701 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3702 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3703 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
3704 				 unsigned int offset);
3705 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3706 int skb_ensure_writable(struct sk_buff *skb, int write_len);
3707 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3708 int skb_vlan_pop(struct sk_buff *skb);
3709 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3710 int skb_eth_pop(struct sk_buff *skb);
3711 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
3712 		 const unsigned char *src);
3713 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
3714 		  int mac_len, bool ethernet);
3715 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
3716 		 bool ethernet);
3717 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
3718 int skb_mpls_dec_ttl(struct sk_buff *skb);
3719 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3720 			     gfp_t gfp);
3721 
3722 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3723 {
3724 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3725 }
3726 
3727 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3728 {
3729 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3730 }
3731 
3732 struct skb_checksum_ops {
3733 	__wsum (*update)(const void *mem, int len, __wsum wsum);
3734 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3735 };
3736 
3737 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3738 
3739 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3740 		      __wsum csum, const struct skb_checksum_ops *ops);
3741 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3742 		    __wsum csum);
3743 
3744 static inline void * __must_check
3745 __skb_header_pointer(const struct sk_buff *skb, int offset, int len,
3746 		     const void *data, int hlen, void *buffer)
3747 {
3748 	if (likely(hlen - offset >= len))
3749 		return (void *)data + offset;
3750 
3751 	if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0))
3752 		return NULL;
3753 
3754 	return buffer;
3755 }
3756 
3757 static inline void * __must_check
3758 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3759 {
3760 	return __skb_header_pointer(skb, offset, len, skb->data,
3761 				    skb_headlen(skb), buffer);
3762 }
3763 
3764 /**
3765  *	skb_needs_linearize - check if we need to linearize a given skb
3766  *			      depending on the given device features.
3767  *	@skb: socket buffer to check
3768  *	@features: net device features
3769  *
3770  *	Returns true if either:
3771  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
3772  *	2. skb is fragmented and the device does not support SG.
3773  */
3774 static inline bool skb_needs_linearize(struct sk_buff *skb,
3775 				       netdev_features_t features)
3776 {
3777 	return skb_is_nonlinear(skb) &&
3778 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3779 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3780 }
3781 
3782 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3783 					     void *to,
3784 					     const unsigned int len)
3785 {
3786 	memcpy(to, skb->data, len);
3787 }
3788 
3789 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3790 						    const int offset, void *to,
3791 						    const unsigned int len)
3792 {
3793 	memcpy(to, skb->data + offset, len);
3794 }
3795 
3796 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3797 					   const void *from,
3798 					   const unsigned int len)
3799 {
3800 	memcpy(skb->data, from, len);
3801 }
3802 
3803 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3804 						  const int offset,
3805 						  const void *from,
3806 						  const unsigned int len)
3807 {
3808 	memcpy(skb->data + offset, from, len);
3809 }
3810 
3811 void skb_init(void);
3812 
3813 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3814 {
3815 	return skb->tstamp;
3816 }
3817 
3818 /**
3819  *	skb_get_timestamp - get timestamp from a skb
3820  *	@skb: skb to get stamp from
3821  *	@stamp: pointer to struct __kernel_old_timeval to store stamp in
3822  *
3823  *	Timestamps are stored in the skb as offsets to a base timestamp.
3824  *	This function converts the offset back to a struct timeval and stores
3825  *	it in stamp.
3826  */
3827 static inline void skb_get_timestamp(const struct sk_buff *skb,
3828 				     struct __kernel_old_timeval *stamp)
3829 {
3830 	*stamp = ns_to_kernel_old_timeval(skb->tstamp);
3831 }
3832 
3833 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
3834 					 struct __kernel_sock_timeval *stamp)
3835 {
3836 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3837 
3838 	stamp->tv_sec = ts.tv_sec;
3839 	stamp->tv_usec = ts.tv_nsec / 1000;
3840 }
3841 
3842 static inline void skb_get_timestampns(const struct sk_buff *skb,
3843 				       struct __kernel_old_timespec *stamp)
3844 {
3845 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3846 
3847 	stamp->tv_sec = ts.tv_sec;
3848 	stamp->tv_nsec = ts.tv_nsec;
3849 }
3850 
3851 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
3852 					   struct __kernel_timespec *stamp)
3853 {
3854 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3855 
3856 	stamp->tv_sec = ts.tv_sec;
3857 	stamp->tv_nsec = ts.tv_nsec;
3858 }
3859 
3860 static inline void __net_timestamp(struct sk_buff *skb)
3861 {
3862 	skb->tstamp = ktime_get_real();
3863 }
3864 
3865 static inline ktime_t net_timedelta(ktime_t t)
3866 {
3867 	return ktime_sub(ktime_get_real(), t);
3868 }
3869 
3870 static inline ktime_t net_invalid_timestamp(void)
3871 {
3872 	return 0;
3873 }
3874 
3875 static inline u8 skb_metadata_len(const struct sk_buff *skb)
3876 {
3877 	return skb_shinfo(skb)->meta_len;
3878 }
3879 
3880 static inline void *skb_metadata_end(const struct sk_buff *skb)
3881 {
3882 	return skb_mac_header(skb);
3883 }
3884 
3885 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3886 					  const struct sk_buff *skb_b,
3887 					  u8 meta_len)
3888 {
3889 	const void *a = skb_metadata_end(skb_a);
3890 	const void *b = skb_metadata_end(skb_b);
3891 	/* Using more efficient varaiant than plain call to memcmp(). */
3892 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3893 	u64 diffs = 0;
3894 
3895 	switch (meta_len) {
3896 #define __it(x, op) (x -= sizeof(u##op))
3897 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3898 	case 32: diffs |= __it_diff(a, b, 64);
3899 		fallthrough;
3900 	case 24: diffs |= __it_diff(a, b, 64);
3901 		fallthrough;
3902 	case 16: diffs |= __it_diff(a, b, 64);
3903 		fallthrough;
3904 	case  8: diffs |= __it_diff(a, b, 64);
3905 		break;
3906 	case 28: diffs |= __it_diff(a, b, 64);
3907 		fallthrough;
3908 	case 20: diffs |= __it_diff(a, b, 64);
3909 		fallthrough;
3910 	case 12: diffs |= __it_diff(a, b, 64);
3911 		fallthrough;
3912 	case  4: diffs |= __it_diff(a, b, 32);
3913 		break;
3914 	}
3915 	return diffs;
3916 #else
3917 	return memcmp(a - meta_len, b - meta_len, meta_len);
3918 #endif
3919 }
3920 
3921 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3922 					const struct sk_buff *skb_b)
3923 {
3924 	u8 len_a = skb_metadata_len(skb_a);
3925 	u8 len_b = skb_metadata_len(skb_b);
3926 
3927 	if (!(len_a | len_b))
3928 		return false;
3929 
3930 	return len_a != len_b ?
3931 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
3932 }
3933 
3934 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3935 {
3936 	skb_shinfo(skb)->meta_len = meta_len;
3937 }
3938 
3939 static inline void skb_metadata_clear(struct sk_buff *skb)
3940 {
3941 	skb_metadata_set(skb, 0);
3942 }
3943 
3944 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3945 
3946 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3947 
3948 void skb_clone_tx_timestamp(struct sk_buff *skb);
3949 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3950 
3951 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3952 
3953 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3954 {
3955 }
3956 
3957 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3958 {
3959 	return false;
3960 }
3961 
3962 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3963 
3964 /**
3965  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3966  *
3967  * PHY drivers may accept clones of transmitted packets for
3968  * timestamping via their phy_driver.txtstamp method. These drivers
3969  * must call this function to return the skb back to the stack with a
3970  * timestamp.
3971  *
3972  * @skb: clone of the original outgoing packet
3973  * @hwtstamps: hardware time stamps
3974  *
3975  */
3976 void skb_complete_tx_timestamp(struct sk_buff *skb,
3977 			       struct skb_shared_hwtstamps *hwtstamps);
3978 
3979 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb,
3980 		     struct skb_shared_hwtstamps *hwtstamps,
3981 		     struct sock *sk, int tstype);
3982 
3983 /**
3984  * skb_tstamp_tx - queue clone of skb with send time stamps
3985  * @orig_skb:	the original outgoing packet
3986  * @hwtstamps:	hardware time stamps, may be NULL if not available
3987  *
3988  * If the skb has a socket associated, then this function clones the
3989  * skb (thus sharing the actual data and optional structures), stores
3990  * the optional hardware time stamping information (if non NULL) or
3991  * generates a software time stamp (otherwise), then queues the clone
3992  * to the error queue of the socket.  Errors are silently ignored.
3993  */
3994 void skb_tstamp_tx(struct sk_buff *orig_skb,
3995 		   struct skb_shared_hwtstamps *hwtstamps);
3996 
3997 /**
3998  * skb_tx_timestamp() - Driver hook for transmit timestamping
3999  *
4000  * Ethernet MAC Drivers should call this function in their hard_xmit()
4001  * function immediately before giving the sk_buff to the MAC hardware.
4002  *
4003  * Specifically, one should make absolutely sure that this function is
4004  * called before TX completion of this packet can trigger.  Otherwise
4005  * the packet could potentially already be freed.
4006  *
4007  * @skb: A socket buffer.
4008  */
4009 static inline void skb_tx_timestamp(struct sk_buff *skb)
4010 {
4011 	skb_clone_tx_timestamp(skb);
4012 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
4013 		skb_tstamp_tx(skb, NULL);
4014 }
4015 
4016 /**
4017  * skb_complete_wifi_ack - deliver skb with wifi status
4018  *
4019  * @skb: the original outgoing packet
4020  * @acked: ack status
4021  *
4022  */
4023 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
4024 
4025 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
4026 __sum16 __skb_checksum_complete(struct sk_buff *skb);
4027 
4028 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
4029 {
4030 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
4031 		skb->csum_valid ||
4032 		(skb->ip_summed == CHECKSUM_PARTIAL &&
4033 		 skb_checksum_start_offset(skb) >= 0));
4034 }
4035 
4036 /**
4037  *	skb_checksum_complete - Calculate checksum of an entire packet
4038  *	@skb: packet to process
4039  *
4040  *	This function calculates the checksum over the entire packet plus
4041  *	the value of skb->csum.  The latter can be used to supply the
4042  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
4043  *	checksum.
4044  *
4045  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
4046  *	this function can be used to verify that checksum on received
4047  *	packets.  In that case the function should return zero if the
4048  *	checksum is correct.  In particular, this function will return zero
4049  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
4050  *	hardware has already verified the correctness of the checksum.
4051  */
4052 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
4053 {
4054 	return skb_csum_unnecessary(skb) ?
4055 	       0 : __skb_checksum_complete(skb);
4056 }
4057 
4058 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
4059 {
4060 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4061 		if (skb->csum_level == 0)
4062 			skb->ip_summed = CHECKSUM_NONE;
4063 		else
4064 			skb->csum_level--;
4065 	}
4066 }
4067 
4068 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
4069 {
4070 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4071 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
4072 			skb->csum_level++;
4073 	} else if (skb->ip_summed == CHECKSUM_NONE) {
4074 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4075 		skb->csum_level = 0;
4076 	}
4077 }
4078 
4079 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
4080 {
4081 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4082 		skb->ip_summed = CHECKSUM_NONE;
4083 		skb->csum_level = 0;
4084 	}
4085 }
4086 
4087 /* Check if we need to perform checksum complete validation.
4088  *
4089  * Returns true if checksum complete is needed, false otherwise
4090  * (either checksum is unnecessary or zero checksum is allowed).
4091  */
4092 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
4093 						  bool zero_okay,
4094 						  __sum16 check)
4095 {
4096 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
4097 		skb->csum_valid = 1;
4098 		__skb_decr_checksum_unnecessary(skb);
4099 		return false;
4100 	}
4101 
4102 	return true;
4103 }
4104 
4105 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
4106  * in checksum_init.
4107  */
4108 #define CHECKSUM_BREAK 76
4109 
4110 /* Unset checksum-complete
4111  *
4112  * Unset checksum complete can be done when packet is being modified
4113  * (uncompressed for instance) and checksum-complete value is
4114  * invalidated.
4115  */
4116 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
4117 {
4118 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4119 		skb->ip_summed = CHECKSUM_NONE;
4120 }
4121 
4122 /* Validate (init) checksum based on checksum complete.
4123  *
4124  * Return values:
4125  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
4126  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4127  *	checksum is stored in skb->csum for use in __skb_checksum_complete
4128  *   non-zero: value of invalid checksum
4129  *
4130  */
4131 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4132 						       bool complete,
4133 						       __wsum psum)
4134 {
4135 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
4136 		if (!csum_fold(csum_add(psum, skb->csum))) {
4137 			skb->csum_valid = 1;
4138 			return 0;
4139 		}
4140 	}
4141 
4142 	skb->csum = psum;
4143 
4144 	if (complete || skb->len <= CHECKSUM_BREAK) {
4145 		__sum16 csum;
4146 
4147 		csum = __skb_checksum_complete(skb);
4148 		skb->csum_valid = !csum;
4149 		return csum;
4150 	}
4151 
4152 	return 0;
4153 }
4154 
4155 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4156 {
4157 	return 0;
4158 }
4159 
4160 /* Perform checksum validate (init). Note that this is a macro since we only
4161  * want to calculate the pseudo header which is an input function if necessary.
4162  * First we try to validate without any computation (checksum unnecessary) and
4163  * then calculate based on checksum complete calling the function to compute
4164  * pseudo header.
4165  *
4166  * Return values:
4167  *   0: checksum is validated or try to in skb_checksum_complete
4168  *   non-zero: value of invalid checksum
4169  */
4170 #define __skb_checksum_validate(skb, proto, complete,			\
4171 				zero_okay, check, compute_pseudo)	\
4172 ({									\
4173 	__sum16 __ret = 0;						\
4174 	skb->csum_valid = 0;						\
4175 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
4176 		__ret = __skb_checksum_validate_complete(skb,		\
4177 				complete, compute_pseudo(skb, proto));	\
4178 	__ret;								\
4179 })
4180 
4181 #define skb_checksum_init(skb, proto, compute_pseudo)			\
4182 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4183 
4184 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
4185 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4186 
4187 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
4188 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4189 
4190 #define skb_checksum_validate_zero_check(skb, proto, check,		\
4191 					 compute_pseudo)		\
4192 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4193 
4194 #define skb_checksum_simple_validate(skb)				\
4195 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4196 
4197 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4198 {
4199 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4200 }
4201 
4202 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4203 {
4204 	skb->csum = ~pseudo;
4205 	skb->ip_summed = CHECKSUM_COMPLETE;
4206 }
4207 
4208 #define skb_checksum_try_convert(skb, proto, compute_pseudo)	\
4209 do {									\
4210 	if (__skb_checksum_convert_check(skb))				\
4211 		__skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4212 } while (0)
4213 
4214 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4215 					      u16 start, u16 offset)
4216 {
4217 	skb->ip_summed = CHECKSUM_PARTIAL;
4218 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4219 	skb->csum_offset = offset - start;
4220 }
4221 
4222 /* Update skbuf and packet to reflect the remote checksum offload operation.
4223  * When called, ptr indicates the starting point for skb->csum when
4224  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4225  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4226  */
4227 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4228 				       int start, int offset, bool nopartial)
4229 {
4230 	__wsum delta;
4231 
4232 	if (!nopartial) {
4233 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
4234 		return;
4235 	}
4236 
4237 	if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4238 		__skb_checksum_complete(skb);
4239 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4240 	}
4241 
4242 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
4243 
4244 	/* Adjust skb->csum since we changed the packet */
4245 	skb->csum = csum_add(skb->csum, delta);
4246 }
4247 
4248 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4249 {
4250 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4251 	return (void *)(skb->_nfct & NFCT_PTRMASK);
4252 #else
4253 	return NULL;
4254 #endif
4255 }
4256 
4257 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4258 {
4259 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4260 	return skb->_nfct;
4261 #else
4262 	return 0UL;
4263 #endif
4264 }
4265 
4266 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4267 {
4268 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4269 	skb->slow_gro |= !!nfct;
4270 	skb->_nfct = nfct;
4271 #endif
4272 }
4273 
4274 #ifdef CONFIG_SKB_EXTENSIONS
4275 enum skb_ext_id {
4276 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4277 	SKB_EXT_BRIDGE_NF,
4278 #endif
4279 #ifdef CONFIG_XFRM
4280 	SKB_EXT_SEC_PATH,
4281 #endif
4282 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4283 	TC_SKB_EXT,
4284 #endif
4285 #if IS_ENABLED(CONFIG_MPTCP)
4286 	SKB_EXT_MPTCP,
4287 #endif
4288 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4289 	SKB_EXT_MCTP,
4290 #endif
4291 	SKB_EXT_NUM, /* must be last */
4292 };
4293 
4294 /**
4295  *	struct skb_ext - sk_buff extensions
4296  *	@refcnt: 1 on allocation, deallocated on 0
4297  *	@offset: offset to add to @data to obtain extension address
4298  *	@chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4299  *	@data: start of extension data, variable sized
4300  *
4301  *	Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4302  *	to use 'u8' types while allowing up to 2kb worth of extension data.
4303  */
4304 struct skb_ext {
4305 	refcount_t refcnt;
4306 	u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4307 	u8 chunks;		/* same */
4308 	char data[] __aligned(8);
4309 };
4310 
4311 struct skb_ext *__skb_ext_alloc(gfp_t flags);
4312 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4313 		    struct skb_ext *ext);
4314 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4315 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4316 void __skb_ext_put(struct skb_ext *ext);
4317 
4318 static inline void skb_ext_put(struct sk_buff *skb)
4319 {
4320 	if (skb->active_extensions)
4321 		__skb_ext_put(skb->extensions);
4322 }
4323 
4324 static inline void __skb_ext_copy(struct sk_buff *dst,
4325 				  const struct sk_buff *src)
4326 {
4327 	dst->active_extensions = src->active_extensions;
4328 
4329 	if (src->active_extensions) {
4330 		struct skb_ext *ext = src->extensions;
4331 
4332 		refcount_inc(&ext->refcnt);
4333 		dst->extensions = ext;
4334 	}
4335 }
4336 
4337 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4338 {
4339 	skb_ext_put(dst);
4340 	__skb_ext_copy(dst, src);
4341 }
4342 
4343 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4344 {
4345 	return !!ext->offset[i];
4346 }
4347 
4348 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4349 {
4350 	return skb->active_extensions & (1 << id);
4351 }
4352 
4353 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4354 {
4355 	if (skb_ext_exist(skb, id))
4356 		__skb_ext_del(skb, id);
4357 }
4358 
4359 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4360 {
4361 	if (skb_ext_exist(skb, id)) {
4362 		struct skb_ext *ext = skb->extensions;
4363 
4364 		return (void *)ext + (ext->offset[id] << 3);
4365 	}
4366 
4367 	return NULL;
4368 }
4369 
4370 static inline void skb_ext_reset(struct sk_buff *skb)
4371 {
4372 	if (unlikely(skb->active_extensions)) {
4373 		__skb_ext_put(skb->extensions);
4374 		skb->active_extensions = 0;
4375 	}
4376 }
4377 
4378 static inline bool skb_has_extensions(struct sk_buff *skb)
4379 {
4380 	return unlikely(skb->active_extensions);
4381 }
4382 #else
4383 static inline void skb_ext_put(struct sk_buff *skb) {}
4384 static inline void skb_ext_reset(struct sk_buff *skb) {}
4385 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4386 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4387 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4388 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4389 #endif /* CONFIG_SKB_EXTENSIONS */
4390 
4391 static inline void nf_reset_ct(struct sk_buff *skb)
4392 {
4393 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4394 	nf_conntrack_put(skb_nfct(skb));
4395 	skb->_nfct = 0;
4396 #endif
4397 }
4398 
4399 static inline void nf_reset_trace(struct sk_buff *skb)
4400 {
4401 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4402 	skb->nf_trace = 0;
4403 #endif
4404 }
4405 
4406 static inline void ipvs_reset(struct sk_buff *skb)
4407 {
4408 #if IS_ENABLED(CONFIG_IP_VS)
4409 	skb->ipvs_property = 0;
4410 #endif
4411 }
4412 
4413 /* Note: This doesn't put any conntrack info in dst. */
4414 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4415 			     bool copy)
4416 {
4417 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4418 	dst->_nfct = src->_nfct;
4419 	nf_conntrack_get(skb_nfct(src));
4420 #endif
4421 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4422 	if (copy)
4423 		dst->nf_trace = src->nf_trace;
4424 #endif
4425 }
4426 
4427 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4428 {
4429 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4430 	nf_conntrack_put(skb_nfct(dst));
4431 #endif
4432 	dst->slow_gro = src->slow_gro;
4433 	__nf_copy(dst, src, true);
4434 }
4435 
4436 #ifdef CONFIG_NETWORK_SECMARK
4437 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4438 {
4439 	to->secmark = from->secmark;
4440 }
4441 
4442 static inline void skb_init_secmark(struct sk_buff *skb)
4443 {
4444 	skb->secmark = 0;
4445 }
4446 #else
4447 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4448 { }
4449 
4450 static inline void skb_init_secmark(struct sk_buff *skb)
4451 { }
4452 #endif
4453 
4454 static inline int secpath_exists(const struct sk_buff *skb)
4455 {
4456 #ifdef CONFIG_XFRM
4457 	return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4458 #else
4459 	return 0;
4460 #endif
4461 }
4462 
4463 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4464 {
4465 	return !skb->destructor &&
4466 		!secpath_exists(skb) &&
4467 		!skb_nfct(skb) &&
4468 		!skb->_skb_refdst &&
4469 		!skb_has_frag_list(skb);
4470 }
4471 
4472 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4473 {
4474 	skb->queue_mapping = queue_mapping;
4475 }
4476 
4477 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4478 {
4479 	return skb->queue_mapping;
4480 }
4481 
4482 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4483 {
4484 	to->queue_mapping = from->queue_mapping;
4485 }
4486 
4487 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4488 {
4489 	skb->queue_mapping = rx_queue + 1;
4490 }
4491 
4492 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4493 {
4494 	return skb->queue_mapping - 1;
4495 }
4496 
4497 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4498 {
4499 	return skb->queue_mapping != 0;
4500 }
4501 
4502 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4503 {
4504 	skb->dst_pending_confirm = val;
4505 }
4506 
4507 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4508 {
4509 	return skb->dst_pending_confirm != 0;
4510 }
4511 
4512 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4513 {
4514 #ifdef CONFIG_XFRM
4515 	return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4516 #else
4517 	return NULL;
4518 #endif
4519 }
4520 
4521 /* Keeps track of mac header offset relative to skb->head.
4522  * It is useful for TSO of Tunneling protocol. e.g. GRE.
4523  * For non-tunnel skb it points to skb_mac_header() and for
4524  * tunnel skb it points to outer mac header.
4525  * Keeps track of level of encapsulation of network headers.
4526  */
4527 struct skb_gso_cb {
4528 	union {
4529 		int	mac_offset;
4530 		int	data_offset;
4531 	};
4532 	int	encap_level;
4533 	__wsum	csum;
4534 	__u16	csum_start;
4535 };
4536 #define SKB_GSO_CB_OFFSET	32
4537 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET))
4538 
4539 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4540 {
4541 	return (skb_mac_header(inner_skb) - inner_skb->head) -
4542 		SKB_GSO_CB(inner_skb)->mac_offset;
4543 }
4544 
4545 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4546 {
4547 	int new_headroom, headroom;
4548 	int ret;
4549 
4550 	headroom = skb_headroom(skb);
4551 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4552 	if (ret)
4553 		return ret;
4554 
4555 	new_headroom = skb_headroom(skb);
4556 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4557 	return 0;
4558 }
4559 
4560 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4561 {
4562 	/* Do not update partial checksums if remote checksum is enabled. */
4563 	if (skb->remcsum_offload)
4564 		return;
4565 
4566 	SKB_GSO_CB(skb)->csum = res;
4567 	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4568 }
4569 
4570 /* Compute the checksum for a gso segment. First compute the checksum value
4571  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4572  * then add in skb->csum (checksum from csum_start to end of packet).
4573  * skb->csum and csum_start are then updated to reflect the checksum of the
4574  * resultant packet starting from the transport header-- the resultant checksum
4575  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4576  * header.
4577  */
4578 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4579 {
4580 	unsigned char *csum_start = skb_transport_header(skb);
4581 	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4582 	__wsum partial = SKB_GSO_CB(skb)->csum;
4583 
4584 	SKB_GSO_CB(skb)->csum = res;
4585 	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4586 
4587 	return csum_fold(csum_partial(csum_start, plen, partial));
4588 }
4589 
4590 static inline bool skb_is_gso(const struct sk_buff *skb)
4591 {
4592 	return skb_shinfo(skb)->gso_size;
4593 }
4594 
4595 /* Note: Should be called only if skb_is_gso(skb) is true */
4596 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4597 {
4598 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4599 }
4600 
4601 /* Note: Should be called only if skb_is_gso(skb) is true */
4602 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4603 {
4604 	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4605 }
4606 
4607 /* Note: Should be called only if skb_is_gso(skb) is true */
4608 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4609 {
4610 	return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4611 }
4612 
4613 static inline void skb_gso_reset(struct sk_buff *skb)
4614 {
4615 	skb_shinfo(skb)->gso_size = 0;
4616 	skb_shinfo(skb)->gso_segs = 0;
4617 	skb_shinfo(skb)->gso_type = 0;
4618 }
4619 
4620 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4621 					 u16 increment)
4622 {
4623 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4624 		return;
4625 	shinfo->gso_size += increment;
4626 }
4627 
4628 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4629 					 u16 decrement)
4630 {
4631 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4632 		return;
4633 	shinfo->gso_size -= decrement;
4634 }
4635 
4636 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4637 
4638 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4639 {
4640 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
4641 	 * wanted then gso_type will be set. */
4642 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4643 
4644 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4645 	    unlikely(shinfo->gso_type == 0)) {
4646 		__skb_warn_lro_forwarding(skb);
4647 		return true;
4648 	}
4649 	return false;
4650 }
4651 
4652 static inline void skb_forward_csum(struct sk_buff *skb)
4653 {
4654 	/* Unfortunately we don't support this one.  Any brave souls? */
4655 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4656 		skb->ip_summed = CHECKSUM_NONE;
4657 }
4658 
4659 /**
4660  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4661  * @skb: skb to check
4662  *
4663  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4664  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4665  * use this helper, to document places where we make this assertion.
4666  */
4667 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4668 {
4669 #ifdef DEBUG
4670 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4671 #endif
4672 }
4673 
4674 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4675 
4676 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4677 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4678 				     unsigned int transport_len,
4679 				     __sum16(*skb_chkf)(struct sk_buff *skb));
4680 
4681 /**
4682  * skb_head_is_locked - Determine if the skb->head is locked down
4683  * @skb: skb to check
4684  *
4685  * The head on skbs build around a head frag can be removed if they are
4686  * not cloned.  This function returns true if the skb head is locked down
4687  * due to either being allocated via kmalloc, or by being a clone with
4688  * multiple references to the head.
4689  */
4690 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4691 {
4692 	return !skb->head_frag || skb_cloned(skb);
4693 }
4694 
4695 /* Local Checksum Offload.
4696  * Compute outer checksum based on the assumption that the
4697  * inner checksum will be offloaded later.
4698  * See Documentation/networking/checksum-offloads.rst for
4699  * explanation of how this works.
4700  * Fill in outer checksum adjustment (e.g. with sum of outer
4701  * pseudo-header) before calling.
4702  * Also ensure that inner checksum is in linear data area.
4703  */
4704 static inline __wsum lco_csum(struct sk_buff *skb)
4705 {
4706 	unsigned char *csum_start = skb_checksum_start(skb);
4707 	unsigned char *l4_hdr = skb_transport_header(skb);
4708 	__wsum partial;
4709 
4710 	/* Start with complement of inner checksum adjustment */
4711 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4712 						    skb->csum_offset));
4713 
4714 	/* Add in checksum of our headers (incl. outer checksum
4715 	 * adjustment filled in by caller) and return result.
4716 	 */
4717 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4718 }
4719 
4720 static inline bool skb_is_redirected(const struct sk_buff *skb)
4721 {
4722 	return skb->redirected;
4723 }
4724 
4725 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
4726 {
4727 	skb->redirected = 1;
4728 #ifdef CONFIG_NET_REDIRECT
4729 	skb->from_ingress = from_ingress;
4730 	if (skb->from_ingress)
4731 		skb->tstamp = 0;
4732 #endif
4733 }
4734 
4735 static inline void skb_reset_redirect(struct sk_buff *skb)
4736 {
4737 	skb->redirected = 0;
4738 }
4739 
4740 static inline bool skb_csum_is_sctp(struct sk_buff *skb)
4741 {
4742 	return skb->csum_not_inet;
4743 }
4744 
4745 static inline void skb_set_kcov_handle(struct sk_buff *skb,
4746 				       const u64 kcov_handle)
4747 {
4748 #ifdef CONFIG_KCOV
4749 	skb->kcov_handle = kcov_handle;
4750 #endif
4751 }
4752 
4753 static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
4754 {
4755 #ifdef CONFIG_KCOV
4756 	return skb->kcov_handle;
4757 #else
4758 	return 0;
4759 #endif
4760 }
4761 
4762 #ifdef CONFIG_PAGE_POOL
4763 static inline void skb_mark_for_recycle(struct sk_buff *skb)
4764 {
4765 	skb->pp_recycle = 1;
4766 }
4767 #endif
4768 
4769 static inline bool skb_pp_recycle(struct sk_buff *skb, void *data)
4770 {
4771 	if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
4772 		return false;
4773 	return page_pool_return_skb_page(virt_to_page(data));
4774 }
4775 
4776 #endif	/* __KERNEL__ */
4777 #endif	/* _LINUX_SKBUFF_H */
4778