xref: /linux-6.15/include/linux/skbuff.h (revision cd65cd95)
1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <[email protected]>
6  *		Florian La Roche, <[email protected]>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/bug.h>
21 #include <linux/cache.h>
22 #include <linux/rbtree.h>
23 #include <linux/socket.h>
24 #include <linux/refcount.h>
25 
26 #include <linux/atomic.h>
27 #include <asm/types.h>
28 #include <linux/spinlock.h>
29 #include <linux/net.h>
30 #include <linux/textsearch.h>
31 #include <net/checksum.h>
32 #include <linux/rcupdate.h>
33 #include <linux/hrtimer.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/netdev_features.h>
36 #include <linux/sched.h>
37 #include <linux/sched/clock.h>
38 #include <net/flow_dissector.h>
39 #include <linux/splice.h>
40 #include <linux/in6.h>
41 #include <linux/if_packet.h>
42 #include <net/flow.h>
43 
44 /* The interface for checksum offload between the stack and networking drivers
45  * is as follows...
46  *
47  * A. IP checksum related features
48  *
49  * Drivers advertise checksum offload capabilities in the features of a device.
50  * From the stack's point of view these are capabilities offered by the driver,
51  * a driver typically only advertises features that it is capable of offloading
52  * to its device.
53  *
54  * The checksum related features are:
55  *
56  *	NETIF_F_HW_CSUM	- The driver (or its device) is able to compute one
57  *			  IP (one's complement) checksum for any combination
58  *			  of protocols or protocol layering. The checksum is
59  *			  computed and set in a packet per the CHECKSUM_PARTIAL
60  *			  interface (see below).
61  *
62  *	NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
63  *			  TCP or UDP packets over IPv4. These are specifically
64  *			  unencapsulated packets of the form IPv4|TCP or
65  *			  IPv4|UDP where the Protocol field in the IPv4 header
66  *			  is TCP or UDP. The IPv4 header may contain IP options
67  *			  This feature cannot be set in features for a device
68  *			  with NETIF_F_HW_CSUM also set. This feature is being
69  *			  DEPRECATED (see below).
70  *
71  *	NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
72  *			  TCP or UDP packets over IPv6. These are specifically
73  *			  unencapsulated packets of the form IPv6|TCP or
74  *			  IPv4|UDP where the Next Header field in the IPv6
75  *			  header is either TCP or UDP. IPv6 extension headers
76  *			  are not supported with this feature. This feature
77  *			  cannot be set in features for a device with
78  *			  NETIF_F_HW_CSUM also set. This feature is being
79  *			  DEPRECATED (see below).
80  *
81  *	NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
82  *			 This flag is used only used to disable the RX checksum
83  *			 feature for a device. The stack will accept receive
84  *			 checksum indication in packets received on a device
85  *			 regardless of whether NETIF_F_RXCSUM is set.
86  *
87  * B. Checksumming of received packets by device. Indication of checksum
88  *    verification is in set skb->ip_summed. Possible values are:
89  *
90  * CHECKSUM_NONE:
91  *
92  *   Device did not checksum this packet e.g. due to lack of capabilities.
93  *   The packet contains full (though not verified) checksum in packet but
94  *   not in skb->csum. Thus, skb->csum is undefined in this case.
95  *
96  * CHECKSUM_UNNECESSARY:
97  *
98  *   The hardware you're dealing with doesn't calculate the full checksum
99  *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
100  *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
101  *   if their checksums are okay. skb->csum is still undefined in this case
102  *   though. A driver or device must never modify the checksum field in the
103  *   packet even if checksum is verified.
104  *
105  *   CHECKSUM_UNNECESSARY is applicable to following protocols:
106  *     TCP: IPv6 and IPv4.
107  *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
108  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
109  *       may perform further validation in this case.
110  *     GRE: only if the checksum is present in the header.
111  *     SCTP: indicates the CRC in SCTP header has been validated.
112  *     FCOE: indicates the CRC in FC frame has been validated.
113  *
114  *   skb->csum_level indicates the number of consecutive checksums found in
115  *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
116  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
117  *   and a device is able to verify the checksums for UDP (possibly zero),
118  *   GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
119  *   two. If the device were only able to verify the UDP checksum and not
120  *   GRE, either because it doesn't support GRE checksum of because GRE
121  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
122  *   not considered in this case).
123  *
124  * CHECKSUM_COMPLETE:
125  *
126  *   This is the most generic way. The device supplied checksum of the _whole_
127  *   packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
128  *   hardware doesn't need to parse L3/L4 headers to implement this.
129  *
130  *   Notes:
131  *   - Even if device supports only some protocols, but is able to produce
132  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
133  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
134  *
135  * CHECKSUM_PARTIAL:
136  *
137  *   A checksum is set up to be offloaded to a device as described in the
138  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
139  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
140  *   on the same host, or it may be set in the input path in GRO or remote
141  *   checksum offload. For the purposes of checksum verification, the checksum
142  *   referred to by skb->csum_start + skb->csum_offset and any preceding
143  *   checksums in the packet are considered verified. Any checksums in the
144  *   packet that are after the checksum being offloaded are not considered to
145  *   be verified.
146  *
147  * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
148  *    in the skb->ip_summed for a packet. Values are:
149  *
150  * CHECKSUM_PARTIAL:
151  *
152  *   The driver is required to checksum the packet as seen by hard_start_xmit()
153  *   from skb->csum_start up to the end, and to record/write the checksum at
154  *   offset skb->csum_start + skb->csum_offset. A driver may verify that the
155  *   csum_start and csum_offset values are valid values given the length and
156  *   offset of the packet, however they should not attempt to validate that the
157  *   checksum refers to a legitimate transport layer checksum-- it is the
158  *   purview of the stack to validate that csum_start and csum_offset are set
159  *   correctly.
160  *
161  *   When the stack requests checksum offload for a packet, the driver MUST
162  *   ensure that the checksum is set correctly. A driver can either offload the
163  *   checksum calculation to the device, or call skb_checksum_help (in the case
164  *   that the device does not support offload for a particular checksum).
165  *
166  *   NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
167  *   NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
168  *   checksum offload capability.
169  *   skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
170  *   on network device checksumming capabilities: if a packet does not match
171  *   them, skb_checksum_help or skb_crc32c_help (depending on the value of
172  *   csum_not_inet, see item D.) is called to resolve the checksum.
173  *
174  * CHECKSUM_NONE:
175  *
176  *   The skb was already checksummed by the protocol, or a checksum is not
177  *   required.
178  *
179  * CHECKSUM_UNNECESSARY:
180  *
181  *   This has the same meaning on as CHECKSUM_NONE for checksum offload on
182  *   output.
183  *
184  * CHECKSUM_COMPLETE:
185  *   Not used in checksum output. If a driver observes a packet with this value
186  *   set in skbuff, if should treat as CHECKSUM_NONE being set.
187  *
188  * D. Non-IP checksum (CRC) offloads
189  *
190  *   NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
191  *     offloading the SCTP CRC in a packet. To perform this offload the stack
192  *     will set set csum_start and csum_offset accordingly, set ip_summed to
193  *     CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
194  *     the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
195  *     A driver that supports both IP checksum offload and SCTP CRC32c offload
196  *     must verify which offload is configured for a packet by testing the
197  *     value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
198  *     CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
199  *
200  *   NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
201  *     offloading the FCOE CRC in a packet. To perform this offload the stack
202  *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
203  *     accordingly. Note the there is no indication in the skbuff that the
204  *     CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
205  *     both IP checksum offload and FCOE CRC offload must verify which offload
206  *     is configured for a packet presumably by inspecting packet headers.
207  *
208  * E. Checksumming on output with GSO.
209  *
210  * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
211  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
212  * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
213  * part of the GSO operation is implied. If a checksum is being offloaded
214  * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
215  * are set to refer to the outermost checksum being offload (two offloaded
216  * checksums are possible with UDP encapsulation).
217  */
218 
219 /* Don't change this without changing skb_csum_unnecessary! */
220 #define CHECKSUM_NONE		0
221 #define CHECKSUM_UNNECESSARY	1
222 #define CHECKSUM_COMPLETE	2
223 #define CHECKSUM_PARTIAL	3
224 
225 /* Maximum value in skb->csum_level */
226 #define SKB_MAX_CSUM_LEVEL	3
227 
228 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
229 #define SKB_WITH_OVERHEAD(X)	\
230 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
231 #define SKB_MAX_ORDER(X, ORDER) \
232 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
233 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
234 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
235 
236 /* return minimum truesize of one skb containing X bytes of data */
237 #define SKB_TRUESIZE(X) ((X) +						\
238 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
239 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
240 
241 struct net_device;
242 struct scatterlist;
243 struct pipe_inode_info;
244 struct iov_iter;
245 struct napi_struct;
246 
247 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
248 struct nf_conntrack {
249 	atomic_t use;
250 };
251 #endif
252 
253 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
254 struct nf_bridge_info {
255 	refcount_t		use;
256 	enum {
257 		BRNF_PROTO_UNCHANGED,
258 		BRNF_PROTO_8021Q,
259 		BRNF_PROTO_PPPOE
260 	} orig_proto:8;
261 	u8			pkt_otherhost:1;
262 	u8			in_prerouting:1;
263 	u8			bridged_dnat:1;
264 	__u16			frag_max_size;
265 	struct net_device	*physindev;
266 
267 	/* always valid & non-NULL from FORWARD on, for physdev match */
268 	struct net_device	*physoutdev;
269 	union {
270 		/* prerouting: detect dnat in orig/reply direction */
271 		__be32          ipv4_daddr;
272 		struct in6_addr ipv6_daddr;
273 
274 		/* after prerouting + nat detected: store original source
275 		 * mac since neigh resolution overwrites it, only used while
276 		 * skb is out in neigh layer.
277 		 */
278 		char neigh_header[8];
279 	};
280 };
281 #endif
282 
283 struct sk_buff_head {
284 	/* These two members must be first. */
285 	struct sk_buff	*next;
286 	struct sk_buff	*prev;
287 
288 	__u32		qlen;
289 	spinlock_t	lock;
290 };
291 
292 struct sk_buff;
293 
294 /* To allow 64K frame to be packed as single skb without frag_list we
295  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
296  * buffers which do not start on a page boundary.
297  *
298  * Since GRO uses frags we allocate at least 16 regardless of page
299  * size.
300  */
301 #if (65536/PAGE_SIZE + 1) < 16
302 #define MAX_SKB_FRAGS 16UL
303 #else
304 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
305 #endif
306 extern int sysctl_max_skb_frags;
307 
308 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
309  * segment using its current segmentation instead.
310  */
311 #define GSO_BY_FRAGS	0xFFFF
312 
313 typedef struct skb_frag_struct skb_frag_t;
314 
315 struct skb_frag_struct {
316 	struct {
317 		struct page *p;
318 	} page;
319 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
320 	__u32 page_offset;
321 	__u32 size;
322 #else
323 	__u16 page_offset;
324 	__u16 size;
325 #endif
326 };
327 
328 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
329 {
330 	return frag->size;
331 }
332 
333 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
334 {
335 	frag->size = size;
336 }
337 
338 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
339 {
340 	frag->size += delta;
341 }
342 
343 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
344 {
345 	frag->size -= delta;
346 }
347 
348 static inline bool skb_frag_must_loop(struct page *p)
349 {
350 #if defined(CONFIG_HIGHMEM)
351 	if (PageHighMem(p))
352 		return true;
353 #endif
354 	return false;
355 }
356 
357 /**
358  *	skb_frag_foreach_page - loop over pages in a fragment
359  *
360  *	@f:		skb frag to operate on
361  *	@f_off:		offset from start of f->page.p
362  *	@f_len:		length from f_off to loop over
363  *	@p:		(temp var) current page
364  *	@p_off:		(temp var) offset from start of current page,
365  *	                           non-zero only on first page.
366  *	@p_len:		(temp var) length in current page,
367  *				   < PAGE_SIZE only on first and last page.
368  *	@copied:	(temp var) length so far, excluding current p_len.
369  *
370  *	A fragment can hold a compound page, in which case per-page
371  *	operations, notably kmap_atomic, must be called for each
372  *	regular page.
373  */
374 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
375 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
376 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
377 	     p_len = skb_frag_must_loop(p) ?				\
378 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
379 	     copied = 0;						\
380 	     copied < f_len;						\
381 	     copied += p_len, p++, p_off = 0,				\
382 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
383 
384 #define HAVE_HW_TIME_STAMP
385 
386 /**
387  * struct skb_shared_hwtstamps - hardware time stamps
388  * @hwtstamp:	hardware time stamp transformed into duration
389  *		since arbitrary point in time
390  *
391  * Software time stamps generated by ktime_get_real() are stored in
392  * skb->tstamp.
393  *
394  * hwtstamps can only be compared against other hwtstamps from
395  * the same device.
396  *
397  * This structure is attached to packets as part of the
398  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
399  */
400 struct skb_shared_hwtstamps {
401 	ktime_t	hwtstamp;
402 };
403 
404 /* Definitions for tx_flags in struct skb_shared_info */
405 enum {
406 	/* generate hardware time stamp */
407 	SKBTX_HW_TSTAMP = 1 << 0,
408 
409 	/* generate software time stamp when queueing packet to NIC */
410 	SKBTX_SW_TSTAMP = 1 << 1,
411 
412 	/* device driver is going to provide hardware time stamp */
413 	SKBTX_IN_PROGRESS = 1 << 2,
414 
415 	/* device driver supports TX zero-copy buffers */
416 	SKBTX_DEV_ZEROCOPY = 1 << 3,
417 
418 	/* generate wifi status information (where possible) */
419 	SKBTX_WIFI_STATUS = 1 << 4,
420 
421 	/* This indicates at least one fragment might be overwritten
422 	 * (as in vmsplice(), sendfile() ...)
423 	 * If we need to compute a TX checksum, we'll need to copy
424 	 * all frags to avoid possible bad checksum
425 	 */
426 	SKBTX_SHARED_FRAG = 1 << 5,
427 
428 	/* generate software time stamp when entering packet scheduling */
429 	SKBTX_SCHED_TSTAMP = 1 << 6,
430 };
431 
432 #define SKBTX_ZEROCOPY_FRAG	(SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG)
433 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
434 				 SKBTX_SCHED_TSTAMP)
435 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
436 
437 /*
438  * The callback notifies userspace to release buffers when skb DMA is done in
439  * lower device, the skb last reference should be 0 when calling this.
440  * The zerocopy_success argument is true if zero copy transmit occurred,
441  * false on data copy or out of memory error caused by data copy attempt.
442  * The ctx field is used to track device context.
443  * The desc field is used to track userspace buffer index.
444  */
445 struct ubuf_info {
446 	void (*callback)(struct ubuf_info *, bool zerocopy_success);
447 	union {
448 		struct {
449 			unsigned long desc;
450 			void *ctx;
451 		};
452 		struct {
453 			u32 id;
454 			u16 len;
455 			u16 zerocopy:1;
456 			u32 bytelen;
457 		};
458 	};
459 	refcount_t refcnt;
460 
461 	struct mmpin {
462 		struct user_struct *user;
463 		unsigned int num_pg;
464 	} mmp;
465 };
466 
467 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
468 
469 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
470 void mm_unaccount_pinned_pages(struct mmpin *mmp);
471 
472 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size);
473 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
474 					struct ubuf_info *uarg);
475 
476 static inline void sock_zerocopy_get(struct ubuf_info *uarg)
477 {
478 	refcount_inc(&uarg->refcnt);
479 }
480 
481 void sock_zerocopy_put(struct ubuf_info *uarg);
482 void sock_zerocopy_put_abort(struct ubuf_info *uarg);
483 
484 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success);
485 
486 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
487 			     struct msghdr *msg, int len,
488 			     struct ubuf_info *uarg);
489 
490 /* This data is invariant across clones and lives at
491  * the end of the header data, ie. at skb->end.
492  */
493 struct skb_shared_info {
494 	__u8		__unused;
495 	__u8		meta_len;
496 	__u8		nr_frags;
497 	__u8		tx_flags;
498 	unsigned short	gso_size;
499 	/* Warning: this field is not always filled in (UFO)! */
500 	unsigned short	gso_segs;
501 	struct sk_buff	*frag_list;
502 	struct skb_shared_hwtstamps hwtstamps;
503 	unsigned int	gso_type;
504 	u32		tskey;
505 
506 	/*
507 	 * Warning : all fields before dataref are cleared in __alloc_skb()
508 	 */
509 	atomic_t	dataref;
510 
511 	/* Intermediate layers must ensure that destructor_arg
512 	 * remains valid until skb destructor */
513 	void *		destructor_arg;
514 
515 	/* must be last field, see pskb_expand_head() */
516 	skb_frag_t	frags[MAX_SKB_FRAGS];
517 };
518 
519 /* We divide dataref into two halves.  The higher 16 bits hold references
520  * to the payload part of skb->data.  The lower 16 bits hold references to
521  * the entire skb->data.  A clone of a headerless skb holds the length of
522  * the header in skb->hdr_len.
523  *
524  * All users must obey the rule that the skb->data reference count must be
525  * greater than or equal to the payload reference count.
526  *
527  * Holding a reference to the payload part means that the user does not
528  * care about modifications to the header part of skb->data.
529  */
530 #define SKB_DATAREF_SHIFT 16
531 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
532 
533 
534 enum {
535 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
536 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
537 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
538 };
539 
540 enum {
541 	SKB_GSO_TCPV4 = 1 << 0,
542 
543 	/* This indicates the skb is from an untrusted source. */
544 	SKB_GSO_DODGY = 1 << 1,
545 
546 	/* This indicates the tcp segment has CWR set. */
547 	SKB_GSO_TCP_ECN = 1 << 2,
548 
549 	SKB_GSO_TCP_FIXEDID = 1 << 3,
550 
551 	SKB_GSO_TCPV6 = 1 << 4,
552 
553 	SKB_GSO_FCOE = 1 << 5,
554 
555 	SKB_GSO_GRE = 1 << 6,
556 
557 	SKB_GSO_GRE_CSUM = 1 << 7,
558 
559 	SKB_GSO_IPXIP4 = 1 << 8,
560 
561 	SKB_GSO_IPXIP6 = 1 << 9,
562 
563 	SKB_GSO_UDP_TUNNEL = 1 << 10,
564 
565 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
566 
567 	SKB_GSO_PARTIAL = 1 << 12,
568 
569 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
570 
571 	SKB_GSO_SCTP = 1 << 14,
572 
573 	SKB_GSO_ESP = 1 << 15,
574 
575 	SKB_GSO_UDP = 1 << 16,
576 
577 	SKB_GSO_UDP_L4 = 1 << 17,
578 };
579 
580 #if BITS_PER_LONG > 32
581 #define NET_SKBUFF_DATA_USES_OFFSET 1
582 #endif
583 
584 #ifdef NET_SKBUFF_DATA_USES_OFFSET
585 typedef unsigned int sk_buff_data_t;
586 #else
587 typedef unsigned char *sk_buff_data_t;
588 #endif
589 
590 /**
591  *	struct sk_buff - socket buffer
592  *	@next: Next buffer in list
593  *	@prev: Previous buffer in list
594  *	@tstamp: Time we arrived/left
595  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
596  *	@sk: Socket we are owned by
597  *	@dev: Device we arrived on/are leaving by
598  *	@cb: Control buffer. Free for use by every layer. Put private vars here
599  *	@_skb_refdst: destination entry (with norefcount bit)
600  *	@sp: the security path, used for xfrm
601  *	@len: Length of actual data
602  *	@data_len: Data length
603  *	@mac_len: Length of link layer header
604  *	@hdr_len: writable header length of cloned skb
605  *	@csum: Checksum (must include start/offset pair)
606  *	@csum_start: Offset from skb->head where checksumming should start
607  *	@csum_offset: Offset from csum_start where checksum should be stored
608  *	@priority: Packet queueing priority
609  *	@ignore_df: allow local fragmentation
610  *	@cloned: Head may be cloned (check refcnt to be sure)
611  *	@ip_summed: Driver fed us an IP checksum
612  *	@nohdr: Payload reference only, must not modify header
613  *	@pkt_type: Packet class
614  *	@fclone: skbuff clone status
615  *	@ipvs_property: skbuff is owned by ipvs
616  *	@tc_skip_classify: do not classify packet. set by IFB device
617  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
618  *	@tc_redirected: packet was redirected by a tc action
619  *	@tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect
620  *	@peeked: this packet has been seen already, so stats have been
621  *		done for it, don't do them again
622  *	@nf_trace: netfilter packet trace flag
623  *	@protocol: Packet protocol from driver
624  *	@destructor: Destruct function
625  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
626  *	@_nfct: Associated connection, if any (with nfctinfo bits)
627  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
628  *	@skb_iif: ifindex of device we arrived on
629  *	@tc_index: Traffic control index
630  *	@hash: the packet hash
631  *	@queue_mapping: Queue mapping for multiqueue devices
632  *	@xmit_more: More SKBs are pending for this queue
633  *	@ndisc_nodetype: router type (from link layer)
634  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
635  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
636  *		ports.
637  *	@sw_hash: indicates hash was computed in software stack
638  *	@wifi_acked_valid: wifi_acked was set
639  *	@wifi_acked: whether frame was acked on wifi or not
640  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
641  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
642  *	@dst_pending_confirm: need to confirm neighbour
643   *	@napi_id: id of the NAPI struct this skb came from
644  *	@secmark: security marking
645  *	@mark: Generic packet mark
646  *	@vlan_proto: vlan encapsulation protocol
647  *	@vlan_tci: vlan tag control information
648  *	@inner_protocol: Protocol (encapsulation)
649  *	@inner_transport_header: Inner transport layer header (encapsulation)
650  *	@inner_network_header: Network layer header (encapsulation)
651  *	@inner_mac_header: Link layer header (encapsulation)
652  *	@transport_header: Transport layer header
653  *	@network_header: Network layer header
654  *	@mac_header: Link layer header
655  *	@tail: Tail pointer
656  *	@end: End pointer
657  *	@head: Head of buffer
658  *	@data: Data head pointer
659  *	@truesize: Buffer size
660  *	@users: User count - see {datagram,tcp}.c
661  */
662 
663 struct sk_buff {
664 	union {
665 		struct {
666 			/* These two members must be first. */
667 			struct sk_buff		*next;
668 			struct sk_buff		*prev;
669 
670 			union {
671 				struct net_device	*dev;
672 				/* Some protocols might use this space to store information,
673 				 * while device pointer would be NULL.
674 				 * UDP receive path is one user.
675 				 */
676 				unsigned long		dev_scratch;
677 				int			ip_defrag_offset;
678 			};
679 		};
680 		struct rb_node	rbnode; /* used in netem & tcp stack */
681 	};
682 	struct sock		*sk;
683 
684 	union {
685 		ktime_t		tstamp;
686 		u64		skb_mstamp;
687 	};
688 	/*
689 	 * This is the control buffer. It is free to use for every
690 	 * layer. Please put your private variables there. If you
691 	 * want to keep them across layers you have to do a skb_clone()
692 	 * first. This is owned by whoever has the skb queued ATM.
693 	 */
694 	char			cb[48] __aligned(8);
695 
696 	union {
697 		struct {
698 			unsigned long	_skb_refdst;
699 			void		(*destructor)(struct sk_buff *skb);
700 		};
701 		struct list_head	tcp_tsorted_anchor;
702 	};
703 
704 #ifdef CONFIG_XFRM
705 	struct	sec_path	*sp;
706 #endif
707 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
708 	unsigned long		 _nfct;
709 #endif
710 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
711 	struct nf_bridge_info	*nf_bridge;
712 #endif
713 	unsigned int		len,
714 				data_len;
715 	__u16			mac_len,
716 				hdr_len;
717 
718 	/* Following fields are _not_ copied in __copy_skb_header()
719 	 * Note that queue_mapping is here mostly to fill a hole.
720 	 */
721 	__u16			queue_mapping;
722 
723 /* if you move cloned around you also must adapt those constants */
724 #ifdef __BIG_ENDIAN_BITFIELD
725 #define CLONED_MASK	(1 << 7)
726 #else
727 #define CLONED_MASK	1
728 #endif
729 #define CLONED_OFFSET()		offsetof(struct sk_buff, __cloned_offset)
730 
731 	__u8			__cloned_offset[0];
732 	__u8			cloned:1,
733 				nohdr:1,
734 				fclone:2,
735 				peeked:1,
736 				head_frag:1,
737 				xmit_more:1,
738 				__unused:1; /* one bit hole */
739 
740 	/* fields enclosed in headers_start/headers_end are copied
741 	 * using a single memcpy() in __copy_skb_header()
742 	 */
743 	/* private: */
744 	__u32			headers_start[0];
745 	/* public: */
746 
747 /* if you move pkt_type around you also must adapt those constants */
748 #ifdef __BIG_ENDIAN_BITFIELD
749 #define PKT_TYPE_MAX	(7 << 5)
750 #else
751 #define PKT_TYPE_MAX	7
752 #endif
753 #define PKT_TYPE_OFFSET()	offsetof(struct sk_buff, __pkt_type_offset)
754 
755 	__u8			__pkt_type_offset[0];
756 	__u8			pkt_type:3;
757 	__u8			pfmemalloc:1;
758 	__u8			ignore_df:1;
759 
760 	__u8			nf_trace:1;
761 	__u8			ip_summed:2;
762 	__u8			ooo_okay:1;
763 	__u8			l4_hash:1;
764 	__u8			sw_hash:1;
765 	__u8			wifi_acked_valid:1;
766 	__u8			wifi_acked:1;
767 
768 	__u8			no_fcs:1;
769 	/* Indicates the inner headers are valid in the skbuff. */
770 	__u8			encapsulation:1;
771 	__u8			encap_hdr_csum:1;
772 	__u8			csum_valid:1;
773 	__u8			csum_complete_sw:1;
774 	__u8			csum_level:2;
775 	__u8			csum_not_inet:1;
776 
777 	__u8			dst_pending_confirm:1;
778 #ifdef CONFIG_IPV6_NDISC_NODETYPE
779 	__u8			ndisc_nodetype:2;
780 #endif
781 	__u8			ipvs_property:1;
782 	__u8			inner_protocol_type:1;
783 	__u8			remcsum_offload:1;
784 #ifdef CONFIG_NET_SWITCHDEV
785 	__u8			offload_fwd_mark:1;
786 	__u8			offload_mr_fwd_mark:1;
787 #endif
788 #ifdef CONFIG_NET_CLS_ACT
789 	__u8			tc_skip_classify:1;
790 	__u8			tc_at_ingress:1;
791 	__u8			tc_redirected:1;
792 	__u8			tc_from_ingress:1;
793 #endif
794 
795 #ifdef CONFIG_NET_SCHED
796 	__u16			tc_index;	/* traffic control index */
797 #endif
798 
799 	union {
800 		__wsum		csum;
801 		struct {
802 			__u16	csum_start;
803 			__u16	csum_offset;
804 		};
805 	};
806 	__u32			priority;
807 	int			skb_iif;
808 	__u32			hash;
809 	__be16			vlan_proto;
810 	__u16			vlan_tci;
811 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
812 	union {
813 		unsigned int	napi_id;
814 		unsigned int	sender_cpu;
815 	};
816 #endif
817 #ifdef CONFIG_NETWORK_SECMARK
818 	__u32		secmark;
819 #endif
820 
821 	union {
822 		__u32		mark;
823 		__u32		reserved_tailroom;
824 	};
825 
826 	union {
827 		__be16		inner_protocol;
828 		__u8		inner_ipproto;
829 	};
830 
831 	__u16			inner_transport_header;
832 	__u16			inner_network_header;
833 	__u16			inner_mac_header;
834 
835 	__be16			protocol;
836 	__u16			transport_header;
837 	__u16			network_header;
838 	__u16			mac_header;
839 
840 	/* private: */
841 	__u32			headers_end[0];
842 	/* public: */
843 
844 	/* These elements must be at the end, see alloc_skb() for details.  */
845 	sk_buff_data_t		tail;
846 	sk_buff_data_t		end;
847 	unsigned char		*head,
848 				*data;
849 	unsigned int		truesize;
850 	refcount_t		users;
851 };
852 
853 #ifdef __KERNEL__
854 /*
855  *	Handling routines are only of interest to the kernel
856  */
857 #include <linux/slab.h>
858 
859 
860 #define SKB_ALLOC_FCLONE	0x01
861 #define SKB_ALLOC_RX		0x02
862 #define SKB_ALLOC_NAPI		0x04
863 
864 /* Returns true if the skb was allocated from PFMEMALLOC reserves */
865 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
866 {
867 	return unlikely(skb->pfmemalloc);
868 }
869 
870 /*
871  * skb might have a dst pointer attached, refcounted or not.
872  * _skb_refdst low order bit is set if refcount was _not_ taken
873  */
874 #define SKB_DST_NOREF	1UL
875 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
876 
877 #define SKB_NFCT_PTRMASK	~(7UL)
878 /**
879  * skb_dst - returns skb dst_entry
880  * @skb: buffer
881  *
882  * Returns skb dst_entry, regardless of reference taken or not.
883  */
884 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
885 {
886 	/* If refdst was not refcounted, check we still are in a
887 	 * rcu_read_lock section
888 	 */
889 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
890 		!rcu_read_lock_held() &&
891 		!rcu_read_lock_bh_held());
892 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
893 }
894 
895 /**
896  * skb_dst_set - sets skb dst
897  * @skb: buffer
898  * @dst: dst entry
899  *
900  * Sets skb dst, assuming a reference was taken on dst and should
901  * be released by skb_dst_drop()
902  */
903 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
904 {
905 	skb->_skb_refdst = (unsigned long)dst;
906 }
907 
908 /**
909  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
910  * @skb: buffer
911  * @dst: dst entry
912  *
913  * Sets skb dst, assuming a reference was not taken on dst.
914  * If dst entry is cached, we do not take reference and dst_release
915  * will be avoided by refdst_drop. If dst entry is not cached, we take
916  * reference, so that last dst_release can destroy the dst immediately.
917  */
918 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
919 {
920 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
921 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
922 }
923 
924 /**
925  * skb_dst_is_noref - Test if skb dst isn't refcounted
926  * @skb: buffer
927  */
928 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
929 {
930 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
931 }
932 
933 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
934 {
935 	return (struct rtable *)skb_dst(skb);
936 }
937 
938 /* For mangling skb->pkt_type from user space side from applications
939  * such as nft, tc, etc, we only allow a conservative subset of
940  * possible pkt_types to be set.
941 */
942 static inline bool skb_pkt_type_ok(u32 ptype)
943 {
944 	return ptype <= PACKET_OTHERHOST;
945 }
946 
947 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
948 {
949 #ifdef CONFIG_NET_RX_BUSY_POLL
950 	return skb->napi_id;
951 #else
952 	return 0;
953 #endif
954 }
955 
956 /* decrement the reference count and return true if we can free the skb */
957 static inline bool skb_unref(struct sk_buff *skb)
958 {
959 	if (unlikely(!skb))
960 		return false;
961 	if (likely(refcount_read(&skb->users) == 1))
962 		smp_rmb();
963 	else if (likely(!refcount_dec_and_test(&skb->users)))
964 		return false;
965 
966 	return true;
967 }
968 
969 void skb_release_head_state(struct sk_buff *skb);
970 void kfree_skb(struct sk_buff *skb);
971 void kfree_skb_list(struct sk_buff *segs);
972 void skb_tx_error(struct sk_buff *skb);
973 void consume_skb(struct sk_buff *skb);
974 void __consume_stateless_skb(struct sk_buff *skb);
975 void  __kfree_skb(struct sk_buff *skb);
976 extern struct kmem_cache *skbuff_head_cache;
977 
978 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
979 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
980 		      bool *fragstolen, int *delta_truesize);
981 
982 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
983 			    int node);
984 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
985 struct sk_buff *build_skb(void *data, unsigned int frag_size);
986 static inline struct sk_buff *alloc_skb(unsigned int size,
987 					gfp_t priority)
988 {
989 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
990 }
991 
992 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
993 				     unsigned long data_len,
994 				     int max_page_order,
995 				     int *errcode,
996 				     gfp_t gfp_mask);
997 
998 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
999 struct sk_buff_fclones {
1000 	struct sk_buff	skb1;
1001 
1002 	struct sk_buff	skb2;
1003 
1004 	refcount_t	fclone_ref;
1005 };
1006 
1007 /**
1008  *	skb_fclone_busy - check if fclone is busy
1009  *	@sk: socket
1010  *	@skb: buffer
1011  *
1012  * Returns true if skb is a fast clone, and its clone is not freed.
1013  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1014  * so we also check that this didnt happen.
1015  */
1016 static inline bool skb_fclone_busy(const struct sock *sk,
1017 				   const struct sk_buff *skb)
1018 {
1019 	const struct sk_buff_fclones *fclones;
1020 
1021 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1022 
1023 	return skb->fclone == SKB_FCLONE_ORIG &&
1024 	       refcount_read(&fclones->fclone_ref) > 1 &&
1025 	       fclones->skb2.sk == sk;
1026 }
1027 
1028 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1029 					       gfp_t priority)
1030 {
1031 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1032 }
1033 
1034 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1035 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1036 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1037 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1038 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1039 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1040 				   gfp_t gfp_mask, bool fclone);
1041 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1042 					  gfp_t gfp_mask)
1043 {
1044 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1045 }
1046 
1047 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1048 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1049 				     unsigned int headroom);
1050 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1051 				int newtailroom, gfp_t priority);
1052 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1053 				     int offset, int len);
1054 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1055 			      int offset, int len);
1056 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1057 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1058 
1059 /**
1060  *	skb_pad			-	zero pad the tail of an skb
1061  *	@skb: buffer to pad
1062  *	@pad: space to pad
1063  *
1064  *	Ensure that a buffer is followed by a padding area that is zero
1065  *	filled. Used by network drivers which may DMA or transfer data
1066  *	beyond the buffer end onto the wire.
1067  *
1068  *	May return error in out of memory cases. The skb is freed on error.
1069  */
1070 static inline int skb_pad(struct sk_buff *skb, int pad)
1071 {
1072 	return __skb_pad(skb, pad, true);
1073 }
1074 #define dev_kfree_skb(a)	consume_skb(a)
1075 
1076 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
1077 			    int getfrag(void *from, char *to, int offset,
1078 					int len, int odd, struct sk_buff *skb),
1079 			    void *from, int length);
1080 
1081 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1082 			 int offset, size_t size);
1083 
1084 struct skb_seq_state {
1085 	__u32		lower_offset;
1086 	__u32		upper_offset;
1087 	__u32		frag_idx;
1088 	__u32		stepped_offset;
1089 	struct sk_buff	*root_skb;
1090 	struct sk_buff	*cur_skb;
1091 	__u8		*frag_data;
1092 };
1093 
1094 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1095 			  unsigned int to, struct skb_seq_state *st);
1096 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1097 			  struct skb_seq_state *st);
1098 void skb_abort_seq_read(struct skb_seq_state *st);
1099 
1100 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1101 			   unsigned int to, struct ts_config *config);
1102 
1103 /*
1104  * Packet hash types specify the type of hash in skb_set_hash.
1105  *
1106  * Hash types refer to the protocol layer addresses which are used to
1107  * construct a packet's hash. The hashes are used to differentiate or identify
1108  * flows of the protocol layer for the hash type. Hash types are either
1109  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1110  *
1111  * Properties of hashes:
1112  *
1113  * 1) Two packets in different flows have different hash values
1114  * 2) Two packets in the same flow should have the same hash value
1115  *
1116  * A hash at a higher layer is considered to be more specific. A driver should
1117  * set the most specific hash possible.
1118  *
1119  * A driver cannot indicate a more specific hash than the layer at which a hash
1120  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1121  *
1122  * A driver may indicate a hash level which is less specific than the
1123  * actual layer the hash was computed on. For instance, a hash computed
1124  * at L4 may be considered an L3 hash. This should only be done if the
1125  * driver can't unambiguously determine that the HW computed the hash at
1126  * the higher layer. Note that the "should" in the second property above
1127  * permits this.
1128  */
1129 enum pkt_hash_types {
1130 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1131 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1132 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1133 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1134 };
1135 
1136 static inline void skb_clear_hash(struct sk_buff *skb)
1137 {
1138 	skb->hash = 0;
1139 	skb->sw_hash = 0;
1140 	skb->l4_hash = 0;
1141 }
1142 
1143 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1144 {
1145 	if (!skb->l4_hash)
1146 		skb_clear_hash(skb);
1147 }
1148 
1149 static inline void
1150 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1151 {
1152 	skb->l4_hash = is_l4;
1153 	skb->sw_hash = is_sw;
1154 	skb->hash = hash;
1155 }
1156 
1157 static inline void
1158 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1159 {
1160 	/* Used by drivers to set hash from HW */
1161 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1162 }
1163 
1164 static inline void
1165 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1166 {
1167 	__skb_set_hash(skb, hash, true, is_l4);
1168 }
1169 
1170 void __skb_get_hash(struct sk_buff *skb);
1171 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1172 u32 skb_get_poff(const struct sk_buff *skb);
1173 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1174 		   const struct flow_keys_basic *keys, int hlen);
1175 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1176 			    void *data, int hlen_proto);
1177 
1178 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1179 					int thoff, u8 ip_proto)
1180 {
1181 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1182 }
1183 
1184 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1185 			     const struct flow_dissector_key *key,
1186 			     unsigned int key_count);
1187 
1188 bool __skb_flow_dissect(const struct sk_buff *skb,
1189 			struct flow_dissector *flow_dissector,
1190 			void *target_container,
1191 			void *data, __be16 proto, int nhoff, int hlen,
1192 			unsigned int flags);
1193 
1194 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1195 				    struct flow_dissector *flow_dissector,
1196 				    void *target_container, unsigned int flags)
1197 {
1198 	return __skb_flow_dissect(skb, flow_dissector, target_container,
1199 				  NULL, 0, 0, 0, flags);
1200 }
1201 
1202 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1203 					      struct flow_keys *flow,
1204 					      unsigned int flags)
1205 {
1206 	memset(flow, 0, sizeof(*flow));
1207 	return __skb_flow_dissect(skb, &flow_keys_dissector, flow,
1208 				  NULL, 0, 0, 0, flags);
1209 }
1210 
1211 static inline bool
1212 skb_flow_dissect_flow_keys_basic(const struct sk_buff *skb,
1213 				 struct flow_keys_basic *flow, void *data,
1214 				 __be16 proto, int nhoff, int hlen,
1215 				 unsigned int flags)
1216 {
1217 	memset(flow, 0, sizeof(*flow));
1218 	return __skb_flow_dissect(skb, &flow_keys_basic_dissector, flow,
1219 				  data, proto, nhoff, hlen, flags);
1220 }
1221 
1222 void
1223 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1224 			     struct flow_dissector *flow_dissector,
1225 			     void *target_container);
1226 
1227 static inline __u32 skb_get_hash(struct sk_buff *skb)
1228 {
1229 	if (!skb->l4_hash && !skb->sw_hash)
1230 		__skb_get_hash(skb);
1231 
1232 	return skb->hash;
1233 }
1234 
1235 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1236 {
1237 	if (!skb->l4_hash && !skb->sw_hash) {
1238 		struct flow_keys keys;
1239 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1240 
1241 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1242 	}
1243 
1244 	return skb->hash;
1245 }
1246 
1247 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);
1248 
1249 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1250 {
1251 	return skb->hash;
1252 }
1253 
1254 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1255 {
1256 	to->hash = from->hash;
1257 	to->sw_hash = from->sw_hash;
1258 	to->l4_hash = from->l4_hash;
1259 };
1260 
1261 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1262 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1263 {
1264 	return skb->head + skb->end;
1265 }
1266 
1267 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1268 {
1269 	return skb->end;
1270 }
1271 #else
1272 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1273 {
1274 	return skb->end;
1275 }
1276 
1277 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1278 {
1279 	return skb->end - skb->head;
1280 }
1281 #endif
1282 
1283 /* Internal */
1284 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1285 
1286 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1287 {
1288 	return &skb_shinfo(skb)->hwtstamps;
1289 }
1290 
1291 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1292 {
1293 	bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY;
1294 
1295 	return is_zcopy ? skb_uarg(skb) : NULL;
1296 }
1297 
1298 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg)
1299 {
1300 	if (skb && uarg && !skb_zcopy(skb)) {
1301 		sock_zerocopy_get(uarg);
1302 		skb_shinfo(skb)->destructor_arg = uarg;
1303 		skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1304 	}
1305 }
1306 
1307 /* Release a reference on a zerocopy structure */
1308 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy)
1309 {
1310 	struct ubuf_info *uarg = skb_zcopy(skb);
1311 
1312 	if (uarg) {
1313 		if (uarg->callback == sock_zerocopy_callback) {
1314 			uarg->zerocopy = uarg->zerocopy && zerocopy;
1315 			sock_zerocopy_put(uarg);
1316 		} else {
1317 			uarg->callback(uarg, zerocopy);
1318 		}
1319 
1320 		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1321 	}
1322 }
1323 
1324 /* Abort a zerocopy operation and revert zckey on error in send syscall */
1325 static inline void skb_zcopy_abort(struct sk_buff *skb)
1326 {
1327 	struct ubuf_info *uarg = skb_zcopy(skb);
1328 
1329 	if (uarg) {
1330 		sock_zerocopy_put_abort(uarg);
1331 		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1332 	}
1333 }
1334 
1335 /**
1336  *	skb_queue_empty - check if a queue is empty
1337  *	@list: queue head
1338  *
1339  *	Returns true if the queue is empty, false otherwise.
1340  */
1341 static inline int skb_queue_empty(const struct sk_buff_head *list)
1342 {
1343 	return list->next == (const struct sk_buff *) list;
1344 }
1345 
1346 /**
1347  *	skb_queue_is_last - check if skb is the last entry in the queue
1348  *	@list: queue head
1349  *	@skb: buffer
1350  *
1351  *	Returns true if @skb is the last buffer on the list.
1352  */
1353 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1354 				     const struct sk_buff *skb)
1355 {
1356 	return skb->next == (const struct sk_buff *) list;
1357 }
1358 
1359 /**
1360  *	skb_queue_is_first - check if skb is the first entry in the queue
1361  *	@list: queue head
1362  *	@skb: buffer
1363  *
1364  *	Returns true if @skb is the first buffer on the list.
1365  */
1366 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1367 				      const struct sk_buff *skb)
1368 {
1369 	return skb->prev == (const struct sk_buff *) list;
1370 }
1371 
1372 /**
1373  *	skb_queue_next - return the next packet in the queue
1374  *	@list: queue head
1375  *	@skb: current buffer
1376  *
1377  *	Return the next packet in @list after @skb.  It is only valid to
1378  *	call this if skb_queue_is_last() evaluates to false.
1379  */
1380 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1381 					     const struct sk_buff *skb)
1382 {
1383 	/* This BUG_ON may seem severe, but if we just return then we
1384 	 * are going to dereference garbage.
1385 	 */
1386 	BUG_ON(skb_queue_is_last(list, skb));
1387 	return skb->next;
1388 }
1389 
1390 /**
1391  *	skb_queue_prev - return the prev packet in the queue
1392  *	@list: queue head
1393  *	@skb: current buffer
1394  *
1395  *	Return the prev packet in @list before @skb.  It is only valid to
1396  *	call this if skb_queue_is_first() evaluates to false.
1397  */
1398 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1399 					     const struct sk_buff *skb)
1400 {
1401 	/* This BUG_ON may seem severe, but if we just return then we
1402 	 * are going to dereference garbage.
1403 	 */
1404 	BUG_ON(skb_queue_is_first(list, skb));
1405 	return skb->prev;
1406 }
1407 
1408 /**
1409  *	skb_get - reference buffer
1410  *	@skb: buffer to reference
1411  *
1412  *	Makes another reference to a socket buffer and returns a pointer
1413  *	to the buffer.
1414  */
1415 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1416 {
1417 	refcount_inc(&skb->users);
1418 	return skb;
1419 }
1420 
1421 /*
1422  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1423  */
1424 
1425 /**
1426  *	skb_cloned - is the buffer a clone
1427  *	@skb: buffer to check
1428  *
1429  *	Returns true if the buffer was generated with skb_clone() and is
1430  *	one of multiple shared copies of the buffer. Cloned buffers are
1431  *	shared data so must not be written to under normal circumstances.
1432  */
1433 static inline int skb_cloned(const struct sk_buff *skb)
1434 {
1435 	return skb->cloned &&
1436 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1437 }
1438 
1439 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1440 {
1441 	might_sleep_if(gfpflags_allow_blocking(pri));
1442 
1443 	if (skb_cloned(skb))
1444 		return pskb_expand_head(skb, 0, 0, pri);
1445 
1446 	return 0;
1447 }
1448 
1449 /**
1450  *	skb_header_cloned - is the header a clone
1451  *	@skb: buffer to check
1452  *
1453  *	Returns true if modifying the header part of the buffer requires
1454  *	the data to be copied.
1455  */
1456 static inline int skb_header_cloned(const struct sk_buff *skb)
1457 {
1458 	int dataref;
1459 
1460 	if (!skb->cloned)
1461 		return 0;
1462 
1463 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1464 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1465 	return dataref != 1;
1466 }
1467 
1468 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1469 {
1470 	might_sleep_if(gfpflags_allow_blocking(pri));
1471 
1472 	if (skb_header_cloned(skb))
1473 		return pskb_expand_head(skb, 0, 0, pri);
1474 
1475 	return 0;
1476 }
1477 
1478 /**
1479  *	__skb_header_release - release reference to header
1480  *	@skb: buffer to operate on
1481  */
1482 static inline void __skb_header_release(struct sk_buff *skb)
1483 {
1484 	skb->nohdr = 1;
1485 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1486 }
1487 
1488 
1489 /**
1490  *	skb_shared - is the buffer shared
1491  *	@skb: buffer to check
1492  *
1493  *	Returns true if more than one person has a reference to this
1494  *	buffer.
1495  */
1496 static inline int skb_shared(const struct sk_buff *skb)
1497 {
1498 	return refcount_read(&skb->users) != 1;
1499 }
1500 
1501 /**
1502  *	skb_share_check - check if buffer is shared and if so clone it
1503  *	@skb: buffer to check
1504  *	@pri: priority for memory allocation
1505  *
1506  *	If the buffer is shared the buffer is cloned and the old copy
1507  *	drops a reference. A new clone with a single reference is returned.
1508  *	If the buffer is not shared the original buffer is returned. When
1509  *	being called from interrupt status or with spinlocks held pri must
1510  *	be GFP_ATOMIC.
1511  *
1512  *	NULL is returned on a memory allocation failure.
1513  */
1514 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1515 {
1516 	might_sleep_if(gfpflags_allow_blocking(pri));
1517 	if (skb_shared(skb)) {
1518 		struct sk_buff *nskb = skb_clone(skb, pri);
1519 
1520 		if (likely(nskb))
1521 			consume_skb(skb);
1522 		else
1523 			kfree_skb(skb);
1524 		skb = nskb;
1525 	}
1526 	return skb;
1527 }
1528 
1529 /*
1530  *	Copy shared buffers into a new sk_buff. We effectively do COW on
1531  *	packets to handle cases where we have a local reader and forward
1532  *	and a couple of other messy ones. The normal one is tcpdumping
1533  *	a packet thats being forwarded.
1534  */
1535 
1536 /**
1537  *	skb_unshare - make a copy of a shared buffer
1538  *	@skb: buffer to check
1539  *	@pri: priority for memory allocation
1540  *
1541  *	If the socket buffer is a clone then this function creates a new
1542  *	copy of the data, drops a reference count on the old copy and returns
1543  *	the new copy with the reference count at 1. If the buffer is not a clone
1544  *	the original buffer is returned. When called with a spinlock held or
1545  *	from interrupt state @pri must be %GFP_ATOMIC
1546  *
1547  *	%NULL is returned on a memory allocation failure.
1548  */
1549 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1550 					  gfp_t pri)
1551 {
1552 	might_sleep_if(gfpflags_allow_blocking(pri));
1553 	if (skb_cloned(skb)) {
1554 		struct sk_buff *nskb = skb_copy(skb, pri);
1555 
1556 		/* Free our shared copy */
1557 		if (likely(nskb))
1558 			consume_skb(skb);
1559 		else
1560 			kfree_skb(skb);
1561 		skb = nskb;
1562 	}
1563 	return skb;
1564 }
1565 
1566 /**
1567  *	skb_peek - peek at the head of an &sk_buff_head
1568  *	@list_: list to peek at
1569  *
1570  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1571  *	be careful with this one. A peek leaves the buffer on the
1572  *	list and someone else may run off with it. You must hold
1573  *	the appropriate locks or have a private queue to do this.
1574  *
1575  *	Returns %NULL for an empty list or a pointer to the head element.
1576  *	The reference count is not incremented and the reference is therefore
1577  *	volatile. Use with caution.
1578  */
1579 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1580 {
1581 	struct sk_buff *skb = list_->next;
1582 
1583 	if (skb == (struct sk_buff *)list_)
1584 		skb = NULL;
1585 	return skb;
1586 }
1587 
1588 /**
1589  *	skb_peek_next - peek skb following the given one from a queue
1590  *	@skb: skb to start from
1591  *	@list_: list to peek at
1592  *
1593  *	Returns %NULL when the end of the list is met or a pointer to the
1594  *	next element. The reference count is not incremented and the
1595  *	reference is therefore volatile. Use with caution.
1596  */
1597 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1598 		const struct sk_buff_head *list_)
1599 {
1600 	struct sk_buff *next = skb->next;
1601 
1602 	if (next == (struct sk_buff *)list_)
1603 		next = NULL;
1604 	return next;
1605 }
1606 
1607 /**
1608  *	skb_peek_tail - peek at the tail of an &sk_buff_head
1609  *	@list_: list to peek at
1610  *
1611  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1612  *	be careful with this one. A peek leaves the buffer on the
1613  *	list and someone else may run off with it. You must hold
1614  *	the appropriate locks or have a private queue to do this.
1615  *
1616  *	Returns %NULL for an empty list or a pointer to the tail element.
1617  *	The reference count is not incremented and the reference is therefore
1618  *	volatile. Use with caution.
1619  */
1620 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1621 {
1622 	struct sk_buff *skb = list_->prev;
1623 
1624 	if (skb == (struct sk_buff *)list_)
1625 		skb = NULL;
1626 	return skb;
1627 
1628 }
1629 
1630 /**
1631  *	skb_queue_len	- get queue length
1632  *	@list_: list to measure
1633  *
1634  *	Return the length of an &sk_buff queue.
1635  */
1636 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1637 {
1638 	return list_->qlen;
1639 }
1640 
1641 /**
1642  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1643  *	@list: queue to initialize
1644  *
1645  *	This initializes only the list and queue length aspects of
1646  *	an sk_buff_head object.  This allows to initialize the list
1647  *	aspects of an sk_buff_head without reinitializing things like
1648  *	the spinlock.  It can also be used for on-stack sk_buff_head
1649  *	objects where the spinlock is known to not be used.
1650  */
1651 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1652 {
1653 	list->prev = list->next = (struct sk_buff *)list;
1654 	list->qlen = 0;
1655 }
1656 
1657 /*
1658  * This function creates a split out lock class for each invocation;
1659  * this is needed for now since a whole lot of users of the skb-queue
1660  * infrastructure in drivers have different locking usage (in hardirq)
1661  * than the networking core (in softirq only). In the long run either the
1662  * network layer or drivers should need annotation to consolidate the
1663  * main types of usage into 3 classes.
1664  */
1665 static inline void skb_queue_head_init(struct sk_buff_head *list)
1666 {
1667 	spin_lock_init(&list->lock);
1668 	__skb_queue_head_init(list);
1669 }
1670 
1671 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1672 		struct lock_class_key *class)
1673 {
1674 	skb_queue_head_init(list);
1675 	lockdep_set_class(&list->lock, class);
1676 }
1677 
1678 /*
1679  *	Insert an sk_buff on a list.
1680  *
1681  *	The "__skb_xxxx()" functions are the non-atomic ones that
1682  *	can only be called with interrupts disabled.
1683  */
1684 void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1685 		struct sk_buff_head *list);
1686 static inline void __skb_insert(struct sk_buff *newsk,
1687 				struct sk_buff *prev, struct sk_buff *next,
1688 				struct sk_buff_head *list)
1689 {
1690 	newsk->next = next;
1691 	newsk->prev = prev;
1692 	next->prev  = prev->next = newsk;
1693 	list->qlen++;
1694 }
1695 
1696 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1697 				      struct sk_buff *prev,
1698 				      struct sk_buff *next)
1699 {
1700 	struct sk_buff *first = list->next;
1701 	struct sk_buff *last = list->prev;
1702 
1703 	first->prev = prev;
1704 	prev->next = first;
1705 
1706 	last->next = next;
1707 	next->prev = last;
1708 }
1709 
1710 /**
1711  *	skb_queue_splice - join two skb lists, this is designed for stacks
1712  *	@list: the new list to add
1713  *	@head: the place to add it in the first list
1714  */
1715 static inline void skb_queue_splice(const struct sk_buff_head *list,
1716 				    struct sk_buff_head *head)
1717 {
1718 	if (!skb_queue_empty(list)) {
1719 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1720 		head->qlen += list->qlen;
1721 	}
1722 }
1723 
1724 /**
1725  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1726  *	@list: the new list to add
1727  *	@head: the place to add it in the first list
1728  *
1729  *	The list at @list is reinitialised
1730  */
1731 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1732 					 struct sk_buff_head *head)
1733 {
1734 	if (!skb_queue_empty(list)) {
1735 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1736 		head->qlen += list->qlen;
1737 		__skb_queue_head_init(list);
1738 	}
1739 }
1740 
1741 /**
1742  *	skb_queue_splice_tail - join two skb lists, each list being a queue
1743  *	@list: the new list to add
1744  *	@head: the place to add it in the first list
1745  */
1746 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1747 					 struct sk_buff_head *head)
1748 {
1749 	if (!skb_queue_empty(list)) {
1750 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1751 		head->qlen += list->qlen;
1752 	}
1753 }
1754 
1755 /**
1756  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1757  *	@list: the new list to add
1758  *	@head: the place to add it in the first list
1759  *
1760  *	Each of the lists is a queue.
1761  *	The list at @list is reinitialised
1762  */
1763 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1764 					      struct sk_buff_head *head)
1765 {
1766 	if (!skb_queue_empty(list)) {
1767 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1768 		head->qlen += list->qlen;
1769 		__skb_queue_head_init(list);
1770 	}
1771 }
1772 
1773 /**
1774  *	__skb_queue_after - queue a buffer at the list head
1775  *	@list: list to use
1776  *	@prev: place after this buffer
1777  *	@newsk: buffer to queue
1778  *
1779  *	Queue a buffer int the middle of a list. This function takes no locks
1780  *	and you must therefore hold required locks before calling it.
1781  *
1782  *	A buffer cannot be placed on two lists at the same time.
1783  */
1784 static inline void __skb_queue_after(struct sk_buff_head *list,
1785 				     struct sk_buff *prev,
1786 				     struct sk_buff *newsk)
1787 {
1788 	__skb_insert(newsk, prev, prev->next, list);
1789 }
1790 
1791 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1792 		struct sk_buff_head *list);
1793 
1794 static inline void __skb_queue_before(struct sk_buff_head *list,
1795 				      struct sk_buff *next,
1796 				      struct sk_buff *newsk)
1797 {
1798 	__skb_insert(newsk, next->prev, next, list);
1799 }
1800 
1801 /**
1802  *	__skb_queue_head - queue a buffer at the list head
1803  *	@list: list to use
1804  *	@newsk: buffer to queue
1805  *
1806  *	Queue a buffer at the start of a list. This function takes no locks
1807  *	and you must therefore hold required locks before calling it.
1808  *
1809  *	A buffer cannot be placed on two lists at the same time.
1810  */
1811 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1812 static inline void __skb_queue_head(struct sk_buff_head *list,
1813 				    struct sk_buff *newsk)
1814 {
1815 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
1816 }
1817 
1818 /**
1819  *	__skb_queue_tail - queue a buffer at the list tail
1820  *	@list: list to use
1821  *	@newsk: buffer to queue
1822  *
1823  *	Queue a buffer at the end of a list. This function takes no locks
1824  *	and you must therefore hold required locks before calling it.
1825  *
1826  *	A buffer cannot be placed on two lists at the same time.
1827  */
1828 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1829 static inline void __skb_queue_tail(struct sk_buff_head *list,
1830 				   struct sk_buff *newsk)
1831 {
1832 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
1833 }
1834 
1835 /*
1836  * remove sk_buff from list. _Must_ be called atomically, and with
1837  * the list known..
1838  */
1839 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1840 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1841 {
1842 	struct sk_buff *next, *prev;
1843 
1844 	list->qlen--;
1845 	next	   = skb->next;
1846 	prev	   = skb->prev;
1847 	skb->next  = skb->prev = NULL;
1848 	next->prev = prev;
1849 	prev->next = next;
1850 }
1851 
1852 /**
1853  *	__skb_dequeue - remove from the head of the queue
1854  *	@list: list to dequeue from
1855  *
1856  *	Remove the head of the list. This function does not take any locks
1857  *	so must be used with appropriate locks held only. The head item is
1858  *	returned or %NULL if the list is empty.
1859  */
1860 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1861 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1862 {
1863 	struct sk_buff *skb = skb_peek(list);
1864 	if (skb)
1865 		__skb_unlink(skb, list);
1866 	return skb;
1867 }
1868 
1869 /**
1870  *	__skb_dequeue_tail - remove from the tail of the queue
1871  *	@list: list to dequeue from
1872  *
1873  *	Remove the tail of the list. This function does not take any locks
1874  *	so must be used with appropriate locks held only. The tail item is
1875  *	returned or %NULL if the list is empty.
1876  */
1877 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1878 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1879 {
1880 	struct sk_buff *skb = skb_peek_tail(list);
1881 	if (skb)
1882 		__skb_unlink(skb, list);
1883 	return skb;
1884 }
1885 
1886 
1887 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1888 {
1889 	return skb->data_len;
1890 }
1891 
1892 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1893 {
1894 	return skb->len - skb->data_len;
1895 }
1896 
1897 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
1898 {
1899 	unsigned int i, len = 0;
1900 
1901 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
1902 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1903 	return len;
1904 }
1905 
1906 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
1907 {
1908 	return skb_headlen(skb) + __skb_pagelen(skb);
1909 }
1910 
1911 /**
1912  * __skb_fill_page_desc - initialise a paged fragment in an skb
1913  * @skb: buffer containing fragment to be initialised
1914  * @i: paged fragment index to initialise
1915  * @page: the page to use for this fragment
1916  * @off: the offset to the data with @page
1917  * @size: the length of the data
1918  *
1919  * Initialises the @i'th fragment of @skb to point to &size bytes at
1920  * offset @off within @page.
1921  *
1922  * Does not take any additional reference on the fragment.
1923  */
1924 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1925 					struct page *page, int off, int size)
1926 {
1927 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1928 
1929 	/*
1930 	 * Propagate page pfmemalloc to the skb if we can. The problem is
1931 	 * that not all callers have unique ownership of the page but rely
1932 	 * on page_is_pfmemalloc doing the right thing(tm).
1933 	 */
1934 	frag->page.p		  = page;
1935 	frag->page_offset	  = off;
1936 	skb_frag_size_set(frag, size);
1937 
1938 	page = compound_head(page);
1939 	if (page_is_pfmemalloc(page))
1940 		skb->pfmemalloc	= true;
1941 }
1942 
1943 /**
1944  * skb_fill_page_desc - initialise a paged fragment in an skb
1945  * @skb: buffer containing fragment to be initialised
1946  * @i: paged fragment index to initialise
1947  * @page: the page to use for this fragment
1948  * @off: the offset to the data with @page
1949  * @size: the length of the data
1950  *
1951  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1952  * @skb to point to @size bytes at offset @off within @page. In
1953  * addition updates @skb such that @i is the last fragment.
1954  *
1955  * Does not take any additional reference on the fragment.
1956  */
1957 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1958 				      struct page *page, int off, int size)
1959 {
1960 	__skb_fill_page_desc(skb, i, page, off, size);
1961 	skb_shinfo(skb)->nr_frags = i + 1;
1962 }
1963 
1964 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
1965 		     int size, unsigned int truesize);
1966 
1967 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
1968 			  unsigned int truesize);
1969 
1970 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
1971 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_has_frag_list(skb))
1972 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
1973 
1974 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1975 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1976 {
1977 	return skb->head + skb->tail;
1978 }
1979 
1980 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1981 {
1982 	skb->tail = skb->data - skb->head;
1983 }
1984 
1985 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1986 {
1987 	skb_reset_tail_pointer(skb);
1988 	skb->tail += offset;
1989 }
1990 
1991 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1992 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1993 {
1994 	return skb->tail;
1995 }
1996 
1997 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1998 {
1999 	skb->tail = skb->data;
2000 }
2001 
2002 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2003 {
2004 	skb->tail = skb->data + offset;
2005 }
2006 
2007 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2008 
2009 /*
2010  *	Add data to an sk_buff
2011  */
2012 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2013 void *skb_put(struct sk_buff *skb, unsigned int len);
2014 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2015 {
2016 	void *tmp = skb_tail_pointer(skb);
2017 	SKB_LINEAR_ASSERT(skb);
2018 	skb->tail += len;
2019 	skb->len  += len;
2020 	return tmp;
2021 }
2022 
2023 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2024 {
2025 	void *tmp = __skb_put(skb, len);
2026 
2027 	memset(tmp, 0, len);
2028 	return tmp;
2029 }
2030 
2031 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2032 				   unsigned int len)
2033 {
2034 	void *tmp = __skb_put(skb, len);
2035 
2036 	memcpy(tmp, data, len);
2037 	return tmp;
2038 }
2039 
2040 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2041 {
2042 	*(u8 *)__skb_put(skb, 1) = val;
2043 }
2044 
2045 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2046 {
2047 	void *tmp = skb_put(skb, len);
2048 
2049 	memset(tmp, 0, len);
2050 
2051 	return tmp;
2052 }
2053 
2054 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2055 				 unsigned int len)
2056 {
2057 	void *tmp = skb_put(skb, len);
2058 
2059 	memcpy(tmp, data, len);
2060 
2061 	return tmp;
2062 }
2063 
2064 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2065 {
2066 	*(u8 *)skb_put(skb, 1) = val;
2067 }
2068 
2069 void *skb_push(struct sk_buff *skb, unsigned int len);
2070 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2071 {
2072 	skb->data -= len;
2073 	skb->len  += len;
2074 	return skb->data;
2075 }
2076 
2077 void *skb_pull(struct sk_buff *skb, unsigned int len);
2078 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2079 {
2080 	skb->len -= len;
2081 	BUG_ON(skb->len < skb->data_len);
2082 	return skb->data += len;
2083 }
2084 
2085 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2086 {
2087 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2088 }
2089 
2090 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2091 
2092 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2093 {
2094 	if (len > skb_headlen(skb) &&
2095 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2096 		return NULL;
2097 	skb->len -= len;
2098 	return skb->data += len;
2099 }
2100 
2101 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2102 {
2103 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2104 }
2105 
2106 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
2107 {
2108 	if (likely(len <= skb_headlen(skb)))
2109 		return 1;
2110 	if (unlikely(len > skb->len))
2111 		return 0;
2112 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2113 }
2114 
2115 void skb_condense(struct sk_buff *skb);
2116 
2117 /**
2118  *	skb_headroom - bytes at buffer head
2119  *	@skb: buffer to check
2120  *
2121  *	Return the number of bytes of free space at the head of an &sk_buff.
2122  */
2123 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2124 {
2125 	return skb->data - skb->head;
2126 }
2127 
2128 /**
2129  *	skb_tailroom - bytes at buffer end
2130  *	@skb: buffer to check
2131  *
2132  *	Return the number of bytes of free space at the tail of an sk_buff
2133  */
2134 static inline int skb_tailroom(const struct sk_buff *skb)
2135 {
2136 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2137 }
2138 
2139 /**
2140  *	skb_availroom - bytes at buffer end
2141  *	@skb: buffer to check
2142  *
2143  *	Return the number of bytes of free space at the tail of an sk_buff
2144  *	allocated by sk_stream_alloc()
2145  */
2146 static inline int skb_availroom(const struct sk_buff *skb)
2147 {
2148 	if (skb_is_nonlinear(skb))
2149 		return 0;
2150 
2151 	return skb->end - skb->tail - skb->reserved_tailroom;
2152 }
2153 
2154 /**
2155  *	skb_reserve - adjust headroom
2156  *	@skb: buffer to alter
2157  *	@len: bytes to move
2158  *
2159  *	Increase the headroom of an empty &sk_buff by reducing the tail
2160  *	room. This is only allowed for an empty buffer.
2161  */
2162 static inline void skb_reserve(struct sk_buff *skb, int len)
2163 {
2164 	skb->data += len;
2165 	skb->tail += len;
2166 }
2167 
2168 /**
2169  *	skb_tailroom_reserve - adjust reserved_tailroom
2170  *	@skb: buffer to alter
2171  *	@mtu: maximum amount of headlen permitted
2172  *	@needed_tailroom: minimum amount of reserved_tailroom
2173  *
2174  *	Set reserved_tailroom so that headlen can be as large as possible but
2175  *	not larger than mtu and tailroom cannot be smaller than
2176  *	needed_tailroom.
2177  *	The required headroom should already have been reserved before using
2178  *	this function.
2179  */
2180 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2181 					unsigned int needed_tailroom)
2182 {
2183 	SKB_LINEAR_ASSERT(skb);
2184 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2185 		/* use at most mtu */
2186 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2187 	else
2188 		/* use up to all available space */
2189 		skb->reserved_tailroom = needed_tailroom;
2190 }
2191 
2192 #define ENCAP_TYPE_ETHER	0
2193 #define ENCAP_TYPE_IPPROTO	1
2194 
2195 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2196 					  __be16 protocol)
2197 {
2198 	skb->inner_protocol = protocol;
2199 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2200 }
2201 
2202 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2203 					 __u8 ipproto)
2204 {
2205 	skb->inner_ipproto = ipproto;
2206 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2207 }
2208 
2209 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2210 {
2211 	skb->inner_mac_header = skb->mac_header;
2212 	skb->inner_network_header = skb->network_header;
2213 	skb->inner_transport_header = skb->transport_header;
2214 }
2215 
2216 static inline void skb_reset_mac_len(struct sk_buff *skb)
2217 {
2218 	skb->mac_len = skb->network_header - skb->mac_header;
2219 }
2220 
2221 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2222 							*skb)
2223 {
2224 	return skb->head + skb->inner_transport_header;
2225 }
2226 
2227 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2228 {
2229 	return skb_inner_transport_header(skb) - skb->data;
2230 }
2231 
2232 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2233 {
2234 	skb->inner_transport_header = skb->data - skb->head;
2235 }
2236 
2237 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2238 						   const int offset)
2239 {
2240 	skb_reset_inner_transport_header(skb);
2241 	skb->inner_transport_header += offset;
2242 }
2243 
2244 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2245 {
2246 	return skb->head + skb->inner_network_header;
2247 }
2248 
2249 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2250 {
2251 	skb->inner_network_header = skb->data - skb->head;
2252 }
2253 
2254 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2255 						const int offset)
2256 {
2257 	skb_reset_inner_network_header(skb);
2258 	skb->inner_network_header += offset;
2259 }
2260 
2261 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2262 {
2263 	return skb->head + skb->inner_mac_header;
2264 }
2265 
2266 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2267 {
2268 	skb->inner_mac_header = skb->data - skb->head;
2269 }
2270 
2271 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2272 					    const int offset)
2273 {
2274 	skb_reset_inner_mac_header(skb);
2275 	skb->inner_mac_header += offset;
2276 }
2277 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2278 {
2279 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2280 }
2281 
2282 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2283 {
2284 	return skb->head + skb->transport_header;
2285 }
2286 
2287 static inline void skb_reset_transport_header(struct sk_buff *skb)
2288 {
2289 	skb->transport_header = skb->data - skb->head;
2290 }
2291 
2292 static inline void skb_set_transport_header(struct sk_buff *skb,
2293 					    const int offset)
2294 {
2295 	skb_reset_transport_header(skb);
2296 	skb->transport_header += offset;
2297 }
2298 
2299 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2300 {
2301 	return skb->head + skb->network_header;
2302 }
2303 
2304 static inline void skb_reset_network_header(struct sk_buff *skb)
2305 {
2306 	skb->network_header = skb->data - skb->head;
2307 }
2308 
2309 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2310 {
2311 	skb_reset_network_header(skb);
2312 	skb->network_header += offset;
2313 }
2314 
2315 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2316 {
2317 	return skb->head + skb->mac_header;
2318 }
2319 
2320 static inline int skb_mac_offset(const struct sk_buff *skb)
2321 {
2322 	return skb_mac_header(skb) - skb->data;
2323 }
2324 
2325 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2326 {
2327 	return skb->network_header - skb->mac_header;
2328 }
2329 
2330 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2331 {
2332 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2333 }
2334 
2335 static inline void skb_reset_mac_header(struct sk_buff *skb)
2336 {
2337 	skb->mac_header = skb->data - skb->head;
2338 }
2339 
2340 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2341 {
2342 	skb_reset_mac_header(skb);
2343 	skb->mac_header += offset;
2344 }
2345 
2346 static inline void skb_pop_mac_header(struct sk_buff *skb)
2347 {
2348 	skb->mac_header = skb->network_header;
2349 }
2350 
2351 static inline void skb_probe_transport_header(struct sk_buff *skb,
2352 					      const int offset_hint)
2353 {
2354 	struct flow_keys_basic keys;
2355 
2356 	if (skb_transport_header_was_set(skb))
2357 		return;
2358 
2359 	if (skb_flow_dissect_flow_keys_basic(skb, &keys, 0, 0, 0, 0, 0))
2360 		skb_set_transport_header(skb, keys.control.thoff);
2361 	else
2362 		skb_set_transport_header(skb, offset_hint);
2363 }
2364 
2365 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2366 {
2367 	if (skb_mac_header_was_set(skb)) {
2368 		const unsigned char *old_mac = skb_mac_header(skb);
2369 
2370 		skb_set_mac_header(skb, -skb->mac_len);
2371 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2372 	}
2373 }
2374 
2375 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2376 {
2377 	return skb->csum_start - skb_headroom(skb);
2378 }
2379 
2380 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2381 {
2382 	return skb->head + skb->csum_start;
2383 }
2384 
2385 static inline int skb_transport_offset(const struct sk_buff *skb)
2386 {
2387 	return skb_transport_header(skb) - skb->data;
2388 }
2389 
2390 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2391 {
2392 	return skb->transport_header - skb->network_header;
2393 }
2394 
2395 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2396 {
2397 	return skb->inner_transport_header - skb->inner_network_header;
2398 }
2399 
2400 static inline int skb_network_offset(const struct sk_buff *skb)
2401 {
2402 	return skb_network_header(skb) - skb->data;
2403 }
2404 
2405 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2406 {
2407 	return skb_inner_network_header(skb) - skb->data;
2408 }
2409 
2410 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2411 {
2412 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
2413 }
2414 
2415 /*
2416  * CPUs often take a performance hit when accessing unaligned memory
2417  * locations. The actual performance hit varies, it can be small if the
2418  * hardware handles it or large if we have to take an exception and fix it
2419  * in software.
2420  *
2421  * Since an ethernet header is 14 bytes network drivers often end up with
2422  * the IP header at an unaligned offset. The IP header can be aligned by
2423  * shifting the start of the packet by 2 bytes. Drivers should do this
2424  * with:
2425  *
2426  * skb_reserve(skb, NET_IP_ALIGN);
2427  *
2428  * The downside to this alignment of the IP header is that the DMA is now
2429  * unaligned. On some architectures the cost of an unaligned DMA is high
2430  * and this cost outweighs the gains made by aligning the IP header.
2431  *
2432  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2433  * to be overridden.
2434  */
2435 #ifndef NET_IP_ALIGN
2436 #define NET_IP_ALIGN	2
2437 #endif
2438 
2439 /*
2440  * The networking layer reserves some headroom in skb data (via
2441  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2442  * the header has to grow. In the default case, if the header has to grow
2443  * 32 bytes or less we avoid the reallocation.
2444  *
2445  * Unfortunately this headroom changes the DMA alignment of the resulting
2446  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2447  * on some architectures. An architecture can override this value,
2448  * perhaps setting it to a cacheline in size (since that will maintain
2449  * cacheline alignment of the DMA). It must be a power of 2.
2450  *
2451  * Various parts of the networking layer expect at least 32 bytes of
2452  * headroom, you should not reduce this.
2453  *
2454  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2455  * to reduce average number of cache lines per packet.
2456  * get_rps_cpus() for example only access one 64 bytes aligned block :
2457  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2458  */
2459 #ifndef NET_SKB_PAD
2460 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2461 #endif
2462 
2463 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2464 
2465 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2466 {
2467 	if (unlikely(skb_is_nonlinear(skb))) {
2468 		WARN_ON(1);
2469 		return;
2470 	}
2471 	skb->len = len;
2472 	skb_set_tail_pointer(skb, len);
2473 }
2474 
2475 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2476 {
2477 	__skb_set_length(skb, len);
2478 }
2479 
2480 void skb_trim(struct sk_buff *skb, unsigned int len);
2481 
2482 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2483 {
2484 	if (skb->data_len)
2485 		return ___pskb_trim(skb, len);
2486 	__skb_trim(skb, len);
2487 	return 0;
2488 }
2489 
2490 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2491 {
2492 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2493 }
2494 
2495 /**
2496  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2497  *	@skb: buffer to alter
2498  *	@len: new length
2499  *
2500  *	This is identical to pskb_trim except that the caller knows that
2501  *	the skb is not cloned so we should never get an error due to out-
2502  *	of-memory.
2503  */
2504 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2505 {
2506 	int err = pskb_trim(skb, len);
2507 	BUG_ON(err);
2508 }
2509 
2510 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2511 {
2512 	unsigned int diff = len - skb->len;
2513 
2514 	if (skb_tailroom(skb) < diff) {
2515 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2516 					   GFP_ATOMIC);
2517 		if (ret)
2518 			return ret;
2519 	}
2520 	__skb_set_length(skb, len);
2521 	return 0;
2522 }
2523 
2524 /**
2525  *	skb_orphan - orphan a buffer
2526  *	@skb: buffer to orphan
2527  *
2528  *	If a buffer currently has an owner then we call the owner's
2529  *	destructor function and make the @skb unowned. The buffer continues
2530  *	to exist but is no longer charged to its former owner.
2531  */
2532 static inline void skb_orphan(struct sk_buff *skb)
2533 {
2534 	if (skb->destructor) {
2535 		skb->destructor(skb);
2536 		skb->destructor = NULL;
2537 		skb->sk		= NULL;
2538 	} else {
2539 		BUG_ON(skb->sk);
2540 	}
2541 }
2542 
2543 /**
2544  *	skb_orphan_frags - orphan the frags contained in a buffer
2545  *	@skb: buffer to orphan frags from
2546  *	@gfp_mask: allocation mask for replacement pages
2547  *
2548  *	For each frag in the SKB which needs a destructor (i.e. has an
2549  *	owner) create a copy of that frag and release the original
2550  *	page by calling the destructor.
2551  */
2552 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2553 {
2554 	if (likely(!skb_zcopy(skb)))
2555 		return 0;
2556 	if (skb_uarg(skb)->callback == sock_zerocopy_callback)
2557 		return 0;
2558 	return skb_copy_ubufs(skb, gfp_mask);
2559 }
2560 
2561 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
2562 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2563 {
2564 	if (likely(!skb_zcopy(skb)))
2565 		return 0;
2566 	return skb_copy_ubufs(skb, gfp_mask);
2567 }
2568 
2569 /**
2570  *	__skb_queue_purge - empty a list
2571  *	@list: list to empty
2572  *
2573  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2574  *	the list and one reference dropped. This function does not take the
2575  *	list lock and the caller must hold the relevant locks to use it.
2576  */
2577 void skb_queue_purge(struct sk_buff_head *list);
2578 static inline void __skb_queue_purge(struct sk_buff_head *list)
2579 {
2580 	struct sk_buff *skb;
2581 	while ((skb = __skb_dequeue(list)) != NULL)
2582 		kfree_skb(skb);
2583 }
2584 
2585 void skb_rbtree_purge(struct rb_root *root);
2586 
2587 void *netdev_alloc_frag(unsigned int fragsz);
2588 
2589 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2590 				   gfp_t gfp_mask);
2591 
2592 /**
2593  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
2594  *	@dev: network device to receive on
2595  *	@length: length to allocate
2596  *
2597  *	Allocate a new &sk_buff and assign it a usage count of one. The
2598  *	buffer has unspecified headroom built in. Users should allocate
2599  *	the headroom they think they need without accounting for the
2600  *	built in space. The built in space is used for optimisations.
2601  *
2602  *	%NULL is returned if there is no free memory. Although this function
2603  *	allocates memory it can be called from an interrupt.
2604  */
2605 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2606 					       unsigned int length)
2607 {
2608 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2609 }
2610 
2611 /* legacy helper around __netdev_alloc_skb() */
2612 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2613 					      gfp_t gfp_mask)
2614 {
2615 	return __netdev_alloc_skb(NULL, length, gfp_mask);
2616 }
2617 
2618 /* legacy helper around netdev_alloc_skb() */
2619 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2620 {
2621 	return netdev_alloc_skb(NULL, length);
2622 }
2623 
2624 
2625 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2626 		unsigned int length, gfp_t gfp)
2627 {
2628 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2629 
2630 	if (NET_IP_ALIGN && skb)
2631 		skb_reserve(skb, NET_IP_ALIGN);
2632 	return skb;
2633 }
2634 
2635 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2636 		unsigned int length)
2637 {
2638 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2639 }
2640 
2641 static inline void skb_free_frag(void *addr)
2642 {
2643 	page_frag_free(addr);
2644 }
2645 
2646 void *napi_alloc_frag(unsigned int fragsz);
2647 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2648 				 unsigned int length, gfp_t gfp_mask);
2649 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2650 					     unsigned int length)
2651 {
2652 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2653 }
2654 void napi_consume_skb(struct sk_buff *skb, int budget);
2655 
2656 void __kfree_skb_flush(void);
2657 void __kfree_skb_defer(struct sk_buff *skb);
2658 
2659 /**
2660  * __dev_alloc_pages - allocate page for network Rx
2661  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2662  * @order: size of the allocation
2663  *
2664  * Allocate a new page.
2665  *
2666  * %NULL is returned if there is no free memory.
2667 */
2668 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2669 					     unsigned int order)
2670 {
2671 	/* This piece of code contains several assumptions.
2672 	 * 1.  This is for device Rx, therefor a cold page is preferred.
2673 	 * 2.  The expectation is the user wants a compound page.
2674 	 * 3.  If requesting a order 0 page it will not be compound
2675 	 *     due to the check to see if order has a value in prep_new_page
2676 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2677 	 *     code in gfp_to_alloc_flags that should be enforcing this.
2678 	 */
2679 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
2680 
2681 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2682 }
2683 
2684 static inline struct page *dev_alloc_pages(unsigned int order)
2685 {
2686 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2687 }
2688 
2689 /**
2690  * __dev_alloc_page - allocate a page for network Rx
2691  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2692  *
2693  * Allocate a new page.
2694  *
2695  * %NULL is returned if there is no free memory.
2696  */
2697 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2698 {
2699 	return __dev_alloc_pages(gfp_mask, 0);
2700 }
2701 
2702 static inline struct page *dev_alloc_page(void)
2703 {
2704 	return dev_alloc_pages(0);
2705 }
2706 
2707 /**
2708  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2709  *	@page: The page that was allocated from skb_alloc_page
2710  *	@skb: The skb that may need pfmemalloc set
2711  */
2712 static inline void skb_propagate_pfmemalloc(struct page *page,
2713 					     struct sk_buff *skb)
2714 {
2715 	if (page_is_pfmemalloc(page))
2716 		skb->pfmemalloc = true;
2717 }
2718 
2719 /**
2720  * skb_frag_page - retrieve the page referred to by a paged fragment
2721  * @frag: the paged fragment
2722  *
2723  * Returns the &struct page associated with @frag.
2724  */
2725 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2726 {
2727 	return frag->page.p;
2728 }
2729 
2730 /**
2731  * __skb_frag_ref - take an addition reference on a paged fragment.
2732  * @frag: the paged fragment
2733  *
2734  * Takes an additional reference on the paged fragment @frag.
2735  */
2736 static inline void __skb_frag_ref(skb_frag_t *frag)
2737 {
2738 	get_page(skb_frag_page(frag));
2739 }
2740 
2741 /**
2742  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2743  * @skb: the buffer
2744  * @f: the fragment offset.
2745  *
2746  * Takes an additional reference on the @f'th paged fragment of @skb.
2747  */
2748 static inline void skb_frag_ref(struct sk_buff *skb, int f)
2749 {
2750 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2751 }
2752 
2753 /**
2754  * __skb_frag_unref - release a reference on a paged fragment.
2755  * @frag: the paged fragment
2756  *
2757  * Releases a reference on the paged fragment @frag.
2758  */
2759 static inline void __skb_frag_unref(skb_frag_t *frag)
2760 {
2761 	put_page(skb_frag_page(frag));
2762 }
2763 
2764 /**
2765  * skb_frag_unref - release a reference on a paged fragment of an skb.
2766  * @skb: the buffer
2767  * @f: the fragment offset
2768  *
2769  * Releases a reference on the @f'th paged fragment of @skb.
2770  */
2771 static inline void skb_frag_unref(struct sk_buff *skb, int f)
2772 {
2773 	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2774 }
2775 
2776 /**
2777  * skb_frag_address - gets the address of the data contained in a paged fragment
2778  * @frag: the paged fragment buffer
2779  *
2780  * Returns the address of the data within @frag. The page must already
2781  * be mapped.
2782  */
2783 static inline void *skb_frag_address(const skb_frag_t *frag)
2784 {
2785 	return page_address(skb_frag_page(frag)) + frag->page_offset;
2786 }
2787 
2788 /**
2789  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2790  * @frag: the paged fragment buffer
2791  *
2792  * Returns the address of the data within @frag. Checks that the page
2793  * is mapped and returns %NULL otherwise.
2794  */
2795 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2796 {
2797 	void *ptr = page_address(skb_frag_page(frag));
2798 	if (unlikely(!ptr))
2799 		return NULL;
2800 
2801 	return ptr + frag->page_offset;
2802 }
2803 
2804 /**
2805  * __skb_frag_set_page - sets the page contained in a paged fragment
2806  * @frag: the paged fragment
2807  * @page: the page to set
2808  *
2809  * Sets the fragment @frag to contain @page.
2810  */
2811 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2812 {
2813 	frag->page.p = page;
2814 }
2815 
2816 /**
2817  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2818  * @skb: the buffer
2819  * @f: the fragment offset
2820  * @page: the page to set
2821  *
2822  * Sets the @f'th fragment of @skb to contain @page.
2823  */
2824 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2825 				     struct page *page)
2826 {
2827 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2828 }
2829 
2830 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2831 
2832 /**
2833  * skb_frag_dma_map - maps a paged fragment via the DMA API
2834  * @dev: the device to map the fragment to
2835  * @frag: the paged fragment to map
2836  * @offset: the offset within the fragment (starting at the
2837  *          fragment's own offset)
2838  * @size: the number of bytes to map
2839  * @dir: the direction of the mapping (``PCI_DMA_*``)
2840  *
2841  * Maps the page associated with @frag to @device.
2842  */
2843 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2844 					  const skb_frag_t *frag,
2845 					  size_t offset, size_t size,
2846 					  enum dma_data_direction dir)
2847 {
2848 	return dma_map_page(dev, skb_frag_page(frag),
2849 			    frag->page_offset + offset, size, dir);
2850 }
2851 
2852 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2853 					gfp_t gfp_mask)
2854 {
2855 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2856 }
2857 
2858 
2859 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2860 						  gfp_t gfp_mask)
2861 {
2862 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2863 }
2864 
2865 
2866 /**
2867  *	skb_clone_writable - is the header of a clone writable
2868  *	@skb: buffer to check
2869  *	@len: length up to which to write
2870  *
2871  *	Returns true if modifying the header part of the cloned buffer
2872  *	does not requires the data to be copied.
2873  */
2874 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2875 {
2876 	return !skb_header_cloned(skb) &&
2877 	       skb_headroom(skb) + len <= skb->hdr_len;
2878 }
2879 
2880 static inline int skb_try_make_writable(struct sk_buff *skb,
2881 					unsigned int write_len)
2882 {
2883 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
2884 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2885 }
2886 
2887 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2888 			    int cloned)
2889 {
2890 	int delta = 0;
2891 
2892 	if (headroom > skb_headroom(skb))
2893 		delta = headroom - skb_headroom(skb);
2894 
2895 	if (delta || cloned)
2896 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2897 					GFP_ATOMIC);
2898 	return 0;
2899 }
2900 
2901 /**
2902  *	skb_cow - copy header of skb when it is required
2903  *	@skb: buffer to cow
2904  *	@headroom: needed headroom
2905  *
2906  *	If the skb passed lacks sufficient headroom or its data part
2907  *	is shared, data is reallocated. If reallocation fails, an error
2908  *	is returned and original skb is not changed.
2909  *
2910  *	The result is skb with writable area skb->head...skb->tail
2911  *	and at least @headroom of space at head.
2912  */
2913 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2914 {
2915 	return __skb_cow(skb, headroom, skb_cloned(skb));
2916 }
2917 
2918 /**
2919  *	skb_cow_head - skb_cow but only making the head writable
2920  *	@skb: buffer to cow
2921  *	@headroom: needed headroom
2922  *
2923  *	This function is identical to skb_cow except that we replace the
2924  *	skb_cloned check by skb_header_cloned.  It should be used when
2925  *	you only need to push on some header and do not need to modify
2926  *	the data.
2927  */
2928 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2929 {
2930 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
2931 }
2932 
2933 /**
2934  *	skb_padto	- pad an skbuff up to a minimal size
2935  *	@skb: buffer to pad
2936  *	@len: minimal length
2937  *
2938  *	Pads up a buffer to ensure the trailing bytes exist and are
2939  *	blanked. If the buffer already contains sufficient data it
2940  *	is untouched. Otherwise it is extended. Returns zero on
2941  *	success. The skb is freed on error.
2942  */
2943 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
2944 {
2945 	unsigned int size = skb->len;
2946 	if (likely(size >= len))
2947 		return 0;
2948 	return skb_pad(skb, len - size);
2949 }
2950 
2951 /**
2952  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
2953  *	@skb: buffer to pad
2954  *	@len: minimal length
2955  *	@free_on_error: free buffer on error
2956  *
2957  *	Pads up a buffer to ensure the trailing bytes exist and are
2958  *	blanked. If the buffer already contains sufficient data it
2959  *	is untouched. Otherwise it is extended. Returns zero on
2960  *	success. The skb is freed on error if @free_on_error is true.
2961  */
2962 static inline int __skb_put_padto(struct sk_buff *skb, unsigned int len,
2963 				  bool free_on_error)
2964 {
2965 	unsigned int size = skb->len;
2966 
2967 	if (unlikely(size < len)) {
2968 		len -= size;
2969 		if (__skb_pad(skb, len, free_on_error))
2970 			return -ENOMEM;
2971 		__skb_put(skb, len);
2972 	}
2973 	return 0;
2974 }
2975 
2976 /**
2977  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
2978  *	@skb: buffer to pad
2979  *	@len: minimal length
2980  *
2981  *	Pads up a buffer to ensure the trailing bytes exist and are
2982  *	blanked. If the buffer already contains sufficient data it
2983  *	is untouched. Otherwise it is extended. Returns zero on
2984  *	success. The skb is freed on error.
2985  */
2986 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
2987 {
2988 	return __skb_put_padto(skb, len, true);
2989 }
2990 
2991 static inline int skb_add_data(struct sk_buff *skb,
2992 			       struct iov_iter *from, int copy)
2993 {
2994 	const int off = skb->len;
2995 
2996 	if (skb->ip_summed == CHECKSUM_NONE) {
2997 		__wsum csum = 0;
2998 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
2999 					         &csum, from)) {
3000 			skb->csum = csum_block_add(skb->csum, csum, off);
3001 			return 0;
3002 		}
3003 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3004 		return 0;
3005 
3006 	__skb_trim(skb, off);
3007 	return -EFAULT;
3008 }
3009 
3010 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3011 				    const struct page *page, int off)
3012 {
3013 	if (skb_zcopy(skb))
3014 		return false;
3015 	if (i) {
3016 		const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
3017 
3018 		return page == skb_frag_page(frag) &&
3019 		       off == frag->page_offset + skb_frag_size(frag);
3020 	}
3021 	return false;
3022 }
3023 
3024 static inline int __skb_linearize(struct sk_buff *skb)
3025 {
3026 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3027 }
3028 
3029 /**
3030  *	skb_linearize - convert paged skb to linear one
3031  *	@skb: buffer to linarize
3032  *
3033  *	If there is no free memory -ENOMEM is returned, otherwise zero
3034  *	is returned and the old skb data released.
3035  */
3036 static inline int skb_linearize(struct sk_buff *skb)
3037 {
3038 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3039 }
3040 
3041 /**
3042  * skb_has_shared_frag - can any frag be overwritten
3043  * @skb: buffer to test
3044  *
3045  * Return true if the skb has at least one frag that might be modified
3046  * by an external entity (as in vmsplice()/sendfile())
3047  */
3048 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3049 {
3050 	return skb_is_nonlinear(skb) &&
3051 	       skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
3052 }
3053 
3054 /**
3055  *	skb_linearize_cow - make sure skb is linear and writable
3056  *	@skb: buffer to process
3057  *
3058  *	If there is no free memory -ENOMEM is returned, otherwise zero
3059  *	is returned and the old skb data released.
3060  */
3061 static inline int skb_linearize_cow(struct sk_buff *skb)
3062 {
3063 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3064 	       __skb_linearize(skb) : 0;
3065 }
3066 
3067 static __always_inline void
3068 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3069 		     unsigned int off)
3070 {
3071 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3072 		skb->csum = csum_block_sub(skb->csum,
3073 					   csum_partial(start, len, 0), off);
3074 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3075 		 skb_checksum_start_offset(skb) < 0)
3076 		skb->ip_summed = CHECKSUM_NONE;
3077 }
3078 
3079 /**
3080  *	skb_postpull_rcsum - update checksum for received skb after pull
3081  *	@skb: buffer to update
3082  *	@start: start of data before pull
3083  *	@len: length of data pulled
3084  *
3085  *	After doing a pull on a received packet, you need to call this to
3086  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3087  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3088  */
3089 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3090 				      const void *start, unsigned int len)
3091 {
3092 	__skb_postpull_rcsum(skb, start, len, 0);
3093 }
3094 
3095 static __always_inline void
3096 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3097 		     unsigned int off)
3098 {
3099 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3100 		skb->csum = csum_block_add(skb->csum,
3101 					   csum_partial(start, len, 0), off);
3102 }
3103 
3104 /**
3105  *	skb_postpush_rcsum - update checksum for received skb after push
3106  *	@skb: buffer to update
3107  *	@start: start of data after push
3108  *	@len: length of data pushed
3109  *
3110  *	After doing a push on a received packet, you need to call this to
3111  *	update the CHECKSUM_COMPLETE checksum.
3112  */
3113 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3114 				      const void *start, unsigned int len)
3115 {
3116 	__skb_postpush_rcsum(skb, start, len, 0);
3117 }
3118 
3119 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3120 
3121 /**
3122  *	skb_push_rcsum - push skb and update receive checksum
3123  *	@skb: buffer to update
3124  *	@len: length of data pulled
3125  *
3126  *	This function performs an skb_push on the packet and updates
3127  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3128  *	receive path processing instead of skb_push unless you know
3129  *	that the checksum difference is zero (e.g., a valid IP header)
3130  *	or you are setting ip_summed to CHECKSUM_NONE.
3131  */
3132 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3133 {
3134 	skb_push(skb, len);
3135 	skb_postpush_rcsum(skb, skb->data, len);
3136 	return skb->data;
3137 }
3138 
3139 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3140 /**
3141  *	pskb_trim_rcsum - trim received skb and update checksum
3142  *	@skb: buffer to trim
3143  *	@len: new length
3144  *
3145  *	This is exactly the same as pskb_trim except that it ensures the
3146  *	checksum of received packets are still valid after the operation.
3147  */
3148 
3149 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3150 {
3151 	if (likely(len >= skb->len))
3152 		return 0;
3153 	return pskb_trim_rcsum_slow(skb, len);
3154 }
3155 
3156 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3157 {
3158 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3159 		skb->ip_summed = CHECKSUM_NONE;
3160 	__skb_trim(skb, len);
3161 	return 0;
3162 }
3163 
3164 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3165 {
3166 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3167 		skb->ip_summed = CHECKSUM_NONE;
3168 	return __skb_grow(skb, len);
3169 }
3170 
3171 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3172 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3173 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3174 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3175 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3176 
3177 #define skb_queue_walk(queue, skb) \
3178 		for (skb = (queue)->next;					\
3179 		     skb != (struct sk_buff *)(queue);				\
3180 		     skb = skb->next)
3181 
3182 #define skb_queue_walk_safe(queue, skb, tmp)					\
3183 		for (skb = (queue)->next, tmp = skb->next;			\
3184 		     skb != (struct sk_buff *)(queue);				\
3185 		     skb = tmp, tmp = skb->next)
3186 
3187 #define skb_queue_walk_from(queue, skb)						\
3188 		for (; skb != (struct sk_buff *)(queue);			\
3189 		     skb = skb->next)
3190 
3191 #define skb_rbtree_walk(skb, root)						\
3192 		for (skb = skb_rb_first(root); skb != NULL;			\
3193 		     skb = skb_rb_next(skb))
3194 
3195 #define skb_rbtree_walk_from(skb)						\
3196 		for (; skb != NULL;						\
3197 		     skb = skb_rb_next(skb))
3198 
3199 #define skb_rbtree_walk_from_safe(skb, tmp)					\
3200 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
3201 		     skb = tmp)
3202 
3203 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3204 		for (tmp = skb->next;						\
3205 		     skb != (struct sk_buff *)(queue);				\
3206 		     skb = tmp, tmp = skb->next)
3207 
3208 #define skb_queue_reverse_walk(queue, skb) \
3209 		for (skb = (queue)->prev;					\
3210 		     skb != (struct sk_buff *)(queue);				\
3211 		     skb = skb->prev)
3212 
3213 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3214 		for (skb = (queue)->prev, tmp = skb->prev;			\
3215 		     skb != (struct sk_buff *)(queue);				\
3216 		     skb = tmp, tmp = skb->prev)
3217 
3218 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3219 		for (tmp = skb->prev;						\
3220 		     skb != (struct sk_buff *)(queue);				\
3221 		     skb = tmp, tmp = skb->prev)
3222 
3223 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3224 {
3225 	return skb_shinfo(skb)->frag_list != NULL;
3226 }
3227 
3228 static inline void skb_frag_list_init(struct sk_buff *skb)
3229 {
3230 	skb_shinfo(skb)->frag_list = NULL;
3231 }
3232 
3233 #define skb_walk_frags(skb, iter)	\
3234 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3235 
3236 
3237 int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
3238 				const struct sk_buff *skb);
3239 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3240 					  struct sk_buff_head *queue,
3241 					  unsigned int flags,
3242 					  void (*destructor)(struct sock *sk,
3243 							   struct sk_buff *skb),
3244 					  int *peeked, int *off, int *err,
3245 					  struct sk_buff **last);
3246 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
3247 					void (*destructor)(struct sock *sk,
3248 							   struct sk_buff *skb),
3249 					int *peeked, int *off, int *err,
3250 					struct sk_buff **last);
3251 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
3252 				    void (*destructor)(struct sock *sk,
3253 						       struct sk_buff *skb),
3254 				    int *peeked, int *off, int *err);
3255 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3256 				  int *err);
3257 __poll_t datagram_poll(struct file *file, struct socket *sock,
3258 			   struct poll_table_struct *wait);
3259 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3260 			   struct iov_iter *to, int size);
3261 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3262 					struct msghdr *msg, int size)
3263 {
3264 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3265 }
3266 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3267 				   struct msghdr *msg);
3268 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3269 				 struct iov_iter *from, int len);
3270 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3271 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3272 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3273 static inline void skb_free_datagram_locked(struct sock *sk,
3274 					    struct sk_buff *skb)
3275 {
3276 	__skb_free_datagram_locked(sk, skb, 0);
3277 }
3278 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3279 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3280 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3281 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3282 			      int len, __wsum csum);
3283 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3284 		    struct pipe_inode_info *pipe, unsigned int len,
3285 		    unsigned int flags);
3286 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3287 			 int len);
3288 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
3289 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3290 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3291 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3292 		 int len, int hlen);
3293 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3294 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3295 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3296 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3297 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3298 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3299 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3300 int skb_ensure_writable(struct sk_buff *skb, int write_len);
3301 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3302 int skb_vlan_pop(struct sk_buff *skb);
3303 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3304 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3305 			     gfp_t gfp);
3306 
3307 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3308 {
3309 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3310 }
3311 
3312 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3313 {
3314 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3315 }
3316 
3317 struct skb_checksum_ops {
3318 	__wsum (*update)(const void *mem, int len, __wsum wsum);
3319 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3320 };
3321 
3322 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3323 
3324 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3325 		      __wsum csum, const struct skb_checksum_ops *ops);
3326 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3327 		    __wsum csum);
3328 
3329 static inline void * __must_check
3330 __skb_header_pointer(const struct sk_buff *skb, int offset,
3331 		     int len, void *data, int hlen, void *buffer)
3332 {
3333 	if (hlen - offset >= len)
3334 		return data + offset;
3335 
3336 	if (!skb ||
3337 	    skb_copy_bits(skb, offset, buffer, len) < 0)
3338 		return NULL;
3339 
3340 	return buffer;
3341 }
3342 
3343 static inline void * __must_check
3344 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3345 {
3346 	return __skb_header_pointer(skb, offset, len, skb->data,
3347 				    skb_headlen(skb), buffer);
3348 }
3349 
3350 /**
3351  *	skb_needs_linearize - check if we need to linearize a given skb
3352  *			      depending on the given device features.
3353  *	@skb: socket buffer to check
3354  *	@features: net device features
3355  *
3356  *	Returns true if either:
3357  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
3358  *	2. skb is fragmented and the device does not support SG.
3359  */
3360 static inline bool skb_needs_linearize(struct sk_buff *skb,
3361 				       netdev_features_t features)
3362 {
3363 	return skb_is_nonlinear(skb) &&
3364 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3365 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3366 }
3367 
3368 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3369 					     void *to,
3370 					     const unsigned int len)
3371 {
3372 	memcpy(to, skb->data, len);
3373 }
3374 
3375 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3376 						    const int offset, void *to,
3377 						    const unsigned int len)
3378 {
3379 	memcpy(to, skb->data + offset, len);
3380 }
3381 
3382 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3383 					   const void *from,
3384 					   const unsigned int len)
3385 {
3386 	memcpy(skb->data, from, len);
3387 }
3388 
3389 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3390 						  const int offset,
3391 						  const void *from,
3392 						  const unsigned int len)
3393 {
3394 	memcpy(skb->data + offset, from, len);
3395 }
3396 
3397 void skb_init(void);
3398 
3399 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3400 {
3401 	return skb->tstamp;
3402 }
3403 
3404 /**
3405  *	skb_get_timestamp - get timestamp from a skb
3406  *	@skb: skb to get stamp from
3407  *	@stamp: pointer to struct timeval to store stamp in
3408  *
3409  *	Timestamps are stored in the skb as offsets to a base timestamp.
3410  *	This function converts the offset back to a struct timeval and stores
3411  *	it in stamp.
3412  */
3413 static inline void skb_get_timestamp(const struct sk_buff *skb,
3414 				     struct timeval *stamp)
3415 {
3416 	*stamp = ktime_to_timeval(skb->tstamp);
3417 }
3418 
3419 static inline void skb_get_timestampns(const struct sk_buff *skb,
3420 				       struct timespec *stamp)
3421 {
3422 	*stamp = ktime_to_timespec(skb->tstamp);
3423 }
3424 
3425 static inline void __net_timestamp(struct sk_buff *skb)
3426 {
3427 	skb->tstamp = ktime_get_real();
3428 }
3429 
3430 static inline ktime_t net_timedelta(ktime_t t)
3431 {
3432 	return ktime_sub(ktime_get_real(), t);
3433 }
3434 
3435 static inline ktime_t net_invalid_timestamp(void)
3436 {
3437 	return 0;
3438 }
3439 
3440 static inline u8 skb_metadata_len(const struct sk_buff *skb)
3441 {
3442 	return skb_shinfo(skb)->meta_len;
3443 }
3444 
3445 static inline void *skb_metadata_end(const struct sk_buff *skb)
3446 {
3447 	return skb_mac_header(skb);
3448 }
3449 
3450 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3451 					  const struct sk_buff *skb_b,
3452 					  u8 meta_len)
3453 {
3454 	const void *a = skb_metadata_end(skb_a);
3455 	const void *b = skb_metadata_end(skb_b);
3456 	/* Using more efficient varaiant than plain call to memcmp(). */
3457 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3458 	u64 diffs = 0;
3459 
3460 	switch (meta_len) {
3461 #define __it(x, op) (x -= sizeof(u##op))
3462 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3463 	case 32: diffs |= __it_diff(a, b, 64);
3464 	case 24: diffs |= __it_diff(a, b, 64);
3465 	case 16: diffs |= __it_diff(a, b, 64);
3466 	case  8: diffs |= __it_diff(a, b, 64);
3467 		break;
3468 	case 28: diffs |= __it_diff(a, b, 64);
3469 	case 20: diffs |= __it_diff(a, b, 64);
3470 	case 12: diffs |= __it_diff(a, b, 64);
3471 	case  4: diffs |= __it_diff(a, b, 32);
3472 		break;
3473 	}
3474 	return diffs;
3475 #else
3476 	return memcmp(a - meta_len, b - meta_len, meta_len);
3477 #endif
3478 }
3479 
3480 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3481 					const struct sk_buff *skb_b)
3482 {
3483 	u8 len_a = skb_metadata_len(skb_a);
3484 	u8 len_b = skb_metadata_len(skb_b);
3485 
3486 	if (!(len_a | len_b))
3487 		return false;
3488 
3489 	return len_a != len_b ?
3490 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
3491 }
3492 
3493 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3494 {
3495 	skb_shinfo(skb)->meta_len = meta_len;
3496 }
3497 
3498 static inline void skb_metadata_clear(struct sk_buff *skb)
3499 {
3500 	skb_metadata_set(skb, 0);
3501 }
3502 
3503 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3504 
3505 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3506 
3507 void skb_clone_tx_timestamp(struct sk_buff *skb);
3508 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3509 
3510 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3511 
3512 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3513 {
3514 }
3515 
3516 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3517 {
3518 	return false;
3519 }
3520 
3521 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3522 
3523 /**
3524  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3525  *
3526  * PHY drivers may accept clones of transmitted packets for
3527  * timestamping via their phy_driver.txtstamp method. These drivers
3528  * must call this function to return the skb back to the stack with a
3529  * timestamp.
3530  *
3531  * @skb: clone of the the original outgoing packet
3532  * @hwtstamps: hardware time stamps
3533  *
3534  */
3535 void skb_complete_tx_timestamp(struct sk_buff *skb,
3536 			       struct skb_shared_hwtstamps *hwtstamps);
3537 
3538 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3539 		     struct skb_shared_hwtstamps *hwtstamps,
3540 		     struct sock *sk, int tstype);
3541 
3542 /**
3543  * skb_tstamp_tx - queue clone of skb with send time stamps
3544  * @orig_skb:	the original outgoing packet
3545  * @hwtstamps:	hardware time stamps, may be NULL if not available
3546  *
3547  * If the skb has a socket associated, then this function clones the
3548  * skb (thus sharing the actual data and optional structures), stores
3549  * the optional hardware time stamping information (if non NULL) or
3550  * generates a software time stamp (otherwise), then queues the clone
3551  * to the error queue of the socket.  Errors are silently ignored.
3552  */
3553 void skb_tstamp_tx(struct sk_buff *orig_skb,
3554 		   struct skb_shared_hwtstamps *hwtstamps);
3555 
3556 /**
3557  * skb_tx_timestamp() - Driver hook for transmit timestamping
3558  *
3559  * Ethernet MAC Drivers should call this function in their hard_xmit()
3560  * function immediately before giving the sk_buff to the MAC hardware.
3561  *
3562  * Specifically, one should make absolutely sure that this function is
3563  * called before TX completion of this packet can trigger.  Otherwise
3564  * the packet could potentially already be freed.
3565  *
3566  * @skb: A socket buffer.
3567  */
3568 static inline void skb_tx_timestamp(struct sk_buff *skb)
3569 {
3570 	skb_clone_tx_timestamp(skb);
3571 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3572 		skb_tstamp_tx(skb, NULL);
3573 }
3574 
3575 /**
3576  * skb_complete_wifi_ack - deliver skb with wifi status
3577  *
3578  * @skb: the original outgoing packet
3579  * @acked: ack status
3580  *
3581  */
3582 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3583 
3584 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3585 __sum16 __skb_checksum_complete(struct sk_buff *skb);
3586 
3587 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3588 {
3589 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3590 		skb->csum_valid ||
3591 		(skb->ip_summed == CHECKSUM_PARTIAL &&
3592 		 skb_checksum_start_offset(skb) >= 0));
3593 }
3594 
3595 /**
3596  *	skb_checksum_complete - Calculate checksum of an entire packet
3597  *	@skb: packet to process
3598  *
3599  *	This function calculates the checksum over the entire packet plus
3600  *	the value of skb->csum.  The latter can be used to supply the
3601  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
3602  *	checksum.
3603  *
3604  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
3605  *	this function can be used to verify that checksum on received
3606  *	packets.  In that case the function should return zero if the
3607  *	checksum is correct.  In particular, this function will return zero
3608  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3609  *	hardware has already verified the correctness of the checksum.
3610  */
3611 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3612 {
3613 	return skb_csum_unnecessary(skb) ?
3614 	       0 : __skb_checksum_complete(skb);
3615 }
3616 
3617 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3618 {
3619 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3620 		if (skb->csum_level == 0)
3621 			skb->ip_summed = CHECKSUM_NONE;
3622 		else
3623 			skb->csum_level--;
3624 	}
3625 }
3626 
3627 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3628 {
3629 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3630 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3631 			skb->csum_level++;
3632 	} else if (skb->ip_summed == CHECKSUM_NONE) {
3633 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3634 		skb->csum_level = 0;
3635 	}
3636 }
3637 
3638 /* Check if we need to perform checksum complete validation.
3639  *
3640  * Returns true if checksum complete is needed, false otherwise
3641  * (either checksum is unnecessary or zero checksum is allowed).
3642  */
3643 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3644 						  bool zero_okay,
3645 						  __sum16 check)
3646 {
3647 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3648 		skb->csum_valid = 1;
3649 		__skb_decr_checksum_unnecessary(skb);
3650 		return false;
3651 	}
3652 
3653 	return true;
3654 }
3655 
3656 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
3657  * in checksum_init.
3658  */
3659 #define CHECKSUM_BREAK 76
3660 
3661 /* Unset checksum-complete
3662  *
3663  * Unset checksum complete can be done when packet is being modified
3664  * (uncompressed for instance) and checksum-complete value is
3665  * invalidated.
3666  */
3667 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3668 {
3669 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3670 		skb->ip_summed = CHECKSUM_NONE;
3671 }
3672 
3673 /* Validate (init) checksum based on checksum complete.
3674  *
3675  * Return values:
3676  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
3677  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3678  *	checksum is stored in skb->csum for use in __skb_checksum_complete
3679  *   non-zero: value of invalid checksum
3680  *
3681  */
3682 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3683 						       bool complete,
3684 						       __wsum psum)
3685 {
3686 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
3687 		if (!csum_fold(csum_add(psum, skb->csum))) {
3688 			skb->csum_valid = 1;
3689 			return 0;
3690 		}
3691 	}
3692 
3693 	skb->csum = psum;
3694 
3695 	if (complete || skb->len <= CHECKSUM_BREAK) {
3696 		__sum16 csum;
3697 
3698 		csum = __skb_checksum_complete(skb);
3699 		skb->csum_valid = !csum;
3700 		return csum;
3701 	}
3702 
3703 	return 0;
3704 }
3705 
3706 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3707 {
3708 	return 0;
3709 }
3710 
3711 /* Perform checksum validate (init). Note that this is a macro since we only
3712  * want to calculate the pseudo header which is an input function if necessary.
3713  * First we try to validate without any computation (checksum unnecessary) and
3714  * then calculate based on checksum complete calling the function to compute
3715  * pseudo header.
3716  *
3717  * Return values:
3718  *   0: checksum is validated or try to in skb_checksum_complete
3719  *   non-zero: value of invalid checksum
3720  */
3721 #define __skb_checksum_validate(skb, proto, complete,			\
3722 				zero_okay, check, compute_pseudo)	\
3723 ({									\
3724 	__sum16 __ret = 0;						\
3725 	skb->csum_valid = 0;						\
3726 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
3727 		__ret = __skb_checksum_validate_complete(skb,		\
3728 				complete, compute_pseudo(skb, proto));	\
3729 	__ret;								\
3730 })
3731 
3732 #define skb_checksum_init(skb, proto, compute_pseudo)			\
3733 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3734 
3735 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
3736 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3737 
3738 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
3739 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3740 
3741 #define skb_checksum_validate_zero_check(skb, proto, check,		\
3742 					 compute_pseudo)		\
3743 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
3744 
3745 #define skb_checksum_simple_validate(skb)				\
3746 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3747 
3748 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3749 {
3750 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
3751 }
3752 
3753 static inline void __skb_checksum_convert(struct sk_buff *skb,
3754 					  __sum16 check, __wsum pseudo)
3755 {
3756 	skb->csum = ~pseudo;
3757 	skb->ip_summed = CHECKSUM_COMPLETE;
3758 }
3759 
3760 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo)	\
3761 do {									\
3762 	if (__skb_checksum_convert_check(skb))				\
3763 		__skb_checksum_convert(skb, check,			\
3764 				       compute_pseudo(skb, proto));	\
3765 } while (0)
3766 
3767 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3768 					      u16 start, u16 offset)
3769 {
3770 	skb->ip_summed = CHECKSUM_PARTIAL;
3771 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3772 	skb->csum_offset = offset - start;
3773 }
3774 
3775 /* Update skbuf and packet to reflect the remote checksum offload operation.
3776  * When called, ptr indicates the starting point for skb->csum when
3777  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3778  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3779  */
3780 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
3781 				       int start, int offset, bool nopartial)
3782 {
3783 	__wsum delta;
3784 
3785 	if (!nopartial) {
3786 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
3787 		return;
3788 	}
3789 
3790 	 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3791 		__skb_checksum_complete(skb);
3792 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3793 	}
3794 
3795 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
3796 
3797 	/* Adjust skb->csum since we changed the packet */
3798 	skb->csum = csum_add(skb->csum, delta);
3799 }
3800 
3801 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
3802 {
3803 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
3804 	return (void *)(skb->_nfct & SKB_NFCT_PTRMASK);
3805 #else
3806 	return NULL;
3807 #endif
3808 }
3809 
3810 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3811 void nf_conntrack_destroy(struct nf_conntrack *nfct);
3812 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3813 {
3814 	if (nfct && atomic_dec_and_test(&nfct->use))
3815 		nf_conntrack_destroy(nfct);
3816 }
3817 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3818 {
3819 	if (nfct)
3820 		atomic_inc(&nfct->use);
3821 }
3822 #endif
3823 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3824 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
3825 {
3826 	if (nf_bridge && refcount_dec_and_test(&nf_bridge->use))
3827 		kfree(nf_bridge);
3828 }
3829 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
3830 {
3831 	if (nf_bridge)
3832 		refcount_inc(&nf_bridge->use);
3833 }
3834 #endif /* CONFIG_BRIDGE_NETFILTER */
3835 static inline void nf_reset(struct sk_buff *skb)
3836 {
3837 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3838 	nf_conntrack_put(skb_nfct(skb));
3839 	skb->_nfct = 0;
3840 #endif
3841 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3842 	nf_bridge_put(skb->nf_bridge);
3843 	skb->nf_bridge = NULL;
3844 #endif
3845 }
3846 
3847 static inline void nf_reset_trace(struct sk_buff *skb)
3848 {
3849 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3850 	skb->nf_trace = 0;
3851 #endif
3852 }
3853 
3854 static inline void ipvs_reset(struct sk_buff *skb)
3855 {
3856 #if IS_ENABLED(CONFIG_IP_VS)
3857 	skb->ipvs_property = 0;
3858 #endif
3859 }
3860 
3861 /* Note: This doesn't put any conntrack and bridge info in dst. */
3862 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
3863 			     bool copy)
3864 {
3865 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3866 	dst->_nfct = src->_nfct;
3867 	nf_conntrack_get(skb_nfct(src));
3868 #endif
3869 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3870 	dst->nf_bridge  = src->nf_bridge;
3871 	nf_bridge_get(src->nf_bridge);
3872 #endif
3873 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3874 	if (copy)
3875 		dst->nf_trace = src->nf_trace;
3876 #endif
3877 }
3878 
3879 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
3880 {
3881 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3882 	nf_conntrack_put(skb_nfct(dst));
3883 #endif
3884 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3885 	nf_bridge_put(dst->nf_bridge);
3886 #endif
3887 	__nf_copy(dst, src, true);
3888 }
3889 
3890 #ifdef CONFIG_NETWORK_SECMARK
3891 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3892 {
3893 	to->secmark = from->secmark;
3894 }
3895 
3896 static inline void skb_init_secmark(struct sk_buff *skb)
3897 {
3898 	skb->secmark = 0;
3899 }
3900 #else
3901 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3902 { }
3903 
3904 static inline void skb_init_secmark(struct sk_buff *skb)
3905 { }
3906 #endif
3907 
3908 static inline bool skb_irq_freeable(const struct sk_buff *skb)
3909 {
3910 	return !skb->destructor &&
3911 #if IS_ENABLED(CONFIG_XFRM)
3912 		!skb->sp &&
3913 #endif
3914 		!skb_nfct(skb) &&
3915 		!skb->_skb_refdst &&
3916 		!skb_has_frag_list(skb);
3917 }
3918 
3919 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
3920 {
3921 	skb->queue_mapping = queue_mapping;
3922 }
3923 
3924 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
3925 {
3926 	return skb->queue_mapping;
3927 }
3928 
3929 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
3930 {
3931 	to->queue_mapping = from->queue_mapping;
3932 }
3933 
3934 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
3935 {
3936 	skb->queue_mapping = rx_queue + 1;
3937 }
3938 
3939 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
3940 {
3941 	return skb->queue_mapping - 1;
3942 }
3943 
3944 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
3945 {
3946 	return skb->queue_mapping != 0;
3947 }
3948 
3949 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
3950 {
3951 	skb->dst_pending_confirm = val;
3952 }
3953 
3954 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
3955 {
3956 	return skb->dst_pending_confirm != 0;
3957 }
3958 
3959 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
3960 {
3961 #ifdef CONFIG_XFRM
3962 	return skb->sp;
3963 #else
3964 	return NULL;
3965 #endif
3966 }
3967 
3968 /* Keeps track of mac header offset relative to skb->head.
3969  * It is useful for TSO of Tunneling protocol. e.g. GRE.
3970  * For non-tunnel skb it points to skb_mac_header() and for
3971  * tunnel skb it points to outer mac header.
3972  * Keeps track of level of encapsulation of network headers.
3973  */
3974 struct skb_gso_cb {
3975 	union {
3976 		int	mac_offset;
3977 		int	data_offset;
3978 	};
3979 	int	encap_level;
3980 	__wsum	csum;
3981 	__u16	csum_start;
3982 };
3983 #define SKB_SGO_CB_OFFSET	32
3984 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
3985 
3986 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
3987 {
3988 	return (skb_mac_header(inner_skb) - inner_skb->head) -
3989 		SKB_GSO_CB(inner_skb)->mac_offset;
3990 }
3991 
3992 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
3993 {
3994 	int new_headroom, headroom;
3995 	int ret;
3996 
3997 	headroom = skb_headroom(skb);
3998 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
3999 	if (ret)
4000 		return ret;
4001 
4002 	new_headroom = skb_headroom(skb);
4003 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4004 	return 0;
4005 }
4006 
4007 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4008 {
4009 	/* Do not update partial checksums if remote checksum is enabled. */
4010 	if (skb->remcsum_offload)
4011 		return;
4012 
4013 	SKB_GSO_CB(skb)->csum = res;
4014 	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4015 }
4016 
4017 /* Compute the checksum for a gso segment. First compute the checksum value
4018  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4019  * then add in skb->csum (checksum from csum_start to end of packet).
4020  * skb->csum and csum_start are then updated to reflect the checksum of the
4021  * resultant packet starting from the transport header-- the resultant checksum
4022  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4023  * header.
4024  */
4025 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4026 {
4027 	unsigned char *csum_start = skb_transport_header(skb);
4028 	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4029 	__wsum partial = SKB_GSO_CB(skb)->csum;
4030 
4031 	SKB_GSO_CB(skb)->csum = res;
4032 	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4033 
4034 	return csum_fold(csum_partial(csum_start, plen, partial));
4035 }
4036 
4037 static inline bool skb_is_gso(const struct sk_buff *skb)
4038 {
4039 	return skb_shinfo(skb)->gso_size;
4040 }
4041 
4042 /* Note: Should be called only if skb_is_gso(skb) is true */
4043 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4044 {
4045 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4046 }
4047 
4048 /* Note: Should be called only if skb_is_gso(skb) is true */
4049 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4050 {
4051 	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4052 }
4053 
4054 static inline void skb_gso_reset(struct sk_buff *skb)
4055 {
4056 	skb_shinfo(skb)->gso_size = 0;
4057 	skb_shinfo(skb)->gso_segs = 0;
4058 	skb_shinfo(skb)->gso_type = 0;
4059 }
4060 
4061 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4062 					 u16 increment)
4063 {
4064 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4065 		return;
4066 	shinfo->gso_size += increment;
4067 }
4068 
4069 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4070 					 u16 decrement)
4071 {
4072 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4073 		return;
4074 	shinfo->gso_size -= decrement;
4075 }
4076 
4077 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4078 
4079 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4080 {
4081 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
4082 	 * wanted then gso_type will be set. */
4083 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4084 
4085 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4086 	    unlikely(shinfo->gso_type == 0)) {
4087 		__skb_warn_lro_forwarding(skb);
4088 		return true;
4089 	}
4090 	return false;
4091 }
4092 
4093 static inline void skb_forward_csum(struct sk_buff *skb)
4094 {
4095 	/* Unfortunately we don't support this one.  Any brave souls? */
4096 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4097 		skb->ip_summed = CHECKSUM_NONE;
4098 }
4099 
4100 /**
4101  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4102  * @skb: skb to check
4103  *
4104  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4105  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4106  * use this helper, to document places where we make this assertion.
4107  */
4108 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4109 {
4110 #ifdef DEBUG
4111 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4112 #endif
4113 }
4114 
4115 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4116 
4117 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4118 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4119 				     unsigned int transport_len,
4120 				     __sum16(*skb_chkf)(struct sk_buff *skb));
4121 
4122 /**
4123  * skb_head_is_locked - Determine if the skb->head is locked down
4124  * @skb: skb to check
4125  *
4126  * The head on skbs build around a head frag can be removed if they are
4127  * not cloned.  This function returns true if the skb head is locked down
4128  * due to either being allocated via kmalloc, or by being a clone with
4129  * multiple references to the head.
4130  */
4131 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4132 {
4133 	return !skb->head_frag || skb_cloned(skb);
4134 }
4135 
4136 /* Local Checksum Offload.
4137  * Compute outer checksum based on the assumption that the
4138  * inner checksum will be offloaded later.
4139  * See Documentation/networking/checksum-offloads.txt for
4140  * explanation of how this works.
4141  * Fill in outer checksum adjustment (e.g. with sum of outer
4142  * pseudo-header) before calling.
4143  * Also ensure that inner checksum is in linear data area.
4144  */
4145 static inline __wsum lco_csum(struct sk_buff *skb)
4146 {
4147 	unsigned char *csum_start = skb_checksum_start(skb);
4148 	unsigned char *l4_hdr = skb_transport_header(skb);
4149 	__wsum partial;
4150 
4151 	/* Start with complement of inner checksum adjustment */
4152 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4153 						    skb->csum_offset));
4154 
4155 	/* Add in checksum of our headers (incl. outer checksum
4156 	 * adjustment filled in by caller) and return result.
4157 	 */
4158 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4159 }
4160 
4161 #endif	/* __KERNEL__ */
4162 #endif	/* _LINUX_SKBUFF_H */
4163