xref: /linux-6.15/include/linux/skbuff.h (revision cce2d453)
1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <[email protected]>
6  *		Florian La Roche, <[email protected]>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/cache.h>
21 
22 #include <asm/atomic.h>
23 #include <asm/types.h>
24 #include <linux/spinlock.h>
25 #include <linux/net.h>
26 #include <linux/textsearch.h>
27 #include <net/checksum.h>
28 #include <linux/rcupdate.h>
29 #include <linux/dmaengine.h>
30 #include <linux/hrtimer.h>
31 
32 #define HAVE_ALLOC_SKB		/* For the drivers to know */
33 #define HAVE_ALIGNABLE_SKB	/* Ditto 8)		   */
34 
35 /* Don't change this without changing skb_csum_unnecessary! */
36 #define CHECKSUM_NONE 0
37 #define CHECKSUM_UNNECESSARY 1
38 #define CHECKSUM_COMPLETE 2
39 #define CHECKSUM_PARTIAL 3
40 
41 #define SKB_DATA_ALIGN(X)	(((X) + (SMP_CACHE_BYTES - 1)) & \
42 				 ~(SMP_CACHE_BYTES - 1))
43 #define SKB_WITH_OVERHEAD(X)	\
44 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
45 #define SKB_MAX_ORDER(X, ORDER) \
46 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
47 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
48 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
49 
50 /* A. Checksumming of received packets by device.
51  *
52  *	NONE: device failed to checksum this packet.
53  *		skb->csum is undefined.
54  *
55  *	UNNECESSARY: device parsed packet and wouldbe verified checksum.
56  *		skb->csum is undefined.
57  *	      It is bad option, but, unfortunately, many of vendors do this.
58  *	      Apparently with secret goal to sell you new device, when you
59  *	      will add new protocol to your host. F.e. IPv6. 8)
60  *
61  *	COMPLETE: the most generic way. Device supplied checksum of _all_
62  *	    the packet as seen by netif_rx in skb->csum.
63  *	    NOTE: Even if device supports only some protocols, but
64  *	    is able to produce some skb->csum, it MUST use COMPLETE,
65  *	    not UNNECESSARY.
66  *
67  *	PARTIAL: identical to the case for output below.  This may occur
68  *	    on a packet received directly from another Linux OS, e.g.,
69  *	    a virtualised Linux kernel on the same host.  The packet can
70  *	    be treated in the same way as UNNECESSARY except that on
71  *	    output (i.e., forwarding) the checksum must be filled in
72  *	    by the OS or the hardware.
73  *
74  * B. Checksumming on output.
75  *
76  *	NONE: skb is checksummed by protocol or csum is not required.
77  *
78  *	PARTIAL: device is required to csum packet as seen by hard_start_xmit
79  *	from skb->csum_start to the end and to record the checksum
80  *	at skb->csum_start + skb->csum_offset.
81  *
82  *	Device must show its capabilities in dev->features, set
83  *	at device setup time.
84  *	NETIF_F_HW_CSUM	- it is clever device, it is able to checksum
85  *			  everything.
86  *	NETIF_F_NO_CSUM - loopback or reliable single hop media.
87  *	NETIF_F_IP_CSUM - device is dumb. It is able to csum only
88  *			  TCP/UDP over IPv4. Sigh. Vendors like this
89  *			  way by an unknown reason. Though, see comment above
90  *			  about CHECKSUM_UNNECESSARY. 8)
91  *	NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
92  *
93  *	Any questions? No questions, good. 		--ANK
94  */
95 
96 struct net_device;
97 struct scatterlist;
98 struct pipe_inode_info;
99 
100 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
101 struct nf_conntrack {
102 	atomic_t use;
103 };
104 #endif
105 
106 #ifdef CONFIG_BRIDGE_NETFILTER
107 struct nf_bridge_info {
108 	atomic_t use;
109 	struct net_device *physindev;
110 	struct net_device *physoutdev;
111 	unsigned int mask;
112 	unsigned long data[32 / sizeof(unsigned long)];
113 };
114 #endif
115 
116 struct sk_buff_head {
117 	/* These two members must be first. */
118 	struct sk_buff	*next;
119 	struct sk_buff	*prev;
120 
121 	__u32		qlen;
122 	spinlock_t	lock;
123 };
124 
125 struct sk_buff;
126 
127 /* To allow 64K frame to be packed as single skb without frag_list */
128 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
129 
130 typedef struct skb_frag_struct skb_frag_t;
131 
132 struct skb_frag_struct {
133 	struct page *page;
134 	__u32 page_offset;
135 	__u32 size;
136 };
137 
138 /* This data is invariant across clones and lives at
139  * the end of the header data, ie. at skb->end.
140  */
141 struct skb_shared_info {
142 	atomic_t	dataref;
143 	unsigned short	nr_frags;
144 	unsigned short	gso_size;
145 	/* Warning: this field is not always filled in (UFO)! */
146 	unsigned short	gso_segs;
147 	unsigned short  gso_type;
148 	__be32          ip6_frag_id;
149 	struct sk_buff	*frag_list;
150 	skb_frag_t	frags[MAX_SKB_FRAGS];
151 };
152 
153 /* We divide dataref into two halves.  The higher 16 bits hold references
154  * to the payload part of skb->data.  The lower 16 bits hold references to
155  * the entire skb->data.  A clone of a headerless skb holds the length of
156  * the header in skb->hdr_len.
157  *
158  * All users must obey the rule that the skb->data reference count must be
159  * greater than or equal to the payload reference count.
160  *
161  * Holding a reference to the payload part means that the user does not
162  * care about modifications to the header part of skb->data.
163  */
164 #define SKB_DATAREF_SHIFT 16
165 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
166 
167 
168 enum {
169 	SKB_FCLONE_UNAVAILABLE,
170 	SKB_FCLONE_ORIG,
171 	SKB_FCLONE_CLONE,
172 };
173 
174 enum {
175 	SKB_GSO_TCPV4 = 1 << 0,
176 	SKB_GSO_UDP = 1 << 1,
177 
178 	/* This indicates the skb is from an untrusted source. */
179 	SKB_GSO_DODGY = 1 << 2,
180 
181 	/* This indicates the tcp segment has CWR set. */
182 	SKB_GSO_TCP_ECN = 1 << 3,
183 
184 	SKB_GSO_TCPV6 = 1 << 4,
185 };
186 
187 #if BITS_PER_LONG > 32
188 #define NET_SKBUFF_DATA_USES_OFFSET 1
189 #endif
190 
191 #ifdef NET_SKBUFF_DATA_USES_OFFSET
192 typedef unsigned int sk_buff_data_t;
193 #else
194 typedef unsigned char *sk_buff_data_t;
195 #endif
196 
197 /**
198  *	struct sk_buff - socket buffer
199  *	@next: Next buffer in list
200  *	@prev: Previous buffer in list
201  *	@sk: Socket we are owned by
202  *	@tstamp: Time we arrived
203  *	@dev: Device we arrived on/are leaving by
204  *	@transport_header: Transport layer header
205  *	@network_header: Network layer header
206  *	@mac_header: Link layer header
207  *	@dst: destination entry
208  *	@sp: the security path, used for xfrm
209  *	@cb: Control buffer. Free for use by every layer. Put private vars here
210  *	@len: Length of actual data
211  *	@data_len: Data length
212  *	@mac_len: Length of link layer header
213  *	@hdr_len: writable header length of cloned skb
214  *	@csum: Checksum (must include start/offset pair)
215  *	@csum_start: Offset from skb->head where checksumming should start
216  *	@csum_offset: Offset from csum_start where checksum should be stored
217  *	@local_df: allow local fragmentation
218  *	@cloned: Head may be cloned (check refcnt to be sure)
219  *	@nohdr: Payload reference only, must not modify header
220  *	@pkt_type: Packet class
221  *	@fclone: skbuff clone status
222  *	@ip_summed: Driver fed us an IP checksum
223  *	@priority: Packet queueing priority
224  *	@users: User count - see {datagram,tcp}.c
225  *	@protocol: Packet protocol from driver
226  *	@truesize: Buffer size
227  *	@head: Head of buffer
228  *	@data: Data head pointer
229  *	@tail: Tail pointer
230  *	@end: End pointer
231  *	@destructor: Destruct function
232  *	@mark: Generic packet mark
233  *	@nfct: Associated connection, if any
234  *	@ipvs_property: skbuff is owned by ipvs
235  *	@peeked: this packet has been seen already, so stats have been
236  *		done for it, don't do them again
237  *	@nf_trace: netfilter packet trace flag
238  *	@nfctinfo: Relationship of this skb to the connection
239  *	@nfct_reasm: netfilter conntrack re-assembly pointer
240  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
241  *	@iif: ifindex of device we arrived on
242  *	@queue_mapping: Queue mapping for multiqueue devices
243  *	@tc_index: Traffic control index
244  *	@tc_verd: traffic control verdict
245  *	@ndisc_nodetype: router type (from link layer)
246  *	@dma_cookie: a cookie to one of several possible DMA operations
247  *		done by skb DMA functions
248  *	@secmark: security marking
249  *	@vlan_tci: vlan tag control information
250  */
251 
252 struct sk_buff {
253 	/* These two members must be first. */
254 	struct sk_buff		*next;
255 	struct sk_buff		*prev;
256 
257 	struct sock		*sk;
258 	ktime_t			tstamp;
259 	struct net_device	*dev;
260 
261 	union {
262 		struct  dst_entry	*dst;
263 		struct  rtable		*rtable;
264 	};
265 	struct	sec_path	*sp;
266 
267 	/*
268 	 * This is the control buffer. It is free to use for every
269 	 * layer. Please put your private variables there. If you
270 	 * want to keep them across layers you have to do a skb_clone()
271 	 * first. This is owned by whoever has the skb queued ATM.
272 	 */
273 	char			cb[48];
274 
275 	unsigned int		len,
276 				data_len;
277 	__u16			mac_len,
278 				hdr_len;
279 	union {
280 		__wsum		csum;
281 		struct {
282 			__u16	csum_start;
283 			__u16	csum_offset;
284 		};
285 	};
286 	__u32			priority;
287 	__u8			local_df:1,
288 				cloned:1,
289 				ip_summed:2,
290 				nohdr:1,
291 				nfctinfo:3;
292 	__u8			pkt_type:3,
293 				fclone:2,
294 				ipvs_property:1,
295 				peeked:1,
296 				nf_trace:1;
297 	__be16			protocol;
298 
299 	void			(*destructor)(struct sk_buff *skb);
300 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
301 	struct nf_conntrack	*nfct;
302 	struct sk_buff		*nfct_reasm;
303 #endif
304 #ifdef CONFIG_BRIDGE_NETFILTER
305 	struct nf_bridge_info	*nf_bridge;
306 #endif
307 
308 	int			iif;
309 	__u16			queue_mapping;
310 #ifdef CONFIG_NET_SCHED
311 	__u16			tc_index;	/* traffic control index */
312 #ifdef CONFIG_NET_CLS_ACT
313 	__u16			tc_verd;	/* traffic control verdict */
314 #endif
315 #endif
316 #ifdef CONFIG_IPV6_NDISC_NODETYPE
317 	__u8			ndisc_nodetype:2;
318 #endif
319 #if defined(CONFIG_MAC80211) || defined(CONFIG_MAC80211_MODULE)
320 	__u8			do_not_encrypt:1;
321 #endif
322 	/* 0/13/14 bit hole */
323 
324 #ifdef CONFIG_NET_DMA
325 	dma_cookie_t		dma_cookie;
326 #endif
327 #ifdef CONFIG_NETWORK_SECMARK
328 	__u32			secmark;
329 #endif
330 
331 	__u32			mark;
332 
333 	__u16			vlan_tci;
334 
335 	sk_buff_data_t		transport_header;
336 	sk_buff_data_t		network_header;
337 	sk_buff_data_t		mac_header;
338 	/* These elements must be at the end, see alloc_skb() for details.  */
339 	sk_buff_data_t		tail;
340 	sk_buff_data_t		end;
341 	unsigned char		*head,
342 				*data;
343 	unsigned int		truesize;
344 	atomic_t		users;
345 };
346 
347 #ifdef __KERNEL__
348 /*
349  *	Handling routines are only of interest to the kernel
350  */
351 #include <linux/slab.h>
352 
353 #include <asm/system.h>
354 
355 extern void kfree_skb(struct sk_buff *skb);
356 extern void	       __kfree_skb(struct sk_buff *skb);
357 extern struct sk_buff *__alloc_skb(unsigned int size,
358 				   gfp_t priority, int fclone, int node);
359 static inline struct sk_buff *alloc_skb(unsigned int size,
360 					gfp_t priority)
361 {
362 	return __alloc_skb(size, priority, 0, -1);
363 }
364 
365 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
366 					       gfp_t priority)
367 {
368 	return __alloc_skb(size, priority, 1, -1);
369 }
370 
371 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
372 extern struct sk_buff *skb_clone(struct sk_buff *skb,
373 				 gfp_t priority);
374 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
375 				gfp_t priority);
376 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
377 				 gfp_t gfp_mask);
378 extern int	       pskb_expand_head(struct sk_buff *skb,
379 					int nhead, int ntail,
380 					gfp_t gfp_mask);
381 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
382 					    unsigned int headroom);
383 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
384 				       int newheadroom, int newtailroom,
385 				       gfp_t priority);
386 extern int	       skb_to_sgvec(struct sk_buff *skb,
387 				    struct scatterlist *sg, int offset,
388 				    int len);
389 extern int	       skb_cow_data(struct sk_buff *skb, int tailbits,
390 				    struct sk_buff **trailer);
391 extern int	       skb_pad(struct sk_buff *skb, int pad);
392 #define dev_kfree_skb(a)	kfree_skb(a)
393 extern void	      skb_over_panic(struct sk_buff *skb, int len,
394 				     void *here);
395 extern void	      skb_under_panic(struct sk_buff *skb, int len,
396 				      void *here);
397 extern void	      skb_truesize_bug(struct sk_buff *skb);
398 
399 static inline void skb_truesize_check(struct sk_buff *skb)
400 {
401 	int len = sizeof(struct sk_buff) + skb->len;
402 
403 	if (unlikely((int)skb->truesize < len))
404 		skb_truesize_bug(skb);
405 }
406 
407 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
408 			int getfrag(void *from, char *to, int offset,
409 			int len,int odd, struct sk_buff *skb),
410 			void *from, int length);
411 
412 struct skb_seq_state
413 {
414 	__u32		lower_offset;
415 	__u32		upper_offset;
416 	__u32		frag_idx;
417 	__u32		stepped_offset;
418 	struct sk_buff	*root_skb;
419 	struct sk_buff	*cur_skb;
420 	__u8		*frag_data;
421 };
422 
423 extern void	      skb_prepare_seq_read(struct sk_buff *skb,
424 					   unsigned int from, unsigned int to,
425 					   struct skb_seq_state *st);
426 extern unsigned int   skb_seq_read(unsigned int consumed, const u8 **data,
427 				   struct skb_seq_state *st);
428 extern void	      skb_abort_seq_read(struct skb_seq_state *st);
429 
430 extern unsigned int   skb_find_text(struct sk_buff *skb, unsigned int from,
431 				    unsigned int to, struct ts_config *config,
432 				    struct ts_state *state);
433 
434 #ifdef NET_SKBUFF_DATA_USES_OFFSET
435 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
436 {
437 	return skb->head + skb->end;
438 }
439 #else
440 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
441 {
442 	return skb->end;
443 }
444 #endif
445 
446 /* Internal */
447 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
448 
449 /**
450  *	skb_queue_empty - check if a queue is empty
451  *	@list: queue head
452  *
453  *	Returns true if the queue is empty, false otherwise.
454  */
455 static inline int skb_queue_empty(const struct sk_buff_head *list)
456 {
457 	return list->next == (struct sk_buff *)list;
458 }
459 
460 /**
461  *	skb_get - reference buffer
462  *	@skb: buffer to reference
463  *
464  *	Makes another reference to a socket buffer and returns a pointer
465  *	to the buffer.
466  */
467 static inline struct sk_buff *skb_get(struct sk_buff *skb)
468 {
469 	atomic_inc(&skb->users);
470 	return skb;
471 }
472 
473 /*
474  * If users == 1, we are the only owner and are can avoid redundant
475  * atomic change.
476  */
477 
478 /**
479  *	skb_cloned - is the buffer a clone
480  *	@skb: buffer to check
481  *
482  *	Returns true if the buffer was generated with skb_clone() and is
483  *	one of multiple shared copies of the buffer. Cloned buffers are
484  *	shared data so must not be written to under normal circumstances.
485  */
486 static inline int skb_cloned(const struct sk_buff *skb)
487 {
488 	return skb->cloned &&
489 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
490 }
491 
492 /**
493  *	skb_header_cloned - is the header a clone
494  *	@skb: buffer to check
495  *
496  *	Returns true if modifying the header part of the buffer requires
497  *	the data to be copied.
498  */
499 static inline int skb_header_cloned(const struct sk_buff *skb)
500 {
501 	int dataref;
502 
503 	if (!skb->cloned)
504 		return 0;
505 
506 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
507 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
508 	return dataref != 1;
509 }
510 
511 /**
512  *	skb_header_release - release reference to header
513  *	@skb: buffer to operate on
514  *
515  *	Drop a reference to the header part of the buffer.  This is done
516  *	by acquiring a payload reference.  You must not read from the header
517  *	part of skb->data after this.
518  */
519 static inline void skb_header_release(struct sk_buff *skb)
520 {
521 	BUG_ON(skb->nohdr);
522 	skb->nohdr = 1;
523 	atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
524 }
525 
526 /**
527  *	skb_shared - is the buffer shared
528  *	@skb: buffer to check
529  *
530  *	Returns true if more than one person has a reference to this
531  *	buffer.
532  */
533 static inline int skb_shared(const struct sk_buff *skb)
534 {
535 	return atomic_read(&skb->users) != 1;
536 }
537 
538 /**
539  *	skb_share_check - check if buffer is shared and if so clone it
540  *	@skb: buffer to check
541  *	@pri: priority for memory allocation
542  *
543  *	If the buffer is shared the buffer is cloned and the old copy
544  *	drops a reference. A new clone with a single reference is returned.
545  *	If the buffer is not shared the original buffer is returned. When
546  *	being called from interrupt status or with spinlocks held pri must
547  *	be GFP_ATOMIC.
548  *
549  *	NULL is returned on a memory allocation failure.
550  */
551 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
552 					      gfp_t pri)
553 {
554 	might_sleep_if(pri & __GFP_WAIT);
555 	if (skb_shared(skb)) {
556 		struct sk_buff *nskb = skb_clone(skb, pri);
557 		kfree_skb(skb);
558 		skb = nskb;
559 	}
560 	return skb;
561 }
562 
563 /*
564  *	Copy shared buffers into a new sk_buff. We effectively do COW on
565  *	packets to handle cases where we have a local reader and forward
566  *	and a couple of other messy ones. The normal one is tcpdumping
567  *	a packet thats being forwarded.
568  */
569 
570 /**
571  *	skb_unshare - make a copy of a shared buffer
572  *	@skb: buffer to check
573  *	@pri: priority for memory allocation
574  *
575  *	If the socket buffer is a clone then this function creates a new
576  *	copy of the data, drops a reference count on the old copy and returns
577  *	the new copy with the reference count at 1. If the buffer is not a clone
578  *	the original buffer is returned. When called with a spinlock held or
579  *	from interrupt state @pri must be %GFP_ATOMIC
580  *
581  *	%NULL is returned on a memory allocation failure.
582  */
583 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
584 					  gfp_t pri)
585 {
586 	might_sleep_if(pri & __GFP_WAIT);
587 	if (skb_cloned(skb)) {
588 		struct sk_buff *nskb = skb_copy(skb, pri);
589 		kfree_skb(skb);	/* Free our shared copy */
590 		skb = nskb;
591 	}
592 	return skb;
593 }
594 
595 /**
596  *	skb_peek
597  *	@list_: list to peek at
598  *
599  *	Peek an &sk_buff. Unlike most other operations you _MUST_
600  *	be careful with this one. A peek leaves the buffer on the
601  *	list and someone else may run off with it. You must hold
602  *	the appropriate locks or have a private queue to do this.
603  *
604  *	Returns %NULL for an empty list or a pointer to the head element.
605  *	The reference count is not incremented and the reference is therefore
606  *	volatile. Use with caution.
607  */
608 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
609 {
610 	struct sk_buff *list = ((struct sk_buff *)list_)->next;
611 	if (list == (struct sk_buff *)list_)
612 		list = NULL;
613 	return list;
614 }
615 
616 /**
617  *	skb_peek_tail
618  *	@list_: list to peek at
619  *
620  *	Peek an &sk_buff. Unlike most other operations you _MUST_
621  *	be careful with this one. A peek leaves the buffer on the
622  *	list and someone else may run off with it. You must hold
623  *	the appropriate locks or have a private queue to do this.
624  *
625  *	Returns %NULL for an empty list or a pointer to the tail element.
626  *	The reference count is not incremented and the reference is therefore
627  *	volatile. Use with caution.
628  */
629 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
630 {
631 	struct sk_buff *list = ((struct sk_buff *)list_)->prev;
632 	if (list == (struct sk_buff *)list_)
633 		list = NULL;
634 	return list;
635 }
636 
637 /**
638  *	skb_queue_len	- get queue length
639  *	@list_: list to measure
640  *
641  *	Return the length of an &sk_buff queue.
642  */
643 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
644 {
645 	return list_->qlen;
646 }
647 
648 /*
649  * This function creates a split out lock class for each invocation;
650  * this is needed for now since a whole lot of users of the skb-queue
651  * infrastructure in drivers have different locking usage (in hardirq)
652  * than the networking core (in softirq only). In the long run either the
653  * network layer or drivers should need annotation to consolidate the
654  * main types of usage into 3 classes.
655  */
656 static inline void skb_queue_head_init(struct sk_buff_head *list)
657 {
658 	spin_lock_init(&list->lock);
659 	list->prev = list->next = (struct sk_buff *)list;
660 	list->qlen = 0;
661 }
662 
663 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
664 		struct lock_class_key *class)
665 {
666 	skb_queue_head_init(list);
667 	lockdep_set_class(&list->lock, class);
668 }
669 
670 /*
671  *	Insert an sk_buff on a list.
672  *
673  *	The "__skb_xxxx()" functions are the non-atomic ones that
674  *	can only be called with interrupts disabled.
675  */
676 extern void        skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
677 static inline void __skb_insert(struct sk_buff *newsk,
678 				struct sk_buff *prev, struct sk_buff *next,
679 				struct sk_buff_head *list)
680 {
681 	newsk->next = next;
682 	newsk->prev = prev;
683 	next->prev  = prev->next = newsk;
684 	list->qlen++;
685 }
686 
687 /**
688  *	__skb_queue_after - queue a buffer at the list head
689  *	@list: list to use
690  *	@prev: place after this buffer
691  *	@newsk: buffer to queue
692  *
693  *	Queue a buffer int the middle of a list. This function takes no locks
694  *	and you must therefore hold required locks before calling it.
695  *
696  *	A buffer cannot be placed on two lists at the same time.
697  */
698 static inline void __skb_queue_after(struct sk_buff_head *list,
699 				     struct sk_buff *prev,
700 				     struct sk_buff *newsk)
701 {
702 	__skb_insert(newsk, prev, prev->next, list);
703 }
704 
705 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
706 		       struct sk_buff_head *list);
707 
708 static inline void __skb_queue_before(struct sk_buff_head *list,
709 				      struct sk_buff *next,
710 				      struct sk_buff *newsk)
711 {
712 	__skb_insert(newsk, next->prev, next, list);
713 }
714 
715 /**
716  *	__skb_queue_head - queue a buffer at the list head
717  *	@list: list to use
718  *	@newsk: buffer to queue
719  *
720  *	Queue a buffer at the start of a list. This function takes no locks
721  *	and you must therefore hold required locks before calling it.
722  *
723  *	A buffer cannot be placed on two lists at the same time.
724  */
725 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
726 static inline void __skb_queue_head(struct sk_buff_head *list,
727 				    struct sk_buff *newsk)
728 {
729 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
730 }
731 
732 /**
733  *	__skb_queue_tail - queue a buffer at the list tail
734  *	@list: list to use
735  *	@newsk: buffer to queue
736  *
737  *	Queue a buffer at the end of a list. This function takes no locks
738  *	and you must therefore hold required locks before calling it.
739  *
740  *	A buffer cannot be placed on two lists at the same time.
741  */
742 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
743 static inline void __skb_queue_tail(struct sk_buff_head *list,
744 				   struct sk_buff *newsk)
745 {
746 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
747 }
748 
749 /*
750  * remove sk_buff from list. _Must_ be called atomically, and with
751  * the list known..
752  */
753 extern void	   skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
754 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
755 {
756 	struct sk_buff *next, *prev;
757 
758 	list->qlen--;
759 	next	   = skb->next;
760 	prev	   = skb->prev;
761 	skb->next  = skb->prev = NULL;
762 	next->prev = prev;
763 	prev->next = next;
764 }
765 
766 /**
767  *	__skb_dequeue - remove from the head of the queue
768  *	@list: list to dequeue from
769  *
770  *	Remove the head of the list. This function does not take any locks
771  *	so must be used with appropriate locks held only. The head item is
772  *	returned or %NULL if the list is empty.
773  */
774 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
775 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
776 {
777 	struct sk_buff *skb = skb_peek(list);
778 	if (skb)
779 		__skb_unlink(skb, list);
780 	return skb;
781 }
782 
783 /**
784  *	__skb_dequeue_tail - remove from the tail of the queue
785  *	@list: list to dequeue from
786  *
787  *	Remove the tail of the list. This function does not take any locks
788  *	so must be used with appropriate locks held only. The tail item is
789  *	returned or %NULL if the list is empty.
790  */
791 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
792 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
793 {
794 	struct sk_buff *skb = skb_peek_tail(list);
795 	if (skb)
796 		__skb_unlink(skb, list);
797 	return skb;
798 }
799 
800 
801 static inline int skb_is_nonlinear(const struct sk_buff *skb)
802 {
803 	return skb->data_len;
804 }
805 
806 static inline unsigned int skb_headlen(const struct sk_buff *skb)
807 {
808 	return skb->len - skb->data_len;
809 }
810 
811 static inline int skb_pagelen(const struct sk_buff *skb)
812 {
813 	int i, len = 0;
814 
815 	for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
816 		len += skb_shinfo(skb)->frags[i].size;
817 	return len + skb_headlen(skb);
818 }
819 
820 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
821 				      struct page *page, int off, int size)
822 {
823 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
824 
825 	frag->page		  = page;
826 	frag->page_offset	  = off;
827 	frag->size		  = size;
828 	skb_shinfo(skb)->nr_frags = i + 1;
829 }
830 
831 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
832 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->frag_list)
833 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
834 
835 #ifdef NET_SKBUFF_DATA_USES_OFFSET
836 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
837 {
838 	return skb->head + skb->tail;
839 }
840 
841 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
842 {
843 	skb->tail = skb->data - skb->head;
844 }
845 
846 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
847 {
848 	skb_reset_tail_pointer(skb);
849 	skb->tail += offset;
850 }
851 #else /* NET_SKBUFF_DATA_USES_OFFSET */
852 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
853 {
854 	return skb->tail;
855 }
856 
857 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
858 {
859 	skb->tail = skb->data;
860 }
861 
862 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
863 {
864 	skb->tail = skb->data + offset;
865 }
866 
867 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
868 
869 /*
870  *	Add data to an sk_buff
871  */
872 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
873 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
874 {
875 	unsigned char *tmp = skb_tail_pointer(skb);
876 	SKB_LINEAR_ASSERT(skb);
877 	skb->tail += len;
878 	skb->len  += len;
879 	return tmp;
880 }
881 
882 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
883 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
884 {
885 	skb->data -= len;
886 	skb->len  += len;
887 	return skb->data;
888 }
889 
890 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
891 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
892 {
893 	skb->len -= len;
894 	BUG_ON(skb->len < skb->data_len);
895 	return skb->data += len;
896 }
897 
898 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
899 
900 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
901 {
902 	if (len > skb_headlen(skb) &&
903 	    !__pskb_pull_tail(skb, len-skb_headlen(skb)))
904 		return NULL;
905 	skb->len -= len;
906 	return skb->data += len;
907 }
908 
909 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
910 {
911 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
912 }
913 
914 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
915 {
916 	if (likely(len <= skb_headlen(skb)))
917 		return 1;
918 	if (unlikely(len > skb->len))
919 		return 0;
920 	return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL;
921 }
922 
923 /**
924  *	skb_headroom - bytes at buffer head
925  *	@skb: buffer to check
926  *
927  *	Return the number of bytes of free space at the head of an &sk_buff.
928  */
929 static inline unsigned int skb_headroom(const struct sk_buff *skb)
930 {
931 	return skb->data - skb->head;
932 }
933 
934 /**
935  *	skb_tailroom - bytes at buffer end
936  *	@skb: buffer to check
937  *
938  *	Return the number of bytes of free space at the tail of an sk_buff
939  */
940 static inline int skb_tailroom(const struct sk_buff *skb)
941 {
942 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
943 }
944 
945 /**
946  *	skb_reserve - adjust headroom
947  *	@skb: buffer to alter
948  *	@len: bytes to move
949  *
950  *	Increase the headroom of an empty &sk_buff by reducing the tail
951  *	room. This is only allowed for an empty buffer.
952  */
953 static inline void skb_reserve(struct sk_buff *skb, int len)
954 {
955 	skb->data += len;
956 	skb->tail += len;
957 }
958 
959 #ifdef NET_SKBUFF_DATA_USES_OFFSET
960 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
961 {
962 	return skb->head + skb->transport_header;
963 }
964 
965 static inline void skb_reset_transport_header(struct sk_buff *skb)
966 {
967 	skb->transport_header = skb->data - skb->head;
968 }
969 
970 static inline void skb_set_transport_header(struct sk_buff *skb,
971 					    const int offset)
972 {
973 	skb_reset_transport_header(skb);
974 	skb->transport_header += offset;
975 }
976 
977 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
978 {
979 	return skb->head + skb->network_header;
980 }
981 
982 static inline void skb_reset_network_header(struct sk_buff *skb)
983 {
984 	skb->network_header = skb->data - skb->head;
985 }
986 
987 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
988 {
989 	skb_reset_network_header(skb);
990 	skb->network_header += offset;
991 }
992 
993 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
994 {
995 	return skb->head + skb->mac_header;
996 }
997 
998 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
999 {
1000 	return skb->mac_header != ~0U;
1001 }
1002 
1003 static inline void skb_reset_mac_header(struct sk_buff *skb)
1004 {
1005 	skb->mac_header = skb->data - skb->head;
1006 }
1007 
1008 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1009 {
1010 	skb_reset_mac_header(skb);
1011 	skb->mac_header += offset;
1012 }
1013 
1014 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1015 
1016 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1017 {
1018 	return skb->transport_header;
1019 }
1020 
1021 static inline void skb_reset_transport_header(struct sk_buff *skb)
1022 {
1023 	skb->transport_header = skb->data;
1024 }
1025 
1026 static inline void skb_set_transport_header(struct sk_buff *skb,
1027 					    const int offset)
1028 {
1029 	skb->transport_header = skb->data + offset;
1030 }
1031 
1032 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1033 {
1034 	return skb->network_header;
1035 }
1036 
1037 static inline void skb_reset_network_header(struct sk_buff *skb)
1038 {
1039 	skb->network_header = skb->data;
1040 }
1041 
1042 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1043 {
1044 	skb->network_header = skb->data + offset;
1045 }
1046 
1047 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1048 {
1049 	return skb->mac_header;
1050 }
1051 
1052 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1053 {
1054 	return skb->mac_header != NULL;
1055 }
1056 
1057 static inline void skb_reset_mac_header(struct sk_buff *skb)
1058 {
1059 	skb->mac_header = skb->data;
1060 }
1061 
1062 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1063 {
1064 	skb->mac_header = skb->data + offset;
1065 }
1066 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1067 
1068 static inline int skb_transport_offset(const struct sk_buff *skb)
1069 {
1070 	return skb_transport_header(skb) - skb->data;
1071 }
1072 
1073 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1074 {
1075 	return skb->transport_header - skb->network_header;
1076 }
1077 
1078 static inline int skb_network_offset(const struct sk_buff *skb)
1079 {
1080 	return skb_network_header(skb) - skb->data;
1081 }
1082 
1083 /*
1084  * CPUs often take a performance hit when accessing unaligned memory
1085  * locations. The actual performance hit varies, it can be small if the
1086  * hardware handles it or large if we have to take an exception and fix it
1087  * in software.
1088  *
1089  * Since an ethernet header is 14 bytes network drivers often end up with
1090  * the IP header at an unaligned offset. The IP header can be aligned by
1091  * shifting the start of the packet by 2 bytes. Drivers should do this
1092  * with:
1093  *
1094  * skb_reserve(NET_IP_ALIGN);
1095  *
1096  * The downside to this alignment of the IP header is that the DMA is now
1097  * unaligned. On some architectures the cost of an unaligned DMA is high
1098  * and this cost outweighs the gains made by aligning the IP header.
1099  *
1100  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1101  * to be overridden.
1102  */
1103 #ifndef NET_IP_ALIGN
1104 #define NET_IP_ALIGN	2
1105 #endif
1106 
1107 /*
1108  * The networking layer reserves some headroom in skb data (via
1109  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1110  * the header has to grow. In the default case, if the header has to grow
1111  * 16 bytes or less we avoid the reallocation.
1112  *
1113  * Unfortunately this headroom changes the DMA alignment of the resulting
1114  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1115  * on some architectures. An architecture can override this value,
1116  * perhaps setting it to a cacheline in size (since that will maintain
1117  * cacheline alignment of the DMA). It must be a power of 2.
1118  *
1119  * Various parts of the networking layer expect at least 16 bytes of
1120  * headroom, you should not reduce this.
1121  */
1122 #ifndef NET_SKB_PAD
1123 #define NET_SKB_PAD	16
1124 #endif
1125 
1126 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1127 
1128 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1129 {
1130 	if (unlikely(skb->data_len)) {
1131 		WARN_ON(1);
1132 		return;
1133 	}
1134 	skb->len = len;
1135 	skb_set_tail_pointer(skb, len);
1136 }
1137 
1138 extern void skb_trim(struct sk_buff *skb, unsigned int len);
1139 
1140 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1141 {
1142 	if (skb->data_len)
1143 		return ___pskb_trim(skb, len);
1144 	__skb_trim(skb, len);
1145 	return 0;
1146 }
1147 
1148 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1149 {
1150 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1151 }
1152 
1153 /**
1154  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1155  *	@skb: buffer to alter
1156  *	@len: new length
1157  *
1158  *	This is identical to pskb_trim except that the caller knows that
1159  *	the skb is not cloned so we should never get an error due to out-
1160  *	of-memory.
1161  */
1162 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1163 {
1164 	int err = pskb_trim(skb, len);
1165 	BUG_ON(err);
1166 }
1167 
1168 /**
1169  *	skb_orphan - orphan a buffer
1170  *	@skb: buffer to orphan
1171  *
1172  *	If a buffer currently has an owner then we call the owner's
1173  *	destructor function and make the @skb unowned. The buffer continues
1174  *	to exist but is no longer charged to its former owner.
1175  */
1176 static inline void skb_orphan(struct sk_buff *skb)
1177 {
1178 	if (skb->destructor)
1179 		skb->destructor(skb);
1180 	skb->destructor = NULL;
1181 	skb->sk		= NULL;
1182 }
1183 
1184 /**
1185  *	__skb_queue_purge - empty a list
1186  *	@list: list to empty
1187  *
1188  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
1189  *	the list and one reference dropped. This function does not take the
1190  *	list lock and the caller must hold the relevant locks to use it.
1191  */
1192 extern void skb_queue_purge(struct sk_buff_head *list);
1193 static inline void __skb_queue_purge(struct sk_buff_head *list)
1194 {
1195 	struct sk_buff *skb;
1196 	while ((skb = __skb_dequeue(list)) != NULL)
1197 		kfree_skb(skb);
1198 }
1199 
1200 /**
1201  *	__dev_alloc_skb - allocate an skbuff for receiving
1202  *	@length: length to allocate
1203  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
1204  *
1205  *	Allocate a new &sk_buff and assign it a usage count of one. The
1206  *	buffer has unspecified headroom built in. Users should allocate
1207  *	the headroom they think they need without accounting for the
1208  *	built in space. The built in space is used for optimisations.
1209  *
1210  *	%NULL is returned if there is no free memory.
1211  */
1212 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1213 					      gfp_t gfp_mask)
1214 {
1215 	struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1216 	if (likely(skb))
1217 		skb_reserve(skb, NET_SKB_PAD);
1218 	return skb;
1219 }
1220 
1221 extern struct sk_buff *dev_alloc_skb(unsigned int length);
1222 
1223 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1224 		unsigned int length, gfp_t gfp_mask);
1225 
1226 /**
1227  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
1228  *	@dev: network device to receive on
1229  *	@length: length to allocate
1230  *
1231  *	Allocate a new &sk_buff and assign it a usage count of one. The
1232  *	buffer has unspecified headroom built in. Users should allocate
1233  *	the headroom they think they need without accounting for the
1234  *	built in space. The built in space is used for optimisations.
1235  *
1236  *	%NULL is returned if there is no free memory. Although this function
1237  *	allocates memory it can be called from an interrupt.
1238  */
1239 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1240 		unsigned int length)
1241 {
1242 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1243 }
1244 
1245 /**
1246  *	skb_clone_writable - is the header of a clone writable
1247  *	@skb: buffer to check
1248  *	@len: length up to which to write
1249  *
1250  *	Returns true if modifying the header part of the cloned buffer
1251  *	does not requires the data to be copied.
1252  */
1253 static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len)
1254 {
1255 	return !skb_header_cloned(skb) &&
1256 	       skb_headroom(skb) + len <= skb->hdr_len;
1257 }
1258 
1259 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1260 			    int cloned)
1261 {
1262 	int delta = 0;
1263 
1264 	if (headroom < NET_SKB_PAD)
1265 		headroom = NET_SKB_PAD;
1266 	if (headroom > skb_headroom(skb))
1267 		delta = headroom - skb_headroom(skb);
1268 
1269 	if (delta || cloned)
1270 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1271 					GFP_ATOMIC);
1272 	return 0;
1273 }
1274 
1275 /**
1276  *	skb_cow - copy header of skb when it is required
1277  *	@skb: buffer to cow
1278  *	@headroom: needed headroom
1279  *
1280  *	If the skb passed lacks sufficient headroom or its data part
1281  *	is shared, data is reallocated. If reallocation fails, an error
1282  *	is returned and original skb is not changed.
1283  *
1284  *	The result is skb with writable area skb->head...skb->tail
1285  *	and at least @headroom of space at head.
1286  */
1287 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1288 {
1289 	return __skb_cow(skb, headroom, skb_cloned(skb));
1290 }
1291 
1292 /**
1293  *	skb_cow_head - skb_cow but only making the head writable
1294  *	@skb: buffer to cow
1295  *	@headroom: needed headroom
1296  *
1297  *	This function is identical to skb_cow except that we replace the
1298  *	skb_cloned check by skb_header_cloned.  It should be used when
1299  *	you only need to push on some header and do not need to modify
1300  *	the data.
1301  */
1302 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1303 {
1304 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
1305 }
1306 
1307 /**
1308  *	skb_padto	- pad an skbuff up to a minimal size
1309  *	@skb: buffer to pad
1310  *	@len: minimal length
1311  *
1312  *	Pads up a buffer to ensure the trailing bytes exist and are
1313  *	blanked. If the buffer already contains sufficient data it
1314  *	is untouched. Otherwise it is extended. Returns zero on
1315  *	success. The skb is freed on error.
1316  */
1317 
1318 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1319 {
1320 	unsigned int size = skb->len;
1321 	if (likely(size >= len))
1322 		return 0;
1323 	return skb_pad(skb, len-size);
1324 }
1325 
1326 static inline int skb_add_data(struct sk_buff *skb,
1327 			       char __user *from, int copy)
1328 {
1329 	const int off = skb->len;
1330 
1331 	if (skb->ip_summed == CHECKSUM_NONE) {
1332 		int err = 0;
1333 		__wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1334 							    copy, 0, &err);
1335 		if (!err) {
1336 			skb->csum = csum_block_add(skb->csum, csum, off);
1337 			return 0;
1338 		}
1339 	} else if (!copy_from_user(skb_put(skb, copy), from, copy))
1340 		return 0;
1341 
1342 	__skb_trim(skb, off);
1343 	return -EFAULT;
1344 }
1345 
1346 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1347 				   struct page *page, int off)
1348 {
1349 	if (i) {
1350 		struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1351 
1352 		return page == frag->page &&
1353 		       off == frag->page_offset + frag->size;
1354 	}
1355 	return 0;
1356 }
1357 
1358 static inline int __skb_linearize(struct sk_buff *skb)
1359 {
1360 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1361 }
1362 
1363 /**
1364  *	skb_linearize - convert paged skb to linear one
1365  *	@skb: buffer to linarize
1366  *
1367  *	If there is no free memory -ENOMEM is returned, otherwise zero
1368  *	is returned and the old skb data released.
1369  */
1370 static inline int skb_linearize(struct sk_buff *skb)
1371 {
1372 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1373 }
1374 
1375 /**
1376  *	skb_linearize_cow - make sure skb is linear and writable
1377  *	@skb: buffer to process
1378  *
1379  *	If there is no free memory -ENOMEM is returned, otherwise zero
1380  *	is returned and the old skb data released.
1381  */
1382 static inline int skb_linearize_cow(struct sk_buff *skb)
1383 {
1384 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1385 	       __skb_linearize(skb) : 0;
1386 }
1387 
1388 /**
1389  *	skb_postpull_rcsum - update checksum for received skb after pull
1390  *	@skb: buffer to update
1391  *	@start: start of data before pull
1392  *	@len: length of data pulled
1393  *
1394  *	After doing a pull on a received packet, you need to call this to
1395  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1396  *	CHECKSUM_NONE so that it can be recomputed from scratch.
1397  */
1398 
1399 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1400 				      const void *start, unsigned int len)
1401 {
1402 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1403 		skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1404 }
1405 
1406 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1407 
1408 /**
1409  *	pskb_trim_rcsum - trim received skb and update checksum
1410  *	@skb: buffer to trim
1411  *	@len: new length
1412  *
1413  *	This is exactly the same as pskb_trim except that it ensures the
1414  *	checksum of received packets are still valid after the operation.
1415  */
1416 
1417 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1418 {
1419 	if (likely(len >= skb->len))
1420 		return 0;
1421 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1422 		skb->ip_summed = CHECKSUM_NONE;
1423 	return __pskb_trim(skb, len);
1424 }
1425 
1426 #define skb_queue_walk(queue, skb) \
1427 		for (skb = (queue)->next;					\
1428 		     prefetch(skb->next), (skb != (struct sk_buff *)(queue));	\
1429 		     skb = skb->next)
1430 
1431 #define skb_queue_walk_safe(queue, skb, tmp)					\
1432 		for (skb = (queue)->next, tmp = skb->next;			\
1433 		     skb != (struct sk_buff *)(queue);				\
1434 		     skb = tmp, tmp = skb->next)
1435 
1436 #define skb_queue_reverse_walk(queue, skb) \
1437 		for (skb = (queue)->prev;					\
1438 		     prefetch(skb->prev), (skb != (struct sk_buff *)(queue));	\
1439 		     skb = skb->prev)
1440 
1441 
1442 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
1443 					   int *peeked, int *err);
1444 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1445 					 int noblock, int *err);
1446 extern unsigned int    datagram_poll(struct file *file, struct socket *sock,
1447 				     struct poll_table_struct *wait);
1448 extern int	       skb_copy_datagram_iovec(const struct sk_buff *from,
1449 					       int offset, struct iovec *to,
1450 					       int size);
1451 extern int	       skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1452 							int hlen,
1453 							struct iovec *iov);
1454 extern void	       skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1455 extern int	       skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1456 					 unsigned int flags);
1457 extern __wsum	       skb_checksum(const struct sk_buff *skb, int offset,
1458 				    int len, __wsum csum);
1459 extern int	       skb_copy_bits(const struct sk_buff *skb, int offset,
1460 				     void *to, int len);
1461 extern int	       skb_store_bits(struct sk_buff *skb, int offset,
1462 				      const void *from, int len);
1463 extern __wsum	       skb_copy_and_csum_bits(const struct sk_buff *skb,
1464 					      int offset, u8 *to, int len,
1465 					      __wsum csum);
1466 extern int             skb_splice_bits(struct sk_buff *skb,
1467 						unsigned int offset,
1468 						struct pipe_inode_info *pipe,
1469 						unsigned int len,
1470 						unsigned int flags);
1471 extern void	       skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1472 extern void	       skb_split(struct sk_buff *skb,
1473 				 struct sk_buff *skb1, const u32 len);
1474 
1475 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
1476 
1477 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1478 				       int len, void *buffer)
1479 {
1480 	int hlen = skb_headlen(skb);
1481 
1482 	if (hlen - offset >= len)
1483 		return skb->data + offset;
1484 
1485 	if (skb_copy_bits(skb, offset, buffer, len) < 0)
1486 		return NULL;
1487 
1488 	return buffer;
1489 }
1490 
1491 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
1492 					     void *to,
1493 					     const unsigned int len)
1494 {
1495 	memcpy(to, skb->data, len);
1496 }
1497 
1498 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
1499 						    const int offset, void *to,
1500 						    const unsigned int len)
1501 {
1502 	memcpy(to, skb->data + offset, len);
1503 }
1504 
1505 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
1506 					   const void *from,
1507 					   const unsigned int len)
1508 {
1509 	memcpy(skb->data, from, len);
1510 }
1511 
1512 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
1513 						  const int offset,
1514 						  const void *from,
1515 						  const unsigned int len)
1516 {
1517 	memcpy(skb->data + offset, from, len);
1518 }
1519 
1520 extern void skb_init(void);
1521 
1522 /**
1523  *	skb_get_timestamp - get timestamp from a skb
1524  *	@skb: skb to get stamp from
1525  *	@stamp: pointer to struct timeval to store stamp in
1526  *
1527  *	Timestamps are stored in the skb as offsets to a base timestamp.
1528  *	This function converts the offset back to a struct timeval and stores
1529  *	it in stamp.
1530  */
1531 static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp)
1532 {
1533 	*stamp = ktime_to_timeval(skb->tstamp);
1534 }
1535 
1536 static inline void __net_timestamp(struct sk_buff *skb)
1537 {
1538 	skb->tstamp = ktime_get_real();
1539 }
1540 
1541 static inline ktime_t net_timedelta(ktime_t t)
1542 {
1543 	return ktime_sub(ktime_get_real(), t);
1544 }
1545 
1546 static inline ktime_t net_invalid_timestamp(void)
1547 {
1548 	return ktime_set(0, 0);
1549 }
1550 
1551 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
1552 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
1553 
1554 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
1555 {
1556 	return skb->ip_summed & CHECKSUM_UNNECESSARY;
1557 }
1558 
1559 /**
1560  *	skb_checksum_complete - Calculate checksum of an entire packet
1561  *	@skb: packet to process
1562  *
1563  *	This function calculates the checksum over the entire packet plus
1564  *	the value of skb->csum.  The latter can be used to supply the
1565  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
1566  *	checksum.
1567  *
1568  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
1569  *	this function can be used to verify that checksum on received
1570  *	packets.  In that case the function should return zero if the
1571  *	checksum is correct.  In particular, this function will return zero
1572  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1573  *	hardware has already verified the correctness of the checksum.
1574  */
1575 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
1576 {
1577 	return skb_csum_unnecessary(skb) ?
1578 	       0 : __skb_checksum_complete(skb);
1579 }
1580 
1581 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1582 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
1583 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1584 {
1585 	if (nfct && atomic_dec_and_test(&nfct->use))
1586 		nf_conntrack_destroy(nfct);
1587 }
1588 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1589 {
1590 	if (nfct)
1591 		atomic_inc(&nfct->use);
1592 }
1593 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
1594 {
1595 	if (skb)
1596 		atomic_inc(&skb->users);
1597 }
1598 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
1599 {
1600 	if (skb)
1601 		kfree_skb(skb);
1602 }
1603 #endif
1604 #ifdef CONFIG_BRIDGE_NETFILTER
1605 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1606 {
1607 	if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1608 		kfree(nf_bridge);
1609 }
1610 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1611 {
1612 	if (nf_bridge)
1613 		atomic_inc(&nf_bridge->use);
1614 }
1615 #endif /* CONFIG_BRIDGE_NETFILTER */
1616 static inline void nf_reset(struct sk_buff *skb)
1617 {
1618 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1619 	nf_conntrack_put(skb->nfct);
1620 	skb->nfct = NULL;
1621 	nf_conntrack_put_reasm(skb->nfct_reasm);
1622 	skb->nfct_reasm = NULL;
1623 #endif
1624 #ifdef CONFIG_BRIDGE_NETFILTER
1625 	nf_bridge_put(skb->nf_bridge);
1626 	skb->nf_bridge = NULL;
1627 #endif
1628 }
1629 
1630 /* Note: This doesn't put any conntrack and bridge info in dst. */
1631 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1632 {
1633 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1634 	dst->nfct = src->nfct;
1635 	nf_conntrack_get(src->nfct);
1636 	dst->nfctinfo = src->nfctinfo;
1637 	dst->nfct_reasm = src->nfct_reasm;
1638 	nf_conntrack_get_reasm(src->nfct_reasm);
1639 #endif
1640 #ifdef CONFIG_BRIDGE_NETFILTER
1641 	dst->nf_bridge  = src->nf_bridge;
1642 	nf_bridge_get(src->nf_bridge);
1643 #endif
1644 }
1645 
1646 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1647 {
1648 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1649 	nf_conntrack_put(dst->nfct);
1650 	nf_conntrack_put_reasm(dst->nfct_reasm);
1651 #endif
1652 #ifdef CONFIG_BRIDGE_NETFILTER
1653 	nf_bridge_put(dst->nf_bridge);
1654 #endif
1655 	__nf_copy(dst, src);
1656 }
1657 
1658 #ifdef CONFIG_NETWORK_SECMARK
1659 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1660 {
1661 	to->secmark = from->secmark;
1662 }
1663 
1664 static inline void skb_init_secmark(struct sk_buff *skb)
1665 {
1666 	skb->secmark = 0;
1667 }
1668 #else
1669 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1670 { }
1671 
1672 static inline void skb_init_secmark(struct sk_buff *skb)
1673 { }
1674 #endif
1675 
1676 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
1677 {
1678 	skb->queue_mapping = queue_mapping;
1679 }
1680 
1681 static inline u16 skb_get_queue_mapping(struct sk_buff *skb)
1682 {
1683 	return skb->queue_mapping;
1684 }
1685 
1686 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
1687 {
1688 	to->queue_mapping = from->queue_mapping;
1689 }
1690 
1691 static inline int skb_is_gso(const struct sk_buff *skb)
1692 {
1693 	return skb_shinfo(skb)->gso_size;
1694 }
1695 
1696 static inline int skb_is_gso_v6(const struct sk_buff *skb)
1697 {
1698 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
1699 }
1700 
1701 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
1702 
1703 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
1704 {
1705 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
1706 	 * wanted then gso_type will be set. */
1707 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1708 	if (shinfo->gso_size != 0 && unlikely(shinfo->gso_type == 0)) {
1709 		__skb_warn_lro_forwarding(skb);
1710 		return true;
1711 	}
1712 	return false;
1713 }
1714 
1715 static inline void skb_forward_csum(struct sk_buff *skb)
1716 {
1717 	/* Unfortunately we don't support this one.  Any brave souls? */
1718 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1719 		skb->ip_summed = CHECKSUM_NONE;
1720 }
1721 
1722 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
1723 #endif	/* __KERNEL__ */
1724 #endif	/* _LINUX_SKBUFF_H */
1725