1 /* 2 * Definitions for the 'struct sk_buff' memory handlers. 3 * 4 * Authors: 5 * Alan Cox, <[email protected]> 6 * Florian La Roche, <[email protected]> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14 #ifndef _LINUX_SKBUFF_H 15 #define _LINUX_SKBUFF_H 16 17 #include <linux/kernel.h> 18 #include <linux/compiler.h> 19 #include <linux/time.h> 20 #include <linux/cache.h> 21 22 #include <asm/atomic.h> 23 #include <asm/types.h> 24 #include <linux/spinlock.h> 25 #include <linux/net.h> 26 #include <linux/textsearch.h> 27 #include <net/checksum.h> 28 #include <linux/rcupdate.h> 29 #include <linux/dmaengine.h> 30 #include <linux/hrtimer.h> 31 32 #define HAVE_ALLOC_SKB /* For the drivers to know */ 33 #define HAVE_ALIGNABLE_SKB /* Ditto 8) */ 34 35 /* Don't change this without changing skb_csum_unnecessary! */ 36 #define CHECKSUM_NONE 0 37 #define CHECKSUM_UNNECESSARY 1 38 #define CHECKSUM_COMPLETE 2 39 #define CHECKSUM_PARTIAL 3 40 41 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \ 42 ~(SMP_CACHE_BYTES - 1)) 43 #define SKB_WITH_OVERHEAD(X) \ 44 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 45 #define SKB_MAX_ORDER(X, ORDER) \ 46 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 47 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 48 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 49 50 /* A. Checksumming of received packets by device. 51 * 52 * NONE: device failed to checksum this packet. 53 * skb->csum is undefined. 54 * 55 * UNNECESSARY: device parsed packet and wouldbe verified checksum. 56 * skb->csum is undefined. 57 * It is bad option, but, unfortunately, many of vendors do this. 58 * Apparently with secret goal to sell you new device, when you 59 * will add new protocol to your host. F.e. IPv6. 8) 60 * 61 * COMPLETE: the most generic way. Device supplied checksum of _all_ 62 * the packet as seen by netif_rx in skb->csum. 63 * NOTE: Even if device supports only some protocols, but 64 * is able to produce some skb->csum, it MUST use COMPLETE, 65 * not UNNECESSARY. 66 * 67 * PARTIAL: identical to the case for output below. This may occur 68 * on a packet received directly from another Linux OS, e.g., 69 * a virtualised Linux kernel on the same host. The packet can 70 * be treated in the same way as UNNECESSARY except that on 71 * output (i.e., forwarding) the checksum must be filled in 72 * by the OS or the hardware. 73 * 74 * B. Checksumming on output. 75 * 76 * NONE: skb is checksummed by protocol or csum is not required. 77 * 78 * PARTIAL: device is required to csum packet as seen by hard_start_xmit 79 * from skb->csum_start to the end and to record the checksum 80 * at skb->csum_start + skb->csum_offset. 81 * 82 * Device must show its capabilities in dev->features, set 83 * at device setup time. 84 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum 85 * everything. 86 * NETIF_F_NO_CSUM - loopback or reliable single hop media. 87 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only 88 * TCP/UDP over IPv4. Sigh. Vendors like this 89 * way by an unknown reason. Though, see comment above 90 * about CHECKSUM_UNNECESSARY. 8) 91 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead. 92 * 93 * Any questions? No questions, good. --ANK 94 */ 95 96 struct net_device; 97 struct scatterlist; 98 struct pipe_inode_info; 99 100 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 101 struct nf_conntrack { 102 atomic_t use; 103 }; 104 #endif 105 106 #ifdef CONFIG_BRIDGE_NETFILTER 107 struct nf_bridge_info { 108 atomic_t use; 109 struct net_device *physindev; 110 struct net_device *physoutdev; 111 unsigned int mask; 112 unsigned long data[32 / sizeof(unsigned long)]; 113 }; 114 #endif 115 116 struct sk_buff_head { 117 /* These two members must be first. */ 118 struct sk_buff *next; 119 struct sk_buff *prev; 120 121 __u32 qlen; 122 spinlock_t lock; 123 }; 124 125 struct sk_buff; 126 127 /* To allow 64K frame to be packed as single skb without frag_list */ 128 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2) 129 130 typedef struct skb_frag_struct skb_frag_t; 131 132 struct skb_frag_struct { 133 struct page *page; 134 __u32 page_offset; 135 __u32 size; 136 }; 137 138 /* This data is invariant across clones and lives at 139 * the end of the header data, ie. at skb->end. 140 */ 141 struct skb_shared_info { 142 atomic_t dataref; 143 unsigned short nr_frags; 144 unsigned short gso_size; 145 /* Warning: this field is not always filled in (UFO)! */ 146 unsigned short gso_segs; 147 unsigned short gso_type; 148 __be32 ip6_frag_id; 149 struct sk_buff *frag_list; 150 skb_frag_t frags[MAX_SKB_FRAGS]; 151 }; 152 153 /* We divide dataref into two halves. The higher 16 bits hold references 154 * to the payload part of skb->data. The lower 16 bits hold references to 155 * the entire skb->data. A clone of a headerless skb holds the length of 156 * the header in skb->hdr_len. 157 * 158 * All users must obey the rule that the skb->data reference count must be 159 * greater than or equal to the payload reference count. 160 * 161 * Holding a reference to the payload part means that the user does not 162 * care about modifications to the header part of skb->data. 163 */ 164 #define SKB_DATAREF_SHIFT 16 165 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 166 167 168 enum { 169 SKB_FCLONE_UNAVAILABLE, 170 SKB_FCLONE_ORIG, 171 SKB_FCLONE_CLONE, 172 }; 173 174 enum { 175 SKB_GSO_TCPV4 = 1 << 0, 176 SKB_GSO_UDP = 1 << 1, 177 178 /* This indicates the skb is from an untrusted source. */ 179 SKB_GSO_DODGY = 1 << 2, 180 181 /* This indicates the tcp segment has CWR set. */ 182 SKB_GSO_TCP_ECN = 1 << 3, 183 184 SKB_GSO_TCPV6 = 1 << 4, 185 }; 186 187 #if BITS_PER_LONG > 32 188 #define NET_SKBUFF_DATA_USES_OFFSET 1 189 #endif 190 191 #ifdef NET_SKBUFF_DATA_USES_OFFSET 192 typedef unsigned int sk_buff_data_t; 193 #else 194 typedef unsigned char *sk_buff_data_t; 195 #endif 196 197 /** 198 * struct sk_buff - socket buffer 199 * @next: Next buffer in list 200 * @prev: Previous buffer in list 201 * @sk: Socket we are owned by 202 * @tstamp: Time we arrived 203 * @dev: Device we arrived on/are leaving by 204 * @transport_header: Transport layer header 205 * @network_header: Network layer header 206 * @mac_header: Link layer header 207 * @dst: destination entry 208 * @sp: the security path, used for xfrm 209 * @cb: Control buffer. Free for use by every layer. Put private vars here 210 * @len: Length of actual data 211 * @data_len: Data length 212 * @mac_len: Length of link layer header 213 * @hdr_len: writable header length of cloned skb 214 * @csum: Checksum (must include start/offset pair) 215 * @csum_start: Offset from skb->head where checksumming should start 216 * @csum_offset: Offset from csum_start where checksum should be stored 217 * @local_df: allow local fragmentation 218 * @cloned: Head may be cloned (check refcnt to be sure) 219 * @nohdr: Payload reference only, must not modify header 220 * @pkt_type: Packet class 221 * @fclone: skbuff clone status 222 * @ip_summed: Driver fed us an IP checksum 223 * @priority: Packet queueing priority 224 * @users: User count - see {datagram,tcp}.c 225 * @protocol: Packet protocol from driver 226 * @truesize: Buffer size 227 * @head: Head of buffer 228 * @data: Data head pointer 229 * @tail: Tail pointer 230 * @end: End pointer 231 * @destructor: Destruct function 232 * @mark: Generic packet mark 233 * @nfct: Associated connection, if any 234 * @ipvs_property: skbuff is owned by ipvs 235 * @peeked: this packet has been seen already, so stats have been 236 * done for it, don't do them again 237 * @nf_trace: netfilter packet trace flag 238 * @nfctinfo: Relationship of this skb to the connection 239 * @nfct_reasm: netfilter conntrack re-assembly pointer 240 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 241 * @iif: ifindex of device we arrived on 242 * @queue_mapping: Queue mapping for multiqueue devices 243 * @tc_index: Traffic control index 244 * @tc_verd: traffic control verdict 245 * @ndisc_nodetype: router type (from link layer) 246 * @dma_cookie: a cookie to one of several possible DMA operations 247 * done by skb DMA functions 248 * @secmark: security marking 249 * @vlan_tci: vlan tag control information 250 */ 251 252 struct sk_buff { 253 /* These two members must be first. */ 254 struct sk_buff *next; 255 struct sk_buff *prev; 256 257 struct sock *sk; 258 ktime_t tstamp; 259 struct net_device *dev; 260 261 union { 262 struct dst_entry *dst; 263 struct rtable *rtable; 264 }; 265 struct sec_path *sp; 266 267 /* 268 * This is the control buffer. It is free to use for every 269 * layer. Please put your private variables there. If you 270 * want to keep them across layers you have to do a skb_clone() 271 * first. This is owned by whoever has the skb queued ATM. 272 */ 273 char cb[48]; 274 275 unsigned int len, 276 data_len; 277 __u16 mac_len, 278 hdr_len; 279 union { 280 __wsum csum; 281 struct { 282 __u16 csum_start; 283 __u16 csum_offset; 284 }; 285 }; 286 __u32 priority; 287 __u8 local_df:1, 288 cloned:1, 289 ip_summed:2, 290 nohdr:1, 291 nfctinfo:3; 292 __u8 pkt_type:3, 293 fclone:2, 294 ipvs_property:1, 295 peeked:1, 296 nf_trace:1; 297 __be16 protocol; 298 299 void (*destructor)(struct sk_buff *skb); 300 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 301 struct nf_conntrack *nfct; 302 struct sk_buff *nfct_reasm; 303 #endif 304 #ifdef CONFIG_BRIDGE_NETFILTER 305 struct nf_bridge_info *nf_bridge; 306 #endif 307 308 int iif; 309 __u16 queue_mapping; 310 #ifdef CONFIG_NET_SCHED 311 __u16 tc_index; /* traffic control index */ 312 #ifdef CONFIG_NET_CLS_ACT 313 __u16 tc_verd; /* traffic control verdict */ 314 #endif 315 #endif 316 #ifdef CONFIG_IPV6_NDISC_NODETYPE 317 __u8 ndisc_nodetype:2; 318 #endif 319 #if defined(CONFIG_MAC80211) || defined(CONFIG_MAC80211_MODULE) 320 __u8 do_not_encrypt:1; 321 #endif 322 /* 0/13/14 bit hole */ 323 324 #ifdef CONFIG_NET_DMA 325 dma_cookie_t dma_cookie; 326 #endif 327 #ifdef CONFIG_NETWORK_SECMARK 328 __u32 secmark; 329 #endif 330 331 __u32 mark; 332 333 __u16 vlan_tci; 334 335 sk_buff_data_t transport_header; 336 sk_buff_data_t network_header; 337 sk_buff_data_t mac_header; 338 /* These elements must be at the end, see alloc_skb() for details. */ 339 sk_buff_data_t tail; 340 sk_buff_data_t end; 341 unsigned char *head, 342 *data; 343 unsigned int truesize; 344 atomic_t users; 345 }; 346 347 #ifdef __KERNEL__ 348 /* 349 * Handling routines are only of interest to the kernel 350 */ 351 #include <linux/slab.h> 352 353 #include <asm/system.h> 354 355 extern void kfree_skb(struct sk_buff *skb); 356 extern void __kfree_skb(struct sk_buff *skb); 357 extern struct sk_buff *__alloc_skb(unsigned int size, 358 gfp_t priority, int fclone, int node); 359 static inline struct sk_buff *alloc_skb(unsigned int size, 360 gfp_t priority) 361 { 362 return __alloc_skb(size, priority, 0, -1); 363 } 364 365 static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 366 gfp_t priority) 367 { 368 return __alloc_skb(size, priority, 1, -1); 369 } 370 371 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 372 extern struct sk_buff *skb_clone(struct sk_buff *skb, 373 gfp_t priority); 374 extern struct sk_buff *skb_copy(const struct sk_buff *skb, 375 gfp_t priority); 376 extern struct sk_buff *pskb_copy(struct sk_buff *skb, 377 gfp_t gfp_mask); 378 extern int pskb_expand_head(struct sk_buff *skb, 379 int nhead, int ntail, 380 gfp_t gfp_mask); 381 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 382 unsigned int headroom); 383 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 384 int newheadroom, int newtailroom, 385 gfp_t priority); 386 extern int skb_to_sgvec(struct sk_buff *skb, 387 struct scatterlist *sg, int offset, 388 int len); 389 extern int skb_cow_data(struct sk_buff *skb, int tailbits, 390 struct sk_buff **trailer); 391 extern int skb_pad(struct sk_buff *skb, int pad); 392 #define dev_kfree_skb(a) kfree_skb(a) 393 extern void skb_over_panic(struct sk_buff *skb, int len, 394 void *here); 395 extern void skb_under_panic(struct sk_buff *skb, int len, 396 void *here); 397 extern void skb_truesize_bug(struct sk_buff *skb); 398 399 static inline void skb_truesize_check(struct sk_buff *skb) 400 { 401 int len = sizeof(struct sk_buff) + skb->len; 402 403 if (unlikely((int)skb->truesize < len)) 404 skb_truesize_bug(skb); 405 } 406 407 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 408 int getfrag(void *from, char *to, int offset, 409 int len,int odd, struct sk_buff *skb), 410 void *from, int length); 411 412 struct skb_seq_state 413 { 414 __u32 lower_offset; 415 __u32 upper_offset; 416 __u32 frag_idx; 417 __u32 stepped_offset; 418 struct sk_buff *root_skb; 419 struct sk_buff *cur_skb; 420 __u8 *frag_data; 421 }; 422 423 extern void skb_prepare_seq_read(struct sk_buff *skb, 424 unsigned int from, unsigned int to, 425 struct skb_seq_state *st); 426 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 427 struct skb_seq_state *st); 428 extern void skb_abort_seq_read(struct skb_seq_state *st); 429 430 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 431 unsigned int to, struct ts_config *config, 432 struct ts_state *state); 433 434 #ifdef NET_SKBUFF_DATA_USES_OFFSET 435 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 436 { 437 return skb->head + skb->end; 438 } 439 #else 440 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 441 { 442 return skb->end; 443 } 444 #endif 445 446 /* Internal */ 447 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 448 449 /** 450 * skb_queue_empty - check if a queue is empty 451 * @list: queue head 452 * 453 * Returns true if the queue is empty, false otherwise. 454 */ 455 static inline int skb_queue_empty(const struct sk_buff_head *list) 456 { 457 return list->next == (struct sk_buff *)list; 458 } 459 460 /** 461 * skb_get - reference buffer 462 * @skb: buffer to reference 463 * 464 * Makes another reference to a socket buffer and returns a pointer 465 * to the buffer. 466 */ 467 static inline struct sk_buff *skb_get(struct sk_buff *skb) 468 { 469 atomic_inc(&skb->users); 470 return skb; 471 } 472 473 /* 474 * If users == 1, we are the only owner and are can avoid redundant 475 * atomic change. 476 */ 477 478 /** 479 * skb_cloned - is the buffer a clone 480 * @skb: buffer to check 481 * 482 * Returns true if the buffer was generated with skb_clone() and is 483 * one of multiple shared copies of the buffer. Cloned buffers are 484 * shared data so must not be written to under normal circumstances. 485 */ 486 static inline int skb_cloned(const struct sk_buff *skb) 487 { 488 return skb->cloned && 489 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 490 } 491 492 /** 493 * skb_header_cloned - is the header a clone 494 * @skb: buffer to check 495 * 496 * Returns true if modifying the header part of the buffer requires 497 * the data to be copied. 498 */ 499 static inline int skb_header_cloned(const struct sk_buff *skb) 500 { 501 int dataref; 502 503 if (!skb->cloned) 504 return 0; 505 506 dataref = atomic_read(&skb_shinfo(skb)->dataref); 507 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 508 return dataref != 1; 509 } 510 511 /** 512 * skb_header_release - release reference to header 513 * @skb: buffer to operate on 514 * 515 * Drop a reference to the header part of the buffer. This is done 516 * by acquiring a payload reference. You must not read from the header 517 * part of skb->data after this. 518 */ 519 static inline void skb_header_release(struct sk_buff *skb) 520 { 521 BUG_ON(skb->nohdr); 522 skb->nohdr = 1; 523 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref); 524 } 525 526 /** 527 * skb_shared - is the buffer shared 528 * @skb: buffer to check 529 * 530 * Returns true if more than one person has a reference to this 531 * buffer. 532 */ 533 static inline int skb_shared(const struct sk_buff *skb) 534 { 535 return atomic_read(&skb->users) != 1; 536 } 537 538 /** 539 * skb_share_check - check if buffer is shared and if so clone it 540 * @skb: buffer to check 541 * @pri: priority for memory allocation 542 * 543 * If the buffer is shared the buffer is cloned and the old copy 544 * drops a reference. A new clone with a single reference is returned. 545 * If the buffer is not shared the original buffer is returned. When 546 * being called from interrupt status or with spinlocks held pri must 547 * be GFP_ATOMIC. 548 * 549 * NULL is returned on a memory allocation failure. 550 */ 551 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, 552 gfp_t pri) 553 { 554 might_sleep_if(pri & __GFP_WAIT); 555 if (skb_shared(skb)) { 556 struct sk_buff *nskb = skb_clone(skb, pri); 557 kfree_skb(skb); 558 skb = nskb; 559 } 560 return skb; 561 } 562 563 /* 564 * Copy shared buffers into a new sk_buff. We effectively do COW on 565 * packets to handle cases where we have a local reader and forward 566 * and a couple of other messy ones. The normal one is tcpdumping 567 * a packet thats being forwarded. 568 */ 569 570 /** 571 * skb_unshare - make a copy of a shared buffer 572 * @skb: buffer to check 573 * @pri: priority for memory allocation 574 * 575 * If the socket buffer is a clone then this function creates a new 576 * copy of the data, drops a reference count on the old copy and returns 577 * the new copy with the reference count at 1. If the buffer is not a clone 578 * the original buffer is returned. When called with a spinlock held or 579 * from interrupt state @pri must be %GFP_ATOMIC 580 * 581 * %NULL is returned on a memory allocation failure. 582 */ 583 static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 584 gfp_t pri) 585 { 586 might_sleep_if(pri & __GFP_WAIT); 587 if (skb_cloned(skb)) { 588 struct sk_buff *nskb = skb_copy(skb, pri); 589 kfree_skb(skb); /* Free our shared copy */ 590 skb = nskb; 591 } 592 return skb; 593 } 594 595 /** 596 * skb_peek 597 * @list_: list to peek at 598 * 599 * Peek an &sk_buff. Unlike most other operations you _MUST_ 600 * be careful with this one. A peek leaves the buffer on the 601 * list and someone else may run off with it. You must hold 602 * the appropriate locks or have a private queue to do this. 603 * 604 * Returns %NULL for an empty list or a pointer to the head element. 605 * The reference count is not incremented and the reference is therefore 606 * volatile. Use with caution. 607 */ 608 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_) 609 { 610 struct sk_buff *list = ((struct sk_buff *)list_)->next; 611 if (list == (struct sk_buff *)list_) 612 list = NULL; 613 return list; 614 } 615 616 /** 617 * skb_peek_tail 618 * @list_: list to peek at 619 * 620 * Peek an &sk_buff. Unlike most other operations you _MUST_ 621 * be careful with this one. A peek leaves the buffer on the 622 * list and someone else may run off with it. You must hold 623 * the appropriate locks or have a private queue to do this. 624 * 625 * Returns %NULL for an empty list or a pointer to the tail element. 626 * The reference count is not incremented and the reference is therefore 627 * volatile. Use with caution. 628 */ 629 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_) 630 { 631 struct sk_buff *list = ((struct sk_buff *)list_)->prev; 632 if (list == (struct sk_buff *)list_) 633 list = NULL; 634 return list; 635 } 636 637 /** 638 * skb_queue_len - get queue length 639 * @list_: list to measure 640 * 641 * Return the length of an &sk_buff queue. 642 */ 643 static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 644 { 645 return list_->qlen; 646 } 647 648 /* 649 * This function creates a split out lock class for each invocation; 650 * this is needed for now since a whole lot of users of the skb-queue 651 * infrastructure in drivers have different locking usage (in hardirq) 652 * than the networking core (in softirq only). In the long run either the 653 * network layer or drivers should need annotation to consolidate the 654 * main types of usage into 3 classes. 655 */ 656 static inline void skb_queue_head_init(struct sk_buff_head *list) 657 { 658 spin_lock_init(&list->lock); 659 list->prev = list->next = (struct sk_buff *)list; 660 list->qlen = 0; 661 } 662 663 static inline void skb_queue_head_init_class(struct sk_buff_head *list, 664 struct lock_class_key *class) 665 { 666 skb_queue_head_init(list); 667 lockdep_set_class(&list->lock, class); 668 } 669 670 /* 671 * Insert an sk_buff on a list. 672 * 673 * The "__skb_xxxx()" functions are the non-atomic ones that 674 * can only be called with interrupts disabled. 675 */ 676 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list); 677 static inline void __skb_insert(struct sk_buff *newsk, 678 struct sk_buff *prev, struct sk_buff *next, 679 struct sk_buff_head *list) 680 { 681 newsk->next = next; 682 newsk->prev = prev; 683 next->prev = prev->next = newsk; 684 list->qlen++; 685 } 686 687 /** 688 * __skb_queue_after - queue a buffer at the list head 689 * @list: list to use 690 * @prev: place after this buffer 691 * @newsk: buffer to queue 692 * 693 * Queue a buffer int the middle of a list. This function takes no locks 694 * and you must therefore hold required locks before calling it. 695 * 696 * A buffer cannot be placed on two lists at the same time. 697 */ 698 static inline void __skb_queue_after(struct sk_buff_head *list, 699 struct sk_buff *prev, 700 struct sk_buff *newsk) 701 { 702 __skb_insert(newsk, prev, prev->next, list); 703 } 704 705 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, 706 struct sk_buff_head *list); 707 708 static inline void __skb_queue_before(struct sk_buff_head *list, 709 struct sk_buff *next, 710 struct sk_buff *newsk) 711 { 712 __skb_insert(newsk, next->prev, next, list); 713 } 714 715 /** 716 * __skb_queue_head - queue a buffer at the list head 717 * @list: list to use 718 * @newsk: buffer to queue 719 * 720 * Queue a buffer at the start of a list. This function takes no locks 721 * and you must therefore hold required locks before calling it. 722 * 723 * A buffer cannot be placed on two lists at the same time. 724 */ 725 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 726 static inline void __skb_queue_head(struct sk_buff_head *list, 727 struct sk_buff *newsk) 728 { 729 __skb_queue_after(list, (struct sk_buff *)list, newsk); 730 } 731 732 /** 733 * __skb_queue_tail - queue a buffer at the list tail 734 * @list: list to use 735 * @newsk: buffer to queue 736 * 737 * Queue a buffer at the end of a list. This function takes no locks 738 * and you must therefore hold required locks before calling it. 739 * 740 * A buffer cannot be placed on two lists at the same time. 741 */ 742 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 743 static inline void __skb_queue_tail(struct sk_buff_head *list, 744 struct sk_buff *newsk) 745 { 746 __skb_queue_before(list, (struct sk_buff *)list, newsk); 747 } 748 749 /* 750 * remove sk_buff from list. _Must_ be called atomically, and with 751 * the list known.. 752 */ 753 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 754 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 755 { 756 struct sk_buff *next, *prev; 757 758 list->qlen--; 759 next = skb->next; 760 prev = skb->prev; 761 skb->next = skb->prev = NULL; 762 next->prev = prev; 763 prev->next = next; 764 } 765 766 /** 767 * __skb_dequeue - remove from the head of the queue 768 * @list: list to dequeue from 769 * 770 * Remove the head of the list. This function does not take any locks 771 * so must be used with appropriate locks held only. The head item is 772 * returned or %NULL if the list is empty. 773 */ 774 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list); 775 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 776 { 777 struct sk_buff *skb = skb_peek(list); 778 if (skb) 779 __skb_unlink(skb, list); 780 return skb; 781 } 782 783 /** 784 * __skb_dequeue_tail - remove from the tail of the queue 785 * @list: list to dequeue from 786 * 787 * Remove the tail of the list. This function does not take any locks 788 * so must be used with appropriate locks held only. The tail item is 789 * returned or %NULL if the list is empty. 790 */ 791 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 792 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 793 { 794 struct sk_buff *skb = skb_peek_tail(list); 795 if (skb) 796 __skb_unlink(skb, list); 797 return skb; 798 } 799 800 801 static inline int skb_is_nonlinear(const struct sk_buff *skb) 802 { 803 return skb->data_len; 804 } 805 806 static inline unsigned int skb_headlen(const struct sk_buff *skb) 807 { 808 return skb->len - skb->data_len; 809 } 810 811 static inline int skb_pagelen(const struct sk_buff *skb) 812 { 813 int i, len = 0; 814 815 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--) 816 len += skb_shinfo(skb)->frags[i].size; 817 return len + skb_headlen(skb); 818 } 819 820 static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 821 struct page *page, int off, int size) 822 { 823 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 824 825 frag->page = page; 826 frag->page_offset = off; 827 frag->size = size; 828 skb_shinfo(skb)->nr_frags = i + 1; 829 } 830 831 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags) 832 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list) 833 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 834 835 #ifdef NET_SKBUFF_DATA_USES_OFFSET 836 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 837 { 838 return skb->head + skb->tail; 839 } 840 841 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 842 { 843 skb->tail = skb->data - skb->head; 844 } 845 846 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 847 { 848 skb_reset_tail_pointer(skb); 849 skb->tail += offset; 850 } 851 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 852 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 853 { 854 return skb->tail; 855 } 856 857 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 858 { 859 skb->tail = skb->data; 860 } 861 862 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 863 { 864 skb->tail = skb->data + offset; 865 } 866 867 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 868 869 /* 870 * Add data to an sk_buff 871 */ 872 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len); 873 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len) 874 { 875 unsigned char *tmp = skb_tail_pointer(skb); 876 SKB_LINEAR_ASSERT(skb); 877 skb->tail += len; 878 skb->len += len; 879 return tmp; 880 } 881 882 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len); 883 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len) 884 { 885 skb->data -= len; 886 skb->len += len; 887 return skb->data; 888 } 889 890 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len); 891 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len) 892 { 893 skb->len -= len; 894 BUG_ON(skb->len < skb->data_len); 895 return skb->data += len; 896 } 897 898 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta); 899 900 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len) 901 { 902 if (len > skb_headlen(skb) && 903 !__pskb_pull_tail(skb, len-skb_headlen(skb))) 904 return NULL; 905 skb->len -= len; 906 return skb->data += len; 907 } 908 909 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len) 910 { 911 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 912 } 913 914 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) 915 { 916 if (likely(len <= skb_headlen(skb))) 917 return 1; 918 if (unlikely(len > skb->len)) 919 return 0; 920 return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL; 921 } 922 923 /** 924 * skb_headroom - bytes at buffer head 925 * @skb: buffer to check 926 * 927 * Return the number of bytes of free space at the head of an &sk_buff. 928 */ 929 static inline unsigned int skb_headroom(const struct sk_buff *skb) 930 { 931 return skb->data - skb->head; 932 } 933 934 /** 935 * skb_tailroom - bytes at buffer end 936 * @skb: buffer to check 937 * 938 * Return the number of bytes of free space at the tail of an sk_buff 939 */ 940 static inline int skb_tailroom(const struct sk_buff *skb) 941 { 942 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 943 } 944 945 /** 946 * skb_reserve - adjust headroom 947 * @skb: buffer to alter 948 * @len: bytes to move 949 * 950 * Increase the headroom of an empty &sk_buff by reducing the tail 951 * room. This is only allowed for an empty buffer. 952 */ 953 static inline void skb_reserve(struct sk_buff *skb, int len) 954 { 955 skb->data += len; 956 skb->tail += len; 957 } 958 959 #ifdef NET_SKBUFF_DATA_USES_OFFSET 960 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 961 { 962 return skb->head + skb->transport_header; 963 } 964 965 static inline void skb_reset_transport_header(struct sk_buff *skb) 966 { 967 skb->transport_header = skb->data - skb->head; 968 } 969 970 static inline void skb_set_transport_header(struct sk_buff *skb, 971 const int offset) 972 { 973 skb_reset_transport_header(skb); 974 skb->transport_header += offset; 975 } 976 977 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 978 { 979 return skb->head + skb->network_header; 980 } 981 982 static inline void skb_reset_network_header(struct sk_buff *skb) 983 { 984 skb->network_header = skb->data - skb->head; 985 } 986 987 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 988 { 989 skb_reset_network_header(skb); 990 skb->network_header += offset; 991 } 992 993 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 994 { 995 return skb->head + skb->mac_header; 996 } 997 998 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 999 { 1000 return skb->mac_header != ~0U; 1001 } 1002 1003 static inline void skb_reset_mac_header(struct sk_buff *skb) 1004 { 1005 skb->mac_header = skb->data - skb->head; 1006 } 1007 1008 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1009 { 1010 skb_reset_mac_header(skb); 1011 skb->mac_header += offset; 1012 } 1013 1014 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 1015 1016 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 1017 { 1018 return skb->transport_header; 1019 } 1020 1021 static inline void skb_reset_transport_header(struct sk_buff *skb) 1022 { 1023 skb->transport_header = skb->data; 1024 } 1025 1026 static inline void skb_set_transport_header(struct sk_buff *skb, 1027 const int offset) 1028 { 1029 skb->transport_header = skb->data + offset; 1030 } 1031 1032 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 1033 { 1034 return skb->network_header; 1035 } 1036 1037 static inline void skb_reset_network_header(struct sk_buff *skb) 1038 { 1039 skb->network_header = skb->data; 1040 } 1041 1042 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 1043 { 1044 skb->network_header = skb->data + offset; 1045 } 1046 1047 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 1048 { 1049 return skb->mac_header; 1050 } 1051 1052 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 1053 { 1054 return skb->mac_header != NULL; 1055 } 1056 1057 static inline void skb_reset_mac_header(struct sk_buff *skb) 1058 { 1059 skb->mac_header = skb->data; 1060 } 1061 1062 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1063 { 1064 skb->mac_header = skb->data + offset; 1065 } 1066 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1067 1068 static inline int skb_transport_offset(const struct sk_buff *skb) 1069 { 1070 return skb_transport_header(skb) - skb->data; 1071 } 1072 1073 static inline u32 skb_network_header_len(const struct sk_buff *skb) 1074 { 1075 return skb->transport_header - skb->network_header; 1076 } 1077 1078 static inline int skb_network_offset(const struct sk_buff *skb) 1079 { 1080 return skb_network_header(skb) - skb->data; 1081 } 1082 1083 /* 1084 * CPUs often take a performance hit when accessing unaligned memory 1085 * locations. The actual performance hit varies, it can be small if the 1086 * hardware handles it or large if we have to take an exception and fix it 1087 * in software. 1088 * 1089 * Since an ethernet header is 14 bytes network drivers often end up with 1090 * the IP header at an unaligned offset. The IP header can be aligned by 1091 * shifting the start of the packet by 2 bytes. Drivers should do this 1092 * with: 1093 * 1094 * skb_reserve(NET_IP_ALIGN); 1095 * 1096 * The downside to this alignment of the IP header is that the DMA is now 1097 * unaligned. On some architectures the cost of an unaligned DMA is high 1098 * and this cost outweighs the gains made by aligning the IP header. 1099 * 1100 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 1101 * to be overridden. 1102 */ 1103 #ifndef NET_IP_ALIGN 1104 #define NET_IP_ALIGN 2 1105 #endif 1106 1107 /* 1108 * The networking layer reserves some headroom in skb data (via 1109 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 1110 * the header has to grow. In the default case, if the header has to grow 1111 * 16 bytes or less we avoid the reallocation. 1112 * 1113 * Unfortunately this headroom changes the DMA alignment of the resulting 1114 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 1115 * on some architectures. An architecture can override this value, 1116 * perhaps setting it to a cacheline in size (since that will maintain 1117 * cacheline alignment of the DMA). It must be a power of 2. 1118 * 1119 * Various parts of the networking layer expect at least 16 bytes of 1120 * headroom, you should not reduce this. 1121 */ 1122 #ifndef NET_SKB_PAD 1123 #define NET_SKB_PAD 16 1124 #endif 1125 1126 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len); 1127 1128 static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 1129 { 1130 if (unlikely(skb->data_len)) { 1131 WARN_ON(1); 1132 return; 1133 } 1134 skb->len = len; 1135 skb_set_tail_pointer(skb, len); 1136 } 1137 1138 extern void skb_trim(struct sk_buff *skb, unsigned int len); 1139 1140 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 1141 { 1142 if (skb->data_len) 1143 return ___pskb_trim(skb, len); 1144 __skb_trim(skb, len); 1145 return 0; 1146 } 1147 1148 static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 1149 { 1150 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 1151 } 1152 1153 /** 1154 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 1155 * @skb: buffer to alter 1156 * @len: new length 1157 * 1158 * This is identical to pskb_trim except that the caller knows that 1159 * the skb is not cloned so we should never get an error due to out- 1160 * of-memory. 1161 */ 1162 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 1163 { 1164 int err = pskb_trim(skb, len); 1165 BUG_ON(err); 1166 } 1167 1168 /** 1169 * skb_orphan - orphan a buffer 1170 * @skb: buffer to orphan 1171 * 1172 * If a buffer currently has an owner then we call the owner's 1173 * destructor function and make the @skb unowned. The buffer continues 1174 * to exist but is no longer charged to its former owner. 1175 */ 1176 static inline void skb_orphan(struct sk_buff *skb) 1177 { 1178 if (skb->destructor) 1179 skb->destructor(skb); 1180 skb->destructor = NULL; 1181 skb->sk = NULL; 1182 } 1183 1184 /** 1185 * __skb_queue_purge - empty a list 1186 * @list: list to empty 1187 * 1188 * Delete all buffers on an &sk_buff list. Each buffer is removed from 1189 * the list and one reference dropped. This function does not take the 1190 * list lock and the caller must hold the relevant locks to use it. 1191 */ 1192 extern void skb_queue_purge(struct sk_buff_head *list); 1193 static inline void __skb_queue_purge(struct sk_buff_head *list) 1194 { 1195 struct sk_buff *skb; 1196 while ((skb = __skb_dequeue(list)) != NULL) 1197 kfree_skb(skb); 1198 } 1199 1200 /** 1201 * __dev_alloc_skb - allocate an skbuff for receiving 1202 * @length: length to allocate 1203 * @gfp_mask: get_free_pages mask, passed to alloc_skb 1204 * 1205 * Allocate a new &sk_buff and assign it a usage count of one. The 1206 * buffer has unspecified headroom built in. Users should allocate 1207 * the headroom they think they need without accounting for the 1208 * built in space. The built in space is used for optimisations. 1209 * 1210 * %NULL is returned if there is no free memory. 1211 */ 1212 static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 1213 gfp_t gfp_mask) 1214 { 1215 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask); 1216 if (likely(skb)) 1217 skb_reserve(skb, NET_SKB_PAD); 1218 return skb; 1219 } 1220 1221 extern struct sk_buff *dev_alloc_skb(unsigned int length); 1222 1223 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev, 1224 unsigned int length, gfp_t gfp_mask); 1225 1226 /** 1227 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 1228 * @dev: network device to receive on 1229 * @length: length to allocate 1230 * 1231 * Allocate a new &sk_buff and assign it a usage count of one. The 1232 * buffer has unspecified headroom built in. Users should allocate 1233 * the headroom they think they need without accounting for the 1234 * built in space. The built in space is used for optimisations. 1235 * 1236 * %NULL is returned if there is no free memory. Although this function 1237 * allocates memory it can be called from an interrupt. 1238 */ 1239 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 1240 unsigned int length) 1241 { 1242 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 1243 } 1244 1245 /** 1246 * skb_clone_writable - is the header of a clone writable 1247 * @skb: buffer to check 1248 * @len: length up to which to write 1249 * 1250 * Returns true if modifying the header part of the cloned buffer 1251 * does not requires the data to be copied. 1252 */ 1253 static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len) 1254 { 1255 return !skb_header_cloned(skb) && 1256 skb_headroom(skb) + len <= skb->hdr_len; 1257 } 1258 1259 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 1260 int cloned) 1261 { 1262 int delta = 0; 1263 1264 if (headroom < NET_SKB_PAD) 1265 headroom = NET_SKB_PAD; 1266 if (headroom > skb_headroom(skb)) 1267 delta = headroom - skb_headroom(skb); 1268 1269 if (delta || cloned) 1270 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 1271 GFP_ATOMIC); 1272 return 0; 1273 } 1274 1275 /** 1276 * skb_cow - copy header of skb when it is required 1277 * @skb: buffer to cow 1278 * @headroom: needed headroom 1279 * 1280 * If the skb passed lacks sufficient headroom or its data part 1281 * is shared, data is reallocated. If reallocation fails, an error 1282 * is returned and original skb is not changed. 1283 * 1284 * The result is skb with writable area skb->head...skb->tail 1285 * and at least @headroom of space at head. 1286 */ 1287 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 1288 { 1289 return __skb_cow(skb, headroom, skb_cloned(skb)); 1290 } 1291 1292 /** 1293 * skb_cow_head - skb_cow but only making the head writable 1294 * @skb: buffer to cow 1295 * @headroom: needed headroom 1296 * 1297 * This function is identical to skb_cow except that we replace the 1298 * skb_cloned check by skb_header_cloned. It should be used when 1299 * you only need to push on some header and do not need to modify 1300 * the data. 1301 */ 1302 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 1303 { 1304 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 1305 } 1306 1307 /** 1308 * skb_padto - pad an skbuff up to a minimal size 1309 * @skb: buffer to pad 1310 * @len: minimal length 1311 * 1312 * Pads up a buffer to ensure the trailing bytes exist and are 1313 * blanked. If the buffer already contains sufficient data it 1314 * is untouched. Otherwise it is extended. Returns zero on 1315 * success. The skb is freed on error. 1316 */ 1317 1318 static inline int skb_padto(struct sk_buff *skb, unsigned int len) 1319 { 1320 unsigned int size = skb->len; 1321 if (likely(size >= len)) 1322 return 0; 1323 return skb_pad(skb, len-size); 1324 } 1325 1326 static inline int skb_add_data(struct sk_buff *skb, 1327 char __user *from, int copy) 1328 { 1329 const int off = skb->len; 1330 1331 if (skb->ip_summed == CHECKSUM_NONE) { 1332 int err = 0; 1333 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy), 1334 copy, 0, &err); 1335 if (!err) { 1336 skb->csum = csum_block_add(skb->csum, csum, off); 1337 return 0; 1338 } 1339 } else if (!copy_from_user(skb_put(skb, copy), from, copy)) 1340 return 0; 1341 1342 __skb_trim(skb, off); 1343 return -EFAULT; 1344 } 1345 1346 static inline int skb_can_coalesce(struct sk_buff *skb, int i, 1347 struct page *page, int off) 1348 { 1349 if (i) { 1350 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 1351 1352 return page == frag->page && 1353 off == frag->page_offset + frag->size; 1354 } 1355 return 0; 1356 } 1357 1358 static inline int __skb_linearize(struct sk_buff *skb) 1359 { 1360 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 1361 } 1362 1363 /** 1364 * skb_linearize - convert paged skb to linear one 1365 * @skb: buffer to linarize 1366 * 1367 * If there is no free memory -ENOMEM is returned, otherwise zero 1368 * is returned and the old skb data released. 1369 */ 1370 static inline int skb_linearize(struct sk_buff *skb) 1371 { 1372 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 1373 } 1374 1375 /** 1376 * skb_linearize_cow - make sure skb is linear and writable 1377 * @skb: buffer to process 1378 * 1379 * If there is no free memory -ENOMEM is returned, otherwise zero 1380 * is returned and the old skb data released. 1381 */ 1382 static inline int skb_linearize_cow(struct sk_buff *skb) 1383 { 1384 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 1385 __skb_linearize(skb) : 0; 1386 } 1387 1388 /** 1389 * skb_postpull_rcsum - update checksum for received skb after pull 1390 * @skb: buffer to update 1391 * @start: start of data before pull 1392 * @len: length of data pulled 1393 * 1394 * After doing a pull on a received packet, you need to call this to 1395 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 1396 * CHECKSUM_NONE so that it can be recomputed from scratch. 1397 */ 1398 1399 static inline void skb_postpull_rcsum(struct sk_buff *skb, 1400 const void *start, unsigned int len) 1401 { 1402 if (skb->ip_summed == CHECKSUM_COMPLETE) 1403 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0)); 1404 } 1405 1406 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 1407 1408 /** 1409 * pskb_trim_rcsum - trim received skb and update checksum 1410 * @skb: buffer to trim 1411 * @len: new length 1412 * 1413 * This is exactly the same as pskb_trim except that it ensures the 1414 * checksum of received packets are still valid after the operation. 1415 */ 1416 1417 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 1418 { 1419 if (likely(len >= skb->len)) 1420 return 0; 1421 if (skb->ip_summed == CHECKSUM_COMPLETE) 1422 skb->ip_summed = CHECKSUM_NONE; 1423 return __pskb_trim(skb, len); 1424 } 1425 1426 #define skb_queue_walk(queue, skb) \ 1427 for (skb = (queue)->next; \ 1428 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \ 1429 skb = skb->next) 1430 1431 #define skb_queue_walk_safe(queue, skb, tmp) \ 1432 for (skb = (queue)->next, tmp = skb->next; \ 1433 skb != (struct sk_buff *)(queue); \ 1434 skb = tmp, tmp = skb->next) 1435 1436 #define skb_queue_reverse_walk(queue, skb) \ 1437 for (skb = (queue)->prev; \ 1438 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \ 1439 skb = skb->prev) 1440 1441 1442 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags, 1443 int *peeked, int *err); 1444 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, 1445 int noblock, int *err); 1446 extern unsigned int datagram_poll(struct file *file, struct socket *sock, 1447 struct poll_table_struct *wait); 1448 extern int skb_copy_datagram_iovec(const struct sk_buff *from, 1449 int offset, struct iovec *to, 1450 int size); 1451 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb, 1452 int hlen, 1453 struct iovec *iov); 1454 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 1455 extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, 1456 unsigned int flags); 1457 extern __wsum skb_checksum(const struct sk_buff *skb, int offset, 1458 int len, __wsum csum); 1459 extern int skb_copy_bits(const struct sk_buff *skb, int offset, 1460 void *to, int len); 1461 extern int skb_store_bits(struct sk_buff *skb, int offset, 1462 const void *from, int len); 1463 extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, 1464 int offset, u8 *to, int len, 1465 __wsum csum); 1466 extern int skb_splice_bits(struct sk_buff *skb, 1467 unsigned int offset, 1468 struct pipe_inode_info *pipe, 1469 unsigned int len, 1470 unsigned int flags); 1471 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 1472 extern void skb_split(struct sk_buff *skb, 1473 struct sk_buff *skb1, const u32 len); 1474 1475 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features); 1476 1477 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset, 1478 int len, void *buffer) 1479 { 1480 int hlen = skb_headlen(skb); 1481 1482 if (hlen - offset >= len) 1483 return skb->data + offset; 1484 1485 if (skb_copy_bits(skb, offset, buffer, len) < 0) 1486 return NULL; 1487 1488 return buffer; 1489 } 1490 1491 static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 1492 void *to, 1493 const unsigned int len) 1494 { 1495 memcpy(to, skb->data, len); 1496 } 1497 1498 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 1499 const int offset, void *to, 1500 const unsigned int len) 1501 { 1502 memcpy(to, skb->data + offset, len); 1503 } 1504 1505 static inline void skb_copy_to_linear_data(struct sk_buff *skb, 1506 const void *from, 1507 const unsigned int len) 1508 { 1509 memcpy(skb->data, from, len); 1510 } 1511 1512 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 1513 const int offset, 1514 const void *from, 1515 const unsigned int len) 1516 { 1517 memcpy(skb->data + offset, from, len); 1518 } 1519 1520 extern void skb_init(void); 1521 1522 /** 1523 * skb_get_timestamp - get timestamp from a skb 1524 * @skb: skb to get stamp from 1525 * @stamp: pointer to struct timeval to store stamp in 1526 * 1527 * Timestamps are stored in the skb as offsets to a base timestamp. 1528 * This function converts the offset back to a struct timeval and stores 1529 * it in stamp. 1530 */ 1531 static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp) 1532 { 1533 *stamp = ktime_to_timeval(skb->tstamp); 1534 } 1535 1536 static inline void __net_timestamp(struct sk_buff *skb) 1537 { 1538 skb->tstamp = ktime_get_real(); 1539 } 1540 1541 static inline ktime_t net_timedelta(ktime_t t) 1542 { 1543 return ktime_sub(ktime_get_real(), t); 1544 } 1545 1546 static inline ktime_t net_invalid_timestamp(void) 1547 { 1548 return ktime_set(0, 0); 1549 } 1550 1551 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 1552 extern __sum16 __skb_checksum_complete(struct sk_buff *skb); 1553 1554 static inline int skb_csum_unnecessary(const struct sk_buff *skb) 1555 { 1556 return skb->ip_summed & CHECKSUM_UNNECESSARY; 1557 } 1558 1559 /** 1560 * skb_checksum_complete - Calculate checksum of an entire packet 1561 * @skb: packet to process 1562 * 1563 * This function calculates the checksum over the entire packet plus 1564 * the value of skb->csum. The latter can be used to supply the 1565 * checksum of a pseudo header as used by TCP/UDP. It returns the 1566 * checksum. 1567 * 1568 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 1569 * this function can be used to verify that checksum on received 1570 * packets. In that case the function should return zero if the 1571 * checksum is correct. In particular, this function will return zero 1572 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 1573 * hardware has already verified the correctness of the checksum. 1574 */ 1575 static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 1576 { 1577 return skb_csum_unnecessary(skb) ? 1578 0 : __skb_checksum_complete(skb); 1579 } 1580 1581 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 1582 extern void nf_conntrack_destroy(struct nf_conntrack *nfct); 1583 static inline void nf_conntrack_put(struct nf_conntrack *nfct) 1584 { 1585 if (nfct && atomic_dec_and_test(&nfct->use)) 1586 nf_conntrack_destroy(nfct); 1587 } 1588 static inline void nf_conntrack_get(struct nf_conntrack *nfct) 1589 { 1590 if (nfct) 1591 atomic_inc(&nfct->use); 1592 } 1593 static inline void nf_conntrack_get_reasm(struct sk_buff *skb) 1594 { 1595 if (skb) 1596 atomic_inc(&skb->users); 1597 } 1598 static inline void nf_conntrack_put_reasm(struct sk_buff *skb) 1599 { 1600 if (skb) 1601 kfree_skb(skb); 1602 } 1603 #endif 1604 #ifdef CONFIG_BRIDGE_NETFILTER 1605 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge) 1606 { 1607 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use)) 1608 kfree(nf_bridge); 1609 } 1610 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge) 1611 { 1612 if (nf_bridge) 1613 atomic_inc(&nf_bridge->use); 1614 } 1615 #endif /* CONFIG_BRIDGE_NETFILTER */ 1616 static inline void nf_reset(struct sk_buff *skb) 1617 { 1618 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 1619 nf_conntrack_put(skb->nfct); 1620 skb->nfct = NULL; 1621 nf_conntrack_put_reasm(skb->nfct_reasm); 1622 skb->nfct_reasm = NULL; 1623 #endif 1624 #ifdef CONFIG_BRIDGE_NETFILTER 1625 nf_bridge_put(skb->nf_bridge); 1626 skb->nf_bridge = NULL; 1627 #endif 1628 } 1629 1630 /* Note: This doesn't put any conntrack and bridge info in dst. */ 1631 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src) 1632 { 1633 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 1634 dst->nfct = src->nfct; 1635 nf_conntrack_get(src->nfct); 1636 dst->nfctinfo = src->nfctinfo; 1637 dst->nfct_reasm = src->nfct_reasm; 1638 nf_conntrack_get_reasm(src->nfct_reasm); 1639 #endif 1640 #ifdef CONFIG_BRIDGE_NETFILTER 1641 dst->nf_bridge = src->nf_bridge; 1642 nf_bridge_get(src->nf_bridge); 1643 #endif 1644 } 1645 1646 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 1647 { 1648 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 1649 nf_conntrack_put(dst->nfct); 1650 nf_conntrack_put_reasm(dst->nfct_reasm); 1651 #endif 1652 #ifdef CONFIG_BRIDGE_NETFILTER 1653 nf_bridge_put(dst->nf_bridge); 1654 #endif 1655 __nf_copy(dst, src); 1656 } 1657 1658 #ifdef CONFIG_NETWORK_SECMARK 1659 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 1660 { 1661 to->secmark = from->secmark; 1662 } 1663 1664 static inline void skb_init_secmark(struct sk_buff *skb) 1665 { 1666 skb->secmark = 0; 1667 } 1668 #else 1669 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 1670 { } 1671 1672 static inline void skb_init_secmark(struct sk_buff *skb) 1673 { } 1674 #endif 1675 1676 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 1677 { 1678 skb->queue_mapping = queue_mapping; 1679 } 1680 1681 static inline u16 skb_get_queue_mapping(struct sk_buff *skb) 1682 { 1683 return skb->queue_mapping; 1684 } 1685 1686 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 1687 { 1688 to->queue_mapping = from->queue_mapping; 1689 } 1690 1691 static inline int skb_is_gso(const struct sk_buff *skb) 1692 { 1693 return skb_shinfo(skb)->gso_size; 1694 } 1695 1696 static inline int skb_is_gso_v6(const struct sk_buff *skb) 1697 { 1698 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 1699 } 1700 1701 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb); 1702 1703 static inline bool skb_warn_if_lro(const struct sk_buff *skb) 1704 { 1705 /* LRO sets gso_size but not gso_type, whereas if GSO is really 1706 * wanted then gso_type will be set. */ 1707 struct skb_shared_info *shinfo = skb_shinfo(skb); 1708 if (shinfo->gso_size != 0 && unlikely(shinfo->gso_type == 0)) { 1709 __skb_warn_lro_forwarding(skb); 1710 return true; 1711 } 1712 return false; 1713 } 1714 1715 static inline void skb_forward_csum(struct sk_buff *skb) 1716 { 1717 /* Unfortunately we don't support this one. Any brave souls? */ 1718 if (skb->ip_summed == CHECKSUM_COMPLETE) 1719 skb->ip_summed = CHECKSUM_NONE; 1720 } 1721 1722 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 1723 #endif /* __KERNEL__ */ 1724 #endif /* _LINUX_SKBUFF_H */ 1725