1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * Definitions for the 'struct sk_buff' memory handlers. 4 * 5 * Authors: 6 * Alan Cox, <[email protected]> 7 * Florian La Roche, <[email protected]> 8 */ 9 10 #ifndef _LINUX_SKBUFF_H 11 #define _LINUX_SKBUFF_H 12 13 #include <linux/kernel.h> 14 #include <linux/compiler.h> 15 #include <linux/time.h> 16 #include <linux/bug.h> 17 #include <linux/bvec.h> 18 #include <linux/cache.h> 19 #include <linux/rbtree.h> 20 #include <linux/socket.h> 21 #include <linux/refcount.h> 22 23 #include <linux/atomic.h> 24 #include <asm/types.h> 25 #include <linux/spinlock.h> 26 #include <linux/net.h> 27 #include <linux/textsearch.h> 28 #include <net/checksum.h> 29 #include <linux/rcupdate.h> 30 #include <linux/hrtimer.h> 31 #include <linux/dma-mapping.h> 32 #include <linux/netdev_features.h> 33 #include <linux/sched.h> 34 #include <linux/sched/clock.h> 35 #include <net/flow_dissector.h> 36 #include <linux/splice.h> 37 #include <linux/in6.h> 38 #include <linux/if_packet.h> 39 #include <net/flow.h> 40 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 41 #include <linux/netfilter/nf_conntrack_common.h> 42 #endif 43 44 /* The interface for checksum offload between the stack and networking drivers 45 * is as follows... 46 * 47 * A. IP checksum related features 48 * 49 * Drivers advertise checksum offload capabilities in the features of a device. 50 * From the stack's point of view these are capabilities offered by the driver. 51 * A driver typically only advertises features that it is capable of offloading 52 * to its device. 53 * 54 * The checksum related features are: 55 * 56 * NETIF_F_HW_CSUM - The driver (or its device) is able to compute one 57 * IP (one's complement) checksum for any combination 58 * of protocols or protocol layering. The checksum is 59 * computed and set in a packet per the CHECKSUM_PARTIAL 60 * interface (see below). 61 * 62 * NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain 63 * TCP or UDP packets over IPv4. These are specifically 64 * unencapsulated packets of the form IPv4|TCP or 65 * IPv4|UDP where the Protocol field in the IPv4 header 66 * is TCP or UDP. The IPv4 header may contain IP options. 67 * This feature cannot be set in features for a device 68 * with NETIF_F_HW_CSUM also set. This feature is being 69 * DEPRECATED (see below). 70 * 71 * NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain 72 * TCP or UDP packets over IPv6. These are specifically 73 * unencapsulated packets of the form IPv6|TCP or 74 * IPv4|UDP where the Next Header field in the IPv6 75 * header is either TCP or UDP. IPv6 extension headers 76 * are not supported with this feature. This feature 77 * cannot be set in features for a device with 78 * NETIF_F_HW_CSUM also set. This feature is being 79 * DEPRECATED (see below). 80 * 81 * NETIF_F_RXCSUM - Driver (device) performs receive checksum offload. 82 * This flag is only used to disable the RX checksum 83 * feature for a device. The stack will accept receive 84 * checksum indication in packets received on a device 85 * regardless of whether NETIF_F_RXCSUM is set. 86 * 87 * B. Checksumming of received packets by device. Indication of checksum 88 * verification is set in skb->ip_summed. Possible values are: 89 * 90 * CHECKSUM_NONE: 91 * 92 * Device did not checksum this packet e.g. due to lack of capabilities. 93 * The packet contains full (though not verified) checksum in packet but 94 * not in skb->csum. Thus, skb->csum is undefined in this case. 95 * 96 * CHECKSUM_UNNECESSARY: 97 * 98 * The hardware you're dealing with doesn't calculate the full checksum 99 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums 100 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY 101 * if their checksums are okay. skb->csum is still undefined in this case 102 * though. A driver or device must never modify the checksum field in the 103 * packet even if checksum is verified. 104 * 105 * CHECKSUM_UNNECESSARY is applicable to following protocols: 106 * TCP: IPv6 and IPv4. 107 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a 108 * zero UDP checksum for either IPv4 or IPv6, the networking stack 109 * may perform further validation in this case. 110 * GRE: only if the checksum is present in the header. 111 * SCTP: indicates the CRC in SCTP header has been validated. 112 * FCOE: indicates the CRC in FC frame has been validated. 113 * 114 * skb->csum_level indicates the number of consecutive checksums found in 115 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY. 116 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet 117 * and a device is able to verify the checksums for UDP (possibly zero), 118 * GRE (checksum flag is set) and TCP, skb->csum_level would be set to 119 * two. If the device were only able to verify the UDP checksum and not 120 * GRE, either because it doesn't support GRE checksum or because GRE 121 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is 122 * not considered in this case). 123 * 124 * CHECKSUM_COMPLETE: 125 * 126 * This is the most generic way. The device supplied checksum of the _whole_ 127 * packet as seen by netif_rx() and fills in skb->csum. This means the 128 * hardware doesn't need to parse L3/L4 headers to implement this. 129 * 130 * Notes: 131 * - Even if device supports only some protocols, but is able to produce 132 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY. 133 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols. 134 * 135 * CHECKSUM_PARTIAL: 136 * 137 * A checksum is set up to be offloaded to a device as described in the 138 * output description for CHECKSUM_PARTIAL. This may occur on a packet 139 * received directly from another Linux OS, e.g., a virtualized Linux kernel 140 * on the same host, or it may be set in the input path in GRO or remote 141 * checksum offload. For the purposes of checksum verification, the checksum 142 * referred to by skb->csum_start + skb->csum_offset and any preceding 143 * checksums in the packet are considered verified. Any checksums in the 144 * packet that are after the checksum being offloaded are not considered to 145 * be verified. 146 * 147 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload 148 * in the skb->ip_summed for a packet. Values are: 149 * 150 * CHECKSUM_PARTIAL: 151 * 152 * The driver is required to checksum the packet as seen by hard_start_xmit() 153 * from skb->csum_start up to the end, and to record/write the checksum at 154 * offset skb->csum_start + skb->csum_offset. A driver may verify that the 155 * csum_start and csum_offset values are valid values given the length and 156 * offset of the packet, but it should not attempt to validate that the 157 * checksum refers to a legitimate transport layer checksum -- it is the 158 * purview of the stack to validate that csum_start and csum_offset are set 159 * correctly. 160 * 161 * When the stack requests checksum offload for a packet, the driver MUST 162 * ensure that the checksum is set correctly. A driver can either offload the 163 * checksum calculation to the device, or call skb_checksum_help (in the case 164 * that the device does not support offload for a particular checksum). 165 * 166 * NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of 167 * NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate 168 * checksum offload capability. 169 * skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based 170 * on network device checksumming capabilities: if a packet does not match 171 * them, skb_checksum_help or skb_crc32c_help (depending on the value of 172 * csum_not_inet, see item D.) is called to resolve the checksum. 173 * 174 * CHECKSUM_NONE: 175 * 176 * The skb was already checksummed by the protocol, or a checksum is not 177 * required. 178 * 179 * CHECKSUM_UNNECESSARY: 180 * 181 * This has the same meaning as CHECKSUM_NONE for checksum offload on 182 * output. 183 * 184 * CHECKSUM_COMPLETE: 185 * Not used in checksum output. If a driver observes a packet with this value 186 * set in skbuff, it should treat the packet as if CHECKSUM_NONE were set. 187 * 188 * D. Non-IP checksum (CRC) offloads 189 * 190 * NETIF_F_SCTP_CRC - This feature indicates that a device is capable of 191 * offloading the SCTP CRC in a packet. To perform this offload the stack 192 * will set csum_start and csum_offset accordingly, set ip_summed to 193 * CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in 194 * the skbuff that the CHECKSUM_PARTIAL refers to CRC32c. 195 * A driver that supports both IP checksum offload and SCTP CRC32c offload 196 * must verify which offload is configured for a packet by testing the 197 * value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve 198 * CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1. 199 * 200 * NETIF_F_FCOE_CRC - This feature indicates that a device is capable of 201 * offloading the FCOE CRC in a packet. To perform this offload the stack 202 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset 203 * accordingly. Note that there is no indication in the skbuff that the 204 * CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports 205 * both IP checksum offload and FCOE CRC offload must verify which offload 206 * is configured for a packet, presumably by inspecting packet headers. 207 * 208 * E. Checksumming on output with GSO. 209 * 210 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload 211 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the 212 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as 213 * part of the GSO operation is implied. If a checksum is being offloaded 214 * with GSO then ip_summed is CHECKSUM_PARTIAL, and both csum_start and 215 * csum_offset are set to refer to the outermost checksum being offloaded 216 * (two offloaded checksums are possible with UDP encapsulation). 217 */ 218 219 /* Don't change this without changing skb_csum_unnecessary! */ 220 #define CHECKSUM_NONE 0 221 #define CHECKSUM_UNNECESSARY 1 222 #define CHECKSUM_COMPLETE 2 223 #define CHECKSUM_PARTIAL 3 224 225 /* Maximum value in skb->csum_level */ 226 #define SKB_MAX_CSUM_LEVEL 3 227 228 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES) 229 #define SKB_WITH_OVERHEAD(X) \ 230 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 231 #define SKB_MAX_ORDER(X, ORDER) \ 232 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 233 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 234 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 235 236 /* return minimum truesize of one skb containing X bytes of data */ 237 #define SKB_TRUESIZE(X) ((X) + \ 238 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ 239 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 240 241 struct ahash_request; 242 struct net_device; 243 struct scatterlist; 244 struct pipe_inode_info; 245 struct iov_iter; 246 struct napi_struct; 247 struct bpf_prog; 248 union bpf_attr; 249 struct skb_ext; 250 251 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 252 struct nf_bridge_info { 253 enum { 254 BRNF_PROTO_UNCHANGED, 255 BRNF_PROTO_8021Q, 256 BRNF_PROTO_PPPOE 257 } orig_proto:8; 258 u8 pkt_otherhost:1; 259 u8 in_prerouting:1; 260 u8 bridged_dnat:1; 261 __u16 frag_max_size; 262 struct net_device *physindev; 263 264 /* always valid & non-NULL from FORWARD on, for physdev match */ 265 struct net_device *physoutdev; 266 union { 267 /* prerouting: detect dnat in orig/reply direction */ 268 __be32 ipv4_daddr; 269 struct in6_addr ipv6_daddr; 270 271 /* after prerouting + nat detected: store original source 272 * mac since neigh resolution overwrites it, only used while 273 * skb is out in neigh layer. 274 */ 275 char neigh_header[8]; 276 }; 277 }; 278 #endif 279 280 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 281 /* Chain in tc_skb_ext will be used to share the tc chain with 282 * ovs recirc_id. It will be set to the current chain by tc 283 * and read by ovs to recirc_id. 284 */ 285 struct tc_skb_ext { 286 __u32 chain; 287 __u16 mru; 288 }; 289 #endif 290 291 struct sk_buff_head { 292 /* These two members must be first. */ 293 struct sk_buff *next; 294 struct sk_buff *prev; 295 296 __u32 qlen; 297 spinlock_t lock; 298 }; 299 300 struct sk_buff; 301 302 /* To allow 64K frame to be packed as single skb without frag_list we 303 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for 304 * buffers which do not start on a page boundary. 305 * 306 * Since GRO uses frags we allocate at least 16 regardless of page 307 * size. 308 */ 309 #if (65536/PAGE_SIZE + 1) < 16 310 #define MAX_SKB_FRAGS 16UL 311 #else 312 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1) 313 #endif 314 extern int sysctl_max_skb_frags; 315 316 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to 317 * segment using its current segmentation instead. 318 */ 319 #define GSO_BY_FRAGS 0xFFFF 320 321 typedef struct bio_vec skb_frag_t; 322 323 /** 324 * skb_frag_size() - Returns the size of a skb fragment 325 * @frag: skb fragment 326 */ 327 static inline unsigned int skb_frag_size(const skb_frag_t *frag) 328 { 329 return frag->bv_len; 330 } 331 332 /** 333 * skb_frag_size_set() - Sets the size of a skb fragment 334 * @frag: skb fragment 335 * @size: size of fragment 336 */ 337 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) 338 { 339 frag->bv_len = size; 340 } 341 342 /** 343 * skb_frag_size_add() - Increments the size of a skb fragment by @delta 344 * @frag: skb fragment 345 * @delta: value to add 346 */ 347 static inline void skb_frag_size_add(skb_frag_t *frag, int delta) 348 { 349 frag->bv_len += delta; 350 } 351 352 /** 353 * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta 354 * @frag: skb fragment 355 * @delta: value to subtract 356 */ 357 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) 358 { 359 frag->bv_len -= delta; 360 } 361 362 /** 363 * skb_frag_must_loop - Test if %p is a high memory page 364 * @p: fragment's page 365 */ 366 static inline bool skb_frag_must_loop(struct page *p) 367 { 368 #if defined(CONFIG_HIGHMEM) 369 if (PageHighMem(p)) 370 return true; 371 #endif 372 return false; 373 } 374 375 /** 376 * skb_frag_foreach_page - loop over pages in a fragment 377 * 378 * @f: skb frag to operate on 379 * @f_off: offset from start of f->bv_page 380 * @f_len: length from f_off to loop over 381 * @p: (temp var) current page 382 * @p_off: (temp var) offset from start of current page, 383 * non-zero only on first page. 384 * @p_len: (temp var) length in current page, 385 * < PAGE_SIZE only on first and last page. 386 * @copied: (temp var) length so far, excluding current p_len. 387 * 388 * A fragment can hold a compound page, in which case per-page 389 * operations, notably kmap_atomic, must be called for each 390 * regular page. 391 */ 392 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \ 393 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \ 394 p_off = (f_off) & (PAGE_SIZE - 1), \ 395 p_len = skb_frag_must_loop(p) ? \ 396 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \ 397 copied = 0; \ 398 copied < f_len; \ 399 copied += p_len, p++, p_off = 0, \ 400 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \ 401 402 #define HAVE_HW_TIME_STAMP 403 404 /** 405 * struct skb_shared_hwtstamps - hardware time stamps 406 * @hwtstamp: hardware time stamp transformed into duration 407 * since arbitrary point in time 408 * 409 * Software time stamps generated by ktime_get_real() are stored in 410 * skb->tstamp. 411 * 412 * hwtstamps can only be compared against other hwtstamps from 413 * the same device. 414 * 415 * This structure is attached to packets as part of the 416 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 417 */ 418 struct skb_shared_hwtstamps { 419 ktime_t hwtstamp; 420 }; 421 422 /* Definitions for tx_flags in struct skb_shared_info */ 423 enum { 424 /* generate hardware time stamp */ 425 SKBTX_HW_TSTAMP = 1 << 0, 426 427 /* generate software time stamp when queueing packet to NIC */ 428 SKBTX_SW_TSTAMP = 1 << 1, 429 430 /* device driver is going to provide hardware time stamp */ 431 SKBTX_IN_PROGRESS = 1 << 2, 432 433 /* device driver supports TX zero-copy buffers */ 434 SKBTX_DEV_ZEROCOPY = 1 << 3, 435 436 /* generate wifi status information (where possible) */ 437 SKBTX_WIFI_STATUS = 1 << 4, 438 439 /* This indicates at least one fragment might be overwritten 440 * (as in vmsplice(), sendfile() ...) 441 * If we need to compute a TX checksum, we'll need to copy 442 * all frags to avoid possible bad checksum 443 */ 444 SKBTX_SHARED_FRAG = 1 << 5, 445 446 /* generate software time stamp when entering packet scheduling */ 447 SKBTX_SCHED_TSTAMP = 1 << 6, 448 }; 449 450 #define SKBTX_ZEROCOPY_FRAG (SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG) 451 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \ 452 SKBTX_SCHED_TSTAMP) 453 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP) 454 455 /* 456 * The callback notifies userspace to release buffers when skb DMA is done in 457 * lower device, the skb last reference should be 0 when calling this. 458 * The zerocopy_success argument is true if zero copy transmit occurred, 459 * false on data copy or out of memory error caused by data copy attempt. 460 * The ctx field is used to track device context. 461 * The desc field is used to track userspace buffer index. 462 */ 463 struct ubuf_info { 464 void (*callback)(struct ubuf_info *, bool zerocopy_success); 465 union { 466 struct { 467 unsigned long desc; 468 void *ctx; 469 }; 470 struct { 471 u32 id; 472 u16 len; 473 u16 zerocopy:1; 474 u32 bytelen; 475 }; 476 }; 477 refcount_t refcnt; 478 479 struct mmpin { 480 struct user_struct *user; 481 unsigned int num_pg; 482 } mmp; 483 }; 484 485 #define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg)) 486 487 int mm_account_pinned_pages(struct mmpin *mmp, size_t size); 488 void mm_unaccount_pinned_pages(struct mmpin *mmp); 489 490 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size); 491 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size, 492 struct ubuf_info *uarg); 493 494 static inline void sock_zerocopy_get(struct ubuf_info *uarg) 495 { 496 refcount_inc(&uarg->refcnt); 497 } 498 499 void sock_zerocopy_put(struct ubuf_info *uarg); 500 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref); 501 502 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success); 503 504 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len); 505 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 506 struct msghdr *msg, int len, 507 struct ubuf_info *uarg); 508 509 /* This data is invariant across clones and lives at 510 * the end of the header data, ie. at skb->end. 511 */ 512 struct skb_shared_info { 513 __u8 __unused; 514 __u8 meta_len; 515 __u8 nr_frags; 516 __u8 tx_flags; 517 unsigned short gso_size; 518 /* Warning: this field is not always filled in (UFO)! */ 519 unsigned short gso_segs; 520 struct sk_buff *frag_list; 521 struct skb_shared_hwtstamps hwtstamps; 522 unsigned int gso_type; 523 u32 tskey; 524 525 /* 526 * Warning : all fields before dataref are cleared in __alloc_skb() 527 */ 528 atomic_t dataref; 529 530 /* Intermediate layers must ensure that destructor_arg 531 * remains valid until skb destructor */ 532 void * destructor_arg; 533 534 /* must be last field, see pskb_expand_head() */ 535 skb_frag_t frags[MAX_SKB_FRAGS]; 536 }; 537 538 /* We divide dataref into two halves. The higher 16 bits hold references 539 * to the payload part of skb->data. The lower 16 bits hold references to 540 * the entire skb->data. A clone of a headerless skb holds the length of 541 * the header in skb->hdr_len. 542 * 543 * All users must obey the rule that the skb->data reference count must be 544 * greater than or equal to the payload reference count. 545 * 546 * Holding a reference to the payload part means that the user does not 547 * care about modifications to the header part of skb->data. 548 */ 549 #define SKB_DATAREF_SHIFT 16 550 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 551 552 553 enum { 554 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */ 555 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */ 556 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */ 557 }; 558 559 enum { 560 SKB_GSO_TCPV4 = 1 << 0, 561 562 /* This indicates the skb is from an untrusted source. */ 563 SKB_GSO_DODGY = 1 << 1, 564 565 /* This indicates the tcp segment has CWR set. */ 566 SKB_GSO_TCP_ECN = 1 << 2, 567 568 SKB_GSO_TCP_FIXEDID = 1 << 3, 569 570 SKB_GSO_TCPV6 = 1 << 4, 571 572 SKB_GSO_FCOE = 1 << 5, 573 574 SKB_GSO_GRE = 1 << 6, 575 576 SKB_GSO_GRE_CSUM = 1 << 7, 577 578 SKB_GSO_IPXIP4 = 1 << 8, 579 580 SKB_GSO_IPXIP6 = 1 << 9, 581 582 SKB_GSO_UDP_TUNNEL = 1 << 10, 583 584 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11, 585 586 SKB_GSO_PARTIAL = 1 << 12, 587 588 SKB_GSO_TUNNEL_REMCSUM = 1 << 13, 589 590 SKB_GSO_SCTP = 1 << 14, 591 592 SKB_GSO_ESP = 1 << 15, 593 594 SKB_GSO_UDP = 1 << 16, 595 596 SKB_GSO_UDP_L4 = 1 << 17, 597 598 SKB_GSO_FRAGLIST = 1 << 18, 599 }; 600 601 #if BITS_PER_LONG > 32 602 #define NET_SKBUFF_DATA_USES_OFFSET 1 603 #endif 604 605 #ifdef NET_SKBUFF_DATA_USES_OFFSET 606 typedef unsigned int sk_buff_data_t; 607 #else 608 typedef unsigned char *sk_buff_data_t; 609 #endif 610 611 /** 612 * struct sk_buff - socket buffer 613 * @next: Next buffer in list 614 * @prev: Previous buffer in list 615 * @tstamp: Time we arrived/left 616 * @skb_mstamp_ns: (aka @tstamp) earliest departure time; start point 617 * for retransmit timer 618 * @rbnode: RB tree node, alternative to next/prev for netem/tcp 619 * @list: queue head 620 * @sk: Socket we are owned by 621 * @ip_defrag_offset: (aka @sk) alternate use of @sk, used in 622 * fragmentation management 623 * @dev: Device we arrived on/are leaving by 624 * @dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL 625 * @cb: Control buffer. Free for use by every layer. Put private vars here 626 * @_skb_refdst: destination entry (with norefcount bit) 627 * @sp: the security path, used for xfrm 628 * @len: Length of actual data 629 * @data_len: Data length 630 * @mac_len: Length of link layer header 631 * @hdr_len: writable header length of cloned skb 632 * @csum: Checksum (must include start/offset pair) 633 * @csum_start: Offset from skb->head where checksumming should start 634 * @csum_offset: Offset from csum_start where checksum should be stored 635 * @priority: Packet queueing priority 636 * @ignore_df: allow local fragmentation 637 * @cloned: Head may be cloned (check refcnt to be sure) 638 * @ip_summed: Driver fed us an IP checksum 639 * @nohdr: Payload reference only, must not modify header 640 * @pkt_type: Packet class 641 * @fclone: skbuff clone status 642 * @ipvs_property: skbuff is owned by ipvs 643 * @inner_protocol_type: whether the inner protocol is 644 * ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO 645 * @remcsum_offload: remote checksum offload is enabled 646 * @offload_fwd_mark: Packet was L2-forwarded in hardware 647 * @offload_l3_fwd_mark: Packet was L3-forwarded in hardware 648 * @tc_skip_classify: do not classify packet. set by IFB device 649 * @tc_at_ingress: used within tc_classify to distinguish in/egress 650 * @redirected: packet was redirected by packet classifier 651 * @from_ingress: packet was redirected from the ingress path 652 * @peeked: this packet has been seen already, so stats have been 653 * done for it, don't do them again 654 * @nf_trace: netfilter packet trace flag 655 * @protocol: Packet protocol from driver 656 * @destructor: Destruct function 657 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue) 658 * @_nfct: Associated connection, if any (with nfctinfo bits) 659 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 660 * @skb_iif: ifindex of device we arrived on 661 * @tc_index: Traffic control index 662 * @hash: the packet hash 663 * @queue_mapping: Queue mapping for multiqueue devices 664 * @head_frag: skb was allocated from page fragments, 665 * not allocated by kmalloc() or vmalloc(). 666 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves 667 * @active_extensions: active extensions (skb_ext_id types) 668 * @ndisc_nodetype: router type (from link layer) 669 * @ooo_okay: allow the mapping of a socket to a queue to be changed 670 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport 671 * ports. 672 * @sw_hash: indicates hash was computed in software stack 673 * @wifi_acked_valid: wifi_acked was set 674 * @wifi_acked: whether frame was acked on wifi or not 675 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS 676 * @encapsulation: indicates the inner headers in the skbuff are valid 677 * @encap_hdr_csum: software checksum is needed 678 * @csum_valid: checksum is already valid 679 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL 680 * @csum_complete_sw: checksum was completed by software 681 * @csum_level: indicates the number of consecutive checksums found in 682 * the packet minus one that have been verified as 683 * CHECKSUM_UNNECESSARY (max 3) 684 * @dst_pending_confirm: need to confirm neighbour 685 * @decrypted: Decrypted SKB 686 * @napi_id: id of the NAPI struct this skb came from 687 * @sender_cpu: (aka @napi_id) source CPU in XPS 688 * @secmark: security marking 689 * @mark: Generic packet mark 690 * @reserved_tailroom: (aka @mark) number of bytes of free space available 691 * at the tail of an sk_buff 692 * @vlan_present: VLAN tag is present 693 * @vlan_proto: vlan encapsulation protocol 694 * @vlan_tci: vlan tag control information 695 * @inner_protocol: Protocol (encapsulation) 696 * @inner_ipproto: (aka @inner_protocol) stores ipproto when 697 * skb->inner_protocol_type == ENCAP_TYPE_IPPROTO; 698 * @inner_transport_header: Inner transport layer header (encapsulation) 699 * @inner_network_header: Network layer header (encapsulation) 700 * @inner_mac_header: Link layer header (encapsulation) 701 * @transport_header: Transport layer header 702 * @network_header: Network layer header 703 * @mac_header: Link layer header 704 * @tail: Tail pointer 705 * @end: End pointer 706 * @head: Head of buffer 707 * @data: Data head pointer 708 * @truesize: Buffer size 709 * @users: User count - see {datagram,tcp}.c 710 * @extensions: allocated extensions, valid if active_extensions is nonzero 711 */ 712 713 struct sk_buff { 714 union { 715 struct { 716 /* These two members must be first. */ 717 struct sk_buff *next; 718 struct sk_buff *prev; 719 720 union { 721 struct net_device *dev; 722 /* Some protocols might use this space to store information, 723 * while device pointer would be NULL. 724 * UDP receive path is one user. 725 */ 726 unsigned long dev_scratch; 727 }; 728 }; 729 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */ 730 struct list_head list; 731 }; 732 733 union { 734 struct sock *sk; 735 int ip_defrag_offset; 736 }; 737 738 union { 739 ktime_t tstamp; 740 u64 skb_mstamp_ns; /* earliest departure time */ 741 }; 742 /* 743 * This is the control buffer. It is free to use for every 744 * layer. Please put your private variables there. If you 745 * want to keep them across layers you have to do a skb_clone() 746 * first. This is owned by whoever has the skb queued ATM. 747 */ 748 char cb[48] __aligned(8); 749 750 union { 751 struct { 752 unsigned long _skb_refdst; 753 void (*destructor)(struct sk_buff *skb); 754 }; 755 struct list_head tcp_tsorted_anchor; 756 }; 757 758 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 759 unsigned long _nfct; 760 #endif 761 unsigned int len, 762 data_len; 763 __u16 mac_len, 764 hdr_len; 765 766 /* Following fields are _not_ copied in __copy_skb_header() 767 * Note that queue_mapping is here mostly to fill a hole. 768 */ 769 __u16 queue_mapping; 770 771 /* if you move cloned around you also must adapt those constants */ 772 #ifdef __BIG_ENDIAN_BITFIELD 773 #define CLONED_MASK (1 << 7) 774 #else 775 #define CLONED_MASK 1 776 #endif 777 #define CLONED_OFFSET() offsetof(struct sk_buff, __cloned_offset) 778 779 /* private: */ 780 __u8 __cloned_offset[0]; 781 /* public: */ 782 __u8 cloned:1, 783 nohdr:1, 784 fclone:2, 785 peeked:1, 786 head_frag:1, 787 pfmemalloc:1; 788 #ifdef CONFIG_SKB_EXTENSIONS 789 __u8 active_extensions; 790 #endif 791 /* fields enclosed in headers_start/headers_end are copied 792 * using a single memcpy() in __copy_skb_header() 793 */ 794 /* private: */ 795 __u32 headers_start[0]; 796 /* public: */ 797 798 /* if you move pkt_type around you also must adapt those constants */ 799 #ifdef __BIG_ENDIAN_BITFIELD 800 #define PKT_TYPE_MAX (7 << 5) 801 #else 802 #define PKT_TYPE_MAX 7 803 #endif 804 #define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset) 805 806 /* private: */ 807 __u8 __pkt_type_offset[0]; 808 /* public: */ 809 __u8 pkt_type:3; 810 __u8 ignore_df:1; 811 __u8 nf_trace:1; 812 __u8 ip_summed:2; 813 __u8 ooo_okay:1; 814 815 __u8 l4_hash:1; 816 __u8 sw_hash:1; 817 __u8 wifi_acked_valid:1; 818 __u8 wifi_acked:1; 819 __u8 no_fcs:1; 820 /* Indicates the inner headers are valid in the skbuff. */ 821 __u8 encapsulation:1; 822 __u8 encap_hdr_csum:1; 823 __u8 csum_valid:1; 824 825 #ifdef __BIG_ENDIAN_BITFIELD 826 #define PKT_VLAN_PRESENT_BIT 7 827 #else 828 #define PKT_VLAN_PRESENT_BIT 0 829 #endif 830 #define PKT_VLAN_PRESENT_OFFSET() offsetof(struct sk_buff, __pkt_vlan_present_offset) 831 /* private: */ 832 __u8 __pkt_vlan_present_offset[0]; 833 /* public: */ 834 __u8 vlan_present:1; 835 __u8 csum_complete_sw:1; 836 __u8 csum_level:2; 837 __u8 csum_not_inet:1; 838 __u8 dst_pending_confirm:1; 839 #ifdef CONFIG_IPV6_NDISC_NODETYPE 840 __u8 ndisc_nodetype:2; 841 #endif 842 843 __u8 ipvs_property:1; 844 __u8 inner_protocol_type:1; 845 __u8 remcsum_offload:1; 846 #ifdef CONFIG_NET_SWITCHDEV 847 __u8 offload_fwd_mark:1; 848 __u8 offload_l3_fwd_mark:1; 849 #endif 850 #ifdef CONFIG_NET_CLS_ACT 851 __u8 tc_skip_classify:1; 852 __u8 tc_at_ingress:1; 853 #endif 854 #ifdef CONFIG_NET_REDIRECT 855 __u8 redirected:1; 856 __u8 from_ingress:1; 857 #endif 858 #ifdef CONFIG_TLS_DEVICE 859 __u8 decrypted:1; 860 #endif 861 862 #ifdef CONFIG_NET_SCHED 863 __u16 tc_index; /* traffic control index */ 864 #endif 865 866 union { 867 __wsum csum; 868 struct { 869 __u16 csum_start; 870 __u16 csum_offset; 871 }; 872 }; 873 __u32 priority; 874 int skb_iif; 875 __u32 hash; 876 __be16 vlan_proto; 877 __u16 vlan_tci; 878 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS) 879 union { 880 unsigned int napi_id; 881 unsigned int sender_cpu; 882 }; 883 #endif 884 #ifdef CONFIG_NETWORK_SECMARK 885 __u32 secmark; 886 #endif 887 888 union { 889 __u32 mark; 890 __u32 reserved_tailroom; 891 }; 892 893 union { 894 __be16 inner_protocol; 895 __u8 inner_ipproto; 896 }; 897 898 __u16 inner_transport_header; 899 __u16 inner_network_header; 900 __u16 inner_mac_header; 901 902 __be16 protocol; 903 __u16 transport_header; 904 __u16 network_header; 905 __u16 mac_header; 906 907 /* private: */ 908 __u32 headers_end[0]; 909 /* public: */ 910 911 /* These elements must be at the end, see alloc_skb() for details. */ 912 sk_buff_data_t tail; 913 sk_buff_data_t end; 914 unsigned char *head, 915 *data; 916 unsigned int truesize; 917 refcount_t users; 918 919 #ifdef CONFIG_SKB_EXTENSIONS 920 /* only useable after checking ->active_extensions != 0 */ 921 struct skb_ext *extensions; 922 #endif 923 }; 924 925 #ifdef __KERNEL__ 926 /* 927 * Handling routines are only of interest to the kernel 928 */ 929 930 #define SKB_ALLOC_FCLONE 0x01 931 #define SKB_ALLOC_RX 0x02 932 #define SKB_ALLOC_NAPI 0x04 933 934 /** 935 * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves 936 * @skb: buffer 937 */ 938 static inline bool skb_pfmemalloc(const struct sk_buff *skb) 939 { 940 return unlikely(skb->pfmemalloc); 941 } 942 943 /* 944 * skb might have a dst pointer attached, refcounted or not. 945 * _skb_refdst low order bit is set if refcount was _not_ taken 946 */ 947 #define SKB_DST_NOREF 1UL 948 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 949 950 /** 951 * skb_dst - returns skb dst_entry 952 * @skb: buffer 953 * 954 * Returns skb dst_entry, regardless of reference taken or not. 955 */ 956 static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 957 { 958 /* If refdst was not refcounted, check we still are in a 959 * rcu_read_lock section 960 */ 961 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 962 !rcu_read_lock_held() && 963 !rcu_read_lock_bh_held()); 964 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 965 } 966 967 /** 968 * skb_dst_set - sets skb dst 969 * @skb: buffer 970 * @dst: dst entry 971 * 972 * Sets skb dst, assuming a reference was taken on dst and should 973 * be released by skb_dst_drop() 974 */ 975 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 976 { 977 skb->_skb_refdst = (unsigned long)dst; 978 } 979 980 /** 981 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference 982 * @skb: buffer 983 * @dst: dst entry 984 * 985 * Sets skb dst, assuming a reference was not taken on dst. 986 * If dst entry is cached, we do not take reference and dst_release 987 * will be avoided by refdst_drop. If dst entry is not cached, we take 988 * reference, so that last dst_release can destroy the dst immediately. 989 */ 990 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) 991 { 992 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 993 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF; 994 } 995 996 /** 997 * skb_dst_is_noref - Test if skb dst isn't refcounted 998 * @skb: buffer 999 */ 1000 static inline bool skb_dst_is_noref(const struct sk_buff *skb) 1001 { 1002 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 1003 } 1004 1005 /** 1006 * skb_rtable - Returns the skb &rtable 1007 * @skb: buffer 1008 */ 1009 static inline struct rtable *skb_rtable(const struct sk_buff *skb) 1010 { 1011 return (struct rtable *)skb_dst(skb); 1012 } 1013 1014 /* For mangling skb->pkt_type from user space side from applications 1015 * such as nft, tc, etc, we only allow a conservative subset of 1016 * possible pkt_types to be set. 1017 */ 1018 static inline bool skb_pkt_type_ok(u32 ptype) 1019 { 1020 return ptype <= PACKET_OTHERHOST; 1021 } 1022 1023 /** 1024 * skb_napi_id - Returns the skb's NAPI id 1025 * @skb: buffer 1026 */ 1027 static inline unsigned int skb_napi_id(const struct sk_buff *skb) 1028 { 1029 #ifdef CONFIG_NET_RX_BUSY_POLL 1030 return skb->napi_id; 1031 #else 1032 return 0; 1033 #endif 1034 } 1035 1036 /** 1037 * skb_unref - decrement the skb's reference count 1038 * @skb: buffer 1039 * 1040 * Returns true if we can free the skb. 1041 */ 1042 static inline bool skb_unref(struct sk_buff *skb) 1043 { 1044 if (unlikely(!skb)) 1045 return false; 1046 if (likely(refcount_read(&skb->users) == 1)) 1047 smp_rmb(); 1048 else if (likely(!refcount_dec_and_test(&skb->users))) 1049 return false; 1050 1051 return true; 1052 } 1053 1054 void skb_release_head_state(struct sk_buff *skb); 1055 void kfree_skb(struct sk_buff *skb); 1056 void kfree_skb_list(struct sk_buff *segs); 1057 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt); 1058 void skb_tx_error(struct sk_buff *skb); 1059 void consume_skb(struct sk_buff *skb); 1060 void __consume_stateless_skb(struct sk_buff *skb); 1061 void __kfree_skb(struct sk_buff *skb); 1062 extern struct kmem_cache *skbuff_head_cache; 1063 1064 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); 1065 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 1066 bool *fragstolen, int *delta_truesize); 1067 1068 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags, 1069 int node); 1070 struct sk_buff *__build_skb(void *data, unsigned int frag_size); 1071 struct sk_buff *build_skb(void *data, unsigned int frag_size); 1072 struct sk_buff *build_skb_around(struct sk_buff *skb, 1073 void *data, unsigned int frag_size); 1074 1075 /** 1076 * alloc_skb - allocate a network buffer 1077 * @size: size to allocate 1078 * @priority: allocation mask 1079 * 1080 * This function is a convenient wrapper around __alloc_skb(). 1081 */ 1082 static inline struct sk_buff *alloc_skb(unsigned int size, 1083 gfp_t priority) 1084 { 1085 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 1086 } 1087 1088 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 1089 unsigned long data_len, 1090 int max_page_order, 1091 int *errcode, 1092 gfp_t gfp_mask); 1093 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first); 1094 1095 /* Layout of fast clones : [skb1][skb2][fclone_ref] */ 1096 struct sk_buff_fclones { 1097 struct sk_buff skb1; 1098 1099 struct sk_buff skb2; 1100 1101 refcount_t fclone_ref; 1102 }; 1103 1104 /** 1105 * skb_fclone_busy - check if fclone is busy 1106 * @sk: socket 1107 * @skb: buffer 1108 * 1109 * Returns true if skb is a fast clone, and its clone is not freed. 1110 * Some drivers call skb_orphan() in their ndo_start_xmit(), 1111 * so we also check that this didnt happen. 1112 */ 1113 static inline bool skb_fclone_busy(const struct sock *sk, 1114 const struct sk_buff *skb) 1115 { 1116 const struct sk_buff_fclones *fclones; 1117 1118 fclones = container_of(skb, struct sk_buff_fclones, skb1); 1119 1120 return skb->fclone == SKB_FCLONE_ORIG && 1121 refcount_read(&fclones->fclone_ref) > 1 && 1122 fclones->skb2.sk == sk; 1123 } 1124 1125 /** 1126 * alloc_skb_fclone - allocate a network buffer from fclone cache 1127 * @size: size to allocate 1128 * @priority: allocation mask 1129 * 1130 * This function is a convenient wrapper around __alloc_skb(). 1131 */ 1132 static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 1133 gfp_t priority) 1134 { 1135 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); 1136 } 1137 1138 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 1139 void skb_headers_offset_update(struct sk_buff *skb, int off); 1140 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); 1141 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority); 1142 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old); 1143 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority); 1144 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1145 gfp_t gfp_mask, bool fclone); 1146 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, 1147 gfp_t gfp_mask) 1148 { 1149 return __pskb_copy_fclone(skb, headroom, gfp_mask, false); 1150 } 1151 1152 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask); 1153 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 1154 unsigned int headroom); 1155 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, 1156 int newtailroom, gfp_t priority); 1157 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 1158 int offset, int len); 1159 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, 1160 int offset, int len); 1161 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer); 1162 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error); 1163 1164 /** 1165 * skb_pad - zero pad the tail of an skb 1166 * @skb: buffer to pad 1167 * @pad: space to pad 1168 * 1169 * Ensure that a buffer is followed by a padding area that is zero 1170 * filled. Used by network drivers which may DMA or transfer data 1171 * beyond the buffer end onto the wire. 1172 * 1173 * May return error in out of memory cases. The skb is freed on error. 1174 */ 1175 static inline int skb_pad(struct sk_buff *skb, int pad) 1176 { 1177 return __skb_pad(skb, pad, true); 1178 } 1179 #define dev_kfree_skb(a) consume_skb(a) 1180 1181 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 1182 int offset, size_t size); 1183 1184 struct skb_seq_state { 1185 __u32 lower_offset; 1186 __u32 upper_offset; 1187 __u32 frag_idx; 1188 __u32 stepped_offset; 1189 struct sk_buff *root_skb; 1190 struct sk_buff *cur_skb; 1191 __u8 *frag_data; 1192 }; 1193 1194 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 1195 unsigned int to, struct skb_seq_state *st); 1196 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 1197 struct skb_seq_state *st); 1198 void skb_abort_seq_read(struct skb_seq_state *st); 1199 1200 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 1201 unsigned int to, struct ts_config *config); 1202 1203 /* 1204 * Packet hash types specify the type of hash in skb_set_hash. 1205 * 1206 * Hash types refer to the protocol layer addresses which are used to 1207 * construct a packet's hash. The hashes are used to differentiate or identify 1208 * flows of the protocol layer for the hash type. Hash types are either 1209 * layer-2 (L2), layer-3 (L3), or layer-4 (L4). 1210 * 1211 * Properties of hashes: 1212 * 1213 * 1) Two packets in different flows have different hash values 1214 * 2) Two packets in the same flow should have the same hash value 1215 * 1216 * A hash at a higher layer is considered to be more specific. A driver should 1217 * set the most specific hash possible. 1218 * 1219 * A driver cannot indicate a more specific hash than the layer at which a hash 1220 * was computed. For instance an L3 hash cannot be set as an L4 hash. 1221 * 1222 * A driver may indicate a hash level which is less specific than the 1223 * actual layer the hash was computed on. For instance, a hash computed 1224 * at L4 may be considered an L3 hash. This should only be done if the 1225 * driver can't unambiguously determine that the HW computed the hash at 1226 * the higher layer. Note that the "should" in the second property above 1227 * permits this. 1228 */ 1229 enum pkt_hash_types { 1230 PKT_HASH_TYPE_NONE, /* Undefined type */ 1231 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */ 1232 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */ 1233 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */ 1234 }; 1235 1236 static inline void skb_clear_hash(struct sk_buff *skb) 1237 { 1238 skb->hash = 0; 1239 skb->sw_hash = 0; 1240 skb->l4_hash = 0; 1241 } 1242 1243 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb) 1244 { 1245 if (!skb->l4_hash) 1246 skb_clear_hash(skb); 1247 } 1248 1249 static inline void 1250 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4) 1251 { 1252 skb->l4_hash = is_l4; 1253 skb->sw_hash = is_sw; 1254 skb->hash = hash; 1255 } 1256 1257 static inline void 1258 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type) 1259 { 1260 /* Used by drivers to set hash from HW */ 1261 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4); 1262 } 1263 1264 static inline void 1265 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4) 1266 { 1267 __skb_set_hash(skb, hash, true, is_l4); 1268 } 1269 1270 void __skb_get_hash(struct sk_buff *skb); 1271 u32 __skb_get_hash_symmetric(const struct sk_buff *skb); 1272 u32 skb_get_poff(const struct sk_buff *skb); 1273 u32 __skb_get_poff(const struct sk_buff *skb, void *data, 1274 const struct flow_keys_basic *keys, int hlen); 1275 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto, 1276 void *data, int hlen_proto); 1277 1278 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb, 1279 int thoff, u8 ip_proto) 1280 { 1281 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0); 1282 } 1283 1284 void skb_flow_dissector_init(struct flow_dissector *flow_dissector, 1285 const struct flow_dissector_key *key, 1286 unsigned int key_count); 1287 1288 struct bpf_flow_dissector; 1289 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx, 1290 __be16 proto, int nhoff, int hlen, unsigned int flags); 1291 1292 bool __skb_flow_dissect(const struct net *net, 1293 const struct sk_buff *skb, 1294 struct flow_dissector *flow_dissector, 1295 void *target_container, 1296 void *data, __be16 proto, int nhoff, int hlen, 1297 unsigned int flags); 1298 1299 static inline bool skb_flow_dissect(const struct sk_buff *skb, 1300 struct flow_dissector *flow_dissector, 1301 void *target_container, unsigned int flags) 1302 { 1303 return __skb_flow_dissect(NULL, skb, flow_dissector, 1304 target_container, NULL, 0, 0, 0, flags); 1305 } 1306 1307 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb, 1308 struct flow_keys *flow, 1309 unsigned int flags) 1310 { 1311 memset(flow, 0, sizeof(*flow)); 1312 return __skb_flow_dissect(NULL, skb, &flow_keys_dissector, 1313 flow, NULL, 0, 0, 0, flags); 1314 } 1315 1316 static inline bool 1317 skb_flow_dissect_flow_keys_basic(const struct net *net, 1318 const struct sk_buff *skb, 1319 struct flow_keys_basic *flow, void *data, 1320 __be16 proto, int nhoff, int hlen, 1321 unsigned int flags) 1322 { 1323 memset(flow, 0, sizeof(*flow)); 1324 return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow, 1325 data, proto, nhoff, hlen, flags); 1326 } 1327 1328 void skb_flow_dissect_meta(const struct sk_buff *skb, 1329 struct flow_dissector *flow_dissector, 1330 void *target_container); 1331 1332 /* Gets a skb connection tracking info, ctinfo map should be a 1333 * map of mapsize to translate enum ip_conntrack_info states 1334 * to user states. 1335 */ 1336 void 1337 skb_flow_dissect_ct(const struct sk_buff *skb, 1338 struct flow_dissector *flow_dissector, 1339 void *target_container, 1340 u16 *ctinfo_map, 1341 size_t mapsize); 1342 void 1343 skb_flow_dissect_tunnel_info(const struct sk_buff *skb, 1344 struct flow_dissector *flow_dissector, 1345 void *target_container); 1346 1347 void skb_flow_dissect_hash(const struct sk_buff *skb, 1348 struct flow_dissector *flow_dissector, 1349 void *target_container); 1350 1351 static inline __u32 skb_get_hash(struct sk_buff *skb) 1352 { 1353 if (!skb->l4_hash && !skb->sw_hash) 1354 __skb_get_hash(skb); 1355 1356 return skb->hash; 1357 } 1358 1359 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6) 1360 { 1361 if (!skb->l4_hash && !skb->sw_hash) { 1362 struct flow_keys keys; 1363 __u32 hash = __get_hash_from_flowi6(fl6, &keys); 1364 1365 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys)); 1366 } 1367 1368 return skb->hash; 1369 } 1370 1371 __u32 skb_get_hash_perturb(const struct sk_buff *skb, 1372 const siphash_key_t *perturb); 1373 1374 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb) 1375 { 1376 return skb->hash; 1377 } 1378 1379 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from) 1380 { 1381 to->hash = from->hash; 1382 to->sw_hash = from->sw_hash; 1383 to->l4_hash = from->l4_hash; 1384 }; 1385 1386 static inline void skb_copy_decrypted(struct sk_buff *to, 1387 const struct sk_buff *from) 1388 { 1389 #ifdef CONFIG_TLS_DEVICE 1390 to->decrypted = from->decrypted; 1391 #endif 1392 } 1393 1394 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1395 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1396 { 1397 return skb->head + skb->end; 1398 } 1399 1400 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1401 { 1402 return skb->end; 1403 } 1404 #else 1405 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1406 { 1407 return skb->end; 1408 } 1409 1410 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1411 { 1412 return skb->end - skb->head; 1413 } 1414 #endif 1415 1416 /* Internal */ 1417 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 1418 1419 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 1420 { 1421 return &skb_shinfo(skb)->hwtstamps; 1422 } 1423 1424 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb) 1425 { 1426 bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY; 1427 1428 return is_zcopy ? skb_uarg(skb) : NULL; 1429 } 1430 1431 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg, 1432 bool *have_ref) 1433 { 1434 if (skb && uarg && !skb_zcopy(skb)) { 1435 if (unlikely(have_ref && *have_ref)) 1436 *have_ref = false; 1437 else 1438 sock_zerocopy_get(uarg); 1439 skb_shinfo(skb)->destructor_arg = uarg; 1440 skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG; 1441 } 1442 } 1443 1444 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val) 1445 { 1446 skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL); 1447 skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG; 1448 } 1449 1450 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb) 1451 { 1452 return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL; 1453 } 1454 1455 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb) 1456 { 1457 return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL); 1458 } 1459 1460 /* Release a reference on a zerocopy structure */ 1461 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy) 1462 { 1463 struct ubuf_info *uarg = skb_zcopy(skb); 1464 1465 if (uarg) { 1466 if (skb_zcopy_is_nouarg(skb)) { 1467 /* no notification callback */ 1468 } else if (uarg->callback == sock_zerocopy_callback) { 1469 uarg->zerocopy = uarg->zerocopy && zerocopy; 1470 sock_zerocopy_put(uarg); 1471 } else { 1472 uarg->callback(uarg, zerocopy); 1473 } 1474 1475 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG; 1476 } 1477 } 1478 1479 /* Abort a zerocopy operation and revert zckey on error in send syscall */ 1480 static inline void skb_zcopy_abort(struct sk_buff *skb) 1481 { 1482 struct ubuf_info *uarg = skb_zcopy(skb); 1483 1484 if (uarg) { 1485 sock_zerocopy_put_abort(uarg, false); 1486 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG; 1487 } 1488 } 1489 1490 static inline void skb_mark_not_on_list(struct sk_buff *skb) 1491 { 1492 skb->next = NULL; 1493 } 1494 1495 /* Iterate through singly-linked GSO fragments of an skb. */ 1496 #define skb_list_walk_safe(first, skb, next_skb) \ 1497 for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb); \ 1498 (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL) 1499 1500 static inline void skb_list_del_init(struct sk_buff *skb) 1501 { 1502 __list_del_entry(&skb->list); 1503 skb_mark_not_on_list(skb); 1504 } 1505 1506 /** 1507 * skb_queue_empty - check if a queue is empty 1508 * @list: queue head 1509 * 1510 * Returns true if the queue is empty, false otherwise. 1511 */ 1512 static inline int skb_queue_empty(const struct sk_buff_head *list) 1513 { 1514 return list->next == (const struct sk_buff *) list; 1515 } 1516 1517 /** 1518 * skb_queue_empty_lockless - check if a queue is empty 1519 * @list: queue head 1520 * 1521 * Returns true if the queue is empty, false otherwise. 1522 * This variant can be used in lockless contexts. 1523 */ 1524 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list) 1525 { 1526 return READ_ONCE(list->next) == (const struct sk_buff *) list; 1527 } 1528 1529 1530 /** 1531 * skb_queue_is_last - check if skb is the last entry in the queue 1532 * @list: queue head 1533 * @skb: buffer 1534 * 1535 * Returns true if @skb is the last buffer on the list. 1536 */ 1537 static inline bool skb_queue_is_last(const struct sk_buff_head *list, 1538 const struct sk_buff *skb) 1539 { 1540 return skb->next == (const struct sk_buff *) list; 1541 } 1542 1543 /** 1544 * skb_queue_is_first - check if skb is the first entry in the queue 1545 * @list: queue head 1546 * @skb: buffer 1547 * 1548 * Returns true if @skb is the first buffer on the list. 1549 */ 1550 static inline bool skb_queue_is_first(const struct sk_buff_head *list, 1551 const struct sk_buff *skb) 1552 { 1553 return skb->prev == (const struct sk_buff *) list; 1554 } 1555 1556 /** 1557 * skb_queue_next - return the next packet in the queue 1558 * @list: queue head 1559 * @skb: current buffer 1560 * 1561 * Return the next packet in @list after @skb. It is only valid to 1562 * call this if skb_queue_is_last() evaluates to false. 1563 */ 1564 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 1565 const struct sk_buff *skb) 1566 { 1567 /* This BUG_ON may seem severe, but if we just return then we 1568 * are going to dereference garbage. 1569 */ 1570 BUG_ON(skb_queue_is_last(list, skb)); 1571 return skb->next; 1572 } 1573 1574 /** 1575 * skb_queue_prev - return the prev packet in the queue 1576 * @list: queue head 1577 * @skb: current buffer 1578 * 1579 * Return the prev packet in @list before @skb. It is only valid to 1580 * call this if skb_queue_is_first() evaluates to false. 1581 */ 1582 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 1583 const struct sk_buff *skb) 1584 { 1585 /* This BUG_ON may seem severe, but if we just return then we 1586 * are going to dereference garbage. 1587 */ 1588 BUG_ON(skb_queue_is_first(list, skb)); 1589 return skb->prev; 1590 } 1591 1592 /** 1593 * skb_get - reference buffer 1594 * @skb: buffer to reference 1595 * 1596 * Makes another reference to a socket buffer and returns a pointer 1597 * to the buffer. 1598 */ 1599 static inline struct sk_buff *skb_get(struct sk_buff *skb) 1600 { 1601 refcount_inc(&skb->users); 1602 return skb; 1603 } 1604 1605 /* 1606 * If users == 1, we are the only owner and can avoid redundant atomic changes. 1607 */ 1608 1609 /** 1610 * skb_cloned - is the buffer a clone 1611 * @skb: buffer to check 1612 * 1613 * Returns true if the buffer was generated with skb_clone() and is 1614 * one of multiple shared copies of the buffer. Cloned buffers are 1615 * shared data so must not be written to under normal circumstances. 1616 */ 1617 static inline int skb_cloned(const struct sk_buff *skb) 1618 { 1619 return skb->cloned && 1620 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 1621 } 1622 1623 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) 1624 { 1625 might_sleep_if(gfpflags_allow_blocking(pri)); 1626 1627 if (skb_cloned(skb)) 1628 return pskb_expand_head(skb, 0, 0, pri); 1629 1630 return 0; 1631 } 1632 1633 /** 1634 * skb_header_cloned - is the header a clone 1635 * @skb: buffer to check 1636 * 1637 * Returns true if modifying the header part of the buffer requires 1638 * the data to be copied. 1639 */ 1640 static inline int skb_header_cloned(const struct sk_buff *skb) 1641 { 1642 int dataref; 1643 1644 if (!skb->cloned) 1645 return 0; 1646 1647 dataref = atomic_read(&skb_shinfo(skb)->dataref); 1648 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 1649 return dataref != 1; 1650 } 1651 1652 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri) 1653 { 1654 might_sleep_if(gfpflags_allow_blocking(pri)); 1655 1656 if (skb_header_cloned(skb)) 1657 return pskb_expand_head(skb, 0, 0, pri); 1658 1659 return 0; 1660 } 1661 1662 /** 1663 * __skb_header_release - release reference to header 1664 * @skb: buffer to operate on 1665 */ 1666 static inline void __skb_header_release(struct sk_buff *skb) 1667 { 1668 skb->nohdr = 1; 1669 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT)); 1670 } 1671 1672 1673 /** 1674 * skb_shared - is the buffer shared 1675 * @skb: buffer to check 1676 * 1677 * Returns true if more than one person has a reference to this 1678 * buffer. 1679 */ 1680 static inline int skb_shared(const struct sk_buff *skb) 1681 { 1682 return refcount_read(&skb->users) != 1; 1683 } 1684 1685 /** 1686 * skb_share_check - check if buffer is shared and if so clone it 1687 * @skb: buffer to check 1688 * @pri: priority for memory allocation 1689 * 1690 * If the buffer is shared the buffer is cloned and the old copy 1691 * drops a reference. A new clone with a single reference is returned. 1692 * If the buffer is not shared the original buffer is returned. When 1693 * being called from interrupt status or with spinlocks held pri must 1694 * be GFP_ATOMIC. 1695 * 1696 * NULL is returned on a memory allocation failure. 1697 */ 1698 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) 1699 { 1700 might_sleep_if(gfpflags_allow_blocking(pri)); 1701 if (skb_shared(skb)) { 1702 struct sk_buff *nskb = skb_clone(skb, pri); 1703 1704 if (likely(nskb)) 1705 consume_skb(skb); 1706 else 1707 kfree_skb(skb); 1708 skb = nskb; 1709 } 1710 return skb; 1711 } 1712 1713 /* 1714 * Copy shared buffers into a new sk_buff. We effectively do COW on 1715 * packets to handle cases where we have a local reader and forward 1716 * and a couple of other messy ones. The normal one is tcpdumping 1717 * a packet thats being forwarded. 1718 */ 1719 1720 /** 1721 * skb_unshare - make a copy of a shared buffer 1722 * @skb: buffer to check 1723 * @pri: priority for memory allocation 1724 * 1725 * If the socket buffer is a clone then this function creates a new 1726 * copy of the data, drops a reference count on the old copy and returns 1727 * the new copy with the reference count at 1. If the buffer is not a clone 1728 * the original buffer is returned. When called with a spinlock held or 1729 * from interrupt state @pri must be %GFP_ATOMIC 1730 * 1731 * %NULL is returned on a memory allocation failure. 1732 */ 1733 static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 1734 gfp_t pri) 1735 { 1736 might_sleep_if(gfpflags_allow_blocking(pri)); 1737 if (skb_cloned(skb)) { 1738 struct sk_buff *nskb = skb_copy(skb, pri); 1739 1740 /* Free our shared copy */ 1741 if (likely(nskb)) 1742 consume_skb(skb); 1743 else 1744 kfree_skb(skb); 1745 skb = nskb; 1746 } 1747 return skb; 1748 } 1749 1750 /** 1751 * skb_peek - peek at the head of an &sk_buff_head 1752 * @list_: list to peek at 1753 * 1754 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1755 * be careful with this one. A peek leaves the buffer on the 1756 * list and someone else may run off with it. You must hold 1757 * the appropriate locks or have a private queue to do this. 1758 * 1759 * Returns %NULL for an empty list or a pointer to the head element. 1760 * The reference count is not incremented and the reference is therefore 1761 * volatile. Use with caution. 1762 */ 1763 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) 1764 { 1765 struct sk_buff *skb = list_->next; 1766 1767 if (skb == (struct sk_buff *)list_) 1768 skb = NULL; 1769 return skb; 1770 } 1771 1772 /** 1773 * __skb_peek - peek at the head of a non-empty &sk_buff_head 1774 * @list_: list to peek at 1775 * 1776 * Like skb_peek(), but the caller knows that the list is not empty. 1777 */ 1778 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_) 1779 { 1780 return list_->next; 1781 } 1782 1783 /** 1784 * skb_peek_next - peek skb following the given one from a queue 1785 * @skb: skb to start from 1786 * @list_: list to peek at 1787 * 1788 * Returns %NULL when the end of the list is met or a pointer to the 1789 * next element. The reference count is not incremented and the 1790 * reference is therefore volatile. Use with caution. 1791 */ 1792 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, 1793 const struct sk_buff_head *list_) 1794 { 1795 struct sk_buff *next = skb->next; 1796 1797 if (next == (struct sk_buff *)list_) 1798 next = NULL; 1799 return next; 1800 } 1801 1802 /** 1803 * skb_peek_tail - peek at the tail of an &sk_buff_head 1804 * @list_: list to peek at 1805 * 1806 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1807 * be careful with this one. A peek leaves the buffer on the 1808 * list and someone else may run off with it. You must hold 1809 * the appropriate locks or have a private queue to do this. 1810 * 1811 * Returns %NULL for an empty list or a pointer to the tail element. 1812 * The reference count is not incremented and the reference is therefore 1813 * volatile. Use with caution. 1814 */ 1815 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) 1816 { 1817 struct sk_buff *skb = READ_ONCE(list_->prev); 1818 1819 if (skb == (struct sk_buff *)list_) 1820 skb = NULL; 1821 return skb; 1822 1823 } 1824 1825 /** 1826 * skb_queue_len - get queue length 1827 * @list_: list to measure 1828 * 1829 * Return the length of an &sk_buff queue. 1830 */ 1831 static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 1832 { 1833 return list_->qlen; 1834 } 1835 1836 /** 1837 * skb_queue_len_lockless - get queue length 1838 * @list_: list to measure 1839 * 1840 * Return the length of an &sk_buff queue. 1841 * This variant can be used in lockless contexts. 1842 */ 1843 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_) 1844 { 1845 return READ_ONCE(list_->qlen); 1846 } 1847 1848 /** 1849 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 1850 * @list: queue to initialize 1851 * 1852 * This initializes only the list and queue length aspects of 1853 * an sk_buff_head object. This allows to initialize the list 1854 * aspects of an sk_buff_head without reinitializing things like 1855 * the spinlock. It can also be used for on-stack sk_buff_head 1856 * objects where the spinlock is known to not be used. 1857 */ 1858 static inline void __skb_queue_head_init(struct sk_buff_head *list) 1859 { 1860 list->prev = list->next = (struct sk_buff *)list; 1861 list->qlen = 0; 1862 } 1863 1864 /* 1865 * This function creates a split out lock class for each invocation; 1866 * this is needed for now since a whole lot of users of the skb-queue 1867 * infrastructure in drivers have different locking usage (in hardirq) 1868 * than the networking core (in softirq only). In the long run either the 1869 * network layer or drivers should need annotation to consolidate the 1870 * main types of usage into 3 classes. 1871 */ 1872 static inline void skb_queue_head_init(struct sk_buff_head *list) 1873 { 1874 spin_lock_init(&list->lock); 1875 __skb_queue_head_init(list); 1876 } 1877 1878 static inline void skb_queue_head_init_class(struct sk_buff_head *list, 1879 struct lock_class_key *class) 1880 { 1881 skb_queue_head_init(list); 1882 lockdep_set_class(&list->lock, class); 1883 } 1884 1885 /* 1886 * Insert an sk_buff on a list. 1887 * 1888 * The "__skb_xxxx()" functions are the non-atomic ones that 1889 * can only be called with interrupts disabled. 1890 */ 1891 static inline void __skb_insert(struct sk_buff *newsk, 1892 struct sk_buff *prev, struct sk_buff *next, 1893 struct sk_buff_head *list) 1894 { 1895 /* See skb_queue_empty_lockless() and skb_peek_tail() 1896 * for the opposite READ_ONCE() 1897 */ 1898 WRITE_ONCE(newsk->next, next); 1899 WRITE_ONCE(newsk->prev, prev); 1900 WRITE_ONCE(next->prev, newsk); 1901 WRITE_ONCE(prev->next, newsk); 1902 list->qlen++; 1903 } 1904 1905 static inline void __skb_queue_splice(const struct sk_buff_head *list, 1906 struct sk_buff *prev, 1907 struct sk_buff *next) 1908 { 1909 struct sk_buff *first = list->next; 1910 struct sk_buff *last = list->prev; 1911 1912 WRITE_ONCE(first->prev, prev); 1913 WRITE_ONCE(prev->next, first); 1914 1915 WRITE_ONCE(last->next, next); 1916 WRITE_ONCE(next->prev, last); 1917 } 1918 1919 /** 1920 * skb_queue_splice - join two skb lists, this is designed for stacks 1921 * @list: the new list to add 1922 * @head: the place to add it in the first list 1923 */ 1924 static inline void skb_queue_splice(const struct sk_buff_head *list, 1925 struct sk_buff_head *head) 1926 { 1927 if (!skb_queue_empty(list)) { 1928 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1929 head->qlen += list->qlen; 1930 } 1931 } 1932 1933 /** 1934 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list 1935 * @list: the new list to add 1936 * @head: the place to add it in the first list 1937 * 1938 * The list at @list is reinitialised 1939 */ 1940 static inline void skb_queue_splice_init(struct sk_buff_head *list, 1941 struct sk_buff_head *head) 1942 { 1943 if (!skb_queue_empty(list)) { 1944 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1945 head->qlen += list->qlen; 1946 __skb_queue_head_init(list); 1947 } 1948 } 1949 1950 /** 1951 * skb_queue_splice_tail - join two skb lists, each list being a queue 1952 * @list: the new list to add 1953 * @head: the place to add it in the first list 1954 */ 1955 static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 1956 struct sk_buff_head *head) 1957 { 1958 if (!skb_queue_empty(list)) { 1959 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1960 head->qlen += list->qlen; 1961 } 1962 } 1963 1964 /** 1965 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list 1966 * @list: the new list to add 1967 * @head: the place to add it in the first list 1968 * 1969 * Each of the lists is a queue. 1970 * The list at @list is reinitialised 1971 */ 1972 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 1973 struct sk_buff_head *head) 1974 { 1975 if (!skb_queue_empty(list)) { 1976 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1977 head->qlen += list->qlen; 1978 __skb_queue_head_init(list); 1979 } 1980 } 1981 1982 /** 1983 * __skb_queue_after - queue a buffer at the list head 1984 * @list: list to use 1985 * @prev: place after this buffer 1986 * @newsk: buffer to queue 1987 * 1988 * Queue a buffer int the middle of a list. This function takes no locks 1989 * and you must therefore hold required locks before calling it. 1990 * 1991 * A buffer cannot be placed on two lists at the same time. 1992 */ 1993 static inline void __skb_queue_after(struct sk_buff_head *list, 1994 struct sk_buff *prev, 1995 struct sk_buff *newsk) 1996 { 1997 __skb_insert(newsk, prev, prev->next, list); 1998 } 1999 2000 void skb_append(struct sk_buff *old, struct sk_buff *newsk, 2001 struct sk_buff_head *list); 2002 2003 static inline void __skb_queue_before(struct sk_buff_head *list, 2004 struct sk_buff *next, 2005 struct sk_buff *newsk) 2006 { 2007 __skb_insert(newsk, next->prev, next, list); 2008 } 2009 2010 /** 2011 * __skb_queue_head - queue a buffer at the list head 2012 * @list: list to use 2013 * @newsk: buffer to queue 2014 * 2015 * Queue a buffer at the start of a list. This function takes no locks 2016 * and you must therefore hold required locks before calling it. 2017 * 2018 * A buffer cannot be placed on two lists at the same time. 2019 */ 2020 static inline void __skb_queue_head(struct sk_buff_head *list, 2021 struct sk_buff *newsk) 2022 { 2023 __skb_queue_after(list, (struct sk_buff *)list, newsk); 2024 } 2025 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 2026 2027 /** 2028 * __skb_queue_tail - queue a buffer at the list tail 2029 * @list: list to use 2030 * @newsk: buffer to queue 2031 * 2032 * Queue a buffer at the end of a list. This function takes no locks 2033 * and you must therefore hold required locks before calling it. 2034 * 2035 * A buffer cannot be placed on two lists at the same time. 2036 */ 2037 static inline void __skb_queue_tail(struct sk_buff_head *list, 2038 struct sk_buff *newsk) 2039 { 2040 __skb_queue_before(list, (struct sk_buff *)list, newsk); 2041 } 2042 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 2043 2044 /* 2045 * remove sk_buff from list. _Must_ be called atomically, and with 2046 * the list known.. 2047 */ 2048 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 2049 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 2050 { 2051 struct sk_buff *next, *prev; 2052 2053 WRITE_ONCE(list->qlen, list->qlen - 1); 2054 next = skb->next; 2055 prev = skb->prev; 2056 skb->next = skb->prev = NULL; 2057 WRITE_ONCE(next->prev, prev); 2058 WRITE_ONCE(prev->next, next); 2059 } 2060 2061 /** 2062 * __skb_dequeue - remove from the head of the queue 2063 * @list: list to dequeue from 2064 * 2065 * Remove the head of the list. This function does not take any locks 2066 * so must be used with appropriate locks held only. The head item is 2067 * returned or %NULL if the list is empty. 2068 */ 2069 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 2070 { 2071 struct sk_buff *skb = skb_peek(list); 2072 if (skb) 2073 __skb_unlink(skb, list); 2074 return skb; 2075 } 2076 struct sk_buff *skb_dequeue(struct sk_buff_head *list); 2077 2078 /** 2079 * __skb_dequeue_tail - remove from the tail of the queue 2080 * @list: list to dequeue from 2081 * 2082 * Remove the tail of the list. This function does not take any locks 2083 * so must be used with appropriate locks held only. The tail item is 2084 * returned or %NULL if the list is empty. 2085 */ 2086 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 2087 { 2088 struct sk_buff *skb = skb_peek_tail(list); 2089 if (skb) 2090 __skb_unlink(skb, list); 2091 return skb; 2092 } 2093 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 2094 2095 2096 static inline bool skb_is_nonlinear(const struct sk_buff *skb) 2097 { 2098 return skb->data_len; 2099 } 2100 2101 static inline unsigned int skb_headlen(const struct sk_buff *skb) 2102 { 2103 return skb->len - skb->data_len; 2104 } 2105 2106 static inline unsigned int __skb_pagelen(const struct sk_buff *skb) 2107 { 2108 unsigned int i, len = 0; 2109 2110 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--) 2111 len += skb_frag_size(&skb_shinfo(skb)->frags[i]); 2112 return len; 2113 } 2114 2115 static inline unsigned int skb_pagelen(const struct sk_buff *skb) 2116 { 2117 return skb_headlen(skb) + __skb_pagelen(skb); 2118 } 2119 2120 /** 2121 * __skb_fill_page_desc - initialise a paged fragment in an skb 2122 * @skb: buffer containing fragment to be initialised 2123 * @i: paged fragment index to initialise 2124 * @page: the page to use for this fragment 2125 * @off: the offset to the data with @page 2126 * @size: the length of the data 2127 * 2128 * Initialises the @i'th fragment of @skb to point to &size bytes at 2129 * offset @off within @page. 2130 * 2131 * Does not take any additional reference on the fragment. 2132 */ 2133 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, 2134 struct page *page, int off, int size) 2135 { 2136 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2137 2138 /* 2139 * Propagate page pfmemalloc to the skb if we can. The problem is 2140 * that not all callers have unique ownership of the page but rely 2141 * on page_is_pfmemalloc doing the right thing(tm). 2142 */ 2143 frag->bv_page = page; 2144 frag->bv_offset = off; 2145 skb_frag_size_set(frag, size); 2146 2147 page = compound_head(page); 2148 if (page_is_pfmemalloc(page)) 2149 skb->pfmemalloc = true; 2150 } 2151 2152 /** 2153 * skb_fill_page_desc - initialise a paged fragment in an skb 2154 * @skb: buffer containing fragment to be initialised 2155 * @i: paged fragment index to initialise 2156 * @page: the page to use for this fragment 2157 * @off: the offset to the data with @page 2158 * @size: the length of the data 2159 * 2160 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of 2161 * @skb to point to @size bytes at offset @off within @page. In 2162 * addition updates @skb such that @i is the last fragment. 2163 * 2164 * Does not take any additional reference on the fragment. 2165 */ 2166 static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 2167 struct page *page, int off, int size) 2168 { 2169 __skb_fill_page_desc(skb, i, page, off, size); 2170 skb_shinfo(skb)->nr_frags = i + 1; 2171 } 2172 2173 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 2174 int size, unsigned int truesize); 2175 2176 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 2177 unsigned int truesize); 2178 2179 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 2180 2181 #ifdef NET_SKBUFF_DATA_USES_OFFSET 2182 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 2183 { 2184 return skb->head + skb->tail; 2185 } 2186 2187 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2188 { 2189 skb->tail = skb->data - skb->head; 2190 } 2191 2192 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2193 { 2194 skb_reset_tail_pointer(skb); 2195 skb->tail += offset; 2196 } 2197 2198 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 2199 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 2200 { 2201 return skb->tail; 2202 } 2203 2204 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2205 { 2206 skb->tail = skb->data; 2207 } 2208 2209 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2210 { 2211 skb->tail = skb->data + offset; 2212 } 2213 2214 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 2215 2216 /* 2217 * Add data to an sk_buff 2218 */ 2219 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len); 2220 void *skb_put(struct sk_buff *skb, unsigned int len); 2221 static inline void *__skb_put(struct sk_buff *skb, unsigned int len) 2222 { 2223 void *tmp = skb_tail_pointer(skb); 2224 SKB_LINEAR_ASSERT(skb); 2225 skb->tail += len; 2226 skb->len += len; 2227 return tmp; 2228 } 2229 2230 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len) 2231 { 2232 void *tmp = __skb_put(skb, len); 2233 2234 memset(tmp, 0, len); 2235 return tmp; 2236 } 2237 2238 static inline void *__skb_put_data(struct sk_buff *skb, const void *data, 2239 unsigned int len) 2240 { 2241 void *tmp = __skb_put(skb, len); 2242 2243 memcpy(tmp, data, len); 2244 return tmp; 2245 } 2246 2247 static inline void __skb_put_u8(struct sk_buff *skb, u8 val) 2248 { 2249 *(u8 *)__skb_put(skb, 1) = val; 2250 } 2251 2252 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len) 2253 { 2254 void *tmp = skb_put(skb, len); 2255 2256 memset(tmp, 0, len); 2257 2258 return tmp; 2259 } 2260 2261 static inline void *skb_put_data(struct sk_buff *skb, const void *data, 2262 unsigned int len) 2263 { 2264 void *tmp = skb_put(skb, len); 2265 2266 memcpy(tmp, data, len); 2267 2268 return tmp; 2269 } 2270 2271 static inline void skb_put_u8(struct sk_buff *skb, u8 val) 2272 { 2273 *(u8 *)skb_put(skb, 1) = val; 2274 } 2275 2276 void *skb_push(struct sk_buff *skb, unsigned int len); 2277 static inline void *__skb_push(struct sk_buff *skb, unsigned int len) 2278 { 2279 skb->data -= len; 2280 skb->len += len; 2281 return skb->data; 2282 } 2283 2284 void *skb_pull(struct sk_buff *skb, unsigned int len); 2285 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len) 2286 { 2287 skb->len -= len; 2288 BUG_ON(skb->len < skb->data_len); 2289 return skb->data += len; 2290 } 2291 2292 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len) 2293 { 2294 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 2295 } 2296 2297 void *__pskb_pull_tail(struct sk_buff *skb, int delta); 2298 2299 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len) 2300 { 2301 if (len > skb_headlen(skb) && 2302 !__pskb_pull_tail(skb, len - skb_headlen(skb))) 2303 return NULL; 2304 skb->len -= len; 2305 return skb->data += len; 2306 } 2307 2308 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len) 2309 { 2310 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 2311 } 2312 2313 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len) 2314 { 2315 if (likely(len <= skb_headlen(skb))) 2316 return true; 2317 if (unlikely(len > skb->len)) 2318 return false; 2319 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; 2320 } 2321 2322 void skb_condense(struct sk_buff *skb); 2323 2324 /** 2325 * skb_headroom - bytes at buffer head 2326 * @skb: buffer to check 2327 * 2328 * Return the number of bytes of free space at the head of an &sk_buff. 2329 */ 2330 static inline unsigned int skb_headroom(const struct sk_buff *skb) 2331 { 2332 return skb->data - skb->head; 2333 } 2334 2335 /** 2336 * skb_tailroom - bytes at buffer end 2337 * @skb: buffer to check 2338 * 2339 * Return the number of bytes of free space at the tail of an sk_buff 2340 */ 2341 static inline int skb_tailroom(const struct sk_buff *skb) 2342 { 2343 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 2344 } 2345 2346 /** 2347 * skb_availroom - bytes at buffer end 2348 * @skb: buffer to check 2349 * 2350 * Return the number of bytes of free space at the tail of an sk_buff 2351 * allocated by sk_stream_alloc() 2352 */ 2353 static inline int skb_availroom(const struct sk_buff *skb) 2354 { 2355 if (skb_is_nonlinear(skb)) 2356 return 0; 2357 2358 return skb->end - skb->tail - skb->reserved_tailroom; 2359 } 2360 2361 /** 2362 * skb_reserve - adjust headroom 2363 * @skb: buffer to alter 2364 * @len: bytes to move 2365 * 2366 * Increase the headroom of an empty &sk_buff by reducing the tail 2367 * room. This is only allowed for an empty buffer. 2368 */ 2369 static inline void skb_reserve(struct sk_buff *skb, int len) 2370 { 2371 skb->data += len; 2372 skb->tail += len; 2373 } 2374 2375 /** 2376 * skb_tailroom_reserve - adjust reserved_tailroom 2377 * @skb: buffer to alter 2378 * @mtu: maximum amount of headlen permitted 2379 * @needed_tailroom: minimum amount of reserved_tailroom 2380 * 2381 * Set reserved_tailroom so that headlen can be as large as possible but 2382 * not larger than mtu and tailroom cannot be smaller than 2383 * needed_tailroom. 2384 * The required headroom should already have been reserved before using 2385 * this function. 2386 */ 2387 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu, 2388 unsigned int needed_tailroom) 2389 { 2390 SKB_LINEAR_ASSERT(skb); 2391 if (mtu < skb_tailroom(skb) - needed_tailroom) 2392 /* use at most mtu */ 2393 skb->reserved_tailroom = skb_tailroom(skb) - mtu; 2394 else 2395 /* use up to all available space */ 2396 skb->reserved_tailroom = needed_tailroom; 2397 } 2398 2399 #define ENCAP_TYPE_ETHER 0 2400 #define ENCAP_TYPE_IPPROTO 1 2401 2402 static inline void skb_set_inner_protocol(struct sk_buff *skb, 2403 __be16 protocol) 2404 { 2405 skb->inner_protocol = protocol; 2406 skb->inner_protocol_type = ENCAP_TYPE_ETHER; 2407 } 2408 2409 static inline void skb_set_inner_ipproto(struct sk_buff *skb, 2410 __u8 ipproto) 2411 { 2412 skb->inner_ipproto = ipproto; 2413 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO; 2414 } 2415 2416 static inline void skb_reset_inner_headers(struct sk_buff *skb) 2417 { 2418 skb->inner_mac_header = skb->mac_header; 2419 skb->inner_network_header = skb->network_header; 2420 skb->inner_transport_header = skb->transport_header; 2421 } 2422 2423 static inline void skb_reset_mac_len(struct sk_buff *skb) 2424 { 2425 skb->mac_len = skb->network_header - skb->mac_header; 2426 } 2427 2428 static inline unsigned char *skb_inner_transport_header(const struct sk_buff 2429 *skb) 2430 { 2431 return skb->head + skb->inner_transport_header; 2432 } 2433 2434 static inline int skb_inner_transport_offset(const struct sk_buff *skb) 2435 { 2436 return skb_inner_transport_header(skb) - skb->data; 2437 } 2438 2439 static inline void skb_reset_inner_transport_header(struct sk_buff *skb) 2440 { 2441 skb->inner_transport_header = skb->data - skb->head; 2442 } 2443 2444 static inline void skb_set_inner_transport_header(struct sk_buff *skb, 2445 const int offset) 2446 { 2447 skb_reset_inner_transport_header(skb); 2448 skb->inner_transport_header += offset; 2449 } 2450 2451 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) 2452 { 2453 return skb->head + skb->inner_network_header; 2454 } 2455 2456 static inline void skb_reset_inner_network_header(struct sk_buff *skb) 2457 { 2458 skb->inner_network_header = skb->data - skb->head; 2459 } 2460 2461 static inline void skb_set_inner_network_header(struct sk_buff *skb, 2462 const int offset) 2463 { 2464 skb_reset_inner_network_header(skb); 2465 skb->inner_network_header += offset; 2466 } 2467 2468 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) 2469 { 2470 return skb->head + skb->inner_mac_header; 2471 } 2472 2473 static inline void skb_reset_inner_mac_header(struct sk_buff *skb) 2474 { 2475 skb->inner_mac_header = skb->data - skb->head; 2476 } 2477 2478 static inline void skb_set_inner_mac_header(struct sk_buff *skb, 2479 const int offset) 2480 { 2481 skb_reset_inner_mac_header(skb); 2482 skb->inner_mac_header += offset; 2483 } 2484 static inline bool skb_transport_header_was_set(const struct sk_buff *skb) 2485 { 2486 return skb->transport_header != (typeof(skb->transport_header))~0U; 2487 } 2488 2489 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 2490 { 2491 return skb->head + skb->transport_header; 2492 } 2493 2494 static inline void skb_reset_transport_header(struct sk_buff *skb) 2495 { 2496 skb->transport_header = skb->data - skb->head; 2497 } 2498 2499 static inline void skb_set_transport_header(struct sk_buff *skb, 2500 const int offset) 2501 { 2502 skb_reset_transport_header(skb); 2503 skb->transport_header += offset; 2504 } 2505 2506 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 2507 { 2508 return skb->head + skb->network_header; 2509 } 2510 2511 static inline void skb_reset_network_header(struct sk_buff *skb) 2512 { 2513 skb->network_header = skb->data - skb->head; 2514 } 2515 2516 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 2517 { 2518 skb_reset_network_header(skb); 2519 skb->network_header += offset; 2520 } 2521 2522 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 2523 { 2524 return skb->head + skb->mac_header; 2525 } 2526 2527 static inline int skb_mac_offset(const struct sk_buff *skb) 2528 { 2529 return skb_mac_header(skb) - skb->data; 2530 } 2531 2532 static inline u32 skb_mac_header_len(const struct sk_buff *skb) 2533 { 2534 return skb->network_header - skb->mac_header; 2535 } 2536 2537 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 2538 { 2539 return skb->mac_header != (typeof(skb->mac_header))~0U; 2540 } 2541 2542 static inline void skb_reset_mac_header(struct sk_buff *skb) 2543 { 2544 skb->mac_header = skb->data - skb->head; 2545 } 2546 2547 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 2548 { 2549 skb_reset_mac_header(skb); 2550 skb->mac_header += offset; 2551 } 2552 2553 static inline void skb_pop_mac_header(struct sk_buff *skb) 2554 { 2555 skb->mac_header = skb->network_header; 2556 } 2557 2558 static inline void skb_probe_transport_header(struct sk_buff *skb) 2559 { 2560 struct flow_keys_basic keys; 2561 2562 if (skb_transport_header_was_set(skb)) 2563 return; 2564 2565 if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys, 2566 NULL, 0, 0, 0, 0)) 2567 skb_set_transport_header(skb, keys.control.thoff); 2568 } 2569 2570 static inline void skb_mac_header_rebuild(struct sk_buff *skb) 2571 { 2572 if (skb_mac_header_was_set(skb)) { 2573 const unsigned char *old_mac = skb_mac_header(skb); 2574 2575 skb_set_mac_header(skb, -skb->mac_len); 2576 memmove(skb_mac_header(skb), old_mac, skb->mac_len); 2577 } 2578 } 2579 2580 static inline int skb_checksum_start_offset(const struct sk_buff *skb) 2581 { 2582 return skb->csum_start - skb_headroom(skb); 2583 } 2584 2585 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb) 2586 { 2587 return skb->head + skb->csum_start; 2588 } 2589 2590 static inline int skb_transport_offset(const struct sk_buff *skb) 2591 { 2592 return skb_transport_header(skb) - skb->data; 2593 } 2594 2595 static inline u32 skb_network_header_len(const struct sk_buff *skb) 2596 { 2597 return skb->transport_header - skb->network_header; 2598 } 2599 2600 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) 2601 { 2602 return skb->inner_transport_header - skb->inner_network_header; 2603 } 2604 2605 static inline int skb_network_offset(const struct sk_buff *skb) 2606 { 2607 return skb_network_header(skb) - skb->data; 2608 } 2609 2610 static inline int skb_inner_network_offset(const struct sk_buff *skb) 2611 { 2612 return skb_inner_network_header(skb) - skb->data; 2613 } 2614 2615 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 2616 { 2617 return pskb_may_pull(skb, skb_network_offset(skb) + len); 2618 } 2619 2620 /* 2621 * CPUs often take a performance hit when accessing unaligned memory 2622 * locations. The actual performance hit varies, it can be small if the 2623 * hardware handles it or large if we have to take an exception and fix it 2624 * in software. 2625 * 2626 * Since an ethernet header is 14 bytes network drivers often end up with 2627 * the IP header at an unaligned offset. The IP header can be aligned by 2628 * shifting the start of the packet by 2 bytes. Drivers should do this 2629 * with: 2630 * 2631 * skb_reserve(skb, NET_IP_ALIGN); 2632 * 2633 * The downside to this alignment of the IP header is that the DMA is now 2634 * unaligned. On some architectures the cost of an unaligned DMA is high 2635 * and this cost outweighs the gains made by aligning the IP header. 2636 * 2637 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 2638 * to be overridden. 2639 */ 2640 #ifndef NET_IP_ALIGN 2641 #define NET_IP_ALIGN 2 2642 #endif 2643 2644 /* 2645 * The networking layer reserves some headroom in skb data (via 2646 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 2647 * the header has to grow. In the default case, if the header has to grow 2648 * 32 bytes or less we avoid the reallocation. 2649 * 2650 * Unfortunately this headroom changes the DMA alignment of the resulting 2651 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 2652 * on some architectures. An architecture can override this value, 2653 * perhaps setting it to a cacheline in size (since that will maintain 2654 * cacheline alignment of the DMA). It must be a power of 2. 2655 * 2656 * Various parts of the networking layer expect at least 32 bytes of 2657 * headroom, you should not reduce this. 2658 * 2659 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 2660 * to reduce average number of cache lines per packet. 2661 * get_rps_cpus() for example only access one 64 bytes aligned block : 2662 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 2663 */ 2664 #ifndef NET_SKB_PAD 2665 #define NET_SKB_PAD max(32, L1_CACHE_BYTES) 2666 #endif 2667 2668 int ___pskb_trim(struct sk_buff *skb, unsigned int len); 2669 2670 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len) 2671 { 2672 if (WARN_ON(skb_is_nonlinear(skb))) 2673 return; 2674 skb->len = len; 2675 skb_set_tail_pointer(skb, len); 2676 } 2677 2678 static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 2679 { 2680 __skb_set_length(skb, len); 2681 } 2682 2683 void skb_trim(struct sk_buff *skb, unsigned int len); 2684 2685 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 2686 { 2687 if (skb->data_len) 2688 return ___pskb_trim(skb, len); 2689 __skb_trim(skb, len); 2690 return 0; 2691 } 2692 2693 static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 2694 { 2695 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 2696 } 2697 2698 /** 2699 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 2700 * @skb: buffer to alter 2701 * @len: new length 2702 * 2703 * This is identical to pskb_trim except that the caller knows that 2704 * the skb is not cloned so we should never get an error due to out- 2705 * of-memory. 2706 */ 2707 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 2708 { 2709 int err = pskb_trim(skb, len); 2710 BUG_ON(err); 2711 } 2712 2713 static inline int __skb_grow(struct sk_buff *skb, unsigned int len) 2714 { 2715 unsigned int diff = len - skb->len; 2716 2717 if (skb_tailroom(skb) < diff) { 2718 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb), 2719 GFP_ATOMIC); 2720 if (ret) 2721 return ret; 2722 } 2723 __skb_set_length(skb, len); 2724 return 0; 2725 } 2726 2727 /** 2728 * skb_orphan - orphan a buffer 2729 * @skb: buffer to orphan 2730 * 2731 * If a buffer currently has an owner then we call the owner's 2732 * destructor function and make the @skb unowned. The buffer continues 2733 * to exist but is no longer charged to its former owner. 2734 */ 2735 static inline void skb_orphan(struct sk_buff *skb) 2736 { 2737 if (skb->destructor) { 2738 skb->destructor(skb); 2739 skb->destructor = NULL; 2740 skb->sk = NULL; 2741 } else { 2742 BUG_ON(skb->sk); 2743 } 2744 } 2745 2746 /** 2747 * skb_orphan_frags - orphan the frags contained in a buffer 2748 * @skb: buffer to orphan frags from 2749 * @gfp_mask: allocation mask for replacement pages 2750 * 2751 * For each frag in the SKB which needs a destructor (i.e. has an 2752 * owner) create a copy of that frag and release the original 2753 * page by calling the destructor. 2754 */ 2755 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) 2756 { 2757 if (likely(!skb_zcopy(skb))) 2758 return 0; 2759 if (!skb_zcopy_is_nouarg(skb) && 2760 skb_uarg(skb)->callback == sock_zerocopy_callback) 2761 return 0; 2762 return skb_copy_ubufs(skb, gfp_mask); 2763 } 2764 2765 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */ 2766 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask) 2767 { 2768 if (likely(!skb_zcopy(skb))) 2769 return 0; 2770 return skb_copy_ubufs(skb, gfp_mask); 2771 } 2772 2773 /** 2774 * __skb_queue_purge - empty a list 2775 * @list: list to empty 2776 * 2777 * Delete all buffers on an &sk_buff list. Each buffer is removed from 2778 * the list and one reference dropped. This function does not take the 2779 * list lock and the caller must hold the relevant locks to use it. 2780 */ 2781 static inline void __skb_queue_purge(struct sk_buff_head *list) 2782 { 2783 struct sk_buff *skb; 2784 while ((skb = __skb_dequeue(list)) != NULL) 2785 kfree_skb(skb); 2786 } 2787 void skb_queue_purge(struct sk_buff_head *list); 2788 2789 unsigned int skb_rbtree_purge(struct rb_root *root); 2790 2791 void *netdev_alloc_frag(unsigned int fragsz); 2792 2793 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length, 2794 gfp_t gfp_mask); 2795 2796 /** 2797 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 2798 * @dev: network device to receive on 2799 * @length: length to allocate 2800 * 2801 * Allocate a new &sk_buff and assign it a usage count of one. The 2802 * buffer has unspecified headroom built in. Users should allocate 2803 * the headroom they think they need without accounting for the 2804 * built in space. The built in space is used for optimisations. 2805 * 2806 * %NULL is returned if there is no free memory. Although this function 2807 * allocates memory it can be called from an interrupt. 2808 */ 2809 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 2810 unsigned int length) 2811 { 2812 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 2813 } 2814 2815 /* legacy helper around __netdev_alloc_skb() */ 2816 static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 2817 gfp_t gfp_mask) 2818 { 2819 return __netdev_alloc_skb(NULL, length, gfp_mask); 2820 } 2821 2822 /* legacy helper around netdev_alloc_skb() */ 2823 static inline struct sk_buff *dev_alloc_skb(unsigned int length) 2824 { 2825 return netdev_alloc_skb(NULL, length); 2826 } 2827 2828 2829 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, 2830 unsigned int length, gfp_t gfp) 2831 { 2832 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); 2833 2834 if (NET_IP_ALIGN && skb) 2835 skb_reserve(skb, NET_IP_ALIGN); 2836 return skb; 2837 } 2838 2839 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 2840 unsigned int length) 2841 { 2842 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); 2843 } 2844 2845 static inline void skb_free_frag(void *addr) 2846 { 2847 page_frag_free(addr); 2848 } 2849 2850 void *napi_alloc_frag(unsigned int fragsz); 2851 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, 2852 unsigned int length, gfp_t gfp_mask); 2853 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi, 2854 unsigned int length) 2855 { 2856 return __napi_alloc_skb(napi, length, GFP_ATOMIC); 2857 } 2858 void napi_consume_skb(struct sk_buff *skb, int budget); 2859 2860 void __kfree_skb_flush(void); 2861 void __kfree_skb_defer(struct sk_buff *skb); 2862 2863 /** 2864 * __dev_alloc_pages - allocate page for network Rx 2865 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 2866 * @order: size of the allocation 2867 * 2868 * Allocate a new page. 2869 * 2870 * %NULL is returned if there is no free memory. 2871 */ 2872 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask, 2873 unsigned int order) 2874 { 2875 /* This piece of code contains several assumptions. 2876 * 1. This is for device Rx, therefor a cold page is preferred. 2877 * 2. The expectation is the user wants a compound page. 2878 * 3. If requesting a order 0 page it will not be compound 2879 * due to the check to see if order has a value in prep_new_page 2880 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to 2881 * code in gfp_to_alloc_flags that should be enforcing this. 2882 */ 2883 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC; 2884 2885 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order); 2886 } 2887 2888 static inline struct page *dev_alloc_pages(unsigned int order) 2889 { 2890 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order); 2891 } 2892 2893 /** 2894 * __dev_alloc_page - allocate a page for network Rx 2895 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 2896 * 2897 * Allocate a new page. 2898 * 2899 * %NULL is returned if there is no free memory. 2900 */ 2901 static inline struct page *__dev_alloc_page(gfp_t gfp_mask) 2902 { 2903 return __dev_alloc_pages(gfp_mask, 0); 2904 } 2905 2906 static inline struct page *dev_alloc_page(void) 2907 { 2908 return dev_alloc_pages(0); 2909 } 2910 2911 /** 2912 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page 2913 * @page: The page that was allocated from skb_alloc_page 2914 * @skb: The skb that may need pfmemalloc set 2915 */ 2916 static inline void skb_propagate_pfmemalloc(struct page *page, 2917 struct sk_buff *skb) 2918 { 2919 if (page_is_pfmemalloc(page)) 2920 skb->pfmemalloc = true; 2921 } 2922 2923 /** 2924 * skb_frag_off() - Returns the offset of a skb fragment 2925 * @frag: the paged fragment 2926 */ 2927 static inline unsigned int skb_frag_off(const skb_frag_t *frag) 2928 { 2929 return frag->bv_offset; 2930 } 2931 2932 /** 2933 * skb_frag_off_add() - Increments the offset of a skb fragment by @delta 2934 * @frag: skb fragment 2935 * @delta: value to add 2936 */ 2937 static inline void skb_frag_off_add(skb_frag_t *frag, int delta) 2938 { 2939 frag->bv_offset += delta; 2940 } 2941 2942 /** 2943 * skb_frag_off_set() - Sets the offset of a skb fragment 2944 * @frag: skb fragment 2945 * @offset: offset of fragment 2946 */ 2947 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset) 2948 { 2949 frag->bv_offset = offset; 2950 } 2951 2952 /** 2953 * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment 2954 * @fragto: skb fragment where offset is set 2955 * @fragfrom: skb fragment offset is copied from 2956 */ 2957 static inline void skb_frag_off_copy(skb_frag_t *fragto, 2958 const skb_frag_t *fragfrom) 2959 { 2960 fragto->bv_offset = fragfrom->bv_offset; 2961 } 2962 2963 /** 2964 * skb_frag_page - retrieve the page referred to by a paged fragment 2965 * @frag: the paged fragment 2966 * 2967 * Returns the &struct page associated with @frag. 2968 */ 2969 static inline struct page *skb_frag_page(const skb_frag_t *frag) 2970 { 2971 return frag->bv_page; 2972 } 2973 2974 /** 2975 * __skb_frag_ref - take an addition reference on a paged fragment. 2976 * @frag: the paged fragment 2977 * 2978 * Takes an additional reference on the paged fragment @frag. 2979 */ 2980 static inline void __skb_frag_ref(skb_frag_t *frag) 2981 { 2982 get_page(skb_frag_page(frag)); 2983 } 2984 2985 /** 2986 * skb_frag_ref - take an addition reference on a paged fragment of an skb. 2987 * @skb: the buffer 2988 * @f: the fragment offset. 2989 * 2990 * Takes an additional reference on the @f'th paged fragment of @skb. 2991 */ 2992 static inline void skb_frag_ref(struct sk_buff *skb, int f) 2993 { 2994 __skb_frag_ref(&skb_shinfo(skb)->frags[f]); 2995 } 2996 2997 /** 2998 * __skb_frag_unref - release a reference on a paged fragment. 2999 * @frag: the paged fragment 3000 * 3001 * Releases a reference on the paged fragment @frag. 3002 */ 3003 static inline void __skb_frag_unref(skb_frag_t *frag) 3004 { 3005 put_page(skb_frag_page(frag)); 3006 } 3007 3008 /** 3009 * skb_frag_unref - release a reference on a paged fragment of an skb. 3010 * @skb: the buffer 3011 * @f: the fragment offset 3012 * 3013 * Releases a reference on the @f'th paged fragment of @skb. 3014 */ 3015 static inline void skb_frag_unref(struct sk_buff *skb, int f) 3016 { 3017 __skb_frag_unref(&skb_shinfo(skb)->frags[f]); 3018 } 3019 3020 /** 3021 * skb_frag_address - gets the address of the data contained in a paged fragment 3022 * @frag: the paged fragment buffer 3023 * 3024 * Returns the address of the data within @frag. The page must already 3025 * be mapped. 3026 */ 3027 static inline void *skb_frag_address(const skb_frag_t *frag) 3028 { 3029 return page_address(skb_frag_page(frag)) + skb_frag_off(frag); 3030 } 3031 3032 /** 3033 * skb_frag_address_safe - gets the address of the data contained in a paged fragment 3034 * @frag: the paged fragment buffer 3035 * 3036 * Returns the address of the data within @frag. Checks that the page 3037 * is mapped and returns %NULL otherwise. 3038 */ 3039 static inline void *skb_frag_address_safe(const skb_frag_t *frag) 3040 { 3041 void *ptr = page_address(skb_frag_page(frag)); 3042 if (unlikely(!ptr)) 3043 return NULL; 3044 3045 return ptr + skb_frag_off(frag); 3046 } 3047 3048 /** 3049 * skb_frag_page_copy() - sets the page in a fragment from another fragment 3050 * @fragto: skb fragment where page is set 3051 * @fragfrom: skb fragment page is copied from 3052 */ 3053 static inline void skb_frag_page_copy(skb_frag_t *fragto, 3054 const skb_frag_t *fragfrom) 3055 { 3056 fragto->bv_page = fragfrom->bv_page; 3057 } 3058 3059 /** 3060 * __skb_frag_set_page - sets the page contained in a paged fragment 3061 * @frag: the paged fragment 3062 * @page: the page to set 3063 * 3064 * Sets the fragment @frag to contain @page. 3065 */ 3066 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page) 3067 { 3068 frag->bv_page = page; 3069 } 3070 3071 /** 3072 * skb_frag_set_page - sets the page contained in a paged fragment of an skb 3073 * @skb: the buffer 3074 * @f: the fragment offset 3075 * @page: the page to set 3076 * 3077 * Sets the @f'th fragment of @skb to contain @page. 3078 */ 3079 static inline void skb_frag_set_page(struct sk_buff *skb, int f, 3080 struct page *page) 3081 { 3082 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page); 3083 } 3084 3085 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio); 3086 3087 /** 3088 * skb_frag_dma_map - maps a paged fragment via the DMA API 3089 * @dev: the device to map the fragment to 3090 * @frag: the paged fragment to map 3091 * @offset: the offset within the fragment (starting at the 3092 * fragment's own offset) 3093 * @size: the number of bytes to map 3094 * @dir: the direction of the mapping (``PCI_DMA_*``) 3095 * 3096 * Maps the page associated with @frag to @device. 3097 */ 3098 static inline dma_addr_t skb_frag_dma_map(struct device *dev, 3099 const skb_frag_t *frag, 3100 size_t offset, size_t size, 3101 enum dma_data_direction dir) 3102 { 3103 return dma_map_page(dev, skb_frag_page(frag), 3104 skb_frag_off(frag) + offset, size, dir); 3105 } 3106 3107 static inline struct sk_buff *pskb_copy(struct sk_buff *skb, 3108 gfp_t gfp_mask) 3109 { 3110 return __pskb_copy(skb, skb_headroom(skb), gfp_mask); 3111 } 3112 3113 3114 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb, 3115 gfp_t gfp_mask) 3116 { 3117 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true); 3118 } 3119 3120 3121 /** 3122 * skb_clone_writable - is the header of a clone writable 3123 * @skb: buffer to check 3124 * @len: length up to which to write 3125 * 3126 * Returns true if modifying the header part of the cloned buffer 3127 * does not requires the data to be copied. 3128 */ 3129 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) 3130 { 3131 return !skb_header_cloned(skb) && 3132 skb_headroom(skb) + len <= skb->hdr_len; 3133 } 3134 3135 static inline int skb_try_make_writable(struct sk_buff *skb, 3136 unsigned int write_len) 3137 { 3138 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) && 3139 pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 3140 } 3141 3142 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 3143 int cloned) 3144 { 3145 int delta = 0; 3146 3147 if (headroom > skb_headroom(skb)) 3148 delta = headroom - skb_headroom(skb); 3149 3150 if (delta || cloned) 3151 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 3152 GFP_ATOMIC); 3153 return 0; 3154 } 3155 3156 /** 3157 * skb_cow - copy header of skb when it is required 3158 * @skb: buffer to cow 3159 * @headroom: needed headroom 3160 * 3161 * If the skb passed lacks sufficient headroom or its data part 3162 * is shared, data is reallocated. If reallocation fails, an error 3163 * is returned and original skb is not changed. 3164 * 3165 * The result is skb with writable area skb->head...skb->tail 3166 * and at least @headroom of space at head. 3167 */ 3168 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 3169 { 3170 return __skb_cow(skb, headroom, skb_cloned(skb)); 3171 } 3172 3173 /** 3174 * skb_cow_head - skb_cow but only making the head writable 3175 * @skb: buffer to cow 3176 * @headroom: needed headroom 3177 * 3178 * This function is identical to skb_cow except that we replace the 3179 * skb_cloned check by skb_header_cloned. It should be used when 3180 * you only need to push on some header and do not need to modify 3181 * the data. 3182 */ 3183 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 3184 { 3185 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 3186 } 3187 3188 /** 3189 * skb_padto - pad an skbuff up to a minimal size 3190 * @skb: buffer to pad 3191 * @len: minimal length 3192 * 3193 * Pads up a buffer to ensure the trailing bytes exist and are 3194 * blanked. If the buffer already contains sufficient data it 3195 * is untouched. Otherwise it is extended. Returns zero on 3196 * success. The skb is freed on error. 3197 */ 3198 static inline int skb_padto(struct sk_buff *skb, unsigned int len) 3199 { 3200 unsigned int size = skb->len; 3201 if (likely(size >= len)) 3202 return 0; 3203 return skb_pad(skb, len - size); 3204 } 3205 3206 /** 3207 * __skb_put_padto - increase size and pad an skbuff up to a minimal size 3208 * @skb: buffer to pad 3209 * @len: minimal length 3210 * @free_on_error: free buffer on error 3211 * 3212 * Pads up a buffer to ensure the trailing bytes exist and are 3213 * blanked. If the buffer already contains sufficient data it 3214 * is untouched. Otherwise it is extended. Returns zero on 3215 * success. The skb is freed on error if @free_on_error is true. 3216 */ 3217 static inline int __skb_put_padto(struct sk_buff *skb, unsigned int len, 3218 bool free_on_error) 3219 { 3220 unsigned int size = skb->len; 3221 3222 if (unlikely(size < len)) { 3223 len -= size; 3224 if (__skb_pad(skb, len, free_on_error)) 3225 return -ENOMEM; 3226 __skb_put(skb, len); 3227 } 3228 return 0; 3229 } 3230 3231 /** 3232 * skb_put_padto - increase size and pad an skbuff up to a minimal size 3233 * @skb: buffer to pad 3234 * @len: minimal length 3235 * 3236 * Pads up a buffer to ensure the trailing bytes exist and are 3237 * blanked. If the buffer already contains sufficient data it 3238 * is untouched. Otherwise it is extended. Returns zero on 3239 * success. The skb is freed on error. 3240 */ 3241 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len) 3242 { 3243 return __skb_put_padto(skb, len, true); 3244 } 3245 3246 static inline int skb_add_data(struct sk_buff *skb, 3247 struct iov_iter *from, int copy) 3248 { 3249 const int off = skb->len; 3250 3251 if (skb->ip_summed == CHECKSUM_NONE) { 3252 __wsum csum = 0; 3253 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy, 3254 &csum, from)) { 3255 skb->csum = csum_block_add(skb->csum, csum, off); 3256 return 0; 3257 } 3258 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from)) 3259 return 0; 3260 3261 __skb_trim(skb, off); 3262 return -EFAULT; 3263 } 3264 3265 static inline bool skb_can_coalesce(struct sk_buff *skb, int i, 3266 const struct page *page, int off) 3267 { 3268 if (skb_zcopy(skb)) 3269 return false; 3270 if (i) { 3271 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1]; 3272 3273 return page == skb_frag_page(frag) && 3274 off == skb_frag_off(frag) + skb_frag_size(frag); 3275 } 3276 return false; 3277 } 3278 3279 static inline int __skb_linearize(struct sk_buff *skb) 3280 { 3281 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 3282 } 3283 3284 /** 3285 * skb_linearize - convert paged skb to linear one 3286 * @skb: buffer to linarize 3287 * 3288 * If there is no free memory -ENOMEM is returned, otherwise zero 3289 * is returned and the old skb data released. 3290 */ 3291 static inline int skb_linearize(struct sk_buff *skb) 3292 { 3293 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 3294 } 3295 3296 /** 3297 * skb_has_shared_frag - can any frag be overwritten 3298 * @skb: buffer to test 3299 * 3300 * Return true if the skb has at least one frag that might be modified 3301 * by an external entity (as in vmsplice()/sendfile()) 3302 */ 3303 static inline bool skb_has_shared_frag(const struct sk_buff *skb) 3304 { 3305 return skb_is_nonlinear(skb) && 3306 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG; 3307 } 3308 3309 /** 3310 * skb_linearize_cow - make sure skb is linear and writable 3311 * @skb: buffer to process 3312 * 3313 * If there is no free memory -ENOMEM is returned, otherwise zero 3314 * is returned and the old skb data released. 3315 */ 3316 static inline int skb_linearize_cow(struct sk_buff *skb) 3317 { 3318 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 3319 __skb_linearize(skb) : 0; 3320 } 3321 3322 static __always_inline void 3323 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3324 unsigned int off) 3325 { 3326 if (skb->ip_summed == CHECKSUM_COMPLETE) 3327 skb->csum = csum_block_sub(skb->csum, 3328 csum_partial(start, len, 0), off); 3329 else if (skb->ip_summed == CHECKSUM_PARTIAL && 3330 skb_checksum_start_offset(skb) < 0) 3331 skb->ip_summed = CHECKSUM_NONE; 3332 } 3333 3334 /** 3335 * skb_postpull_rcsum - update checksum for received skb after pull 3336 * @skb: buffer to update 3337 * @start: start of data before pull 3338 * @len: length of data pulled 3339 * 3340 * After doing a pull on a received packet, you need to call this to 3341 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 3342 * CHECKSUM_NONE so that it can be recomputed from scratch. 3343 */ 3344 static inline void skb_postpull_rcsum(struct sk_buff *skb, 3345 const void *start, unsigned int len) 3346 { 3347 __skb_postpull_rcsum(skb, start, len, 0); 3348 } 3349 3350 static __always_inline void 3351 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3352 unsigned int off) 3353 { 3354 if (skb->ip_summed == CHECKSUM_COMPLETE) 3355 skb->csum = csum_block_add(skb->csum, 3356 csum_partial(start, len, 0), off); 3357 } 3358 3359 /** 3360 * skb_postpush_rcsum - update checksum for received skb after push 3361 * @skb: buffer to update 3362 * @start: start of data after push 3363 * @len: length of data pushed 3364 * 3365 * After doing a push on a received packet, you need to call this to 3366 * update the CHECKSUM_COMPLETE checksum. 3367 */ 3368 static inline void skb_postpush_rcsum(struct sk_buff *skb, 3369 const void *start, unsigned int len) 3370 { 3371 __skb_postpush_rcsum(skb, start, len, 0); 3372 } 3373 3374 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 3375 3376 /** 3377 * skb_push_rcsum - push skb and update receive checksum 3378 * @skb: buffer to update 3379 * @len: length of data pulled 3380 * 3381 * This function performs an skb_push on the packet and updates 3382 * the CHECKSUM_COMPLETE checksum. It should be used on 3383 * receive path processing instead of skb_push unless you know 3384 * that the checksum difference is zero (e.g., a valid IP header) 3385 * or you are setting ip_summed to CHECKSUM_NONE. 3386 */ 3387 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len) 3388 { 3389 skb_push(skb, len); 3390 skb_postpush_rcsum(skb, skb->data, len); 3391 return skb->data; 3392 } 3393 3394 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len); 3395 /** 3396 * pskb_trim_rcsum - trim received skb and update checksum 3397 * @skb: buffer to trim 3398 * @len: new length 3399 * 3400 * This is exactly the same as pskb_trim except that it ensures the 3401 * checksum of received packets are still valid after the operation. 3402 * It can change skb pointers. 3403 */ 3404 3405 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3406 { 3407 if (likely(len >= skb->len)) 3408 return 0; 3409 return pskb_trim_rcsum_slow(skb, len); 3410 } 3411 3412 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3413 { 3414 if (skb->ip_summed == CHECKSUM_COMPLETE) 3415 skb->ip_summed = CHECKSUM_NONE; 3416 __skb_trim(skb, len); 3417 return 0; 3418 } 3419 3420 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len) 3421 { 3422 if (skb->ip_summed == CHECKSUM_COMPLETE) 3423 skb->ip_summed = CHECKSUM_NONE; 3424 return __skb_grow(skb, len); 3425 } 3426 3427 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode) 3428 #define skb_rb_first(root) rb_to_skb(rb_first(root)) 3429 #define skb_rb_last(root) rb_to_skb(rb_last(root)) 3430 #define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode)) 3431 #define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode)) 3432 3433 #define skb_queue_walk(queue, skb) \ 3434 for (skb = (queue)->next; \ 3435 skb != (struct sk_buff *)(queue); \ 3436 skb = skb->next) 3437 3438 #define skb_queue_walk_safe(queue, skb, tmp) \ 3439 for (skb = (queue)->next, tmp = skb->next; \ 3440 skb != (struct sk_buff *)(queue); \ 3441 skb = tmp, tmp = skb->next) 3442 3443 #define skb_queue_walk_from(queue, skb) \ 3444 for (; skb != (struct sk_buff *)(queue); \ 3445 skb = skb->next) 3446 3447 #define skb_rbtree_walk(skb, root) \ 3448 for (skb = skb_rb_first(root); skb != NULL; \ 3449 skb = skb_rb_next(skb)) 3450 3451 #define skb_rbtree_walk_from(skb) \ 3452 for (; skb != NULL; \ 3453 skb = skb_rb_next(skb)) 3454 3455 #define skb_rbtree_walk_from_safe(skb, tmp) \ 3456 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \ 3457 skb = tmp) 3458 3459 #define skb_queue_walk_from_safe(queue, skb, tmp) \ 3460 for (tmp = skb->next; \ 3461 skb != (struct sk_buff *)(queue); \ 3462 skb = tmp, tmp = skb->next) 3463 3464 #define skb_queue_reverse_walk(queue, skb) \ 3465 for (skb = (queue)->prev; \ 3466 skb != (struct sk_buff *)(queue); \ 3467 skb = skb->prev) 3468 3469 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \ 3470 for (skb = (queue)->prev, tmp = skb->prev; \ 3471 skb != (struct sk_buff *)(queue); \ 3472 skb = tmp, tmp = skb->prev) 3473 3474 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ 3475 for (tmp = skb->prev; \ 3476 skb != (struct sk_buff *)(queue); \ 3477 skb = tmp, tmp = skb->prev) 3478 3479 static inline bool skb_has_frag_list(const struct sk_buff *skb) 3480 { 3481 return skb_shinfo(skb)->frag_list != NULL; 3482 } 3483 3484 static inline void skb_frag_list_init(struct sk_buff *skb) 3485 { 3486 skb_shinfo(skb)->frag_list = NULL; 3487 } 3488 3489 #define skb_walk_frags(skb, iter) \ 3490 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 3491 3492 3493 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue, 3494 int *err, long *timeo_p, 3495 const struct sk_buff *skb); 3496 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk, 3497 struct sk_buff_head *queue, 3498 unsigned int flags, 3499 int *off, int *err, 3500 struct sk_buff **last); 3501 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, 3502 struct sk_buff_head *queue, 3503 unsigned int flags, int *off, int *err, 3504 struct sk_buff **last); 3505 struct sk_buff *__skb_recv_datagram(struct sock *sk, 3506 struct sk_buff_head *sk_queue, 3507 unsigned int flags, int *off, int *err); 3508 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock, 3509 int *err); 3510 __poll_t datagram_poll(struct file *file, struct socket *sock, 3511 struct poll_table_struct *wait); 3512 int skb_copy_datagram_iter(const struct sk_buff *from, int offset, 3513 struct iov_iter *to, int size); 3514 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset, 3515 struct msghdr *msg, int size) 3516 { 3517 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size); 3518 } 3519 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen, 3520 struct msghdr *msg); 3521 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset, 3522 struct iov_iter *to, int len, 3523 struct ahash_request *hash); 3524 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset, 3525 struct iov_iter *from, int len); 3526 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm); 3527 void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 3528 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len); 3529 static inline void skb_free_datagram_locked(struct sock *sk, 3530 struct sk_buff *skb) 3531 { 3532 __skb_free_datagram_locked(sk, skb, 0); 3533 } 3534 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags); 3535 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len); 3536 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len); 3537 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, 3538 int len, __wsum csum); 3539 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 3540 struct pipe_inode_info *pipe, unsigned int len, 3541 unsigned int flags); 3542 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 3543 int len); 3544 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 3545 unsigned int skb_zerocopy_headlen(const struct sk_buff *from); 3546 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from, 3547 int len, int hlen); 3548 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len); 3549 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen); 3550 void skb_scrub_packet(struct sk_buff *skb, bool xnet); 3551 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu); 3552 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len); 3553 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features); 3554 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features, 3555 unsigned int offset); 3556 struct sk_buff *skb_vlan_untag(struct sk_buff *skb); 3557 int skb_ensure_writable(struct sk_buff *skb, int write_len); 3558 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci); 3559 int skb_vlan_pop(struct sk_buff *skb); 3560 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci); 3561 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 3562 int mac_len, bool ethernet); 3563 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 3564 bool ethernet); 3565 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse); 3566 int skb_mpls_dec_ttl(struct sk_buff *skb); 3567 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy, 3568 gfp_t gfp); 3569 3570 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len) 3571 { 3572 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT; 3573 } 3574 3575 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len) 3576 { 3577 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT; 3578 } 3579 3580 struct skb_checksum_ops { 3581 __wsum (*update)(const void *mem, int len, __wsum wsum); 3582 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len); 3583 }; 3584 3585 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly; 3586 3587 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 3588 __wsum csum, const struct skb_checksum_ops *ops); 3589 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len, 3590 __wsum csum); 3591 3592 static inline void * __must_check 3593 __skb_header_pointer(const struct sk_buff *skb, int offset, 3594 int len, void *data, int hlen, void *buffer) 3595 { 3596 if (hlen - offset >= len) 3597 return data + offset; 3598 3599 if (!skb || 3600 skb_copy_bits(skb, offset, buffer, len) < 0) 3601 return NULL; 3602 3603 return buffer; 3604 } 3605 3606 static inline void * __must_check 3607 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer) 3608 { 3609 return __skb_header_pointer(skb, offset, len, skb->data, 3610 skb_headlen(skb), buffer); 3611 } 3612 3613 /** 3614 * skb_needs_linearize - check if we need to linearize a given skb 3615 * depending on the given device features. 3616 * @skb: socket buffer to check 3617 * @features: net device features 3618 * 3619 * Returns true if either: 3620 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 3621 * 2. skb is fragmented and the device does not support SG. 3622 */ 3623 static inline bool skb_needs_linearize(struct sk_buff *skb, 3624 netdev_features_t features) 3625 { 3626 return skb_is_nonlinear(skb) && 3627 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) || 3628 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG))); 3629 } 3630 3631 static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 3632 void *to, 3633 const unsigned int len) 3634 { 3635 memcpy(to, skb->data, len); 3636 } 3637 3638 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 3639 const int offset, void *to, 3640 const unsigned int len) 3641 { 3642 memcpy(to, skb->data + offset, len); 3643 } 3644 3645 static inline void skb_copy_to_linear_data(struct sk_buff *skb, 3646 const void *from, 3647 const unsigned int len) 3648 { 3649 memcpy(skb->data, from, len); 3650 } 3651 3652 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 3653 const int offset, 3654 const void *from, 3655 const unsigned int len) 3656 { 3657 memcpy(skb->data + offset, from, len); 3658 } 3659 3660 void skb_init(void); 3661 3662 static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 3663 { 3664 return skb->tstamp; 3665 } 3666 3667 /** 3668 * skb_get_timestamp - get timestamp from a skb 3669 * @skb: skb to get stamp from 3670 * @stamp: pointer to struct __kernel_old_timeval to store stamp in 3671 * 3672 * Timestamps are stored in the skb as offsets to a base timestamp. 3673 * This function converts the offset back to a struct timeval and stores 3674 * it in stamp. 3675 */ 3676 static inline void skb_get_timestamp(const struct sk_buff *skb, 3677 struct __kernel_old_timeval *stamp) 3678 { 3679 *stamp = ns_to_kernel_old_timeval(skb->tstamp); 3680 } 3681 3682 static inline void skb_get_new_timestamp(const struct sk_buff *skb, 3683 struct __kernel_sock_timeval *stamp) 3684 { 3685 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 3686 3687 stamp->tv_sec = ts.tv_sec; 3688 stamp->tv_usec = ts.tv_nsec / 1000; 3689 } 3690 3691 static inline void skb_get_timestampns(const struct sk_buff *skb, 3692 struct __kernel_old_timespec *stamp) 3693 { 3694 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 3695 3696 stamp->tv_sec = ts.tv_sec; 3697 stamp->tv_nsec = ts.tv_nsec; 3698 } 3699 3700 static inline void skb_get_new_timestampns(const struct sk_buff *skb, 3701 struct __kernel_timespec *stamp) 3702 { 3703 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 3704 3705 stamp->tv_sec = ts.tv_sec; 3706 stamp->tv_nsec = ts.tv_nsec; 3707 } 3708 3709 static inline void __net_timestamp(struct sk_buff *skb) 3710 { 3711 skb->tstamp = ktime_get_real(); 3712 } 3713 3714 static inline ktime_t net_timedelta(ktime_t t) 3715 { 3716 return ktime_sub(ktime_get_real(), t); 3717 } 3718 3719 static inline ktime_t net_invalid_timestamp(void) 3720 { 3721 return 0; 3722 } 3723 3724 static inline u8 skb_metadata_len(const struct sk_buff *skb) 3725 { 3726 return skb_shinfo(skb)->meta_len; 3727 } 3728 3729 static inline void *skb_metadata_end(const struct sk_buff *skb) 3730 { 3731 return skb_mac_header(skb); 3732 } 3733 3734 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a, 3735 const struct sk_buff *skb_b, 3736 u8 meta_len) 3737 { 3738 const void *a = skb_metadata_end(skb_a); 3739 const void *b = skb_metadata_end(skb_b); 3740 /* Using more efficient varaiant than plain call to memcmp(). */ 3741 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 3742 u64 diffs = 0; 3743 3744 switch (meta_len) { 3745 #define __it(x, op) (x -= sizeof(u##op)) 3746 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op)) 3747 case 32: diffs |= __it_diff(a, b, 64); 3748 fallthrough; 3749 case 24: diffs |= __it_diff(a, b, 64); 3750 fallthrough; 3751 case 16: diffs |= __it_diff(a, b, 64); 3752 fallthrough; 3753 case 8: diffs |= __it_diff(a, b, 64); 3754 break; 3755 case 28: diffs |= __it_diff(a, b, 64); 3756 fallthrough; 3757 case 20: diffs |= __it_diff(a, b, 64); 3758 fallthrough; 3759 case 12: diffs |= __it_diff(a, b, 64); 3760 fallthrough; 3761 case 4: diffs |= __it_diff(a, b, 32); 3762 break; 3763 } 3764 return diffs; 3765 #else 3766 return memcmp(a - meta_len, b - meta_len, meta_len); 3767 #endif 3768 } 3769 3770 static inline bool skb_metadata_differs(const struct sk_buff *skb_a, 3771 const struct sk_buff *skb_b) 3772 { 3773 u8 len_a = skb_metadata_len(skb_a); 3774 u8 len_b = skb_metadata_len(skb_b); 3775 3776 if (!(len_a | len_b)) 3777 return false; 3778 3779 return len_a != len_b ? 3780 true : __skb_metadata_differs(skb_a, skb_b, len_a); 3781 } 3782 3783 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len) 3784 { 3785 skb_shinfo(skb)->meta_len = meta_len; 3786 } 3787 3788 static inline void skb_metadata_clear(struct sk_buff *skb) 3789 { 3790 skb_metadata_set(skb, 0); 3791 } 3792 3793 struct sk_buff *skb_clone_sk(struct sk_buff *skb); 3794 3795 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 3796 3797 void skb_clone_tx_timestamp(struct sk_buff *skb); 3798 bool skb_defer_rx_timestamp(struct sk_buff *skb); 3799 3800 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 3801 3802 static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 3803 { 3804 } 3805 3806 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 3807 { 3808 return false; 3809 } 3810 3811 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 3812 3813 /** 3814 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 3815 * 3816 * PHY drivers may accept clones of transmitted packets for 3817 * timestamping via their phy_driver.txtstamp method. These drivers 3818 * must call this function to return the skb back to the stack with a 3819 * timestamp. 3820 * 3821 * @skb: clone of the original outgoing packet 3822 * @hwtstamps: hardware time stamps 3823 * 3824 */ 3825 void skb_complete_tx_timestamp(struct sk_buff *skb, 3826 struct skb_shared_hwtstamps *hwtstamps); 3827 3828 void __skb_tstamp_tx(struct sk_buff *orig_skb, 3829 struct skb_shared_hwtstamps *hwtstamps, 3830 struct sock *sk, int tstype); 3831 3832 /** 3833 * skb_tstamp_tx - queue clone of skb with send time stamps 3834 * @orig_skb: the original outgoing packet 3835 * @hwtstamps: hardware time stamps, may be NULL if not available 3836 * 3837 * If the skb has a socket associated, then this function clones the 3838 * skb (thus sharing the actual data and optional structures), stores 3839 * the optional hardware time stamping information (if non NULL) or 3840 * generates a software time stamp (otherwise), then queues the clone 3841 * to the error queue of the socket. Errors are silently ignored. 3842 */ 3843 void skb_tstamp_tx(struct sk_buff *orig_skb, 3844 struct skb_shared_hwtstamps *hwtstamps); 3845 3846 /** 3847 * skb_tx_timestamp() - Driver hook for transmit timestamping 3848 * 3849 * Ethernet MAC Drivers should call this function in their hard_xmit() 3850 * function immediately before giving the sk_buff to the MAC hardware. 3851 * 3852 * Specifically, one should make absolutely sure that this function is 3853 * called before TX completion of this packet can trigger. Otherwise 3854 * the packet could potentially already be freed. 3855 * 3856 * @skb: A socket buffer. 3857 */ 3858 static inline void skb_tx_timestamp(struct sk_buff *skb) 3859 { 3860 skb_clone_tx_timestamp(skb); 3861 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP) 3862 skb_tstamp_tx(skb, NULL); 3863 } 3864 3865 /** 3866 * skb_complete_wifi_ack - deliver skb with wifi status 3867 * 3868 * @skb: the original outgoing packet 3869 * @acked: ack status 3870 * 3871 */ 3872 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); 3873 3874 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 3875 __sum16 __skb_checksum_complete(struct sk_buff *skb); 3876 3877 static inline int skb_csum_unnecessary(const struct sk_buff *skb) 3878 { 3879 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) || 3880 skb->csum_valid || 3881 (skb->ip_summed == CHECKSUM_PARTIAL && 3882 skb_checksum_start_offset(skb) >= 0)); 3883 } 3884 3885 /** 3886 * skb_checksum_complete - Calculate checksum of an entire packet 3887 * @skb: packet to process 3888 * 3889 * This function calculates the checksum over the entire packet plus 3890 * the value of skb->csum. The latter can be used to supply the 3891 * checksum of a pseudo header as used by TCP/UDP. It returns the 3892 * checksum. 3893 * 3894 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 3895 * this function can be used to verify that checksum on received 3896 * packets. In that case the function should return zero if the 3897 * checksum is correct. In particular, this function will return zero 3898 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 3899 * hardware has already verified the correctness of the checksum. 3900 */ 3901 static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 3902 { 3903 return skb_csum_unnecessary(skb) ? 3904 0 : __skb_checksum_complete(skb); 3905 } 3906 3907 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb) 3908 { 3909 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 3910 if (skb->csum_level == 0) 3911 skb->ip_summed = CHECKSUM_NONE; 3912 else 3913 skb->csum_level--; 3914 } 3915 } 3916 3917 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb) 3918 { 3919 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 3920 if (skb->csum_level < SKB_MAX_CSUM_LEVEL) 3921 skb->csum_level++; 3922 } else if (skb->ip_summed == CHECKSUM_NONE) { 3923 skb->ip_summed = CHECKSUM_UNNECESSARY; 3924 skb->csum_level = 0; 3925 } 3926 } 3927 3928 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb) 3929 { 3930 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 3931 skb->ip_summed = CHECKSUM_NONE; 3932 skb->csum_level = 0; 3933 } 3934 } 3935 3936 /* Check if we need to perform checksum complete validation. 3937 * 3938 * Returns true if checksum complete is needed, false otherwise 3939 * (either checksum is unnecessary or zero checksum is allowed). 3940 */ 3941 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb, 3942 bool zero_okay, 3943 __sum16 check) 3944 { 3945 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) { 3946 skb->csum_valid = 1; 3947 __skb_decr_checksum_unnecessary(skb); 3948 return false; 3949 } 3950 3951 return true; 3952 } 3953 3954 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly 3955 * in checksum_init. 3956 */ 3957 #define CHECKSUM_BREAK 76 3958 3959 /* Unset checksum-complete 3960 * 3961 * Unset checksum complete can be done when packet is being modified 3962 * (uncompressed for instance) and checksum-complete value is 3963 * invalidated. 3964 */ 3965 static inline void skb_checksum_complete_unset(struct sk_buff *skb) 3966 { 3967 if (skb->ip_summed == CHECKSUM_COMPLETE) 3968 skb->ip_summed = CHECKSUM_NONE; 3969 } 3970 3971 /* Validate (init) checksum based on checksum complete. 3972 * 3973 * Return values: 3974 * 0: checksum is validated or try to in skb_checksum_complete. In the latter 3975 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo 3976 * checksum is stored in skb->csum for use in __skb_checksum_complete 3977 * non-zero: value of invalid checksum 3978 * 3979 */ 3980 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb, 3981 bool complete, 3982 __wsum psum) 3983 { 3984 if (skb->ip_summed == CHECKSUM_COMPLETE) { 3985 if (!csum_fold(csum_add(psum, skb->csum))) { 3986 skb->csum_valid = 1; 3987 return 0; 3988 } 3989 } 3990 3991 skb->csum = psum; 3992 3993 if (complete || skb->len <= CHECKSUM_BREAK) { 3994 __sum16 csum; 3995 3996 csum = __skb_checksum_complete(skb); 3997 skb->csum_valid = !csum; 3998 return csum; 3999 } 4000 4001 return 0; 4002 } 4003 4004 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto) 4005 { 4006 return 0; 4007 } 4008 4009 /* Perform checksum validate (init). Note that this is a macro since we only 4010 * want to calculate the pseudo header which is an input function if necessary. 4011 * First we try to validate without any computation (checksum unnecessary) and 4012 * then calculate based on checksum complete calling the function to compute 4013 * pseudo header. 4014 * 4015 * Return values: 4016 * 0: checksum is validated or try to in skb_checksum_complete 4017 * non-zero: value of invalid checksum 4018 */ 4019 #define __skb_checksum_validate(skb, proto, complete, \ 4020 zero_okay, check, compute_pseudo) \ 4021 ({ \ 4022 __sum16 __ret = 0; \ 4023 skb->csum_valid = 0; \ 4024 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \ 4025 __ret = __skb_checksum_validate_complete(skb, \ 4026 complete, compute_pseudo(skb, proto)); \ 4027 __ret; \ 4028 }) 4029 4030 #define skb_checksum_init(skb, proto, compute_pseudo) \ 4031 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo) 4032 4033 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \ 4034 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo) 4035 4036 #define skb_checksum_validate(skb, proto, compute_pseudo) \ 4037 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo) 4038 4039 #define skb_checksum_validate_zero_check(skb, proto, check, \ 4040 compute_pseudo) \ 4041 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo) 4042 4043 #define skb_checksum_simple_validate(skb) \ 4044 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo) 4045 4046 static inline bool __skb_checksum_convert_check(struct sk_buff *skb) 4047 { 4048 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid); 4049 } 4050 4051 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo) 4052 { 4053 skb->csum = ~pseudo; 4054 skb->ip_summed = CHECKSUM_COMPLETE; 4055 } 4056 4057 #define skb_checksum_try_convert(skb, proto, compute_pseudo) \ 4058 do { \ 4059 if (__skb_checksum_convert_check(skb)) \ 4060 __skb_checksum_convert(skb, compute_pseudo(skb, proto)); \ 4061 } while (0) 4062 4063 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr, 4064 u16 start, u16 offset) 4065 { 4066 skb->ip_summed = CHECKSUM_PARTIAL; 4067 skb->csum_start = ((unsigned char *)ptr + start) - skb->head; 4068 skb->csum_offset = offset - start; 4069 } 4070 4071 /* Update skbuf and packet to reflect the remote checksum offload operation. 4072 * When called, ptr indicates the starting point for skb->csum when 4073 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete 4074 * here, skb_postpull_rcsum is done so skb->csum start is ptr. 4075 */ 4076 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr, 4077 int start, int offset, bool nopartial) 4078 { 4079 __wsum delta; 4080 4081 if (!nopartial) { 4082 skb_remcsum_adjust_partial(skb, ptr, start, offset); 4083 return; 4084 } 4085 4086 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) { 4087 __skb_checksum_complete(skb); 4088 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data); 4089 } 4090 4091 delta = remcsum_adjust(ptr, skb->csum, start, offset); 4092 4093 /* Adjust skb->csum since we changed the packet */ 4094 skb->csum = csum_add(skb->csum, delta); 4095 } 4096 4097 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb) 4098 { 4099 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 4100 return (void *)(skb->_nfct & NFCT_PTRMASK); 4101 #else 4102 return NULL; 4103 #endif 4104 } 4105 4106 static inline unsigned long skb_get_nfct(const struct sk_buff *skb) 4107 { 4108 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 4109 return skb->_nfct; 4110 #else 4111 return 0UL; 4112 #endif 4113 } 4114 4115 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct) 4116 { 4117 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 4118 skb->_nfct = nfct; 4119 #endif 4120 } 4121 4122 #ifdef CONFIG_SKB_EXTENSIONS 4123 enum skb_ext_id { 4124 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4125 SKB_EXT_BRIDGE_NF, 4126 #endif 4127 #ifdef CONFIG_XFRM 4128 SKB_EXT_SEC_PATH, 4129 #endif 4130 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4131 TC_SKB_EXT, 4132 #endif 4133 #if IS_ENABLED(CONFIG_MPTCP) 4134 SKB_EXT_MPTCP, 4135 #endif 4136 SKB_EXT_NUM, /* must be last */ 4137 }; 4138 4139 /** 4140 * struct skb_ext - sk_buff extensions 4141 * @refcnt: 1 on allocation, deallocated on 0 4142 * @offset: offset to add to @data to obtain extension address 4143 * @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units 4144 * @data: start of extension data, variable sized 4145 * 4146 * Note: offsets/lengths are stored in chunks of 8 bytes, this allows 4147 * to use 'u8' types while allowing up to 2kb worth of extension data. 4148 */ 4149 struct skb_ext { 4150 refcount_t refcnt; 4151 u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */ 4152 u8 chunks; /* same */ 4153 char data[] __aligned(8); 4154 }; 4155 4156 struct skb_ext *__skb_ext_alloc(gfp_t flags); 4157 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 4158 struct skb_ext *ext); 4159 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id); 4160 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id); 4161 void __skb_ext_put(struct skb_ext *ext); 4162 4163 static inline void skb_ext_put(struct sk_buff *skb) 4164 { 4165 if (skb->active_extensions) 4166 __skb_ext_put(skb->extensions); 4167 } 4168 4169 static inline void __skb_ext_copy(struct sk_buff *dst, 4170 const struct sk_buff *src) 4171 { 4172 dst->active_extensions = src->active_extensions; 4173 4174 if (src->active_extensions) { 4175 struct skb_ext *ext = src->extensions; 4176 4177 refcount_inc(&ext->refcnt); 4178 dst->extensions = ext; 4179 } 4180 } 4181 4182 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src) 4183 { 4184 skb_ext_put(dst); 4185 __skb_ext_copy(dst, src); 4186 } 4187 4188 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i) 4189 { 4190 return !!ext->offset[i]; 4191 } 4192 4193 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id) 4194 { 4195 return skb->active_extensions & (1 << id); 4196 } 4197 4198 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 4199 { 4200 if (skb_ext_exist(skb, id)) 4201 __skb_ext_del(skb, id); 4202 } 4203 4204 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id) 4205 { 4206 if (skb_ext_exist(skb, id)) { 4207 struct skb_ext *ext = skb->extensions; 4208 4209 return (void *)ext + (ext->offset[id] << 3); 4210 } 4211 4212 return NULL; 4213 } 4214 4215 static inline void skb_ext_reset(struct sk_buff *skb) 4216 { 4217 if (unlikely(skb->active_extensions)) { 4218 __skb_ext_put(skb->extensions); 4219 skb->active_extensions = 0; 4220 } 4221 } 4222 4223 static inline bool skb_has_extensions(struct sk_buff *skb) 4224 { 4225 return unlikely(skb->active_extensions); 4226 } 4227 #else 4228 static inline void skb_ext_put(struct sk_buff *skb) {} 4229 static inline void skb_ext_reset(struct sk_buff *skb) {} 4230 static inline void skb_ext_del(struct sk_buff *skb, int unused) {} 4231 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {} 4232 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {} 4233 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; } 4234 #endif /* CONFIG_SKB_EXTENSIONS */ 4235 4236 static inline void nf_reset_ct(struct sk_buff *skb) 4237 { 4238 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4239 nf_conntrack_put(skb_nfct(skb)); 4240 skb->_nfct = 0; 4241 #endif 4242 } 4243 4244 static inline void nf_reset_trace(struct sk_buff *skb) 4245 { 4246 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 4247 skb->nf_trace = 0; 4248 #endif 4249 } 4250 4251 static inline void ipvs_reset(struct sk_buff *skb) 4252 { 4253 #if IS_ENABLED(CONFIG_IP_VS) 4254 skb->ipvs_property = 0; 4255 #endif 4256 } 4257 4258 /* Note: This doesn't put any conntrack info in dst. */ 4259 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src, 4260 bool copy) 4261 { 4262 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4263 dst->_nfct = src->_nfct; 4264 nf_conntrack_get(skb_nfct(src)); 4265 #endif 4266 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 4267 if (copy) 4268 dst->nf_trace = src->nf_trace; 4269 #endif 4270 } 4271 4272 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 4273 { 4274 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4275 nf_conntrack_put(skb_nfct(dst)); 4276 #endif 4277 __nf_copy(dst, src, true); 4278 } 4279 4280 #ifdef CONFIG_NETWORK_SECMARK 4281 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 4282 { 4283 to->secmark = from->secmark; 4284 } 4285 4286 static inline void skb_init_secmark(struct sk_buff *skb) 4287 { 4288 skb->secmark = 0; 4289 } 4290 #else 4291 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 4292 { } 4293 4294 static inline void skb_init_secmark(struct sk_buff *skb) 4295 { } 4296 #endif 4297 4298 static inline int secpath_exists(const struct sk_buff *skb) 4299 { 4300 #ifdef CONFIG_XFRM 4301 return skb_ext_exist(skb, SKB_EXT_SEC_PATH); 4302 #else 4303 return 0; 4304 #endif 4305 } 4306 4307 static inline bool skb_irq_freeable(const struct sk_buff *skb) 4308 { 4309 return !skb->destructor && 4310 !secpath_exists(skb) && 4311 !skb_nfct(skb) && 4312 !skb->_skb_refdst && 4313 !skb_has_frag_list(skb); 4314 } 4315 4316 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 4317 { 4318 skb->queue_mapping = queue_mapping; 4319 } 4320 4321 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 4322 { 4323 return skb->queue_mapping; 4324 } 4325 4326 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 4327 { 4328 to->queue_mapping = from->queue_mapping; 4329 } 4330 4331 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 4332 { 4333 skb->queue_mapping = rx_queue + 1; 4334 } 4335 4336 static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 4337 { 4338 return skb->queue_mapping - 1; 4339 } 4340 4341 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 4342 { 4343 return skb->queue_mapping != 0; 4344 } 4345 4346 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val) 4347 { 4348 skb->dst_pending_confirm = val; 4349 } 4350 4351 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb) 4352 { 4353 return skb->dst_pending_confirm != 0; 4354 } 4355 4356 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb) 4357 { 4358 #ifdef CONFIG_XFRM 4359 return skb_ext_find(skb, SKB_EXT_SEC_PATH); 4360 #else 4361 return NULL; 4362 #endif 4363 } 4364 4365 /* Keeps track of mac header offset relative to skb->head. 4366 * It is useful for TSO of Tunneling protocol. e.g. GRE. 4367 * For non-tunnel skb it points to skb_mac_header() and for 4368 * tunnel skb it points to outer mac header. 4369 * Keeps track of level of encapsulation of network headers. 4370 */ 4371 struct skb_gso_cb { 4372 union { 4373 int mac_offset; 4374 int data_offset; 4375 }; 4376 int encap_level; 4377 __wsum csum; 4378 __u16 csum_start; 4379 }; 4380 #define SKB_GSO_CB_OFFSET 32 4381 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET)) 4382 4383 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb) 4384 { 4385 return (skb_mac_header(inner_skb) - inner_skb->head) - 4386 SKB_GSO_CB(inner_skb)->mac_offset; 4387 } 4388 4389 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra) 4390 { 4391 int new_headroom, headroom; 4392 int ret; 4393 4394 headroom = skb_headroom(skb); 4395 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC); 4396 if (ret) 4397 return ret; 4398 4399 new_headroom = skb_headroom(skb); 4400 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom); 4401 return 0; 4402 } 4403 4404 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res) 4405 { 4406 /* Do not update partial checksums if remote checksum is enabled. */ 4407 if (skb->remcsum_offload) 4408 return; 4409 4410 SKB_GSO_CB(skb)->csum = res; 4411 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head; 4412 } 4413 4414 /* Compute the checksum for a gso segment. First compute the checksum value 4415 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and 4416 * then add in skb->csum (checksum from csum_start to end of packet). 4417 * skb->csum and csum_start are then updated to reflect the checksum of the 4418 * resultant packet starting from the transport header-- the resultant checksum 4419 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo 4420 * header. 4421 */ 4422 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res) 4423 { 4424 unsigned char *csum_start = skb_transport_header(skb); 4425 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start; 4426 __wsum partial = SKB_GSO_CB(skb)->csum; 4427 4428 SKB_GSO_CB(skb)->csum = res; 4429 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head; 4430 4431 return csum_fold(csum_partial(csum_start, plen, partial)); 4432 } 4433 4434 static inline bool skb_is_gso(const struct sk_buff *skb) 4435 { 4436 return skb_shinfo(skb)->gso_size; 4437 } 4438 4439 /* Note: Should be called only if skb_is_gso(skb) is true */ 4440 static inline bool skb_is_gso_v6(const struct sk_buff *skb) 4441 { 4442 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 4443 } 4444 4445 /* Note: Should be called only if skb_is_gso(skb) is true */ 4446 static inline bool skb_is_gso_sctp(const struct sk_buff *skb) 4447 { 4448 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP; 4449 } 4450 4451 /* Note: Should be called only if skb_is_gso(skb) is true */ 4452 static inline bool skb_is_gso_tcp(const struct sk_buff *skb) 4453 { 4454 return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6); 4455 } 4456 4457 static inline void skb_gso_reset(struct sk_buff *skb) 4458 { 4459 skb_shinfo(skb)->gso_size = 0; 4460 skb_shinfo(skb)->gso_segs = 0; 4461 skb_shinfo(skb)->gso_type = 0; 4462 } 4463 4464 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo, 4465 u16 increment) 4466 { 4467 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 4468 return; 4469 shinfo->gso_size += increment; 4470 } 4471 4472 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo, 4473 u16 decrement) 4474 { 4475 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 4476 return; 4477 shinfo->gso_size -= decrement; 4478 } 4479 4480 void __skb_warn_lro_forwarding(const struct sk_buff *skb); 4481 4482 static inline bool skb_warn_if_lro(const struct sk_buff *skb) 4483 { 4484 /* LRO sets gso_size but not gso_type, whereas if GSO is really 4485 * wanted then gso_type will be set. */ 4486 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4487 4488 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 4489 unlikely(shinfo->gso_type == 0)) { 4490 __skb_warn_lro_forwarding(skb); 4491 return true; 4492 } 4493 return false; 4494 } 4495 4496 static inline void skb_forward_csum(struct sk_buff *skb) 4497 { 4498 /* Unfortunately we don't support this one. Any brave souls? */ 4499 if (skb->ip_summed == CHECKSUM_COMPLETE) 4500 skb->ip_summed = CHECKSUM_NONE; 4501 } 4502 4503 /** 4504 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 4505 * @skb: skb to check 4506 * 4507 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 4508 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 4509 * use this helper, to document places where we make this assertion. 4510 */ 4511 static inline void skb_checksum_none_assert(const struct sk_buff *skb) 4512 { 4513 #ifdef DEBUG 4514 BUG_ON(skb->ip_summed != CHECKSUM_NONE); 4515 #endif 4516 } 4517 4518 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 4519 4520 int skb_checksum_setup(struct sk_buff *skb, bool recalculate); 4521 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 4522 unsigned int transport_len, 4523 __sum16(*skb_chkf)(struct sk_buff *skb)); 4524 4525 /** 4526 * skb_head_is_locked - Determine if the skb->head is locked down 4527 * @skb: skb to check 4528 * 4529 * The head on skbs build around a head frag can be removed if they are 4530 * not cloned. This function returns true if the skb head is locked down 4531 * due to either being allocated via kmalloc, or by being a clone with 4532 * multiple references to the head. 4533 */ 4534 static inline bool skb_head_is_locked(const struct sk_buff *skb) 4535 { 4536 return !skb->head_frag || skb_cloned(skb); 4537 } 4538 4539 /* Local Checksum Offload. 4540 * Compute outer checksum based on the assumption that the 4541 * inner checksum will be offloaded later. 4542 * See Documentation/networking/checksum-offloads.rst for 4543 * explanation of how this works. 4544 * Fill in outer checksum adjustment (e.g. with sum of outer 4545 * pseudo-header) before calling. 4546 * Also ensure that inner checksum is in linear data area. 4547 */ 4548 static inline __wsum lco_csum(struct sk_buff *skb) 4549 { 4550 unsigned char *csum_start = skb_checksum_start(skb); 4551 unsigned char *l4_hdr = skb_transport_header(skb); 4552 __wsum partial; 4553 4554 /* Start with complement of inner checksum adjustment */ 4555 partial = ~csum_unfold(*(__force __sum16 *)(csum_start + 4556 skb->csum_offset)); 4557 4558 /* Add in checksum of our headers (incl. outer checksum 4559 * adjustment filled in by caller) and return result. 4560 */ 4561 return csum_partial(l4_hdr, csum_start - l4_hdr, partial); 4562 } 4563 4564 static inline bool skb_is_redirected(const struct sk_buff *skb) 4565 { 4566 #ifdef CONFIG_NET_REDIRECT 4567 return skb->redirected; 4568 #else 4569 return false; 4570 #endif 4571 } 4572 4573 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress) 4574 { 4575 #ifdef CONFIG_NET_REDIRECT 4576 skb->redirected = 1; 4577 skb->from_ingress = from_ingress; 4578 if (skb->from_ingress) 4579 skb->tstamp = 0; 4580 #endif 4581 } 4582 4583 static inline void skb_reset_redirect(struct sk_buff *skb) 4584 { 4585 #ifdef CONFIG_NET_REDIRECT 4586 skb->redirected = 0; 4587 #endif 4588 } 4589 4590 #endif /* __KERNEL__ */ 4591 #endif /* _LINUX_SKBUFF_H */ 4592