xref: /linux-6.15/include/linux/skbuff.h (revision c75bec79)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  *	Definitions for the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:
6  *		Alan Cox, <[email protected]>
7  *		Florian La Roche, <[email protected]>
8  */
9 
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12 
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
22 
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/hrtimer.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/netdev_features.h>
33 #include <linux/sched.h>
34 #include <linux/sched/clock.h>
35 #include <net/flow_dissector.h>
36 #include <linux/splice.h>
37 #include <linux/in6.h>
38 #include <linux/if_packet.h>
39 #include <net/flow.h>
40 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
41 #include <linux/netfilter/nf_conntrack_common.h>
42 #endif
43 
44 /* The interface for checksum offload between the stack and networking drivers
45  * is as follows...
46  *
47  * A. IP checksum related features
48  *
49  * Drivers advertise checksum offload capabilities in the features of a device.
50  * From the stack's point of view these are capabilities offered by the driver,
51  * a driver typically only advertises features that it is capable of offloading
52  * to its device.
53  *
54  * The checksum related features are:
55  *
56  *	NETIF_F_HW_CSUM	- The driver (or its device) is able to compute one
57  *			  IP (one's complement) checksum for any combination
58  *			  of protocols or protocol layering. The checksum is
59  *			  computed and set in a packet per the CHECKSUM_PARTIAL
60  *			  interface (see below).
61  *
62  *	NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
63  *			  TCP or UDP packets over IPv4. These are specifically
64  *			  unencapsulated packets of the form IPv4|TCP or
65  *			  IPv4|UDP where the Protocol field in the IPv4 header
66  *			  is TCP or UDP. The IPv4 header may contain IP options
67  *			  This feature cannot be set in features for a device
68  *			  with NETIF_F_HW_CSUM also set. This feature is being
69  *			  DEPRECATED (see below).
70  *
71  *	NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
72  *			  TCP or UDP packets over IPv6. These are specifically
73  *			  unencapsulated packets of the form IPv6|TCP or
74  *			  IPv4|UDP where the Next Header field in the IPv6
75  *			  header is either TCP or UDP. IPv6 extension headers
76  *			  are not supported with this feature. This feature
77  *			  cannot be set in features for a device with
78  *			  NETIF_F_HW_CSUM also set. This feature is being
79  *			  DEPRECATED (see below).
80  *
81  *	NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
82  *			 This flag is used only used to disable the RX checksum
83  *			 feature for a device. The stack will accept receive
84  *			 checksum indication in packets received on a device
85  *			 regardless of whether NETIF_F_RXCSUM is set.
86  *
87  * B. Checksumming of received packets by device. Indication of checksum
88  *    verification is in set skb->ip_summed. Possible values are:
89  *
90  * CHECKSUM_NONE:
91  *
92  *   Device did not checksum this packet e.g. due to lack of capabilities.
93  *   The packet contains full (though not verified) checksum in packet but
94  *   not in skb->csum. Thus, skb->csum is undefined in this case.
95  *
96  * CHECKSUM_UNNECESSARY:
97  *
98  *   The hardware you're dealing with doesn't calculate the full checksum
99  *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
100  *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
101  *   if their checksums are okay. skb->csum is still undefined in this case
102  *   though. A driver or device must never modify the checksum field in the
103  *   packet even if checksum is verified.
104  *
105  *   CHECKSUM_UNNECESSARY is applicable to following protocols:
106  *     TCP: IPv6 and IPv4.
107  *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
108  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
109  *       may perform further validation in this case.
110  *     GRE: only if the checksum is present in the header.
111  *     SCTP: indicates the CRC in SCTP header has been validated.
112  *     FCOE: indicates the CRC in FC frame has been validated.
113  *
114  *   skb->csum_level indicates the number of consecutive checksums found in
115  *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
116  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
117  *   and a device is able to verify the checksums for UDP (possibly zero),
118  *   GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
119  *   two. If the device were only able to verify the UDP checksum and not
120  *   GRE, either because it doesn't support GRE checksum of because GRE
121  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
122  *   not considered in this case).
123  *
124  * CHECKSUM_COMPLETE:
125  *
126  *   This is the most generic way. The device supplied checksum of the _whole_
127  *   packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
128  *   hardware doesn't need to parse L3/L4 headers to implement this.
129  *
130  *   Notes:
131  *   - Even if device supports only some protocols, but is able to produce
132  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
133  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
134  *
135  * CHECKSUM_PARTIAL:
136  *
137  *   A checksum is set up to be offloaded to a device as described in the
138  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
139  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
140  *   on the same host, or it may be set in the input path in GRO or remote
141  *   checksum offload. For the purposes of checksum verification, the checksum
142  *   referred to by skb->csum_start + skb->csum_offset and any preceding
143  *   checksums in the packet are considered verified. Any checksums in the
144  *   packet that are after the checksum being offloaded are not considered to
145  *   be verified.
146  *
147  * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
148  *    in the skb->ip_summed for a packet. Values are:
149  *
150  * CHECKSUM_PARTIAL:
151  *
152  *   The driver is required to checksum the packet as seen by hard_start_xmit()
153  *   from skb->csum_start up to the end, and to record/write the checksum at
154  *   offset skb->csum_start + skb->csum_offset. A driver may verify that the
155  *   csum_start and csum_offset values are valid values given the length and
156  *   offset of the packet, however they should not attempt to validate that the
157  *   checksum refers to a legitimate transport layer checksum-- it is the
158  *   purview of the stack to validate that csum_start and csum_offset are set
159  *   correctly.
160  *
161  *   When the stack requests checksum offload for a packet, the driver MUST
162  *   ensure that the checksum is set correctly. A driver can either offload the
163  *   checksum calculation to the device, or call skb_checksum_help (in the case
164  *   that the device does not support offload for a particular checksum).
165  *
166  *   NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
167  *   NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
168  *   checksum offload capability.
169  *   skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
170  *   on network device checksumming capabilities: if a packet does not match
171  *   them, skb_checksum_help or skb_crc32c_help (depending on the value of
172  *   csum_not_inet, see item D.) is called to resolve the checksum.
173  *
174  * CHECKSUM_NONE:
175  *
176  *   The skb was already checksummed by the protocol, or a checksum is not
177  *   required.
178  *
179  * CHECKSUM_UNNECESSARY:
180  *
181  *   This has the same meaning on as CHECKSUM_NONE for checksum offload on
182  *   output.
183  *
184  * CHECKSUM_COMPLETE:
185  *   Not used in checksum output. If a driver observes a packet with this value
186  *   set in skbuff, if should treat as CHECKSUM_NONE being set.
187  *
188  * D. Non-IP checksum (CRC) offloads
189  *
190  *   NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
191  *     offloading the SCTP CRC in a packet. To perform this offload the stack
192  *     will set set csum_start and csum_offset accordingly, set ip_summed to
193  *     CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
194  *     the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
195  *     A driver that supports both IP checksum offload and SCTP CRC32c offload
196  *     must verify which offload is configured for a packet by testing the
197  *     value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
198  *     CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
199  *
200  *   NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
201  *     offloading the FCOE CRC in a packet. To perform this offload the stack
202  *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
203  *     accordingly. Note the there is no indication in the skbuff that the
204  *     CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
205  *     both IP checksum offload and FCOE CRC offload must verify which offload
206  *     is configured for a packet presumably by inspecting packet headers.
207  *
208  * E. Checksumming on output with GSO.
209  *
210  * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
211  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
212  * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
213  * part of the GSO operation is implied. If a checksum is being offloaded
214  * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
215  * are set to refer to the outermost checksum being offload (two offloaded
216  * checksums are possible with UDP encapsulation).
217  */
218 
219 /* Don't change this without changing skb_csum_unnecessary! */
220 #define CHECKSUM_NONE		0
221 #define CHECKSUM_UNNECESSARY	1
222 #define CHECKSUM_COMPLETE	2
223 #define CHECKSUM_PARTIAL	3
224 
225 /* Maximum value in skb->csum_level */
226 #define SKB_MAX_CSUM_LEVEL	3
227 
228 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
229 #define SKB_WITH_OVERHEAD(X)	\
230 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
231 #define SKB_MAX_ORDER(X, ORDER) \
232 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
233 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
234 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
235 
236 /* return minimum truesize of one skb containing X bytes of data */
237 #define SKB_TRUESIZE(X) ((X) +						\
238 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
239 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
240 
241 struct net_device;
242 struct scatterlist;
243 struct pipe_inode_info;
244 struct iov_iter;
245 struct napi_struct;
246 struct bpf_prog;
247 union bpf_attr;
248 struct skb_ext;
249 
250 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
251 struct nf_bridge_info {
252 	enum {
253 		BRNF_PROTO_UNCHANGED,
254 		BRNF_PROTO_8021Q,
255 		BRNF_PROTO_PPPOE
256 	} orig_proto:8;
257 	u8			pkt_otherhost:1;
258 	u8			in_prerouting:1;
259 	u8			bridged_dnat:1;
260 	__u16			frag_max_size;
261 	struct net_device	*physindev;
262 
263 	/* always valid & non-NULL from FORWARD on, for physdev match */
264 	struct net_device	*physoutdev;
265 	union {
266 		/* prerouting: detect dnat in orig/reply direction */
267 		__be32          ipv4_daddr;
268 		struct in6_addr ipv6_daddr;
269 
270 		/* after prerouting + nat detected: store original source
271 		 * mac since neigh resolution overwrites it, only used while
272 		 * skb is out in neigh layer.
273 		 */
274 		char neigh_header[8];
275 	};
276 };
277 #endif
278 
279 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
280 /* Chain in tc_skb_ext will be used to share the tc chain with
281  * ovs recirc_id. It will be set to the current chain by tc
282  * and read by ovs to recirc_id.
283  */
284 struct tc_skb_ext {
285 	__u32 chain;
286 };
287 #endif
288 
289 struct sk_buff_head {
290 	/* These two members must be first. */
291 	struct sk_buff	*next;
292 	struct sk_buff	*prev;
293 
294 	__u32		qlen;
295 	spinlock_t	lock;
296 };
297 
298 struct sk_buff;
299 
300 /* To allow 64K frame to be packed as single skb without frag_list we
301  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
302  * buffers which do not start on a page boundary.
303  *
304  * Since GRO uses frags we allocate at least 16 regardless of page
305  * size.
306  */
307 #if (65536/PAGE_SIZE + 1) < 16
308 #define MAX_SKB_FRAGS 16UL
309 #else
310 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
311 #endif
312 extern int sysctl_max_skb_frags;
313 
314 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
315  * segment using its current segmentation instead.
316  */
317 #define GSO_BY_FRAGS	0xFFFF
318 
319 typedef struct bio_vec skb_frag_t;
320 
321 /**
322  * skb_frag_size() - Returns the size of a skb fragment
323  * @frag: skb fragment
324  */
325 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
326 {
327 	return frag->bv_len;
328 }
329 
330 /**
331  * skb_frag_size_set() - Sets the size of a skb fragment
332  * @frag: skb fragment
333  * @size: size of fragment
334  */
335 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
336 {
337 	frag->bv_len = size;
338 }
339 
340 /**
341  * skb_frag_size_add() - Increments the size of a skb fragment by @delta
342  * @frag: skb fragment
343  * @delta: value to add
344  */
345 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
346 {
347 	frag->bv_len += delta;
348 }
349 
350 /**
351  * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
352  * @frag: skb fragment
353  * @delta: value to subtract
354  */
355 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
356 {
357 	frag->bv_len -= delta;
358 }
359 
360 /**
361  * skb_frag_must_loop - Test if %p is a high memory page
362  * @p: fragment's page
363  */
364 static inline bool skb_frag_must_loop(struct page *p)
365 {
366 #if defined(CONFIG_HIGHMEM)
367 	if (PageHighMem(p))
368 		return true;
369 #endif
370 	return false;
371 }
372 
373 /**
374  *	skb_frag_foreach_page - loop over pages in a fragment
375  *
376  *	@f:		skb frag to operate on
377  *	@f_off:		offset from start of f->bv_page
378  *	@f_len:		length from f_off to loop over
379  *	@p:		(temp var) current page
380  *	@p_off:		(temp var) offset from start of current page,
381  *	                           non-zero only on first page.
382  *	@p_len:		(temp var) length in current page,
383  *				   < PAGE_SIZE only on first and last page.
384  *	@copied:	(temp var) length so far, excluding current p_len.
385  *
386  *	A fragment can hold a compound page, in which case per-page
387  *	operations, notably kmap_atomic, must be called for each
388  *	regular page.
389  */
390 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
391 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
392 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
393 	     p_len = skb_frag_must_loop(p) ?				\
394 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
395 	     copied = 0;						\
396 	     copied < f_len;						\
397 	     copied += p_len, p++, p_off = 0,				\
398 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
399 
400 #define HAVE_HW_TIME_STAMP
401 
402 /**
403  * struct skb_shared_hwtstamps - hardware time stamps
404  * @hwtstamp:	hardware time stamp transformed into duration
405  *		since arbitrary point in time
406  *
407  * Software time stamps generated by ktime_get_real() are stored in
408  * skb->tstamp.
409  *
410  * hwtstamps can only be compared against other hwtstamps from
411  * the same device.
412  *
413  * This structure is attached to packets as part of the
414  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
415  */
416 struct skb_shared_hwtstamps {
417 	ktime_t	hwtstamp;
418 };
419 
420 /* Definitions for tx_flags in struct skb_shared_info */
421 enum {
422 	/* generate hardware time stamp */
423 	SKBTX_HW_TSTAMP = 1 << 0,
424 
425 	/* generate software time stamp when queueing packet to NIC */
426 	SKBTX_SW_TSTAMP = 1 << 1,
427 
428 	/* device driver is going to provide hardware time stamp */
429 	SKBTX_IN_PROGRESS = 1 << 2,
430 
431 	/* device driver supports TX zero-copy buffers */
432 	SKBTX_DEV_ZEROCOPY = 1 << 3,
433 
434 	/* generate wifi status information (where possible) */
435 	SKBTX_WIFI_STATUS = 1 << 4,
436 
437 	/* This indicates at least one fragment might be overwritten
438 	 * (as in vmsplice(), sendfile() ...)
439 	 * If we need to compute a TX checksum, we'll need to copy
440 	 * all frags to avoid possible bad checksum
441 	 */
442 	SKBTX_SHARED_FRAG = 1 << 5,
443 
444 	/* generate software time stamp when entering packet scheduling */
445 	SKBTX_SCHED_TSTAMP = 1 << 6,
446 };
447 
448 #define SKBTX_ZEROCOPY_FRAG	(SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG)
449 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
450 				 SKBTX_SCHED_TSTAMP)
451 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
452 
453 /*
454  * The callback notifies userspace to release buffers when skb DMA is done in
455  * lower device, the skb last reference should be 0 when calling this.
456  * The zerocopy_success argument is true if zero copy transmit occurred,
457  * false on data copy or out of memory error caused by data copy attempt.
458  * The ctx field is used to track device context.
459  * The desc field is used to track userspace buffer index.
460  */
461 struct ubuf_info {
462 	void (*callback)(struct ubuf_info *, bool zerocopy_success);
463 	union {
464 		struct {
465 			unsigned long desc;
466 			void *ctx;
467 		};
468 		struct {
469 			u32 id;
470 			u16 len;
471 			u16 zerocopy:1;
472 			u32 bytelen;
473 		};
474 	};
475 	refcount_t refcnt;
476 
477 	struct mmpin {
478 		struct user_struct *user;
479 		unsigned int num_pg;
480 	} mmp;
481 };
482 
483 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
484 
485 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
486 void mm_unaccount_pinned_pages(struct mmpin *mmp);
487 
488 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size);
489 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
490 					struct ubuf_info *uarg);
491 
492 static inline void sock_zerocopy_get(struct ubuf_info *uarg)
493 {
494 	refcount_inc(&uarg->refcnt);
495 }
496 
497 void sock_zerocopy_put(struct ubuf_info *uarg);
498 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
499 
500 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success);
501 
502 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len);
503 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
504 			     struct msghdr *msg, int len,
505 			     struct ubuf_info *uarg);
506 
507 /* This data is invariant across clones and lives at
508  * the end of the header data, ie. at skb->end.
509  */
510 struct skb_shared_info {
511 	__u8		__unused;
512 	__u8		meta_len;
513 	__u8		nr_frags;
514 	__u8		tx_flags;
515 	unsigned short	gso_size;
516 	/* Warning: this field is not always filled in (UFO)! */
517 	unsigned short	gso_segs;
518 	struct sk_buff	*frag_list;
519 	struct skb_shared_hwtstamps hwtstamps;
520 	unsigned int	gso_type;
521 	u32		tskey;
522 
523 	/*
524 	 * Warning : all fields before dataref are cleared in __alloc_skb()
525 	 */
526 	atomic_t	dataref;
527 
528 	/* Intermediate layers must ensure that destructor_arg
529 	 * remains valid until skb destructor */
530 	void *		destructor_arg;
531 
532 	/* must be last field, see pskb_expand_head() */
533 	skb_frag_t	frags[MAX_SKB_FRAGS];
534 };
535 
536 /* We divide dataref into two halves.  The higher 16 bits hold references
537  * to the payload part of skb->data.  The lower 16 bits hold references to
538  * the entire skb->data.  A clone of a headerless skb holds the length of
539  * the header in skb->hdr_len.
540  *
541  * All users must obey the rule that the skb->data reference count must be
542  * greater than or equal to the payload reference count.
543  *
544  * Holding a reference to the payload part means that the user does not
545  * care about modifications to the header part of skb->data.
546  */
547 #define SKB_DATAREF_SHIFT 16
548 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
549 
550 
551 enum {
552 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
553 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
554 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
555 };
556 
557 enum {
558 	SKB_GSO_TCPV4 = 1 << 0,
559 
560 	/* This indicates the skb is from an untrusted source. */
561 	SKB_GSO_DODGY = 1 << 1,
562 
563 	/* This indicates the tcp segment has CWR set. */
564 	SKB_GSO_TCP_ECN = 1 << 2,
565 
566 	SKB_GSO_TCP_FIXEDID = 1 << 3,
567 
568 	SKB_GSO_TCPV6 = 1 << 4,
569 
570 	SKB_GSO_FCOE = 1 << 5,
571 
572 	SKB_GSO_GRE = 1 << 6,
573 
574 	SKB_GSO_GRE_CSUM = 1 << 7,
575 
576 	SKB_GSO_IPXIP4 = 1 << 8,
577 
578 	SKB_GSO_IPXIP6 = 1 << 9,
579 
580 	SKB_GSO_UDP_TUNNEL = 1 << 10,
581 
582 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
583 
584 	SKB_GSO_PARTIAL = 1 << 12,
585 
586 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
587 
588 	SKB_GSO_SCTP = 1 << 14,
589 
590 	SKB_GSO_ESP = 1 << 15,
591 
592 	SKB_GSO_UDP = 1 << 16,
593 
594 	SKB_GSO_UDP_L4 = 1 << 17,
595 
596 	SKB_GSO_FRAGLIST = 1 << 18,
597 };
598 
599 #if BITS_PER_LONG > 32
600 #define NET_SKBUFF_DATA_USES_OFFSET 1
601 #endif
602 
603 #ifdef NET_SKBUFF_DATA_USES_OFFSET
604 typedef unsigned int sk_buff_data_t;
605 #else
606 typedef unsigned char *sk_buff_data_t;
607 #endif
608 
609 /**
610  *	struct sk_buff - socket buffer
611  *	@next: Next buffer in list
612  *	@prev: Previous buffer in list
613  *	@tstamp: Time we arrived/left
614  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
615  *	@sk: Socket we are owned by
616  *	@dev: Device we arrived on/are leaving by
617  *	@cb: Control buffer. Free for use by every layer. Put private vars here
618  *	@_skb_refdst: destination entry (with norefcount bit)
619  *	@sp: the security path, used for xfrm
620  *	@len: Length of actual data
621  *	@data_len: Data length
622  *	@mac_len: Length of link layer header
623  *	@hdr_len: writable header length of cloned skb
624  *	@csum: Checksum (must include start/offset pair)
625  *	@csum_start: Offset from skb->head where checksumming should start
626  *	@csum_offset: Offset from csum_start where checksum should be stored
627  *	@priority: Packet queueing priority
628  *	@ignore_df: allow local fragmentation
629  *	@cloned: Head may be cloned (check refcnt to be sure)
630  *	@ip_summed: Driver fed us an IP checksum
631  *	@nohdr: Payload reference only, must not modify header
632  *	@pkt_type: Packet class
633  *	@fclone: skbuff clone status
634  *	@ipvs_property: skbuff is owned by ipvs
635  *	@offload_fwd_mark: Packet was L2-forwarded in hardware
636  *	@offload_l3_fwd_mark: Packet was L3-forwarded in hardware
637  *	@tc_skip_classify: do not classify packet. set by IFB device
638  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
639  *	@tc_redirected: packet was redirected by a tc action
640  *	@tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect
641  *	@peeked: this packet has been seen already, so stats have been
642  *		done for it, don't do them again
643  *	@nf_trace: netfilter packet trace flag
644  *	@protocol: Packet protocol from driver
645  *	@destructor: Destruct function
646  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
647  *	@_nfct: Associated connection, if any (with nfctinfo bits)
648  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
649  *	@skb_iif: ifindex of device we arrived on
650  *	@tc_index: Traffic control index
651  *	@hash: the packet hash
652  *	@queue_mapping: Queue mapping for multiqueue devices
653  *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
654  *	@active_extensions: active extensions (skb_ext_id types)
655  *	@ndisc_nodetype: router type (from link layer)
656  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
657  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
658  *		ports.
659  *	@sw_hash: indicates hash was computed in software stack
660  *	@wifi_acked_valid: wifi_acked was set
661  *	@wifi_acked: whether frame was acked on wifi or not
662  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
663  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
664  *	@dst_pending_confirm: need to confirm neighbour
665  *	@decrypted: Decrypted SKB
666  *	@napi_id: id of the NAPI struct this skb came from
667  *	@secmark: security marking
668  *	@mark: Generic packet mark
669  *	@vlan_proto: vlan encapsulation protocol
670  *	@vlan_tci: vlan tag control information
671  *	@inner_protocol: Protocol (encapsulation)
672  *	@inner_transport_header: Inner transport layer header (encapsulation)
673  *	@inner_network_header: Network layer header (encapsulation)
674  *	@inner_mac_header: Link layer header (encapsulation)
675  *	@transport_header: Transport layer header
676  *	@network_header: Network layer header
677  *	@mac_header: Link layer header
678  *	@tail: Tail pointer
679  *	@end: End pointer
680  *	@head: Head of buffer
681  *	@data: Data head pointer
682  *	@truesize: Buffer size
683  *	@users: User count - see {datagram,tcp}.c
684  *	@extensions: allocated extensions, valid if active_extensions is nonzero
685  */
686 
687 struct sk_buff {
688 	union {
689 		struct {
690 			/* These two members must be first. */
691 			struct sk_buff		*next;
692 			struct sk_buff		*prev;
693 
694 			union {
695 				struct net_device	*dev;
696 				/* Some protocols might use this space to store information,
697 				 * while device pointer would be NULL.
698 				 * UDP receive path is one user.
699 				 */
700 				unsigned long		dev_scratch;
701 			};
702 		};
703 		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
704 		struct list_head	list;
705 	};
706 
707 	union {
708 		struct sock		*sk;
709 		int			ip_defrag_offset;
710 	};
711 
712 	union {
713 		ktime_t		tstamp;
714 		u64		skb_mstamp_ns; /* earliest departure time */
715 	};
716 	/*
717 	 * This is the control buffer. It is free to use for every
718 	 * layer. Please put your private variables there. If you
719 	 * want to keep them across layers you have to do a skb_clone()
720 	 * first. This is owned by whoever has the skb queued ATM.
721 	 */
722 	char			cb[48] __aligned(8);
723 
724 	union {
725 		struct {
726 			unsigned long	_skb_refdst;
727 			void		(*destructor)(struct sk_buff *skb);
728 		};
729 		struct list_head	tcp_tsorted_anchor;
730 	};
731 
732 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
733 	unsigned long		 _nfct;
734 #endif
735 	unsigned int		len,
736 				data_len;
737 	__u16			mac_len,
738 				hdr_len;
739 
740 	/* Following fields are _not_ copied in __copy_skb_header()
741 	 * Note that queue_mapping is here mostly to fill a hole.
742 	 */
743 	__u16			queue_mapping;
744 
745 /* if you move cloned around you also must adapt those constants */
746 #ifdef __BIG_ENDIAN_BITFIELD
747 #define CLONED_MASK	(1 << 7)
748 #else
749 #define CLONED_MASK	1
750 #endif
751 #define CLONED_OFFSET()		offsetof(struct sk_buff, __cloned_offset)
752 
753 	__u8			__cloned_offset[0];
754 	__u8			cloned:1,
755 				nohdr:1,
756 				fclone:2,
757 				peeked:1,
758 				head_frag:1,
759 				pfmemalloc:1;
760 #ifdef CONFIG_SKB_EXTENSIONS
761 	__u8			active_extensions;
762 #endif
763 	/* fields enclosed in headers_start/headers_end are copied
764 	 * using a single memcpy() in __copy_skb_header()
765 	 */
766 	/* private: */
767 	__u32			headers_start[0];
768 	/* public: */
769 
770 /* if you move pkt_type around you also must adapt those constants */
771 #ifdef __BIG_ENDIAN_BITFIELD
772 #define PKT_TYPE_MAX	(7 << 5)
773 #else
774 #define PKT_TYPE_MAX	7
775 #endif
776 #define PKT_TYPE_OFFSET()	offsetof(struct sk_buff, __pkt_type_offset)
777 
778 	__u8			__pkt_type_offset[0];
779 	__u8			pkt_type:3;
780 	__u8			ignore_df:1;
781 	__u8			nf_trace:1;
782 	__u8			ip_summed:2;
783 	__u8			ooo_okay:1;
784 
785 	__u8			l4_hash:1;
786 	__u8			sw_hash:1;
787 	__u8			wifi_acked_valid:1;
788 	__u8			wifi_acked:1;
789 	__u8			no_fcs:1;
790 	/* Indicates the inner headers are valid in the skbuff. */
791 	__u8			encapsulation:1;
792 	__u8			encap_hdr_csum:1;
793 	__u8			csum_valid:1;
794 
795 #ifdef __BIG_ENDIAN_BITFIELD
796 #define PKT_VLAN_PRESENT_BIT	7
797 #else
798 #define PKT_VLAN_PRESENT_BIT	0
799 #endif
800 #define PKT_VLAN_PRESENT_OFFSET()	offsetof(struct sk_buff, __pkt_vlan_present_offset)
801 	__u8			__pkt_vlan_present_offset[0];
802 	__u8			vlan_present:1;
803 	__u8			csum_complete_sw:1;
804 	__u8			csum_level:2;
805 	__u8			csum_not_inet:1;
806 	__u8			dst_pending_confirm:1;
807 #ifdef CONFIG_IPV6_NDISC_NODETYPE
808 	__u8			ndisc_nodetype:2;
809 #endif
810 
811 	__u8			ipvs_property:1;
812 	__u8			inner_protocol_type:1;
813 	__u8			remcsum_offload:1;
814 #ifdef CONFIG_NET_SWITCHDEV
815 	__u8			offload_fwd_mark:1;
816 	__u8			offload_l3_fwd_mark:1;
817 #endif
818 #ifdef CONFIG_NET_CLS_ACT
819 	__u8			tc_skip_classify:1;
820 	__u8			tc_at_ingress:1;
821 	__u8			tc_redirected:1;
822 	__u8			tc_from_ingress:1;
823 #endif
824 #ifdef CONFIG_TLS_DEVICE
825 	__u8			decrypted:1;
826 #endif
827 
828 #ifdef CONFIG_NET_SCHED
829 	__u16			tc_index;	/* traffic control index */
830 #endif
831 
832 	union {
833 		__wsum		csum;
834 		struct {
835 			__u16	csum_start;
836 			__u16	csum_offset;
837 		};
838 	};
839 	__u32			priority;
840 	int			skb_iif;
841 	__u32			hash;
842 	__be16			vlan_proto;
843 	__u16			vlan_tci;
844 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
845 	union {
846 		unsigned int	napi_id;
847 		unsigned int	sender_cpu;
848 	};
849 #endif
850 #ifdef CONFIG_NETWORK_SECMARK
851 	__u32		secmark;
852 #endif
853 
854 	union {
855 		__u32		mark;
856 		__u32		reserved_tailroom;
857 	};
858 
859 	union {
860 		__be16		inner_protocol;
861 		__u8		inner_ipproto;
862 	};
863 
864 	__u16			inner_transport_header;
865 	__u16			inner_network_header;
866 	__u16			inner_mac_header;
867 
868 	__be16			protocol;
869 	__u16			transport_header;
870 	__u16			network_header;
871 	__u16			mac_header;
872 
873 	/* private: */
874 	__u32			headers_end[0];
875 	/* public: */
876 
877 	/* These elements must be at the end, see alloc_skb() for details.  */
878 	sk_buff_data_t		tail;
879 	sk_buff_data_t		end;
880 	unsigned char		*head,
881 				*data;
882 	unsigned int		truesize;
883 	refcount_t		users;
884 
885 #ifdef CONFIG_SKB_EXTENSIONS
886 	/* only useable after checking ->active_extensions != 0 */
887 	struct skb_ext		*extensions;
888 #endif
889 };
890 
891 #ifdef __KERNEL__
892 /*
893  *	Handling routines are only of interest to the kernel
894  */
895 
896 #define SKB_ALLOC_FCLONE	0x01
897 #define SKB_ALLOC_RX		0x02
898 #define SKB_ALLOC_NAPI		0x04
899 
900 /**
901  * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
902  * @skb: buffer
903  */
904 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
905 {
906 	return unlikely(skb->pfmemalloc);
907 }
908 
909 /*
910  * skb might have a dst pointer attached, refcounted or not.
911  * _skb_refdst low order bit is set if refcount was _not_ taken
912  */
913 #define SKB_DST_NOREF	1UL
914 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
915 
916 /**
917  * skb_dst - returns skb dst_entry
918  * @skb: buffer
919  *
920  * Returns skb dst_entry, regardless of reference taken or not.
921  */
922 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
923 {
924 	/* If refdst was not refcounted, check we still are in a
925 	 * rcu_read_lock section
926 	 */
927 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
928 		!rcu_read_lock_held() &&
929 		!rcu_read_lock_bh_held());
930 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
931 }
932 
933 /**
934  * skb_dst_set - sets skb dst
935  * @skb: buffer
936  * @dst: dst entry
937  *
938  * Sets skb dst, assuming a reference was taken on dst and should
939  * be released by skb_dst_drop()
940  */
941 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
942 {
943 	skb->_skb_refdst = (unsigned long)dst;
944 }
945 
946 /**
947  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
948  * @skb: buffer
949  * @dst: dst entry
950  *
951  * Sets skb dst, assuming a reference was not taken on dst.
952  * If dst entry is cached, we do not take reference and dst_release
953  * will be avoided by refdst_drop. If dst entry is not cached, we take
954  * reference, so that last dst_release can destroy the dst immediately.
955  */
956 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
957 {
958 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
959 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
960 }
961 
962 /**
963  * skb_dst_is_noref - Test if skb dst isn't refcounted
964  * @skb: buffer
965  */
966 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
967 {
968 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
969 }
970 
971 /**
972  * skb_rtable - Returns the skb &rtable
973  * @skb: buffer
974  */
975 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
976 {
977 	return (struct rtable *)skb_dst(skb);
978 }
979 
980 /* For mangling skb->pkt_type from user space side from applications
981  * such as nft, tc, etc, we only allow a conservative subset of
982  * possible pkt_types to be set.
983 */
984 static inline bool skb_pkt_type_ok(u32 ptype)
985 {
986 	return ptype <= PACKET_OTHERHOST;
987 }
988 
989 /**
990  * skb_napi_id - Returns the skb's NAPI id
991  * @skb: buffer
992  */
993 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
994 {
995 #ifdef CONFIG_NET_RX_BUSY_POLL
996 	return skb->napi_id;
997 #else
998 	return 0;
999 #endif
1000 }
1001 
1002 /**
1003  * skb_unref - decrement the skb's reference count
1004  * @skb: buffer
1005  *
1006  * Returns true if we can free the skb.
1007  */
1008 static inline bool skb_unref(struct sk_buff *skb)
1009 {
1010 	if (unlikely(!skb))
1011 		return false;
1012 	if (likely(refcount_read(&skb->users) == 1))
1013 		smp_rmb();
1014 	else if (likely(!refcount_dec_and_test(&skb->users)))
1015 		return false;
1016 
1017 	return true;
1018 }
1019 
1020 void skb_release_head_state(struct sk_buff *skb);
1021 void kfree_skb(struct sk_buff *skb);
1022 void kfree_skb_list(struct sk_buff *segs);
1023 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1024 void skb_tx_error(struct sk_buff *skb);
1025 void consume_skb(struct sk_buff *skb);
1026 void __consume_stateless_skb(struct sk_buff *skb);
1027 void  __kfree_skb(struct sk_buff *skb);
1028 extern struct kmem_cache *skbuff_head_cache;
1029 
1030 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1031 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1032 		      bool *fragstolen, int *delta_truesize);
1033 
1034 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1035 			    int node);
1036 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1037 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1038 struct sk_buff *build_skb_around(struct sk_buff *skb,
1039 				 void *data, unsigned int frag_size);
1040 
1041 /**
1042  * alloc_skb - allocate a network buffer
1043  * @size: size to allocate
1044  * @priority: allocation mask
1045  *
1046  * This function is a convenient wrapper around __alloc_skb().
1047  */
1048 static inline struct sk_buff *alloc_skb(unsigned int size,
1049 					gfp_t priority)
1050 {
1051 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1052 }
1053 
1054 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1055 				     unsigned long data_len,
1056 				     int max_page_order,
1057 				     int *errcode,
1058 				     gfp_t gfp_mask);
1059 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1060 
1061 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1062 struct sk_buff_fclones {
1063 	struct sk_buff	skb1;
1064 
1065 	struct sk_buff	skb2;
1066 
1067 	refcount_t	fclone_ref;
1068 };
1069 
1070 /**
1071  *	skb_fclone_busy - check if fclone is busy
1072  *	@sk: socket
1073  *	@skb: buffer
1074  *
1075  * Returns true if skb is a fast clone, and its clone is not freed.
1076  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1077  * so we also check that this didnt happen.
1078  */
1079 static inline bool skb_fclone_busy(const struct sock *sk,
1080 				   const struct sk_buff *skb)
1081 {
1082 	const struct sk_buff_fclones *fclones;
1083 
1084 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1085 
1086 	return skb->fclone == SKB_FCLONE_ORIG &&
1087 	       refcount_read(&fclones->fclone_ref) > 1 &&
1088 	       fclones->skb2.sk == sk;
1089 }
1090 
1091 /**
1092  * alloc_skb_fclone - allocate a network buffer from fclone cache
1093  * @size: size to allocate
1094  * @priority: allocation mask
1095  *
1096  * This function is a convenient wrapper around __alloc_skb().
1097  */
1098 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1099 					       gfp_t priority)
1100 {
1101 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1102 }
1103 
1104 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1105 void skb_headers_offset_update(struct sk_buff *skb, int off);
1106 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1107 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1108 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1109 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1110 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1111 				   gfp_t gfp_mask, bool fclone);
1112 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1113 					  gfp_t gfp_mask)
1114 {
1115 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1116 }
1117 
1118 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1119 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1120 				     unsigned int headroom);
1121 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1122 				int newtailroom, gfp_t priority);
1123 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1124 				     int offset, int len);
1125 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1126 			      int offset, int len);
1127 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1128 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1129 
1130 /**
1131  *	skb_pad			-	zero pad the tail of an skb
1132  *	@skb: buffer to pad
1133  *	@pad: space to pad
1134  *
1135  *	Ensure that a buffer is followed by a padding area that is zero
1136  *	filled. Used by network drivers which may DMA or transfer data
1137  *	beyond the buffer end onto the wire.
1138  *
1139  *	May return error in out of memory cases. The skb is freed on error.
1140  */
1141 static inline int skb_pad(struct sk_buff *skb, int pad)
1142 {
1143 	return __skb_pad(skb, pad, true);
1144 }
1145 #define dev_kfree_skb(a)	consume_skb(a)
1146 
1147 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1148 			 int offset, size_t size);
1149 
1150 struct skb_seq_state {
1151 	__u32		lower_offset;
1152 	__u32		upper_offset;
1153 	__u32		frag_idx;
1154 	__u32		stepped_offset;
1155 	struct sk_buff	*root_skb;
1156 	struct sk_buff	*cur_skb;
1157 	__u8		*frag_data;
1158 };
1159 
1160 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1161 			  unsigned int to, struct skb_seq_state *st);
1162 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1163 			  struct skb_seq_state *st);
1164 void skb_abort_seq_read(struct skb_seq_state *st);
1165 
1166 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1167 			   unsigned int to, struct ts_config *config);
1168 
1169 /*
1170  * Packet hash types specify the type of hash in skb_set_hash.
1171  *
1172  * Hash types refer to the protocol layer addresses which are used to
1173  * construct a packet's hash. The hashes are used to differentiate or identify
1174  * flows of the protocol layer for the hash type. Hash types are either
1175  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1176  *
1177  * Properties of hashes:
1178  *
1179  * 1) Two packets in different flows have different hash values
1180  * 2) Two packets in the same flow should have the same hash value
1181  *
1182  * A hash at a higher layer is considered to be more specific. A driver should
1183  * set the most specific hash possible.
1184  *
1185  * A driver cannot indicate a more specific hash than the layer at which a hash
1186  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1187  *
1188  * A driver may indicate a hash level which is less specific than the
1189  * actual layer the hash was computed on. For instance, a hash computed
1190  * at L4 may be considered an L3 hash. This should only be done if the
1191  * driver can't unambiguously determine that the HW computed the hash at
1192  * the higher layer. Note that the "should" in the second property above
1193  * permits this.
1194  */
1195 enum pkt_hash_types {
1196 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1197 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1198 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1199 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1200 };
1201 
1202 static inline void skb_clear_hash(struct sk_buff *skb)
1203 {
1204 	skb->hash = 0;
1205 	skb->sw_hash = 0;
1206 	skb->l4_hash = 0;
1207 }
1208 
1209 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1210 {
1211 	if (!skb->l4_hash)
1212 		skb_clear_hash(skb);
1213 }
1214 
1215 static inline void
1216 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1217 {
1218 	skb->l4_hash = is_l4;
1219 	skb->sw_hash = is_sw;
1220 	skb->hash = hash;
1221 }
1222 
1223 static inline void
1224 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1225 {
1226 	/* Used by drivers to set hash from HW */
1227 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1228 }
1229 
1230 static inline void
1231 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1232 {
1233 	__skb_set_hash(skb, hash, true, is_l4);
1234 }
1235 
1236 void __skb_get_hash(struct sk_buff *skb);
1237 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1238 u32 skb_get_poff(const struct sk_buff *skb);
1239 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1240 		   const struct flow_keys_basic *keys, int hlen);
1241 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1242 			    void *data, int hlen_proto);
1243 
1244 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1245 					int thoff, u8 ip_proto)
1246 {
1247 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1248 }
1249 
1250 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1251 			     const struct flow_dissector_key *key,
1252 			     unsigned int key_count);
1253 
1254 #ifdef CONFIG_NET
1255 int skb_flow_dissector_prog_query(const union bpf_attr *attr,
1256 				  union bpf_attr __user *uattr);
1257 int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr,
1258 				       struct bpf_prog *prog);
1259 
1260 int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr);
1261 #else
1262 static inline int skb_flow_dissector_prog_query(const union bpf_attr *attr,
1263 						union bpf_attr __user *uattr)
1264 {
1265 	return -EOPNOTSUPP;
1266 }
1267 
1268 static inline int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr,
1269 						     struct bpf_prog *prog)
1270 {
1271 	return -EOPNOTSUPP;
1272 }
1273 
1274 static inline int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr)
1275 {
1276 	return -EOPNOTSUPP;
1277 }
1278 #endif
1279 
1280 struct bpf_flow_dissector;
1281 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1282 		      __be16 proto, int nhoff, int hlen, unsigned int flags);
1283 
1284 bool __skb_flow_dissect(const struct net *net,
1285 			const struct sk_buff *skb,
1286 			struct flow_dissector *flow_dissector,
1287 			void *target_container,
1288 			void *data, __be16 proto, int nhoff, int hlen,
1289 			unsigned int flags);
1290 
1291 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1292 				    struct flow_dissector *flow_dissector,
1293 				    void *target_container, unsigned int flags)
1294 {
1295 	return __skb_flow_dissect(NULL, skb, flow_dissector,
1296 				  target_container, NULL, 0, 0, 0, flags);
1297 }
1298 
1299 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1300 					      struct flow_keys *flow,
1301 					      unsigned int flags)
1302 {
1303 	memset(flow, 0, sizeof(*flow));
1304 	return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1305 				  flow, NULL, 0, 0, 0, flags);
1306 }
1307 
1308 static inline bool
1309 skb_flow_dissect_flow_keys_basic(const struct net *net,
1310 				 const struct sk_buff *skb,
1311 				 struct flow_keys_basic *flow, void *data,
1312 				 __be16 proto, int nhoff, int hlen,
1313 				 unsigned int flags)
1314 {
1315 	memset(flow, 0, sizeof(*flow));
1316 	return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1317 				  data, proto, nhoff, hlen, flags);
1318 }
1319 
1320 void skb_flow_dissect_meta(const struct sk_buff *skb,
1321 			   struct flow_dissector *flow_dissector,
1322 			   void *target_container);
1323 
1324 /* Gets a skb connection tracking info, ctinfo map should be a
1325  * a map of mapsize to translate enum ip_conntrack_info states
1326  * to user states.
1327  */
1328 void
1329 skb_flow_dissect_ct(const struct sk_buff *skb,
1330 		    struct flow_dissector *flow_dissector,
1331 		    void *target_container,
1332 		    u16 *ctinfo_map,
1333 		    size_t mapsize);
1334 void
1335 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1336 			     struct flow_dissector *flow_dissector,
1337 			     void *target_container);
1338 
1339 static inline __u32 skb_get_hash(struct sk_buff *skb)
1340 {
1341 	if (!skb->l4_hash && !skb->sw_hash)
1342 		__skb_get_hash(skb);
1343 
1344 	return skb->hash;
1345 }
1346 
1347 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1348 {
1349 	if (!skb->l4_hash && !skb->sw_hash) {
1350 		struct flow_keys keys;
1351 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1352 
1353 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1354 	}
1355 
1356 	return skb->hash;
1357 }
1358 
1359 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1360 			   const siphash_key_t *perturb);
1361 
1362 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1363 {
1364 	return skb->hash;
1365 }
1366 
1367 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1368 {
1369 	to->hash = from->hash;
1370 	to->sw_hash = from->sw_hash;
1371 	to->l4_hash = from->l4_hash;
1372 };
1373 
1374 static inline void skb_copy_decrypted(struct sk_buff *to,
1375 				      const struct sk_buff *from)
1376 {
1377 #ifdef CONFIG_TLS_DEVICE
1378 	to->decrypted = from->decrypted;
1379 #endif
1380 }
1381 
1382 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1383 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1384 {
1385 	return skb->head + skb->end;
1386 }
1387 
1388 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1389 {
1390 	return skb->end;
1391 }
1392 #else
1393 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1394 {
1395 	return skb->end;
1396 }
1397 
1398 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1399 {
1400 	return skb->end - skb->head;
1401 }
1402 #endif
1403 
1404 /* Internal */
1405 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1406 
1407 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1408 {
1409 	return &skb_shinfo(skb)->hwtstamps;
1410 }
1411 
1412 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1413 {
1414 	bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY;
1415 
1416 	return is_zcopy ? skb_uarg(skb) : NULL;
1417 }
1418 
1419 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1420 				 bool *have_ref)
1421 {
1422 	if (skb && uarg && !skb_zcopy(skb)) {
1423 		if (unlikely(have_ref && *have_ref))
1424 			*have_ref = false;
1425 		else
1426 			sock_zerocopy_get(uarg);
1427 		skb_shinfo(skb)->destructor_arg = uarg;
1428 		skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1429 	}
1430 }
1431 
1432 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1433 {
1434 	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1435 	skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1436 }
1437 
1438 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1439 {
1440 	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1441 }
1442 
1443 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1444 {
1445 	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1446 }
1447 
1448 /* Release a reference on a zerocopy structure */
1449 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy)
1450 {
1451 	struct ubuf_info *uarg = skb_zcopy(skb);
1452 
1453 	if (uarg) {
1454 		if (skb_zcopy_is_nouarg(skb)) {
1455 			/* no notification callback */
1456 		} else if (uarg->callback == sock_zerocopy_callback) {
1457 			uarg->zerocopy = uarg->zerocopy && zerocopy;
1458 			sock_zerocopy_put(uarg);
1459 		} else {
1460 			uarg->callback(uarg, zerocopy);
1461 		}
1462 
1463 		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1464 	}
1465 }
1466 
1467 /* Abort a zerocopy operation and revert zckey on error in send syscall */
1468 static inline void skb_zcopy_abort(struct sk_buff *skb)
1469 {
1470 	struct ubuf_info *uarg = skb_zcopy(skb);
1471 
1472 	if (uarg) {
1473 		sock_zerocopy_put_abort(uarg, false);
1474 		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1475 	}
1476 }
1477 
1478 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1479 {
1480 	skb->next = NULL;
1481 }
1482 
1483 /* Iterate through singly-linked GSO fragments of an skb. */
1484 #define skb_list_walk_safe(first, skb, next_skb)                               \
1485 	for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb);  \
1486 	     (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1487 
1488 static inline void skb_list_del_init(struct sk_buff *skb)
1489 {
1490 	__list_del_entry(&skb->list);
1491 	skb_mark_not_on_list(skb);
1492 }
1493 
1494 /**
1495  *	skb_queue_empty - check if a queue is empty
1496  *	@list: queue head
1497  *
1498  *	Returns true if the queue is empty, false otherwise.
1499  */
1500 static inline int skb_queue_empty(const struct sk_buff_head *list)
1501 {
1502 	return list->next == (const struct sk_buff *) list;
1503 }
1504 
1505 /**
1506  *	skb_queue_empty_lockless - check if a queue is empty
1507  *	@list: queue head
1508  *
1509  *	Returns true if the queue is empty, false otherwise.
1510  *	This variant can be used in lockless contexts.
1511  */
1512 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1513 {
1514 	return READ_ONCE(list->next) == (const struct sk_buff *) list;
1515 }
1516 
1517 
1518 /**
1519  *	skb_queue_is_last - check if skb is the last entry in the queue
1520  *	@list: queue head
1521  *	@skb: buffer
1522  *
1523  *	Returns true if @skb is the last buffer on the list.
1524  */
1525 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1526 				     const struct sk_buff *skb)
1527 {
1528 	return skb->next == (const struct sk_buff *) list;
1529 }
1530 
1531 /**
1532  *	skb_queue_is_first - check if skb is the first entry in the queue
1533  *	@list: queue head
1534  *	@skb: buffer
1535  *
1536  *	Returns true if @skb is the first buffer on the list.
1537  */
1538 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1539 				      const struct sk_buff *skb)
1540 {
1541 	return skb->prev == (const struct sk_buff *) list;
1542 }
1543 
1544 /**
1545  *	skb_queue_next - return the next packet in the queue
1546  *	@list: queue head
1547  *	@skb: current buffer
1548  *
1549  *	Return the next packet in @list after @skb.  It is only valid to
1550  *	call this if skb_queue_is_last() evaluates to false.
1551  */
1552 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1553 					     const struct sk_buff *skb)
1554 {
1555 	/* This BUG_ON may seem severe, but if we just return then we
1556 	 * are going to dereference garbage.
1557 	 */
1558 	BUG_ON(skb_queue_is_last(list, skb));
1559 	return skb->next;
1560 }
1561 
1562 /**
1563  *	skb_queue_prev - return the prev packet in the queue
1564  *	@list: queue head
1565  *	@skb: current buffer
1566  *
1567  *	Return the prev packet in @list before @skb.  It is only valid to
1568  *	call this if skb_queue_is_first() evaluates to false.
1569  */
1570 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1571 					     const struct sk_buff *skb)
1572 {
1573 	/* This BUG_ON may seem severe, but if we just return then we
1574 	 * are going to dereference garbage.
1575 	 */
1576 	BUG_ON(skb_queue_is_first(list, skb));
1577 	return skb->prev;
1578 }
1579 
1580 /**
1581  *	skb_get - reference buffer
1582  *	@skb: buffer to reference
1583  *
1584  *	Makes another reference to a socket buffer and returns a pointer
1585  *	to the buffer.
1586  */
1587 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1588 {
1589 	refcount_inc(&skb->users);
1590 	return skb;
1591 }
1592 
1593 /*
1594  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1595  */
1596 
1597 /**
1598  *	skb_cloned - is the buffer a clone
1599  *	@skb: buffer to check
1600  *
1601  *	Returns true if the buffer was generated with skb_clone() and is
1602  *	one of multiple shared copies of the buffer. Cloned buffers are
1603  *	shared data so must not be written to under normal circumstances.
1604  */
1605 static inline int skb_cloned(const struct sk_buff *skb)
1606 {
1607 	return skb->cloned &&
1608 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1609 }
1610 
1611 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1612 {
1613 	might_sleep_if(gfpflags_allow_blocking(pri));
1614 
1615 	if (skb_cloned(skb))
1616 		return pskb_expand_head(skb, 0, 0, pri);
1617 
1618 	return 0;
1619 }
1620 
1621 /**
1622  *	skb_header_cloned - is the header a clone
1623  *	@skb: buffer to check
1624  *
1625  *	Returns true if modifying the header part of the buffer requires
1626  *	the data to be copied.
1627  */
1628 static inline int skb_header_cloned(const struct sk_buff *skb)
1629 {
1630 	int dataref;
1631 
1632 	if (!skb->cloned)
1633 		return 0;
1634 
1635 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1636 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1637 	return dataref != 1;
1638 }
1639 
1640 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1641 {
1642 	might_sleep_if(gfpflags_allow_blocking(pri));
1643 
1644 	if (skb_header_cloned(skb))
1645 		return pskb_expand_head(skb, 0, 0, pri);
1646 
1647 	return 0;
1648 }
1649 
1650 /**
1651  *	__skb_header_release - release reference to header
1652  *	@skb: buffer to operate on
1653  */
1654 static inline void __skb_header_release(struct sk_buff *skb)
1655 {
1656 	skb->nohdr = 1;
1657 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1658 }
1659 
1660 
1661 /**
1662  *	skb_shared - is the buffer shared
1663  *	@skb: buffer to check
1664  *
1665  *	Returns true if more than one person has a reference to this
1666  *	buffer.
1667  */
1668 static inline int skb_shared(const struct sk_buff *skb)
1669 {
1670 	return refcount_read(&skb->users) != 1;
1671 }
1672 
1673 /**
1674  *	skb_share_check - check if buffer is shared and if so clone it
1675  *	@skb: buffer to check
1676  *	@pri: priority for memory allocation
1677  *
1678  *	If the buffer is shared the buffer is cloned and the old copy
1679  *	drops a reference. A new clone with a single reference is returned.
1680  *	If the buffer is not shared the original buffer is returned. When
1681  *	being called from interrupt status or with spinlocks held pri must
1682  *	be GFP_ATOMIC.
1683  *
1684  *	NULL is returned on a memory allocation failure.
1685  */
1686 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1687 {
1688 	might_sleep_if(gfpflags_allow_blocking(pri));
1689 	if (skb_shared(skb)) {
1690 		struct sk_buff *nskb = skb_clone(skb, pri);
1691 
1692 		if (likely(nskb))
1693 			consume_skb(skb);
1694 		else
1695 			kfree_skb(skb);
1696 		skb = nskb;
1697 	}
1698 	return skb;
1699 }
1700 
1701 /*
1702  *	Copy shared buffers into a new sk_buff. We effectively do COW on
1703  *	packets to handle cases where we have a local reader and forward
1704  *	and a couple of other messy ones. The normal one is tcpdumping
1705  *	a packet thats being forwarded.
1706  */
1707 
1708 /**
1709  *	skb_unshare - make a copy of a shared buffer
1710  *	@skb: buffer to check
1711  *	@pri: priority for memory allocation
1712  *
1713  *	If the socket buffer is a clone then this function creates a new
1714  *	copy of the data, drops a reference count on the old copy and returns
1715  *	the new copy with the reference count at 1. If the buffer is not a clone
1716  *	the original buffer is returned. When called with a spinlock held or
1717  *	from interrupt state @pri must be %GFP_ATOMIC
1718  *
1719  *	%NULL is returned on a memory allocation failure.
1720  */
1721 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1722 					  gfp_t pri)
1723 {
1724 	might_sleep_if(gfpflags_allow_blocking(pri));
1725 	if (skb_cloned(skb)) {
1726 		struct sk_buff *nskb = skb_copy(skb, pri);
1727 
1728 		/* Free our shared copy */
1729 		if (likely(nskb))
1730 			consume_skb(skb);
1731 		else
1732 			kfree_skb(skb);
1733 		skb = nskb;
1734 	}
1735 	return skb;
1736 }
1737 
1738 /**
1739  *	skb_peek - peek at the head of an &sk_buff_head
1740  *	@list_: list to peek at
1741  *
1742  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1743  *	be careful with this one. A peek leaves the buffer on the
1744  *	list and someone else may run off with it. You must hold
1745  *	the appropriate locks or have a private queue to do this.
1746  *
1747  *	Returns %NULL for an empty list or a pointer to the head element.
1748  *	The reference count is not incremented and the reference is therefore
1749  *	volatile. Use with caution.
1750  */
1751 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1752 {
1753 	struct sk_buff *skb = list_->next;
1754 
1755 	if (skb == (struct sk_buff *)list_)
1756 		skb = NULL;
1757 	return skb;
1758 }
1759 
1760 /**
1761  *	__skb_peek - peek at the head of a non-empty &sk_buff_head
1762  *	@list_: list to peek at
1763  *
1764  *	Like skb_peek(), but the caller knows that the list is not empty.
1765  */
1766 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
1767 {
1768 	return list_->next;
1769 }
1770 
1771 /**
1772  *	skb_peek_next - peek skb following the given one from a queue
1773  *	@skb: skb to start from
1774  *	@list_: list to peek at
1775  *
1776  *	Returns %NULL when the end of the list is met or a pointer to the
1777  *	next element. The reference count is not incremented and the
1778  *	reference is therefore volatile. Use with caution.
1779  */
1780 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1781 		const struct sk_buff_head *list_)
1782 {
1783 	struct sk_buff *next = skb->next;
1784 
1785 	if (next == (struct sk_buff *)list_)
1786 		next = NULL;
1787 	return next;
1788 }
1789 
1790 /**
1791  *	skb_peek_tail - peek at the tail of an &sk_buff_head
1792  *	@list_: list to peek at
1793  *
1794  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1795  *	be careful with this one. A peek leaves the buffer on the
1796  *	list and someone else may run off with it. You must hold
1797  *	the appropriate locks or have a private queue to do this.
1798  *
1799  *	Returns %NULL for an empty list or a pointer to the tail element.
1800  *	The reference count is not incremented and the reference is therefore
1801  *	volatile. Use with caution.
1802  */
1803 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1804 {
1805 	struct sk_buff *skb = READ_ONCE(list_->prev);
1806 
1807 	if (skb == (struct sk_buff *)list_)
1808 		skb = NULL;
1809 	return skb;
1810 
1811 }
1812 
1813 /**
1814  *	skb_queue_len	- get queue length
1815  *	@list_: list to measure
1816  *
1817  *	Return the length of an &sk_buff queue.
1818  */
1819 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1820 {
1821 	return list_->qlen;
1822 }
1823 
1824 /**
1825  *	skb_queue_len_lockless	- get queue length
1826  *	@list_: list to measure
1827  *
1828  *	Return the length of an &sk_buff queue.
1829  *	This variant can be used in lockless contexts.
1830  */
1831 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
1832 {
1833 	return READ_ONCE(list_->qlen);
1834 }
1835 
1836 /**
1837  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1838  *	@list: queue to initialize
1839  *
1840  *	This initializes only the list and queue length aspects of
1841  *	an sk_buff_head object.  This allows to initialize the list
1842  *	aspects of an sk_buff_head without reinitializing things like
1843  *	the spinlock.  It can also be used for on-stack sk_buff_head
1844  *	objects where the spinlock is known to not be used.
1845  */
1846 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1847 {
1848 	list->prev = list->next = (struct sk_buff *)list;
1849 	list->qlen = 0;
1850 }
1851 
1852 /*
1853  * This function creates a split out lock class for each invocation;
1854  * this is needed for now since a whole lot of users of the skb-queue
1855  * infrastructure in drivers have different locking usage (in hardirq)
1856  * than the networking core (in softirq only). In the long run either the
1857  * network layer or drivers should need annotation to consolidate the
1858  * main types of usage into 3 classes.
1859  */
1860 static inline void skb_queue_head_init(struct sk_buff_head *list)
1861 {
1862 	spin_lock_init(&list->lock);
1863 	__skb_queue_head_init(list);
1864 }
1865 
1866 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1867 		struct lock_class_key *class)
1868 {
1869 	skb_queue_head_init(list);
1870 	lockdep_set_class(&list->lock, class);
1871 }
1872 
1873 /*
1874  *	Insert an sk_buff on a list.
1875  *
1876  *	The "__skb_xxxx()" functions are the non-atomic ones that
1877  *	can only be called with interrupts disabled.
1878  */
1879 static inline void __skb_insert(struct sk_buff *newsk,
1880 				struct sk_buff *prev, struct sk_buff *next,
1881 				struct sk_buff_head *list)
1882 {
1883 	/* See skb_queue_empty_lockless() and skb_peek_tail()
1884 	 * for the opposite READ_ONCE()
1885 	 */
1886 	WRITE_ONCE(newsk->next, next);
1887 	WRITE_ONCE(newsk->prev, prev);
1888 	WRITE_ONCE(next->prev, newsk);
1889 	WRITE_ONCE(prev->next, newsk);
1890 	list->qlen++;
1891 }
1892 
1893 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1894 				      struct sk_buff *prev,
1895 				      struct sk_buff *next)
1896 {
1897 	struct sk_buff *first = list->next;
1898 	struct sk_buff *last = list->prev;
1899 
1900 	WRITE_ONCE(first->prev, prev);
1901 	WRITE_ONCE(prev->next, first);
1902 
1903 	WRITE_ONCE(last->next, next);
1904 	WRITE_ONCE(next->prev, last);
1905 }
1906 
1907 /**
1908  *	skb_queue_splice - join two skb lists, this is designed for stacks
1909  *	@list: the new list to add
1910  *	@head: the place to add it in the first list
1911  */
1912 static inline void skb_queue_splice(const struct sk_buff_head *list,
1913 				    struct sk_buff_head *head)
1914 {
1915 	if (!skb_queue_empty(list)) {
1916 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1917 		head->qlen += list->qlen;
1918 	}
1919 }
1920 
1921 /**
1922  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1923  *	@list: the new list to add
1924  *	@head: the place to add it in the first list
1925  *
1926  *	The list at @list is reinitialised
1927  */
1928 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1929 					 struct sk_buff_head *head)
1930 {
1931 	if (!skb_queue_empty(list)) {
1932 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1933 		head->qlen += list->qlen;
1934 		__skb_queue_head_init(list);
1935 	}
1936 }
1937 
1938 /**
1939  *	skb_queue_splice_tail - join two skb lists, each list being a queue
1940  *	@list: the new list to add
1941  *	@head: the place to add it in the first list
1942  */
1943 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1944 					 struct sk_buff_head *head)
1945 {
1946 	if (!skb_queue_empty(list)) {
1947 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1948 		head->qlen += list->qlen;
1949 	}
1950 }
1951 
1952 /**
1953  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1954  *	@list: the new list to add
1955  *	@head: the place to add it in the first list
1956  *
1957  *	Each of the lists is a queue.
1958  *	The list at @list is reinitialised
1959  */
1960 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1961 					      struct sk_buff_head *head)
1962 {
1963 	if (!skb_queue_empty(list)) {
1964 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1965 		head->qlen += list->qlen;
1966 		__skb_queue_head_init(list);
1967 	}
1968 }
1969 
1970 /**
1971  *	__skb_queue_after - queue a buffer at the list head
1972  *	@list: list to use
1973  *	@prev: place after this buffer
1974  *	@newsk: buffer to queue
1975  *
1976  *	Queue a buffer int the middle of a list. This function takes no locks
1977  *	and you must therefore hold required locks before calling it.
1978  *
1979  *	A buffer cannot be placed on two lists at the same time.
1980  */
1981 static inline void __skb_queue_after(struct sk_buff_head *list,
1982 				     struct sk_buff *prev,
1983 				     struct sk_buff *newsk)
1984 {
1985 	__skb_insert(newsk, prev, prev->next, list);
1986 }
1987 
1988 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1989 		struct sk_buff_head *list);
1990 
1991 static inline void __skb_queue_before(struct sk_buff_head *list,
1992 				      struct sk_buff *next,
1993 				      struct sk_buff *newsk)
1994 {
1995 	__skb_insert(newsk, next->prev, next, list);
1996 }
1997 
1998 /**
1999  *	__skb_queue_head - queue a buffer at the list head
2000  *	@list: list to use
2001  *	@newsk: buffer to queue
2002  *
2003  *	Queue a buffer at the start of a list. This function takes no locks
2004  *	and you must therefore hold required locks before calling it.
2005  *
2006  *	A buffer cannot be placed on two lists at the same time.
2007  */
2008 static inline void __skb_queue_head(struct sk_buff_head *list,
2009 				    struct sk_buff *newsk)
2010 {
2011 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
2012 }
2013 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2014 
2015 /**
2016  *	__skb_queue_tail - queue a buffer at the list tail
2017  *	@list: list to use
2018  *	@newsk: buffer to queue
2019  *
2020  *	Queue a buffer at the end of a list. This function takes no locks
2021  *	and you must therefore hold required locks before calling it.
2022  *
2023  *	A buffer cannot be placed on two lists at the same time.
2024  */
2025 static inline void __skb_queue_tail(struct sk_buff_head *list,
2026 				   struct sk_buff *newsk)
2027 {
2028 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
2029 }
2030 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2031 
2032 /*
2033  * remove sk_buff from list. _Must_ be called atomically, and with
2034  * the list known..
2035  */
2036 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
2037 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2038 {
2039 	struct sk_buff *next, *prev;
2040 
2041 	WRITE_ONCE(list->qlen, list->qlen - 1);
2042 	next	   = skb->next;
2043 	prev	   = skb->prev;
2044 	skb->next  = skb->prev = NULL;
2045 	WRITE_ONCE(next->prev, prev);
2046 	WRITE_ONCE(prev->next, next);
2047 }
2048 
2049 /**
2050  *	__skb_dequeue - remove from the head of the queue
2051  *	@list: list to dequeue from
2052  *
2053  *	Remove the head of the list. This function does not take any locks
2054  *	so must be used with appropriate locks held only. The head item is
2055  *	returned or %NULL if the list is empty.
2056  */
2057 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2058 {
2059 	struct sk_buff *skb = skb_peek(list);
2060 	if (skb)
2061 		__skb_unlink(skb, list);
2062 	return skb;
2063 }
2064 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2065 
2066 /**
2067  *	__skb_dequeue_tail - remove from the tail of the queue
2068  *	@list: list to dequeue from
2069  *
2070  *	Remove the tail of the list. This function does not take any locks
2071  *	so must be used with appropriate locks held only. The tail item is
2072  *	returned or %NULL if the list is empty.
2073  */
2074 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2075 {
2076 	struct sk_buff *skb = skb_peek_tail(list);
2077 	if (skb)
2078 		__skb_unlink(skb, list);
2079 	return skb;
2080 }
2081 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2082 
2083 
2084 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2085 {
2086 	return skb->data_len;
2087 }
2088 
2089 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2090 {
2091 	return skb->len - skb->data_len;
2092 }
2093 
2094 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2095 {
2096 	unsigned int i, len = 0;
2097 
2098 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2099 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2100 	return len;
2101 }
2102 
2103 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2104 {
2105 	return skb_headlen(skb) + __skb_pagelen(skb);
2106 }
2107 
2108 /**
2109  * __skb_fill_page_desc - initialise a paged fragment in an skb
2110  * @skb: buffer containing fragment to be initialised
2111  * @i: paged fragment index to initialise
2112  * @page: the page to use for this fragment
2113  * @off: the offset to the data with @page
2114  * @size: the length of the data
2115  *
2116  * Initialises the @i'th fragment of @skb to point to &size bytes at
2117  * offset @off within @page.
2118  *
2119  * Does not take any additional reference on the fragment.
2120  */
2121 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2122 					struct page *page, int off, int size)
2123 {
2124 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2125 
2126 	/*
2127 	 * Propagate page pfmemalloc to the skb if we can. The problem is
2128 	 * that not all callers have unique ownership of the page but rely
2129 	 * on page_is_pfmemalloc doing the right thing(tm).
2130 	 */
2131 	frag->bv_page		  = page;
2132 	frag->bv_offset		  = off;
2133 	skb_frag_size_set(frag, size);
2134 
2135 	page = compound_head(page);
2136 	if (page_is_pfmemalloc(page))
2137 		skb->pfmemalloc	= true;
2138 }
2139 
2140 /**
2141  * skb_fill_page_desc - initialise a paged fragment in an skb
2142  * @skb: buffer containing fragment to be initialised
2143  * @i: paged fragment index to initialise
2144  * @page: the page to use for this fragment
2145  * @off: the offset to the data with @page
2146  * @size: the length of the data
2147  *
2148  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2149  * @skb to point to @size bytes at offset @off within @page. In
2150  * addition updates @skb such that @i is the last fragment.
2151  *
2152  * Does not take any additional reference on the fragment.
2153  */
2154 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2155 				      struct page *page, int off, int size)
2156 {
2157 	__skb_fill_page_desc(skb, i, page, off, size);
2158 	skb_shinfo(skb)->nr_frags = i + 1;
2159 }
2160 
2161 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2162 		     int size, unsigned int truesize);
2163 
2164 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2165 			  unsigned int truesize);
2166 
2167 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2168 
2169 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2170 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2171 {
2172 	return skb->head + skb->tail;
2173 }
2174 
2175 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2176 {
2177 	skb->tail = skb->data - skb->head;
2178 }
2179 
2180 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2181 {
2182 	skb_reset_tail_pointer(skb);
2183 	skb->tail += offset;
2184 }
2185 
2186 #else /* NET_SKBUFF_DATA_USES_OFFSET */
2187 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2188 {
2189 	return skb->tail;
2190 }
2191 
2192 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2193 {
2194 	skb->tail = skb->data;
2195 }
2196 
2197 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2198 {
2199 	skb->tail = skb->data + offset;
2200 }
2201 
2202 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2203 
2204 /*
2205  *	Add data to an sk_buff
2206  */
2207 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2208 void *skb_put(struct sk_buff *skb, unsigned int len);
2209 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2210 {
2211 	void *tmp = skb_tail_pointer(skb);
2212 	SKB_LINEAR_ASSERT(skb);
2213 	skb->tail += len;
2214 	skb->len  += len;
2215 	return tmp;
2216 }
2217 
2218 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2219 {
2220 	void *tmp = __skb_put(skb, len);
2221 
2222 	memset(tmp, 0, len);
2223 	return tmp;
2224 }
2225 
2226 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2227 				   unsigned int len)
2228 {
2229 	void *tmp = __skb_put(skb, len);
2230 
2231 	memcpy(tmp, data, len);
2232 	return tmp;
2233 }
2234 
2235 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2236 {
2237 	*(u8 *)__skb_put(skb, 1) = val;
2238 }
2239 
2240 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2241 {
2242 	void *tmp = skb_put(skb, len);
2243 
2244 	memset(tmp, 0, len);
2245 
2246 	return tmp;
2247 }
2248 
2249 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2250 				 unsigned int len)
2251 {
2252 	void *tmp = skb_put(skb, len);
2253 
2254 	memcpy(tmp, data, len);
2255 
2256 	return tmp;
2257 }
2258 
2259 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2260 {
2261 	*(u8 *)skb_put(skb, 1) = val;
2262 }
2263 
2264 void *skb_push(struct sk_buff *skb, unsigned int len);
2265 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2266 {
2267 	skb->data -= len;
2268 	skb->len  += len;
2269 	return skb->data;
2270 }
2271 
2272 void *skb_pull(struct sk_buff *skb, unsigned int len);
2273 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2274 {
2275 	skb->len -= len;
2276 	BUG_ON(skb->len < skb->data_len);
2277 	return skb->data += len;
2278 }
2279 
2280 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2281 {
2282 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2283 }
2284 
2285 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2286 
2287 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2288 {
2289 	if (len > skb_headlen(skb) &&
2290 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2291 		return NULL;
2292 	skb->len -= len;
2293 	return skb->data += len;
2294 }
2295 
2296 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2297 {
2298 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2299 }
2300 
2301 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2302 {
2303 	if (likely(len <= skb_headlen(skb)))
2304 		return true;
2305 	if (unlikely(len > skb->len))
2306 		return false;
2307 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2308 }
2309 
2310 void skb_condense(struct sk_buff *skb);
2311 
2312 /**
2313  *	skb_headroom - bytes at buffer head
2314  *	@skb: buffer to check
2315  *
2316  *	Return the number of bytes of free space at the head of an &sk_buff.
2317  */
2318 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2319 {
2320 	return skb->data - skb->head;
2321 }
2322 
2323 /**
2324  *	skb_tailroom - bytes at buffer end
2325  *	@skb: buffer to check
2326  *
2327  *	Return the number of bytes of free space at the tail of an sk_buff
2328  */
2329 static inline int skb_tailroom(const struct sk_buff *skb)
2330 {
2331 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2332 }
2333 
2334 /**
2335  *	skb_availroom - bytes at buffer end
2336  *	@skb: buffer to check
2337  *
2338  *	Return the number of bytes of free space at the tail of an sk_buff
2339  *	allocated by sk_stream_alloc()
2340  */
2341 static inline int skb_availroom(const struct sk_buff *skb)
2342 {
2343 	if (skb_is_nonlinear(skb))
2344 		return 0;
2345 
2346 	return skb->end - skb->tail - skb->reserved_tailroom;
2347 }
2348 
2349 /**
2350  *	skb_reserve - adjust headroom
2351  *	@skb: buffer to alter
2352  *	@len: bytes to move
2353  *
2354  *	Increase the headroom of an empty &sk_buff by reducing the tail
2355  *	room. This is only allowed for an empty buffer.
2356  */
2357 static inline void skb_reserve(struct sk_buff *skb, int len)
2358 {
2359 	skb->data += len;
2360 	skb->tail += len;
2361 }
2362 
2363 /**
2364  *	skb_tailroom_reserve - adjust reserved_tailroom
2365  *	@skb: buffer to alter
2366  *	@mtu: maximum amount of headlen permitted
2367  *	@needed_tailroom: minimum amount of reserved_tailroom
2368  *
2369  *	Set reserved_tailroom so that headlen can be as large as possible but
2370  *	not larger than mtu and tailroom cannot be smaller than
2371  *	needed_tailroom.
2372  *	The required headroom should already have been reserved before using
2373  *	this function.
2374  */
2375 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2376 					unsigned int needed_tailroom)
2377 {
2378 	SKB_LINEAR_ASSERT(skb);
2379 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2380 		/* use at most mtu */
2381 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2382 	else
2383 		/* use up to all available space */
2384 		skb->reserved_tailroom = needed_tailroom;
2385 }
2386 
2387 #define ENCAP_TYPE_ETHER	0
2388 #define ENCAP_TYPE_IPPROTO	1
2389 
2390 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2391 					  __be16 protocol)
2392 {
2393 	skb->inner_protocol = protocol;
2394 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2395 }
2396 
2397 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2398 					 __u8 ipproto)
2399 {
2400 	skb->inner_ipproto = ipproto;
2401 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2402 }
2403 
2404 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2405 {
2406 	skb->inner_mac_header = skb->mac_header;
2407 	skb->inner_network_header = skb->network_header;
2408 	skb->inner_transport_header = skb->transport_header;
2409 }
2410 
2411 static inline void skb_reset_mac_len(struct sk_buff *skb)
2412 {
2413 	skb->mac_len = skb->network_header - skb->mac_header;
2414 }
2415 
2416 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2417 							*skb)
2418 {
2419 	return skb->head + skb->inner_transport_header;
2420 }
2421 
2422 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2423 {
2424 	return skb_inner_transport_header(skb) - skb->data;
2425 }
2426 
2427 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2428 {
2429 	skb->inner_transport_header = skb->data - skb->head;
2430 }
2431 
2432 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2433 						   const int offset)
2434 {
2435 	skb_reset_inner_transport_header(skb);
2436 	skb->inner_transport_header += offset;
2437 }
2438 
2439 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2440 {
2441 	return skb->head + skb->inner_network_header;
2442 }
2443 
2444 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2445 {
2446 	skb->inner_network_header = skb->data - skb->head;
2447 }
2448 
2449 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2450 						const int offset)
2451 {
2452 	skb_reset_inner_network_header(skb);
2453 	skb->inner_network_header += offset;
2454 }
2455 
2456 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2457 {
2458 	return skb->head + skb->inner_mac_header;
2459 }
2460 
2461 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2462 {
2463 	skb->inner_mac_header = skb->data - skb->head;
2464 }
2465 
2466 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2467 					    const int offset)
2468 {
2469 	skb_reset_inner_mac_header(skb);
2470 	skb->inner_mac_header += offset;
2471 }
2472 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2473 {
2474 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2475 }
2476 
2477 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2478 {
2479 	return skb->head + skb->transport_header;
2480 }
2481 
2482 static inline void skb_reset_transport_header(struct sk_buff *skb)
2483 {
2484 	skb->transport_header = skb->data - skb->head;
2485 }
2486 
2487 static inline void skb_set_transport_header(struct sk_buff *skb,
2488 					    const int offset)
2489 {
2490 	skb_reset_transport_header(skb);
2491 	skb->transport_header += offset;
2492 }
2493 
2494 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2495 {
2496 	return skb->head + skb->network_header;
2497 }
2498 
2499 static inline void skb_reset_network_header(struct sk_buff *skb)
2500 {
2501 	skb->network_header = skb->data - skb->head;
2502 }
2503 
2504 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2505 {
2506 	skb_reset_network_header(skb);
2507 	skb->network_header += offset;
2508 }
2509 
2510 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2511 {
2512 	return skb->head + skb->mac_header;
2513 }
2514 
2515 static inline int skb_mac_offset(const struct sk_buff *skb)
2516 {
2517 	return skb_mac_header(skb) - skb->data;
2518 }
2519 
2520 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2521 {
2522 	return skb->network_header - skb->mac_header;
2523 }
2524 
2525 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2526 {
2527 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2528 }
2529 
2530 static inline void skb_reset_mac_header(struct sk_buff *skb)
2531 {
2532 	skb->mac_header = skb->data - skb->head;
2533 }
2534 
2535 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2536 {
2537 	skb_reset_mac_header(skb);
2538 	skb->mac_header += offset;
2539 }
2540 
2541 static inline void skb_pop_mac_header(struct sk_buff *skb)
2542 {
2543 	skb->mac_header = skb->network_header;
2544 }
2545 
2546 static inline void skb_probe_transport_header(struct sk_buff *skb)
2547 {
2548 	struct flow_keys_basic keys;
2549 
2550 	if (skb_transport_header_was_set(skb))
2551 		return;
2552 
2553 	if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2554 					     NULL, 0, 0, 0, 0))
2555 		skb_set_transport_header(skb, keys.control.thoff);
2556 }
2557 
2558 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2559 {
2560 	if (skb_mac_header_was_set(skb)) {
2561 		const unsigned char *old_mac = skb_mac_header(skb);
2562 
2563 		skb_set_mac_header(skb, -skb->mac_len);
2564 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2565 	}
2566 }
2567 
2568 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2569 {
2570 	return skb->csum_start - skb_headroom(skb);
2571 }
2572 
2573 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2574 {
2575 	return skb->head + skb->csum_start;
2576 }
2577 
2578 static inline int skb_transport_offset(const struct sk_buff *skb)
2579 {
2580 	return skb_transport_header(skb) - skb->data;
2581 }
2582 
2583 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2584 {
2585 	return skb->transport_header - skb->network_header;
2586 }
2587 
2588 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2589 {
2590 	return skb->inner_transport_header - skb->inner_network_header;
2591 }
2592 
2593 static inline int skb_network_offset(const struct sk_buff *skb)
2594 {
2595 	return skb_network_header(skb) - skb->data;
2596 }
2597 
2598 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2599 {
2600 	return skb_inner_network_header(skb) - skb->data;
2601 }
2602 
2603 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2604 {
2605 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
2606 }
2607 
2608 /*
2609  * CPUs often take a performance hit when accessing unaligned memory
2610  * locations. The actual performance hit varies, it can be small if the
2611  * hardware handles it or large if we have to take an exception and fix it
2612  * in software.
2613  *
2614  * Since an ethernet header is 14 bytes network drivers often end up with
2615  * the IP header at an unaligned offset. The IP header can be aligned by
2616  * shifting the start of the packet by 2 bytes. Drivers should do this
2617  * with:
2618  *
2619  * skb_reserve(skb, NET_IP_ALIGN);
2620  *
2621  * The downside to this alignment of the IP header is that the DMA is now
2622  * unaligned. On some architectures the cost of an unaligned DMA is high
2623  * and this cost outweighs the gains made by aligning the IP header.
2624  *
2625  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2626  * to be overridden.
2627  */
2628 #ifndef NET_IP_ALIGN
2629 #define NET_IP_ALIGN	2
2630 #endif
2631 
2632 /*
2633  * The networking layer reserves some headroom in skb data (via
2634  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2635  * the header has to grow. In the default case, if the header has to grow
2636  * 32 bytes or less we avoid the reallocation.
2637  *
2638  * Unfortunately this headroom changes the DMA alignment of the resulting
2639  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2640  * on some architectures. An architecture can override this value,
2641  * perhaps setting it to a cacheline in size (since that will maintain
2642  * cacheline alignment of the DMA). It must be a power of 2.
2643  *
2644  * Various parts of the networking layer expect at least 32 bytes of
2645  * headroom, you should not reduce this.
2646  *
2647  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2648  * to reduce average number of cache lines per packet.
2649  * get_rps_cpus() for example only access one 64 bytes aligned block :
2650  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2651  */
2652 #ifndef NET_SKB_PAD
2653 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2654 #endif
2655 
2656 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2657 
2658 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2659 {
2660 	if (WARN_ON(skb_is_nonlinear(skb)))
2661 		return;
2662 	skb->len = len;
2663 	skb_set_tail_pointer(skb, len);
2664 }
2665 
2666 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2667 {
2668 	__skb_set_length(skb, len);
2669 }
2670 
2671 void skb_trim(struct sk_buff *skb, unsigned int len);
2672 
2673 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2674 {
2675 	if (skb->data_len)
2676 		return ___pskb_trim(skb, len);
2677 	__skb_trim(skb, len);
2678 	return 0;
2679 }
2680 
2681 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2682 {
2683 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2684 }
2685 
2686 /**
2687  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2688  *	@skb: buffer to alter
2689  *	@len: new length
2690  *
2691  *	This is identical to pskb_trim except that the caller knows that
2692  *	the skb is not cloned so we should never get an error due to out-
2693  *	of-memory.
2694  */
2695 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2696 {
2697 	int err = pskb_trim(skb, len);
2698 	BUG_ON(err);
2699 }
2700 
2701 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2702 {
2703 	unsigned int diff = len - skb->len;
2704 
2705 	if (skb_tailroom(skb) < diff) {
2706 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2707 					   GFP_ATOMIC);
2708 		if (ret)
2709 			return ret;
2710 	}
2711 	__skb_set_length(skb, len);
2712 	return 0;
2713 }
2714 
2715 /**
2716  *	skb_orphan - orphan a buffer
2717  *	@skb: buffer to orphan
2718  *
2719  *	If a buffer currently has an owner then we call the owner's
2720  *	destructor function and make the @skb unowned. The buffer continues
2721  *	to exist but is no longer charged to its former owner.
2722  */
2723 static inline void skb_orphan(struct sk_buff *skb)
2724 {
2725 	if (skb->destructor) {
2726 		skb->destructor(skb);
2727 		skb->destructor = NULL;
2728 		skb->sk		= NULL;
2729 	} else {
2730 		BUG_ON(skb->sk);
2731 	}
2732 }
2733 
2734 /**
2735  *	skb_orphan_frags - orphan the frags contained in a buffer
2736  *	@skb: buffer to orphan frags from
2737  *	@gfp_mask: allocation mask for replacement pages
2738  *
2739  *	For each frag in the SKB which needs a destructor (i.e. has an
2740  *	owner) create a copy of that frag and release the original
2741  *	page by calling the destructor.
2742  */
2743 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2744 {
2745 	if (likely(!skb_zcopy(skb)))
2746 		return 0;
2747 	if (!skb_zcopy_is_nouarg(skb) &&
2748 	    skb_uarg(skb)->callback == sock_zerocopy_callback)
2749 		return 0;
2750 	return skb_copy_ubufs(skb, gfp_mask);
2751 }
2752 
2753 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
2754 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2755 {
2756 	if (likely(!skb_zcopy(skb)))
2757 		return 0;
2758 	return skb_copy_ubufs(skb, gfp_mask);
2759 }
2760 
2761 /**
2762  *	__skb_queue_purge - empty a list
2763  *	@list: list to empty
2764  *
2765  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2766  *	the list and one reference dropped. This function does not take the
2767  *	list lock and the caller must hold the relevant locks to use it.
2768  */
2769 static inline void __skb_queue_purge(struct sk_buff_head *list)
2770 {
2771 	struct sk_buff *skb;
2772 	while ((skb = __skb_dequeue(list)) != NULL)
2773 		kfree_skb(skb);
2774 }
2775 void skb_queue_purge(struct sk_buff_head *list);
2776 
2777 unsigned int skb_rbtree_purge(struct rb_root *root);
2778 
2779 void *netdev_alloc_frag(unsigned int fragsz);
2780 
2781 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2782 				   gfp_t gfp_mask);
2783 
2784 /**
2785  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
2786  *	@dev: network device to receive on
2787  *	@length: length to allocate
2788  *
2789  *	Allocate a new &sk_buff and assign it a usage count of one. The
2790  *	buffer has unspecified headroom built in. Users should allocate
2791  *	the headroom they think they need without accounting for the
2792  *	built in space. The built in space is used for optimisations.
2793  *
2794  *	%NULL is returned if there is no free memory. Although this function
2795  *	allocates memory it can be called from an interrupt.
2796  */
2797 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2798 					       unsigned int length)
2799 {
2800 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2801 }
2802 
2803 /* legacy helper around __netdev_alloc_skb() */
2804 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2805 					      gfp_t gfp_mask)
2806 {
2807 	return __netdev_alloc_skb(NULL, length, gfp_mask);
2808 }
2809 
2810 /* legacy helper around netdev_alloc_skb() */
2811 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2812 {
2813 	return netdev_alloc_skb(NULL, length);
2814 }
2815 
2816 
2817 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2818 		unsigned int length, gfp_t gfp)
2819 {
2820 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2821 
2822 	if (NET_IP_ALIGN && skb)
2823 		skb_reserve(skb, NET_IP_ALIGN);
2824 	return skb;
2825 }
2826 
2827 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2828 		unsigned int length)
2829 {
2830 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2831 }
2832 
2833 static inline void skb_free_frag(void *addr)
2834 {
2835 	page_frag_free(addr);
2836 }
2837 
2838 void *napi_alloc_frag(unsigned int fragsz);
2839 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2840 				 unsigned int length, gfp_t gfp_mask);
2841 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2842 					     unsigned int length)
2843 {
2844 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2845 }
2846 void napi_consume_skb(struct sk_buff *skb, int budget);
2847 
2848 void __kfree_skb_flush(void);
2849 void __kfree_skb_defer(struct sk_buff *skb);
2850 
2851 /**
2852  * __dev_alloc_pages - allocate page for network Rx
2853  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2854  * @order: size of the allocation
2855  *
2856  * Allocate a new page.
2857  *
2858  * %NULL is returned if there is no free memory.
2859 */
2860 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2861 					     unsigned int order)
2862 {
2863 	/* This piece of code contains several assumptions.
2864 	 * 1.  This is for device Rx, therefor a cold page is preferred.
2865 	 * 2.  The expectation is the user wants a compound page.
2866 	 * 3.  If requesting a order 0 page it will not be compound
2867 	 *     due to the check to see if order has a value in prep_new_page
2868 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2869 	 *     code in gfp_to_alloc_flags that should be enforcing this.
2870 	 */
2871 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
2872 
2873 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2874 }
2875 
2876 static inline struct page *dev_alloc_pages(unsigned int order)
2877 {
2878 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2879 }
2880 
2881 /**
2882  * __dev_alloc_page - allocate a page for network Rx
2883  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2884  *
2885  * Allocate a new page.
2886  *
2887  * %NULL is returned if there is no free memory.
2888  */
2889 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2890 {
2891 	return __dev_alloc_pages(gfp_mask, 0);
2892 }
2893 
2894 static inline struct page *dev_alloc_page(void)
2895 {
2896 	return dev_alloc_pages(0);
2897 }
2898 
2899 /**
2900  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2901  *	@page: The page that was allocated from skb_alloc_page
2902  *	@skb: The skb that may need pfmemalloc set
2903  */
2904 static inline void skb_propagate_pfmemalloc(struct page *page,
2905 					     struct sk_buff *skb)
2906 {
2907 	if (page_is_pfmemalloc(page))
2908 		skb->pfmemalloc = true;
2909 }
2910 
2911 /**
2912  * skb_frag_off() - Returns the offset of a skb fragment
2913  * @frag: the paged fragment
2914  */
2915 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
2916 {
2917 	return frag->bv_offset;
2918 }
2919 
2920 /**
2921  * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
2922  * @frag: skb fragment
2923  * @delta: value to add
2924  */
2925 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
2926 {
2927 	frag->bv_offset += delta;
2928 }
2929 
2930 /**
2931  * skb_frag_off_set() - Sets the offset of a skb fragment
2932  * @frag: skb fragment
2933  * @offset: offset of fragment
2934  */
2935 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
2936 {
2937 	frag->bv_offset = offset;
2938 }
2939 
2940 /**
2941  * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
2942  * @fragto: skb fragment where offset is set
2943  * @fragfrom: skb fragment offset is copied from
2944  */
2945 static inline void skb_frag_off_copy(skb_frag_t *fragto,
2946 				     const skb_frag_t *fragfrom)
2947 {
2948 	fragto->bv_offset = fragfrom->bv_offset;
2949 }
2950 
2951 /**
2952  * skb_frag_page - retrieve the page referred to by a paged fragment
2953  * @frag: the paged fragment
2954  *
2955  * Returns the &struct page associated with @frag.
2956  */
2957 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2958 {
2959 	return frag->bv_page;
2960 }
2961 
2962 /**
2963  * __skb_frag_ref - take an addition reference on a paged fragment.
2964  * @frag: the paged fragment
2965  *
2966  * Takes an additional reference on the paged fragment @frag.
2967  */
2968 static inline void __skb_frag_ref(skb_frag_t *frag)
2969 {
2970 	get_page(skb_frag_page(frag));
2971 }
2972 
2973 /**
2974  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2975  * @skb: the buffer
2976  * @f: the fragment offset.
2977  *
2978  * Takes an additional reference on the @f'th paged fragment of @skb.
2979  */
2980 static inline void skb_frag_ref(struct sk_buff *skb, int f)
2981 {
2982 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2983 }
2984 
2985 /**
2986  * __skb_frag_unref - release a reference on a paged fragment.
2987  * @frag: the paged fragment
2988  *
2989  * Releases a reference on the paged fragment @frag.
2990  */
2991 static inline void __skb_frag_unref(skb_frag_t *frag)
2992 {
2993 	put_page(skb_frag_page(frag));
2994 }
2995 
2996 /**
2997  * skb_frag_unref - release a reference on a paged fragment of an skb.
2998  * @skb: the buffer
2999  * @f: the fragment offset
3000  *
3001  * Releases a reference on the @f'th paged fragment of @skb.
3002  */
3003 static inline void skb_frag_unref(struct sk_buff *skb, int f)
3004 {
3005 	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
3006 }
3007 
3008 /**
3009  * skb_frag_address - gets the address of the data contained in a paged fragment
3010  * @frag: the paged fragment buffer
3011  *
3012  * Returns the address of the data within @frag. The page must already
3013  * be mapped.
3014  */
3015 static inline void *skb_frag_address(const skb_frag_t *frag)
3016 {
3017 	return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3018 }
3019 
3020 /**
3021  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3022  * @frag: the paged fragment buffer
3023  *
3024  * Returns the address of the data within @frag. Checks that the page
3025  * is mapped and returns %NULL otherwise.
3026  */
3027 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3028 {
3029 	void *ptr = page_address(skb_frag_page(frag));
3030 	if (unlikely(!ptr))
3031 		return NULL;
3032 
3033 	return ptr + skb_frag_off(frag);
3034 }
3035 
3036 /**
3037  * skb_frag_page_copy() - sets the page in a fragment from another fragment
3038  * @fragto: skb fragment where page is set
3039  * @fragfrom: skb fragment page is copied from
3040  */
3041 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3042 				      const skb_frag_t *fragfrom)
3043 {
3044 	fragto->bv_page = fragfrom->bv_page;
3045 }
3046 
3047 /**
3048  * __skb_frag_set_page - sets the page contained in a paged fragment
3049  * @frag: the paged fragment
3050  * @page: the page to set
3051  *
3052  * Sets the fragment @frag to contain @page.
3053  */
3054 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
3055 {
3056 	frag->bv_page = page;
3057 }
3058 
3059 /**
3060  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
3061  * @skb: the buffer
3062  * @f: the fragment offset
3063  * @page: the page to set
3064  *
3065  * Sets the @f'th fragment of @skb to contain @page.
3066  */
3067 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
3068 				     struct page *page)
3069 {
3070 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
3071 }
3072 
3073 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3074 
3075 /**
3076  * skb_frag_dma_map - maps a paged fragment via the DMA API
3077  * @dev: the device to map the fragment to
3078  * @frag: the paged fragment to map
3079  * @offset: the offset within the fragment (starting at the
3080  *          fragment's own offset)
3081  * @size: the number of bytes to map
3082  * @dir: the direction of the mapping (``PCI_DMA_*``)
3083  *
3084  * Maps the page associated with @frag to @device.
3085  */
3086 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3087 					  const skb_frag_t *frag,
3088 					  size_t offset, size_t size,
3089 					  enum dma_data_direction dir)
3090 {
3091 	return dma_map_page(dev, skb_frag_page(frag),
3092 			    skb_frag_off(frag) + offset, size, dir);
3093 }
3094 
3095 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3096 					gfp_t gfp_mask)
3097 {
3098 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3099 }
3100 
3101 
3102 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3103 						  gfp_t gfp_mask)
3104 {
3105 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3106 }
3107 
3108 
3109 /**
3110  *	skb_clone_writable - is the header of a clone writable
3111  *	@skb: buffer to check
3112  *	@len: length up to which to write
3113  *
3114  *	Returns true if modifying the header part of the cloned buffer
3115  *	does not requires the data to be copied.
3116  */
3117 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3118 {
3119 	return !skb_header_cloned(skb) &&
3120 	       skb_headroom(skb) + len <= skb->hdr_len;
3121 }
3122 
3123 static inline int skb_try_make_writable(struct sk_buff *skb,
3124 					unsigned int write_len)
3125 {
3126 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3127 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3128 }
3129 
3130 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3131 			    int cloned)
3132 {
3133 	int delta = 0;
3134 
3135 	if (headroom > skb_headroom(skb))
3136 		delta = headroom - skb_headroom(skb);
3137 
3138 	if (delta || cloned)
3139 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3140 					GFP_ATOMIC);
3141 	return 0;
3142 }
3143 
3144 /**
3145  *	skb_cow - copy header of skb when it is required
3146  *	@skb: buffer to cow
3147  *	@headroom: needed headroom
3148  *
3149  *	If the skb passed lacks sufficient headroom or its data part
3150  *	is shared, data is reallocated. If reallocation fails, an error
3151  *	is returned and original skb is not changed.
3152  *
3153  *	The result is skb with writable area skb->head...skb->tail
3154  *	and at least @headroom of space at head.
3155  */
3156 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3157 {
3158 	return __skb_cow(skb, headroom, skb_cloned(skb));
3159 }
3160 
3161 /**
3162  *	skb_cow_head - skb_cow but only making the head writable
3163  *	@skb: buffer to cow
3164  *	@headroom: needed headroom
3165  *
3166  *	This function is identical to skb_cow except that we replace the
3167  *	skb_cloned check by skb_header_cloned.  It should be used when
3168  *	you only need to push on some header and do not need to modify
3169  *	the data.
3170  */
3171 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3172 {
3173 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
3174 }
3175 
3176 /**
3177  *	skb_padto	- pad an skbuff up to a minimal size
3178  *	@skb: buffer to pad
3179  *	@len: minimal length
3180  *
3181  *	Pads up a buffer to ensure the trailing bytes exist and are
3182  *	blanked. If the buffer already contains sufficient data it
3183  *	is untouched. Otherwise it is extended. Returns zero on
3184  *	success. The skb is freed on error.
3185  */
3186 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3187 {
3188 	unsigned int size = skb->len;
3189 	if (likely(size >= len))
3190 		return 0;
3191 	return skb_pad(skb, len - size);
3192 }
3193 
3194 /**
3195  *	__skb_put_padto - increase size and pad an skbuff up to a minimal size
3196  *	@skb: buffer to pad
3197  *	@len: minimal length
3198  *	@free_on_error: free buffer on error
3199  *
3200  *	Pads up a buffer to ensure the trailing bytes exist and are
3201  *	blanked. If the buffer already contains sufficient data it
3202  *	is untouched. Otherwise it is extended. Returns zero on
3203  *	success. The skb is freed on error if @free_on_error is true.
3204  */
3205 static inline int __skb_put_padto(struct sk_buff *skb, unsigned int len,
3206 				  bool free_on_error)
3207 {
3208 	unsigned int size = skb->len;
3209 
3210 	if (unlikely(size < len)) {
3211 		len -= size;
3212 		if (__skb_pad(skb, len, free_on_error))
3213 			return -ENOMEM;
3214 		__skb_put(skb, len);
3215 	}
3216 	return 0;
3217 }
3218 
3219 /**
3220  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3221  *	@skb: buffer to pad
3222  *	@len: minimal length
3223  *
3224  *	Pads up a buffer to ensure the trailing bytes exist and are
3225  *	blanked. If the buffer already contains sufficient data it
3226  *	is untouched. Otherwise it is extended. Returns zero on
3227  *	success. The skb is freed on error.
3228  */
3229 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
3230 {
3231 	return __skb_put_padto(skb, len, true);
3232 }
3233 
3234 static inline int skb_add_data(struct sk_buff *skb,
3235 			       struct iov_iter *from, int copy)
3236 {
3237 	const int off = skb->len;
3238 
3239 	if (skb->ip_summed == CHECKSUM_NONE) {
3240 		__wsum csum = 0;
3241 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3242 					         &csum, from)) {
3243 			skb->csum = csum_block_add(skb->csum, csum, off);
3244 			return 0;
3245 		}
3246 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3247 		return 0;
3248 
3249 	__skb_trim(skb, off);
3250 	return -EFAULT;
3251 }
3252 
3253 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3254 				    const struct page *page, int off)
3255 {
3256 	if (skb_zcopy(skb))
3257 		return false;
3258 	if (i) {
3259 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3260 
3261 		return page == skb_frag_page(frag) &&
3262 		       off == skb_frag_off(frag) + skb_frag_size(frag);
3263 	}
3264 	return false;
3265 }
3266 
3267 static inline int __skb_linearize(struct sk_buff *skb)
3268 {
3269 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3270 }
3271 
3272 /**
3273  *	skb_linearize - convert paged skb to linear one
3274  *	@skb: buffer to linarize
3275  *
3276  *	If there is no free memory -ENOMEM is returned, otherwise zero
3277  *	is returned and the old skb data released.
3278  */
3279 static inline int skb_linearize(struct sk_buff *skb)
3280 {
3281 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3282 }
3283 
3284 /**
3285  * skb_has_shared_frag - can any frag be overwritten
3286  * @skb: buffer to test
3287  *
3288  * Return true if the skb has at least one frag that might be modified
3289  * by an external entity (as in vmsplice()/sendfile())
3290  */
3291 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3292 {
3293 	return skb_is_nonlinear(skb) &&
3294 	       skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
3295 }
3296 
3297 /**
3298  *	skb_linearize_cow - make sure skb is linear and writable
3299  *	@skb: buffer to process
3300  *
3301  *	If there is no free memory -ENOMEM is returned, otherwise zero
3302  *	is returned and the old skb data released.
3303  */
3304 static inline int skb_linearize_cow(struct sk_buff *skb)
3305 {
3306 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3307 	       __skb_linearize(skb) : 0;
3308 }
3309 
3310 static __always_inline void
3311 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3312 		     unsigned int off)
3313 {
3314 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3315 		skb->csum = csum_block_sub(skb->csum,
3316 					   csum_partial(start, len, 0), off);
3317 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3318 		 skb_checksum_start_offset(skb) < 0)
3319 		skb->ip_summed = CHECKSUM_NONE;
3320 }
3321 
3322 /**
3323  *	skb_postpull_rcsum - update checksum for received skb after pull
3324  *	@skb: buffer to update
3325  *	@start: start of data before pull
3326  *	@len: length of data pulled
3327  *
3328  *	After doing a pull on a received packet, you need to call this to
3329  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3330  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3331  */
3332 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3333 				      const void *start, unsigned int len)
3334 {
3335 	__skb_postpull_rcsum(skb, start, len, 0);
3336 }
3337 
3338 static __always_inline void
3339 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3340 		     unsigned int off)
3341 {
3342 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3343 		skb->csum = csum_block_add(skb->csum,
3344 					   csum_partial(start, len, 0), off);
3345 }
3346 
3347 /**
3348  *	skb_postpush_rcsum - update checksum for received skb after push
3349  *	@skb: buffer to update
3350  *	@start: start of data after push
3351  *	@len: length of data pushed
3352  *
3353  *	After doing a push on a received packet, you need to call this to
3354  *	update the CHECKSUM_COMPLETE checksum.
3355  */
3356 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3357 				      const void *start, unsigned int len)
3358 {
3359 	__skb_postpush_rcsum(skb, start, len, 0);
3360 }
3361 
3362 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3363 
3364 /**
3365  *	skb_push_rcsum - push skb and update receive checksum
3366  *	@skb: buffer to update
3367  *	@len: length of data pulled
3368  *
3369  *	This function performs an skb_push on the packet and updates
3370  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3371  *	receive path processing instead of skb_push unless you know
3372  *	that the checksum difference is zero (e.g., a valid IP header)
3373  *	or you are setting ip_summed to CHECKSUM_NONE.
3374  */
3375 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3376 {
3377 	skb_push(skb, len);
3378 	skb_postpush_rcsum(skb, skb->data, len);
3379 	return skb->data;
3380 }
3381 
3382 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3383 /**
3384  *	pskb_trim_rcsum - trim received skb and update checksum
3385  *	@skb: buffer to trim
3386  *	@len: new length
3387  *
3388  *	This is exactly the same as pskb_trim except that it ensures the
3389  *	checksum of received packets are still valid after the operation.
3390  *	It can change skb pointers.
3391  */
3392 
3393 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3394 {
3395 	if (likely(len >= skb->len))
3396 		return 0;
3397 	return pskb_trim_rcsum_slow(skb, len);
3398 }
3399 
3400 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3401 {
3402 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3403 		skb->ip_summed = CHECKSUM_NONE;
3404 	__skb_trim(skb, len);
3405 	return 0;
3406 }
3407 
3408 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3409 {
3410 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3411 		skb->ip_summed = CHECKSUM_NONE;
3412 	return __skb_grow(skb, len);
3413 }
3414 
3415 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3416 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3417 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3418 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3419 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3420 
3421 #define skb_queue_walk(queue, skb) \
3422 		for (skb = (queue)->next;					\
3423 		     skb != (struct sk_buff *)(queue);				\
3424 		     skb = skb->next)
3425 
3426 #define skb_queue_walk_safe(queue, skb, tmp)					\
3427 		for (skb = (queue)->next, tmp = skb->next;			\
3428 		     skb != (struct sk_buff *)(queue);				\
3429 		     skb = tmp, tmp = skb->next)
3430 
3431 #define skb_queue_walk_from(queue, skb)						\
3432 		for (; skb != (struct sk_buff *)(queue);			\
3433 		     skb = skb->next)
3434 
3435 #define skb_rbtree_walk(skb, root)						\
3436 		for (skb = skb_rb_first(root); skb != NULL;			\
3437 		     skb = skb_rb_next(skb))
3438 
3439 #define skb_rbtree_walk_from(skb)						\
3440 		for (; skb != NULL;						\
3441 		     skb = skb_rb_next(skb))
3442 
3443 #define skb_rbtree_walk_from_safe(skb, tmp)					\
3444 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
3445 		     skb = tmp)
3446 
3447 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3448 		for (tmp = skb->next;						\
3449 		     skb != (struct sk_buff *)(queue);				\
3450 		     skb = tmp, tmp = skb->next)
3451 
3452 #define skb_queue_reverse_walk(queue, skb) \
3453 		for (skb = (queue)->prev;					\
3454 		     skb != (struct sk_buff *)(queue);				\
3455 		     skb = skb->prev)
3456 
3457 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3458 		for (skb = (queue)->prev, tmp = skb->prev;			\
3459 		     skb != (struct sk_buff *)(queue);				\
3460 		     skb = tmp, tmp = skb->prev)
3461 
3462 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3463 		for (tmp = skb->prev;						\
3464 		     skb != (struct sk_buff *)(queue);				\
3465 		     skb = tmp, tmp = skb->prev)
3466 
3467 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3468 {
3469 	return skb_shinfo(skb)->frag_list != NULL;
3470 }
3471 
3472 static inline void skb_frag_list_init(struct sk_buff *skb)
3473 {
3474 	skb_shinfo(skb)->frag_list = NULL;
3475 }
3476 
3477 #define skb_walk_frags(skb, iter)	\
3478 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3479 
3480 
3481 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3482 				int *err, long *timeo_p,
3483 				const struct sk_buff *skb);
3484 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3485 					  struct sk_buff_head *queue,
3486 					  unsigned int flags,
3487 					  void (*destructor)(struct sock *sk,
3488 							   struct sk_buff *skb),
3489 					  int *off, int *err,
3490 					  struct sk_buff **last);
3491 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
3492 					struct sk_buff_head *queue,
3493 					unsigned int flags,
3494 					void (*destructor)(struct sock *sk,
3495 							   struct sk_buff *skb),
3496 					int *off, int *err,
3497 					struct sk_buff **last);
3498 struct sk_buff *__skb_recv_datagram(struct sock *sk,
3499 				    struct sk_buff_head *sk_queue,
3500 				    unsigned int flags,
3501 				    void (*destructor)(struct sock *sk,
3502 						       struct sk_buff *skb),
3503 				    int *off, int *err);
3504 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3505 				  int *err);
3506 __poll_t datagram_poll(struct file *file, struct socket *sock,
3507 			   struct poll_table_struct *wait);
3508 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3509 			   struct iov_iter *to, int size);
3510 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3511 					struct msghdr *msg, int size)
3512 {
3513 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3514 }
3515 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3516 				   struct msghdr *msg);
3517 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3518 			   struct iov_iter *to, int len,
3519 			   struct ahash_request *hash);
3520 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3521 				 struct iov_iter *from, int len);
3522 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3523 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3524 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3525 static inline void skb_free_datagram_locked(struct sock *sk,
3526 					    struct sk_buff *skb)
3527 {
3528 	__skb_free_datagram_locked(sk, skb, 0);
3529 }
3530 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3531 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3532 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3533 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3534 			      int len, __wsum csum);
3535 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3536 		    struct pipe_inode_info *pipe, unsigned int len,
3537 		    unsigned int flags);
3538 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3539 			 int len);
3540 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3541 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3542 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3543 		 int len, int hlen);
3544 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3545 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3546 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3547 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3548 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3549 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3550 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
3551 				 unsigned int offset);
3552 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3553 int skb_ensure_writable(struct sk_buff *skb, int write_len);
3554 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3555 int skb_vlan_pop(struct sk_buff *skb);
3556 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3557 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
3558 		  int mac_len, bool ethernet);
3559 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
3560 		 bool ethernet);
3561 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
3562 int skb_mpls_dec_ttl(struct sk_buff *skb);
3563 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3564 			     gfp_t gfp);
3565 
3566 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3567 {
3568 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3569 }
3570 
3571 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3572 {
3573 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3574 }
3575 
3576 struct skb_checksum_ops {
3577 	__wsum (*update)(const void *mem, int len, __wsum wsum);
3578 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3579 };
3580 
3581 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3582 
3583 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3584 		      __wsum csum, const struct skb_checksum_ops *ops);
3585 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3586 		    __wsum csum);
3587 
3588 static inline void * __must_check
3589 __skb_header_pointer(const struct sk_buff *skb, int offset,
3590 		     int len, void *data, int hlen, void *buffer)
3591 {
3592 	if (hlen - offset >= len)
3593 		return data + offset;
3594 
3595 	if (!skb ||
3596 	    skb_copy_bits(skb, offset, buffer, len) < 0)
3597 		return NULL;
3598 
3599 	return buffer;
3600 }
3601 
3602 static inline void * __must_check
3603 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3604 {
3605 	return __skb_header_pointer(skb, offset, len, skb->data,
3606 				    skb_headlen(skb), buffer);
3607 }
3608 
3609 /**
3610  *	skb_needs_linearize - check if we need to linearize a given skb
3611  *			      depending on the given device features.
3612  *	@skb: socket buffer to check
3613  *	@features: net device features
3614  *
3615  *	Returns true if either:
3616  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
3617  *	2. skb is fragmented and the device does not support SG.
3618  */
3619 static inline bool skb_needs_linearize(struct sk_buff *skb,
3620 				       netdev_features_t features)
3621 {
3622 	return skb_is_nonlinear(skb) &&
3623 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3624 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3625 }
3626 
3627 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3628 					     void *to,
3629 					     const unsigned int len)
3630 {
3631 	memcpy(to, skb->data, len);
3632 }
3633 
3634 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3635 						    const int offset, void *to,
3636 						    const unsigned int len)
3637 {
3638 	memcpy(to, skb->data + offset, len);
3639 }
3640 
3641 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3642 					   const void *from,
3643 					   const unsigned int len)
3644 {
3645 	memcpy(skb->data, from, len);
3646 }
3647 
3648 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3649 						  const int offset,
3650 						  const void *from,
3651 						  const unsigned int len)
3652 {
3653 	memcpy(skb->data + offset, from, len);
3654 }
3655 
3656 void skb_init(void);
3657 
3658 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3659 {
3660 	return skb->tstamp;
3661 }
3662 
3663 /**
3664  *	skb_get_timestamp - get timestamp from a skb
3665  *	@skb: skb to get stamp from
3666  *	@stamp: pointer to struct __kernel_old_timeval to store stamp in
3667  *
3668  *	Timestamps are stored in the skb as offsets to a base timestamp.
3669  *	This function converts the offset back to a struct timeval and stores
3670  *	it in stamp.
3671  */
3672 static inline void skb_get_timestamp(const struct sk_buff *skb,
3673 				     struct __kernel_old_timeval *stamp)
3674 {
3675 	*stamp = ns_to_kernel_old_timeval(skb->tstamp);
3676 }
3677 
3678 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
3679 					 struct __kernel_sock_timeval *stamp)
3680 {
3681 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3682 
3683 	stamp->tv_sec = ts.tv_sec;
3684 	stamp->tv_usec = ts.tv_nsec / 1000;
3685 }
3686 
3687 static inline void skb_get_timestampns(const struct sk_buff *skb,
3688 				       struct __kernel_old_timespec *stamp)
3689 {
3690 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3691 
3692 	stamp->tv_sec = ts.tv_sec;
3693 	stamp->tv_nsec = ts.tv_nsec;
3694 }
3695 
3696 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
3697 					   struct __kernel_timespec *stamp)
3698 {
3699 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3700 
3701 	stamp->tv_sec = ts.tv_sec;
3702 	stamp->tv_nsec = ts.tv_nsec;
3703 }
3704 
3705 static inline void __net_timestamp(struct sk_buff *skb)
3706 {
3707 	skb->tstamp = ktime_get_real();
3708 }
3709 
3710 static inline ktime_t net_timedelta(ktime_t t)
3711 {
3712 	return ktime_sub(ktime_get_real(), t);
3713 }
3714 
3715 static inline ktime_t net_invalid_timestamp(void)
3716 {
3717 	return 0;
3718 }
3719 
3720 static inline u8 skb_metadata_len(const struct sk_buff *skb)
3721 {
3722 	return skb_shinfo(skb)->meta_len;
3723 }
3724 
3725 static inline void *skb_metadata_end(const struct sk_buff *skb)
3726 {
3727 	return skb_mac_header(skb);
3728 }
3729 
3730 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3731 					  const struct sk_buff *skb_b,
3732 					  u8 meta_len)
3733 {
3734 	const void *a = skb_metadata_end(skb_a);
3735 	const void *b = skb_metadata_end(skb_b);
3736 	/* Using more efficient varaiant than plain call to memcmp(). */
3737 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3738 	u64 diffs = 0;
3739 
3740 	switch (meta_len) {
3741 #define __it(x, op) (x -= sizeof(u##op))
3742 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3743 	case 32: diffs |= __it_diff(a, b, 64);
3744 		 /* fall through */
3745 	case 24: diffs |= __it_diff(a, b, 64);
3746 		 /* fall through */
3747 	case 16: diffs |= __it_diff(a, b, 64);
3748 		 /* fall through */
3749 	case  8: diffs |= __it_diff(a, b, 64);
3750 		break;
3751 	case 28: diffs |= __it_diff(a, b, 64);
3752 		 /* fall through */
3753 	case 20: diffs |= __it_diff(a, b, 64);
3754 		 /* fall through */
3755 	case 12: diffs |= __it_diff(a, b, 64);
3756 		 /* fall through */
3757 	case  4: diffs |= __it_diff(a, b, 32);
3758 		break;
3759 	}
3760 	return diffs;
3761 #else
3762 	return memcmp(a - meta_len, b - meta_len, meta_len);
3763 #endif
3764 }
3765 
3766 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3767 					const struct sk_buff *skb_b)
3768 {
3769 	u8 len_a = skb_metadata_len(skb_a);
3770 	u8 len_b = skb_metadata_len(skb_b);
3771 
3772 	if (!(len_a | len_b))
3773 		return false;
3774 
3775 	return len_a != len_b ?
3776 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
3777 }
3778 
3779 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3780 {
3781 	skb_shinfo(skb)->meta_len = meta_len;
3782 }
3783 
3784 static inline void skb_metadata_clear(struct sk_buff *skb)
3785 {
3786 	skb_metadata_set(skb, 0);
3787 }
3788 
3789 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3790 
3791 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3792 
3793 void skb_clone_tx_timestamp(struct sk_buff *skb);
3794 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3795 
3796 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3797 
3798 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3799 {
3800 }
3801 
3802 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3803 {
3804 	return false;
3805 }
3806 
3807 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3808 
3809 /**
3810  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3811  *
3812  * PHY drivers may accept clones of transmitted packets for
3813  * timestamping via their phy_driver.txtstamp method. These drivers
3814  * must call this function to return the skb back to the stack with a
3815  * timestamp.
3816  *
3817  * @skb: clone of the the original outgoing packet
3818  * @hwtstamps: hardware time stamps
3819  *
3820  */
3821 void skb_complete_tx_timestamp(struct sk_buff *skb,
3822 			       struct skb_shared_hwtstamps *hwtstamps);
3823 
3824 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3825 		     struct skb_shared_hwtstamps *hwtstamps,
3826 		     struct sock *sk, int tstype);
3827 
3828 /**
3829  * skb_tstamp_tx - queue clone of skb with send time stamps
3830  * @orig_skb:	the original outgoing packet
3831  * @hwtstamps:	hardware time stamps, may be NULL if not available
3832  *
3833  * If the skb has a socket associated, then this function clones the
3834  * skb (thus sharing the actual data and optional structures), stores
3835  * the optional hardware time stamping information (if non NULL) or
3836  * generates a software time stamp (otherwise), then queues the clone
3837  * to the error queue of the socket.  Errors are silently ignored.
3838  */
3839 void skb_tstamp_tx(struct sk_buff *orig_skb,
3840 		   struct skb_shared_hwtstamps *hwtstamps);
3841 
3842 /**
3843  * skb_tx_timestamp() - Driver hook for transmit timestamping
3844  *
3845  * Ethernet MAC Drivers should call this function in their hard_xmit()
3846  * function immediately before giving the sk_buff to the MAC hardware.
3847  *
3848  * Specifically, one should make absolutely sure that this function is
3849  * called before TX completion of this packet can trigger.  Otherwise
3850  * the packet could potentially already be freed.
3851  *
3852  * @skb: A socket buffer.
3853  */
3854 static inline void skb_tx_timestamp(struct sk_buff *skb)
3855 {
3856 	skb_clone_tx_timestamp(skb);
3857 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3858 		skb_tstamp_tx(skb, NULL);
3859 }
3860 
3861 /**
3862  * skb_complete_wifi_ack - deliver skb with wifi status
3863  *
3864  * @skb: the original outgoing packet
3865  * @acked: ack status
3866  *
3867  */
3868 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3869 
3870 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3871 __sum16 __skb_checksum_complete(struct sk_buff *skb);
3872 
3873 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3874 {
3875 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3876 		skb->csum_valid ||
3877 		(skb->ip_summed == CHECKSUM_PARTIAL &&
3878 		 skb_checksum_start_offset(skb) >= 0));
3879 }
3880 
3881 /**
3882  *	skb_checksum_complete - Calculate checksum of an entire packet
3883  *	@skb: packet to process
3884  *
3885  *	This function calculates the checksum over the entire packet plus
3886  *	the value of skb->csum.  The latter can be used to supply the
3887  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
3888  *	checksum.
3889  *
3890  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
3891  *	this function can be used to verify that checksum on received
3892  *	packets.  In that case the function should return zero if the
3893  *	checksum is correct.  In particular, this function will return zero
3894  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3895  *	hardware has already verified the correctness of the checksum.
3896  */
3897 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3898 {
3899 	return skb_csum_unnecessary(skb) ?
3900 	       0 : __skb_checksum_complete(skb);
3901 }
3902 
3903 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3904 {
3905 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3906 		if (skb->csum_level == 0)
3907 			skb->ip_summed = CHECKSUM_NONE;
3908 		else
3909 			skb->csum_level--;
3910 	}
3911 }
3912 
3913 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3914 {
3915 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3916 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3917 			skb->csum_level++;
3918 	} else if (skb->ip_summed == CHECKSUM_NONE) {
3919 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3920 		skb->csum_level = 0;
3921 	}
3922 }
3923 
3924 /* Check if we need to perform checksum complete validation.
3925  *
3926  * Returns true if checksum complete is needed, false otherwise
3927  * (either checksum is unnecessary or zero checksum is allowed).
3928  */
3929 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3930 						  bool zero_okay,
3931 						  __sum16 check)
3932 {
3933 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3934 		skb->csum_valid = 1;
3935 		__skb_decr_checksum_unnecessary(skb);
3936 		return false;
3937 	}
3938 
3939 	return true;
3940 }
3941 
3942 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
3943  * in checksum_init.
3944  */
3945 #define CHECKSUM_BREAK 76
3946 
3947 /* Unset checksum-complete
3948  *
3949  * Unset checksum complete can be done when packet is being modified
3950  * (uncompressed for instance) and checksum-complete value is
3951  * invalidated.
3952  */
3953 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3954 {
3955 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3956 		skb->ip_summed = CHECKSUM_NONE;
3957 }
3958 
3959 /* Validate (init) checksum based on checksum complete.
3960  *
3961  * Return values:
3962  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
3963  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3964  *	checksum is stored in skb->csum for use in __skb_checksum_complete
3965  *   non-zero: value of invalid checksum
3966  *
3967  */
3968 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3969 						       bool complete,
3970 						       __wsum psum)
3971 {
3972 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
3973 		if (!csum_fold(csum_add(psum, skb->csum))) {
3974 			skb->csum_valid = 1;
3975 			return 0;
3976 		}
3977 	}
3978 
3979 	skb->csum = psum;
3980 
3981 	if (complete || skb->len <= CHECKSUM_BREAK) {
3982 		__sum16 csum;
3983 
3984 		csum = __skb_checksum_complete(skb);
3985 		skb->csum_valid = !csum;
3986 		return csum;
3987 	}
3988 
3989 	return 0;
3990 }
3991 
3992 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3993 {
3994 	return 0;
3995 }
3996 
3997 /* Perform checksum validate (init). Note that this is a macro since we only
3998  * want to calculate the pseudo header which is an input function if necessary.
3999  * First we try to validate without any computation (checksum unnecessary) and
4000  * then calculate based on checksum complete calling the function to compute
4001  * pseudo header.
4002  *
4003  * Return values:
4004  *   0: checksum is validated or try to in skb_checksum_complete
4005  *   non-zero: value of invalid checksum
4006  */
4007 #define __skb_checksum_validate(skb, proto, complete,			\
4008 				zero_okay, check, compute_pseudo)	\
4009 ({									\
4010 	__sum16 __ret = 0;						\
4011 	skb->csum_valid = 0;						\
4012 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
4013 		__ret = __skb_checksum_validate_complete(skb,		\
4014 				complete, compute_pseudo(skb, proto));	\
4015 	__ret;								\
4016 })
4017 
4018 #define skb_checksum_init(skb, proto, compute_pseudo)			\
4019 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4020 
4021 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
4022 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4023 
4024 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
4025 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4026 
4027 #define skb_checksum_validate_zero_check(skb, proto, check,		\
4028 					 compute_pseudo)		\
4029 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4030 
4031 #define skb_checksum_simple_validate(skb)				\
4032 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4033 
4034 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4035 {
4036 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4037 }
4038 
4039 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4040 {
4041 	skb->csum = ~pseudo;
4042 	skb->ip_summed = CHECKSUM_COMPLETE;
4043 }
4044 
4045 #define skb_checksum_try_convert(skb, proto, compute_pseudo)	\
4046 do {									\
4047 	if (__skb_checksum_convert_check(skb))				\
4048 		__skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4049 } while (0)
4050 
4051 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4052 					      u16 start, u16 offset)
4053 {
4054 	skb->ip_summed = CHECKSUM_PARTIAL;
4055 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4056 	skb->csum_offset = offset - start;
4057 }
4058 
4059 /* Update skbuf and packet to reflect the remote checksum offload operation.
4060  * When called, ptr indicates the starting point for skb->csum when
4061  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4062  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4063  */
4064 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4065 				       int start, int offset, bool nopartial)
4066 {
4067 	__wsum delta;
4068 
4069 	if (!nopartial) {
4070 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
4071 		return;
4072 	}
4073 
4074 	 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4075 		__skb_checksum_complete(skb);
4076 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4077 	}
4078 
4079 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
4080 
4081 	/* Adjust skb->csum since we changed the packet */
4082 	skb->csum = csum_add(skb->csum, delta);
4083 }
4084 
4085 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4086 {
4087 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4088 	return (void *)(skb->_nfct & NFCT_PTRMASK);
4089 #else
4090 	return NULL;
4091 #endif
4092 }
4093 
4094 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4095 {
4096 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4097 	return skb->_nfct;
4098 #else
4099 	return 0UL;
4100 #endif
4101 }
4102 
4103 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4104 {
4105 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4106 	skb->_nfct = nfct;
4107 #endif
4108 }
4109 
4110 #ifdef CONFIG_SKB_EXTENSIONS
4111 enum skb_ext_id {
4112 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4113 	SKB_EXT_BRIDGE_NF,
4114 #endif
4115 #ifdef CONFIG_XFRM
4116 	SKB_EXT_SEC_PATH,
4117 #endif
4118 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4119 	TC_SKB_EXT,
4120 #endif
4121 #if IS_ENABLED(CONFIG_MPTCP)
4122 	SKB_EXT_MPTCP,
4123 #endif
4124 	SKB_EXT_NUM, /* must be last */
4125 };
4126 
4127 /**
4128  *	struct skb_ext - sk_buff extensions
4129  *	@refcnt: 1 on allocation, deallocated on 0
4130  *	@offset: offset to add to @data to obtain extension address
4131  *	@chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4132  *	@data: start of extension data, variable sized
4133  *
4134  *	Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4135  *	to use 'u8' types while allowing up to 2kb worth of extension data.
4136  */
4137 struct skb_ext {
4138 	refcount_t refcnt;
4139 	u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4140 	u8 chunks;		/* same */
4141 	char data[0] __aligned(8);
4142 };
4143 
4144 struct skb_ext *__skb_ext_alloc(void);
4145 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4146 		    struct skb_ext *ext);
4147 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4148 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4149 void __skb_ext_put(struct skb_ext *ext);
4150 
4151 static inline void skb_ext_put(struct sk_buff *skb)
4152 {
4153 	if (skb->active_extensions)
4154 		__skb_ext_put(skb->extensions);
4155 }
4156 
4157 static inline void __skb_ext_copy(struct sk_buff *dst,
4158 				  const struct sk_buff *src)
4159 {
4160 	dst->active_extensions = src->active_extensions;
4161 
4162 	if (src->active_extensions) {
4163 		struct skb_ext *ext = src->extensions;
4164 
4165 		refcount_inc(&ext->refcnt);
4166 		dst->extensions = ext;
4167 	}
4168 }
4169 
4170 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4171 {
4172 	skb_ext_put(dst);
4173 	__skb_ext_copy(dst, src);
4174 }
4175 
4176 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4177 {
4178 	return !!ext->offset[i];
4179 }
4180 
4181 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4182 {
4183 	return skb->active_extensions & (1 << id);
4184 }
4185 
4186 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4187 {
4188 	if (skb_ext_exist(skb, id))
4189 		__skb_ext_del(skb, id);
4190 }
4191 
4192 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4193 {
4194 	if (skb_ext_exist(skb, id)) {
4195 		struct skb_ext *ext = skb->extensions;
4196 
4197 		return (void *)ext + (ext->offset[id] << 3);
4198 	}
4199 
4200 	return NULL;
4201 }
4202 
4203 static inline void skb_ext_reset(struct sk_buff *skb)
4204 {
4205 	if (unlikely(skb->active_extensions)) {
4206 		__skb_ext_put(skb->extensions);
4207 		skb->active_extensions = 0;
4208 	}
4209 }
4210 
4211 static inline bool skb_has_extensions(struct sk_buff *skb)
4212 {
4213 	return unlikely(skb->active_extensions);
4214 }
4215 #else
4216 static inline void skb_ext_put(struct sk_buff *skb) {}
4217 static inline void skb_ext_reset(struct sk_buff *skb) {}
4218 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4219 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4220 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4221 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4222 #endif /* CONFIG_SKB_EXTENSIONS */
4223 
4224 static inline void nf_reset_ct(struct sk_buff *skb)
4225 {
4226 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4227 	nf_conntrack_put(skb_nfct(skb));
4228 	skb->_nfct = 0;
4229 #endif
4230 }
4231 
4232 static inline void nf_reset_trace(struct sk_buff *skb)
4233 {
4234 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4235 	skb->nf_trace = 0;
4236 #endif
4237 }
4238 
4239 static inline void ipvs_reset(struct sk_buff *skb)
4240 {
4241 #if IS_ENABLED(CONFIG_IP_VS)
4242 	skb->ipvs_property = 0;
4243 #endif
4244 }
4245 
4246 /* Note: This doesn't put any conntrack info in dst. */
4247 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4248 			     bool copy)
4249 {
4250 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4251 	dst->_nfct = src->_nfct;
4252 	nf_conntrack_get(skb_nfct(src));
4253 #endif
4254 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4255 	if (copy)
4256 		dst->nf_trace = src->nf_trace;
4257 #endif
4258 }
4259 
4260 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4261 {
4262 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4263 	nf_conntrack_put(skb_nfct(dst));
4264 #endif
4265 	__nf_copy(dst, src, true);
4266 }
4267 
4268 #ifdef CONFIG_NETWORK_SECMARK
4269 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4270 {
4271 	to->secmark = from->secmark;
4272 }
4273 
4274 static inline void skb_init_secmark(struct sk_buff *skb)
4275 {
4276 	skb->secmark = 0;
4277 }
4278 #else
4279 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4280 { }
4281 
4282 static inline void skb_init_secmark(struct sk_buff *skb)
4283 { }
4284 #endif
4285 
4286 static inline int secpath_exists(const struct sk_buff *skb)
4287 {
4288 #ifdef CONFIG_XFRM
4289 	return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4290 #else
4291 	return 0;
4292 #endif
4293 }
4294 
4295 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4296 {
4297 	return !skb->destructor &&
4298 		!secpath_exists(skb) &&
4299 		!skb_nfct(skb) &&
4300 		!skb->_skb_refdst &&
4301 		!skb_has_frag_list(skb);
4302 }
4303 
4304 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4305 {
4306 	skb->queue_mapping = queue_mapping;
4307 }
4308 
4309 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4310 {
4311 	return skb->queue_mapping;
4312 }
4313 
4314 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4315 {
4316 	to->queue_mapping = from->queue_mapping;
4317 }
4318 
4319 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4320 {
4321 	skb->queue_mapping = rx_queue + 1;
4322 }
4323 
4324 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4325 {
4326 	return skb->queue_mapping - 1;
4327 }
4328 
4329 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4330 {
4331 	return skb->queue_mapping != 0;
4332 }
4333 
4334 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4335 {
4336 	skb->dst_pending_confirm = val;
4337 }
4338 
4339 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4340 {
4341 	return skb->dst_pending_confirm != 0;
4342 }
4343 
4344 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4345 {
4346 #ifdef CONFIG_XFRM
4347 	return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4348 #else
4349 	return NULL;
4350 #endif
4351 }
4352 
4353 /* Keeps track of mac header offset relative to skb->head.
4354  * It is useful for TSO of Tunneling protocol. e.g. GRE.
4355  * For non-tunnel skb it points to skb_mac_header() and for
4356  * tunnel skb it points to outer mac header.
4357  * Keeps track of level of encapsulation of network headers.
4358  */
4359 struct skb_gso_cb {
4360 	union {
4361 		int	mac_offset;
4362 		int	data_offset;
4363 	};
4364 	int	encap_level;
4365 	__wsum	csum;
4366 	__u16	csum_start;
4367 };
4368 #define SKB_SGO_CB_OFFSET	32
4369 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
4370 
4371 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4372 {
4373 	return (skb_mac_header(inner_skb) - inner_skb->head) -
4374 		SKB_GSO_CB(inner_skb)->mac_offset;
4375 }
4376 
4377 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4378 {
4379 	int new_headroom, headroom;
4380 	int ret;
4381 
4382 	headroom = skb_headroom(skb);
4383 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4384 	if (ret)
4385 		return ret;
4386 
4387 	new_headroom = skb_headroom(skb);
4388 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4389 	return 0;
4390 }
4391 
4392 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4393 {
4394 	/* Do not update partial checksums if remote checksum is enabled. */
4395 	if (skb->remcsum_offload)
4396 		return;
4397 
4398 	SKB_GSO_CB(skb)->csum = res;
4399 	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4400 }
4401 
4402 /* Compute the checksum for a gso segment. First compute the checksum value
4403  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4404  * then add in skb->csum (checksum from csum_start to end of packet).
4405  * skb->csum and csum_start are then updated to reflect the checksum of the
4406  * resultant packet starting from the transport header-- the resultant checksum
4407  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4408  * header.
4409  */
4410 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4411 {
4412 	unsigned char *csum_start = skb_transport_header(skb);
4413 	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4414 	__wsum partial = SKB_GSO_CB(skb)->csum;
4415 
4416 	SKB_GSO_CB(skb)->csum = res;
4417 	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4418 
4419 	return csum_fold(csum_partial(csum_start, plen, partial));
4420 }
4421 
4422 static inline bool skb_is_gso(const struct sk_buff *skb)
4423 {
4424 	return skb_shinfo(skb)->gso_size;
4425 }
4426 
4427 /* Note: Should be called only if skb_is_gso(skb) is true */
4428 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4429 {
4430 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4431 }
4432 
4433 /* Note: Should be called only if skb_is_gso(skb) is true */
4434 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4435 {
4436 	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4437 }
4438 
4439 /* Note: Should be called only if skb_is_gso(skb) is true */
4440 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4441 {
4442 	return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4443 }
4444 
4445 static inline void skb_gso_reset(struct sk_buff *skb)
4446 {
4447 	skb_shinfo(skb)->gso_size = 0;
4448 	skb_shinfo(skb)->gso_segs = 0;
4449 	skb_shinfo(skb)->gso_type = 0;
4450 }
4451 
4452 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4453 					 u16 increment)
4454 {
4455 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4456 		return;
4457 	shinfo->gso_size += increment;
4458 }
4459 
4460 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4461 					 u16 decrement)
4462 {
4463 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4464 		return;
4465 	shinfo->gso_size -= decrement;
4466 }
4467 
4468 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4469 
4470 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4471 {
4472 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
4473 	 * wanted then gso_type will be set. */
4474 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4475 
4476 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4477 	    unlikely(shinfo->gso_type == 0)) {
4478 		__skb_warn_lro_forwarding(skb);
4479 		return true;
4480 	}
4481 	return false;
4482 }
4483 
4484 static inline void skb_forward_csum(struct sk_buff *skb)
4485 {
4486 	/* Unfortunately we don't support this one.  Any brave souls? */
4487 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4488 		skb->ip_summed = CHECKSUM_NONE;
4489 }
4490 
4491 /**
4492  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4493  * @skb: skb to check
4494  *
4495  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4496  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4497  * use this helper, to document places where we make this assertion.
4498  */
4499 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4500 {
4501 #ifdef DEBUG
4502 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4503 #endif
4504 }
4505 
4506 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4507 
4508 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4509 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4510 				     unsigned int transport_len,
4511 				     __sum16(*skb_chkf)(struct sk_buff *skb));
4512 
4513 /**
4514  * skb_head_is_locked - Determine if the skb->head is locked down
4515  * @skb: skb to check
4516  *
4517  * The head on skbs build around a head frag can be removed if they are
4518  * not cloned.  This function returns true if the skb head is locked down
4519  * due to either being allocated via kmalloc, or by being a clone with
4520  * multiple references to the head.
4521  */
4522 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4523 {
4524 	return !skb->head_frag || skb_cloned(skb);
4525 }
4526 
4527 /* Local Checksum Offload.
4528  * Compute outer checksum based on the assumption that the
4529  * inner checksum will be offloaded later.
4530  * See Documentation/networking/checksum-offloads.rst for
4531  * explanation of how this works.
4532  * Fill in outer checksum adjustment (e.g. with sum of outer
4533  * pseudo-header) before calling.
4534  * Also ensure that inner checksum is in linear data area.
4535  */
4536 static inline __wsum lco_csum(struct sk_buff *skb)
4537 {
4538 	unsigned char *csum_start = skb_checksum_start(skb);
4539 	unsigned char *l4_hdr = skb_transport_header(skb);
4540 	__wsum partial;
4541 
4542 	/* Start with complement of inner checksum adjustment */
4543 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4544 						    skb->csum_offset));
4545 
4546 	/* Add in checksum of our headers (incl. outer checksum
4547 	 * adjustment filled in by caller) and return result.
4548 	 */
4549 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4550 }
4551 
4552 #endif	/* __KERNEL__ */
4553 #endif	/* _LINUX_SKBUFF_H */
4554