xref: /linux-6.15/include/linux/skbuff.h (revision c40d04df)
1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <[email protected]>
6  *		Florian La Roche, <[email protected]>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/cache.h>
22 
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/dmaengine.h>
31 #include <linux/hrtimer.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/netdev_features.h>
34 
35 /* Don't change this without changing skb_csum_unnecessary! */
36 #define CHECKSUM_NONE 0
37 #define CHECKSUM_UNNECESSARY 1
38 #define CHECKSUM_COMPLETE 2
39 #define CHECKSUM_PARTIAL 3
40 
41 #define SKB_DATA_ALIGN(X)	(((X) + (SMP_CACHE_BYTES - 1)) & \
42 				 ~(SMP_CACHE_BYTES - 1))
43 #define SKB_WITH_OVERHEAD(X)	\
44 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
45 #define SKB_MAX_ORDER(X, ORDER) \
46 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
47 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
48 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
49 
50 /* return minimum truesize of one skb containing X bytes of data */
51 #define SKB_TRUESIZE(X) ((X) +						\
52 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
53 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
54 
55 /* A. Checksumming of received packets by device.
56  *
57  *	NONE: device failed to checksum this packet.
58  *		skb->csum is undefined.
59  *
60  *	UNNECESSARY: device parsed packet and wouldbe verified checksum.
61  *		skb->csum is undefined.
62  *	      It is bad option, but, unfortunately, many of vendors do this.
63  *	      Apparently with secret goal to sell you new device, when you
64  *	      will add new protocol to your host. F.e. IPv6. 8)
65  *
66  *	COMPLETE: the most generic way. Device supplied checksum of _all_
67  *	    the packet as seen by netif_rx in skb->csum.
68  *	    NOTE: Even if device supports only some protocols, but
69  *	    is able to produce some skb->csum, it MUST use COMPLETE,
70  *	    not UNNECESSARY.
71  *
72  *	PARTIAL: identical to the case for output below.  This may occur
73  *	    on a packet received directly from another Linux OS, e.g.,
74  *	    a virtualised Linux kernel on the same host.  The packet can
75  *	    be treated in the same way as UNNECESSARY except that on
76  *	    output (i.e., forwarding) the checksum must be filled in
77  *	    by the OS or the hardware.
78  *
79  * B. Checksumming on output.
80  *
81  *	NONE: skb is checksummed by protocol or csum is not required.
82  *
83  *	PARTIAL: device is required to csum packet as seen by hard_start_xmit
84  *	from skb->csum_start to the end and to record the checksum
85  *	at skb->csum_start + skb->csum_offset.
86  *
87  *	Device must show its capabilities in dev->features, set
88  *	at device setup time.
89  *	NETIF_F_HW_CSUM	- it is clever device, it is able to checksum
90  *			  everything.
91  *	NETIF_F_IP_CSUM - device is dumb. It is able to csum only
92  *			  TCP/UDP over IPv4. Sigh. Vendors like this
93  *			  way by an unknown reason. Though, see comment above
94  *			  about CHECKSUM_UNNECESSARY. 8)
95  *	NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
96  *
97  *	UNNECESSARY: device will do per protocol specific csum. Protocol drivers
98  *	that do not want net to perform the checksum calculation should use
99  *	this flag in their outgoing skbs.
100  *	NETIF_F_FCOE_CRC  this indicates the device can do FCoE FC CRC
101  *			  offload. Correspondingly, the FCoE protocol driver
102  *			  stack should use CHECKSUM_UNNECESSARY.
103  *
104  *	Any questions? No questions, good. 		--ANK
105  */
106 
107 struct net_device;
108 struct scatterlist;
109 struct pipe_inode_info;
110 
111 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
112 struct nf_conntrack {
113 	atomic_t use;
114 };
115 #endif
116 
117 #ifdef CONFIG_BRIDGE_NETFILTER
118 struct nf_bridge_info {
119 	atomic_t use;
120 	struct net_device *physindev;
121 	struct net_device *physoutdev;
122 	unsigned int mask;
123 	unsigned long data[32 / sizeof(unsigned long)];
124 };
125 #endif
126 
127 struct sk_buff_head {
128 	/* These two members must be first. */
129 	struct sk_buff	*next;
130 	struct sk_buff	*prev;
131 
132 	__u32		qlen;
133 	spinlock_t	lock;
134 };
135 
136 struct sk_buff;
137 
138 /* To allow 64K frame to be packed as single skb without frag_list we
139  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
140  * buffers which do not start on a page boundary.
141  *
142  * Since GRO uses frags we allocate at least 16 regardless of page
143  * size.
144  */
145 #if (65536/PAGE_SIZE + 1) < 16
146 #define MAX_SKB_FRAGS 16UL
147 #else
148 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
149 #endif
150 
151 typedef struct skb_frag_struct skb_frag_t;
152 
153 struct skb_frag_struct {
154 	struct {
155 		struct page *p;
156 	} page;
157 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
158 	__u32 page_offset;
159 	__u32 size;
160 #else
161 	__u16 page_offset;
162 	__u16 size;
163 #endif
164 };
165 
166 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
167 {
168 	return frag->size;
169 }
170 
171 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
172 {
173 	frag->size = size;
174 }
175 
176 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
177 {
178 	frag->size += delta;
179 }
180 
181 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
182 {
183 	frag->size -= delta;
184 }
185 
186 #define HAVE_HW_TIME_STAMP
187 
188 /**
189  * struct skb_shared_hwtstamps - hardware time stamps
190  * @hwtstamp:	hardware time stamp transformed into duration
191  *		since arbitrary point in time
192  * @syststamp:	hwtstamp transformed to system time base
193  *
194  * Software time stamps generated by ktime_get_real() are stored in
195  * skb->tstamp. The relation between the different kinds of time
196  * stamps is as follows:
197  *
198  * syststamp and tstamp can be compared against each other in
199  * arbitrary combinations.  The accuracy of a
200  * syststamp/tstamp/"syststamp from other device" comparison is
201  * limited by the accuracy of the transformation into system time
202  * base. This depends on the device driver and its underlying
203  * hardware.
204  *
205  * hwtstamps can only be compared against other hwtstamps from
206  * the same device.
207  *
208  * This structure is attached to packets as part of the
209  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
210  */
211 struct skb_shared_hwtstamps {
212 	ktime_t	hwtstamp;
213 	ktime_t	syststamp;
214 };
215 
216 /* Definitions for tx_flags in struct skb_shared_info */
217 enum {
218 	/* generate hardware time stamp */
219 	SKBTX_HW_TSTAMP = 1 << 0,
220 
221 	/* generate software time stamp */
222 	SKBTX_SW_TSTAMP = 1 << 1,
223 
224 	/* device driver is going to provide hardware time stamp */
225 	SKBTX_IN_PROGRESS = 1 << 2,
226 
227 	/* ensure the originating sk reference is available on driver level */
228 	SKBTX_DRV_NEEDS_SK_REF = 1 << 3,
229 
230 	/* device driver supports TX zero-copy buffers */
231 	SKBTX_DEV_ZEROCOPY = 1 << 4,
232 
233 	/* generate wifi status information (where possible) */
234 	SKBTX_WIFI_STATUS = 1 << 5,
235 };
236 
237 /*
238  * The callback notifies userspace to release buffers when skb DMA is done in
239  * lower device, the skb last reference should be 0 when calling this.
240  * The desc is used to track userspace buffer index.
241  */
242 struct ubuf_info {
243 	void (*callback)(void *);
244 	void *arg;
245 	unsigned long desc;
246 };
247 
248 /* This data is invariant across clones and lives at
249  * the end of the header data, ie. at skb->end.
250  */
251 struct skb_shared_info {
252 	unsigned char	nr_frags;
253 	__u8		tx_flags;
254 	unsigned short	gso_size;
255 	/* Warning: this field is not always filled in (UFO)! */
256 	unsigned short	gso_segs;
257 	unsigned short  gso_type;
258 	struct sk_buff	*frag_list;
259 	struct skb_shared_hwtstamps hwtstamps;
260 	__be32          ip6_frag_id;
261 
262 	/*
263 	 * Warning : all fields before dataref are cleared in __alloc_skb()
264 	 */
265 	atomic_t	dataref;
266 
267 	/* Intermediate layers must ensure that destructor_arg
268 	 * remains valid until skb destructor */
269 	void *		destructor_arg;
270 
271 	/* must be last field, see pskb_expand_head() */
272 	skb_frag_t	frags[MAX_SKB_FRAGS];
273 };
274 
275 /* We divide dataref into two halves.  The higher 16 bits hold references
276  * to the payload part of skb->data.  The lower 16 bits hold references to
277  * the entire skb->data.  A clone of a headerless skb holds the length of
278  * the header in skb->hdr_len.
279  *
280  * All users must obey the rule that the skb->data reference count must be
281  * greater than or equal to the payload reference count.
282  *
283  * Holding a reference to the payload part means that the user does not
284  * care about modifications to the header part of skb->data.
285  */
286 #define SKB_DATAREF_SHIFT 16
287 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
288 
289 
290 enum {
291 	SKB_FCLONE_UNAVAILABLE,
292 	SKB_FCLONE_ORIG,
293 	SKB_FCLONE_CLONE,
294 };
295 
296 enum {
297 	SKB_GSO_TCPV4 = 1 << 0,
298 	SKB_GSO_UDP = 1 << 1,
299 
300 	/* This indicates the skb is from an untrusted source. */
301 	SKB_GSO_DODGY = 1 << 2,
302 
303 	/* This indicates the tcp segment has CWR set. */
304 	SKB_GSO_TCP_ECN = 1 << 3,
305 
306 	SKB_GSO_TCPV6 = 1 << 4,
307 
308 	SKB_GSO_FCOE = 1 << 5,
309 };
310 
311 #if BITS_PER_LONG > 32
312 #define NET_SKBUFF_DATA_USES_OFFSET 1
313 #endif
314 
315 #ifdef NET_SKBUFF_DATA_USES_OFFSET
316 typedef unsigned int sk_buff_data_t;
317 #else
318 typedef unsigned char *sk_buff_data_t;
319 #endif
320 
321 #if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \
322     defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE)
323 #define NET_SKBUFF_NF_DEFRAG_NEEDED 1
324 #endif
325 
326 /**
327  *	struct sk_buff - socket buffer
328  *	@next: Next buffer in list
329  *	@prev: Previous buffer in list
330  *	@tstamp: Time we arrived
331  *	@sk: Socket we are owned by
332  *	@dev: Device we arrived on/are leaving by
333  *	@cb: Control buffer. Free for use by every layer. Put private vars here
334  *	@_skb_refdst: destination entry (with norefcount bit)
335  *	@sp: the security path, used for xfrm
336  *	@len: Length of actual data
337  *	@data_len: Data length
338  *	@mac_len: Length of link layer header
339  *	@hdr_len: writable header length of cloned skb
340  *	@csum: Checksum (must include start/offset pair)
341  *	@csum_start: Offset from skb->head where checksumming should start
342  *	@csum_offset: Offset from csum_start where checksum should be stored
343  *	@priority: Packet queueing priority
344  *	@local_df: allow local fragmentation
345  *	@cloned: Head may be cloned (check refcnt to be sure)
346  *	@ip_summed: Driver fed us an IP checksum
347  *	@nohdr: Payload reference only, must not modify header
348  *	@nfctinfo: Relationship of this skb to the connection
349  *	@pkt_type: Packet class
350  *	@fclone: skbuff clone status
351  *	@ipvs_property: skbuff is owned by ipvs
352  *	@peeked: this packet has been seen already, so stats have been
353  *		done for it, don't do them again
354  *	@nf_trace: netfilter packet trace flag
355  *	@protocol: Packet protocol from driver
356  *	@destructor: Destruct function
357  *	@nfct: Associated connection, if any
358  *	@nfct_reasm: netfilter conntrack re-assembly pointer
359  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
360  *	@skb_iif: ifindex of device we arrived on
361  *	@tc_index: Traffic control index
362  *	@tc_verd: traffic control verdict
363  *	@rxhash: the packet hash computed on receive
364  *	@queue_mapping: Queue mapping for multiqueue devices
365  *	@ndisc_nodetype: router type (from link layer)
366  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
367  *	@l4_rxhash: indicate rxhash is a canonical 4-tuple hash over transport
368  *		ports.
369  *	@wifi_acked_valid: wifi_acked was set
370  *	@wifi_acked: whether frame was acked on wifi or not
371  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
372  *	@dma_cookie: a cookie to one of several possible DMA operations
373  *		done by skb DMA functions
374  *	@secmark: security marking
375  *	@mark: Generic packet mark
376  *	@dropcount: total number of sk_receive_queue overflows
377  *	@vlan_tci: vlan tag control information
378  *	@transport_header: Transport layer header
379  *	@network_header: Network layer header
380  *	@mac_header: Link layer header
381  *	@tail: Tail pointer
382  *	@end: End pointer
383  *	@head: Head of buffer
384  *	@data: Data head pointer
385  *	@truesize: Buffer size
386  *	@users: User count - see {datagram,tcp}.c
387  */
388 
389 struct sk_buff {
390 	/* These two members must be first. */
391 	struct sk_buff		*next;
392 	struct sk_buff		*prev;
393 
394 	ktime_t			tstamp;
395 
396 	struct sock		*sk;
397 	struct net_device	*dev;
398 
399 	/*
400 	 * This is the control buffer. It is free to use for every
401 	 * layer. Please put your private variables there. If you
402 	 * want to keep them across layers you have to do a skb_clone()
403 	 * first. This is owned by whoever has the skb queued ATM.
404 	 */
405 	char			cb[48] __aligned(8);
406 
407 	unsigned long		_skb_refdst;
408 #ifdef CONFIG_XFRM
409 	struct	sec_path	*sp;
410 #endif
411 	unsigned int		len,
412 				data_len;
413 	__u16			mac_len,
414 				hdr_len;
415 	union {
416 		__wsum		csum;
417 		struct {
418 			__u16	csum_start;
419 			__u16	csum_offset;
420 		};
421 	};
422 	__u32			priority;
423 	kmemcheck_bitfield_begin(flags1);
424 	__u8			local_df:1,
425 				cloned:1,
426 				ip_summed:2,
427 				nohdr:1,
428 				nfctinfo:3;
429 	__u8			pkt_type:3,
430 				fclone:2,
431 				ipvs_property:1,
432 				peeked:1,
433 				nf_trace:1;
434 	kmemcheck_bitfield_end(flags1);
435 	__be16			protocol;
436 
437 	void			(*destructor)(struct sk_buff *skb);
438 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
439 	struct nf_conntrack	*nfct;
440 #endif
441 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
442 	struct sk_buff		*nfct_reasm;
443 #endif
444 #ifdef CONFIG_BRIDGE_NETFILTER
445 	struct nf_bridge_info	*nf_bridge;
446 #endif
447 
448 	int			skb_iif;
449 
450 	__u32			rxhash;
451 
452 	__u16			vlan_tci;
453 
454 #ifdef CONFIG_NET_SCHED
455 	__u16			tc_index;	/* traffic control index */
456 #ifdef CONFIG_NET_CLS_ACT
457 	__u16			tc_verd;	/* traffic control verdict */
458 #endif
459 #endif
460 
461 	__u16			queue_mapping;
462 	kmemcheck_bitfield_begin(flags2);
463 #ifdef CONFIG_IPV6_NDISC_NODETYPE
464 	__u8			ndisc_nodetype:2;
465 #endif
466 	__u8			ooo_okay:1;
467 	__u8			l4_rxhash:1;
468 	__u8			wifi_acked_valid:1;
469 	__u8			wifi_acked:1;
470 	__u8			no_fcs:1;
471 	/* 9/11 bit hole (depending on ndisc_nodetype presence) */
472 	kmemcheck_bitfield_end(flags2);
473 
474 #ifdef CONFIG_NET_DMA
475 	dma_cookie_t		dma_cookie;
476 #endif
477 #ifdef CONFIG_NETWORK_SECMARK
478 	__u32			secmark;
479 #endif
480 	union {
481 		__u32		mark;
482 		__u32		dropcount;
483 	};
484 
485 	sk_buff_data_t		transport_header;
486 	sk_buff_data_t		network_header;
487 	sk_buff_data_t		mac_header;
488 	/* These elements must be at the end, see alloc_skb() for details.  */
489 	sk_buff_data_t		tail;
490 	sk_buff_data_t		end;
491 	unsigned char		*head,
492 				*data;
493 	unsigned int		truesize;
494 	atomic_t		users;
495 };
496 
497 #ifdef __KERNEL__
498 /*
499  *	Handling routines are only of interest to the kernel
500  */
501 #include <linux/slab.h>
502 
503 #include <asm/system.h>
504 
505 /*
506  * skb might have a dst pointer attached, refcounted or not.
507  * _skb_refdst low order bit is set if refcount was _not_ taken
508  */
509 #define SKB_DST_NOREF	1UL
510 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
511 
512 /**
513  * skb_dst - returns skb dst_entry
514  * @skb: buffer
515  *
516  * Returns skb dst_entry, regardless of reference taken or not.
517  */
518 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
519 {
520 	/* If refdst was not refcounted, check we still are in a
521 	 * rcu_read_lock section
522 	 */
523 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
524 		!rcu_read_lock_held() &&
525 		!rcu_read_lock_bh_held());
526 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
527 }
528 
529 /**
530  * skb_dst_set - sets skb dst
531  * @skb: buffer
532  * @dst: dst entry
533  *
534  * Sets skb dst, assuming a reference was taken on dst and should
535  * be released by skb_dst_drop()
536  */
537 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
538 {
539 	skb->_skb_refdst = (unsigned long)dst;
540 }
541 
542 extern void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst);
543 
544 /**
545  * skb_dst_is_noref - Test if skb dst isn't refcounted
546  * @skb: buffer
547  */
548 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
549 {
550 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
551 }
552 
553 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
554 {
555 	return (struct rtable *)skb_dst(skb);
556 }
557 
558 extern void kfree_skb(struct sk_buff *skb);
559 extern void consume_skb(struct sk_buff *skb);
560 extern void	       __kfree_skb(struct sk_buff *skb);
561 extern struct sk_buff *__alloc_skb(unsigned int size,
562 				   gfp_t priority, int fclone, int node);
563 extern struct sk_buff *build_skb(void *data);
564 static inline struct sk_buff *alloc_skb(unsigned int size,
565 					gfp_t priority)
566 {
567 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
568 }
569 
570 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
571 					       gfp_t priority)
572 {
573 	return __alloc_skb(size, priority, 1, NUMA_NO_NODE);
574 }
575 
576 extern void skb_recycle(struct sk_buff *skb);
577 extern bool skb_recycle_check(struct sk_buff *skb, int skb_size);
578 
579 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
580 extern int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
581 extern struct sk_buff *skb_clone(struct sk_buff *skb,
582 				 gfp_t priority);
583 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
584 				gfp_t priority);
585 extern struct sk_buff *__pskb_copy(struct sk_buff *skb,
586 				 int headroom, gfp_t gfp_mask);
587 
588 extern int	       pskb_expand_head(struct sk_buff *skb,
589 					int nhead, int ntail,
590 					gfp_t gfp_mask);
591 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
592 					    unsigned int headroom);
593 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
594 				       int newheadroom, int newtailroom,
595 				       gfp_t priority);
596 extern int	       skb_to_sgvec(struct sk_buff *skb,
597 				    struct scatterlist *sg, int offset,
598 				    int len);
599 extern int	       skb_cow_data(struct sk_buff *skb, int tailbits,
600 				    struct sk_buff **trailer);
601 extern int	       skb_pad(struct sk_buff *skb, int pad);
602 #define dev_kfree_skb(a)	consume_skb(a)
603 
604 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
605 			int getfrag(void *from, char *to, int offset,
606 			int len,int odd, struct sk_buff *skb),
607 			void *from, int length);
608 
609 struct skb_seq_state {
610 	__u32		lower_offset;
611 	__u32		upper_offset;
612 	__u32		frag_idx;
613 	__u32		stepped_offset;
614 	struct sk_buff	*root_skb;
615 	struct sk_buff	*cur_skb;
616 	__u8		*frag_data;
617 };
618 
619 extern void	      skb_prepare_seq_read(struct sk_buff *skb,
620 					   unsigned int from, unsigned int to,
621 					   struct skb_seq_state *st);
622 extern unsigned int   skb_seq_read(unsigned int consumed, const u8 **data,
623 				   struct skb_seq_state *st);
624 extern void	      skb_abort_seq_read(struct skb_seq_state *st);
625 
626 extern unsigned int   skb_find_text(struct sk_buff *skb, unsigned int from,
627 				    unsigned int to, struct ts_config *config,
628 				    struct ts_state *state);
629 
630 extern void __skb_get_rxhash(struct sk_buff *skb);
631 static inline __u32 skb_get_rxhash(struct sk_buff *skb)
632 {
633 	if (!skb->rxhash)
634 		__skb_get_rxhash(skb);
635 
636 	return skb->rxhash;
637 }
638 
639 #ifdef NET_SKBUFF_DATA_USES_OFFSET
640 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
641 {
642 	return skb->head + skb->end;
643 }
644 #else
645 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
646 {
647 	return skb->end;
648 }
649 #endif
650 
651 /* Internal */
652 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
653 
654 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
655 {
656 	return &skb_shinfo(skb)->hwtstamps;
657 }
658 
659 /**
660  *	skb_queue_empty - check if a queue is empty
661  *	@list: queue head
662  *
663  *	Returns true if the queue is empty, false otherwise.
664  */
665 static inline int skb_queue_empty(const struct sk_buff_head *list)
666 {
667 	return list->next == (struct sk_buff *)list;
668 }
669 
670 /**
671  *	skb_queue_is_last - check if skb is the last entry in the queue
672  *	@list: queue head
673  *	@skb: buffer
674  *
675  *	Returns true if @skb is the last buffer on the list.
676  */
677 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
678 				     const struct sk_buff *skb)
679 {
680 	return skb->next == (struct sk_buff *)list;
681 }
682 
683 /**
684  *	skb_queue_is_first - check if skb is the first entry in the queue
685  *	@list: queue head
686  *	@skb: buffer
687  *
688  *	Returns true if @skb is the first buffer on the list.
689  */
690 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
691 				      const struct sk_buff *skb)
692 {
693 	return skb->prev == (struct sk_buff *)list;
694 }
695 
696 /**
697  *	skb_queue_next - return the next packet in the queue
698  *	@list: queue head
699  *	@skb: current buffer
700  *
701  *	Return the next packet in @list after @skb.  It is only valid to
702  *	call this if skb_queue_is_last() evaluates to false.
703  */
704 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
705 					     const struct sk_buff *skb)
706 {
707 	/* This BUG_ON may seem severe, but if we just return then we
708 	 * are going to dereference garbage.
709 	 */
710 	BUG_ON(skb_queue_is_last(list, skb));
711 	return skb->next;
712 }
713 
714 /**
715  *	skb_queue_prev - return the prev packet in the queue
716  *	@list: queue head
717  *	@skb: current buffer
718  *
719  *	Return the prev packet in @list before @skb.  It is only valid to
720  *	call this if skb_queue_is_first() evaluates to false.
721  */
722 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
723 					     const struct sk_buff *skb)
724 {
725 	/* This BUG_ON may seem severe, but if we just return then we
726 	 * are going to dereference garbage.
727 	 */
728 	BUG_ON(skb_queue_is_first(list, skb));
729 	return skb->prev;
730 }
731 
732 /**
733  *	skb_get - reference buffer
734  *	@skb: buffer to reference
735  *
736  *	Makes another reference to a socket buffer and returns a pointer
737  *	to the buffer.
738  */
739 static inline struct sk_buff *skb_get(struct sk_buff *skb)
740 {
741 	atomic_inc(&skb->users);
742 	return skb;
743 }
744 
745 /*
746  * If users == 1, we are the only owner and are can avoid redundant
747  * atomic change.
748  */
749 
750 /**
751  *	skb_cloned - is the buffer a clone
752  *	@skb: buffer to check
753  *
754  *	Returns true if the buffer was generated with skb_clone() and is
755  *	one of multiple shared copies of the buffer. Cloned buffers are
756  *	shared data so must not be written to under normal circumstances.
757  */
758 static inline int skb_cloned(const struct sk_buff *skb)
759 {
760 	return skb->cloned &&
761 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
762 }
763 
764 /**
765  *	skb_header_cloned - is the header a clone
766  *	@skb: buffer to check
767  *
768  *	Returns true if modifying the header part of the buffer requires
769  *	the data to be copied.
770  */
771 static inline int skb_header_cloned(const struct sk_buff *skb)
772 {
773 	int dataref;
774 
775 	if (!skb->cloned)
776 		return 0;
777 
778 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
779 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
780 	return dataref != 1;
781 }
782 
783 /**
784  *	skb_header_release - release reference to header
785  *	@skb: buffer to operate on
786  *
787  *	Drop a reference to the header part of the buffer.  This is done
788  *	by acquiring a payload reference.  You must not read from the header
789  *	part of skb->data after this.
790  */
791 static inline void skb_header_release(struct sk_buff *skb)
792 {
793 	BUG_ON(skb->nohdr);
794 	skb->nohdr = 1;
795 	atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
796 }
797 
798 /**
799  *	skb_shared - is the buffer shared
800  *	@skb: buffer to check
801  *
802  *	Returns true if more than one person has a reference to this
803  *	buffer.
804  */
805 static inline int skb_shared(const struct sk_buff *skb)
806 {
807 	return atomic_read(&skb->users) != 1;
808 }
809 
810 /**
811  *	skb_share_check - check if buffer is shared and if so clone it
812  *	@skb: buffer to check
813  *	@pri: priority for memory allocation
814  *
815  *	If the buffer is shared the buffer is cloned and the old copy
816  *	drops a reference. A new clone with a single reference is returned.
817  *	If the buffer is not shared the original buffer is returned. When
818  *	being called from interrupt status or with spinlocks held pri must
819  *	be GFP_ATOMIC.
820  *
821  *	NULL is returned on a memory allocation failure.
822  */
823 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
824 					      gfp_t pri)
825 {
826 	might_sleep_if(pri & __GFP_WAIT);
827 	if (skb_shared(skb)) {
828 		struct sk_buff *nskb = skb_clone(skb, pri);
829 		kfree_skb(skb);
830 		skb = nskb;
831 	}
832 	return skb;
833 }
834 
835 /*
836  *	Copy shared buffers into a new sk_buff. We effectively do COW on
837  *	packets to handle cases where we have a local reader and forward
838  *	and a couple of other messy ones. The normal one is tcpdumping
839  *	a packet thats being forwarded.
840  */
841 
842 /**
843  *	skb_unshare - make a copy of a shared buffer
844  *	@skb: buffer to check
845  *	@pri: priority for memory allocation
846  *
847  *	If the socket buffer is a clone then this function creates a new
848  *	copy of the data, drops a reference count on the old copy and returns
849  *	the new copy with the reference count at 1. If the buffer is not a clone
850  *	the original buffer is returned. When called with a spinlock held or
851  *	from interrupt state @pri must be %GFP_ATOMIC
852  *
853  *	%NULL is returned on a memory allocation failure.
854  */
855 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
856 					  gfp_t pri)
857 {
858 	might_sleep_if(pri & __GFP_WAIT);
859 	if (skb_cloned(skb)) {
860 		struct sk_buff *nskb = skb_copy(skb, pri);
861 		kfree_skb(skb);	/* Free our shared copy */
862 		skb = nskb;
863 	}
864 	return skb;
865 }
866 
867 /**
868  *	skb_peek - peek at the head of an &sk_buff_head
869  *	@list_: list to peek at
870  *
871  *	Peek an &sk_buff. Unlike most other operations you _MUST_
872  *	be careful with this one. A peek leaves the buffer on the
873  *	list and someone else may run off with it. You must hold
874  *	the appropriate locks or have a private queue to do this.
875  *
876  *	Returns %NULL for an empty list or a pointer to the head element.
877  *	The reference count is not incremented and the reference is therefore
878  *	volatile. Use with caution.
879  */
880 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
881 {
882 	struct sk_buff *list = ((const struct sk_buff *)list_)->next;
883 	if (list == (struct sk_buff *)list_)
884 		list = NULL;
885 	return list;
886 }
887 
888 /**
889  *	skb_peek_next - peek skb following the given one from a queue
890  *	@skb: skb to start from
891  *	@list_: list to peek at
892  *
893  *	Returns %NULL when the end of the list is met or a pointer to the
894  *	next element. The reference count is not incremented and the
895  *	reference is therefore volatile. Use with caution.
896  */
897 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
898 		const struct sk_buff_head *list_)
899 {
900 	struct sk_buff *next = skb->next;
901 	if (next == (struct sk_buff *)list_)
902 		next = NULL;
903 	return next;
904 }
905 
906 /**
907  *	skb_peek_tail - peek at the tail of an &sk_buff_head
908  *	@list_: list to peek at
909  *
910  *	Peek an &sk_buff. Unlike most other operations you _MUST_
911  *	be careful with this one. A peek leaves the buffer on the
912  *	list and someone else may run off with it. You must hold
913  *	the appropriate locks or have a private queue to do this.
914  *
915  *	Returns %NULL for an empty list or a pointer to the tail element.
916  *	The reference count is not incremented and the reference is therefore
917  *	volatile. Use with caution.
918  */
919 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
920 {
921 	struct sk_buff *list = ((const struct sk_buff *)list_)->prev;
922 	if (list == (struct sk_buff *)list_)
923 		list = NULL;
924 	return list;
925 }
926 
927 /**
928  *	skb_queue_len	- get queue length
929  *	@list_: list to measure
930  *
931  *	Return the length of an &sk_buff queue.
932  */
933 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
934 {
935 	return list_->qlen;
936 }
937 
938 /**
939  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
940  *	@list: queue to initialize
941  *
942  *	This initializes only the list and queue length aspects of
943  *	an sk_buff_head object.  This allows to initialize the list
944  *	aspects of an sk_buff_head without reinitializing things like
945  *	the spinlock.  It can also be used for on-stack sk_buff_head
946  *	objects where the spinlock is known to not be used.
947  */
948 static inline void __skb_queue_head_init(struct sk_buff_head *list)
949 {
950 	list->prev = list->next = (struct sk_buff *)list;
951 	list->qlen = 0;
952 }
953 
954 /*
955  * This function creates a split out lock class for each invocation;
956  * this is needed for now since a whole lot of users of the skb-queue
957  * infrastructure in drivers have different locking usage (in hardirq)
958  * than the networking core (in softirq only). In the long run either the
959  * network layer or drivers should need annotation to consolidate the
960  * main types of usage into 3 classes.
961  */
962 static inline void skb_queue_head_init(struct sk_buff_head *list)
963 {
964 	spin_lock_init(&list->lock);
965 	__skb_queue_head_init(list);
966 }
967 
968 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
969 		struct lock_class_key *class)
970 {
971 	skb_queue_head_init(list);
972 	lockdep_set_class(&list->lock, class);
973 }
974 
975 /*
976  *	Insert an sk_buff on a list.
977  *
978  *	The "__skb_xxxx()" functions are the non-atomic ones that
979  *	can only be called with interrupts disabled.
980  */
981 extern void        skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
982 static inline void __skb_insert(struct sk_buff *newsk,
983 				struct sk_buff *prev, struct sk_buff *next,
984 				struct sk_buff_head *list)
985 {
986 	newsk->next = next;
987 	newsk->prev = prev;
988 	next->prev  = prev->next = newsk;
989 	list->qlen++;
990 }
991 
992 static inline void __skb_queue_splice(const struct sk_buff_head *list,
993 				      struct sk_buff *prev,
994 				      struct sk_buff *next)
995 {
996 	struct sk_buff *first = list->next;
997 	struct sk_buff *last = list->prev;
998 
999 	first->prev = prev;
1000 	prev->next = first;
1001 
1002 	last->next = next;
1003 	next->prev = last;
1004 }
1005 
1006 /**
1007  *	skb_queue_splice - join two skb lists, this is designed for stacks
1008  *	@list: the new list to add
1009  *	@head: the place to add it in the first list
1010  */
1011 static inline void skb_queue_splice(const struct sk_buff_head *list,
1012 				    struct sk_buff_head *head)
1013 {
1014 	if (!skb_queue_empty(list)) {
1015 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1016 		head->qlen += list->qlen;
1017 	}
1018 }
1019 
1020 /**
1021  *	skb_queue_splice - join two skb lists and reinitialise the emptied list
1022  *	@list: the new list to add
1023  *	@head: the place to add it in the first list
1024  *
1025  *	The list at @list is reinitialised
1026  */
1027 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1028 					 struct sk_buff_head *head)
1029 {
1030 	if (!skb_queue_empty(list)) {
1031 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1032 		head->qlen += list->qlen;
1033 		__skb_queue_head_init(list);
1034 	}
1035 }
1036 
1037 /**
1038  *	skb_queue_splice_tail - join two skb lists, each list being a queue
1039  *	@list: the new list to add
1040  *	@head: the place to add it in the first list
1041  */
1042 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1043 					 struct sk_buff_head *head)
1044 {
1045 	if (!skb_queue_empty(list)) {
1046 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1047 		head->qlen += list->qlen;
1048 	}
1049 }
1050 
1051 /**
1052  *	skb_queue_splice_tail - join two skb lists and reinitialise the emptied list
1053  *	@list: the new list to add
1054  *	@head: the place to add it in the first list
1055  *
1056  *	Each of the lists is a queue.
1057  *	The list at @list is reinitialised
1058  */
1059 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1060 					      struct sk_buff_head *head)
1061 {
1062 	if (!skb_queue_empty(list)) {
1063 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1064 		head->qlen += list->qlen;
1065 		__skb_queue_head_init(list);
1066 	}
1067 }
1068 
1069 /**
1070  *	__skb_queue_after - queue a buffer at the list head
1071  *	@list: list to use
1072  *	@prev: place after this buffer
1073  *	@newsk: buffer to queue
1074  *
1075  *	Queue a buffer int the middle of a list. This function takes no locks
1076  *	and you must therefore hold required locks before calling it.
1077  *
1078  *	A buffer cannot be placed on two lists at the same time.
1079  */
1080 static inline void __skb_queue_after(struct sk_buff_head *list,
1081 				     struct sk_buff *prev,
1082 				     struct sk_buff *newsk)
1083 {
1084 	__skb_insert(newsk, prev, prev->next, list);
1085 }
1086 
1087 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1088 		       struct sk_buff_head *list);
1089 
1090 static inline void __skb_queue_before(struct sk_buff_head *list,
1091 				      struct sk_buff *next,
1092 				      struct sk_buff *newsk)
1093 {
1094 	__skb_insert(newsk, next->prev, next, list);
1095 }
1096 
1097 /**
1098  *	__skb_queue_head - queue a buffer at the list head
1099  *	@list: list to use
1100  *	@newsk: buffer to queue
1101  *
1102  *	Queue a buffer at the start of a list. This function takes no locks
1103  *	and you must therefore hold required locks before calling it.
1104  *
1105  *	A buffer cannot be placed on two lists at the same time.
1106  */
1107 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1108 static inline void __skb_queue_head(struct sk_buff_head *list,
1109 				    struct sk_buff *newsk)
1110 {
1111 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
1112 }
1113 
1114 /**
1115  *	__skb_queue_tail - queue a buffer at the list tail
1116  *	@list: list to use
1117  *	@newsk: buffer to queue
1118  *
1119  *	Queue a buffer at the end of a list. This function takes no locks
1120  *	and you must therefore hold required locks before calling it.
1121  *
1122  *	A buffer cannot be placed on two lists at the same time.
1123  */
1124 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1125 static inline void __skb_queue_tail(struct sk_buff_head *list,
1126 				   struct sk_buff *newsk)
1127 {
1128 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
1129 }
1130 
1131 /*
1132  * remove sk_buff from list. _Must_ be called atomically, and with
1133  * the list known..
1134  */
1135 extern void	   skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1136 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1137 {
1138 	struct sk_buff *next, *prev;
1139 
1140 	list->qlen--;
1141 	next	   = skb->next;
1142 	prev	   = skb->prev;
1143 	skb->next  = skb->prev = NULL;
1144 	next->prev = prev;
1145 	prev->next = next;
1146 }
1147 
1148 /**
1149  *	__skb_dequeue - remove from the head of the queue
1150  *	@list: list to dequeue from
1151  *
1152  *	Remove the head of the list. This function does not take any locks
1153  *	so must be used with appropriate locks held only. The head item is
1154  *	returned or %NULL if the list is empty.
1155  */
1156 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1157 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1158 {
1159 	struct sk_buff *skb = skb_peek(list);
1160 	if (skb)
1161 		__skb_unlink(skb, list);
1162 	return skb;
1163 }
1164 
1165 /**
1166  *	__skb_dequeue_tail - remove from the tail of the queue
1167  *	@list: list to dequeue from
1168  *
1169  *	Remove the tail of the list. This function does not take any locks
1170  *	so must be used with appropriate locks held only. The tail item is
1171  *	returned or %NULL if the list is empty.
1172  */
1173 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1174 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1175 {
1176 	struct sk_buff *skb = skb_peek_tail(list);
1177 	if (skb)
1178 		__skb_unlink(skb, list);
1179 	return skb;
1180 }
1181 
1182 
1183 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1184 {
1185 	return skb->data_len;
1186 }
1187 
1188 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1189 {
1190 	return skb->len - skb->data_len;
1191 }
1192 
1193 static inline int skb_pagelen(const struct sk_buff *skb)
1194 {
1195 	int i, len = 0;
1196 
1197 	for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1198 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1199 	return len + skb_headlen(skb);
1200 }
1201 
1202 /**
1203  * __skb_fill_page_desc - initialise a paged fragment in an skb
1204  * @skb: buffer containing fragment to be initialised
1205  * @i: paged fragment index to initialise
1206  * @page: the page to use for this fragment
1207  * @off: the offset to the data with @page
1208  * @size: the length of the data
1209  *
1210  * Initialises the @i'th fragment of @skb to point to &size bytes at
1211  * offset @off within @page.
1212  *
1213  * Does not take any additional reference on the fragment.
1214  */
1215 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1216 					struct page *page, int off, int size)
1217 {
1218 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1219 
1220 	frag->page.p		  = page;
1221 	frag->page_offset	  = off;
1222 	skb_frag_size_set(frag, size);
1223 }
1224 
1225 /**
1226  * skb_fill_page_desc - initialise a paged fragment in an skb
1227  * @skb: buffer containing fragment to be initialised
1228  * @i: paged fragment index to initialise
1229  * @page: the page to use for this fragment
1230  * @off: the offset to the data with @page
1231  * @size: the length of the data
1232  *
1233  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1234  * @skb to point to &size bytes at offset @off within @page. In
1235  * addition updates @skb such that @i is the last fragment.
1236  *
1237  * Does not take any additional reference on the fragment.
1238  */
1239 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1240 				      struct page *page, int off, int size)
1241 {
1242 	__skb_fill_page_desc(skb, i, page, off, size);
1243 	skb_shinfo(skb)->nr_frags = i + 1;
1244 }
1245 
1246 extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
1247 			    int off, int size);
1248 
1249 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
1250 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_has_frag_list(skb))
1251 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
1252 
1253 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1254 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1255 {
1256 	return skb->head + skb->tail;
1257 }
1258 
1259 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1260 {
1261 	skb->tail = skb->data - skb->head;
1262 }
1263 
1264 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1265 {
1266 	skb_reset_tail_pointer(skb);
1267 	skb->tail += offset;
1268 }
1269 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1270 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1271 {
1272 	return skb->tail;
1273 }
1274 
1275 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1276 {
1277 	skb->tail = skb->data;
1278 }
1279 
1280 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1281 {
1282 	skb->tail = skb->data + offset;
1283 }
1284 
1285 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1286 
1287 /*
1288  *	Add data to an sk_buff
1289  */
1290 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1291 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1292 {
1293 	unsigned char *tmp = skb_tail_pointer(skb);
1294 	SKB_LINEAR_ASSERT(skb);
1295 	skb->tail += len;
1296 	skb->len  += len;
1297 	return tmp;
1298 }
1299 
1300 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1301 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1302 {
1303 	skb->data -= len;
1304 	skb->len  += len;
1305 	return skb->data;
1306 }
1307 
1308 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1309 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1310 {
1311 	skb->len -= len;
1312 	BUG_ON(skb->len < skb->data_len);
1313 	return skb->data += len;
1314 }
1315 
1316 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1317 {
1318 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1319 }
1320 
1321 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1322 
1323 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1324 {
1325 	if (len > skb_headlen(skb) &&
1326 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1327 		return NULL;
1328 	skb->len -= len;
1329 	return skb->data += len;
1330 }
1331 
1332 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1333 {
1334 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1335 }
1336 
1337 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1338 {
1339 	if (likely(len <= skb_headlen(skb)))
1340 		return 1;
1341 	if (unlikely(len > skb->len))
1342 		return 0;
1343 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1344 }
1345 
1346 /**
1347  *	skb_headroom - bytes at buffer head
1348  *	@skb: buffer to check
1349  *
1350  *	Return the number of bytes of free space at the head of an &sk_buff.
1351  */
1352 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1353 {
1354 	return skb->data - skb->head;
1355 }
1356 
1357 /**
1358  *	skb_tailroom - bytes at buffer end
1359  *	@skb: buffer to check
1360  *
1361  *	Return the number of bytes of free space at the tail of an sk_buff
1362  */
1363 static inline int skb_tailroom(const struct sk_buff *skb)
1364 {
1365 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1366 }
1367 
1368 /**
1369  *	skb_reserve - adjust headroom
1370  *	@skb: buffer to alter
1371  *	@len: bytes to move
1372  *
1373  *	Increase the headroom of an empty &sk_buff by reducing the tail
1374  *	room. This is only allowed for an empty buffer.
1375  */
1376 static inline void skb_reserve(struct sk_buff *skb, int len)
1377 {
1378 	skb->data += len;
1379 	skb->tail += len;
1380 }
1381 
1382 static inline void skb_reset_mac_len(struct sk_buff *skb)
1383 {
1384 	skb->mac_len = skb->network_header - skb->mac_header;
1385 }
1386 
1387 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1388 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1389 {
1390 	return skb->head + skb->transport_header;
1391 }
1392 
1393 static inline void skb_reset_transport_header(struct sk_buff *skb)
1394 {
1395 	skb->transport_header = skb->data - skb->head;
1396 }
1397 
1398 static inline void skb_set_transport_header(struct sk_buff *skb,
1399 					    const int offset)
1400 {
1401 	skb_reset_transport_header(skb);
1402 	skb->transport_header += offset;
1403 }
1404 
1405 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1406 {
1407 	return skb->head + skb->network_header;
1408 }
1409 
1410 static inline void skb_reset_network_header(struct sk_buff *skb)
1411 {
1412 	skb->network_header = skb->data - skb->head;
1413 }
1414 
1415 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1416 {
1417 	skb_reset_network_header(skb);
1418 	skb->network_header += offset;
1419 }
1420 
1421 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1422 {
1423 	return skb->head + skb->mac_header;
1424 }
1425 
1426 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1427 {
1428 	return skb->mac_header != ~0U;
1429 }
1430 
1431 static inline void skb_reset_mac_header(struct sk_buff *skb)
1432 {
1433 	skb->mac_header = skb->data - skb->head;
1434 }
1435 
1436 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1437 {
1438 	skb_reset_mac_header(skb);
1439 	skb->mac_header += offset;
1440 }
1441 
1442 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1443 
1444 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1445 {
1446 	return skb->transport_header;
1447 }
1448 
1449 static inline void skb_reset_transport_header(struct sk_buff *skb)
1450 {
1451 	skb->transport_header = skb->data;
1452 }
1453 
1454 static inline void skb_set_transport_header(struct sk_buff *skb,
1455 					    const int offset)
1456 {
1457 	skb->transport_header = skb->data + offset;
1458 }
1459 
1460 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1461 {
1462 	return skb->network_header;
1463 }
1464 
1465 static inline void skb_reset_network_header(struct sk_buff *skb)
1466 {
1467 	skb->network_header = skb->data;
1468 }
1469 
1470 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1471 {
1472 	skb->network_header = skb->data + offset;
1473 }
1474 
1475 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1476 {
1477 	return skb->mac_header;
1478 }
1479 
1480 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1481 {
1482 	return skb->mac_header != NULL;
1483 }
1484 
1485 static inline void skb_reset_mac_header(struct sk_buff *skb)
1486 {
1487 	skb->mac_header = skb->data;
1488 }
1489 
1490 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1491 {
1492 	skb->mac_header = skb->data + offset;
1493 }
1494 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1495 
1496 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
1497 {
1498 	if (skb_mac_header_was_set(skb)) {
1499 		const unsigned char *old_mac = skb_mac_header(skb);
1500 
1501 		skb_set_mac_header(skb, -skb->mac_len);
1502 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
1503 	}
1504 }
1505 
1506 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
1507 {
1508 	return skb->csum_start - skb_headroom(skb);
1509 }
1510 
1511 static inline int skb_transport_offset(const struct sk_buff *skb)
1512 {
1513 	return skb_transport_header(skb) - skb->data;
1514 }
1515 
1516 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1517 {
1518 	return skb->transport_header - skb->network_header;
1519 }
1520 
1521 static inline int skb_network_offset(const struct sk_buff *skb)
1522 {
1523 	return skb_network_header(skb) - skb->data;
1524 }
1525 
1526 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
1527 {
1528 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
1529 }
1530 
1531 /*
1532  * CPUs often take a performance hit when accessing unaligned memory
1533  * locations. The actual performance hit varies, it can be small if the
1534  * hardware handles it or large if we have to take an exception and fix it
1535  * in software.
1536  *
1537  * Since an ethernet header is 14 bytes network drivers often end up with
1538  * the IP header at an unaligned offset. The IP header can be aligned by
1539  * shifting the start of the packet by 2 bytes. Drivers should do this
1540  * with:
1541  *
1542  * skb_reserve(skb, NET_IP_ALIGN);
1543  *
1544  * The downside to this alignment of the IP header is that the DMA is now
1545  * unaligned. On some architectures the cost of an unaligned DMA is high
1546  * and this cost outweighs the gains made by aligning the IP header.
1547  *
1548  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1549  * to be overridden.
1550  */
1551 #ifndef NET_IP_ALIGN
1552 #define NET_IP_ALIGN	2
1553 #endif
1554 
1555 /*
1556  * The networking layer reserves some headroom in skb data (via
1557  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1558  * the header has to grow. In the default case, if the header has to grow
1559  * 32 bytes or less we avoid the reallocation.
1560  *
1561  * Unfortunately this headroom changes the DMA alignment of the resulting
1562  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1563  * on some architectures. An architecture can override this value,
1564  * perhaps setting it to a cacheline in size (since that will maintain
1565  * cacheline alignment of the DMA). It must be a power of 2.
1566  *
1567  * Various parts of the networking layer expect at least 32 bytes of
1568  * headroom, you should not reduce this.
1569  *
1570  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
1571  * to reduce average number of cache lines per packet.
1572  * get_rps_cpus() for example only access one 64 bytes aligned block :
1573  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
1574  */
1575 #ifndef NET_SKB_PAD
1576 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
1577 #endif
1578 
1579 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1580 
1581 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1582 {
1583 	if (unlikely(skb_is_nonlinear(skb))) {
1584 		WARN_ON(1);
1585 		return;
1586 	}
1587 	skb->len = len;
1588 	skb_set_tail_pointer(skb, len);
1589 }
1590 
1591 extern void skb_trim(struct sk_buff *skb, unsigned int len);
1592 
1593 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1594 {
1595 	if (skb->data_len)
1596 		return ___pskb_trim(skb, len);
1597 	__skb_trim(skb, len);
1598 	return 0;
1599 }
1600 
1601 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1602 {
1603 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1604 }
1605 
1606 /**
1607  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1608  *	@skb: buffer to alter
1609  *	@len: new length
1610  *
1611  *	This is identical to pskb_trim except that the caller knows that
1612  *	the skb is not cloned so we should never get an error due to out-
1613  *	of-memory.
1614  */
1615 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1616 {
1617 	int err = pskb_trim(skb, len);
1618 	BUG_ON(err);
1619 }
1620 
1621 /**
1622  *	skb_orphan - orphan a buffer
1623  *	@skb: buffer to orphan
1624  *
1625  *	If a buffer currently has an owner then we call the owner's
1626  *	destructor function and make the @skb unowned. The buffer continues
1627  *	to exist but is no longer charged to its former owner.
1628  */
1629 static inline void skb_orphan(struct sk_buff *skb)
1630 {
1631 	if (skb->destructor)
1632 		skb->destructor(skb);
1633 	skb->destructor = NULL;
1634 	skb->sk		= NULL;
1635 }
1636 
1637 /**
1638  *	__skb_queue_purge - empty a list
1639  *	@list: list to empty
1640  *
1641  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
1642  *	the list and one reference dropped. This function does not take the
1643  *	list lock and the caller must hold the relevant locks to use it.
1644  */
1645 extern void skb_queue_purge(struct sk_buff_head *list);
1646 static inline void __skb_queue_purge(struct sk_buff_head *list)
1647 {
1648 	struct sk_buff *skb;
1649 	while ((skb = __skb_dequeue(list)) != NULL)
1650 		kfree_skb(skb);
1651 }
1652 
1653 /**
1654  *	__dev_alloc_skb - allocate an skbuff for receiving
1655  *	@length: length to allocate
1656  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
1657  *
1658  *	Allocate a new &sk_buff and assign it a usage count of one. The
1659  *	buffer has unspecified headroom built in. Users should allocate
1660  *	the headroom they think they need without accounting for the
1661  *	built in space. The built in space is used for optimisations.
1662  *
1663  *	%NULL is returned if there is no free memory.
1664  */
1665 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1666 					      gfp_t gfp_mask)
1667 {
1668 	struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1669 	if (likely(skb))
1670 		skb_reserve(skb, NET_SKB_PAD);
1671 	return skb;
1672 }
1673 
1674 extern struct sk_buff *dev_alloc_skb(unsigned int length);
1675 
1676 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1677 		unsigned int length, gfp_t gfp_mask);
1678 
1679 /**
1680  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
1681  *	@dev: network device to receive on
1682  *	@length: length to allocate
1683  *
1684  *	Allocate a new &sk_buff and assign it a usage count of one. The
1685  *	buffer has unspecified headroom built in. Users should allocate
1686  *	the headroom they think they need without accounting for the
1687  *	built in space. The built in space is used for optimisations.
1688  *
1689  *	%NULL is returned if there is no free memory. Although this function
1690  *	allocates memory it can be called from an interrupt.
1691  */
1692 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1693 		unsigned int length)
1694 {
1695 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1696 }
1697 
1698 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
1699 		unsigned int length, gfp_t gfp)
1700 {
1701 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
1702 
1703 	if (NET_IP_ALIGN && skb)
1704 		skb_reserve(skb, NET_IP_ALIGN);
1705 	return skb;
1706 }
1707 
1708 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
1709 		unsigned int length)
1710 {
1711 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
1712 }
1713 
1714 /**
1715  * skb_frag_page - retrieve the page refered to by a paged fragment
1716  * @frag: the paged fragment
1717  *
1718  * Returns the &struct page associated with @frag.
1719  */
1720 static inline struct page *skb_frag_page(const skb_frag_t *frag)
1721 {
1722 	return frag->page.p;
1723 }
1724 
1725 /**
1726  * __skb_frag_ref - take an addition reference on a paged fragment.
1727  * @frag: the paged fragment
1728  *
1729  * Takes an additional reference on the paged fragment @frag.
1730  */
1731 static inline void __skb_frag_ref(skb_frag_t *frag)
1732 {
1733 	get_page(skb_frag_page(frag));
1734 }
1735 
1736 /**
1737  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
1738  * @skb: the buffer
1739  * @f: the fragment offset.
1740  *
1741  * Takes an additional reference on the @f'th paged fragment of @skb.
1742  */
1743 static inline void skb_frag_ref(struct sk_buff *skb, int f)
1744 {
1745 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
1746 }
1747 
1748 /**
1749  * __skb_frag_unref - release a reference on a paged fragment.
1750  * @frag: the paged fragment
1751  *
1752  * Releases a reference on the paged fragment @frag.
1753  */
1754 static inline void __skb_frag_unref(skb_frag_t *frag)
1755 {
1756 	put_page(skb_frag_page(frag));
1757 }
1758 
1759 /**
1760  * skb_frag_unref - release a reference on a paged fragment of an skb.
1761  * @skb: the buffer
1762  * @f: the fragment offset
1763  *
1764  * Releases a reference on the @f'th paged fragment of @skb.
1765  */
1766 static inline void skb_frag_unref(struct sk_buff *skb, int f)
1767 {
1768 	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
1769 }
1770 
1771 /**
1772  * skb_frag_address - gets the address of the data contained in a paged fragment
1773  * @frag: the paged fragment buffer
1774  *
1775  * Returns the address of the data within @frag. The page must already
1776  * be mapped.
1777  */
1778 static inline void *skb_frag_address(const skb_frag_t *frag)
1779 {
1780 	return page_address(skb_frag_page(frag)) + frag->page_offset;
1781 }
1782 
1783 /**
1784  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
1785  * @frag: the paged fragment buffer
1786  *
1787  * Returns the address of the data within @frag. Checks that the page
1788  * is mapped and returns %NULL otherwise.
1789  */
1790 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
1791 {
1792 	void *ptr = page_address(skb_frag_page(frag));
1793 	if (unlikely(!ptr))
1794 		return NULL;
1795 
1796 	return ptr + frag->page_offset;
1797 }
1798 
1799 /**
1800  * __skb_frag_set_page - sets the page contained in a paged fragment
1801  * @frag: the paged fragment
1802  * @page: the page to set
1803  *
1804  * Sets the fragment @frag to contain @page.
1805  */
1806 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
1807 {
1808 	frag->page.p = page;
1809 }
1810 
1811 /**
1812  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
1813  * @skb: the buffer
1814  * @f: the fragment offset
1815  * @page: the page to set
1816  *
1817  * Sets the @f'th fragment of @skb to contain @page.
1818  */
1819 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
1820 				     struct page *page)
1821 {
1822 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
1823 }
1824 
1825 /**
1826  * skb_frag_dma_map - maps a paged fragment via the DMA API
1827  * @dev: the device to map the fragment to
1828  * @frag: the paged fragment to map
1829  * @offset: the offset within the fragment (starting at the
1830  *          fragment's own offset)
1831  * @size: the number of bytes to map
1832  * @dir: the direction of the mapping (%PCI_DMA_*)
1833  *
1834  * Maps the page associated with @frag to @device.
1835  */
1836 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
1837 					  const skb_frag_t *frag,
1838 					  size_t offset, size_t size,
1839 					  enum dma_data_direction dir)
1840 {
1841 	return dma_map_page(dev, skb_frag_page(frag),
1842 			    frag->page_offset + offset, size, dir);
1843 }
1844 
1845 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
1846 					gfp_t gfp_mask)
1847 {
1848 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
1849 }
1850 
1851 /**
1852  *	skb_clone_writable - is the header of a clone writable
1853  *	@skb: buffer to check
1854  *	@len: length up to which to write
1855  *
1856  *	Returns true if modifying the header part of the cloned buffer
1857  *	does not requires the data to be copied.
1858  */
1859 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
1860 {
1861 	return !skb_header_cloned(skb) &&
1862 	       skb_headroom(skb) + len <= skb->hdr_len;
1863 }
1864 
1865 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1866 			    int cloned)
1867 {
1868 	int delta = 0;
1869 
1870 	if (headroom < NET_SKB_PAD)
1871 		headroom = NET_SKB_PAD;
1872 	if (headroom > skb_headroom(skb))
1873 		delta = headroom - skb_headroom(skb);
1874 
1875 	if (delta || cloned)
1876 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1877 					GFP_ATOMIC);
1878 	return 0;
1879 }
1880 
1881 /**
1882  *	skb_cow - copy header of skb when it is required
1883  *	@skb: buffer to cow
1884  *	@headroom: needed headroom
1885  *
1886  *	If the skb passed lacks sufficient headroom or its data part
1887  *	is shared, data is reallocated. If reallocation fails, an error
1888  *	is returned and original skb is not changed.
1889  *
1890  *	The result is skb with writable area skb->head...skb->tail
1891  *	and at least @headroom of space at head.
1892  */
1893 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1894 {
1895 	return __skb_cow(skb, headroom, skb_cloned(skb));
1896 }
1897 
1898 /**
1899  *	skb_cow_head - skb_cow but only making the head writable
1900  *	@skb: buffer to cow
1901  *	@headroom: needed headroom
1902  *
1903  *	This function is identical to skb_cow except that we replace the
1904  *	skb_cloned check by skb_header_cloned.  It should be used when
1905  *	you only need to push on some header and do not need to modify
1906  *	the data.
1907  */
1908 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1909 {
1910 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
1911 }
1912 
1913 /**
1914  *	skb_padto	- pad an skbuff up to a minimal size
1915  *	@skb: buffer to pad
1916  *	@len: minimal length
1917  *
1918  *	Pads up a buffer to ensure the trailing bytes exist and are
1919  *	blanked. If the buffer already contains sufficient data it
1920  *	is untouched. Otherwise it is extended. Returns zero on
1921  *	success. The skb is freed on error.
1922  */
1923 
1924 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1925 {
1926 	unsigned int size = skb->len;
1927 	if (likely(size >= len))
1928 		return 0;
1929 	return skb_pad(skb, len - size);
1930 }
1931 
1932 static inline int skb_add_data(struct sk_buff *skb,
1933 			       char __user *from, int copy)
1934 {
1935 	const int off = skb->len;
1936 
1937 	if (skb->ip_summed == CHECKSUM_NONE) {
1938 		int err = 0;
1939 		__wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1940 							    copy, 0, &err);
1941 		if (!err) {
1942 			skb->csum = csum_block_add(skb->csum, csum, off);
1943 			return 0;
1944 		}
1945 	} else if (!copy_from_user(skb_put(skb, copy), from, copy))
1946 		return 0;
1947 
1948 	__skb_trim(skb, off);
1949 	return -EFAULT;
1950 }
1951 
1952 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1953 				   const struct page *page, int off)
1954 {
1955 	if (i) {
1956 		const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1957 
1958 		return page == skb_frag_page(frag) &&
1959 		       off == frag->page_offset + skb_frag_size(frag);
1960 	}
1961 	return 0;
1962 }
1963 
1964 static inline int __skb_linearize(struct sk_buff *skb)
1965 {
1966 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1967 }
1968 
1969 /**
1970  *	skb_linearize - convert paged skb to linear one
1971  *	@skb: buffer to linarize
1972  *
1973  *	If there is no free memory -ENOMEM is returned, otherwise zero
1974  *	is returned and the old skb data released.
1975  */
1976 static inline int skb_linearize(struct sk_buff *skb)
1977 {
1978 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1979 }
1980 
1981 /**
1982  *	skb_linearize_cow - make sure skb is linear and writable
1983  *	@skb: buffer to process
1984  *
1985  *	If there is no free memory -ENOMEM is returned, otherwise zero
1986  *	is returned and the old skb data released.
1987  */
1988 static inline int skb_linearize_cow(struct sk_buff *skb)
1989 {
1990 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1991 	       __skb_linearize(skb) : 0;
1992 }
1993 
1994 /**
1995  *	skb_postpull_rcsum - update checksum for received skb after pull
1996  *	@skb: buffer to update
1997  *	@start: start of data before pull
1998  *	@len: length of data pulled
1999  *
2000  *	After doing a pull on a received packet, you need to call this to
2001  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
2002  *	CHECKSUM_NONE so that it can be recomputed from scratch.
2003  */
2004 
2005 static inline void skb_postpull_rcsum(struct sk_buff *skb,
2006 				      const void *start, unsigned int len)
2007 {
2008 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2009 		skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
2010 }
2011 
2012 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
2013 
2014 /**
2015  *	pskb_trim_rcsum - trim received skb and update checksum
2016  *	@skb: buffer to trim
2017  *	@len: new length
2018  *
2019  *	This is exactly the same as pskb_trim except that it ensures the
2020  *	checksum of received packets are still valid after the operation.
2021  */
2022 
2023 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2024 {
2025 	if (likely(len >= skb->len))
2026 		return 0;
2027 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2028 		skb->ip_summed = CHECKSUM_NONE;
2029 	return __pskb_trim(skb, len);
2030 }
2031 
2032 #define skb_queue_walk(queue, skb) \
2033 		for (skb = (queue)->next;					\
2034 		     skb != (struct sk_buff *)(queue);				\
2035 		     skb = skb->next)
2036 
2037 #define skb_queue_walk_safe(queue, skb, tmp)					\
2038 		for (skb = (queue)->next, tmp = skb->next;			\
2039 		     skb != (struct sk_buff *)(queue);				\
2040 		     skb = tmp, tmp = skb->next)
2041 
2042 #define skb_queue_walk_from(queue, skb)						\
2043 		for (; skb != (struct sk_buff *)(queue);			\
2044 		     skb = skb->next)
2045 
2046 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
2047 		for (tmp = skb->next;						\
2048 		     skb != (struct sk_buff *)(queue);				\
2049 		     skb = tmp, tmp = skb->next)
2050 
2051 #define skb_queue_reverse_walk(queue, skb) \
2052 		for (skb = (queue)->prev;					\
2053 		     skb != (struct sk_buff *)(queue);				\
2054 		     skb = skb->prev)
2055 
2056 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
2057 		for (skb = (queue)->prev, tmp = skb->prev;			\
2058 		     skb != (struct sk_buff *)(queue);				\
2059 		     skb = tmp, tmp = skb->prev)
2060 
2061 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
2062 		for (tmp = skb->prev;						\
2063 		     skb != (struct sk_buff *)(queue);				\
2064 		     skb = tmp, tmp = skb->prev)
2065 
2066 static inline bool skb_has_frag_list(const struct sk_buff *skb)
2067 {
2068 	return skb_shinfo(skb)->frag_list != NULL;
2069 }
2070 
2071 static inline void skb_frag_list_init(struct sk_buff *skb)
2072 {
2073 	skb_shinfo(skb)->frag_list = NULL;
2074 }
2075 
2076 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
2077 {
2078 	frag->next = skb_shinfo(skb)->frag_list;
2079 	skb_shinfo(skb)->frag_list = frag;
2080 }
2081 
2082 #define skb_walk_frags(skb, iter)	\
2083 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
2084 
2085 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
2086 					   int *peeked, int *off, int *err);
2087 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
2088 					 int noblock, int *err);
2089 extern unsigned int    datagram_poll(struct file *file, struct socket *sock,
2090 				     struct poll_table_struct *wait);
2091 extern int	       skb_copy_datagram_iovec(const struct sk_buff *from,
2092 					       int offset, struct iovec *to,
2093 					       int size);
2094 extern int	       skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
2095 							int hlen,
2096 							struct iovec *iov);
2097 extern int	       skb_copy_datagram_from_iovec(struct sk_buff *skb,
2098 						    int offset,
2099 						    const struct iovec *from,
2100 						    int from_offset,
2101 						    int len);
2102 extern int	       skb_copy_datagram_const_iovec(const struct sk_buff *from,
2103 						     int offset,
2104 						     const struct iovec *to,
2105 						     int to_offset,
2106 						     int size);
2107 extern void	       skb_free_datagram(struct sock *sk, struct sk_buff *skb);
2108 extern void	       skb_free_datagram_locked(struct sock *sk,
2109 						struct sk_buff *skb);
2110 extern int	       skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
2111 					 unsigned int flags);
2112 extern __wsum	       skb_checksum(const struct sk_buff *skb, int offset,
2113 				    int len, __wsum csum);
2114 extern int	       skb_copy_bits(const struct sk_buff *skb, int offset,
2115 				     void *to, int len);
2116 extern int	       skb_store_bits(struct sk_buff *skb, int offset,
2117 				      const void *from, int len);
2118 extern __wsum	       skb_copy_and_csum_bits(const struct sk_buff *skb,
2119 					      int offset, u8 *to, int len,
2120 					      __wsum csum);
2121 extern int             skb_splice_bits(struct sk_buff *skb,
2122 						unsigned int offset,
2123 						struct pipe_inode_info *pipe,
2124 						unsigned int len,
2125 						unsigned int flags);
2126 extern void	       skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
2127 extern void	       skb_split(struct sk_buff *skb,
2128 				 struct sk_buff *skb1, const u32 len);
2129 extern int	       skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
2130 				 int shiftlen);
2131 
2132 extern struct sk_buff *skb_segment(struct sk_buff *skb,
2133 				   netdev_features_t features);
2134 
2135 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
2136 				       int len, void *buffer)
2137 {
2138 	int hlen = skb_headlen(skb);
2139 
2140 	if (hlen - offset >= len)
2141 		return skb->data + offset;
2142 
2143 	if (skb_copy_bits(skb, offset, buffer, len) < 0)
2144 		return NULL;
2145 
2146 	return buffer;
2147 }
2148 
2149 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
2150 					     void *to,
2151 					     const unsigned int len)
2152 {
2153 	memcpy(to, skb->data, len);
2154 }
2155 
2156 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
2157 						    const int offset, void *to,
2158 						    const unsigned int len)
2159 {
2160 	memcpy(to, skb->data + offset, len);
2161 }
2162 
2163 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
2164 					   const void *from,
2165 					   const unsigned int len)
2166 {
2167 	memcpy(skb->data, from, len);
2168 }
2169 
2170 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
2171 						  const int offset,
2172 						  const void *from,
2173 						  const unsigned int len)
2174 {
2175 	memcpy(skb->data + offset, from, len);
2176 }
2177 
2178 extern void skb_init(void);
2179 
2180 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
2181 {
2182 	return skb->tstamp;
2183 }
2184 
2185 /**
2186  *	skb_get_timestamp - get timestamp from a skb
2187  *	@skb: skb to get stamp from
2188  *	@stamp: pointer to struct timeval to store stamp in
2189  *
2190  *	Timestamps are stored in the skb as offsets to a base timestamp.
2191  *	This function converts the offset back to a struct timeval and stores
2192  *	it in stamp.
2193  */
2194 static inline void skb_get_timestamp(const struct sk_buff *skb,
2195 				     struct timeval *stamp)
2196 {
2197 	*stamp = ktime_to_timeval(skb->tstamp);
2198 }
2199 
2200 static inline void skb_get_timestampns(const struct sk_buff *skb,
2201 				       struct timespec *stamp)
2202 {
2203 	*stamp = ktime_to_timespec(skb->tstamp);
2204 }
2205 
2206 static inline void __net_timestamp(struct sk_buff *skb)
2207 {
2208 	skb->tstamp = ktime_get_real();
2209 }
2210 
2211 static inline ktime_t net_timedelta(ktime_t t)
2212 {
2213 	return ktime_sub(ktime_get_real(), t);
2214 }
2215 
2216 static inline ktime_t net_invalid_timestamp(void)
2217 {
2218 	return ktime_set(0, 0);
2219 }
2220 
2221 extern void skb_timestamping_init(void);
2222 
2223 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2224 
2225 extern void skb_clone_tx_timestamp(struct sk_buff *skb);
2226 extern bool skb_defer_rx_timestamp(struct sk_buff *skb);
2227 
2228 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
2229 
2230 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
2231 {
2232 }
2233 
2234 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
2235 {
2236 	return false;
2237 }
2238 
2239 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
2240 
2241 /**
2242  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
2243  *
2244  * PHY drivers may accept clones of transmitted packets for
2245  * timestamping via their phy_driver.txtstamp method. These drivers
2246  * must call this function to return the skb back to the stack, with
2247  * or without a timestamp.
2248  *
2249  * @skb: clone of the the original outgoing packet
2250  * @hwtstamps: hardware time stamps, may be NULL if not available
2251  *
2252  */
2253 void skb_complete_tx_timestamp(struct sk_buff *skb,
2254 			       struct skb_shared_hwtstamps *hwtstamps);
2255 
2256 /**
2257  * skb_tstamp_tx - queue clone of skb with send time stamps
2258  * @orig_skb:	the original outgoing packet
2259  * @hwtstamps:	hardware time stamps, may be NULL if not available
2260  *
2261  * If the skb has a socket associated, then this function clones the
2262  * skb (thus sharing the actual data and optional structures), stores
2263  * the optional hardware time stamping information (if non NULL) or
2264  * generates a software time stamp (otherwise), then queues the clone
2265  * to the error queue of the socket.  Errors are silently ignored.
2266  */
2267 extern void skb_tstamp_tx(struct sk_buff *orig_skb,
2268 			struct skb_shared_hwtstamps *hwtstamps);
2269 
2270 static inline void sw_tx_timestamp(struct sk_buff *skb)
2271 {
2272 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
2273 	    !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2274 		skb_tstamp_tx(skb, NULL);
2275 }
2276 
2277 /**
2278  * skb_tx_timestamp() - Driver hook for transmit timestamping
2279  *
2280  * Ethernet MAC Drivers should call this function in their hard_xmit()
2281  * function immediately before giving the sk_buff to the MAC hardware.
2282  *
2283  * @skb: A socket buffer.
2284  */
2285 static inline void skb_tx_timestamp(struct sk_buff *skb)
2286 {
2287 	skb_clone_tx_timestamp(skb);
2288 	sw_tx_timestamp(skb);
2289 }
2290 
2291 /**
2292  * skb_complete_wifi_ack - deliver skb with wifi status
2293  *
2294  * @skb: the original outgoing packet
2295  * @acked: ack status
2296  *
2297  */
2298 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
2299 
2300 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
2301 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
2302 
2303 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
2304 {
2305 	return skb->ip_summed & CHECKSUM_UNNECESSARY;
2306 }
2307 
2308 /**
2309  *	skb_checksum_complete - Calculate checksum of an entire packet
2310  *	@skb: packet to process
2311  *
2312  *	This function calculates the checksum over the entire packet plus
2313  *	the value of skb->csum.  The latter can be used to supply the
2314  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
2315  *	checksum.
2316  *
2317  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
2318  *	this function can be used to verify that checksum on received
2319  *	packets.  In that case the function should return zero if the
2320  *	checksum is correct.  In particular, this function will return zero
2321  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
2322  *	hardware has already verified the correctness of the checksum.
2323  */
2324 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
2325 {
2326 	return skb_csum_unnecessary(skb) ?
2327 	       0 : __skb_checksum_complete(skb);
2328 }
2329 
2330 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2331 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
2332 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
2333 {
2334 	if (nfct && atomic_dec_and_test(&nfct->use))
2335 		nf_conntrack_destroy(nfct);
2336 }
2337 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
2338 {
2339 	if (nfct)
2340 		atomic_inc(&nfct->use);
2341 }
2342 #endif
2343 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2344 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
2345 {
2346 	if (skb)
2347 		atomic_inc(&skb->users);
2348 }
2349 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
2350 {
2351 	if (skb)
2352 		kfree_skb(skb);
2353 }
2354 #endif
2355 #ifdef CONFIG_BRIDGE_NETFILTER
2356 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
2357 {
2358 	if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
2359 		kfree(nf_bridge);
2360 }
2361 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
2362 {
2363 	if (nf_bridge)
2364 		atomic_inc(&nf_bridge->use);
2365 }
2366 #endif /* CONFIG_BRIDGE_NETFILTER */
2367 static inline void nf_reset(struct sk_buff *skb)
2368 {
2369 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2370 	nf_conntrack_put(skb->nfct);
2371 	skb->nfct = NULL;
2372 #endif
2373 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2374 	nf_conntrack_put_reasm(skb->nfct_reasm);
2375 	skb->nfct_reasm = NULL;
2376 #endif
2377 #ifdef CONFIG_BRIDGE_NETFILTER
2378 	nf_bridge_put(skb->nf_bridge);
2379 	skb->nf_bridge = NULL;
2380 #endif
2381 }
2382 
2383 /* Note: This doesn't put any conntrack and bridge info in dst. */
2384 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2385 {
2386 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2387 	dst->nfct = src->nfct;
2388 	nf_conntrack_get(src->nfct);
2389 	dst->nfctinfo = src->nfctinfo;
2390 #endif
2391 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2392 	dst->nfct_reasm = src->nfct_reasm;
2393 	nf_conntrack_get_reasm(src->nfct_reasm);
2394 #endif
2395 #ifdef CONFIG_BRIDGE_NETFILTER
2396 	dst->nf_bridge  = src->nf_bridge;
2397 	nf_bridge_get(src->nf_bridge);
2398 #endif
2399 }
2400 
2401 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2402 {
2403 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2404 	nf_conntrack_put(dst->nfct);
2405 #endif
2406 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2407 	nf_conntrack_put_reasm(dst->nfct_reasm);
2408 #endif
2409 #ifdef CONFIG_BRIDGE_NETFILTER
2410 	nf_bridge_put(dst->nf_bridge);
2411 #endif
2412 	__nf_copy(dst, src);
2413 }
2414 
2415 #ifdef CONFIG_NETWORK_SECMARK
2416 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2417 {
2418 	to->secmark = from->secmark;
2419 }
2420 
2421 static inline void skb_init_secmark(struct sk_buff *skb)
2422 {
2423 	skb->secmark = 0;
2424 }
2425 #else
2426 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2427 { }
2428 
2429 static inline void skb_init_secmark(struct sk_buff *skb)
2430 { }
2431 #endif
2432 
2433 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
2434 {
2435 	skb->queue_mapping = queue_mapping;
2436 }
2437 
2438 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
2439 {
2440 	return skb->queue_mapping;
2441 }
2442 
2443 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
2444 {
2445 	to->queue_mapping = from->queue_mapping;
2446 }
2447 
2448 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
2449 {
2450 	skb->queue_mapping = rx_queue + 1;
2451 }
2452 
2453 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
2454 {
2455 	return skb->queue_mapping - 1;
2456 }
2457 
2458 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
2459 {
2460 	return skb->queue_mapping != 0;
2461 }
2462 
2463 extern u16 __skb_tx_hash(const struct net_device *dev,
2464 			 const struct sk_buff *skb,
2465 			 unsigned int num_tx_queues);
2466 
2467 #ifdef CONFIG_XFRM
2468 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2469 {
2470 	return skb->sp;
2471 }
2472 #else
2473 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2474 {
2475 	return NULL;
2476 }
2477 #endif
2478 
2479 static inline bool skb_is_gso(const struct sk_buff *skb)
2480 {
2481 	return skb_shinfo(skb)->gso_size;
2482 }
2483 
2484 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
2485 {
2486 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
2487 }
2488 
2489 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
2490 
2491 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
2492 {
2493 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
2494 	 * wanted then gso_type will be set. */
2495 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
2496 
2497 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
2498 	    unlikely(shinfo->gso_type == 0)) {
2499 		__skb_warn_lro_forwarding(skb);
2500 		return true;
2501 	}
2502 	return false;
2503 }
2504 
2505 static inline void skb_forward_csum(struct sk_buff *skb)
2506 {
2507 	/* Unfortunately we don't support this one.  Any brave souls? */
2508 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2509 		skb->ip_summed = CHECKSUM_NONE;
2510 }
2511 
2512 /**
2513  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
2514  * @skb: skb to check
2515  *
2516  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
2517  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
2518  * use this helper, to document places where we make this assertion.
2519  */
2520 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
2521 {
2522 #ifdef DEBUG
2523 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
2524 #endif
2525 }
2526 
2527 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
2528 
2529 static inline bool skb_is_recycleable(const struct sk_buff *skb, int skb_size)
2530 {
2531 	if (irqs_disabled())
2532 		return false;
2533 
2534 	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)
2535 		return false;
2536 
2537 	if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE)
2538 		return false;
2539 
2540 	skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD);
2541 	if (skb_end_pointer(skb) - skb->head < skb_size)
2542 		return false;
2543 
2544 	if (skb_shared(skb) || skb_cloned(skb))
2545 		return false;
2546 
2547 	return true;
2548 }
2549 #endif	/* __KERNEL__ */
2550 #endif	/* _LINUX_SKBUFF_H */
2551