xref: /linux-6.15/include/linux/skbuff.h (revision bf070bb0)
1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <[email protected]>
6  *		Florian La Roche, <[email protected]>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/bug.h>
21 #include <linux/cache.h>
22 #include <linux/rbtree.h>
23 #include <linux/socket.h>
24 #include <linux/refcount.h>
25 
26 #include <linux/atomic.h>
27 #include <asm/types.h>
28 #include <linux/spinlock.h>
29 #include <linux/net.h>
30 #include <linux/textsearch.h>
31 #include <net/checksum.h>
32 #include <linux/rcupdate.h>
33 #include <linux/hrtimer.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/netdev_features.h>
36 #include <linux/sched.h>
37 #include <linux/sched/clock.h>
38 #include <net/flow_dissector.h>
39 #include <linux/splice.h>
40 #include <linux/in6.h>
41 #include <linux/if_packet.h>
42 #include <net/flow.h>
43 
44 /* The interface for checksum offload between the stack and networking drivers
45  * is as follows...
46  *
47  * A. IP checksum related features
48  *
49  * Drivers advertise checksum offload capabilities in the features of a device.
50  * From the stack's point of view these are capabilities offered by the driver,
51  * a driver typically only advertises features that it is capable of offloading
52  * to its device.
53  *
54  * The checksum related features are:
55  *
56  *	NETIF_F_HW_CSUM	- The driver (or its device) is able to compute one
57  *			  IP (one's complement) checksum for any combination
58  *			  of protocols or protocol layering. The checksum is
59  *			  computed and set in a packet per the CHECKSUM_PARTIAL
60  *			  interface (see below).
61  *
62  *	NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
63  *			  TCP or UDP packets over IPv4. These are specifically
64  *			  unencapsulated packets of the form IPv4|TCP or
65  *			  IPv4|UDP where the Protocol field in the IPv4 header
66  *			  is TCP or UDP. The IPv4 header may contain IP options
67  *			  This feature cannot be set in features for a device
68  *			  with NETIF_F_HW_CSUM also set. This feature is being
69  *			  DEPRECATED (see below).
70  *
71  *	NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
72  *			  TCP or UDP packets over IPv6. These are specifically
73  *			  unencapsulated packets of the form IPv6|TCP or
74  *			  IPv4|UDP where the Next Header field in the IPv6
75  *			  header is either TCP or UDP. IPv6 extension headers
76  *			  are not supported with this feature. This feature
77  *			  cannot be set in features for a device with
78  *			  NETIF_F_HW_CSUM also set. This feature is being
79  *			  DEPRECATED (see below).
80  *
81  *	NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
82  *			 This flag is used only used to disable the RX checksum
83  *			 feature for a device. The stack will accept receive
84  *			 checksum indication in packets received on a device
85  *			 regardless of whether NETIF_F_RXCSUM is set.
86  *
87  * B. Checksumming of received packets by device. Indication of checksum
88  *    verification is in set skb->ip_summed. Possible values are:
89  *
90  * CHECKSUM_NONE:
91  *
92  *   Device did not checksum this packet e.g. due to lack of capabilities.
93  *   The packet contains full (though not verified) checksum in packet but
94  *   not in skb->csum. Thus, skb->csum is undefined in this case.
95  *
96  * CHECKSUM_UNNECESSARY:
97  *
98  *   The hardware you're dealing with doesn't calculate the full checksum
99  *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
100  *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
101  *   if their checksums are okay. skb->csum is still undefined in this case
102  *   though. A driver or device must never modify the checksum field in the
103  *   packet even if checksum is verified.
104  *
105  *   CHECKSUM_UNNECESSARY is applicable to following protocols:
106  *     TCP: IPv6 and IPv4.
107  *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
108  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
109  *       may perform further validation in this case.
110  *     GRE: only if the checksum is present in the header.
111  *     SCTP: indicates the CRC in SCTP header has been validated.
112  *     FCOE: indicates the CRC in FC frame has been validated.
113  *
114  *   skb->csum_level indicates the number of consecutive checksums found in
115  *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
116  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
117  *   and a device is able to verify the checksums for UDP (possibly zero),
118  *   GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
119  *   two. If the device were only able to verify the UDP checksum and not
120  *   GRE, either because it doesn't support GRE checksum of because GRE
121  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
122  *   not considered in this case).
123  *
124  * CHECKSUM_COMPLETE:
125  *
126  *   This is the most generic way. The device supplied checksum of the _whole_
127  *   packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
128  *   hardware doesn't need to parse L3/L4 headers to implement this.
129  *
130  *   Notes:
131  *   - Even if device supports only some protocols, but is able to produce
132  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
133  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
134  *
135  * CHECKSUM_PARTIAL:
136  *
137  *   A checksum is set up to be offloaded to a device as described in the
138  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
139  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
140  *   on the same host, or it may be set in the input path in GRO or remote
141  *   checksum offload. For the purposes of checksum verification, the checksum
142  *   referred to by skb->csum_start + skb->csum_offset and any preceding
143  *   checksums in the packet are considered verified. Any checksums in the
144  *   packet that are after the checksum being offloaded are not considered to
145  *   be verified.
146  *
147  * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
148  *    in the skb->ip_summed for a packet. Values are:
149  *
150  * CHECKSUM_PARTIAL:
151  *
152  *   The driver is required to checksum the packet as seen by hard_start_xmit()
153  *   from skb->csum_start up to the end, and to record/write the checksum at
154  *   offset skb->csum_start + skb->csum_offset. A driver may verify that the
155  *   csum_start and csum_offset values are valid values given the length and
156  *   offset of the packet, however they should not attempt to validate that the
157  *   checksum refers to a legitimate transport layer checksum-- it is the
158  *   purview of the stack to validate that csum_start and csum_offset are set
159  *   correctly.
160  *
161  *   When the stack requests checksum offload for a packet, the driver MUST
162  *   ensure that the checksum is set correctly. A driver can either offload the
163  *   checksum calculation to the device, or call skb_checksum_help (in the case
164  *   that the device does not support offload for a particular checksum).
165  *
166  *   NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
167  *   NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
168  *   checksum offload capability.
169  *   skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
170  *   on network device checksumming capabilities: if a packet does not match
171  *   them, skb_checksum_help or skb_crc32c_help (depending on the value of
172  *   csum_not_inet, see item D.) is called to resolve the checksum.
173  *
174  * CHECKSUM_NONE:
175  *
176  *   The skb was already checksummed by the protocol, or a checksum is not
177  *   required.
178  *
179  * CHECKSUM_UNNECESSARY:
180  *
181  *   This has the same meaning on as CHECKSUM_NONE for checksum offload on
182  *   output.
183  *
184  * CHECKSUM_COMPLETE:
185  *   Not used in checksum output. If a driver observes a packet with this value
186  *   set in skbuff, if should treat as CHECKSUM_NONE being set.
187  *
188  * D. Non-IP checksum (CRC) offloads
189  *
190  *   NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
191  *     offloading the SCTP CRC in a packet. To perform this offload the stack
192  *     will set set csum_start and csum_offset accordingly, set ip_summed to
193  *     CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
194  *     the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
195  *     A driver that supports both IP checksum offload and SCTP CRC32c offload
196  *     must verify which offload is configured for a packet by testing the
197  *     value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
198  *     CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
199  *
200  *   NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
201  *     offloading the FCOE CRC in a packet. To perform this offload the stack
202  *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
203  *     accordingly. Note the there is no indication in the skbuff that the
204  *     CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
205  *     both IP checksum offload and FCOE CRC offload must verify which offload
206  *     is configured for a packet presumably by inspecting packet headers.
207  *
208  * E. Checksumming on output with GSO.
209  *
210  * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
211  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
212  * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
213  * part of the GSO operation is implied. If a checksum is being offloaded
214  * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
215  * are set to refer to the outermost checksum being offload (two offloaded
216  * checksums are possible with UDP encapsulation).
217  */
218 
219 /* Don't change this without changing skb_csum_unnecessary! */
220 #define CHECKSUM_NONE		0
221 #define CHECKSUM_UNNECESSARY	1
222 #define CHECKSUM_COMPLETE	2
223 #define CHECKSUM_PARTIAL	3
224 
225 /* Maximum value in skb->csum_level */
226 #define SKB_MAX_CSUM_LEVEL	3
227 
228 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
229 #define SKB_WITH_OVERHEAD(X)	\
230 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
231 #define SKB_MAX_ORDER(X, ORDER) \
232 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
233 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
234 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
235 
236 /* return minimum truesize of one skb containing X bytes of data */
237 #define SKB_TRUESIZE(X) ((X) +						\
238 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
239 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
240 
241 struct net_device;
242 struct scatterlist;
243 struct pipe_inode_info;
244 struct iov_iter;
245 struct napi_struct;
246 
247 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
248 struct nf_conntrack {
249 	atomic_t use;
250 };
251 #endif
252 
253 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
254 struct nf_bridge_info {
255 	refcount_t		use;
256 	enum {
257 		BRNF_PROTO_UNCHANGED,
258 		BRNF_PROTO_8021Q,
259 		BRNF_PROTO_PPPOE
260 	} orig_proto:8;
261 	u8			pkt_otherhost:1;
262 	u8			in_prerouting:1;
263 	u8			bridged_dnat:1;
264 	__u16			frag_max_size;
265 	struct net_device	*physindev;
266 
267 	/* always valid & non-NULL from FORWARD on, for physdev match */
268 	struct net_device	*physoutdev;
269 	union {
270 		/* prerouting: detect dnat in orig/reply direction */
271 		__be32          ipv4_daddr;
272 		struct in6_addr ipv6_daddr;
273 
274 		/* after prerouting + nat detected: store original source
275 		 * mac since neigh resolution overwrites it, only used while
276 		 * skb is out in neigh layer.
277 		 */
278 		char neigh_header[8];
279 	};
280 };
281 #endif
282 
283 struct sk_buff_head {
284 	/* These two members must be first. */
285 	struct sk_buff	*next;
286 	struct sk_buff	*prev;
287 
288 	__u32		qlen;
289 	spinlock_t	lock;
290 };
291 
292 struct sk_buff;
293 
294 /* To allow 64K frame to be packed as single skb without frag_list we
295  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
296  * buffers which do not start on a page boundary.
297  *
298  * Since GRO uses frags we allocate at least 16 regardless of page
299  * size.
300  */
301 #if (65536/PAGE_SIZE + 1) < 16
302 #define MAX_SKB_FRAGS 16UL
303 #else
304 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
305 #endif
306 extern int sysctl_max_skb_frags;
307 
308 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
309  * segment using its current segmentation instead.
310  */
311 #define GSO_BY_FRAGS	0xFFFF
312 
313 typedef struct skb_frag_struct skb_frag_t;
314 
315 struct skb_frag_struct {
316 	struct {
317 		struct page *p;
318 	} page;
319 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
320 	__u32 page_offset;
321 	__u32 size;
322 #else
323 	__u16 page_offset;
324 	__u16 size;
325 #endif
326 };
327 
328 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
329 {
330 	return frag->size;
331 }
332 
333 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
334 {
335 	frag->size = size;
336 }
337 
338 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
339 {
340 	frag->size += delta;
341 }
342 
343 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
344 {
345 	frag->size -= delta;
346 }
347 
348 static inline bool skb_frag_must_loop(struct page *p)
349 {
350 #if defined(CONFIG_HIGHMEM)
351 	if (PageHighMem(p))
352 		return true;
353 #endif
354 	return false;
355 }
356 
357 /**
358  *	skb_frag_foreach_page - loop over pages in a fragment
359  *
360  *	@f:		skb frag to operate on
361  *	@f_off:		offset from start of f->page.p
362  *	@f_len:		length from f_off to loop over
363  *	@p:		(temp var) current page
364  *	@p_off:		(temp var) offset from start of current page,
365  *	                           non-zero only on first page.
366  *	@p_len:		(temp var) length in current page,
367  *				   < PAGE_SIZE only on first and last page.
368  *	@copied:	(temp var) length so far, excluding current p_len.
369  *
370  *	A fragment can hold a compound page, in which case per-page
371  *	operations, notably kmap_atomic, must be called for each
372  *	regular page.
373  */
374 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
375 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
376 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
377 	     p_len = skb_frag_must_loop(p) ?				\
378 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
379 	     copied = 0;						\
380 	     copied < f_len;						\
381 	     copied += p_len, p++, p_off = 0,				\
382 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
383 
384 #define HAVE_HW_TIME_STAMP
385 
386 /**
387  * struct skb_shared_hwtstamps - hardware time stamps
388  * @hwtstamp:	hardware time stamp transformed into duration
389  *		since arbitrary point in time
390  *
391  * Software time stamps generated by ktime_get_real() are stored in
392  * skb->tstamp.
393  *
394  * hwtstamps can only be compared against other hwtstamps from
395  * the same device.
396  *
397  * This structure is attached to packets as part of the
398  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
399  */
400 struct skb_shared_hwtstamps {
401 	ktime_t	hwtstamp;
402 };
403 
404 /* Definitions for tx_flags in struct skb_shared_info */
405 enum {
406 	/* generate hardware time stamp */
407 	SKBTX_HW_TSTAMP = 1 << 0,
408 
409 	/* generate software time stamp when queueing packet to NIC */
410 	SKBTX_SW_TSTAMP = 1 << 1,
411 
412 	/* device driver is going to provide hardware time stamp */
413 	SKBTX_IN_PROGRESS = 1 << 2,
414 
415 	/* device driver supports TX zero-copy buffers */
416 	SKBTX_DEV_ZEROCOPY = 1 << 3,
417 
418 	/* generate wifi status information (where possible) */
419 	SKBTX_WIFI_STATUS = 1 << 4,
420 
421 	/* This indicates at least one fragment might be overwritten
422 	 * (as in vmsplice(), sendfile() ...)
423 	 * If we need to compute a TX checksum, we'll need to copy
424 	 * all frags to avoid possible bad checksum
425 	 */
426 	SKBTX_SHARED_FRAG = 1 << 5,
427 
428 	/* generate software time stamp when entering packet scheduling */
429 	SKBTX_SCHED_TSTAMP = 1 << 6,
430 };
431 
432 #define SKBTX_ZEROCOPY_FRAG	(SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG)
433 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
434 				 SKBTX_SCHED_TSTAMP)
435 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
436 
437 /*
438  * The callback notifies userspace to release buffers when skb DMA is done in
439  * lower device, the skb last reference should be 0 when calling this.
440  * The zerocopy_success argument is true if zero copy transmit occurred,
441  * false on data copy or out of memory error caused by data copy attempt.
442  * The ctx field is used to track device context.
443  * The desc field is used to track userspace buffer index.
444  */
445 struct ubuf_info {
446 	void (*callback)(struct ubuf_info *, bool zerocopy_success);
447 	union {
448 		struct {
449 			unsigned long desc;
450 			void *ctx;
451 		};
452 		struct {
453 			u32 id;
454 			u16 len;
455 			u16 zerocopy:1;
456 			u32 bytelen;
457 		};
458 	};
459 	refcount_t refcnt;
460 
461 	struct mmpin {
462 		struct user_struct *user;
463 		unsigned int num_pg;
464 	} mmp;
465 };
466 
467 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
468 
469 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size);
470 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
471 					struct ubuf_info *uarg);
472 
473 static inline void sock_zerocopy_get(struct ubuf_info *uarg)
474 {
475 	refcount_inc(&uarg->refcnt);
476 }
477 
478 void sock_zerocopy_put(struct ubuf_info *uarg);
479 void sock_zerocopy_put_abort(struct ubuf_info *uarg);
480 
481 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success);
482 
483 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
484 			     struct msghdr *msg, int len,
485 			     struct ubuf_info *uarg);
486 
487 /* This data is invariant across clones and lives at
488  * the end of the header data, ie. at skb->end.
489  */
490 struct skb_shared_info {
491 	__u8		__unused;
492 	__u8		meta_len;
493 	__u8		nr_frags;
494 	__u8		tx_flags;
495 	unsigned short	gso_size;
496 	/* Warning: this field is not always filled in (UFO)! */
497 	unsigned short	gso_segs;
498 	struct sk_buff	*frag_list;
499 	struct skb_shared_hwtstamps hwtstamps;
500 	unsigned int	gso_type;
501 	u32		tskey;
502 
503 	/*
504 	 * Warning : all fields before dataref are cleared in __alloc_skb()
505 	 */
506 	atomic_t	dataref;
507 
508 	/* Intermediate layers must ensure that destructor_arg
509 	 * remains valid until skb destructor */
510 	void *		destructor_arg;
511 
512 	/* must be last field, see pskb_expand_head() */
513 	skb_frag_t	frags[MAX_SKB_FRAGS];
514 };
515 
516 /* We divide dataref into two halves.  The higher 16 bits hold references
517  * to the payload part of skb->data.  The lower 16 bits hold references to
518  * the entire skb->data.  A clone of a headerless skb holds the length of
519  * the header in skb->hdr_len.
520  *
521  * All users must obey the rule that the skb->data reference count must be
522  * greater than or equal to the payload reference count.
523  *
524  * Holding a reference to the payload part means that the user does not
525  * care about modifications to the header part of skb->data.
526  */
527 #define SKB_DATAREF_SHIFT 16
528 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
529 
530 
531 enum {
532 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
533 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
534 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
535 };
536 
537 enum {
538 	SKB_GSO_TCPV4 = 1 << 0,
539 
540 	/* This indicates the skb is from an untrusted source. */
541 	SKB_GSO_DODGY = 1 << 1,
542 
543 	/* This indicates the tcp segment has CWR set. */
544 	SKB_GSO_TCP_ECN = 1 << 2,
545 
546 	SKB_GSO_TCP_FIXEDID = 1 << 3,
547 
548 	SKB_GSO_TCPV6 = 1 << 4,
549 
550 	SKB_GSO_FCOE = 1 << 5,
551 
552 	SKB_GSO_GRE = 1 << 6,
553 
554 	SKB_GSO_GRE_CSUM = 1 << 7,
555 
556 	SKB_GSO_IPXIP4 = 1 << 8,
557 
558 	SKB_GSO_IPXIP6 = 1 << 9,
559 
560 	SKB_GSO_UDP_TUNNEL = 1 << 10,
561 
562 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
563 
564 	SKB_GSO_PARTIAL = 1 << 12,
565 
566 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
567 
568 	SKB_GSO_SCTP = 1 << 14,
569 
570 	SKB_GSO_ESP = 1 << 15,
571 };
572 
573 #if BITS_PER_LONG > 32
574 #define NET_SKBUFF_DATA_USES_OFFSET 1
575 #endif
576 
577 #ifdef NET_SKBUFF_DATA_USES_OFFSET
578 typedef unsigned int sk_buff_data_t;
579 #else
580 typedef unsigned char *sk_buff_data_t;
581 #endif
582 
583 /**
584  *	struct sk_buff - socket buffer
585  *	@next: Next buffer in list
586  *	@prev: Previous buffer in list
587  *	@tstamp: Time we arrived/left
588  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
589  *	@sk: Socket we are owned by
590  *	@dev: Device we arrived on/are leaving by
591  *	@cb: Control buffer. Free for use by every layer. Put private vars here
592  *	@_skb_refdst: destination entry (with norefcount bit)
593  *	@sp: the security path, used for xfrm
594  *	@len: Length of actual data
595  *	@data_len: Data length
596  *	@mac_len: Length of link layer header
597  *	@hdr_len: writable header length of cloned skb
598  *	@csum: Checksum (must include start/offset pair)
599  *	@csum_start: Offset from skb->head where checksumming should start
600  *	@csum_offset: Offset from csum_start where checksum should be stored
601  *	@priority: Packet queueing priority
602  *	@ignore_df: allow local fragmentation
603  *	@cloned: Head may be cloned (check refcnt to be sure)
604  *	@ip_summed: Driver fed us an IP checksum
605  *	@nohdr: Payload reference only, must not modify header
606  *	@pkt_type: Packet class
607  *	@fclone: skbuff clone status
608  *	@ipvs_property: skbuff is owned by ipvs
609  *	@tc_skip_classify: do not classify packet. set by IFB device
610  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
611  *	@tc_redirected: packet was redirected by a tc action
612  *	@tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect
613  *	@peeked: this packet has been seen already, so stats have been
614  *		done for it, don't do them again
615  *	@nf_trace: netfilter packet trace flag
616  *	@protocol: Packet protocol from driver
617  *	@destructor: Destruct function
618  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
619  *	@_nfct: Associated connection, if any (with nfctinfo bits)
620  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
621  *	@skb_iif: ifindex of device we arrived on
622  *	@tc_index: Traffic control index
623  *	@hash: the packet hash
624  *	@queue_mapping: Queue mapping for multiqueue devices
625  *	@xmit_more: More SKBs are pending for this queue
626  *	@ndisc_nodetype: router type (from link layer)
627  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
628  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
629  *		ports.
630  *	@sw_hash: indicates hash was computed in software stack
631  *	@wifi_acked_valid: wifi_acked was set
632  *	@wifi_acked: whether frame was acked on wifi or not
633  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
634  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
635  *	@dst_pending_confirm: need to confirm neighbour
636   *	@napi_id: id of the NAPI struct this skb came from
637  *	@secmark: security marking
638  *	@mark: Generic packet mark
639  *	@vlan_proto: vlan encapsulation protocol
640  *	@vlan_tci: vlan tag control information
641  *	@inner_protocol: Protocol (encapsulation)
642  *	@inner_transport_header: Inner transport layer header (encapsulation)
643  *	@inner_network_header: Network layer header (encapsulation)
644  *	@inner_mac_header: Link layer header (encapsulation)
645  *	@transport_header: Transport layer header
646  *	@network_header: Network layer header
647  *	@mac_header: Link layer header
648  *	@tail: Tail pointer
649  *	@end: End pointer
650  *	@head: Head of buffer
651  *	@data: Data head pointer
652  *	@truesize: Buffer size
653  *	@users: User count - see {datagram,tcp}.c
654  */
655 
656 struct sk_buff {
657 	union {
658 		struct {
659 			/* These two members must be first. */
660 			struct sk_buff		*next;
661 			struct sk_buff		*prev;
662 
663 			union {
664 				struct net_device	*dev;
665 				/* Some protocols might use this space to store information,
666 				 * while device pointer would be NULL.
667 				 * UDP receive path is one user.
668 				 */
669 				unsigned long		dev_scratch;
670 			};
671 		};
672 		struct rb_node	rbnode; /* used in netem & tcp stack */
673 	};
674 	struct sock		*sk;
675 
676 	union {
677 		ktime_t		tstamp;
678 		u64		skb_mstamp;
679 	};
680 	/*
681 	 * This is the control buffer. It is free to use for every
682 	 * layer. Please put your private variables there. If you
683 	 * want to keep them across layers you have to do a skb_clone()
684 	 * first. This is owned by whoever has the skb queued ATM.
685 	 */
686 	char			cb[48] __aligned(8);
687 
688 	union {
689 		struct {
690 			unsigned long	_skb_refdst;
691 			void		(*destructor)(struct sk_buff *skb);
692 		};
693 		struct list_head	tcp_tsorted_anchor;
694 	};
695 
696 #ifdef CONFIG_XFRM
697 	struct	sec_path	*sp;
698 #endif
699 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
700 	unsigned long		 _nfct;
701 #endif
702 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
703 	struct nf_bridge_info	*nf_bridge;
704 #endif
705 	unsigned int		len,
706 				data_len;
707 	__u16			mac_len,
708 				hdr_len;
709 
710 	/* Following fields are _not_ copied in __copy_skb_header()
711 	 * Note that queue_mapping is here mostly to fill a hole.
712 	 */
713 	__u16			queue_mapping;
714 
715 /* if you move cloned around you also must adapt those constants */
716 #ifdef __BIG_ENDIAN_BITFIELD
717 #define CLONED_MASK	(1 << 7)
718 #else
719 #define CLONED_MASK	1
720 #endif
721 #define CLONED_OFFSET()		offsetof(struct sk_buff, __cloned_offset)
722 
723 	__u8			__cloned_offset[0];
724 	__u8			cloned:1,
725 				nohdr:1,
726 				fclone:2,
727 				peeked:1,
728 				head_frag:1,
729 				xmit_more:1,
730 				__unused:1; /* one bit hole */
731 
732 	/* fields enclosed in headers_start/headers_end are copied
733 	 * using a single memcpy() in __copy_skb_header()
734 	 */
735 	/* private: */
736 	__u32			headers_start[0];
737 	/* public: */
738 
739 /* if you move pkt_type around you also must adapt those constants */
740 #ifdef __BIG_ENDIAN_BITFIELD
741 #define PKT_TYPE_MAX	(7 << 5)
742 #else
743 #define PKT_TYPE_MAX	7
744 #endif
745 #define PKT_TYPE_OFFSET()	offsetof(struct sk_buff, __pkt_type_offset)
746 
747 	__u8			__pkt_type_offset[0];
748 	__u8			pkt_type:3;
749 	__u8			pfmemalloc:1;
750 	__u8			ignore_df:1;
751 
752 	__u8			nf_trace:1;
753 	__u8			ip_summed:2;
754 	__u8			ooo_okay:1;
755 	__u8			l4_hash:1;
756 	__u8			sw_hash:1;
757 	__u8			wifi_acked_valid:1;
758 	__u8			wifi_acked:1;
759 
760 	__u8			no_fcs:1;
761 	/* Indicates the inner headers are valid in the skbuff. */
762 	__u8			encapsulation:1;
763 	__u8			encap_hdr_csum:1;
764 	__u8			csum_valid:1;
765 	__u8			csum_complete_sw:1;
766 	__u8			csum_level:2;
767 	__u8			csum_not_inet:1;
768 
769 	__u8			dst_pending_confirm:1;
770 #ifdef CONFIG_IPV6_NDISC_NODETYPE
771 	__u8			ndisc_nodetype:2;
772 #endif
773 	__u8			ipvs_property:1;
774 	__u8			inner_protocol_type:1;
775 	__u8			remcsum_offload:1;
776 #ifdef CONFIG_NET_SWITCHDEV
777 	__u8			offload_fwd_mark:1;
778 	__u8			offload_mr_fwd_mark:1;
779 #endif
780 #ifdef CONFIG_NET_CLS_ACT
781 	__u8			tc_skip_classify:1;
782 	__u8			tc_at_ingress:1;
783 	__u8			tc_redirected:1;
784 	__u8			tc_from_ingress:1;
785 #endif
786 
787 #ifdef CONFIG_NET_SCHED
788 	__u16			tc_index;	/* traffic control index */
789 #endif
790 
791 	union {
792 		__wsum		csum;
793 		struct {
794 			__u16	csum_start;
795 			__u16	csum_offset;
796 		};
797 	};
798 	__u32			priority;
799 	int			skb_iif;
800 	__u32			hash;
801 	__be16			vlan_proto;
802 	__u16			vlan_tci;
803 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
804 	union {
805 		unsigned int	napi_id;
806 		unsigned int	sender_cpu;
807 	};
808 #endif
809 #ifdef CONFIG_NETWORK_SECMARK
810 	__u32		secmark;
811 #endif
812 
813 	union {
814 		__u32		mark;
815 		__u32		reserved_tailroom;
816 	};
817 
818 	union {
819 		__be16		inner_protocol;
820 		__u8		inner_ipproto;
821 	};
822 
823 	__u16			inner_transport_header;
824 	__u16			inner_network_header;
825 	__u16			inner_mac_header;
826 
827 	__be16			protocol;
828 	__u16			transport_header;
829 	__u16			network_header;
830 	__u16			mac_header;
831 
832 	/* private: */
833 	__u32			headers_end[0];
834 	/* public: */
835 
836 	/* These elements must be at the end, see alloc_skb() for details.  */
837 	sk_buff_data_t		tail;
838 	sk_buff_data_t		end;
839 	unsigned char		*head,
840 				*data;
841 	unsigned int		truesize;
842 	refcount_t		users;
843 };
844 
845 #ifdef __KERNEL__
846 /*
847  *	Handling routines are only of interest to the kernel
848  */
849 #include <linux/slab.h>
850 
851 
852 #define SKB_ALLOC_FCLONE	0x01
853 #define SKB_ALLOC_RX		0x02
854 #define SKB_ALLOC_NAPI		0x04
855 
856 /* Returns true if the skb was allocated from PFMEMALLOC reserves */
857 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
858 {
859 	return unlikely(skb->pfmemalloc);
860 }
861 
862 /*
863  * skb might have a dst pointer attached, refcounted or not.
864  * _skb_refdst low order bit is set if refcount was _not_ taken
865  */
866 #define SKB_DST_NOREF	1UL
867 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
868 
869 #define SKB_NFCT_PTRMASK	~(7UL)
870 /**
871  * skb_dst - returns skb dst_entry
872  * @skb: buffer
873  *
874  * Returns skb dst_entry, regardless of reference taken or not.
875  */
876 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
877 {
878 	/* If refdst was not refcounted, check we still are in a
879 	 * rcu_read_lock section
880 	 */
881 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
882 		!rcu_read_lock_held() &&
883 		!rcu_read_lock_bh_held());
884 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
885 }
886 
887 /**
888  * skb_dst_set - sets skb dst
889  * @skb: buffer
890  * @dst: dst entry
891  *
892  * Sets skb dst, assuming a reference was taken on dst and should
893  * be released by skb_dst_drop()
894  */
895 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
896 {
897 	skb->_skb_refdst = (unsigned long)dst;
898 }
899 
900 /**
901  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
902  * @skb: buffer
903  * @dst: dst entry
904  *
905  * Sets skb dst, assuming a reference was not taken on dst.
906  * If dst entry is cached, we do not take reference and dst_release
907  * will be avoided by refdst_drop. If dst entry is not cached, we take
908  * reference, so that last dst_release can destroy the dst immediately.
909  */
910 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
911 {
912 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
913 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
914 }
915 
916 /**
917  * skb_dst_is_noref - Test if skb dst isn't refcounted
918  * @skb: buffer
919  */
920 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
921 {
922 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
923 }
924 
925 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
926 {
927 	return (struct rtable *)skb_dst(skb);
928 }
929 
930 /* For mangling skb->pkt_type from user space side from applications
931  * such as nft, tc, etc, we only allow a conservative subset of
932  * possible pkt_types to be set.
933 */
934 static inline bool skb_pkt_type_ok(u32 ptype)
935 {
936 	return ptype <= PACKET_OTHERHOST;
937 }
938 
939 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
940 {
941 #ifdef CONFIG_NET_RX_BUSY_POLL
942 	return skb->napi_id;
943 #else
944 	return 0;
945 #endif
946 }
947 
948 /* decrement the reference count and return true if we can free the skb */
949 static inline bool skb_unref(struct sk_buff *skb)
950 {
951 	if (unlikely(!skb))
952 		return false;
953 	if (likely(refcount_read(&skb->users) == 1))
954 		smp_rmb();
955 	else if (likely(!refcount_dec_and_test(&skb->users)))
956 		return false;
957 
958 	return true;
959 }
960 
961 void skb_release_head_state(struct sk_buff *skb);
962 void kfree_skb(struct sk_buff *skb);
963 void kfree_skb_list(struct sk_buff *segs);
964 void skb_tx_error(struct sk_buff *skb);
965 void consume_skb(struct sk_buff *skb);
966 void __consume_stateless_skb(struct sk_buff *skb);
967 void  __kfree_skb(struct sk_buff *skb);
968 extern struct kmem_cache *skbuff_head_cache;
969 
970 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
971 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
972 		      bool *fragstolen, int *delta_truesize);
973 
974 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
975 			    int node);
976 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
977 struct sk_buff *build_skb(void *data, unsigned int frag_size);
978 static inline struct sk_buff *alloc_skb(unsigned int size,
979 					gfp_t priority)
980 {
981 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
982 }
983 
984 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
985 				     unsigned long data_len,
986 				     int max_page_order,
987 				     int *errcode,
988 				     gfp_t gfp_mask);
989 
990 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
991 struct sk_buff_fclones {
992 	struct sk_buff	skb1;
993 
994 	struct sk_buff	skb2;
995 
996 	refcount_t	fclone_ref;
997 };
998 
999 /**
1000  *	skb_fclone_busy - check if fclone is busy
1001  *	@sk: socket
1002  *	@skb: buffer
1003  *
1004  * Returns true if skb is a fast clone, and its clone is not freed.
1005  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1006  * so we also check that this didnt happen.
1007  */
1008 static inline bool skb_fclone_busy(const struct sock *sk,
1009 				   const struct sk_buff *skb)
1010 {
1011 	const struct sk_buff_fclones *fclones;
1012 
1013 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1014 
1015 	return skb->fclone == SKB_FCLONE_ORIG &&
1016 	       refcount_read(&fclones->fclone_ref) > 1 &&
1017 	       fclones->skb2.sk == sk;
1018 }
1019 
1020 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1021 					       gfp_t priority)
1022 {
1023 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1024 }
1025 
1026 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1027 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1028 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1029 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1030 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1031 				   gfp_t gfp_mask, bool fclone);
1032 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1033 					  gfp_t gfp_mask)
1034 {
1035 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1036 }
1037 
1038 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1039 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1040 				     unsigned int headroom);
1041 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1042 				int newtailroom, gfp_t priority);
1043 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1044 				     int offset, int len);
1045 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1046 			      int offset, int len);
1047 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1048 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1049 
1050 /**
1051  *	skb_pad			-	zero pad the tail of an skb
1052  *	@skb: buffer to pad
1053  *	@pad: space to pad
1054  *
1055  *	Ensure that a buffer is followed by a padding area that is zero
1056  *	filled. Used by network drivers which may DMA or transfer data
1057  *	beyond the buffer end onto the wire.
1058  *
1059  *	May return error in out of memory cases. The skb is freed on error.
1060  */
1061 static inline int skb_pad(struct sk_buff *skb, int pad)
1062 {
1063 	return __skb_pad(skb, pad, true);
1064 }
1065 #define dev_kfree_skb(a)	consume_skb(a)
1066 
1067 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
1068 			    int getfrag(void *from, char *to, int offset,
1069 					int len, int odd, struct sk_buff *skb),
1070 			    void *from, int length);
1071 
1072 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1073 			 int offset, size_t size);
1074 
1075 struct skb_seq_state {
1076 	__u32		lower_offset;
1077 	__u32		upper_offset;
1078 	__u32		frag_idx;
1079 	__u32		stepped_offset;
1080 	struct sk_buff	*root_skb;
1081 	struct sk_buff	*cur_skb;
1082 	__u8		*frag_data;
1083 };
1084 
1085 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1086 			  unsigned int to, struct skb_seq_state *st);
1087 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1088 			  struct skb_seq_state *st);
1089 void skb_abort_seq_read(struct skb_seq_state *st);
1090 
1091 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1092 			   unsigned int to, struct ts_config *config);
1093 
1094 /*
1095  * Packet hash types specify the type of hash in skb_set_hash.
1096  *
1097  * Hash types refer to the protocol layer addresses which are used to
1098  * construct a packet's hash. The hashes are used to differentiate or identify
1099  * flows of the protocol layer for the hash type. Hash types are either
1100  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1101  *
1102  * Properties of hashes:
1103  *
1104  * 1) Two packets in different flows have different hash values
1105  * 2) Two packets in the same flow should have the same hash value
1106  *
1107  * A hash at a higher layer is considered to be more specific. A driver should
1108  * set the most specific hash possible.
1109  *
1110  * A driver cannot indicate a more specific hash than the layer at which a hash
1111  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1112  *
1113  * A driver may indicate a hash level which is less specific than the
1114  * actual layer the hash was computed on. For instance, a hash computed
1115  * at L4 may be considered an L3 hash. This should only be done if the
1116  * driver can't unambiguously determine that the HW computed the hash at
1117  * the higher layer. Note that the "should" in the second property above
1118  * permits this.
1119  */
1120 enum pkt_hash_types {
1121 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1122 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1123 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1124 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1125 };
1126 
1127 static inline void skb_clear_hash(struct sk_buff *skb)
1128 {
1129 	skb->hash = 0;
1130 	skb->sw_hash = 0;
1131 	skb->l4_hash = 0;
1132 }
1133 
1134 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1135 {
1136 	if (!skb->l4_hash)
1137 		skb_clear_hash(skb);
1138 }
1139 
1140 static inline void
1141 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1142 {
1143 	skb->l4_hash = is_l4;
1144 	skb->sw_hash = is_sw;
1145 	skb->hash = hash;
1146 }
1147 
1148 static inline void
1149 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1150 {
1151 	/* Used by drivers to set hash from HW */
1152 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1153 }
1154 
1155 static inline void
1156 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1157 {
1158 	__skb_set_hash(skb, hash, true, is_l4);
1159 }
1160 
1161 void __skb_get_hash(struct sk_buff *skb);
1162 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1163 u32 skb_get_poff(const struct sk_buff *skb);
1164 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1165 		   const struct flow_keys *keys, int hlen);
1166 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1167 			    void *data, int hlen_proto);
1168 
1169 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1170 					int thoff, u8 ip_proto)
1171 {
1172 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1173 }
1174 
1175 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1176 			     const struct flow_dissector_key *key,
1177 			     unsigned int key_count);
1178 
1179 bool __skb_flow_dissect(const struct sk_buff *skb,
1180 			struct flow_dissector *flow_dissector,
1181 			void *target_container,
1182 			void *data, __be16 proto, int nhoff, int hlen,
1183 			unsigned int flags);
1184 
1185 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1186 				    struct flow_dissector *flow_dissector,
1187 				    void *target_container, unsigned int flags)
1188 {
1189 	return __skb_flow_dissect(skb, flow_dissector, target_container,
1190 				  NULL, 0, 0, 0, flags);
1191 }
1192 
1193 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1194 					      struct flow_keys *flow,
1195 					      unsigned int flags)
1196 {
1197 	memset(flow, 0, sizeof(*flow));
1198 	return __skb_flow_dissect(skb, &flow_keys_dissector, flow,
1199 				  NULL, 0, 0, 0, flags);
1200 }
1201 
1202 static inline bool skb_flow_dissect_flow_keys_buf(struct flow_keys *flow,
1203 						  void *data, __be16 proto,
1204 						  int nhoff, int hlen,
1205 						  unsigned int flags)
1206 {
1207 	memset(flow, 0, sizeof(*flow));
1208 	return __skb_flow_dissect(NULL, &flow_keys_buf_dissector, flow,
1209 				  data, proto, nhoff, hlen, flags);
1210 }
1211 
1212 static inline __u32 skb_get_hash(struct sk_buff *skb)
1213 {
1214 	if (!skb->l4_hash && !skb->sw_hash)
1215 		__skb_get_hash(skb);
1216 
1217 	return skb->hash;
1218 }
1219 
1220 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1221 {
1222 	if (!skb->l4_hash && !skb->sw_hash) {
1223 		struct flow_keys keys;
1224 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1225 
1226 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1227 	}
1228 
1229 	return skb->hash;
1230 }
1231 
1232 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);
1233 
1234 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1235 {
1236 	return skb->hash;
1237 }
1238 
1239 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1240 {
1241 	to->hash = from->hash;
1242 	to->sw_hash = from->sw_hash;
1243 	to->l4_hash = from->l4_hash;
1244 };
1245 
1246 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1247 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1248 {
1249 	return skb->head + skb->end;
1250 }
1251 
1252 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1253 {
1254 	return skb->end;
1255 }
1256 #else
1257 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1258 {
1259 	return skb->end;
1260 }
1261 
1262 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1263 {
1264 	return skb->end - skb->head;
1265 }
1266 #endif
1267 
1268 /* Internal */
1269 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1270 
1271 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1272 {
1273 	return &skb_shinfo(skb)->hwtstamps;
1274 }
1275 
1276 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1277 {
1278 	bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY;
1279 
1280 	return is_zcopy ? skb_uarg(skb) : NULL;
1281 }
1282 
1283 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg)
1284 {
1285 	if (skb && uarg && !skb_zcopy(skb)) {
1286 		sock_zerocopy_get(uarg);
1287 		skb_shinfo(skb)->destructor_arg = uarg;
1288 		skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1289 	}
1290 }
1291 
1292 /* Release a reference on a zerocopy structure */
1293 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy)
1294 {
1295 	struct ubuf_info *uarg = skb_zcopy(skb);
1296 
1297 	if (uarg) {
1298 		if (uarg->callback == sock_zerocopy_callback) {
1299 			uarg->zerocopy = uarg->zerocopy && zerocopy;
1300 			sock_zerocopy_put(uarg);
1301 		} else {
1302 			uarg->callback(uarg, zerocopy);
1303 		}
1304 
1305 		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1306 	}
1307 }
1308 
1309 /* Abort a zerocopy operation and revert zckey on error in send syscall */
1310 static inline void skb_zcopy_abort(struct sk_buff *skb)
1311 {
1312 	struct ubuf_info *uarg = skb_zcopy(skb);
1313 
1314 	if (uarg) {
1315 		sock_zerocopy_put_abort(uarg);
1316 		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1317 	}
1318 }
1319 
1320 /**
1321  *	skb_queue_empty - check if a queue is empty
1322  *	@list: queue head
1323  *
1324  *	Returns true if the queue is empty, false otherwise.
1325  */
1326 static inline int skb_queue_empty(const struct sk_buff_head *list)
1327 {
1328 	return list->next == (const struct sk_buff *) list;
1329 }
1330 
1331 /**
1332  *	skb_queue_is_last - check if skb is the last entry in the queue
1333  *	@list: queue head
1334  *	@skb: buffer
1335  *
1336  *	Returns true if @skb is the last buffer on the list.
1337  */
1338 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1339 				     const struct sk_buff *skb)
1340 {
1341 	return skb->next == (const struct sk_buff *) list;
1342 }
1343 
1344 /**
1345  *	skb_queue_is_first - check if skb is the first entry in the queue
1346  *	@list: queue head
1347  *	@skb: buffer
1348  *
1349  *	Returns true if @skb is the first buffer on the list.
1350  */
1351 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1352 				      const struct sk_buff *skb)
1353 {
1354 	return skb->prev == (const struct sk_buff *) list;
1355 }
1356 
1357 /**
1358  *	skb_queue_next - return the next packet in the queue
1359  *	@list: queue head
1360  *	@skb: current buffer
1361  *
1362  *	Return the next packet in @list after @skb.  It is only valid to
1363  *	call this if skb_queue_is_last() evaluates to false.
1364  */
1365 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1366 					     const struct sk_buff *skb)
1367 {
1368 	/* This BUG_ON may seem severe, but if we just return then we
1369 	 * are going to dereference garbage.
1370 	 */
1371 	BUG_ON(skb_queue_is_last(list, skb));
1372 	return skb->next;
1373 }
1374 
1375 /**
1376  *	skb_queue_prev - return the prev packet in the queue
1377  *	@list: queue head
1378  *	@skb: current buffer
1379  *
1380  *	Return the prev packet in @list before @skb.  It is only valid to
1381  *	call this if skb_queue_is_first() evaluates to false.
1382  */
1383 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1384 					     const struct sk_buff *skb)
1385 {
1386 	/* This BUG_ON may seem severe, but if we just return then we
1387 	 * are going to dereference garbage.
1388 	 */
1389 	BUG_ON(skb_queue_is_first(list, skb));
1390 	return skb->prev;
1391 }
1392 
1393 /**
1394  *	skb_get - reference buffer
1395  *	@skb: buffer to reference
1396  *
1397  *	Makes another reference to a socket buffer and returns a pointer
1398  *	to the buffer.
1399  */
1400 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1401 {
1402 	refcount_inc(&skb->users);
1403 	return skb;
1404 }
1405 
1406 /*
1407  * If users == 1, we are the only owner and are can avoid redundant
1408  * atomic change.
1409  */
1410 
1411 /**
1412  *	skb_cloned - is the buffer a clone
1413  *	@skb: buffer to check
1414  *
1415  *	Returns true if the buffer was generated with skb_clone() and is
1416  *	one of multiple shared copies of the buffer. Cloned buffers are
1417  *	shared data so must not be written to under normal circumstances.
1418  */
1419 static inline int skb_cloned(const struct sk_buff *skb)
1420 {
1421 	return skb->cloned &&
1422 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1423 }
1424 
1425 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1426 {
1427 	might_sleep_if(gfpflags_allow_blocking(pri));
1428 
1429 	if (skb_cloned(skb))
1430 		return pskb_expand_head(skb, 0, 0, pri);
1431 
1432 	return 0;
1433 }
1434 
1435 /**
1436  *	skb_header_cloned - is the header a clone
1437  *	@skb: buffer to check
1438  *
1439  *	Returns true if modifying the header part of the buffer requires
1440  *	the data to be copied.
1441  */
1442 static inline int skb_header_cloned(const struct sk_buff *skb)
1443 {
1444 	int dataref;
1445 
1446 	if (!skb->cloned)
1447 		return 0;
1448 
1449 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1450 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1451 	return dataref != 1;
1452 }
1453 
1454 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1455 {
1456 	might_sleep_if(gfpflags_allow_blocking(pri));
1457 
1458 	if (skb_header_cloned(skb))
1459 		return pskb_expand_head(skb, 0, 0, pri);
1460 
1461 	return 0;
1462 }
1463 
1464 /**
1465  *	__skb_header_release - release reference to header
1466  *	@skb: buffer to operate on
1467  */
1468 static inline void __skb_header_release(struct sk_buff *skb)
1469 {
1470 	skb->nohdr = 1;
1471 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1472 }
1473 
1474 
1475 /**
1476  *	skb_shared - is the buffer shared
1477  *	@skb: buffer to check
1478  *
1479  *	Returns true if more than one person has a reference to this
1480  *	buffer.
1481  */
1482 static inline int skb_shared(const struct sk_buff *skb)
1483 {
1484 	return refcount_read(&skb->users) != 1;
1485 }
1486 
1487 /**
1488  *	skb_share_check - check if buffer is shared and if so clone it
1489  *	@skb: buffer to check
1490  *	@pri: priority for memory allocation
1491  *
1492  *	If the buffer is shared the buffer is cloned and the old copy
1493  *	drops a reference. A new clone with a single reference is returned.
1494  *	If the buffer is not shared the original buffer is returned. When
1495  *	being called from interrupt status or with spinlocks held pri must
1496  *	be GFP_ATOMIC.
1497  *
1498  *	NULL is returned on a memory allocation failure.
1499  */
1500 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1501 {
1502 	might_sleep_if(gfpflags_allow_blocking(pri));
1503 	if (skb_shared(skb)) {
1504 		struct sk_buff *nskb = skb_clone(skb, pri);
1505 
1506 		if (likely(nskb))
1507 			consume_skb(skb);
1508 		else
1509 			kfree_skb(skb);
1510 		skb = nskb;
1511 	}
1512 	return skb;
1513 }
1514 
1515 /*
1516  *	Copy shared buffers into a new sk_buff. We effectively do COW on
1517  *	packets to handle cases where we have a local reader and forward
1518  *	and a couple of other messy ones. The normal one is tcpdumping
1519  *	a packet thats being forwarded.
1520  */
1521 
1522 /**
1523  *	skb_unshare - make a copy of a shared buffer
1524  *	@skb: buffer to check
1525  *	@pri: priority for memory allocation
1526  *
1527  *	If the socket buffer is a clone then this function creates a new
1528  *	copy of the data, drops a reference count on the old copy and returns
1529  *	the new copy with the reference count at 1. If the buffer is not a clone
1530  *	the original buffer is returned. When called with a spinlock held or
1531  *	from interrupt state @pri must be %GFP_ATOMIC
1532  *
1533  *	%NULL is returned on a memory allocation failure.
1534  */
1535 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1536 					  gfp_t pri)
1537 {
1538 	might_sleep_if(gfpflags_allow_blocking(pri));
1539 	if (skb_cloned(skb)) {
1540 		struct sk_buff *nskb = skb_copy(skb, pri);
1541 
1542 		/* Free our shared copy */
1543 		if (likely(nskb))
1544 			consume_skb(skb);
1545 		else
1546 			kfree_skb(skb);
1547 		skb = nskb;
1548 	}
1549 	return skb;
1550 }
1551 
1552 /**
1553  *	skb_peek - peek at the head of an &sk_buff_head
1554  *	@list_: list to peek at
1555  *
1556  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1557  *	be careful with this one. A peek leaves the buffer on the
1558  *	list and someone else may run off with it. You must hold
1559  *	the appropriate locks or have a private queue to do this.
1560  *
1561  *	Returns %NULL for an empty list or a pointer to the head element.
1562  *	The reference count is not incremented and the reference is therefore
1563  *	volatile. Use with caution.
1564  */
1565 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1566 {
1567 	struct sk_buff *skb = list_->next;
1568 
1569 	if (skb == (struct sk_buff *)list_)
1570 		skb = NULL;
1571 	return skb;
1572 }
1573 
1574 /**
1575  *	skb_peek_next - peek skb following the given one from a queue
1576  *	@skb: skb to start from
1577  *	@list_: list to peek at
1578  *
1579  *	Returns %NULL when the end of the list is met or a pointer to the
1580  *	next element. The reference count is not incremented and the
1581  *	reference is therefore volatile. Use with caution.
1582  */
1583 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1584 		const struct sk_buff_head *list_)
1585 {
1586 	struct sk_buff *next = skb->next;
1587 
1588 	if (next == (struct sk_buff *)list_)
1589 		next = NULL;
1590 	return next;
1591 }
1592 
1593 /**
1594  *	skb_peek_tail - peek at the tail of an &sk_buff_head
1595  *	@list_: list to peek at
1596  *
1597  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1598  *	be careful with this one. A peek leaves the buffer on the
1599  *	list and someone else may run off with it. You must hold
1600  *	the appropriate locks or have a private queue to do this.
1601  *
1602  *	Returns %NULL for an empty list or a pointer to the tail element.
1603  *	The reference count is not incremented and the reference is therefore
1604  *	volatile. Use with caution.
1605  */
1606 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1607 {
1608 	struct sk_buff *skb = list_->prev;
1609 
1610 	if (skb == (struct sk_buff *)list_)
1611 		skb = NULL;
1612 	return skb;
1613 
1614 }
1615 
1616 /**
1617  *	skb_queue_len	- get queue length
1618  *	@list_: list to measure
1619  *
1620  *	Return the length of an &sk_buff queue.
1621  */
1622 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1623 {
1624 	return list_->qlen;
1625 }
1626 
1627 /**
1628  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1629  *	@list: queue to initialize
1630  *
1631  *	This initializes only the list and queue length aspects of
1632  *	an sk_buff_head object.  This allows to initialize the list
1633  *	aspects of an sk_buff_head without reinitializing things like
1634  *	the spinlock.  It can also be used for on-stack sk_buff_head
1635  *	objects where the spinlock is known to not be used.
1636  */
1637 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1638 {
1639 	list->prev = list->next = (struct sk_buff *)list;
1640 	list->qlen = 0;
1641 }
1642 
1643 /*
1644  * This function creates a split out lock class for each invocation;
1645  * this is needed for now since a whole lot of users of the skb-queue
1646  * infrastructure in drivers have different locking usage (in hardirq)
1647  * than the networking core (in softirq only). In the long run either the
1648  * network layer or drivers should need annotation to consolidate the
1649  * main types of usage into 3 classes.
1650  */
1651 static inline void skb_queue_head_init(struct sk_buff_head *list)
1652 {
1653 	spin_lock_init(&list->lock);
1654 	__skb_queue_head_init(list);
1655 }
1656 
1657 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1658 		struct lock_class_key *class)
1659 {
1660 	skb_queue_head_init(list);
1661 	lockdep_set_class(&list->lock, class);
1662 }
1663 
1664 /*
1665  *	Insert an sk_buff on a list.
1666  *
1667  *	The "__skb_xxxx()" functions are the non-atomic ones that
1668  *	can only be called with interrupts disabled.
1669  */
1670 void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1671 		struct sk_buff_head *list);
1672 static inline void __skb_insert(struct sk_buff *newsk,
1673 				struct sk_buff *prev, struct sk_buff *next,
1674 				struct sk_buff_head *list)
1675 {
1676 	newsk->next = next;
1677 	newsk->prev = prev;
1678 	next->prev  = prev->next = newsk;
1679 	list->qlen++;
1680 }
1681 
1682 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1683 				      struct sk_buff *prev,
1684 				      struct sk_buff *next)
1685 {
1686 	struct sk_buff *first = list->next;
1687 	struct sk_buff *last = list->prev;
1688 
1689 	first->prev = prev;
1690 	prev->next = first;
1691 
1692 	last->next = next;
1693 	next->prev = last;
1694 }
1695 
1696 /**
1697  *	skb_queue_splice - join two skb lists, this is designed for stacks
1698  *	@list: the new list to add
1699  *	@head: the place to add it in the first list
1700  */
1701 static inline void skb_queue_splice(const struct sk_buff_head *list,
1702 				    struct sk_buff_head *head)
1703 {
1704 	if (!skb_queue_empty(list)) {
1705 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1706 		head->qlen += list->qlen;
1707 	}
1708 }
1709 
1710 /**
1711  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1712  *	@list: the new list to add
1713  *	@head: the place to add it in the first list
1714  *
1715  *	The list at @list is reinitialised
1716  */
1717 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1718 					 struct sk_buff_head *head)
1719 {
1720 	if (!skb_queue_empty(list)) {
1721 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1722 		head->qlen += list->qlen;
1723 		__skb_queue_head_init(list);
1724 	}
1725 }
1726 
1727 /**
1728  *	skb_queue_splice_tail - join two skb lists, each list being a queue
1729  *	@list: the new list to add
1730  *	@head: the place to add it in the first list
1731  */
1732 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1733 					 struct sk_buff_head *head)
1734 {
1735 	if (!skb_queue_empty(list)) {
1736 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1737 		head->qlen += list->qlen;
1738 	}
1739 }
1740 
1741 /**
1742  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1743  *	@list: the new list to add
1744  *	@head: the place to add it in the first list
1745  *
1746  *	Each of the lists is a queue.
1747  *	The list at @list is reinitialised
1748  */
1749 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1750 					      struct sk_buff_head *head)
1751 {
1752 	if (!skb_queue_empty(list)) {
1753 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1754 		head->qlen += list->qlen;
1755 		__skb_queue_head_init(list);
1756 	}
1757 }
1758 
1759 /**
1760  *	__skb_queue_after - queue a buffer at the list head
1761  *	@list: list to use
1762  *	@prev: place after this buffer
1763  *	@newsk: buffer to queue
1764  *
1765  *	Queue a buffer int the middle of a list. This function takes no locks
1766  *	and you must therefore hold required locks before calling it.
1767  *
1768  *	A buffer cannot be placed on two lists at the same time.
1769  */
1770 static inline void __skb_queue_after(struct sk_buff_head *list,
1771 				     struct sk_buff *prev,
1772 				     struct sk_buff *newsk)
1773 {
1774 	__skb_insert(newsk, prev, prev->next, list);
1775 }
1776 
1777 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1778 		struct sk_buff_head *list);
1779 
1780 static inline void __skb_queue_before(struct sk_buff_head *list,
1781 				      struct sk_buff *next,
1782 				      struct sk_buff *newsk)
1783 {
1784 	__skb_insert(newsk, next->prev, next, list);
1785 }
1786 
1787 /**
1788  *	__skb_queue_head - queue a buffer at the list head
1789  *	@list: list to use
1790  *	@newsk: buffer to queue
1791  *
1792  *	Queue a buffer at the start of a list. This function takes no locks
1793  *	and you must therefore hold required locks before calling it.
1794  *
1795  *	A buffer cannot be placed on two lists at the same time.
1796  */
1797 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1798 static inline void __skb_queue_head(struct sk_buff_head *list,
1799 				    struct sk_buff *newsk)
1800 {
1801 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
1802 }
1803 
1804 /**
1805  *	__skb_queue_tail - queue a buffer at the list tail
1806  *	@list: list to use
1807  *	@newsk: buffer to queue
1808  *
1809  *	Queue a buffer at the end of a list. This function takes no locks
1810  *	and you must therefore hold required locks before calling it.
1811  *
1812  *	A buffer cannot be placed on two lists at the same time.
1813  */
1814 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1815 static inline void __skb_queue_tail(struct sk_buff_head *list,
1816 				   struct sk_buff *newsk)
1817 {
1818 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
1819 }
1820 
1821 /*
1822  * remove sk_buff from list. _Must_ be called atomically, and with
1823  * the list known..
1824  */
1825 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1826 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1827 {
1828 	struct sk_buff *next, *prev;
1829 
1830 	list->qlen--;
1831 	next	   = skb->next;
1832 	prev	   = skb->prev;
1833 	skb->next  = skb->prev = NULL;
1834 	next->prev = prev;
1835 	prev->next = next;
1836 }
1837 
1838 /**
1839  *	__skb_dequeue - remove from the head of the queue
1840  *	@list: list to dequeue from
1841  *
1842  *	Remove the head of the list. This function does not take any locks
1843  *	so must be used with appropriate locks held only. The head item is
1844  *	returned or %NULL if the list is empty.
1845  */
1846 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1847 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1848 {
1849 	struct sk_buff *skb = skb_peek(list);
1850 	if (skb)
1851 		__skb_unlink(skb, list);
1852 	return skb;
1853 }
1854 
1855 /**
1856  *	__skb_dequeue_tail - remove from the tail of the queue
1857  *	@list: list to dequeue from
1858  *
1859  *	Remove the tail of the list. This function does not take any locks
1860  *	so must be used with appropriate locks held only. The tail item is
1861  *	returned or %NULL if the list is empty.
1862  */
1863 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1864 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1865 {
1866 	struct sk_buff *skb = skb_peek_tail(list);
1867 	if (skb)
1868 		__skb_unlink(skb, list);
1869 	return skb;
1870 }
1871 
1872 
1873 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1874 {
1875 	return skb->data_len;
1876 }
1877 
1878 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1879 {
1880 	return skb->len - skb->data_len;
1881 }
1882 
1883 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
1884 {
1885 	unsigned int i, len = 0;
1886 
1887 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
1888 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1889 	return len;
1890 }
1891 
1892 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
1893 {
1894 	return skb_headlen(skb) + __skb_pagelen(skb);
1895 }
1896 
1897 /**
1898  * __skb_fill_page_desc - initialise a paged fragment in an skb
1899  * @skb: buffer containing fragment to be initialised
1900  * @i: paged fragment index to initialise
1901  * @page: the page to use for this fragment
1902  * @off: the offset to the data with @page
1903  * @size: the length of the data
1904  *
1905  * Initialises the @i'th fragment of @skb to point to &size bytes at
1906  * offset @off within @page.
1907  *
1908  * Does not take any additional reference on the fragment.
1909  */
1910 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1911 					struct page *page, int off, int size)
1912 {
1913 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1914 
1915 	/*
1916 	 * Propagate page pfmemalloc to the skb if we can. The problem is
1917 	 * that not all callers have unique ownership of the page but rely
1918 	 * on page_is_pfmemalloc doing the right thing(tm).
1919 	 */
1920 	frag->page.p		  = page;
1921 	frag->page_offset	  = off;
1922 	skb_frag_size_set(frag, size);
1923 
1924 	page = compound_head(page);
1925 	if (page_is_pfmemalloc(page))
1926 		skb->pfmemalloc	= true;
1927 }
1928 
1929 /**
1930  * skb_fill_page_desc - initialise a paged fragment in an skb
1931  * @skb: buffer containing fragment to be initialised
1932  * @i: paged fragment index to initialise
1933  * @page: the page to use for this fragment
1934  * @off: the offset to the data with @page
1935  * @size: the length of the data
1936  *
1937  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1938  * @skb to point to @size bytes at offset @off within @page. In
1939  * addition updates @skb such that @i is the last fragment.
1940  *
1941  * Does not take any additional reference on the fragment.
1942  */
1943 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1944 				      struct page *page, int off, int size)
1945 {
1946 	__skb_fill_page_desc(skb, i, page, off, size);
1947 	skb_shinfo(skb)->nr_frags = i + 1;
1948 }
1949 
1950 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
1951 		     int size, unsigned int truesize);
1952 
1953 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
1954 			  unsigned int truesize);
1955 
1956 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
1957 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_has_frag_list(skb))
1958 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
1959 
1960 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1961 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1962 {
1963 	return skb->head + skb->tail;
1964 }
1965 
1966 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1967 {
1968 	skb->tail = skb->data - skb->head;
1969 }
1970 
1971 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1972 {
1973 	skb_reset_tail_pointer(skb);
1974 	skb->tail += offset;
1975 }
1976 
1977 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1978 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1979 {
1980 	return skb->tail;
1981 }
1982 
1983 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1984 {
1985 	skb->tail = skb->data;
1986 }
1987 
1988 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1989 {
1990 	skb->tail = skb->data + offset;
1991 }
1992 
1993 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1994 
1995 /*
1996  *	Add data to an sk_buff
1997  */
1998 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
1999 void *skb_put(struct sk_buff *skb, unsigned int len);
2000 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2001 {
2002 	void *tmp = skb_tail_pointer(skb);
2003 	SKB_LINEAR_ASSERT(skb);
2004 	skb->tail += len;
2005 	skb->len  += len;
2006 	return tmp;
2007 }
2008 
2009 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2010 {
2011 	void *tmp = __skb_put(skb, len);
2012 
2013 	memset(tmp, 0, len);
2014 	return tmp;
2015 }
2016 
2017 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2018 				   unsigned int len)
2019 {
2020 	void *tmp = __skb_put(skb, len);
2021 
2022 	memcpy(tmp, data, len);
2023 	return tmp;
2024 }
2025 
2026 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2027 {
2028 	*(u8 *)__skb_put(skb, 1) = val;
2029 }
2030 
2031 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2032 {
2033 	void *tmp = skb_put(skb, len);
2034 
2035 	memset(tmp, 0, len);
2036 
2037 	return tmp;
2038 }
2039 
2040 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2041 				 unsigned int len)
2042 {
2043 	void *tmp = skb_put(skb, len);
2044 
2045 	memcpy(tmp, data, len);
2046 
2047 	return tmp;
2048 }
2049 
2050 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2051 {
2052 	*(u8 *)skb_put(skb, 1) = val;
2053 }
2054 
2055 void *skb_push(struct sk_buff *skb, unsigned int len);
2056 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2057 {
2058 	skb->data -= len;
2059 	skb->len  += len;
2060 	return skb->data;
2061 }
2062 
2063 void *skb_pull(struct sk_buff *skb, unsigned int len);
2064 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2065 {
2066 	skb->len -= len;
2067 	BUG_ON(skb->len < skb->data_len);
2068 	return skb->data += len;
2069 }
2070 
2071 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2072 {
2073 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2074 }
2075 
2076 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2077 
2078 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2079 {
2080 	if (len > skb_headlen(skb) &&
2081 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2082 		return NULL;
2083 	skb->len -= len;
2084 	return skb->data += len;
2085 }
2086 
2087 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2088 {
2089 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2090 }
2091 
2092 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
2093 {
2094 	if (likely(len <= skb_headlen(skb)))
2095 		return 1;
2096 	if (unlikely(len > skb->len))
2097 		return 0;
2098 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2099 }
2100 
2101 void skb_condense(struct sk_buff *skb);
2102 
2103 /**
2104  *	skb_headroom - bytes at buffer head
2105  *	@skb: buffer to check
2106  *
2107  *	Return the number of bytes of free space at the head of an &sk_buff.
2108  */
2109 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2110 {
2111 	return skb->data - skb->head;
2112 }
2113 
2114 /**
2115  *	skb_tailroom - bytes at buffer end
2116  *	@skb: buffer to check
2117  *
2118  *	Return the number of bytes of free space at the tail of an sk_buff
2119  */
2120 static inline int skb_tailroom(const struct sk_buff *skb)
2121 {
2122 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2123 }
2124 
2125 /**
2126  *	skb_availroom - bytes at buffer end
2127  *	@skb: buffer to check
2128  *
2129  *	Return the number of bytes of free space at the tail of an sk_buff
2130  *	allocated by sk_stream_alloc()
2131  */
2132 static inline int skb_availroom(const struct sk_buff *skb)
2133 {
2134 	if (skb_is_nonlinear(skb))
2135 		return 0;
2136 
2137 	return skb->end - skb->tail - skb->reserved_tailroom;
2138 }
2139 
2140 /**
2141  *	skb_reserve - adjust headroom
2142  *	@skb: buffer to alter
2143  *	@len: bytes to move
2144  *
2145  *	Increase the headroom of an empty &sk_buff by reducing the tail
2146  *	room. This is only allowed for an empty buffer.
2147  */
2148 static inline void skb_reserve(struct sk_buff *skb, int len)
2149 {
2150 	skb->data += len;
2151 	skb->tail += len;
2152 }
2153 
2154 /**
2155  *	skb_tailroom_reserve - adjust reserved_tailroom
2156  *	@skb: buffer to alter
2157  *	@mtu: maximum amount of headlen permitted
2158  *	@needed_tailroom: minimum amount of reserved_tailroom
2159  *
2160  *	Set reserved_tailroom so that headlen can be as large as possible but
2161  *	not larger than mtu and tailroom cannot be smaller than
2162  *	needed_tailroom.
2163  *	The required headroom should already have been reserved before using
2164  *	this function.
2165  */
2166 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2167 					unsigned int needed_tailroom)
2168 {
2169 	SKB_LINEAR_ASSERT(skb);
2170 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2171 		/* use at most mtu */
2172 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2173 	else
2174 		/* use up to all available space */
2175 		skb->reserved_tailroom = needed_tailroom;
2176 }
2177 
2178 #define ENCAP_TYPE_ETHER	0
2179 #define ENCAP_TYPE_IPPROTO	1
2180 
2181 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2182 					  __be16 protocol)
2183 {
2184 	skb->inner_protocol = protocol;
2185 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2186 }
2187 
2188 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2189 					 __u8 ipproto)
2190 {
2191 	skb->inner_ipproto = ipproto;
2192 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2193 }
2194 
2195 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2196 {
2197 	skb->inner_mac_header = skb->mac_header;
2198 	skb->inner_network_header = skb->network_header;
2199 	skb->inner_transport_header = skb->transport_header;
2200 }
2201 
2202 static inline void skb_reset_mac_len(struct sk_buff *skb)
2203 {
2204 	skb->mac_len = skb->network_header - skb->mac_header;
2205 }
2206 
2207 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2208 							*skb)
2209 {
2210 	return skb->head + skb->inner_transport_header;
2211 }
2212 
2213 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2214 {
2215 	return skb_inner_transport_header(skb) - skb->data;
2216 }
2217 
2218 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2219 {
2220 	skb->inner_transport_header = skb->data - skb->head;
2221 }
2222 
2223 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2224 						   const int offset)
2225 {
2226 	skb_reset_inner_transport_header(skb);
2227 	skb->inner_transport_header += offset;
2228 }
2229 
2230 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2231 {
2232 	return skb->head + skb->inner_network_header;
2233 }
2234 
2235 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2236 {
2237 	skb->inner_network_header = skb->data - skb->head;
2238 }
2239 
2240 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2241 						const int offset)
2242 {
2243 	skb_reset_inner_network_header(skb);
2244 	skb->inner_network_header += offset;
2245 }
2246 
2247 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2248 {
2249 	return skb->head + skb->inner_mac_header;
2250 }
2251 
2252 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2253 {
2254 	skb->inner_mac_header = skb->data - skb->head;
2255 }
2256 
2257 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2258 					    const int offset)
2259 {
2260 	skb_reset_inner_mac_header(skb);
2261 	skb->inner_mac_header += offset;
2262 }
2263 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2264 {
2265 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2266 }
2267 
2268 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2269 {
2270 	return skb->head + skb->transport_header;
2271 }
2272 
2273 static inline void skb_reset_transport_header(struct sk_buff *skb)
2274 {
2275 	skb->transport_header = skb->data - skb->head;
2276 }
2277 
2278 static inline void skb_set_transport_header(struct sk_buff *skb,
2279 					    const int offset)
2280 {
2281 	skb_reset_transport_header(skb);
2282 	skb->transport_header += offset;
2283 }
2284 
2285 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2286 {
2287 	return skb->head + skb->network_header;
2288 }
2289 
2290 static inline void skb_reset_network_header(struct sk_buff *skb)
2291 {
2292 	skb->network_header = skb->data - skb->head;
2293 }
2294 
2295 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2296 {
2297 	skb_reset_network_header(skb);
2298 	skb->network_header += offset;
2299 }
2300 
2301 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2302 {
2303 	return skb->head + skb->mac_header;
2304 }
2305 
2306 static inline int skb_mac_offset(const struct sk_buff *skb)
2307 {
2308 	return skb_mac_header(skb) - skb->data;
2309 }
2310 
2311 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2312 {
2313 	return skb->network_header - skb->mac_header;
2314 }
2315 
2316 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2317 {
2318 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2319 }
2320 
2321 static inline void skb_reset_mac_header(struct sk_buff *skb)
2322 {
2323 	skb->mac_header = skb->data - skb->head;
2324 }
2325 
2326 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2327 {
2328 	skb_reset_mac_header(skb);
2329 	skb->mac_header += offset;
2330 }
2331 
2332 static inline void skb_pop_mac_header(struct sk_buff *skb)
2333 {
2334 	skb->mac_header = skb->network_header;
2335 }
2336 
2337 static inline void skb_probe_transport_header(struct sk_buff *skb,
2338 					      const int offset_hint)
2339 {
2340 	struct flow_keys keys;
2341 
2342 	if (skb_transport_header_was_set(skb))
2343 		return;
2344 	else if (skb_flow_dissect_flow_keys(skb, &keys, 0))
2345 		skb_set_transport_header(skb, keys.control.thoff);
2346 	else
2347 		skb_set_transport_header(skb, offset_hint);
2348 }
2349 
2350 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2351 {
2352 	if (skb_mac_header_was_set(skb)) {
2353 		const unsigned char *old_mac = skb_mac_header(skb);
2354 
2355 		skb_set_mac_header(skb, -skb->mac_len);
2356 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2357 	}
2358 }
2359 
2360 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2361 {
2362 	return skb->csum_start - skb_headroom(skb);
2363 }
2364 
2365 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2366 {
2367 	return skb->head + skb->csum_start;
2368 }
2369 
2370 static inline int skb_transport_offset(const struct sk_buff *skb)
2371 {
2372 	return skb_transport_header(skb) - skb->data;
2373 }
2374 
2375 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2376 {
2377 	return skb->transport_header - skb->network_header;
2378 }
2379 
2380 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2381 {
2382 	return skb->inner_transport_header - skb->inner_network_header;
2383 }
2384 
2385 static inline int skb_network_offset(const struct sk_buff *skb)
2386 {
2387 	return skb_network_header(skb) - skb->data;
2388 }
2389 
2390 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2391 {
2392 	return skb_inner_network_header(skb) - skb->data;
2393 }
2394 
2395 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2396 {
2397 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
2398 }
2399 
2400 /*
2401  * CPUs often take a performance hit when accessing unaligned memory
2402  * locations. The actual performance hit varies, it can be small if the
2403  * hardware handles it or large if we have to take an exception and fix it
2404  * in software.
2405  *
2406  * Since an ethernet header is 14 bytes network drivers often end up with
2407  * the IP header at an unaligned offset. The IP header can be aligned by
2408  * shifting the start of the packet by 2 bytes. Drivers should do this
2409  * with:
2410  *
2411  * skb_reserve(skb, NET_IP_ALIGN);
2412  *
2413  * The downside to this alignment of the IP header is that the DMA is now
2414  * unaligned. On some architectures the cost of an unaligned DMA is high
2415  * and this cost outweighs the gains made by aligning the IP header.
2416  *
2417  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2418  * to be overridden.
2419  */
2420 #ifndef NET_IP_ALIGN
2421 #define NET_IP_ALIGN	2
2422 #endif
2423 
2424 /*
2425  * The networking layer reserves some headroom in skb data (via
2426  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2427  * the header has to grow. In the default case, if the header has to grow
2428  * 32 bytes or less we avoid the reallocation.
2429  *
2430  * Unfortunately this headroom changes the DMA alignment of the resulting
2431  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2432  * on some architectures. An architecture can override this value,
2433  * perhaps setting it to a cacheline in size (since that will maintain
2434  * cacheline alignment of the DMA). It must be a power of 2.
2435  *
2436  * Various parts of the networking layer expect at least 32 bytes of
2437  * headroom, you should not reduce this.
2438  *
2439  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2440  * to reduce average number of cache lines per packet.
2441  * get_rps_cpus() for example only access one 64 bytes aligned block :
2442  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2443  */
2444 #ifndef NET_SKB_PAD
2445 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2446 #endif
2447 
2448 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2449 
2450 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2451 {
2452 	if (unlikely(skb_is_nonlinear(skb))) {
2453 		WARN_ON(1);
2454 		return;
2455 	}
2456 	skb->len = len;
2457 	skb_set_tail_pointer(skb, len);
2458 }
2459 
2460 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2461 {
2462 	__skb_set_length(skb, len);
2463 }
2464 
2465 void skb_trim(struct sk_buff *skb, unsigned int len);
2466 
2467 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2468 {
2469 	if (skb->data_len)
2470 		return ___pskb_trim(skb, len);
2471 	__skb_trim(skb, len);
2472 	return 0;
2473 }
2474 
2475 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2476 {
2477 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2478 }
2479 
2480 /**
2481  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2482  *	@skb: buffer to alter
2483  *	@len: new length
2484  *
2485  *	This is identical to pskb_trim except that the caller knows that
2486  *	the skb is not cloned so we should never get an error due to out-
2487  *	of-memory.
2488  */
2489 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2490 {
2491 	int err = pskb_trim(skb, len);
2492 	BUG_ON(err);
2493 }
2494 
2495 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2496 {
2497 	unsigned int diff = len - skb->len;
2498 
2499 	if (skb_tailroom(skb) < diff) {
2500 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2501 					   GFP_ATOMIC);
2502 		if (ret)
2503 			return ret;
2504 	}
2505 	__skb_set_length(skb, len);
2506 	return 0;
2507 }
2508 
2509 /**
2510  *	skb_orphan - orphan a buffer
2511  *	@skb: buffer to orphan
2512  *
2513  *	If a buffer currently has an owner then we call the owner's
2514  *	destructor function and make the @skb unowned. The buffer continues
2515  *	to exist but is no longer charged to its former owner.
2516  */
2517 static inline void skb_orphan(struct sk_buff *skb)
2518 {
2519 	if (skb->destructor) {
2520 		skb->destructor(skb);
2521 		skb->destructor = NULL;
2522 		skb->sk		= NULL;
2523 	} else {
2524 		BUG_ON(skb->sk);
2525 	}
2526 }
2527 
2528 /**
2529  *	skb_orphan_frags - orphan the frags contained in a buffer
2530  *	@skb: buffer to orphan frags from
2531  *	@gfp_mask: allocation mask for replacement pages
2532  *
2533  *	For each frag in the SKB which needs a destructor (i.e. has an
2534  *	owner) create a copy of that frag and release the original
2535  *	page by calling the destructor.
2536  */
2537 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2538 {
2539 	if (likely(!skb_zcopy(skb)))
2540 		return 0;
2541 	if (skb_uarg(skb)->callback == sock_zerocopy_callback)
2542 		return 0;
2543 	return skb_copy_ubufs(skb, gfp_mask);
2544 }
2545 
2546 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
2547 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2548 {
2549 	if (likely(!skb_zcopy(skb)))
2550 		return 0;
2551 	return skb_copy_ubufs(skb, gfp_mask);
2552 }
2553 
2554 /**
2555  *	__skb_queue_purge - empty a list
2556  *	@list: list to empty
2557  *
2558  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2559  *	the list and one reference dropped. This function does not take the
2560  *	list lock and the caller must hold the relevant locks to use it.
2561  */
2562 void skb_queue_purge(struct sk_buff_head *list);
2563 static inline void __skb_queue_purge(struct sk_buff_head *list)
2564 {
2565 	struct sk_buff *skb;
2566 	while ((skb = __skb_dequeue(list)) != NULL)
2567 		kfree_skb(skb);
2568 }
2569 
2570 void skb_rbtree_purge(struct rb_root *root);
2571 
2572 void *netdev_alloc_frag(unsigned int fragsz);
2573 
2574 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2575 				   gfp_t gfp_mask);
2576 
2577 /**
2578  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
2579  *	@dev: network device to receive on
2580  *	@length: length to allocate
2581  *
2582  *	Allocate a new &sk_buff and assign it a usage count of one. The
2583  *	buffer has unspecified headroom built in. Users should allocate
2584  *	the headroom they think they need without accounting for the
2585  *	built in space. The built in space is used for optimisations.
2586  *
2587  *	%NULL is returned if there is no free memory. Although this function
2588  *	allocates memory it can be called from an interrupt.
2589  */
2590 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2591 					       unsigned int length)
2592 {
2593 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2594 }
2595 
2596 /* legacy helper around __netdev_alloc_skb() */
2597 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2598 					      gfp_t gfp_mask)
2599 {
2600 	return __netdev_alloc_skb(NULL, length, gfp_mask);
2601 }
2602 
2603 /* legacy helper around netdev_alloc_skb() */
2604 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2605 {
2606 	return netdev_alloc_skb(NULL, length);
2607 }
2608 
2609 
2610 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2611 		unsigned int length, gfp_t gfp)
2612 {
2613 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2614 
2615 	if (NET_IP_ALIGN && skb)
2616 		skb_reserve(skb, NET_IP_ALIGN);
2617 	return skb;
2618 }
2619 
2620 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2621 		unsigned int length)
2622 {
2623 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2624 }
2625 
2626 static inline void skb_free_frag(void *addr)
2627 {
2628 	page_frag_free(addr);
2629 }
2630 
2631 void *napi_alloc_frag(unsigned int fragsz);
2632 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2633 				 unsigned int length, gfp_t gfp_mask);
2634 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2635 					     unsigned int length)
2636 {
2637 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2638 }
2639 void napi_consume_skb(struct sk_buff *skb, int budget);
2640 
2641 void __kfree_skb_flush(void);
2642 void __kfree_skb_defer(struct sk_buff *skb);
2643 
2644 /**
2645  * __dev_alloc_pages - allocate page for network Rx
2646  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2647  * @order: size of the allocation
2648  *
2649  * Allocate a new page.
2650  *
2651  * %NULL is returned if there is no free memory.
2652 */
2653 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2654 					     unsigned int order)
2655 {
2656 	/* This piece of code contains several assumptions.
2657 	 * 1.  This is for device Rx, therefor a cold page is preferred.
2658 	 * 2.  The expectation is the user wants a compound page.
2659 	 * 3.  If requesting a order 0 page it will not be compound
2660 	 *     due to the check to see if order has a value in prep_new_page
2661 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2662 	 *     code in gfp_to_alloc_flags that should be enforcing this.
2663 	 */
2664 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
2665 
2666 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2667 }
2668 
2669 static inline struct page *dev_alloc_pages(unsigned int order)
2670 {
2671 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2672 }
2673 
2674 /**
2675  * __dev_alloc_page - allocate a page for network Rx
2676  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2677  *
2678  * Allocate a new page.
2679  *
2680  * %NULL is returned if there is no free memory.
2681  */
2682 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2683 {
2684 	return __dev_alloc_pages(gfp_mask, 0);
2685 }
2686 
2687 static inline struct page *dev_alloc_page(void)
2688 {
2689 	return dev_alloc_pages(0);
2690 }
2691 
2692 /**
2693  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2694  *	@page: The page that was allocated from skb_alloc_page
2695  *	@skb: The skb that may need pfmemalloc set
2696  */
2697 static inline void skb_propagate_pfmemalloc(struct page *page,
2698 					     struct sk_buff *skb)
2699 {
2700 	if (page_is_pfmemalloc(page))
2701 		skb->pfmemalloc = true;
2702 }
2703 
2704 /**
2705  * skb_frag_page - retrieve the page referred to by a paged fragment
2706  * @frag: the paged fragment
2707  *
2708  * Returns the &struct page associated with @frag.
2709  */
2710 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2711 {
2712 	return frag->page.p;
2713 }
2714 
2715 /**
2716  * __skb_frag_ref - take an addition reference on a paged fragment.
2717  * @frag: the paged fragment
2718  *
2719  * Takes an additional reference on the paged fragment @frag.
2720  */
2721 static inline void __skb_frag_ref(skb_frag_t *frag)
2722 {
2723 	get_page(skb_frag_page(frag));
2724 }
2725 
2726 /**
2727  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2728  * @skb: the buffer
2729  * @f: the fragment offset.
2730  *
2731  * Takes an additional reference on the @f'th paged fragment of @skb.
2732  */
2733 static inline void skb_frag_ref(struct sk_buff *skb, int f)
2734 {
2735 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2736 }
2737 
2738 /**
2739  * __skb_frag_unref - release a reference on a paged fragment.
2740  * @frag: the paged fragment
2741  *
2742  * Releases a reference on the paged fragment @frag.
2743  */
2744 static inline void __skb_frag_unref(skb_frag_t *frag)
2745 {
2746 	put_page(skb_frag_page(frag));
2747 }
2748 
2749 /**
2750  * skb_frag_unref - release a reference on a paged fragment of an skb.
2751  * @skb: the buffer
2752  * @f: the fragment offset
2753  *
2754  * Releases a reference on the @f'th paged fragment of @skb.
2755  */
2756 static inline void skb_frag_unref(struct sk_buff *skb, int f)
2757 {
2758 	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2759 }
2760 
2761 /**
2762  * skb_frag_address - gets the address of the data contained in a paged fragment
2763  * @frag: the paged fragment buffer
2764  *
2765  * Returns the address of the data within @frag. The page must already
2766  * be mapped.
2767  */
2768 static inline void *skb_frag_address(const skb_frag_t *frag)
2769 {
2770 	return page_address(skb_frag_page(frag)) + frag->page_offset;
2771 }
2772 
2773 /**
2774  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2775  * @frag: the paged fragment buffer
2776  *
2777  * Returns the address of the data within @frag. Checks that the page
2778  * is mapped and returns %NULL otherwise.
2779  */
2780 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2781 {
2782 	void *ptr = page_address(skb_frag_page(frag));
2783 	if (unlikely(!ptr))
2784 		return NULL;
2785 
2786 	return ptr + frag->page_offset;
2787 }
2788 
2789 /**
2790  * __skb_frag_set_page - sets the page contained in a paged fragment
2791  * @frag: the paged fragment
2792  * @page: the page to set
2793  *
2794  * Sets the fragment @frag to contain @page.
2795  */
2796 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2797 {
2798 	frag->page.p = page;
2799 }
2800 
2801 /**
2802  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2803  * @skb: the buffer
2804  * @f: the fragment offset
2805  * @page: the page to set
2806  *
2807  * Sets the @f'th fragment of @skb to contain @page.
2808  */
2809 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2810 				     struct page *page)
2811 {
2812 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2813 }
2814 
2815 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2816 
2817 /**
2818  * skb_frag_dma_map - maps a paged fragment via the DMA API
2819  * @dev: the device to map the fragment to
2820  * @frag: the paged fragment to map
2821  * @offset: the offset within the fragment (starting at the
2822  *          fragment's own offset)
2823  * @size: the number of bytes to map
2824  * @dir: the direction of the mapping (``PCI_DMA_*``)
2825  *
2826  * Maps the page associated with @frag to @device.
2827  */
2828 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2829 					  const skb_frag_t *frag,
2830 					  size_t offset, size_t size,
2831 					  enum dma_data_direction dir)
2832 {
2833 	return dma_map_page(dev, skb_frag_page(frag),
2834 			    frag->page_offset + offset, size, dir);
2835 }
2836 
2837 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2838 					gfp_t gfp_mask)
2839 {
2840 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2841 }
2842 
2843 
2844 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2845 						  gfp_t gfp_mask)
2846 {
2847 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2848 }
2849 
2850 
2851 /**
2852  *	skb_clone_writable - is the header of a clone writable
2853  *	@skb: buffer to check
2854  *	@len: length up to which to write
2855  *
2856  *	Returns true if modifying the header part of the cloned buffer
2857  *	does not requires the data to be copied.
2858  */
2859 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2860 {
2861 	return !skb_header_cloned(skb) &&
2862 	       skb_headroom(skb) + len <= skb->hdr_len;
2863 }
2864 
2865 static inline int skb_try_make_writable(struct sk_buff *skb,
2866 					unsigned int write_len)
2867 {
2868 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
2869 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2870 }
2871 
2872 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2873 			    int cloned)
2874 {
2875 	int delta = 0;
2876 
2877 	if (headroom > skb_headroom(skb))
2878 		delta = headroom - skb_headroom(skb);
2879 
2880 	if (delta || cloned)
2881 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2882 					GFP_ATOMIC);
2883 	return 0;
2884 }
2885 
2886 /**
2887  *	skb_cow - copy header of skb when it is required
2888  *	@skb: buffer to cow
2889  *	@headroom: needed headroom
2890  *
2891  *	If the skb passed lacks sufficient headroom or its data part
2892  *	is shared, data is reallocated. If reallocation fails, an error
2893  *	is returned and original skb is not changed.
2894  *
2895  *	The result is skb with writable area skb->head...skb->tail
2896  *	and at least @headroom of space at head.
2897  */
2898 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2899 {
2900 	return __skb_cow(skb, headroom, skb_cloned(skb));
2901 }
2902 
2903 /**
2904  *	skb_cow_head - skb_cow but only making the head writable
2905  *	@skb: buffer to cow
2906  *	@headroom: needed headroom
2907  *
2908  *	This function is identical to skb_cow except that we replace the
2909  *	skb_cloned check by skb_header_cloned.  It should be used when
2910  *	you only need to push on some header and do not need to modify
2911  *	the data.
2912  */
2913 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2914 {
2915 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
2916 }
2917 
2918 /**
2919  *	skb_padto	- pad an skbuff up to a minimal size
2920  *	@skb: buffer to pad
2921  *	@len: minimal length
2922  *
2923  *	Pads up a buffer to ensure the trailing bytes exist and are
2924  *	blanked. If the buffer already contains sufficient data it
2925  *	is untouched. Otherwise it is extended. Returns zero on
2926  *	success. The skb is freed on error.
2927  */
2928 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
2929 {
2930 	unsigned int size = skb->len;
2931 	if (likely(size >= len))
2932 		return 0;
2933 	return skb_pad(skb, len - size);
2934 }
2935 
2936 /**
2937  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
2938  *	@skb: buffer to pad
2939  *	@len: minimal length
2940  *	@free_on_error: free buffer on error
2941  *
2942  *	Pads up a buffer to ensure the trailing bytes exist and are
2943  *	blanked. If the buffer already contains sufficient data it
2944  *	is untouched. Otherwise it is extended. Returns zero on
2945  *	success. The skb is freed on error if @free_on_error is true.
2946  */
2947 static inline int __skb_put_padto(struct sk_buff *skb, unsigned int len,
2948 				  bool free_on_error)
2949 {
2950 	unsigned int size = skb->len;
2951 
2952 	if (unlikely(size < len)) {
2953 		len -= size;
2954 		if (__skb_pad(skb, len, free_on_error))
2955 			return -ENOMEM;
2956 		__skb_put(skb, len);
2957 	}
2958 	return 0;
2959 }
2960 
2961 /**
2962  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
2963  *	@skb: buffer to pad
2964  *	@len: minimal length
2965  *
2966  *	Pads up a buffer to ensure the trailing bytes exist and are
2967  *	blanked. If the buffer already contains sufficient data it
2968  *	is untouched. Otherwise it is extended. Returns zero on
2969  *	success. The skb is freed on error.
2970  */
2971 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
2972 {
2973 	return __skb_put_padto(skb, len, true);
2974 }
2975 
2976 static inline int skb_add_data(struct sk_buff *skb,
2977 			       struct iov_iter *from, int copy)
2978 {
2979 	const int off = skb->len;
2980 
2981 	if (skb->ip_summed == CHECKSUM_NONE) {
2982 		__wsum csum = 0;
2983 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
2984 					         &csum, from)) {
2985 			skb->csum = csum_block_add(skb->csum, csum, off);
2986 			return 0;
2987 		}
2988 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
2989 		return 0;
2990 
2991 	__skb_trim(skb, off);
2992 	return -EFAULT;
2993 }
2994 
2995 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
2996 				    const struct page *page, int off)
2997 {
2998 	if (skb_zcopy(skb))
2999 		return false;
3000 	if (i) {
3001 		const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
3002 
3003 		return page == skb_frag_page(frag) &&
3004 		       off == frag->page_offset + skb_frag_size(frag);
3005 	}
3006 	return false;
3007 }
3008 
3009 static inline int __skb_linearize(struct sk_buff *skb)
3010 {
3011 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3012 }
3013 
3014 /**
3015  *	skb_linearize - convert paged skb to linear one
3016  *	@skb: buffer to linarize
3017  *
3018  *	If there is no free memory -ENOMEM is returned, otherwise zero
3019  *	is returned and the old skb data released.
3020  */
3021 static inline int skb_linearize(struct sk_buff *skb)
3022 {
3023 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3024 }
3025 
3026 /**
3027  * skb_has_shared_frag - can any frag be overwritten
3028  * @skb: buffer to test
3029  *
3030  * Return true if the skb has at least one frag that might be modified
3031  * by an external entity (as in vmsplice()/sendfile())
3032  */
3033 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3034 {
3035 	return skb_is_nonlinear(skb) &&
3036 	       skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
3037 }
3038 
3039 /**
3040  *	skb_linearize_cow - make sure skb is linear and writable
3041  *	@skb: buffer to process
3042  *
3043  *	If there is no free memory -ENOMEM is returned, otherwise zero
3044  *	is returned and the old skb data released.
3045  */
3046 static inline int skb_linearize_cow(struct sk_buff *skb)
3047 {
3048 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3049 	       __skb_linearize(skb) : 0;
3050 }
3051 
3052 static __always_inline void
3053 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3054 		     unsigned int off)
3055 {
3056 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3057 		skb->csum = csum_block_sub(skb->csum,
3058 					   csum_partial(start, len, 0), off);
3059 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3060 		 skb_checksum_start_offset(skb) < 0)
3061 		skb->ip_summed = CHECKSUM_NONE;
3062 }
3063 
3064 /**
3065  *	skb_postpull_rcsum - update checksum for received skb after pull
3066  *	@skb: buffer to update
3067  *	@start: start of data before pull
3068  *	@len: length of data pulled
3069  *
3070  *	After doing a pull on a received packet, you need to call this to
3071  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3072  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3073  */
3074 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3075 				      const void *start, unsigned int len)
3076 {
3077 	__skb_postpull_rcsum(skb, start, len, 0);
3078 }
3079 
3080 static __always_inline void
3081 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3082 		     unsigned int off)
3083 {
3084 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3085 		skb->csum = csum_block_add(skb->csum,
3086 					   csum_partial(start, len, 0), off);
3087 }
3088 
3089 /**
3090  *	skb_postpush_rcsum - update checksum for received skb after push
3091  *	@skb: buffer to update
3092  *	@start: start of data after push
3093  *	@len: length of data pushed
3094  *
3095  *	After doing a push on a received packet, you need to call this to
3096  *	update the CHECKSUM_COMPLETE checksum.
3097  */
3098 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3099 				      const void *start, unsigned int len)
3100 {
3101 	__skb_postpush_rcsum(skb, start, len, 0);
3102 }
3103 
3104 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3105 
3106 /**
3107  *	skb_push_rcsum - push skb and update receive checksum
3108  *	@skb: buffer to update
3109  *	@len: length of data pulled
3110  *
3111  *	This function performs an skb_push on the packet and updates
3112  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3113  *	receive path processing instead of skb_push unless you know
3114  *	that the checksum difference is zero (e.g., a valid IP header)
3115  *	or you are setting ip_summed to CHECKSUM_NONE.
3116  */
3117 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3118 {
3119 	skb_push(skb, len);
3120 	skb_postpush_rcsum(skb, skb->data, len);
3121 	return skb->data;
3122 }
3123 
3124 /**
3125  *	pskb_trim_rcsum - trim received skb and update checksum
3126  *	@skb: buffer to trim
3127  *	@len: new length
3128  *
3129  *	This is exactly the same as pskb_trim except that it ensures the
3130  *	checksum of received packets are still valid after the operation.
3131  */
3132 
3133 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3134 {
3135 	if (likely(len >= skb->len))
3136 		return 0;
3137 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3138 		skb->ip_summed = CHECKSUM_NONE;
3139 	return __pskb_trim(skb, len);
3140 }
3141 
3142 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3143 {
3144 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3145 		skb->ip_summed = CHECKSUM_NONE;
3146 	__skb_trim(skb, len);
3147 	return 0;
3148 }
3149 
3150 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3151 {
3152 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3153 		skb->ip_summed = CHECKSUM_NONE;
3154 	return __skb_grow(skb, len);
3155 }
3156 
3157 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3158 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3159 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3160 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3161 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3162 
3163 #define skb_queue_walk(queue, skb) \
3164 		for (skb = (queue)->next;					\
3165 		     skb != (struct sk_buff *)(queue);				\
3166 		     skb = skb->next)
3167 
3168 #define skb_queue_walk_safe(queue, skb, tmp)					\
3169 		for (skb = (queue)->next, tmp = skb->next;			\
3170 		     skb != (struct sk_buff *)(queue);				\
3171 		     skb = tmp, tmp = skb->next)
3172 
3173 #define skb_queue_walk_from(queue, skb)						\
3174 		for (; skb != (struct sk_buff *)(queue);			\
3175 		     skb = skb->next)
3176 
3177 #define skb_rbtree_walk(skb, root)						\
3178 		for (skb = skb_rb_first(root); skb != NULL;			\
3179 		     skb = skb_rb_next(skb))
3180 
3181 #define skb_rbtree_walk_from(skb)						\
3182 		for (; skb != NULL;						\
3183 		     skb = skb_rb_next(skb))
3184 
3185 #define skb_rbtree_walk_from_safe(skb, tmp)					\
3186 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
3187 		     skb = tmp)
3188 
3189 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3190 		for (tmp = skb->next;						\
3191 		     skb != (struct sk_buff *)(queue);				\
3192 		     skb = tmp, tmp = skb->next)
3193 
3194 #define skb_queue_reverse_walk(queue, skb) \
3195 		for (skb = (queue)->prev;					\
3196 		     skb != (struct sk_buff *)(queue);				\
3197 		     skb = skb->prev)
3198 
3199 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3200 		for (skb = (queue)->prev, tmp = skb->prev;			\
3201 		     skb != (struct sk_buff *)(queue);				\
3202 		     skb = tmp, tmp = skb->prev)
3203 
3204 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3205 		for (tmp = skb->prev;						\
3206 		     skb != (struct sk_buff *)(queue);				\
3207 		     skb = tmp, tmp = skb->prev)
3208 
3209 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3210 {
3211 	return skb_shinfo(skb)->frag_list != NULL;
3212 }
3213 
3214 static inline void skb_frag_list_init(struct sk_buff *skb)
3215 {
3216 	skb_shinfo(skb)->frag_list = NULL;
3217 }
3218 
3219 #define skb_walk_frags(skb, iter)	\
3220 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3221 
3222 
3223 int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
3224 				const struct sk_buff *skb);
3225 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3226 					  struct sk_buff_head *queue,
3227 					  unsigned int flags,
3228 					  void (*destructor)(struct sock *sk,
3229 							   struct sk_buff *skb),
3230 					  int *peeked, int *off, int *err,
3231 					  struct sk_buff **last);
3232 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
3233 					void (*destructor)(struct sock *sk,
3234 							   struct sk_buff *skb),
3235 					int *peeked, int *off, int *err,
3236 					struct sk_buff **last);
3237 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
3238 				    void (*destructor)(struct sock *sk,
3239 						       struct sk_buff *skb),
3240 				    int *peeked, int *off, int *err);
3241 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3242 				  int *err);
3243 unsigned int datagram_poll(struct file *file, struct socket *sock,
3244 			   struct poll_table_struct *wait);
3245 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3246 			   struct iov_iter *to, int size);
3247 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3248 					struct msghdr *msg, int size)
3249 {
3250 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3251 }
3252 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3253 				   struct msghdr *msg);
3254 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3255 				 struct iov_iter *from, int len);
3256 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3257 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3258 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3259 static inline void skb_free_datagram_locked(struct sock *sk,
3260 					    struct sk_buff *skb)
3261 {
3262 	__skb_free_datagram_locked(sk, skb, 0);
3263 }
3264 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3265 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3266 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3267 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3268 			      int len, __wsum csum);
3269 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3270 		    struct pipe_inode_info *pipe, unsigned int len,
3271 		    unsigned int flags);
3272 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3273 			 int len);
3274 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
3275 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3276 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3277 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3278 		 int len, int hlen);
3279 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3280 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3281 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3282 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
3283 bool skb_gso_validate_mtu(const struct sk_buff *skb, unsigned int mtu);
3284 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3285 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3286 int skb_ensure_writable(struct sk_buff *skb, int write_len);
3287 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3288 int skb_vlan_pop(struct sk_buff *skb);
3289 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3290 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3291 			     gfp_t gfp);
3292 
3293 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3294 {
3295 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3296 }
3297 
3298 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3299 {
3300 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3301 }
3302 
3303 struct skb_checksum_ops {
3304 	__wsum (*update)(const void *mem, int len, __wsum wsum);
3305 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3306 };
3307 
3308 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3309 
3310 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3311 		      __wsum csum, const struct skb_checksum_ops *ops);
3312 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3313 		    __wsum csum);
3314 
3315 static inline void * __must_check
3316 __skb_header_pointer(const struct sk_buff *skb, int offset,
3317 		     int len, void *data, int hlen, void *buffer)
3318 {
3319 	if (hlen - offset >= len)
3320 		return data + offset;
3321 
3322 	if (!skb ||
3323 	    skb_copy_bits(skb, offset, buffer, len) < 0)
3324 		return NULL;
3325 
3326 	return buffer;
3327 }
3328 
3329 static inline void * __must_check
3330 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3331 {
3332 	return __skb_header_pointer(skb, offset, len, skb->data,
3333 				    skb_headlen(skb), buffer);
3334 }
3335 
3336 /**
3337  *	skb_needs_linearize - check if we need to linearize a given skb
3338  *			      depending on the given device features.
3339  *	@skb: socket buffer to check
3340  *	@features: net device features
3341  *
3342  *	Returns true if either:
3343  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
3344  *	2. skb is fragmented and the device does not support SG.
3345  */
3346 static inline bool skb_needs_linearize(struct sk_buff *skb,
3347 				       netdev_features_t features)
3348 {
3349 	return skb_is_nonlinear(skb) &&
3350 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3351 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3352 }
3353 
3354 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3355 					     void *to,
3356 					     const unsigned int len)
3357 {
3358 	memcpy(to, skb->data, len);
3359 }
3360 
3361 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3362 						    const int offset, void *to,
3363 						    const unsigned int len)
3364 {
3365 	memcpy(to, skb->data + offset, len);
3366 }
3367 
3368 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3369 					   const void *from,
3370 					   const unsigned int len)
3371 {
3372 	memcpy(skb->data, from, len);
3373 }
3374 
3375 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3376 						  const int offset,
3377 						  const void *from,
3378 						  const unsigned int len)
3379 {
3380 	memcpy(skb->data + offset, from, len);
3381 }
3382 
3383 void skb_init(void);
3384 
3385 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3386 {
3387 	return skb->tstamp;
3388 }
3389 
3390 /**
3391  *	skb_get_timestamp - get timestamp from a skb
3392  *	@skb: skb to get stamp from
3393  *	@stamp: pointer to struct timeval to store stamp in
3394  *
3395  *	Timestamps are stored in the skb as offsets to a base timestamp.
3396  *	This function converts the offset back to a struct timeval and stores
3397  *	it in stamp.
3398  */
3399 static inline void skb_get_timestamp(const struct sk_buff *skb,
3400 				     struct timeval *stamp)
3401 {
3402 	*stamp = ktime_to_timeval(skb->tstamp);
3403 }
3404 
3405 static inline void skb_get_timestampns(const struct sk_buff *skb,
3406 				       struct timespec *stamp)
3407 {
3408 	*stamp = ktime_to_timespec(skb->tstamp);
3409 }
3410 
3411 static inline void __net_timestamp(struct sk_buff *skb)
3412 {
3413 	skb->tstamp = ktime_get_real();
3414 }
3415 
3416 static inline ktime_t net_timedelta(ktime_t t)
3417 {
3418 	return ktime_sub(ktime_get_real(), t);
3419 }
3420 
3421 static inline ktime_t net_invalid_timestamp(void)
3422 {
3423 	return 0;
3424 }
3425 
3426 static inline u8 skb_metadata_len(const struct sk_buff *skb)
3427 {
3428 	return skb_shinfo(skb)->meta_len;
3429 }
3430 
3431 static inline void *skb_metadata_end(const struct sk_buff *skb)
3432 {
3433 	return skb_mac_header(skb);
3434 }
3435 
3436 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3437 					  const struct sk_buff *skb_b,
3438 					  u8 meta_len)
3439 {
3440 	const void *a = skb_metadata_end(skb_a);
3441 	const void *b = skb_metadata_end(skb_b);
3442 	/* Using more efficient varaiant than plain call to memcmp(). */
3443 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3444 	u64 diffs = 0;
3445 
3446 	switch (meta_len) {
3447 #define __it(x, op) (x -= sizeof(u##op))
3448 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3449 	case 32: diffs |= __it_diff(a, b, 64);
3450 	case 24: diffs |= __it_diff(a, b, 64);
3451 	case 16: diffs |= __it_diff(a, b, 64);
3452 	case  8: diffs |= __it_diff(a, b, 64);
3453 		break;
3454 	case 28: diffs |= __it_diff(a, b, 64);
3455 	case 20: diffs |= __it_diff(a, b, 64);
3456 	case 12: diffs |= __it_diff(a, b, 64);
3457 	case  4: diffs |= __it_diff(a, b, 32);
3458 		break;
3459 	}
3460 	return diffs;
3461 #else
3462 	return memcmp(a - meta_len, b - meta_len, meta_len);
3463 #endif
3464 }
3465 
3466 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3467 					const struct sk_buff *skb_b)
3468 {
3469 	u8 len_a = skb_metadata_len(skb_a);
3470 	u8 len_b = skb_metadata_len(skb_b);
3471 
3472 	if (!(len_a | len_b))
3473 		return false;
3474 
3475 	return len_a != len_b ?
3476 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
3477 }
3478 
3479 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3480 {
3481 	skb_shinfo(skb)->meta_len = meta_len;
3482 }
3483 
3484 static inline void skb_metadata_clear(struct sk_buff *skb)
3485 {
3486 	skb_metadata_set(skb, 0);
3487 }
3488 
3489 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3490 
3491 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3492 
3493 void skb_clone_tx_timestamp(struct sk_buff *skb);
3494 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3495 
3496 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3497 
3498 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3499 {
3500 }
3501 
3502 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3503 {
3504 	return false;
3505 }
3506 
3507 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3508 
3509 /**
3510  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3511  *
3512  * PHY drivers may accept clones of transmitted packets for
3513  * timestamping via their phy_driver.txtstamp method. These drivers
3514  * must call this function to return the skb back to the stack with a
3515  * timestamp.
3516  *
3517  * @skb: clone of the the original outgoing packet
3518  * @hwtstamps: hardware time stamps
3519  *
3520  */
3521 void skb_complete_tx_timestamp(struct sk_buff *skb,
3522 			       struct skb_shared_hwtstamps *hwtstamps);
3523 
3524 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3525 		     struct skb_shared_hwtstamps *hwtstamps,
3526 		     struct sock *sk, int tstype);
3527 
3528 /**
3529  * skb_tstamp_tx - queue clone of skb with send time stamps
3530  * @orig_skb:	the original outgoing packet
3531  * @hwtstamps:	hardware time stamps, may be NULL if not available
3532  *
3533  * If the skb has a socket associated, then this function clones the
3534  * skb (thus sharing the actual data and optional structures), stores
3535  * the optional hardware time stamping information (if non NULL) or
3536  * generates a software time stamp (otherwise), then queues the clone
3537  * to the error queue of the socket.  Errors are silently ignored.
3538  */
3539 void skb_tstamp_tx(struct sk_buff *orig_skb,
3540 		   struct skb_shared_hwtstamps *hwtstamps);
3541 
3542 /**
3543  * skb_tx_timestamp() - Driver hook for transmit timestamping
3544  *
3545  * Ethernet MAC Drivers should call this function in their hard_xmit()
3546  * function immediately before giving the sk_buff to the MAC hardware.
3547  *
3548  * Specifically, one should make absolutely sure that this function is
3549  * called before TX completion of this packet can trigger.  Otherwise
3550  * the packet could potentially already be freed.
3551  *
3552  * @skb: A socket buffer.
3553  */
3554 static inline void skb_tx_timestamp(struct sk_buff *skb)
3555 {
3556 	skb_clone_tx_timestamp(skb);
3557 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3558 		skb_tstamp_tx(skb, NULL);
3559 }
3560 
3561 /**
3562  * skb_complete_wifi_ack - deliver skb with wifi status
3563  *
3564  * @skb: the original outgoing packet
3565  * @acked: ack status
3566  *
3567  */
3568 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3569 
3570 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3571 __sum16 __skb_checksum_complete(struct sk_buff *skb);
3572 
3573 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3574 {
3575 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3576 		skb->csum_valid ||
3577 		(skb->ip_summed == CHECKSUM_PARTIAL &&
3578 		 skb_checksum_start_offset(skb) >= 0));
3579 }
3580 
3581 /**
3582  *	skb_checksum_complete - Calculate checksum of an entire packet
3583  *	@skb: packet to process
3584  *
3585  *	This function calculates the checksum over the entire packet plus
3586  *	the value of skb->csum.  The latter can be used to supply the
3587  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
3588  *	checksum.
3589  *
3590  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
3591  *	this function can be used to verify that checksum on received
3592  *	packets.  In that case the function should return zero if the
3593  *	checksum is correct.  In particular, this function will return zero
3594  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3595  *	hardware has already verified the correctness of the checksum.
3596  */
3597 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3598 {
3599 	return skb_csum_unnecessary(skb) ?
3600 	       0 : __skb_checksum_complete(skb);
3601 }
3602 
3603 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3604 {
3605 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3606 		if (skb->csum_level == 0)
3607 			skb->ip_summed = CHECKSUM_NONE;
3608 		else
3609 			skb->csum_level--;
3610 	}
3611 }
3612 
3613 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3614 {
3615 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3616 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3617 			skb->csum_level++;
3618 	} else if (skb->ip_summed == CHECKSUM_NONE) {
3619 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3620 		skb->csum_level = 0;
3621 	}
3622 }
3623 
3624 /* Check if we need to perform checksum complete validation.
3625  *
3626  * Returns true if checksum complete is needed, false otherwise
3627  * (either checksum is unnecessary or zero checksum is allowed).
3628  */
3629 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3630 						  bool zero_okay,
3631 						  __sum16 check)
3632 {
3633 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3634 		skb->csum_valid = 1;
3635 		__skb_decr_checksum_unnecessary(skb);
3636 		return false;
3637 	}
3638 
3639 	return true;
3640 }
3641 
3642 /* For small packets <= CHECKSUM_BREAK peform checksum complete directly
3643  * in checksum_init.
3644  */
3645 #define CHECKSUM_BREAK 76
3646 
3647 /* Unset checksum-complete
3648  *
3649  * Unset checksum complete can be done when packet is being modified
3650  * (uncompressed for instance) and checksum-complete value is
3651  * invalidated.
3652  */
3653 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3654 {
3655 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3656 		skb->ip_summed = CHECKSUM_NONE;
3657 }
3658 
3659 /* Validate (init) checksum based on checksum complete.
3660  *
3661  * Return values:
3662  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
3663  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3664  *	checksum is stored in skb->csum for use in __skb_checksum_complete
3665  *   non-zero: value of invalid checksum
3666  *
3667  */
3668 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3669 						       bool complete,
3670 						       __wsum psum)
3671 {
3672 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
3673 		if (!csum_fold(csum_add(psum, skb->csum))) {
3674 			skb->csum_valid = 1;
3675 			return 0;
3676 		}
3677 	}
3678 
3679 	skb->csum = psum;
3680 
3681 	if (complete || skb->len <= CHECKSUM_BREAK) {
3682 		__sum16 csum;
3683 
3684 		csum = __skb_checksum_complete(skb);
3685 		skb->csum_valid = !csum;
3686 		return csum;
3687 	}
3688 
3689 	return 0;
3690 }
3691 
3692 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3693 {
3694 	return 0;
3695 }
3696 
3697 /* Perform checksum validate (init). Note that this is a macro since we only
3698  * want to calculate the pseudo header which is an input function if necessary.
3699  * First we try to validate without any computation (checksum unnecessary) and
3700  * then calculate based on checksum complete calling the function to compute
3701  * pseudo header.
3702  *
3703  * Return values:
3704  *   0: checksum is validated or try to in skb_checksum_complete
3705  *   non-zero: value of invalid checksum
3706  */
3707 #define __skb_checksum_validate(skb, proto, complete,			\
3708 				zero_okay, check, compute_pseudo)	\
3709 ({									\
3710 	__sum16 __ret = 0;						\
3711 	skb->csum_valid = 0;						\
3712 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
3713 		__ret = __skb_checksum_validate_complete(skb,		\
3714 				complete, compute_pseudo(skb, proto));	\
3715 	__ret;								\
3716 })
3717 
3718 #define skb_checksum_init(skb, proto, compute_pseudo)			\
3719 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3720 
3721 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
3722 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3723 
3724 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
3725 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3726 
3727 #define skb_checksum_validate_zero_check(skb, proto, check,		\
3728 					 compute_pseudo)		\
3729 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
3730 
3731 #define skb_checksum_simple_validate(skb)				\
3732 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3733 
3734 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3735 {
3736 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
3737 }
3738 
3739 static inline void __skb_checksum_convert(struct sk_buff *skb,
3740 					  __sum16 check, __wsum pseudo)
3741 {
3742 	skb->csum = ~pseudo;
3743 	skb->ip_summed = CHECKSUM_COMPLETE;
3744 }
3745 
3746 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo)	\
3747 do {									\
3748 	if (__skb_checksum_convert_check(skb))				\
3749 		__skb_checksum_convert(skb, check,			\
3750 				       compute_pseudo(skb, proto));	\
3751 } while (0)
3752 
3753 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3754 					      u16 start, u16 offset)
3755 {
3756 	skb->ip_summed = CHECKSUM_PARTIAL;
3757 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3758 	skb->csum_offset = offset - start;
3759 }
3760 
3761 /* Update skbuf and packet to reflect the remote checksum offload operation.
3762  * When called, ptr indicates the starting point for skb->csum when
3763  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3764  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3765  */
3766 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
3767 				       int start, int offset, bool nopartial)
3768 {
3769 	__wsum delta;
3770 
3771 	if (!nopartial) {
3772 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
3773 		return;
3774 	}
3775 
3776 	 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3777 		__skb_checksum_complete(skb);
3778 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3779 	}
3780 
3781 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
3782 
3783 	/* Adjust skb->csum since we changed the packet */
3784 	skb->csum = csum_add(skb->csum, delta);
3785 }
3786 
3787 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
3788 {
3789 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
3790 	return (void *)(skb->_nfct & SKB_NFCT_PTRMASK);
3791 #else
3792 	return NULL;
3793 #endif
3794 }
3795 
3796 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3797 void nf_conntrack_destroy(struct nf_conntrack *nfct);
3798 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3799 {
3800 	if (nfct && atomic_dec_and_test(&nfct->use))
3801 		nf_conntrack_destroy(nfct);
3802 }
3803 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3804 {
3805 	if (nfct)
3806 		atomic_inc(&nfct->use);
3807 }
3808 #endif
3809 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3810 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
3811 {
3812 	if (nf_bridge && refcount_dec_and_test(&nf_bridge->use))
3813 		kfree(nf_bridge);
3814 }
3815 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
3816 {
3817 	if (nf_bridge)
3818 		refcount_inc(&nf_bridge->use);
3819 }
3820 #endif /* CONFIG_BRIDGE_NETFILTER */
3821 static inline void nf_reset(struct sk_buff *skb)
3822 {
3823 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3824 	nf_conntrack_put(skb_nfct(skb));
3825 	skb->_nfct = 0;
3826 #endif
3827 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3828 	nf_bridge_put(skb->nf_bridge);
3829 	skb->nf_bridge = NULL;
3830 #endif
3831 }
3832 
3833 static inline void nf_reset_trace(struct sk_buff *skb)
3834 {
3835 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3836 	skb->nf_trace = 0;
3837 #endif
3838 }
3839 
3840 static inline void ipvs_reset(struct sk_buff *skb)
3841 {
3842 #if IS_ENABLED(CONFIG_IP_VS)
3843 	skb->ipvs_property = 0;
3844 #endif
3845 }
3846 
3847 /* Note: This doesn't put any conntrack and bridge info in dst. */
3848 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
3849 			     bool copy)
3850 {
3851 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3852 	dst->_nfct = src->_nfct;
3853 	nf_conntrack_get(skb_nfct(src));
3854 #endif
3855 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3856 	dst->nf_bridge  = src->nf_bridge;
3857 	nf_bridge_get(src->nf_bridge);
3858 #endif
3859 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3860 	if (copy)
3861 		dst->nf_trace = src->nf_trace;
3862 #endif
3863 }
3864 
3865 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
3866 {
3867 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3868 	nf_conntrack_put(skb_nfct(dst));
3869 #endif
3870 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3871 	nf_bridge_put(dst->nf_bridge);
3872 #endif
3873 	__nf_copy(dst, src, true);
3874 }
3875 
3876 #ifdef CONFIG_NETWORK_SECMARK
3877 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3878 {
3879 	to->secmark = from->secmark;
3880 }
3881 
3882 static inline void skb_init_secmark(struct sk_buff *skb)
3883 {
3884 	skb->secmark = 0;
3885 }
3886 #else
3887 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3888 { }
3889 
3890 static inline void skb_init_secmark(struct sk_buff *skb)
3891 { }
3892 #endif
3893 
3894 static inline bool skb_irq_freeable(const struct sk_buff *skb)
3895 {
3896 	return !skb->destructor &&
3897 #if IS_ENABLED(CONFIG_XFRM)
3898 		!skb->sp &&
3899 #endif
3900 		!skb_nfct(skb) &&
3901 		!skb->_skb_refdst &&
3902 		!skb_has_frag_list(skb);
3903 }
3904 
3905 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
3906 {
3907 	skb->queue_mapping = queue_mapping;
3908 }
3909 
3910 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
3911 {
3912 	return skb->queue_mapping;
3913 }
3914 
3915 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
3916 {
3917 	to->queue_mapping = from->queue_mapping;
3918 }
3919 
3920 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
3921 {
3922 	skb->queue_mapping = rx_queue + 1;
3923 }
3924 
3925 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
3926 {
3927 	return skb->queue_mapping - 1;
3928 }
3929 
3930 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
3931 {
3932 	return skb->queue_mapping != 0;
3933 }
3934 
3935 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
3936 {
3937 	skb->dst_pending_confirm = val;
3938 }
3939 
3940 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
3941 {
3942 	return skb->dst_pending_confirm != 0;
3943 }
3944 
3945 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
3946 {
3947 #ifdef CONFIG_XFRM
3948 	return skb->sp;
3949 #else
3950 	return NULL;
3951 #endif
3952 }
3953 
3954 /* Keeps track of mac header offset relative to skb->head.
3955  * It is useful for TSO of Tunneling protocol. e.g. GRE.
3956  * For non-tunnel skb it points to skb_mac_header() and for
3957  * tunnel skb it points to outer mac header.
3958  * Keeps track of level of encapsulation of network headers.
3959  */
3960 struct skb_gso_cb {
3961 	union {
3962 		int	mac_offset;
3963 		int	data_offset;
3964 	};
3965 	int	encap_level;
3966 	__wsum	csum;
3967 	__u16	csum_start;
3968 };
3969 #define SKB_SGO_CB_OFFSET	32
3970 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
3971 
3972 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
3973 {
3974 	return (skb_mac_header(inner_skb) - inner_skb->head) -
3975 		SKB_GSO_CB(inner_skb)->mac_offset;
3976 }
3977 
3978 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
3979 {
3980 	int new_headroom, headroom;
3981 	int ret;
3982 
3983 	headroom = skb_headroom(skb);
3984 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
3985 	if (ret)
3986 		return ret;
3987 
3988 	new_headroom = skb_headroom(skb);
3989 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
3990 	return 0;
3991 }
3992 
3993 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
3994 {
3995 	/* Do not update partial checksums if remote checksum is enabled. */
3996 	if (skb->remcsum_offload)
3997 		return;
3998 
3999 	SKB_GSO_CB(skb)->csum = res;
4000 	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4001 }
4002 
4003 /* Compute the checksum for a gso segment. First compute the checksum value
4004  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4005  * then add in skb->csum (checksum from csum_start to end of packet).
4006  * skb->csum and csum_start are then updated to reflect the checksum of the
4007  * resultant packet starting from the transport header-- the resultant checksum
4008  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4009  * header.
4010  */
4011 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4012 {
4013 	unsigned char *csum_start = skb_transport_header(skb);
4014 	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4015 	__wsum partial = SKB_GSO_CB(skb)->csum;
4016 
4017 	SKB_GSO_CB(skb)->csum = res;
4018 	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4019 
4020 	return csum_fold(csum_partial(csum_start, plen, partial));
4021 }
4022 
4023 static inline bool skb_is_gso(const struct sk_buff *skb)
4024 {
4025 	return skb_shinfo(skb)->gso_size;
4026 }
4027 
4028 /* Note: Should be called only if skb_is_gso(skb) is true */
4029 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4030 {
4031 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4032 }
4033 
4034 static inline void skb_gso_reset(struct sk_buff *skb)
4035 {
4036 	skb_shinfo(skb)->gso_size = 0;
4037 	skb_shinfo(skb)->gso_segs = 0;
4038 	skb_shinfo(skb)->gso_type = 0;
4039 }
4040 
4041 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4042 
4043 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4044 {
4045 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
4046 	 * wanted then gso_type will be set. */
4047 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4048 
4049 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4050 	    unlikely(shinfo->gso_type == 0)) {
4051 		__skb_warn_lro_forwarding(skb);
4052 		return true;
4053 	}
4054 	return false;
4055 }
4056 
4057 static inline void skb_forward_csum(struct sk_buff *skb)
4058 {
4059 	/* Unfortunately we don't support this one.  Any brave souls? */
4060 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4061 		skb->ip_summed = CHECKSUM_NONE;
4062 }
4063 
4064 /**
4065  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4066  * @skb: skb to check
4067  *
4068  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4069  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4070  * use this helper, to document places where we make this assertion.
4071  */
4072 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4073 {
4074 #ifdef DEBUG
4075 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4076 #endif
4077 }
4078 
4079 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4080 
4081 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4082 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4083 				     unsigned int transport_len,
4084 				     __sum16(*skb_chkf)(struct sk_buff *skb));
4085 
4086 /**
4087  * skb_head_is_locked - Determine if the skb->head is locked down
4088  * @skb: skb to check
4089  *
4090  * The head on skbs build around a head frag can be removed if they are
4091  * not cloned.  This function returns true if the skb head is locked down
4092  * due to either being allocated via kmalloc, or by being a clone with
4093  * multiple references to the head.
4094  */
4095 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4096 {
4097 	return !skb->head_frag || skb_cloned(skb);
4098 }
4099 
4100 /**
4101  * skb_gso_network_seglen - Return length of individual segments of a gso packet
4102  *
4103  * @skb: GSO skb
4104  *
4105  * skb_gso_network_seglen is used to determine the real size of the
4106  * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
4107  *
4108  * The MAC/L2 header is not accounted for.
4109  */
4110 static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
4111 {
4112 	unsigned int hdr_len = skb_transport_header(skb) -
4113 			       skb_network_header(skb);
4114 	return hdr_len + skb_gso_transport_seglen(skb);
4115 }
4116 
4117 /* Local Checksum Offload.
4118  * Compute outer checksum based on the assumption that the
4119  * inner checksum will be offloaded later.
4120  * See Documentation/networking/checksum-offloads.txt for
4121  * explanation of how this works.
4122  * Fill in outer checksum adjustment (e.g. with sum of outer
4123  * pseudo-header) before calling.
4124  * Also ensure that inner checksum is in linear data area.
4125  */
4126 static inline __wsum lco_csum(struct sk_buff *skb)
4127 {
4128 	unsigned char *csum_start = skb_checksum_start(skb);
4129 	unsigned char *l4_hdr = skb_transport_header(skb);
4130 	__wsum partial;
4131 
4132 	/* Start with complement of inner checksum adjustment */
4133 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4134 						    skb->csum_offset));
4135 
4136 	/* Add in checksum of our headers (incl. outer checksum
4137 	 * adjustment filled in by caller) and return result.
4138 	 */
4139 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4140 }
4141 
4142 #endif	/* __KERNEL__ */
4143 #endif	/* _LINUX_SKBUFF_H */
4144