xref: /linux-6.15/include/linux/skbuff.h (revision beda0e72)
1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <[email protected]>
6  *		Florian La Roche, <[email protected]>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/bug.h>
21 #include <linux/cache.h>
22 #include <linux/rbtree.h>
23 #include <linux/socket.h>
24 #include <linux/refcount.h>
25 
26 #include <linux/atomic.h>
27 #include <asm/types.h>
28 #include <linux/spinlock.h>
29 #include <linux/net.h>
30 #include <linux/textsearch.h>
31 #include <net/checksum.h>
32 #include <linux/rcupdate.h>
33 #include <linux/hrtimer.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/netdev_features.h>
36 #include <linux/sched.h>
37 #include <linux/sched/clock.h>
38 #include <net/flow_dissector.h>
39 #include <linux/splice.h>
40 #include <linux/in6.h>
41 #include <linux/if_packet.h>
42 #include <net/flow.h>
43 
44 /* The interface for checksum offload between the stack and networking drivers
45  * is as follows...
46  *
47  * A. IP checksum related features
48  *
49  * Drivers advertise checksum offload capabilities in the features of a device.
50  * From the stack's point of view these are capabilities offered by the driver,
51  * a driver typically only advertises features that it is capable of offloading
52  * to its device.
53  *
54  * The checksum related features are:
55  *
56  *	NETIF_F_HW_CSUM	- The driver (or its device) is able to compute one
57  *			  IP (one's complement) checksum for any combination
58  *			  of protocols or protocol layering. The checksum is
59  *			  computed and set in a packet per the CHECKSUM_PARTIAL
60  *			  interface (see below).
61  *
62  *	NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
63  *			  TCP or UDP packets over IPv4. These are specifically
64  *			  unencapsulated packets of the form IPv4|TCP or
65  *			  IPv4|UDP where the Protocol field in the IPv4 header
66  *			  is TCP or UDP. The IPv4 header may contain IP options
67  *			  This feature cannot be set in features for a device
68  *			  with NETIF_F_HW_CSUM also set. This feature is being
69  *			  DEPRECATED (see below).
70  *
71  *	NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
72  *			  TCP or UDP packets over IPv6. These are specifically
73  *			  unencapsulated packets of the form IPv6|TCP or
74  *			  IPv4|UDP where the Next Header field in the IPv6
75  *			  header is either TCP or UDP. IPv6 extension headers
76  *			  are not supported with this feature. This feature
77  *			  cannot be set in features for a device with
78  *			  NETIF_F_HW_CSUM also set. This feature is being
79  *			  DEPRECATED (see below).
80  *
81  *	NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
82  *			 This flag is used only used to disable the RX checksum
83  *			 feature for a device. The stack will accept receive
84  *			 checksum indication in packets received on a device
85  *			 regardless of whether NETIF_F_RXCSUM is set.
86  *
87  * B. Checksumming of received packets by device. Indication of checksum
88  *    verification is in set skb->ip_summed. Possible values are:
89  *
90  * CHECKSUM_NONE:
91  *
92  *   Device did not checksum this packet e.g. due to lack of capabilities.
93  *   The packet contains full (though not verified) checksum in packet but
94  *   not in skb->csum. Thus, skb->csum is undefined in this case.
95  *
96  * CHECKSUM_UNNECESSARY:
97  *
98  *   The hardware you're dealing with doesn't calculate the full checksum
99  *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
100  *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
101  *   if their checksums are okay. skb->csum is still undefined in this case
102  *   though. A driver or device must never modify the checksum field in the
103  *   packet even if checksum is verified.
104  *
105  *   CHECKSUM_UNNECESSARY is applicable to following protocols:
106  *     TCP: IPv6 and IPv4.
107  *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
108  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
109  *       may perform further validation in this case.
110  *     GRE: only if the checksum is present in the header.
111  *     SCTP: indicates the CRC in SCTP header has been validated.
112  *     FCOE: indicates the CRC in FC frame has been validated.
113  *
114  *   skb->csum_level indicates the number of consecutive checksums found in
115  *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
116  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
117  *   and a device is able to verify the checksums for UDP (possibly zero),
118  *   GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
119  *   two. If the device were only able to verify the UDP checksum and not
120  *   GRE, either because it doesn't support GRE checksum of because GRE
121  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
122  *   not considered in this case).
123  *
124  * CHECKSUM_COMPLETE:
125  *
126  *   This is the most generic way. The device supplied checksum of the _whole_
127  *   packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
128  *   hardware doesn't need to parse L3/L4 headers to implement this.
129  *
130  *   Notes:
131  *   - Even if device supports only some protocols, but is able to produce
132  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
133  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
134  *
135  * CHECKSUM_PARTIAL:
136  *
137  *   A checksum is set up to be offloaded to a device as described in the
138  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
139  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
140  *   on the same host, or it may be set in the input path in GRO or remote
141  *   checksum offload. For the purposes of checksum verification, the checksum
142  *   referred to by skb->csum_start + skb->csum_offset and any preceding
143  *   checksums in the packet are considered verified. Any checksums in the
144  *   packet that are after the checksum being offloaded are not considered to
145  *   be verified.
146  *
147  * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
148  *    in the skb->ip_summed for a packet. Values are:
149  *
150  * CHECKSUM_PARTIAL:
151  *
152  *   The driver is required to checksum the packet as seen by hard_start_xmit()
153  *   from skb->csum_start up to the end, and to record/write the checksum at
154  *   offset skb->csum_start + skb->csum_offset. A driver may verify that the
155  *   csum_start and csum_offset values are valid values given the length and
156  *   offset of the packet, however they should not attempt to validate that the
157  *   checksum refers to a legitimate transport layer checksum-- it is the
158  *   purview of the stack to validate that csum_start and csum_offset are set
159  *   correctly.
160  *
161  *   When the stack requests checksum offload for a packet, the driver MUST
162  *   ensure that the checksum is set correctly. A driver can either offload the
163  *   checksum calculation to the device, or call skb_checksum_help (in the case
164  *   that the device does not support offload for a particular checksum).
165  *
166  *   NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
167  *   NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
168  *   checksum offload capability.
169  *   skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
170  *   on network device checksumming capabilities: if a packet does not match
171  *   them, skb_checksum_help or skb_crc32c_help (depending on the value of
172  *   csum_not_inet, see item D.) is called to resolve the checksum.
173  *
174  * CHECKSUM_NONE:
175  *
176  *   The skb was already checksummed by the protocol, or a checksum is not
177  *   required.
178  *
179  * CHECKSUM_UNNECESSARY:
180  *
181  *   This has the same meaning on as CHECKSUM_NONE for checksum offload on
182  *   output.
183  *
184  * CHECKSUM_COMPLETE:
185  *   Not used in checksum output. If a driver observes a packet with this value
186  *   set in skbuff, if should treat as CHECKSUM_NONE being set.
187  *
188  * D. Non-IP checksum (CRC) offloads
189  *
190  *   NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
191  *     offloading the SCTP CRC in a packet. To perform this offload the stack
192  *     will set set csum_start and csum_offset accordingly, set ip_summed to
193  *     CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
194  *     the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
195  *     A driver that supports both IP checksum offload and SCTP CRC32c offload
196  *     must verify which offload is configured for a packet by testing the
197  *     value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
198  *     CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
199  *
200  *   NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
201  *     offloading the FCOE CRC in a packet. To perform this offload the stack
202  *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
203  *     accordingly. Note the there is no indication in the skbuff that the
204  *     CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
205  *     both IP checksum offload and FCOE CRC offload must verify which offload
206  *     is configured for a packet presumably by inspecting packet headers.
207  *
208  * E. Checksumming on output with GSO.
209  *
210  * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
211  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
212  * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
213  * part of the GSO operation is implied. If a checksum is being offloaded
214  * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
215  * are set to refer to the outermost checksum being offload (two offloaded
216  * checksums are possible with UDP encapsulation).
217  */
218 
219 /* Don't change this without changing skb_csum_unnecessary! */
220 #define CHECKSUM_NONE		0
221 #define CHECKSUM_UNNECESSARY	1
222 #define CHECKSUM_COMPLETE	2
223 #define CHECKSUM_PARTIAL	3
224 
225 /* Maximum value in skb->csum_level */
226 #define SKB_MAX_CSUM_LEVEL	3
227 
228 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
229 #define SKB_WITH_OVERHEAD(X)	\
230 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
231 #define SKB_MAX_ORDER(X, ORDER) \
232 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
233 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
234 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
235 
236 /* return minimum truesize of one skb containing X bytes of data */
237 #define SKB_TRUESIZE(X) ((X) +						\
238 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
239 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
240 
241 struct net_device;
242 struct scatterlist;
243 struct pipe_inode_info;
244 struct iov_iter;
245 struct napi_struct;
246 struct bpf_prog;
247 union bpf_attr;
248 struct skb_ext;
249 
250 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
251 struct nf_conntrack {
252 	atomic_t use;
253 };
254 #endif
255 
256 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
257 struct nf_bridge_info {
258 	enum {
259 		BRNF_PROTO_UNCHANGED,
260 		BRNF_PROTO_8021Q,
261 		BRNF_PROTO_PPPOE
262 	} orig_proto:8;
263 	u8			pkt_otherhost:1;
264 	u8			in_prerouting:1;
265 	u8			bridged_dnat:1;
266 	__u16			frag_max_size;
267 	struct net_device	*physindev;
268 
269 	/* always valid & non-NULL from FORWARD on, for physdev match */
270 	struct net_device	*physoutdev;
271 	union {
272 		/* prerouting: detect dnat in orig/reply direction */
273 		__be32          ipv4_daddr;
274 		struct in6_addr ipv6_daddr;
275 
276 		/* after prerouting + nat detected: store original source
277 		 * mac since neigh resolution overwrites it, only used while
278 		 * skb is out in neigh layer.
279 		 */
280 		char neigh_header[8];
281 	};
282 };
283 #endif
284 
285 struct sk_buff_head {
286 	/* These two members must be first. */
287 	struct sk_buff	*next;
288 	struct sk_buff	*prev;
289 
290 	__u32		qlen;
291 	spinlock_t	lock;
292 };
293 
294 struct sk_buff;
295 
296 /* To allow 64K frame to be packed as single skb without frag_list we
297  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
298  * buffers which do not start on a page boundary.
299  *
300  * Since GRO uses frags we allocate at least 16 regardless of page
301  * size.
302  */
303 #if (65536/PAGE_SIZE + 1) < 16
304 #define MAX_SKB_FRAGS 16UL
305 #else
306 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
307 #endif
308 extern int sysctl_max_skb_frags;
309 
310 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
311  * segment using its current segmentation instead.
312  */
313 #define GSO_BY_FRAGS	0xFFFF
314 
315 typedef struct skb_frag_struct skb_frag_t;
316 
317 struct skb_frag_struct {
318 	struct {
319 		struct page *p;
320 	} page;
321 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
322 	__u32 page_offset;
323 	__u32 size;
324 #else
325 	__u16 page_offset;
326 	__u16 size;
327 #endif
328 };
329 
330 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
331 {
332 	return frag->size;
333 }
334 
335 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
336 {
337 	frag->size = size;
338 }
339 
340 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
341 {
342 	frag->size += delta;
343 }
344 
345 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
346 {
347 	frag->size -= delta;
348 }
349 
350 static inline bool skb_frag_must_loop(struct page *p)
351 {
352 #if defined(CONFIG_HIGHMEM)
353 	if (PageHighMem(p))
354 		return true;
355 #endif
356 	return false;
357 }
358 
359 /**
360  *	skb_frag_foreach_page - loop over pages in a fragment
361  *
362  *	@f:		skb frag to operate on
363  *	@f_off:		offset from start of f->page.p
364  *	@f_len:		length from f_off to loop over
365  *	@p:		(temp var) current page
366  *	@p_off:		(temp var) offset from start of current page,
367  *	                           non-zero only on first page.
368  *	@p_len:		(temp var) length in current page,
369  *				   < PAGE_SIZE only on first and last page.
370  *	@copied:	(temp var) length so far, excluding current p_len.
371  *
372  *	A fragment can hold a compound page, in which case per-page
373  *	operations, notably kmap_atomic, must be called for each
374  *	regular page.
375  */
376 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
377 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
378 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
379 	     p_len = skb_frag_must_loop(p) ?				\
380 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
381 	     copied = 0;						\
382 	     copied < f_len;						\
383 	     copied += p_len, p++, p_off = 0,				\
384 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
385 
386 #define HAVE_HW_TIME_STAMP
387 
388 /**
389  * struct skb_shared_hwtstamps - hardware time stamps
390  * @hwtstamp:	hardware time stamp transformed into duration
391  *		since arbitrary point in time
392  *
393  * Software time stamps generated by ktime_get_real() are stored in
394  * skb->tstamp.
395  *
396  * hwtstamps can only be compared against other hwtstamps from
397  * the same device.
398  *
399  * This structure is attached to packets as part of the
400  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
401  */
402 struct skb_shared_hwtstamps {
403 	ktime_t	hwtstamp;
404 };
405 
406 /* Definitions for tx_flags in struct skb_shared_info */
407 enum {
408 	/* generate hardware time stamp */
409 	SKBTX_HW_TSTAMP = 1 << 0,
410 
411 	/* generate software time stamp when queueing packet to NIC */
412 	SKBTX_SW_TSTAMP = 1 << 1,
413 
414 	/* device driver is going to provide hardware time stamp */
415 	SKBTX_IN_PROGRESS = 1 << 2,
416 
417 	/* device driver supports TX zero-copy buffers */
418 	SKBTX_DEV_ZEROCOPY = 1 << 3,
419 
420 	/* generate wifi status information (where possible) */
421 	SKBTX_WIFI_STATUS = 1 << 4,
422 
423 	/* This indicates at least one fragment might be overwritten
424 	 * (as in vmsplice(), sendfile() ...)
425 	 * If we need to compute a TX checksum, we'll need to copy
426 	 * all frags to avoid possible bad checksum
427 	 */
428 	SKBTX_SHARED_FRAG = 1 << 5,
429 
430 	/* generate software time stamp when entering packet scheduling */
431 	SKBTX_SCHED_TSTAMP = 1 << 6,
432 };
433 
434 #define SKBTX_ZEROCOPY_FRAG	(SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG)
435 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
436 				 SKBTX_SCHED_TSTAMP)
437 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
438 
439 /*
440  * The callback notifies userspace to release buffers when skb DMA is done in
441  * lower device, the skb last reference should be 0 when calling this.
442  * The zerocopy_success argument is true if zero copy transmit occurred,
443  * false on data copy or out of memory error caused by data copy attempt.
444  * The ctx field is used to track device context.
445  * The desc field is used to track userspace buffer index.
446  */
447 struct ubuf_info {
448 	void (*callback)(struct ubuf_info *, bool zerocopy_success);
449 	union {
450 		struct {
451 			unsigned long desc;
452 			void *ctx;
453 		};
454 		struct {
455 			u32 id;
456 			u16 len;
457 			u16 zerocopy:1;
458 			u32 bytelen;
459 		};
460 	};
461 	refcount_t refcnt;
462 
463 	struct mmpin {
464 		struct user_struct *user;
465 		unsigned int num_pg;
466 	} mmp;
467 };
468 
469 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
470 
471 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
472 void mm_unaccount_pinned_pages(struct mmpin *mmp);
473 
474 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size);
475 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
476 					struct ubuf_info *uarg);
477 
478 static inline void sock_zerocopy_get(struct ubuf_info *uarg)
479 {
480 	refcount_inc(&uarg->refcnt);
481 }
482 
483 void sock_zerocopy_put(struct ubuf_info *uarg);
484 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
485 
486 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success);
487 
488 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len);
489 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
490 			     struct msghdr *msg, int len,
491 			     struct ubuf_info *uarg);
492 
493 /* This data is invariant across clones and lives at
494  * the end of the header data, ie. at skb->end.
495  */
496 struct skb_shared_info {
497 	__u8		__unused;
498 	__u8		meta_len;
499 	__u8		nr_frags;
500 	__u8		tx_flags;
501 	unsigned short	gso_size;
502 	/* Warning: this field is not always filled in (UFO)! */
503 	unsigned short	gso_segs;
504 	struct sk_buff	*frag_list;
505 	struct skb_shared_hwtstamps hwtstamps;
506 	unsigned int	gso_type;
507 	u32		tskey;
508 
509 	/*
510 	 * Warning : all fields before dataref are cleared in __alloc_skb()
511 	 */
512 	atomic_t	dataref;
513 
514 	/* Intermediate layers must ensure that destructor_arg
515 	 * remains valid until skb destructor */
516 	void *		destructor_arg;
517 
518 	/* must be last field, see pskb_expand_head() */
519 	skb_frag_t	frags[MAX_SKB_FRAGS];
520 };
521 
522 /* We divide dataref into two halves.  The higher 16 bits hold references
523  * to the payload part of skb->data.  The lower 16 bits hold references to
524  * the entire skb->data.  A clone of a headerless skb holds the length of
525  * the header in skb->hdr_len.
526  *
527  * All users must obey the rule that the skb->data reference count must be
528  * greater than or equal to the payload reference count.
529  *
530  * Holding a reference to the payload part means that the user does not
531  * care about modifications to the header part of skb->data.
532  */
533 #define SKB_DATAREF_SHIFT 16
534 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
535 
536 
537 enum {
538 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
539 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
540 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
541 };
542 
543 enum {
544 	SKB_GSO_TCPV4 = 1 << 0,
545 
546 	/* This indicates the skb is from an untrusted source. */
547 	SKB_GSO_DODGY = 1 << 1,
548 
549 	/* This indicates the tcp segment has CWR set. */
550 	SKB_GSO_TCP_ECN = 1 << 2,
551 
552 	SKB_GSO_TCP_FIXEDID = 1 << 3,
553 
554 	SKB_GSO_TCPV6 = 1 << 4,
555 
556 	SKB_GSO_FCOE = 1 << 5,
557 
558 	SKB_GSO_GRE = 1 << 6,
559 
560 	SKB_GSO_GRE_CSUM = 1 << 7,
561 
562 	SKB_GSO_IPXIP4 = 1 << 8,
563 
564 	SKB_GSO_IPXIP6 = 1 << 9,
565 
566 	SKB_GSO_UDP_TUNNEL = 1 << 10,
567 
568 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
569 
570 	SKB_GSO_PARTIAL = 1 << 12,
571 
572 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
573 
574 	SKB_GSO_SCTP = 1 << 14,
575 
576 	SKB_GSO_ESP = 1 << 15,
577 
578 	SKB_GSO_UDP = 1 << 16,
579 
580 	SKB_GSO_UDP_L4 = 1 << 17,
581 };
582 
583 #if BITS_PER_LONG > 32
584 #define NET_SKBUFF_DATA_USES_OFFSET 1
585 #endif
586 
587 #ifdef NET_SKBUFF_DATA_USES_OFFSET
588 typedef unsigned int sk_buff_data_t;
589 #else
590 typedef unsigned char *sk_buff_data_t;
591 #endif
592 
593 /**
594  *	struct sk_buff - socket buffer
595  *	@next: Next buffer in list
596  *	@prev: Previous buffer in list
597  *	@tstamp: Time we arrived/left
598  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
599  *	@sk: Socket we are owned by
600  *	@dev: Device we arrived on/are leaving by
601  *	@cb: Control buffer. Free for use by every layer. Put private vars here
602  *	@_skb_refdst: destination entry (with norefcount bit)
603  *	@sp: the security path, used for xfrm
604  *	@len: Length of actual data
605  *	@data_len: Data length
606  *	@mac_len: Length of link layer header
607  *	@hdr_len: writable header length of cloned skb
608  *	@csum: Checksum (must include start/offset pair)
609  *	@csum_start: Offset from skb->head where checksumming should start
610  *	@csum_offset: Offset from csum_start where checksum should be stored
611  *	@priority: Packet queueing priority
612  *	@ignore_df: allow local fragmentation
613  *	@cloned: Head may be cloned (check refcnt to be sure)
614  *	@ip_summed: Driver fed us an IP checksum
615  *	@nohdr: Payload reference only, must not modify header
616  *	@pkt_type: Packet class
617  *	@fclone: skbuff clone status
618  *	@ipvs_property: skbuff is owned by ipvs
619  *	@offload_fwd_mark: Packet was L2-forwarded in hardware
620  *	@offload_l3_fwd_mark: Packet was L3-forwarded in hardware
621  *	@tc_skip_classify: do not classify packet. set by IFB device
622  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
623  *	@tc_redirected: packet was redirected by a tc action
624  *	@tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect
625  *	@peeked: this packet has been seen already, so stats have been
626  *		done for it, don't do them again
627  *	@nf_trace: netfilter packet trace flag
628  *	@protocol: Packet protocol from driver
629  *	@destructor: Destruct function
630  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
631  *	@_nfct: Associated connection, if any (with nfctinfo bits)
632  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
633  *	@skb_iif: ifindex of device we arrived on
634  *	@tc_index: Traffic control index
635  *	@hash: the packet hash
636  *	@queue_mapping: Queue mapping for multiqueue devices
637  *	@xmit_more: More SKBs are pending for this queue
638  *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
639  *	@active_extensions: active extensions (skb_ext_id types)
640  *	@ndisc_nodetype: router type (from link layer)
641  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
642  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
643  *		ports.
644  *	@sw_hash: indicates hash was computed in software stack
645  *	@wifi_acked_valid: wifi_acked was set
646  *	@wifi_acked: whether frame was acked on wifi or not
647  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
648  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
649  *	@dst_pending_confirm: need to confirm neighbour
650  *	@decrypted: Decrypted SKB
651   *	@napi_id: id of the NAPI struct this skb came from
652  *	@secmark: security marking
653  *	@mark: Generic packet mark
654  *	@vlan_proto: vlan encapsulation protocol
655  *	@vlan_tci: vlan tag control information
656  *	@inner_protocol: Protocol (encapsulation)
657  *	@inner_transport_header: Inner transport layer header (encapsulation)
658  *	@inner_network_header: Network layer header (encapsulation)
659  *	@inner_mac_header: Link layer header (encapsulation)
660  *	@transport_header: Transport layer header
661  *	@network_header: Network layer header
662  *	@mac_header: Link layer header
663  *	@tail: Tail pointer
664  *	@end: End pointer
665  *	@head: Head of buffer
666  *	@data: Data head pointer
667  *	@truesize: Buffer size
668  *	@users: User count - see {datagram,tcp}.c
669  *	@extensions: allocated extensions, valid if active_extensions is nonzero
670  */
671 
672 struct sk_buff {
673 	union {
674 		struct {
675 			/* These two members must be first. */
676 			struct sk_buff		*next;
677 			struct sk_buff		*prev;
678 
679 			union {
680 				struct net_device	*dev;
681 				/* Some protocols might use this space to store information,
682 				 * while device pointer would be NULL.
683 				 * UDP receive path is one user.
684 				 */
685 				unsigned long		dev_scratch;
686 			};
687 		};
688 		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
689 		struct list_head	list;
690 	};
691 
692 	union {
693 		struct sock		*sk;
694 		int			ip_defrag_offset;
695 	};
696 
697 	union {
698 		ktime_t		tstamp;
699 		u64		skb_mstamp_ns; /* earliest departure time */
700 	};
701 	/*
702 	 * This is the control buffer. It is free to use for every
703 	 * layer. Please put your private variables there. If you
704 	 * want to keep them across layers you have to do a skb_clone()
705 	 * first. This is owned by whoever has the skb queued ATM.
706 	 */
707 	char			cb[48] __aligned(8);
708 
709 	union {
710 		struct {
711 			unsigned long	_skb_refdst;
712 			void		(*destructor)(struct sk_buff *skb);
713 		};
714 		struct list_head	tcp_tsorted_anchor;
715 	};
716 
717 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
718 	unsigned long		 _nfct;
719 #endif
720 	unsigned int		len,
721 				data_len;
722 	__u16			mac_len,
723 				hdr_len;
724 
725 	/* Following fields are _not_ copied in __copy_skb_header()
726 	 * Note that queue_mapping is here mostly to fill a hole.
727 	 */
728 	__u16			queue_mapping;
729 
730 /* if you move cloned around you also must adapt those constants */
731 #ifdef __BIG_ENDIAN_BITFIELD
732 #define CLONED_MASK	(1 << 7)
733 #else
734 #define CLONED_MASK	1
735 #endif
736 #define CLONED_OFFSET()		offsetof(struct sk_buff, __cloned_offset)
737 
738 	__u8			__cloned_offset[0];
739 	__u8			cloned:1,
740 				nohdr:1,
741 				fclone:2,
742 				peeked:1,
743 				head_frag:1,
744 				xmit_more:1,
745 				pfmemalloc:1;
746 #ifdef CONFIG_SKB_EXTENSIONS
747 	__u8			active_extensions;
748 #endif
749 	/* fields enclosed in headers_start/headers_end are copied
750 	 * using a single memcpy() in __copy_skb_header()
751 	 */
752 	/* private: */
753 	__u32			headers_start[0];
754 	/* public: */
755 
756 /* if you move pkt_type around you also must adapt those constants */
757 #ifdef __BIG_ENDIAN_BITFIELD
758 #define PKT_TYPE_MAX	(7 << 5)
759 #else
760 #define PKT_TYPE_MAX	7
761 #endif
762 #define PKT_TYPE_OFFSET()	offsetof(struct sk_buff, __pkt_type_offset)
763 
764 	__u8			__pkt_type_offset[0];
765 	__u8			pkt_type:3;
766 	__u8			ignore_df:1;
767 	__u8			nf_trace:1;
768 	__u8			ip_summed:2;
769 	__u8			ooo_okay:1;
770 
771 	__u8			l4_hash:1;
772 	__u8			sw_hash:1;
773 	__u8			wifi_acked_valid:1;
774 	__u8			wifi_acked:1;
775 	__u8			no_fcs:1;
776 	/* Indicates the inner headers are valid in the skbuff. */
777 	__u8			encapsulation:1;
778 	__u8			encap_hdr_csum:1;
779 	__u8			csum_valid:1;
780 
781 #ifdef __BIG_ENDIAN_BITFIELD
782 #define PKT_VLAN_PRESENT_BIT	7
783 #else
784 #define PKT_VLAN_PRESENT_BIT	0
785 #endif
786 #define PKT_VLAN_PRESENT_OFFSET()	offsetof(struct sk_buff, __pkt_vlan_present_offset)
787 	__u8			__pkt_vlan_present_offset[0];
788 	__u8			vlan_present:1;
789 	__u8			csum_complete_sw:1;
790 	__u8			csum_level:2;
791 	__u8			csum_not_inet:1;
792 	__u8			dst_pending_confirm:1;
793 #ifdef CONFIG_IPV6_NDISC_NODETYPE
794 	__u8			ndisc_nodetype:2;
795 #endif
796 
797 	__u8			ipvs_property:1;
798 	__u8			inner_protocol_type:1;
799 	__u8			remcsum_offload:1;
800 #ifdef CONFIG_NET_SWITCHDEV
801 	__u8			offload_fwd_mark:1;
802 	__u8			offload_l3_fwd_mark:1;
803 #endif
804 #ifdef CONFIG_NET_CLS_ACT
805 	__u8			tc_skip_classify:1;
806 	__u8			tc_at_ingress:1;
807 	__u8			tc_redirected:1;
808 	__u8			tc_from_ingress:1;
809 #endif
810 #ifdef CONFIG_TLS_DEVICE
811 	__u8			decrypted:1;
812 #endif
813 
814 #ifdef CONFIG_NET_SCHED
815 	__u16			tc_index;	/* traffic control index */
816 #endif
817 
818 	union {
819 		__wsum		csum;
820 		struct {
821 			__u16	csum_start;
822 			__u16	csum_offset;
823 		};
824 	};
825 	__u32			priority;
826 	int			skb_iif;
827 	__u32			hash;
828 	__be16			vlan_proto;
829 	__u16			vlan_tci;
830 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
831 	union {
832 		unsigned int	napi_id;
833 		unsigned int	sender_cpu;
834 	};
835 #endif
836 #ifdef CONFIG_NETWORK_SECMARK
837 	__u32		secmark;
838 #endif
839 
840 	union {
841 		__u32		mark;
842 		__u32		reserved_tailroom;
843 	};
844 
845 	union {
846 		__be16		inner_protocol;
847 		__u8		inner_ipproto;
848 	};
849 
850 	__u16			inner_transport_header;
851 	__u16			inner_network_header;
852 	__u16			inner_mac_header;
853 
854 	__be16			protocol;
855 	__u16			transport_header;
856 	__u16			network_header;
857 	__u16			mac_header;
858 
859 	/* private: */
860 	__u32			headers_end[0];
861 	/* public: */
862 
863 	/* These elements must be at the end, see alloc_skb() for details.  */
864 	sk_buff_data_t		tail;
865 	sk_buff_data_t		end;
866 	unsigned char		*head,
867 				*data;
868 	unsigned int		truesize;
869 	refcount_t		users;
870 
871 #ifdef CONFIG_SKB_EXTENSIONS
872 	/* only useable after checking ->active_extensions != 0 */
873 	struct skb_ext		*extensions;
874 #endif
875 };
876 
877 #ifdef __KERNEL__
878 /*
879  *	Handling routines are only of interest to the kernel
880  */
881 
882 #define SKB_ALLOC_FCLONE	0x01
883 #define SKB_ALLOC_RX		0x02
884 #define SKB_ALLOC_NAPI		0x04
885 
886 /* Returns true if the skb was allocated from PFMEMALLOC reserves */
887 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
888 {
889 	return unlikely(skb->pfmemalloc);
890 }
891 
892 /*
893  * skb might have a dst pointer attached, refcounted or not.
894  * _skb_refdst low order bit is set if refcount was _not_ taken
895  */
896 #define SKB_DST_NOREF	1UL
897 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
898 
899 #define SKB_NFCT_PTRMASK	~(7UL)
900 /**
901  * skb_dst - returns skb dst_entry
902  * @skb: buffer
903  *
904  * Returns skb dst_entry, regardless of reference taken or not.
905  */
906 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
907 {
908 	/* If refdst was not refcounted, check we still are in a
909 	 * rcu_read_lock section
910 	 */
911 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
912 		!rcu_read_lock_held() &&
913 		!rcu_read_lock_bh_held());
914 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
915 }
916 
917 /**
918  * skb_dst_set - sets skb dst
919  * @skb: buffer
920  * @dst: dst entry
921  *
922  * Sets skb dst, assuming a reference was taken on dst and should
923  * be released by skb_dst_drop()
924  */
925 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
926 {
927 	skb->_skb_refdst = (unsigned long)dst;
928 }
929 
930 /**
931  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
932  * @skb: buffer
933  * @dst: dst entry
934  *
935  * Sets skb dst, assuming a reference was not taken on dst.
936  * If dst entry is cached, we do not take reference and dst_release
937  * will be avoided by refdst_drop. If dst entry is not cached, we take
938  * reference, so that last dst_release can destroy the dst immediately.
939  */
940 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
941 {
942 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
943 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
944 }
945 
946 /**
947  * skb_dst_is_noref - Test if skb dst isn't refcounted
948  * @skb: buffer
949  */
950 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
951 {
952 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
953 }
954 
955 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
956 {
957 	return (struct rtable *)skb_dst(skb);
958 }
959 
960 /* For mangling skb->pkt_type from user space side from applications
961  * such as nft, tc, etc, we only allow a conservative subset of
962  * possible pkt_types to be set.
963 */
964 static inline bool skb_pkt_type_ok(u32 ptype)
965 {
966 	return ptype <= PACKET_OTHERHOST;
967 }
968 
969 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
970 {
971 #ifdef CONFIG_NET_RX_BUSY_POLL
972 	return skb->napi_id;
973 #else
974 	return 0;
975 #endif
976 }
977 
978 /* decrement the reference count and return true if we can free the skb */
979 static inline bool skb_unref(struct sk_buff *skb)
980 {
981 	if (unlikely(!skb))
982 		return false;
983 	if (likely(refcount_read(&skb->users) == 1))
984 		smp_rmb();
985 	else if (likely(!refcount_dec_and_test(&skb->users)))
986 		return false;
987 
988 	return true;
989 }
990 
991 void skb_release_head_state(struct sk_buff *skb);
992 void kfree_skb(struct sk_buff *skb);
993 void kfree_skb_list(struct sk_buff *segs);
994 void skb_tx_error(struct sk_buff *skb);
995 void consume_skb(struct sk_buff *skb);
996 void __consume_stateless_skb(struct sk_buff *skb);
997 void  __kfree_skb(struct sk_buff *skb);
998 extern struct kmem_cache *skbuff_head_cache;
999 
1000 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1001 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1002 		      bool *fragstolen, int *delta_truesize);
1003 
1004 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1005 			    int node);
1006 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1007 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1008 static inline struct sk_buff *alloc_skb(unsigned int size,
1009 					gfp_t priority)
1010 {
1011 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1012 }
1013 
1014 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1015 				     unsigned long data_len,
1016 				     int max_page_order,
1017 				     int *errcode,
1018 				     gfp_t gfp_mask);
1019 
1020 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1021 struct sk_buff_fclones {
1022 	struct sk_buff	skb1;
1023 
1024 	struct sk_buff	skb2;
1025 
1026 	refcount_t	fclone_ref;
1027 };
1028 
1029 /**
1030  *	skb_fclone_busy - check if fclone is busy
1031  *	@sk: socket
1032  *	@skb: buffer
1033  *
1034  * Returns true if skb is a fast clone, and its clone is not freed.
1035  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1036  * so we also check that this didnt happen.
1037  */
1038 static inline bool skb_fclone_busy(const struct sock *sk,
1039 				   const struct sk_buff *skb)
1040 {
1041 	const struct sk_buff_fclones *fclones;
1042 
1043 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1044 
1045 	return skb->fclone == SKB_FCLONE_ORIG &&
1046 	       refcount_read(&fclones->fclone_ref) > 1 &&
1047 	       fclones->skb2.sk == sk;
1048 }
1049 
1050 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1051 					       gfp_t priority)
1052 {
1053 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1054 }
1055 
1056 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1057 void skb_headers_offset_update(struct sk_buff *skb, int off);
1058 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1059 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1060 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1061 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1062 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1063 				   gfp_t gfp_mask, bool fclone);
1064 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1065 					  gfp_t gfp_mask)
1066 {
1067 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1068 }
1069 
1070 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1071 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1072 				     unsigned int headroom);
1073 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1074 				int newtailroom, gfp_t priority);
1075 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1076 				     int offset, int len);
1077 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1078 			      int offset, int len);
1079 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1080 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1081 
1082 /**
1083  *	skb_pad			-	zero pad the tail of an skb
1084  *	@skb: buffer to pad
1085  *	@pad: space to pad
1086  *
1087  *	Ensure that a buffer is followed by a padding area that is zero
1088  *	filled. Used by network drivers which may DMA or transfer data
1089  *	beyond the buffer end onto the wire.
1090  *
1091  *	May return error in out of memory cases. The skb is freed on error.
1092  */
1093 static inline int skb_pad(struct sk_buff *skb, int pad)
1094 {
1095 	return __skb_pad(skb, pad, true);
1096 }
1097 #define dev_kfree_skb(a)	consume_skb(a)
1098 
1099 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1100 			 int offset, size_t size);
1101 
1102 struct skb_seq_state {
1103 	__u32		lower_offset;
1104 	__u32		upper_offset;
1105 	__u32		frag_idx;
1106 	__u32		stepped_offset;
1107 	struct sk_buff	*root_skb;
1108 	struct sk_buff	*cur_skb;
1109 	__u8		*frag_data;
1110 };
1111 
1112 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1113 			  unsigned int to, struct skb_seq_state *st);
1114 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1115 			  struct skb_seq_state *st);
1116 void skb_abort_seq_read(struct skb_seq_state *st);
1117 
1118 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1119 			   unsigned int to, struct ts_config *config);
1120 
1121 /*
1122  * Packet hash types specify the type of hash in skb_set_hash.
1123  *
1124  * Hash types refer to the protocol layer addresses which are used to
1125  * construct a packet's hash. The hashes are used to differentiate or identify
1126  * flows of the protocol layer for the hash type. Hash types are either
1127  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1128  *
1129  * Properties of hashes:
1130  *
1131  * 1) Two packets in different flows have different hash values
1132  * 2) Two packets in the same flow should have the same hash value
1133  *
1134  * A hash at a higher layer is considered to be more specific. A driver should
1135  * set the most specific hash possible.
1136  *
1137  * A driver cannot indicate a more specific hash than the layer at which a hash
1138  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1139  *
1140  * A driver may indicate a hash level which is less specific than the
1141  * actual layer the hash was computed on. For instance, a hash computed
1142  * at L4 may be considered an L3 hash. This should only be done if the
1143  * driver can't unambiguously determine that the HW computed the hash at
1144  * the higher layer. Note that the "should" in the second property above
1145  * permits this.
1146  */
1147 enum pkt_hash_types {
1148 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1149 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1150 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1151 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1152 };
1153 
1154 static inline void skb_clear_hash(struct sk_buff *skb)
1155 {
1156 	skb->hash = 0;
1157 	skb->sw_hash = 0;
1158 	skb->l4_hash = 0;
1159 }
1160 
1161 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1162 {
1163 	if (!skb->l4_hash)
1164 		skb_clear_hash(skb);
1165 }
1166 
1167 static inline void
1168 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1169 {
1170 	skb->l4_hash = is_l4;
1171 	skb->sw_hash = is_sw;
1172 	skb->hash = hash;
1173 }
1174 
1175 static inline void
1176 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1177 {
1178 	/* Used by drivers to set hash from HW */
1179 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1180 }
1181 
1182 static inline void
1183 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1184 {
1185 	__skb_set_hash(skb, hash, true, is_l4);
1186 }
1187 
1188 void __skb_get_hash(struct sk_buff *skb);
1189 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1190 u32 skb_get_poff(const struct sk_buff *skb);
1191 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1192 		   const struct flow_keys_basic *keys, int hlen);
1193 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1194 			    void *data, int hlen_proto);
1195 
1196 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1197 					int thoff, u8 ip_proto)
1198 {
1199 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1200 }
1201 
1202 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1203 			     const struct flow_dissector_key *key,
1204 			     unsigned int key_count);
1205 
1206 #ifdef CONFIG_NET
1207 int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr,
1208 				       struct bpf_prog *prog);
1209 
1210 int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr);
1211 #else
1212 static inline int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr,
1213 						     struct bpf_prog *prog)
1214 {
1215 	return -EOPNOTSUPP;
1216 }
1217 
1218 static inline int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr)
1219 {
1220 	return -EOPNOTSUPP;
1221 }
1222 #endif
1223 
1224 struct bpf_flow_keys;
1225 bool __skb_flow_bpf_dissect(struct bpf_prog *prog,
1226 			    const struct sk_buff *skb,
1227 			    struct flow_dissector *flow_dissector,
1228 			    struct bpf_flow_keys *flow_keys);
1229 bool __skb_flow_dissect(const struct sk_buff *skb,
1230 			struct flow_dissector *flow_dissector,
1231 			void *target_container,
1232 			void *data, __be16 proto, int nhoff, int hlen,
1233 			unsigned int flags);
1234 
1235 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1236 				    struct flow_dissector *flow_dissector,
1237 				    void *target_container, unsigned int flags)
1238 {
1239 	return __skb_flow_dissect(skb, flow_dissector, target_container,
1240 				  NULL, 0, 0, 0, flags);
1241 }
1242 
1243 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1244 					      struct flow_keys *flow,
1245 					      unsigned int flags)
1246 {
1247 	memset(flow, 0, sizeof(*flow));
1248 	return __skb_flow_dissect(skb, &flow_keys_dissector, flow,
1249 				  NULL, 0, 0, 0, flags);
1250 }
1251 
1252 static inline bool
1253 skb_flow_dissect_flow_keys_basic(const struct sk_buff *skb,
1254 				 struct flow_keys_basic *flow, void *data,
1255 				 __be16 proto, int nhoff, int hlen,
1256 				 unsigned int flags)
1257 {
1258 	memset(flow, 0, sizeof(*flow));
1259 	return __skb_flow_dissect(skb, &flow_keys_basic_dissector, flow,
1260 				  data, proto, nhoff, hlen, flags);
1261 }
1262 
1263 void
1264 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1265 			     struct flow_dissector *flow_dissector,
1266 			     void *target_container);
1267 
1268 static inline __u32 skb_get_hash(struct sk_buff *skb)
1269 {
1270 	if (!skb->l4_hash && !skb->sw_hash)
1271 		__skb_get_hash(skb);
1272 
1273 	return skb->hash;
1274 }
1275 
1276 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1277 {
1278 	if (!skb->l4_hash && !skb->sw_hash) {
1279 		struct flow_keys keys;
1280 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1281 
1282 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1283 	}
1284 
1285 	return skb->hash;
1286 }
1287 
1288 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);
1289 
1290 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1291 {
1292 	return skb->hash;
1293 }
1294 
1295 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1296 {
1297 	to->hash = from->hash;
1298 	to->sw_hash = from->sw_hash;
1299 	to->l4_hash = from->l4_hash;
1300 };
1301 
1302 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1303 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1304 {
1305 	return skb->head + skb->end;
1306 }
1307 
1308 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1309 {
1310 	return skb->end;
1311 }
1312 #else
1313 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1314 {
1315 	return skb->end;
1316 }
1317 
1318 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1319 {
1320 	return skb->end - skb->head;
1321 }
1322 #endif
1323 
1324 /* Internal */
1325 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1326 
1327 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1328 {
1329 	return &skb_shinfo(skb)->hwtstamps;
1330 }
1331 
1332 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1333 {
1334 	bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY;
1335 
1336 	return is_zcopy ? skb_uarg(skb) : NULL;
1337 }
1338 
1339 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1340 				 bool *have_ref)
1341 {
1342 	if (skb && uarg && !skb_zcopy(skb)) {
1343 		if (unlikely(have_ref && *have_ref))
1344 			*have_ref = false;
1345 		else
1346 			sock_zerocopy_get(uarg);
1347 		skb_shinfo(skb)->destructor_arg = uarg;
1348 		skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1349 	}
1350 }
1351 
1352 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1353 {
1354 	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1355 	skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1356 }
1357 
1358 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1359 {
1360 	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1361 }
1362 
1363 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1364 {
1365 	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1366 }
1367 
1368 /* Release a reference on a zerocopy structure */
1369 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy)
1370 {
1371 	struct ubuf_info *uarg = skb_zcopy(skb);
1372 
1373 	if (uarg) {
1374 		if (uarg->callback == sock_zerocopy_callback) {
1375 			uarg->zerocopy = uarg->zerocopy && zerocopy;
1376 			sock_zerocopy_put(uarg);
1377 		} else if (!skb_zcopy_is_nouarg(skb)) {
1378 			uarg->callback(uarg, zerocopy);
1379 		}
1380 
1381 		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1382 	}
1383 }
1384 
1385 /* Abort a zerocopy operation and revert zckey on error in send syscall */
1386 static inline void skb_zcopy_abort(struct sk_buff *skb)
1387 {
1388 	struct ubuf_info *uarg = skb_zcopy(skb);
1389 
1390 	if (uarg) {
1391 		sock_zerocopy_put_abort(uarg, false);
1392 		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1393 	}
1394 }
1395 
1396 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1397 {
1398 	skb->next = NULL;
1399 }
1400 
1401 static inline void skb_list_del_init(struct sk_buff *skb)
1402 {
1403 	__list_del_entry(&skb->list);
1404 	skb_mark_not_on_list(skb);
1405 }
1406 
1407 /**
1408  *	skb_queue_empty - check if a queue is empty
1409  *	@list: queue head
1410  *
1411  *	Returns true if the queue is empty, false otherwise.
1412  */
1413 static inline int skb_queue_empty(const struct sk_buff_head *list)
1414 {
1415 	return list->next == (const struct sk_buff *) list;
1416 }
1417 
1418 /**
1419  *	skb_queue_is_last - check if skb is the last entry in the queue
1420  *	@list: queue head
1421  *	@skb: buffer
1422  *
1423  *	Returns true if @skb is the last buffer on the list.
1424  */
1425 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1426 				     const struct sk_buff *skb)
1427 {
1428 	return skb->next == (const struct sk_buff *) list;
1429 }
1430 
1431 /**
1432  *	skb_queue_is_first - check if skb is the first entry in the queue
1433  *	@list: queue head
1434  *	@skb: buffer
1435  *
1436  *	Returns true if @skb is the first buffer on the list.
1437  */
1438 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1439 				      const struct sk_buff *skb)
1440 {
1441 	return skb->prev == (const struct sk_buff *) list;
1442 }
1443 
1444 /**
1445  *	skb_queue_next - return the next packet in the queue
1446  *	@list: queue head
1447  *	@skb: current buffer
1448  *
1449  *	Return the next packet in @list after @skb.  It is only valid to
1450  *	call this if skb_queue_is_last() evaluates to false.
1451  */
1452 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1453 					     const struct sk_buff *skb)
1454 {
1455 	/* This BUG_ON may seem severe, but if we just return then we
1456 	 * are going to dereference garbage.
1457 	 */
1458 	BUG_ON(skb_queue_is_last(list, skb));
1459 	return skb->next;
1460 }
1461 
1462 /**
1463  *	skb_queue_prev - return the prev packet in the queue
1464  *	@list: queue head
1465  *	@skb: current buffer
1466  *
1467  *	Return the prev packet in @list before @skb.  It is only valid to
1468  *	call this if skb_queue_is_first() evaluates to false.
1469  */
1470 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1471 					     const struct sk_buff *skb)
1472 {
1473 	/* This BUG_ON may seem severe, but if we just return then we
1474 	 * are going to dereference garbage.
1475 	 */
1476 	BUG_ON(skb_queue_is_first(list, skb));
1477 	return skb->prev;
1478 }
1479 
1480 /**
1481  *	skb_get - reference buffer
1482  *	@skb: buffer to reference
1483  *
1484  *	Makes another reference to a socket buffer and returns a pointer
1485  *	to the buffer.
1486  */
1487 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1488 {
1489 	refcount_inc(&skb->users);
1490 	return skb;
1491 }
1492 
1493 /*
1494  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1495  */
1496 
1497 /**
1498  *	skb_cloned - is the buffer a clone
1499  *	@skb: buffer to check
1500  *
1501  *	Returns true if the buffer was generated with skb_clone() and is
1502  *	one of multiple shared copies of the buffer. Cloned buffers are
1503  *	shared data so must not be written to under normal circumstances.
1504  */
1505 static inline int skb_cloned(const struct sk_buff *skb)
1506 {
1507 	return skb->cloned &&
1508 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1509 }
1510 
1511 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1512 {
1513 	might_sleep_if(gfpflags_allow_blocking(pri));
1514 
1515 	if (skb_cloned(skb))
1516 		return pskb_expand_head(skb, 0, 0, pri);
1517 
1518 	return 0;
1519 }
1520 
1521 /**
1522  *	skb_header_cloned - is the header a clone
1523  *	@skb: buffer to check
1524  *
1525  *	Returns true if modifying the header part of the buffer requires
1526  *	the data to be copied.
1527  */
1528 static inline int skb_header_cloned(const struct sk_buff *skb)
1529 {
1530 	int dataref;
1531 
1532 	if (!skb->cloned)
1533 		return 0;
1534 
1535 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1536 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1537 	return dataref != 1;
1538 }
1539 
1540 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1541 {
1542 	might_sleep_if(gfpflags_allow_blocking(pri));
1543 
1544 	if (skb_header_cloned(skb))
1545 		return pskb_expand_head(skb, 0, 0, pri);
1546 
1547 	return 0;
1548 }
1549 
1550 /**
1551  *	__skb_header_release - release reference to header
1552  *	@skb: buffer to operate on
1553  */
1554 static inline void __skb_header_release(struct sk_buff *skb)
1555 {
1556 	skb->nohdr = 1;
1557 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1558 }
1559 
1560 
1561 /**
1562  *	skb_shared - is the buffer shared
1563  *	@skb: buffer to check
1564  *
1565  *	Returns true if more than one person has a reference to this
1566  *	buffer.
1567  */
1568 static inline int skb_shared(const struct sk_buff *skb)
1569 {
1570 	return refcount_read(&skb->users) != 1;
1571 }
1572 
1573 /**
1574  *	skb_share_check - check if buffer is shared and if so clone it
1575  *	@skb: buffer to check
1576  *	@pri: priority for memory allocation
1577  *
1578  *	If the buffer is shared the buffer is cloned and the old copy
1579  *	drops a reference. A new clone with a single reference is returned.
1580  *	If the buffer is not shared the original buffer is returned. When
1581  *	being called from interrupt status or with spinlocks held pri must
1582  *	be GFP_ATOMIC.
1583  *
1584  *	NULL is returned on a memory allocation failure.
1585  */
1586 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1587 {
1588 	might_sleep_if(gfpflags_allow_blocking(pri));
1589 	if (skb_shared(skb)) {
1590 		struct sk_buff *nskb = skb_clone(skb, pri);
1591 
1592 		if (likely(nskb))
1593 			consume_skb(skb);
1594 		else
1595 			kfree_skb(skb);
1596 		skb = nskb;
1597 	}
1598 	return skb;
1599 }
1600 
1601 /*
1602  *	Copy shared buffers into a new sk_buff. We effectively do COW on
1603  *	packets to handle cases where we have a local reader and forward
1604  *	and a couple of other messy ones. The normal one is tcpdumping
1605  *	a packet thats being forwarded.
1606  */
1607 
1608 /**
1609  *	skb_unshare - make a copy of a shared buffer
1610  *	@skb: buffer to check
1611  *	@pri: priority for memory allocation
1612  *
1613  *	If the socket buffer is a clone then this function creates a new
1614  *	copy of the data, drops a reference count on the old copy and returns
1615  *	the new copy with the reference count at 1. If the buffer is not a clone
1616  *	the original buffer is returned. When called with a spinlock held or
1617  *	from interrupt state @pri must be %GFP_ATOMIC
1618  *
1619  *	%NULL is returned on a memory allocation failure.
1620  */
1621 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1622 					  gfp_t pri)
1623 {
1624 	might_sleep_if(gfpflags_allow_blocking(pri));
1625 	if (skb_cloned(skb)) {
1626 		struct sk_buff *nskb = skb_copy(skb, pri);
1627 
1628 		/* Free our shared copy */
1629 		if (likely(nskb))
1630 			consume_skb(skb);
1631 		else
1632 			kfree_skb(skb);
1633 		skb = nskb;
1634 	}
1635 	return skb;
1636 }
1637 
1638 /**
1639  *	skb_peek - peek at the head of an &sk_buff_head
1640  *	@list_: list to peek at
1641  *
1642  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1643  *	be careful with this one. A peek leaves the buffer on the
1644  *	list and someone else may run off with it. You must hold
1645  *	the appropriate locks or have a private queue to do this.
1646  *
1647  *	Returns %NULL for an empty list or a pointer to the head element.
1648  *	The reference count is not incremented and the reference is therefore
1649  *	volatile. Use with caution.
1650  */
1651 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1652 {
1653 	struct sk_buff *skb = list_->next;
1654 
1655 	if (skb == (struct sk_buff *)list_)
1656 		skb = NULL;
1657 	return skb;
1658 }
1659 
1660 /**
1661  *	__skb_peek - peek at the head of a non-empty &sk_buff_head
1662  *	@list_: list to peek at
1663  *
1664  *	Like skb_peek(), but the caller knows that the list is not empty.
1665  */
1666 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
1667 {
1668 	return list_->next;
1669 }
1670 
1671 /**
1672  *	skb_peek_next - peek skb following the given one from a queue
1673  *	@skb: skb to start from
1674  *	@list_: list to peek at
1675  *
1676  *	Returns %NULL when the end of the list is met or a pointer to the
1677  *	next element. The reference count is not incremented and the
1678  *	reference is therefore volatile. Use with caution.
1679  */
1680 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1681 		const struct sk_buff_head *list_)
1682 {
1683 	struct sk_buff *next = skb->next;
1684 
1685 	if (next == (struct sk_buff *)list_)
1686 		next = NULL;
1687 	return next;
1688 }
1689 
1690 /**
1691  *	skb_peek_tail - peek at the tail of an &sk_buff_head
1692  *	@list_: list to peek at
1693  *
1694  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1695  *	be careful with this one. A peek leaves the buffer on the
1696  *	list and someone else may run off with it. You must hold
1697  *	the appropriate locks or have a private queue to do this.
1698  *
1699  *	Returns %NULL for an empty list or a pointer to the tail element.
1700  *	The reference count is not incremented and the reference is therefore
1701  *	volatile. Use with caution.
1702  */
1703 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1704 {
1705 	struct sk_buff *skb = list_->prev;
1706 
1707 	if (skb == (struct sk_buff *)list_)
1708 		skb = NULL;
1709 	return skb;
1710 
1711 }
1712 
1713 /**
1714  *	skb_queue_len	- get queue length
1715  *	@list_: list to measure
1716  *
1717  *	Return the length of an &sk_buff queue.
1718  */
1719 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1720 {
1721 	return list_->qlen;
1722 }
1723 
1724 /**
1725  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1726  *	@list: queue to initialize
1727  *
1728  *	This initializes only the list and queue length aspects of
1729  *	an sk_buff_head object.  This allows to initialize the list
1730  *	aspects of an sk_buff_head without reinitializing things like
1731  *	the spinlock.  It can also be used for on-stack sk_buff_head
1732  *	objects where the spinlock is known to not be used.
1733  */
1734 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1735 {
1736 	list->prev = list->next = (struct sk_buff *)list;
1737 	list->qlen = 0;
1738 }
1739 
1740 /*
1741  * This function creates a split out lock class for each invocation;
1742  * this is needed for now since a whole lot of users of the skb-queue
1743  * infrastructure in drivers have different locking usage (in hardirq)
1744  * than the networking core (in softirq only). In the long run either the
1745  * network layer or drivers should need annotation to consolidate the
1746  * main types of usage into 3 classes.
1747  */
1748 static inline void skb_queue_head_init(struct sk_buff_head *list)
1749 {
1750 	spin_lock_init(&list->lock);
1751 	__skb_queue_head_init(list);
1752 }
1753 
1754 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1755 		struct lock_class_key *class)
1756 {
1757 	skb_queue_head_init(list);
1758 	lockdep_set_class(&list->lock, class);
1759 }
1760 
1761 /*
1762  *	Insert an sk_buff on a list.
1763  *
1764  *	The "__skb_xxxx()" functions are the non-atomic ones that
1765  *	can only be called with interrupts disabled.
1766  */
1767 static inline void __skb_insert(struct sk_buff *newsk,
1768 				struct sk_buff *prev, struct sk_buff *next,
1769 				struct sk_buff_head *list)
1770 {
1771 	newsk->next = next;
1772 	newsk->prev = prev;
1773 	next->prev  = prev->next = newsk;
1774 	list->qlen++;
1775 }
1776 
1777 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1778 				      struct sk_buff *prev,
1779 				      struct sk_buff *next)
1780 {
1781 	struct sk_buff *first = list->next;
1782 	struct sk_buff *last = list->prev;
1783 
1784 	first->prev = prev;
1785 	prev->next = first;
1786 
1787 	last->next = next;
1788 	next->prev = last;
1789 }
1790 
1791 /**
1792  *	skb_queue_splice - join two skb lists, this is designed for stacks
1793  *	@list: the new list to add
1794  *	@head: the place to add it in the first list
1795  */
1796 static inline void skb_queue_splice(const struct sk_buff_head *list,
1797 				    struct sk_buff_head *head)
1798 {
1799 	if (!skb_queue_empty(list)) {
1800 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1801 		head->qlen += list->qlen;
1802 	}
1803 }
1804 
1805 /**
1806  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1807  *	@list: the new list to add
1808  *	@head: the place to add it in the first list
1809  *
1810  *	The list at @list is reinitialised
1811  */
1812 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1813 					 struct sk_buff_head *head)
1814 {
1815 	if (!skb_queue_empty(list)) {
1816 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1817 		head->qlen += list->qlen;
1818 		__skb_queue_head_init(list);
1819 	}
1820 }
1821 
1822 /**
1823  *	skb_queue_splice_tail - join two skb lists, each list being a queue
1824  *	@list: the new list to add
1825  *	@head: the place to add it in the first list
1826  */
1827 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1828 					 struct sk_buff_head *head)
1829 {
1830 	if (!skb_queue_empty(list)) {
1831 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1832 		head->qlen += list->qlen;
1833 	}
1834 }
1835 
1836 /**
1837  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1838  *	@list: the new list to add
1839  *	@head: the place to add it in the first list
1840  *
1841  *	Each of the lists is a queue.
1842  *	The list at @list is reinitialised
1843  */
1844 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1845 					      struct sk_buff_head *head)
1846 {
1847 	if (!skb_queue_empty(list)) {
1848 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1849 		head->qlen += list->qlen;
1850 		__skb_queue_head_init(list);
1851 	}
1852 }
1853 
1854 /**
1855  *	__skb_queue_after - queue a buffer at the list head
1856  *	@list: list to use
1857  *	@prev: place after this buffer
1858  *	@newsk: buffer to queue
1859  *
1860  *	Queue a buffer int the middle of a list. This function takes no locks
1861  *	and you must therefore hold required locks before calling it.
1862  *
1863  *	A buffer cannot be placed on two lists at the same time.
1864  */
1865 static inline void __skb_queue_after(struct sk_buff_head *list,
1866 				     struct sk_buff *prev,
1867 				     struct sk_buff *newsk)
1868 {
1869 	__skb_insert(newsk, prev, prev->next, list);
1870 }
1871 
1872 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1873 		struct sk_buff_head *list);
1874 
1875 static inline void __skb_queue_before(struct sk_buff_head *list,
1876 				      struct sk_buff *next,
1877 				      struct sk_buff *newsk)
1878 {
1879 	__skb_insert(newsk, next->prev, next, list);
1880 }
1881 
1882 /**
1883  *	__skb_queue_head - queue a buffer at the list head
1884  *	@list: list to use
1885  *	@newsk: buffer to queue
1886  *
1887  *	Queue a buffer at the start of a list. This function takes no locks
1888  *	and you must therefore hold required locks before calling it.
1889  *
1890  *	A buffer cannot be placed on two lists at the same time.
1891  */
1892 static inline void __skb_queue_head(struct sk_buff_head *list,
1893 				    struct sk_buff *newsk)
1894 {
1895 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
1896 }
1897 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1898 
1899 /**
1900  *	__skb_queue_tail - queue a buffer at the list tail
1901  *	@list: list to use
1902  *	@newsk: buffer to queue
1903  *
1904  *	Queue a buffer at the end of a list. This function takes no locks
1905  *	and you must therefore hold required locks before calling it.
1906  *
1907  *	A buffer cannot be placed on two lists at the same time.
1908  */
1909 static inline void __skb_queue_tail(struct sk_buff_head *list,
1910 				   struct sk_buff *newsk)
1911 {
1912 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
1913 }
1914 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1915 
1916 /*
1917  * remove sk_buff from list. _Must_ be called atomically, and with
1918  * the list known..
1919  */
1920 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1921 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1922 {
1923 	struct sk_buff *next, *prev;
1924 
1925 	list->qlen--;
1926 	next	   = skb->next;
1927 	prev	   = skb->prev;
1928 	skb->next  = skb->prev = NULL;
1929 	next->prev = prev;
1930 	prev->next = next;
1931 }
1932 
1933 /**
1934  *	__skb_dequeue - remove from the head of the queue
1935  *	@list: list to dequeue from
1936  *
1937  *	Remove the head of the list. This function does not take any locks
1938  *	so must be used with appropriate locks held only. The head item is
1939  *	returned or %NULL if the list is empty.
1940  */
1941 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1942 {
1943 	struct sk_buff *skb = skb_peek(list);
1944 	if (skb)
1945 		__skb_unlink(skb, list);
1946 	return skb;
1947 }
1948 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1949 
1950 /**
1951  *	__skb_dequeue_tail - remove from the tail of the queue
1952  *	@list: list to dequeue from
1953  *
1954  *	Remove the tail of the list. This function does not take any locks
1955  *	so must be used with appropriate locks held only. The tail item is
1956  *	returned or %NULL if the list is empty.
1957  */
1958 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1959 {
1960 	struct sk_buff *skb = skb_peek_tail(list);
1961 	if (skb)
1962 		__skb_unlink(skb, list);
1963 	return skb;
1964 }
1965 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1966 
1967 
1968 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1969 {
1970 	return skb->data_len;
1971 }
1972 
1973 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1974 {
1975 	return skb->len - skb->data_len;
1976 }
1977 
1978 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
1979 {
1980 	unsigned int i, len = 0;
1981 
1982 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
1983 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1984 	return len;
1985 }
1986 
1987 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
1988 {
1989 	return skb_headlen(skb) + __skb_pagelen(skb);
1990 }
1991 
1992 /**
1993  * __skb_fill_page_desc - initialise a paged fragment in an skb
1994  * @skb: buffer containing fragment to be initialised
1995  * @i: paged fragment index to initialise
1996  * @page: the page to use for this fragment
1997  * @off: the offset to the data with @page
1998  * @size: the length of the data
1999  *
2000  * Initialises the @i'th fragment of @skb to point to &size bytes at
2001  * offset @off within @page.
2002  *
2003  * Does not take any additional reference on the fragment.
2004  */
2005 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2006 					struct page *page, int off, int size)
2007 {
2008 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2009 
2010 	/*
2011 	 * Propagate page pfmemalloc to the skb if we can. The problem is
2012 	 * that not all callers have unique ownership of the page but rely
2013 	 * on page_is_pfmemalloc doing the right thing(tm).
2014 	 */
2015 	frag->page.p		  = page;
2016 	frag->page_offset	  = off;
2017 	skb_frag_size_set(frag, size);
2018 
2019 	page = compound_head(page);
2020 	if (page_is_pfmemalloc(page))
2021 		skb->pfmemalloc	= true;
2022 }
2023 
2024 /**
2025  * skb_fill_page_desc - initialise a paged fragment in an skb
2026  * @skb: buffer containing fragment to be initialised
2027  * @i: paged fragment index to initialise
2028  * @page: the page to use for this fragment
2029  * @off: the offset to the data with @page
2030  * @size: the length of the data
2031  *
2032  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2033  * @skb to point to @size bytes at offset @off within @page. In
2034  * addition updates @skb such that @i is the last fragment.
2035  *
2036  * Does not take any additional reference on the fragment.
2037  */
2038 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2039 				      struct page *page, int off, int size)
2040 {
2041 	__skb_fill_page_desc(skb, i, page, off, size);
2042 	skb_shinfo(skb)->nr_frags = i + 1;
2043 }
2044 
2045 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2046 		     int size, unsigned int truesize);
2047 
2048 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2049 			  unsigned int truesize);
2050 
2051 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
2052 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_has_frag_list(skb))
2053 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2054 
2055 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2056 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2057 {
2058 	return skb->head + skb->tail;
2059 }
2060 
2061 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2062 {
2063 	skb->tail = skb->data - skb->head;
2064 }
2065 
2066 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2067 {
2068 	skb_reset_tail_pointer(skb);
2069 	skb->tail += offset;
2070 }
2071 
2072 #else /* NET_SKBUFF_DATA_USES_OFFSET */
2073 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2074 {
2075 	return skb->tail;
2076 }
2077 
2078 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2079 {
2080 	skb->tail = skb->data;
2081 }
2082 
2083 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2084 {
2085 	skb->tail = skb->data + offset;
2086 }
2087 
2088 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2089 
2090 /*
2091  *	Add data to an sk_buff
2092  */
2093 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2094 void *skb_put(struct sk_buff *skb, unsigned int len);
2095 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2096 {
2097 	void *tmp = skb_tail_pointer(skb);
2098 	SKB_LINEAR_ASSERT(skb);
2099 	skb->tail += len;
2100 	skb->len  += len;
2101 	return tmp;
2102 }
2103 
2104 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2105 {
2106 	void *tmp = __skb_put(skb, len);
2107 
2108 	memset(tmp, 0, len);
2109 	return tmp;
2110 }
2111 
2112 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2113 				   unsigned int len)
2114 {
2115 	void *tmp = __skb_put(skb, len);
2116 
2117 	memcpy(tmp, data, len);
2118 	return tmp;
2119 }
2120 
2121 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2122 {
2123 	*(u8 *)__skb_put(skb, 1) = val;
2124 }
2125 
2126 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2127 {
2128 	void *tmp = skb_put(skb, len);
2129 
2130 	memset(tmp, 0, len);
2131 
2132 	return tmp;
2133 }
2134 
2135 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2136 				 unsigned int len)
2137 {
2138 	void *tmp = skb_put(skb, len);
2139 
2140 	memcpy(tmp, data, len);
2141 
2142 	return tmp;
2143 }
2144 
2145 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2146 {
2147 	*(u8 *)skb_put(skb, 1) = val;
2148 }
2149 
2150 void *skb_push(struct sk_buff *skb, unsigned int len);
2151 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2152 {
2153 	skb->data -= len;
2154 	skb->len  += len;
2155 	return skb->data;
2156 }
2157 
2158 void *skb_pull(struct sk_buff *skb, unsigned int len);
2159 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2160 {
2161 	skb->len -= len;
2162 	BUG_ON(skb->len < skb->data_len);
2163 	return skb->data += len;
2164 }
2165 
2166 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2167 {
2168 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2169 }
2170 
2171 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2172 
2173 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2174 {
2175 	if (len > skb_headlen(skb) &&
2176 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2177 		return NULL;
2178 	skb->len -= len;
2179 	return skb->data += len;
2180 }
2181 
2182 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2183 {
2184 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2185 }
2186 
2187 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
2188 {
2189 	if (likely(len <= skb_headlen(skb)))
2190 		return 1;
2191 	if (unlikely(len > skb->len))
2192 		return 0;
2193 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2194 }
2195 
2196 void skb_condense(struct sk_buff *skb);
2197 
2198 /**
2199  *	skb_headroom - bytes at buffer head
2200  *	@skb: buffer to check
2201  *
2202  *	Return the number of bytes of free space at the head of an &sk_buff.
2203  */
2204 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2205 {
2206 	return skb->data - skb->head;
2207 }
2208 
2209 /**
2210  *	skb_tailroom - bytes at buffer end
2211  *	@skb: buffer to check
2212  *
2213  *	Return the number of bytes of free space at the tail of an sk_buff
2214  */
2215 static inline int skb_tailroom(const struct sk_buff *skb)
2216 {
2217 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2218 }
2219 
2220 /**
2221  *	skb_availroom - bytes at buffer end
2222  *	@skb: buffer to check
2223  *
2224  *	Return the number of bytes of free space at the tail of an sk_buff
2225  *	allocated by sk_stream_alloc()
2226  */
2227 static inline int skb_availroom(const struct sk_buff *skb)
2228 {
2229 	if (skb_is_nonlinear(skb))
2230 		return 0;
2231 
2232 	return skb->end - skb->tail - skb->reserved_tailroom;
2233 }
2234 
2235 /**
2236  *	skb_reserve - adjust headroom
2237  *	@skb: buffer to alter
2238  *	@len: bytes to move
2239  *
2240  *	Increase the headroom of an empty &sk_buff by reducing the tail
2241  *	room. This is only allowed for an empty buffer.
2242  */
2243 static inline void skb_reserve(struct sk_buff *skb, int len)
2244 {
2245 	skb->data += len;
2246 	skb->tail += len;
2247 }
2248 
2249 /**
2250  *	skb_tailroom_reserve - adjust reserved_tailroom
2251  *	@skb: buffer to alter
2252  *	@mtu: maximum amount of headlen permitted
2253  *	@needed_tailroom: minimum amount of reserved_tailroom
2254  *
2255  *	Set reserved_tailroom so that headlen can be as large as possible but
2256  *	not larger than mtu and tailroom cannot be smaller than
2257  *	needed_tailroom.
2258  *	The required headroom should already have been reserved before using
2259  *	this function.
2260  */
2261 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2262 					unsigned int needed_tailroom)
2263 {
2264 	SKB_LINEAR_ASSERT(skb);
2265 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2266 		/* use at most mtu */
2267 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2268 	else
2269 		/* use up to all available space */
2270 		skb->reserved_tailroom = needed_tailroom;
2271 }
2272 
2273 #define ENCAP_TYPE_ETHER	0
2274 #define ENCAP_TYPE_IPPROTO	1
2275 
2276 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2277 					  __be16 protocol)
2278 {
2279 	skb->inner_protocol = protocol;
2280 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2281 }
2282 
2283 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2284 					 __u8 ipproto)
2285 {
2286 	skb->inner_ipproto = ipproto;
2287 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2288 }
2289 
2290 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2291 {
2292 	skb->inner_mac_header = skb->mac_header;
2293 	skb->inner_network_header = skb->network_header;
2294 	skb->inner_transport_header = skb->transport_header;
2295 }
2296 
2297 static inline void skb_reset_mac_len(struct sk_buff *skb)
2298 {
2299 	skb->mac_len = skb->network_header - skb->mac_header;
2300 }
2301 
2302 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2303 							*skb)
2304 {
2305 	return skb->head + skb->inner_transport_header;
2306 }
2307 
2308 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2309 {
2310 	return skb_inner_transport_header(skb) - skb->data;
2311 }
2312 
2313 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2314 {
2315 	skb->inner_transport_header = skb->data - skb->head;
2316 }
2317 
2318 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2319 						   const int offset)
2320 {
2321 	skb_reset_inner_transport_header(skb);
2322 	skb->inner_transport_header += offset;
2323 }
2324 
2325 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2326 {
2327 	return skb->head + skb->inner_network_header;
2328 }
2329 
2330 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2331 {
2332 	skb->inner_network_header = skb->data - skb->head;
2333 }
2334 
2335 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2336 						const int offset)
2337 {
2338 	skb_reset_inner_network_header(skb);
2339 	skb->inner_network_header += offset;
2340 }
2341 
2342 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2343 {
2344 	return skb->head + skb->inner_mac_header;
2345 }
2346 
2347 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2348 {
2349 	skb->inner_mac_header = skb->data - skb->head;
2350 }
2351 
2352 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2353 					    const int offset)
2354 {
2355 	skb_reset_inner_mac_header(skb);
2356 	skb->inner_mac_header += offset;
2357 }
2358 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2359 {
2360 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2361 }
2362 
2363 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2364 {
2365 	return skb->head + skb->transport_header;
2366 }
2367 
2368 static inline void skb_reset_transport_header(struct sk_buff *skb)
2369 {
2370 	skb->transport_header = skb->data - skb->head;
2371 }
2372 
2373 static inline void skb_set_transport_header(struct sk_buff *skb,
2374 					    const int offset)
2375 {
2376 	skb_reset_transport_header(skb);
2377 	skb->transport_header += offset;
2378 }
2379 
2380 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2381 {
2382 	return skb->head + skb->network_header;
2383 }
2384 
2385 static inline void skb_reset_network_header(struct sk_buff *skb)
2386 {
2387 	skb->network_header = skb->data - skb->head;
2388 }
2389 
2390 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2391 {
2392 	skb_reset_network_header(skb);
2393 	skb->network_header += offset;
2394 }
2395 
2396 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2397 {
2398 	return skb->head + skb->mac_header;
2399 }
2400 
2401 static inline int skb_mac_offset(const struct sk_buff *skb)
2402 {
2403 	return skb_mac_header(skb) - skb->data;
2404 }
2405 
2406 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2407 {
2408 	return skb->network_header - skb->mac_header;
2409 }
2410 
2411 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2412 {
2413 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2414 }
2415 
2416 static inline void skb_reset_mac_header(struct sk_buff *skb)
2417 {
2418 	skb->mac_header = skb->data - skb->head;
2419 }
2420 
2421 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2422 {
2423 	skb_reset_mac_header(skb);
2424 	skb->mac_header += offset;
2425 }
2426 
2427 static inline void skb_pop_mac_header(struct sk_buff *skb)
2428 {
2429 	skb->mac_header = skb->network_header;
2430 }
2431 
2432 static inline void skb_probe_transport_header(struct sk_buff *skb)
2433 {
2434 	struct flow_keys_basic keys;
2435 
2436 	if (skb_transport_header_was_set(skb))
2437 		return;
2438 
2439 	if (skb_flow_dissect_flow_keys_basic(skb, &keys, NULL, 0, 0, 0, 0))
2440 		skb_set_transport_header(skb, keys.control.thoff);
2441 }
2442 
2443 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2444 {
2445 	if (skb_mac_header_was_set(skb)) {
2446 		const unsigned char *old_mac = skb_mac_header(skb);
2447 
2448 		skb_set_mac_header(skb, -skb->mac_len);
2449 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2450 	}
2451 }
2452 
2453 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2454 {
2455 	return skb->csum_start - skb_headroom(skb);
2456 }
2457 
2458 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2459 {
2460 	return skb->head + skb->csum_start;
2461 }
2462 
2463 static inline int skb_transport_offset(const struct sk_buff *skb)
2464 {
2465 	return skb_transport_header(skb) - skb->data;
2466 }
2467 
2468 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2469 {
2470 	return skb->transport_header - skb->network_header;
2471 }
2472 
2473 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2474 {
2475 	return skb->inner_transport_header - skb->inner_network_header;
2476 }
2477 
2478 static inline int skb_network_offset(const struct sk_buff *skb)
2479 {
2480 	return skb_network_header(skb) - skb->data;
2481 }
2482 
2483 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2484 {
2485 	return skb_inner_network_header(skb) - skb->data;
2486 }
2487 
2488 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2489 {
2490 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
2491 }
2492 
2493 /*
2494  * CPUs often take a performance hit when accessing unaligned memory
2495  * locations. The actual performance hit varies, it can be small if the
2496  * hardware handles it or large if we have to take an exception and fix it
2497  * in software.
2498  *
2499  * Since an ethernet header is 14 bytes network drivers often end up with
2500  * the IP header at an unaligned offset. The IP header can be aligned by
2501  * shifting the start of the packet by 2 bytes. Drivers should do this
2502  * with:
2503  *
2504  * skb_reserve(skb, NET_IP_ALIGN);
2505  *
2506  * The downside to this alignment of the IP header is that the DMA is now
2507  * unaligned. On some architectures the cost of an unaligned DMA is high
2508  * and this cost outweighs the gains made by aligning the IP header.
2509  *
2510  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2511  * to be overridden.
2512  */
2513 #ifndef NET_IP_ALIGN
2514 #define NET_IP_ALIGN	2
2515 #endif
2516 
2517 /*
2518  * The networking layer reserves some headroom in skb data (via
2519  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2520  * the header has to grow. In the default case, if the header has to grow
2521  * 32 bytes or less we avoid the reallocation.
2522  *
2523  * Unfortunately this headroom changes the DMA alignment of the resulting
2524  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2525  * on some architectures. An architecture can override this value,
2526  * perhaps setting it to a cacheline in size (since that will maintain
2527  * cacheline alignment of the DMA). It must be a power of 2.
2528  *
2529  * Various parts of the networking layer expect at least 32 bytes of
2530  * headroom, you should not reduce this.
2531  *
2532  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2533  * to reduce average number of cache lines per packet.
2534  * get_rps_cpus() for example only access one 64 bytes aligned block :
2535  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2536  */
2537 #ifndef NET_SKB_PAD
2538 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2539 #endif
2540 
2541 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2542 
2543 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2544 {
2545 	if (WARN_ON(skb_is_nonlinear(skb)))
2546 		return;
2547 	skb->len = len;
2548 	skb_set_tail_pointer(skb, len);
2549 }
2550 
2551 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2552 {
2553 	__skb_set_length(skb, len);
2554 }
2555 
2556 void skb_trim(struct sk_buff *skb, unsigned int len);
2557 
2558 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2559 {
2560 	if (skb->data_len)
2561 		return ___pskb_trim(skb, len);
2562 	__skb_trim(skb, len);
2563 	return 0;
2564 }
2565 
2566 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2567 {
2568 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2569 }
2570 
2571 /**
2572  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2573  *	@skb: buffer to alter
2574  *	@len: new length
2575  *
2576  *	This is identical to pskb_trim except that the caller knows that
2577  *	the skb is not cloned so we should never get an error due to out-
2578  *	of-memory.
2579  */
2580 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2581 {
2582 	int err = pskb_trim(skb, len);
2583 	BUG_ON(err);
2584 }
2585 
2586 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2587 {
2588 	unsigned int diff = len - skb->len;
2589 
2590 	if (skb_tailroom(skb) < diff) {
2591 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2592 					   GFP_ATOMIC);
2593 		if (ret)
2594 			return ret;
2595 	}
2596 	__skb_set_length(skb, len);
2597 	return 0;
2598 }
2599 
2600 /**
2601  *	skb_orphan - orphan a buffer
2602  *	@skb: buffer to orphan
2603  *
2604  *	If a buffer currently has an owner then we call the owner's
2605  *	destructor function and make the @skb unowned. The buffer continues
2606  *	to exist but is no longer charged to its former owner.
2607  */
2608 static inline void skb_orphan(struct sk_buff *skb)
2609 {
2610 	if (skb->destructor) {
2611 		skb->destructor(skb);
2612 		skb->destructor = NULL;
2613 		skb->sk		= NULL;
2614 	} else {
2615 		BUG_ON(skb->sk);
2616 	}
2617 }
2618 
2619 /**
2620  *	skb_orphan_frags - orphan the frags contained in a buffer
2621  *	@skb: buffer to orphan frags from
2622  *	@gfp_mask: allocation mask for replacement pages
2623  *
2624  *	For each frag in the SKB which needs a destructor (i.e. has an
2625  *	owner) create a copy of that frag and release the original
2626  *	page by calling the destructor.
2627  */
2628 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2629 {
2630 	if (likely(!skb_zcopy(skb)))
2631 		return 0;
2632 	if (skb_uarg(skb)->callback == sock_zerocopy_callback)
2633 		return 0;
2634 	return skb_copy_ubufs(skb, gfp_mask);
2635 }
2636 
2637 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
2638 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2639 {
2640 	if (likely(!skb_zcopy(skb)))
2641 		return 0;
2642 	return skb_copy_ubufs(skb, gfp_mask);
2643 }
2644 
2645 /**
2646  *	__skb_queue_purge - empty a list
2647  *	@list: list to empty
2648  *
2649  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2650  *	the list and one reference dropped. This function does not take the
2651  *	list lock and the caller must hold the relevant locks to use it.
2652  */
2653 static inline void __skb_queue_purge(struct sk_buff_head *list)
2654 {
2655 	struct sk_buff *skb;
2656 	while ((skb = __skb_dequeue(list)) != NULL)
2657 		kfree_skb(skb);
2658 }
2659 void skb_queue_purge(struct sk_buff_head *list);
2660 
2661 unsigned int skb_rbtree_purge(struct rb_root *root);
2662 
2663 void *netdev_alloc_frag(unsigned int fragsz);
2664 
2665 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2666 				   gfp_t gfp_mask);
2667 
2668 /**
2669  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
2670  *	@dev: network device to receive on
2671  *	@length: length to allocate
2672  *
2673  *	Allocate a new &sk_buff and assign it a usage count of one. The
2674  *	buffer has unspecified headroom built in. Users should allocate
2675  *	the headroom they think they need without accounting for the
2676  *	built in space. The built in space is used for optimisations.
2677  *
2678  *	%NULL is returned if there is no free memory. Although this function
2679  *	allocates memory it can be called from an interrupt.
2680  */
2681 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2682 					       unsigned int length)
2683 {
2684 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2685 }
2686 
2687 /* legacy helper around __netdev_alloc_skb() */
2688 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2689 					      gfp_t gfp_mask)
2690 {
2691 	return __netdev_alloc_skb(NULL, length, gfp_mask);
2692 }
2693 
2694 /* legacy helper around netdev_alloc_skb() */
2695 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2696 {
2697 	return netdev_alloc_skb(NULL, length);
2698 }
2699 
2700 
2701 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2702 		unsigned int length, gfp_t gfp)
2703 {
2704 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2705 
2706 	if (NET_IP_ALIGN && skb)
2707 		skb_reserve(skb, NET_IP_ALIGN);
2708 	return skb;
2709 }
2710 
2711 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2712 		unsigned int length)
2713 {
2714 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2715 }
2716 
2717 static inline void skb_free_frag(void *addr)
2718 {
2719 	page_frag_free(addr);
2720 }
2721 
2722 void *napi_alloc_frag(unsigned int fragsz);
2723 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2724 				 unsigned int length, gfp_t gfp_mask);
2725 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2726 					     unsigned int length)
2727 {
2728 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2729 }
2730 void napi_consume_skb(struct sk_buff *skb, int budget);
2731 
2732 void __kfree_skb_flush(void);
2733 void __kfree_skb_defer(struct sk_buff *skb);
2734 
2735 /**
2736  * __dev_alloc_pages - allocate page for network Rx
2737  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2738  * @order: size of the allocation
2739  *
2740  * Allocate a new page.
2741  *
2742  * %NULL is returned if there is no free memory.
2743 */
2744 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2745 					     unsigned int order)
2746 {
2747 	/* This piece of code contains several assumptions.
2748 	 * 1.  This is for device Rx, therefor a cold page is preferred.
2749 	 * 2.  The expectation is the user wants a compound page.
2750 	 * 3.  If requesting a order 0 page it will not be compound
2751 	 *     due to the check to see if order has a value in prep_new_page
2752 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2753 	 *     code in gfp_to_alloc_flags that should be enforcing this.
2754 	 */
2755 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
2756 
2757 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2758 }
2759 
2760 static inline struct page *dev_alloc_pages(unsigned int order)
2761 {
2762 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2763 }
2764 
2765 /**
2766  * __dev_alloc_page - allocate a page for network Rx
2767  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2768  *
2769  * Allocate a new page.
2770  *
2771  * %NULL is returned if there is no free memory.
2772  */
2773 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2774 {
2775 	return __dev_alloc_pages(gfp_mask, 0);
2776 }
2777 
2778 static inline struct page *dev_alloc_page(void)
2779 {
2780 	return dev_alloc_pages(0);
2781 }
2782 
2783 /**
2784  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2785  *	@page: The page that was allocated from skb_alloc_page
2786  *	@skb: The skb that may need pfmemalloc set
2787  */
2788 static inline void skb_propagate_pfmemalloc(struct page *page,
2789 					     struct sk_buff *skb)
2790 {
2791 	if (page_is_pfmemalloc(page))
2792 		skb->pfmemalloc = true;
2793 }
2794 
2795 /**
2796  * skb_frag_page - retrieve the page referred to by a paged fragment
2797  * @frag: the paged fragment
2798  *
2799  * Returns the &struct page associated with @frag.
2800  */
2801 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2802 {
2803 	return frag->page.p;
2804 }
2805 
2806 /**
2807  * __skb_frag_ref - take an addition reference on a paged fragment.
2808  * @frag: the paged fragment
2809  *
2810  * Takes an additional reference on the paged fragment @frag.
2811  */
2812 static inline void __skb_frag_ref(skb_frag_t *frag)
2813 {
2814 	get_page(skb_frag_page(frag));
2815 }
2816 
2817 /**
2818  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2819  * @skb: the buffer
2820  * @f: the fragment offset.
2821  *
2822  * Takes an additional reference on the @f'th paged fragment of @skb.
2823  */
2824 static inline void skb_frag_ref(struct sk_buff *skb, int f)
2825 {
2826 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2827 }
2828 
2829 /**
2830  * __skb_frag_unref - release a reference on a paged fragment.
2831  * @frag: the paged fragment
2832  *
2833  * Releases a reference on the paged fragment @frag.
2834  */
2835 static inline void __skb_frag_unref(skb_frag_t *frag)
2836 {
2837 	put_page(skb_frag_page(frag));
2838 }
2839 
2840 /**
2841  * skb_frag_unref - release a reference on a paged fragment of an skb.
2842  * @skb: the buffer
2843  * @f: the fragment offset
2844  *
2845  * Releases a reference on the @f'th paged fragment of @skb.
2846  */
2847 static inline void skb_frag_unref(struct sk_buff *skb, int f)
2848 {
2849 	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2850 }
2851 
2852 /**
2853  * skb_frag_address - gets the address of the data contained in a paged fragment
2854  * @frag: the paged fragment buffer
2855  *
2856  * Returns the address of the data within @frag. The page must already
2857  * be mapped.
2858  */
2859 static inline void *skb_frag_address(const skb_frag_t *frag)
2860 {
2861 	return page_address(skb_frag_page(frag)) + frag->page_offset;
2862 }
2863 
2864 /**
2865  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2866  * @frag: the paged fragment buffer
2867  *
2868  * Returns the address of the data within @frag. Checks that the page
2869  * is mapped and returns %NULL otherwise.
2870  */
2871 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2872 {
2873 	void *ptr = page_address(skb_frag_page(frag));
2874 	if (unlikely(!ptr))
2875 		return NULL;
2876 
2877 	return ptr + frag->page_offset;
2878 }
2879 
2880 /**
2881  * __skb_frag_set_page - sets the page contained in a paged fragment
2882  * @frag: the paged fragment
2883  * @page: the page to set
2884  *
2885  * Sets the fragment @frag to contain @page.
2886  */
2887 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2888 {
2889 	frag->page.p = page;
2890 }
2891 
2892 /**
2893  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2894  * @skb: the buffer
2895  * @f: the fragment offset
2896  * @page: the page to set
2897  *
2898  * Sets the @f'th fragment of @skb to contain @page.
2899  */
2900 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2901 				     struct page *page)
2902 {
2903 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2904 }
2905 
2906 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2907 
2908 /**
2909  * skb_frag_dma_map - maps a paged fragment via the DMA API
2910  * @dev: the device to map the fragment to
2911  * @frag: the paged fragment to map
2912  * @offset: the offset within the fragment (starting at the
2913  *          fragment's own offset)
2914  * @size: the number of bytes to map
2915  * @dir: the direction of the mapping (``PCI_DMA_*``)
2916  *
2917  * Maps the page associated with @frag to @device.
2918  */
2919 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2920 					  const skb_frag_t *frag,
2921 					  size_t offset, size_t size,
2922 					  enum dma_data_direction dir)
2923 {
2924 	return dma_map_page(dev, skb_frag_page(frag),
2925 			    frag->page_offset + offset, size, dir);
2926 }
2927 
2928 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2929 					gfp_t gfp_mask)
2930 {
2931 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2932 }
2933 
2934 
2935 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2936 						  gfp_t gfp_mask)
2937 {
2938 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2939 }
2940 
2941 
2942 /**
2943  *	skb_clone_writable - is the header of a clone writable
2944  *	@skb: buffer to check
2945  *	@len: length up to which to write
2946  *
2947  *	Returns true if modifying the header part of the cloned buffer
2948  *	does not requires the data to be copied.
2949  */
2950 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2951 {
2952 	return !skb_header_cloned(skb) &&
2953 	       skb_headroom(skb) + len <= skb->hdr_len;
2954 }
2955 
2956 static inline int skb_try_make_writable(struct sk_buff *skb,
2957 					unsigned int write_len)
2958 {
2959 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
2960 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2961 }
2962 
2963 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2964 			    int cloned)
2965 {
2966 	int delta = 0;
2967 
2968 	if (headroom > skb_headroom(skb))
2969 		delta = headroom - skb_headroom(skb);
2970 
2971 	if (delta || cloned)
2972 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2973 					GFP_ATOMIC);
2974 	return 0;
2975 }
2976 
2977 /**
2978  *	skb_cow - copy header of skb when it is required
2979  *	@skb: buffer to cow
2980  *	@headroom: needed headroom
2981  *
2982  *	If the skb passed lacks sufficient headroom or its data part
2983  *	is shared, data is reallocated. If reallocation fails, an error
2984  *	is returned and original skb is not changed.
2985  *
2986  *	The result is skb with writable area skb->head...skb->tail
2987  *	and at least @headroom of space at head.
2988  */
2989 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2990 {
2991 	return __skb_cow(skb, headroom, skb_cloned(skb));
2992 }
2993 
2994 /**
2995  *	skb_cow_head - skb_cow but only making the head writable
2996  *	@skb: buffer to cow
2997  *	@headroom: needed headroom
2998  *
2999  *	This function is identical to skb_cow except that we replace the
3000  *	skb_cloned check by skb_header_cloned.  It should be used when
3001  *	you only need to push on some header and do not need to modify
3002  *	the data.
3003  */
3004 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3005 {
3006 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
3007 }
3008 
3009 /**
3010  *	skb_padto	- pad an skbuff up to a minimal size
3011  *	@skb: buffer to pad
3012  *	@len: minimal length
3013  *
3014  *	Pads up a buffer to ensure the trailing bytes exist and are
3015  *	blanked. If the buffer already contains sufficient data it
3016  *	is untouched. Otherwise it is extended. Returns zero on
3017  *	success. The skb is freed on error.
3018  */
3019 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3020 {
3021 	unsigned int size = skb->len;
3022 	if (likely(size >= len))
3023 		return 0;
3024 	return skb_pad(skb, len - size);
3025 }
3026 
3027 /**
3028  *	__skb_put_padto - increase size and pad an skbuff up to a minimal size
3029  *	@skb: buffer to pad
3030  *	@len: minimal length
3031  *	@free_on_error: free buffer on error
3032  *
3033  *	Pads up a buffer to ensure the trailing bytes exist and are
3034  *	blanked. If the buffer already contains sufficient data it
3035  *	is untouched. Otherwise it is extended. Returns zero on
3036  *	success. The skb is freed on error if @free_on_error is true.
3037  */
3038 static inline int __skb_put_padto(struct sk_buff *skb, unsigned int len,
3039 				  bool free_on_error)
3040 {
3041 	unsigned int size = skb->len;
3042 
3043 	if (unlikely(size < len)) {
3044 		len -= size;
3045 		if (__skb_pad(skb, len, free_on_error))
3046 			return -ENOMEM;
3047 		__skb_put(skb, len);
3048 	}
3049 	return 0;
3050 }
3051 
3052 /**
3053  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3054  *	@skb: buffer to pad
3055  *	@len: minimal length
3056  *
3057  *	Pads up a buffer to ensure the trailing bytes exist and are
3058  *	blanked. If the buffer already contains sufficient data it
3059  *	is untouched. Otherwise it is extended. Returns zero on
3060  *	success. The skb is freed on error.
3061  */
3062 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
3063 {
3064 	return __skb_put_padto(skb, len, true);
3065 }
3066 
3067 static inline int skb_add_data(struct sk_buff *skb,
3068 			       struct iov_iter *from, int copy)
3069 {
3070 	const int off = skb->len;
3071 
3072 	if (skb->ip_summed == CHECKSUM_NONE) {
3073 		__wsum csum = 0;
3074 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3075 					         &csum, from)) {
3076 			skb->csum = csum_block_add(skb->csum, csum, off);
3077 			return 0;
3078 		}
3079 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3080 		return 0;
3081 
3082 	__skb_trim(skb, off);
3083 	return -EFAULT;
3084 }
3085 
3086 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3087 				    const struct page *page, int off)
3088 {
3089 	if (skb_zcopy(skb))
3090 		return false;
3091 	if (i) {
3092 		const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
3093 
3094 		return page == skb_frag_page(frag) &&
3095 		       off == frag->page_offset + skb_frag_size(frag);
3096 	}
3097 	return false;
3098 }
3099 
3100 static inline int __skb_linearize(struct sk_buff *skb)
3101 {
3102 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3103 }
3104 
3105 /**
3106  *	skb_linearize - convert paged skb to linear one
3107  *	@skb: buffer to linarize
3108  *
3109  *	If there is no free memory -ENOMEM is returned, otherwise zero
3110  *	is returned and the old skb data released.
3111  */
3112 static inline int skb_linearize(struct sk_buff *skb)
3113 {
3114 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3115 }
3116 
3117 /**
3118  * skb_has_shared_frag - can any frag be overwritten
3119  * @skb: buffer to test
3120  *
3121  * Return true if the skb has at least one frag that might be modified
3122  * by an external entity (as in vmsplice()/sendfile())
3123  */
3124 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3125 {
3126 	return skb_is_nonlinear(skb) &&
3127 	       skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
3128 }
3129 
3130 /**
3131  *	skb_linearize_cow - make sure skb is linear and writable
3132  *	@skb: buffer to process
3133  *
3134  *	If there is no free memory -ENOMEM is returned, otherwise zero
3135  *	is returned and the old skb data released.
3136  */
3137 static inline int skb_linearize_cow(struct sk_buff *skb)
3138 {
3139 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3140 	       __skb_linearize(skb) : 0;
3141 }
3142 
3143 static __always_inline void
3144 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3145 		     unsigned int off)
3146 {
3147 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3148 		skb->csum = csum_block_sub(skb->csum,
3149 					   csum_partial(start, len, 0), off);
3150 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3151 		 skb_checksum_start_offset(skb) < 0)
3152 		skb->ip_summed = CHECKSUM_NONE;
3153 }
3154 
3155 /**
3156  *	skb_postpull_rcsum - update checksum for received skb after pull
3157  *	@skb: buffer to update
3158  *	@start: start of data before pull
3159  *	@len: length of data pulled
3160  *
3161  *	After doing a pull on a received packet, you need to call this to
3162  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3163  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3164  */
3165 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3166 				      const void *start, unsigned int len)
3167 {
3168 	__skb_postpull_rcsum(skb, start, len, 0);
3169 }
3170 
3171 static __always_inline void
3172 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3173 		     unsigned int off)
3174 {
3175 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3176 		skb->csum = csum_block_add(skb->csum,
3177 					   csum_partial(start, len, 0), off);
3178 }
3179 
3180 /**
3181  *	skb_postpush_rcsum - update checksum for received skb after push
3182  *	@skb: buffer to update
3183  *	@start: start of data after push
3184  *	@len: length of data pushed
3185  *
3186  *	After doing a push on a received packet, you need to call this to
3187  *	update the CHECKSUM_COMPLETE checksum.
3188  */
3189 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3190 				      const void *start, unsigned int len)
3191 {
3192 	__skb_postpush_rcsum(skb, start, len, 0);
3193 }
3194 
3195 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3196 
3197 /**
3198  *	skb_push_rcsum - push skb and update receive checksum
3199  *	@skb: buffer to update
3200  *	@len: length of data pulled
3201  *
3202  *	This function performs an skb_push on the packet and updates
3203  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3204  *	receive path processing instead of skb_push unless you know
3205  *	that the checksum difference is zero (e.g., a valid IP header)
3206  *	or you are setting ip_summed to CHECKSUM_NONE.
3207  */
3208 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3209 {
3210 	skb_push(skb, len);
3211 	skb_postpush_rcsum(skb, skb->data, len);
3212 	return skb->data;
3213 }
3214 
3215 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3216 /**
3217  *	pskb_trim_rcsum - trim received skb and update checksum
3218  *	@skb: buffer to trim
3219  *	@len: new length
3220  *
3221  *	This is exactly the same as pskb_trim except that it ensures the
3222  *	checksum of received packets are still valid after the operation.
3223  *	It can change skb pointers.
3224  */
3225 
3226 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3227 {
3228 	if (likely(len >= skb->len))
3229 		return 0;
3230 	return pskb_trim_rcsum_slow(skb, len);
3231 }
3232 
3233 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3234 {
3235 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3236 		skb->ip_summed = CHECKSUM_NONE;
3237 	__skb_trim(skb, len);
3238 	return 0;
3239 }
3240 
3241 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3242 {
3243 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3244 		skb->ip_summed = CHECKSUM_NONE;
3245 	return __skb_grow(skb, len);
3246 }
3247 
3248 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3249 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3250 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3251 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3252 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3253 
3254 #define skb_queue_walk(queue, skb) \
3255 		for (skb = (queue)->next;					\
3256 		     skb != (struct sk_buff *)(queue);				\
3257 		     skb = skb->next)
3258 
3259 #define skb_queue_walk_safe(queue, skb, tmp)					\
3260 		for (skb = (queue)->next, tmp = skb->next;			\
3261 		     skb != (struct sk_buff *)(queue);				\
3262 		     skb = tmp, tmp = skb->next)
3263 
3264 #define skb_queue_walk_from(queue, skb)						\
3265 		for (; skb != (struct sk_buff *)(queue);			\
3266 		     skb = skb->next)
3267 
3268 #define skb_rbtree_walk(skb, root)						\
3269 		for (skb = skb_rb_first(root); skb != NULL;			\
3270 		     skb = skb_rb_next(skb))
3271 
3272 #define skb_rbtree_walk_from(skb)						\
3273 		for (; skb != NULL;						\
3274 		     skb = skb_rb_next(skb))
3275 
3276 #define skb_rbtree_walk_from_safe(skb, tmp)					\
3277 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
3278 		     skb = tmp)
3279 
3280 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3281 		for (tmp = skb->next;						\
3282 		     skb != (struct sk_buff *)(queue);				\
3283 		     skb = tmp, tmp = skb->next)
3284 
3285 #define skb_queue_reverse_walk(queue, skb) \
3286 		for (skb = (queue)->prev;					\
3287 		     skb != (struct sk_buff *)(queue);				\
3288 		     skb = skb->prev)
3289 
3290 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3291 		for (skb = (queue)->prev, tmp = skb->prev;			\
3292 		     skb != (struct sk_buff *)(queue);				\
3293 		     skb = tmp, tmp = skb->prev)
3294 
3295 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3296 		for (tmp = skb->prev;						\
3297 		     skb != (struct sk_buff *)(queue);				\
3298 		     skb = tmp, tmp = skb->prev)
3299 
3300 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3301 {
3302 	return skb_shinfo(skb)->frag_list != NULL;
3303 }
3304 
3305 static inline void skb_frag_list_init(struct sk_buff *skb)
3306 {
3307 	skb_shinfo(skb)->frag_list = NULL;
3308 }
3309 
3310 #define skb_walk_frags(skb, iter)	\
3311 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3312 
3313 
3314 int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
3315 				const struct sk_buff *skb);
3316 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3317 					  struct sk_buff_head *queue,
3318 					  unsigned int flags,
3319 					  void (*destructor)(struct sock *sk,
3320 							   struct sk_buff *skb),
3321 					  int *peeked, int *off, int *err,
3322 					  struct sk_buff **last);
3323 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
3324 					void (*destructor)(struct sock *sk,
3325 							   struct sk_buff *skb),
3326 					int *peeked, int *off, int *err,
3327 					struct sk_buff **last);
3328 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
3329 				    void (*destructor)(struct sock *sk,
3330 						       struct sk_buff *skb),
3331 				    int *peeked, int *off, int *err);
3332 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3333 				  int *err);
3334 __poll_t datagram_poll(struct file *file, struct socket *sock,
3335 			   struct poll_table_struct *wait);
3336 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3337 			   struct iov_iter *to, int size);
3338 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3339 					struct msghdr *msg, int size)
3340 {
3341 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3342 }
3343 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3344 				   struct msghdr *msg);
3345 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3346 			   struct iov_iter *to, int len,
3347 			   struct ahash_request *hash);
3348 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3349 				 struct iov_iter *from, int len);
3350 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3351 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3352 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3353 static inline void skb_free_datagram_locked(struct sock *sk,
3354 					    struct sk_buff *skb)
3355 {
3356 	__skb_free_datagram_locked(sk, skb, 0);
3357 }
3358 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3359 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3360 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3361 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3362 			      int len, __wsum csum);
3363 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3364 		    struct pipe_inode_info *pipe, unsigned int len,
3365 		    unsigned int flags);
3366 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3367 			 int len);
3368 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3369 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3370 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3371 		 int len, int hlen);
3372 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3373 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3374 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3375 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3376 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3377 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3378 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3379 int skb_ensure_writable(struct sk_buff *skb, int write_len);
3380 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3381 int skb_vlan_pop(struct sk_buff *skb);
3382 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3383 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3384 			     gfp_t gfp);
3385 
3386 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3387 {
3388 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3389 }
3390 
3391 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3392 {
3393 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3394 }
3395 
3396 struct skb_checksum_ops {
3397 	__wsum (*update)(const void *mem, int len, __wsum wsum);
3398 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3399 };
3400 
3401 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3402 
3403 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3404 		      __wsum csum, const struct skb_checksum_ops *ops);
3405 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3406 		    __wsum csum);
3407 
3408 static inline void * __must_check
3409 __skb_header_pointer(const struct sk_buff *skb, int offset,
3410 		     int len, void *data, int hlen, void *buffer)
3411 {
3412 	if (hlen - offset >= len)
3413 		return data + offset;
3414 
3415 	if (!skb ||
3416 	    skb_copy_bits(skb, offset, buffer, len) < 0)
3417 		return NULL;
3418 
3419 	return buffer;
3420 }
3421 
3422 static inline void * __must_check
3423 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3424 {
3425 	return __skb_header_pointer(skb, offset, len, skb->data,
3426 				    skb_headlen(skb), buffer);
3427 }
3428 
3429 /**
3430  *	skb_needs_linearize - check if we need to linearize a given skb
3431  *			      depending on the given device features.
3432  *	@skb: socket buffer to check
3433  *	@features: net device features
3434  *
3435  *	Returns true if either:
3436  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
3437  *	2. skb is fragmented and the device does not support SG.
3438  */
3439 static inline bool skb_needs_linearize(struct sk_buff *skb,
3440 				       netdev_features_t features)
3441 {
3442 	return skb_is_nonlinear(skb) &&
3443 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3444 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3445 }
3446 
3447 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3448 					     void *to,
3449 					     const unsigned int len)
3450 {
3451 	memcpy(to, skb->data, len);
3452 }
3453 
3454 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3455 						    const int offset, void *to,
3456 						    const unsigned int len)
3457 {
3458 	memcpy(to, skb->data + offset, len);
3459 }
3460 
3461 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3462 					   const void *from,
3463 					   const unsigned int len)
3464 {
3465 	memcpy(skb->data, from, len);
3466 }
3467 
3468 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3469 						  const int offset,
3470 						  const void *from,
3471 						  const unsigned int len)
3472 {
3473 	memcpy(skb->data + offset, from, len);
3474 }
3475 
3476 void skb_init(void);
3477 
3478 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3479 {
3480 	return skb->tstamp;
3481 }
3482 
3483 /**
3484  *	skb_get_timestamp - get timestamp from a skb
3485  *	@skb: skb to get stamp from
3486  *	@stamp: pointer to struct __kernel_old_timeval to store stamp in
3487  *
3488  *	Timestamps are stored in the skb as offsets to a base timestamp.
3489  *	This function converts the offset back to a struct timeval and stores
3490  *	it in stamp.
3491  */
3492 static inline void skb_get_timestamp(const struct sk_buff *skb,
3493 				     struct __kernel_old_timeval *stamp)
3494 {
3495 	*stamp = ns_to_kernel_old_timeval(skb->tstamp);
3496 }
3497 
3498 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
3499 					 struct __kernel_sock_timeval *stamp)
3500 {
3501 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3502 
3503 	stamp->tv_sec = ts.tv_sec;
3504 	stamp->tv_usec = ts.tv_nsec / 1000;
3505 }
3506 
3507 static inline void skb_get_timestampns(const struct sk_buff *skb,
3508 				       struct timespec *stamp)
3509 {
3510 	*stamp = ktime_to_timespec(skb->tstamp);
3511 }
3512 
3513 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
3514 					   struct __kernel_timespec *stamp)
3515 {
3516 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3517 
3518 	stamp->tv_sec = ts.tv_sec;
3519 	stamp->tv_nsec = ts.tv_nsec;
3520 }
3521 
3522 static inline void __net_timestamp(struct sk_buff *skb)
3523 {
3524 	skb->tstamp = ktime_get_real();
3525 }
3526 
3527 static inline ktime_t net_timedelta(ktime_t t)
3528 {
3529 	return ktime_sub(ktime_get_real(), t);
3530 }
3531 
3532 static inline ktime_t net_invalid_timestamp(void)
3533 {
3534 	return 0;
3535 }
3536 
3537 static inline u8 skb_metadata_len(const struct sk_buff *skb)
3538 {
3539 	return skb_shinfo(skb)->meta_len;
3540 }
3541 
3542 static inline void *skb_metadata_end(const struct sk_buff *skb)
3543 {
3544 	return skb_mac_header(skb);
3545 }
3546 
3547 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3548 					  const struct sk_buff *skb_b,
3549 					  u8 meta_len)
3550 {
3551 	const void *a = skb_metadata_end(skb_a);
3552 	const void *b = skb_metadata_end(skb_b);
3553 	/* Using more efficient varaiant than plain call to memcmp(). */
3554 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3555 	u64 diffs = 0;
3556 
3557 	switch (meta_len) {
3558 #define __it(x, op) (x -= sizeof(u##op))
3559 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3560 	case 32: diffs |= __it_diff(a, b, 64);
3561 		 /* fall through */
3562 	case 24: diffs |= __it_diff(a, b, 64);
3563 		 /* fall through */
3564 	case 16: diffs |= __it_diff(a, b, 64);
3565 		 /* fall through */
3566 	case  8: diffs |= __it_diff(a, b, 64);
3567 		break;
3568 	case 28: diffs |= __it_diff(a, b, 64);
3569 		 /* fall through */
3570 	case 20: diffs |= __it_diff(a, b, 64);
3571 		 /* fall through */
3572 	case 12: diffs |= __it_diff(a, b, 64);
3573 		 /* fall through */
3574 	case  4: diffs |= __it_diff(a, b, 32);
3575 		break;
3576 	}
3577 	return diffs;
3578 #else
3579 	return memcmp(a - meta_len, b - meta_len, meta_len);
3580 #endif
3581 }
3582 
3583 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3584 					const struct sk_buff *skb_b)
3585 {
3586 	u8 len_a = skb_metadata_len(skb_a);
3587 	u8 len_b = skb_metadata_len(skb_b);
3588 
3589 	if (!(len_a | len_b))
3590 		return false;
3591 
3592 	return len_a != len_b ?
3593 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
3594 }
3595 
3596 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3597 {
3598 	skb_shinfo(skb)->meta_len = meta_len;
3599 }
3600 
3601 static inline void skb_metadata_clear(struct sk_buff *skb)
3602 {
3603 	skb_metadata_set(skb, 0);
3604 }
3605 
3606 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3607 
3608 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3609 
3610 void skb_clone_tx_timestamp(struct sk_buff *skb);
3611 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3612 
3613 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3614 
3615 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3616 {
3617 }
3618 
3619 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3620 {
3621 	return false;
3622 }
3623 
3624 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3625 
3626 /**
3627  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3628  *
3629  * PHY drivers may accept clones of transmitted packets for
3630  * timestamping via their phy_driver.txtstamp method. These drivers
3631  * must call this function to return the skb back to the stack with a
3632  * timestamp.
3633  *
3634  * @skb: clone of the the original outgoing packet
3635  * @hwtstamps: hardware time stamps
3636  *
3637  */
3638 void skb_complete_tx_timestamp(struct sk_buff *skb,
3639 			       struct skb_shared_hwtstamps *hwtstamps);
3640 
3641 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3642 		     struct skb_shared_hwtstamps *hwtstamps,
3643 		     struct sock *sk, int tstype);
3644 
3645 /**
3646  * skb_tstamp_tx - queue clone of skb with send time stamps
3647  * @orig_skb:	the original outgoing packet
3648  * @hwtstamps:	hardware time stamps, may be NULL if not available
3649  *
3650  * If the skb has a socket associated, then this function clones the
3651  * skb (thus sharing the actual data and optional structures), stores
3652  * the optional hardware time stamping information (if non NULL) or
3653  * generates a software time stamp (otherwise), then queues the clone
3654  * to the error queue of the socket.  Errors are silently ignored.
3655  */
3656 void skb_tstamp_tx(struct sk_buff *orig_skb,
3657 		   struct skb_shared_hwtstamps *hwtstamps);
3658 
3659 /**
3660  * skb_tx_timestamp() - Driver hook for transmit timestamping
3661  *
3662  * Ethernet MAC Drivers should call this function in their hard_xmit()
3663  * function immediately before giving the sk_buff to the MAC hardware.
3664  *
3665  * Specifically, one should make absolutely sure that this function is
3666  * called before TX completion of this packet can trigger.  Otherwise
3667  * the packet could potentially already be freed.
3668  *
3669  * @skb: A socket buffer.
3670  */
3671 static inline void skb_tx_timestamp(struct sk_buff *skb)
3672 {
3673 	skb_clone_tx_timestamp(skb);
3674 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3675 		skb_tstamp_tx(skb, NULL);
3676 }
3677 
3678 /**
3679  * skb_complete_wifi_ack - deliver skb with wifi status
3680  *
3681  * @skb: the original outgoing packet
3682  * @acked: ack status
3683  *
3684  */
3685 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3686 
3687 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3688 __sum16 __skb_checksum_complete(struct sk_buff *skb);
3689 
3690 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3691 {
3692 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3693 		skb->csum_valid ||
3694 		(skb->ip_summed == CHECKSUM_PARTIAL &&
3695 		 skb_checksum_start_offset(skb) >= 0));
3696 }
3697 
3698 /**
3699  *	skb_checksum_complete - Calculate checksum of an entire packet
3700  *	@skb: packet to process
3701  *
3702  *	This function calculates the checksum over the entire packet plus
3703  *	the value of skb->csum.  The latter can be used to supply the
3704  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
3705  *	checksum.
3706  *
3707  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
3708  *	this function can be used to verify that checksum on received
3709  *	packets.  In that case the function should return zero if the
3710  *	checksum is correct.  In particular, this function will return zero
3711  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3712  *	hardware has already verified the correctness of the checksum.
3713  */
3714 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3715 {
3716 	return skb_csum_unnecessary(skb) ?
3717 	       0 : __skb_checksum_complete(skb);
3718 }
3719 
3720 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3721 {
3722 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3723 		if (skb->csum_level == 0)
3724 			skb->ip_summed = CHECKSUM_NONE;
3725 		else
3726 			skb->csum_level--;
3727 	}
3728 }
3729 
3730 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3731 {
3732 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3733 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3734 			skb->csum_level++;
3735 	} else if (skb->ip_summed == CHECKSUM_NONE) {
3736 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3737 		skb->csum_level = 0;
3738 	}
3739 }
3740 
3741 /* Check if we need to perform checksum complete validation.
3742  *
3743  * Returns true if checksum complete is needed, false otherwise
3744  * (either checksum is unnecessary or zero checksum is allowed).
3745  */
3746 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3747 						  bool zero_okay,
3748 						  __sum16 check)
3749 {
3750 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3751 		skb->csum_valid = 1;
3752 		__skb_decr_checksum_unnecessary(skb);
3753 		return false;
3754 	}
3755 
3756 	return true;
3757 }
3758 
3759 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
3760  * in checksum_init.
3761  */
3762 #define CHECKSUM_BREAK 76
3763 
3764 /* Unset checksum-complete
3765  *
3766  * Unset checksum complete can be done when packet is being modified
3767  * (uncompressed for instance) and checksum-complete value is
3768  * invalidated.
3769  */
3770 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3771 {
3772 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3773 		skb->ip_summed = CHECKSUM_NONE;
3774 }
3775 
3776 /* Validate (init) checksum based on checksum complete.
3777  *
3778  * Return values:
3779  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
3780  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3781  *	checksum is stored in skb->csum for use in __skb_checksum_complete
3782  *   non-zero: value of invalid checksum
3783  *
3784  */
3785 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3786 						       bool complete,
3787 						       __wsum psum)
3788 {
3789 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
3790 		if (!csum_fold(csum_add(psum, skb->csum))) {
3791 			skb->csum_valid = 1;
3792 			return 0;
3793 		}
3794 	}
3795 
3796 	skb->csum = psum;
3797 
3798 	if (complete || skb->len <= CHECKSUM_BREAK) {
3799 		__sum16 csum;
3800 
3801 		csum = __skb_checksum_complete(skb);
3802 		skb->csum_valid = !csum;
3803 		return csum;
3804 	}
3805 
3806 	return 0;
3807 }
3808 
3809 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3810 {
3811 	return 0;
3812 }
3813 
3814 /* Perform checksum validate (init). Note that this is a macro since we only
3815  * want to calculate the pseudo header which is an input function if necessary.
3816  * First we try to validate without any computation (checksum unnecessary) and
3817  * then calculate based on checksum complete calling the function to compute
3818  * pseudo header.
3819  *
3820  * Return values:
3821  *   0: checksum is validated or try to in skb_checksum_complete
3822  *   non-zero: value of invalid checksum
3823  */
3824 #define __skb_checksum_validate(skb, proto, complete,			\
3825 				zero_okay, check, compute_pseudo)	\
3826 ({									\
3827 	__sum16 __ret = 0;						\
3828 	skb->csum_valid = 0;						\
3829 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
3830 		__ret = __skb_checksum_validate_complete(skb,		\
3831 				complete, compute_pseudo(skb, proto));	\
3832 	__ret;								\
3833 })
3834 
3835 #define skb_checksum_init(skb, proto, compute_pseudo)			\
3836 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3837 
3838 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
3839 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3840 
3841 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
3842 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3843 
3844 #define skb_checksum_validate_zero_check(skb, proto, check,		\
3845 					 compute_pseudo)		\
3846 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
3847 
3848 #define skb_checksum_simple_validate(skb)				\
3849 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3850 
3851 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3852 {
3853 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
3854 }
3855 
3856 static inline void __skb_checksum_convert(struct sk_buff *skb,
3857 					  __sum16 check, __wsum pseudo)
3858 {
3859 	skb->csum = ~pseudo;
3860 	skb->ip_summed = CHECKSUM_COMPLETE;
3861 }
3862 
3863 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo)	\
3864 do {									\
3865 	if (__skb_checksum_convert_check(skb))				\
3866 		__skb_checksum_convert(skb, check,			\
3867 				       compute_pseudo(skb, proto));	\
3868 } while (0)
3869 
3870 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3871 					      u16 start, u16 offset)
3872 {
3873 	skb->ip_summed = CHECKSUM_PARTIAL;
3874 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3875 	skb->csum_offset = offset - start;
3876 }
3877 
3878 /* Update skbuf and packet to reflect the remote checksum offload operation.
3879  * When called, ptr indicates the starting point for skb->csum when
3880  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3881  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3882  */
3883 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
3884 				       int start, int offset, bool nopartial)
3885 {
3886 	__wsum delta;
3887 
3888 	if (!nopartial) {
3889 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
3890 		return;
3891 	}
3892 
3893 	 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3894 		__skb_checksum_complete(skb);
3895 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3896 	}
3897 
3898 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
3899 
3900 	/* Adjust skb->csum since we changed the packet */
3901 	skb->csum = csum_add(skb->csum, delta);
3902 }
3903 
3904 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
3905 {
3906 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
3907 	return (void *)(skb->_nfct & SKB_NFCT_PTRMASK);
3908 #else
3909 	return NULL;
3910 #endif
3911 }
3912 
3913 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3914 void nf_conntrack_destroy(struct nf_conntrack *nfct);
3915 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3916 {
3917 	if (nfct && atomic_dec_and_test(&nfct->use))
3918 		nf_conntrack_destroy(nfct);
3919 }
3920 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3921 {
3922 	if (nfct)
3923 		atomic_inc(&nfct->use);
3924 }
3925 #endif
3926 
3927 #ifdef CONFIG_SKB_EXTENSIONS
3928 enum skb_ext_id {
3929 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3930 	SKB_EXT_BRIDGE_NF,
3931 #endif
3932 #ifdef CONFIG_XFRM
3933 	SKB_EXT_SEC_PATH,
3934 #endif
3935 	SKB_EXT_NUM, /* must be last */
3936 };
3937 
3938 /**
3939  *	struct skb_ext - sk_buff extensions
3940  *	@refcnt: 1 on allocation, deallocated on 0
3941  *	@offset: offset to add to @data to obtain extension address
3942  *	@chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
3943  *	@data: start of extension data, variable sized
3944  *
3945  *	Note: offsets/lengths are stored in chunks of 8 bytes, this allows
3946  *	to use 'u8' types while allowing up to 2kb worth of extension data.
3947  */
3948 struct skb_ext {
3949 	refcount_t refcnt;
3950 	u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
3951 	u8 chunks;		/* same */
3952 	char data[0] __aligned(8);
3953 };
3954 
3955 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
3956 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
3957 void __skb_ext_put(struct skb_ext *ext);
3958 
3959 static inline void skb_ext_put(struct sk_buff *skb)
3960 {
3961 	if (skb->active_extensions)
3962 		__skb_ext_put(skb->extensions);
3963 }
3964 
3965 static inline void __skb_ext_copy(struct sk_buff *dst,
3966 				  const struct sk_buff *src)
3967 {
3968 	dst->active_extensions = src->active_extensions;
3969 
3970 	if (src->active_extensions) {
3971 		struct skb_ext *ext = src->extensions;
3972 
3973 		refcount_inc(&ext->refcnt);
3974 		dst->extensions = ext;
3975 	}
3976 }
3977 
3978 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
3979 {
3980 	skb_ext_put(dst);
3981 	__skb_ext_copy(dst, src);
3982 }
3983 
3984 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
3985 {
3986 	return !!ext->offset[i];
3987 }
3988 
3989 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
3990 {
3991 	return skb->active_extensions & (1 << id);
3992 }
3993 
3994 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
3995 {
3996 	if (skb_ext_exist(skb, id))
3997 		__skb_ext_del(skb, id);
3998 }
3999 
4000 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4001 {
4002 	if (skb_ext_exist(skb, id)) {
4003 		struct skb_ext *ext = skb->extensions;
4004 
4005 		return (void *)ext + (ext->offset[id] << 3);
4006 	}
4007 
4008 	return NULL;
4009 }
4010 #else
4011 static inline void skb_ext_put(struct sk_buff *skb) {}
4012 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4013 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4014 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4015 #endif /* CONFIG_SKB_EXTENSIONS */
4016 
4017 static inline void nf_reset(struct sk_buff *skb)
4018 {
4019 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4020 	nf_conntrack_put(skb_nfct(skb));
4021 	skb->_nfct = 0;
4022 #endif
4023 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4024 	skb_ext_del(skb, SKB_EXT_BRIDGE_NF);
4025 #endif
4026 }
4027 
4028 static inline void nf_reset_trace(struct sk_buff *skb)
4029 {
4030 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4031 	skb->nf_trace = 0;
4032 #endif
4033 }
4034 
4035 static inline void ipvs_reset(struct sk_buff *skb)
4036 {
4037 #if IS_ENABLED(CONFIG_IP_VS)
4038 	skb->ipvs_property = 0;
4039 #endif
4040 }
4041 
4042 /* Note: This doesn't put any conntrack info in dst. */
4043 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4044 			     bool copy)
4045 {
4046 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4047 	dst->_nfct = src->_nfct;
4048 	nf_conntrack_get(skb_nfct(src));
4049 #endif
4050 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4051 	if (copy)
4052 		dst->nf_trace = src->nf_trace;
4053 #endif
4054 }
4055 
4056 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4057 {
4058 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4059 	nf_conntrack_put(skb_nfct(dst));
4060 #endif
4061 	__nf_copy(dst, src, true);
4062 }
4063 
4064 #ifdef CONFIG_NETWORK_SECMARK
4065 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4066 {
4067 	to->secmark = from->secmark;
4068 }
4069 
4070 static inline void skb_init_secmark(struct sk_buff *skb)
4071 {
4072 	skb->secmark = 0;
4073 }
4074 #else
4075 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4076 { }
4077 
4078 static inline void skb_init_secmark(struct sk_buff *skb)
4079 { }
4080 #endif
4081 
4082 static inline int secpath_exists(const struct sk_buff *skb)
4083 {
4084 #ifdef CONFIG_XFRM
4085 	return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4086 #else
4087 	return 0;
4088 #endif
4089 }
4090 
4091 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4092 {
4093 	return !skb->destructor &&
4094 		!secpath_exists(skb) &&
4095 		!skb_nfct(skb) &&
4096 		!skb->_skb_refdst &&
4097 		!skb_has_frag_list(skb);
4098 }
4099 
4100 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4101 {
4102 	skb->queue_mapping = queue_mapping;
4103 }
4104 
4105 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4106 {
4107 	return skb->queue_mapping;
4108 }
4109 
4110 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4111 {
4112 	to->queue_mapping = from->queue_mapping;
4113 }
4114 
4115 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4116 {
4117 	skb->queue_mapping = rx_queue + 1;
4118 }
4119 
4120 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4121 {
4122 	return skb->queue_mapping - 1;
4123 }
4124 
4125 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4126 {
4127 	return skb->queue_mapping != 0;
4128 }
4129 
4130 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4131 {
4132 	skb->dst_pending_confirm = val;
4133 }
4134 
4135 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4136 {
4137 	return skb->dst_pending_confirm != 0;
4138 }
4139 
4140 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4141 {
4142 #ifdef CONFIG_XFRM
4143 	return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4144 #else
4145 	return NULL;
4146 #endif
4147 }
4148 
4149 /* Keeps track of mac header offset relative to skb->head.
4150  * It is useful for TSO of Tunneling protocol. e.g. GRE.
4151  * For non-tunnel skb it points to skb_mac_header() and for
4152  * tunnel skb it points to outer mac header.
4153  * Keeps track of level of encapsulation of network headers.
4154  */
4155 struct skb_gso_cb {
4156 	union {
4157 		int	mac_offset;
4158 		int	data_offset;
4159 	};
4160 	int	encap_level;
4161 	__wsum	csum;
4162 	__u16	csum_start;
4163 };
4164 #define SKB_SGO_CB_OFFSET	32
4165 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
4166 
4167 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4168 {
4169 	return (skb_mac_header(inner_skb) - inner_skb->head) -
4170 		SKB_GSO_CB(inner_skb)->mac_offset;
4171 }
4172 
4173 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4174 {
4175 	int new_headroom, headroom;
4176 	int ret;
4177 
4178 	headroom = skb_headroom(skb);
4179 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4180 	if (ret)
4181 		return ret;
4182 
4183 	new_headroom = skb_headroom(skb);
4184 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4185 	return 0;
4186 }
4187 
4188 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4189 {
4190 	/* Do not update partial checksums if remote checksum is enabled. */
4191 	if (skb->remcsum_offload)
4192 		return;
4193 
4194 	SKB_GSO_CB(skb)->csum = res;
4195 	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4196 }
4197 
4198 /* Compute the checksum for a gso segment. First compute the checksum value
4199  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4200  * then add in skb->csum (checksum from csum_start to end of packet).
4201  * skb->csum and csum_start are then updated to reflect the checksum of the
4202  * resultant packet starting from the transport header-- the resultant checksum
4203  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4204  * header.
4205  */
4206 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4207 {
4208 	unsigned char *csum_start = skb_transport_header(skb);
4209 	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4210 	__wsum partial = SKB_GSO_CB(skb)->csum;
4211 
4212 	SKB_GSO_CB(skb)->csum = res;
4213 	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4214 
4215 	return csum_fold(csum_partial(csum_start, plen, partial));
4216 }
4217 
4218 static inline bool skb_is_gso(const struct sk_buff *skb)
4219 {
4220 	return skb_shinfo(skb)->gso_size;
4221 }
4222 
4223 /* Note: Should be called only if skb_is_gso(skb) is true */
4224 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4225 {
4226 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4227 }
4228 
4229 /* Note: Should be called only if skb_is_gso(skb) is true */
4230 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4231 {
4232 	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4233 }
4234 
4235 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4236 {
4237 	return skb_is_gso(skb) &&
4238 	       skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4239 }
4240 
4241 static inline void skb_gso_reset(struct sk_buff *skb)
4242 {
4243 	skb_shinfo(skb)->gso_size = 0;
4244 	skb_shinfo(skb)->gso_segs = 0;
4245 	skb_shinfo(skb)->gso_type = 0;
4246 }
4247 
4248 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4249 					 u16 increment)
4250 {
4251 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4252 		return;
4253 	shinfo->gso_size += increment;
4254 }
4255 
4256 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4257 					 u16 decrement)
4258 {
4259 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4260 		return;
4261 	shinfo->gso_size -= decrement;
4262 }
4263 
4264 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4265 
4266 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4267 {
4268 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
4269 	 * wanted then gso_type will be set. */
4270 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4271 
4272 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4273 	    unlikely(shinfo->gso_type == 0)) {
4274 		__skb_warn_lro_forwarding(skb);
4275 		return true;
4276 	}
4277 	return false;
4278 }
4279 
4280 static inline void skb_forward_csum(struct sk_buff *skb)
4281 {
4282 	/* Unfortunately we don't support this one.  Any brave souls? */
4283 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4284 		skb->ip_summed = CHECKSUM_NONE;
4285 }
4286 
4287 /**
4288  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4289  * @skb: skb to check
4290  *
4291  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4292  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4293  * use this helper, to document places where we make this assertion.
4294  */
4295 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4296 {
4297 #ifdef DEBUG
4298 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4299 #endif
4300 }
4301 
4302 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4303 
4304 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4305 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4306 				     unsigned int transport_len,
4307 				     __sum16(*skb_chkf)(struct sk_buff *skb));
4308 
4309 /**
4310  * skb_head_is_locked - Determine if the skb->head is locked down
4311  * @skb: skb to check
4312  *
4313  * The head on skbs build around a head frag can be removed if they are
4314  * not cloned.  This function returns true if the skb head is locked down
4315  * due to either being allocated via kmalloc, or by being a clone with
4316  * multiple references to the head.
4317  */
4318 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4319 {
4320 	return !skb->head_frag || skb_cloned(skb);
4321 }
4322 
4323 /* Local Checksum Offload.
4324  * Compute outer checksum based on the assumption that the
4325  * inner checksum will be offloaded later.
4326  * See Documentation/networking/checksum-offloads.txt for
4327  * explanation of how this works.
4328  * Fill in outer checksum adjustment (e.g. with sum of outer
4329  * pseudo-header) before calling.
4330  * Also ensure that inner checksum is in linear data area.
4331  */
4332 static inline __wsum lco_csum(struct sk_buff *skb)
4333 {
4334 	unsigned char *csum_start = skb_checksum_start(skb);
4335 	unsigned char *l4_hdr = skb_transport_header(skb);
4336 	__wsum partial;
4337 
4338 	/* Start with complement of inner checksum adjustment */
4339 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4340 						    skb->csum_offset));
4341 
4342 	/* Add in checksum of our headers (incl. outer checksum
4343 	 * adjustment filled in by caller) and return result.
4344 	 */
4345 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4346 }
4347 
4348 #endif	/* __KERNEL__ */
4349 #endif	/* _LINUX_SKBUFF_H */
4350