1 /* 2 * Definitions for the 'struct sk_buff' memory handlers. 3 * 4 * Authors: 5 * Alan Cox, <[email protected]> 6 * Florian La Roche, <[email protected]> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14 #ifndef _LINUX_SKBUFF_H 15 #define _LINUX_SKBUFF_H 16 17 #include <linux/kernel.h> 18 #include <linux/compiler.h> 19 #include <linux/time.h> 20 #include <linux/bug.h> 21 #include <linux/cache.h> 22 #include <linux/rbtree.h> 23 #include <linux/socket.h> 24 #include <linux/refcount.h> 25 26 #include <linux/atomic.h> 27 #include <asm/types.h> 28 #include <linux/spinlock.h> 29 #include <linux/net.h> 30 #include <linux/textsearch.h> 31 #include <net/checksum.h> 32 #include <linux/rcupdate.h> 33 #include <linux/hrtimer.h> 34 #include <linux/dma-mapping.h> 35 #include <linux/netdev_features.h> 36 #include <linux/sched.h> 37 #include <linux/sched/clock.h> 38 #include <net/flow_dissector.h> 39 #include <linux/splice.h> 40 #include <linux/in6.h> 41 #include <linux/if_packet.h> 42 #include <net/flow.h> 43 44 /* The interface for checksum offload between the stack and networking drivers 45 * is as follows... 46 * 47 * A. IP checksum related features 48 * 49 * Drivers advertise checksum offload capabilities in the features of a device. 50 * From the stack's point of view these are capabilities offered by the driver, 51 * a driver typically only advertises features that it is capable of offloading 52 * to its device. 53 * 54 * The checksum related features are: 55 * 56 * NETIF_F_HW_CSUM - The driver (or its device) is able to compute one 57 * IP (one's complement) checksum for any combination 58 * of protocols or protocol layering. The checksum is 59 * computed and set in a packet per the CHECKSUM_PARTIAL 60 * interface (see below). 61 * 62 * NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain 63 * TCP or UDP packets over IPv4. These are specifically 64 * unencapsulated packets of the form IPv4|TCP or 65 * IPv4|UDP where the Protocol field in the IPv4 header 66 * is TCP or UDP. The IPv4 header may contain IP options 67 * This feature cannot be set in features for a device 68 * with NETIF_F_HW_CSUM also set. This feature is being 69 * DEPRECATED (see below). 70 * 71 * NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain 72 * TCP or UDP packets over IPv6. These are specifically 73 * unencapsulated packets of the form IPv6|TCP or 74 * IPv4|UDP where the Next Header field in the IPv6 75 * header is either TCP or UDP. IPv6 extension headers 76 * are not supported with this feature. This feature 77 * cannot be set in features for a device with 78 * NETIF_F_HW_CSUM also set. This feature is being 79 * DEPRECATED (see below). 80 * 81 * NETIF_F_RXCSUM - Driver (device) performs receive checksum offload. 82 * This flag is used only used to disable the RX checksum 83 * feature for a device. The stack will accept receive 84 * checksum indication in packets received on a device 85 * regardless of whether NETIF_F_RXCSUM is set. 86 * 87 * B. Checksumming of received packets by device. Indication of checksum 88 * verification is in set skb->ip_summed. Possible values are: 89 * 90 * CHECKSUM_NONE: 91 * 92 * Device did not checksum this packet e.g. due to lack of capabilities. 93 * The packet contains full (though not verified) checksum in packet but 94 * not in skb->csum. Thus, skb->csum is undefined in this case. 95 * 96 * CHECKSUM_UNNECESSARY: 97 * 98 * The hardware you're dealing with doesn't calculate the full checksum 99 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums 100 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY 101 * if their checksums are okay. skb->csum is still undefined in this case 102 * though. A driver or device must never modify the checksum field in the 103 * packet even if checksum is verified. 104 * 105 * CHECKSUM_UNNECESSARY is applicable to following protocols: 106 * TCP: IPv6 and IPv4. 107 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a 108 * zero UDP checksum for either IPv4 or IPv6, the networking stack 109 * may perform further validation in this case. 110 * GRE: only if the checksum is present in the header. 111 * SCTP: indicates the CRC in SCTP header has been validated. 112 * FCOE: indicates the CRC in FC frame has been validated. 113 * 114 * skb->csum_level indicates the number of consecutive checksums found in 115 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY. 116 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet 117 * and a device is able to verify the checksums for UDP (possibly zero), 118 * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to 119 * two. If the device were only able to verify the UDP checksum and not 120 * GRE, either because it doesn't support GRE checksum of because GRE 121 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is 122 * not considered in this case). 123 * 124 * CHECKSUM_COMPLETE: 125 * 126 * This is the most generic way. The device supplied checksum of the _whole_ 127 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the 128 * hardware doesn't need to parse L3/L4 headers to implement this. 129 * 130 * Notes: 131 * - Even if device supports only some protocols, but is able to produce 132 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY. 133 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols. 134 * 135 * CHECKSUM_PARTIAL: 136 * 137 * A checksum is set up to be offloaded to a device as described in the 138 * output description for CHECKSUM_PARTIAL. This may occur on a packet 139 * received directly from another Linux OS, e.g., a virtualized Linux kernel 140 * on the same host, or it may be set in the input path in GRO or remote 141 * checksum offload. For the purposes of checksum verification, the checksum 142 * referred to by skb->csum_start + skb->csum_offset and any preceding 143 * checksums in the packet are considered verified. Any checksums in the 144 * packet that are after the checksum being offloaded are not considered to 145 * be verified. 146 * 147 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload 148 * in the skb->ip_summed for a packet. Values are: 149 * 150 * CHECKSUM_PARTIAL: 151 * 152 * The driver is required to checksum the packet as seen by hard_start_xmit() 153 * from skb->csum_start up to the end, and to record/write the checksum at 154 * offset skb->csum_start + skb->csum_offset. A driver may verify that the 155 * csum_start and csum_offset values are valid values given the length and 156 * offset of the packet, however they should not attempt to validate that the 157 * checksum refers to a legitimate transport layer checksum-- it is the 158 * purview of the stack to validate that csum_start and csum_offset are set 159 * correctly. 160 * 161 * When the stack requests checksum offload for a packet, the driver MUST 162 * ensure that the checksum is set correctly. A driver can either offload the 163 * checksum calculation to the device, or call skb_checksum_help (in the case 164 * that the device does not support offload for a particular checksum). 165 * 166 * NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of 167 * NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate 168 * checksum offload capability. 169 * skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based 170 * on network device checksumming capabilities: if a packet does not match 171 * them, skb_checksum_help or skb_crc32c_help (depending on the value of 172 * csum_not_inet, see item D.) is called to resolve the checksum. 173 * 174 * CHECKSUM_NONE: 175 * 176 * The skb was already checksummed by the protocol, or a checksum is not 177 * required. 178 * 179 * CHECKSUM_UNNECESSARY: 180 * 181 * This has the same meaning on as CHECKSUM_NONE for checksum offload on 182 * output. 183 * 184 * CHECKSUM_COMPLETE: 185 * Not used in checksum output. If a driver observes a packet with this value 186 * set in skbuff, if should treat as CHECKSUM_NONE being set. 187 * 188 * D. Non-IP checksum (CRC) offloads 189 * 190 * NETIF_F_SCTP_CRC - This feature indicates that a device is capable of 191 * offloading the SCTP CRC in a packet. To perform this offload the stack 192 * will set set csum_start and csum_offset accordingly, set ip_summed to 193 * CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in 194 * the skbuff that the CHECKSUM_PARTIAL refers to CRC32c. 195 * A driver that supports both IP checksum offload and SCTP CRC32c offload 196 * must verify which offload is configured for a packet by testing the 197 * value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve 198 * CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1. 199 * 200 * NETIF_F_FCOE_CRC - This feature indicates that a device is capable of 201 * offloading the FCOE CRC in a packet. To perform this offload the stack 202 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset 203 * accordingly. Note the there is no indication in the skbuff that the 204 * CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports 205 * both IP checksum offload and FCOE CRC offload must verify which offload 206 * is configured for a packet presumably by inspecting packet headers. 207 * 208 * E. Checksumming on output with GSO. 209 * 210 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload 211 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the 212 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as 213 * part of the GSO operation is implied. If a checksum is being offloaded 214 * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset 215 * are set to refer to the outermost checksum being offload (two offloaded 216 * checksums are possible with UDP encapsulation). 217 */ 218 219 /* Don't change this without changing skb_csum_unnecessary! */ 220 #define CHECKSUM_NONE 0 221 #define CHECKSUM_UNNECESSARY 1 222 #define CHECKSUM_COMPLETE 2 223 #define CHECKSUM_PARTIAL 3 224 225 /* Maximum value in skb->csum_level */ 226 #define SKB_MAX_CSUM_LEVEL 3 227 228 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES) 229 #define SKB_WITH_OVERHEAD(X) \ 230 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 231 #define SKB_MAX_ORDER(X, ORDER) \ 232 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 233 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 234 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 235 236 /* return minimum truesize of one skb containing X bytes of data */ 237 #define SKB_TRUESIZE(X) ((X) + \ 238 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ 239 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 240 241 struct net_device; 242 struct scatterlist; 243 struct pipe_inode_info; 244 struct iov_iter; 245 struct napi_struct; 246 struct bpf_prog; 247 union bpf_attr; 248 struct skb_ext; 249 250 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 251 struct nf_conntrack { 252 atomic_t use; 253 }; 254 #endif 255 256 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 257 struct nf_bridge_info { 258 enum { 259 BRNF_PROTO_UNCHANGED, 260 BRNF_PROTO_8021Q, 261 BRNF_PROTO_PPPOE 262 } orig_proto:8; 263 u8 pkt_otherhost:1; 264 u8 in_prerouting:1; 265 u8 bridged_dnat:1; 266 __u16 frag_max_size; 267 struct net_device *physindev; 268 269 /* always valid & non-NULL from FORWARD on, for physdev match */ 270 struct net_device *physoutdev; 271 union { 272 /* prerouting: detect dnat in orig/reply direction */ 273 __be32 ipv4_daddr; 274 struct in6_addr ipv6_daddr; 275 276 /* after prerouting + nat detected: store original source 277 * mac since neigh resolution overwrites it, only used while 278 * skb is out in neigh layer. 279 */ 280 char neigh_header[8]; 281 }; 282 }; 283 #endif 284 285 struct sk_buff_head { 286 /* These two members must be first. */ 287 struct sk_buff *next; 288 struct sk_buff *prev; 289 290 __u32 qlen; 291 spinlock_t lock; 292 }; 293 294 struct sk_buff; 295 296 /* To allow 64K frame to be packed as single skb without frag_list we 297 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for 298 * buffers which do not start on a page boundary. 299 * 300 * Since GRO uses frags we allocate at least 16 regardless of page 301 * size. 302 */ 303 #if (65536/PAGE_SIZE + 1) < 16 304 #define MAX_SKB_FRAGS 16UL 305 #else 306 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1) 307 #endif 308 extern int sysctl_max_skb_frags; 309 310 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to 311 * segment using its current segmentation instead. 312 */ 313 #define GSO_BY_FRAGS 0xFFFF 314 315 typedef struct skb_frag_struct skb_frag_t; 316 317 struct skb_frag_struct { 318 struct { 319 struct page *p; 320 } page; 321 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536) 322 __u32 page_offset; 323 __u32 size; 324 #else 325 __u16 page_offset; 326 __u16 size; 327 #endif 328 }; 329 330 static inline unsigned int skb_frag_size(const skb_frag_t *frag) 331 { 332 return frag->size; 333 } 334 335 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) 336 { 337 frag->size = size; 338 } 339 340 static inline void skb_frag_size_add(skb_frag_t *frag, int delta) 341 { 342 frag->size += delta; 343 } 344 345 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) 346 { 347 frag->size -= delta; 348 } 349 350 static inline bool skb_frag_must_loop(struct page *p) 351 { 352 #if defined(CONFIG_HIGHMEM) 353 if (PageHighMem(p)) 354 return true; 355 #endif 356 return false; 357 } 358 359 /** 360 * skb_frag_foreach_page - loop over pages in a fragment 361 * 362 * @f: skb frag to operate on 363 * @f_off: offset from start of f->page.p 364 * @f_len: length from f_off to loop over 365 * @p: (temp var) current page 366 * @p_off: (temp var) offset from start of current page, 367 * non-zero only on first page. 368 * @p_len: (temp var) length in current page, 369 * < PAGE_SIZE only on first and last page. 370 * @copied: (temp var) length so far, excluding current p_len. 371 * 372 * A fragment can hold a compound page, in which case per-page 373 * operations, notably kmap_atomic, must be called for each 374 * regular page. 375 */ 376 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \ 377 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \ 378 p_off = (f_off) & (PAGE_SIZE - 1), \ 379 p_len = skb_frag_must_loop(p) ? \ 380 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \ 381 copied = 0; \ 382 copied < f_len; \ 383 copied += p_len, p++, p_off = 0, \ 384 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \ 385 386 #define HAVE_HW_TIME_STAMP 387 388 /** 389 * struct skb_shared_hwtstamps - hardware time stamps 390 * @hwtstamp: hardware time stamp transformed into duration 391 * since arbitrary point in time 392 * 393 * Software time stamps generated by ktime_get_real() are stored in 394 * skb->tstamp. 395 * 396 * hwtstamps can only be compared against other hwtstamps from 397 * the same device. 398 * 399 * This structure is attached to packets as part of the 400 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 401 */ 402 struct skb_shared_hwtstamps { 403 ktime_t hwtstamp; 404 }; 405 406 /* Definitions for tx_flags in struct skb_shared_info */ 407 enum { 408 /* generate hardware time stamp */ 409 SKBTX_HW_TSTAMP = 1 << 0, 410 411 /* generate software time stamp when queueing packet to NIC */ 412 SKBTX_SW_TSTAMP = 1 << 1, 413 414 /* device driver is going to provide hardware time stamp */ 415 SKBTX_IN_PROGRESS = 1 << 2, 416 417 /* device driver supports TX zero-copy buffers */ 418 SKBTX_DEV_ZEROCOPY = 1 << 3, 419 420 /* generate wifi status information (where possible) */ 421 SKBTX_WIFI_STATUS = 1 << 4, 422 423 /* This indicates at least one fragment might be overwritten 424 * (as in vmsplice(), sendfile() ...) 425 * If we need to compute a TX checksum, we'll need to copy 426 * all frags to avoid possible bad checksum 427 */ 428 SKBTX_SHARED_FRAG = 1 << 5, 429 430 /* generate software time stamp when entering packet scheduling */ 431 SKBTX_SCHED_TSTAMP = 1 << 6, 432 }; 433 434 #define SKBTX_ZEROCOPY_FRAG (SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG) 435 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \ 436 SKBTX_SCHED_TSTAMP) 437 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP) 438 439 /* 440 * The callback notifies userspace to release buffers when skb DMA is done in 441 * lower device, the skb last reference should be 0 when calling this. 442 * The zerocopy_success argument is true if zero copy transmit occurred, 443 * false on data copy or out of memory error caused by data copy attempt. 444 * The ctx field is used to track device context. 445 * The desc field is used to track userspace buffer index. 446 */ 447 struct ubuf_info { 448 void (*callback)(struct ubuf_info *, bool zerocopy_success); 449 union { 450 struct { 451 unsigned long desc; 452 void *ctx; 453 }; 454 struct { 455 u32 id; 456 u16 len; 457 u16 zerocopy:1; 458 u32 bytelen; 459 }; 460 }; 461 refcount_t refcnt; 462 463 struct mmpin { 464 struct user_struct *user; 465 unsigned int num_pg; 466 } mmp; 467 }; 468 469 #define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg)) 470 471 int mm_account_pinned_pages(struct mmpin *mmp, size_t size); 472 void mm_unaccount_pinned_pages(struct mmpin *mmp); 473 474 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size); 475 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size, 476 struct ubuf_info *uarg); 477 478 static inline void sock_zerocopy_get(struct ubuf_info *uarg) 479 { 480 refcount_inc(&uarg->refcnt); 481 } 482 483 void sock_zerocopy_put(struct ubuf_info *uarg); 484 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref); 485 486 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success); 487 488 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len); 489 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 490 struct msghdr *msg, int len, 491 struct ubuf_info *uarg); 492 493 /* This data is invariant across clones and lives at 494 * the end of the header data, ie. at skb->end. 495 */ 496 struct skb_shared_info { 497 __u8 __unused; 498 __u8 meta_len; 499 __u8 nr_frags; 500 __u8 tx_flags; 501 unsigned short gso_size; 502 /* Warning: this field is not always filled in (UFO)! */ 503 unsigned short gso_segs; 504 struct sk_buff *frag_list; 505 struct skb_shared_hwtstamps hwtstamps; 506 unsigned int gso_type; 507 u32 tskey; 508 509 /* 510 * Warning : all fields before dataref are cleared in __alloc_skb() 511 */ 512 atomic_t dataref; 513 514 /* Intermediate layers must ensure that destructor_arg 515 * remains valid until skb destructor */ 516 void * destructor_arg; 517 518 /* must be last field, see pskb_expand_head() */ 519 skb_frag_t frags[MAX_SKB_FRAGS]; 520 }; 521 522 /* We divide dataref into two halves. The higher 16 bits hold references 523 * to the payload part of skb->data. The lower 16 bits hold references to 524 * the entire skb->data. A clone of a headerless skb holds the length of 525 * the header in skb->hdr_len. 526 * 527 * All users must obey the rule that the skb->data reference count must be 528 * greater than or equal to the payload reference count. 529 * 530 * Holding a reference to the payload part means that the user does not 531 * care about modifications to the header part of skb->data. 532 */ 533 #define SKB_DATAREF_SHIFT 16 534 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 535 536 537 enum { 538 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */ 539 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */ 540 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */ 541 }; 542 543 enum { 544 SKB_GSO_TCPV4 = 1 << 0, 545 546 /* This indicates the skb is from an untrusted source. */ 547 SKB_GSO_DODGY = 1 << 1, 548 549 /* This indicates the tcp segment has CWR set. */ 550 SKB_GSO_TCP_ECN = 1 << 2, 551 552 SKB_GSO_TCP_FIXEDID = 1 << 3, 553 554 SKB_GSO_TCPV6 = 1 << 4, 555 556 SKB_GSO_FCOE = 1 << 5, 557 558 SKB_GSO_GRE = 1 << 6, 559 560 SKB_GSO_GRE_CSUM = 1 << 7, 561 562 SKB_GSO_IPXIP4 = 1 << 8, 563 564 SKB_GSO_IPXIP6 = 1 << 9, 565 566 SKB_GSO_UDP_TUNNEL = 1 << 10, 567 568 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11, 569 570 SKB_GSO_PARTIAL = 1 << 12, 571 572 SKB_GSO_TUNNEL_REMCSUM = 1 << 13, 573 574 SKB_GSO_SCTP = 1 << 14, 575 576 SKB_GSO_ESP = 1 << 15, 577 578 SKB_GSO_UDP = 1 << 16, 579 580 SKB_GSO_UDP_L4 = 1 << 17, 581 }; 582 583 #if BITS_PER_LONG > 32 584 #define NET_SKBUFF_DATA_USES_OFFSET 1 585 #endif 586 587 #ifdef NET_SKBUFF_DATA_USES_OFFSET 588 typedef unsigned int sk_buff_data_t; 589 #else 590 typedef unsigned char *sk_buff_data_t; 591 #endif 592 593 /** 594 * struct sk_buff - socket buffer 595 * @next: Next buffer in list 596 * @prev: Previous buffer in list 597 * @tstamp: Time we arrived/left 598 * @rbnode: RB tree node, alternative to next/prev for netem/tcp 599 * @sk: Socket we are owned by 600 * @dev: Device we arrived on/are leaving by 601 * @cb: Control buffer. Free for use by every layer. Put private vars here 602 * @_skb_refdst: destination entry (with norefcount bit) 603 * @sp: the security path, used for xfrm 604 * @len: Length of actual data 605 * @data_len: Data length 606 * @mac_len: Length of link layer header 607 * @hdr_len: writable header length of cloned skb 608 * @csum: Checksum (must include start/offset pair) 609 * @csum_start: Offset from skb->head where checksumming should start 610 * @csum_offset: Offset from csum_start where checksum should be stored 611 * @priority: Packet queueing priority 612 * @ignore_df: allow local fragmentation 613 * @cloned: Head may be cloned (check refcnt to be sure) 614 * @ip_summed: Driver fed us an IP checksum 615 * @nohdr: Payload reference only, must not modify header 616 * @pkt_type: Packet class 617 * @fclone: skbuff clone status 618 * @ipvs_property: skbuff is owned by ipvs 619 * @offload_fwd_mark: Packet was L2-forwarded in hardware 620 * @offload_l3_fwd_mark: Packet was L3-forwarded in hardware 621 * @tc_skip_classify: do not classify packet. set by IFB device 622 * @tc_at_ingress: used within tc_classify to distinguish in/egress 623 * @tc_redirected: packet was redirected by a tc action 624 * @tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect 625 * @peeked: this packet has been seen already, so stats have been 626 * done for it, don't do them again 627 * @nf_trace: netfilter packet trace flag 628 * @protocol: Packet protocol from driver 629 * @destructor: Destruct function 630 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue) 631 * @_nfct: Associated connection, if any (with nfctinfo bits) 632 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 633 * @skb_iif: ifindex of device we arrived on 634 * @tc_index: Traffic control index 635 * @hash: the packet hash 636 * @queue_mapping: Queue mapping for multiqueue devices 637 * @xmit_more: More SKBs are pending for this queue 638 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves 639 * @active_extensions: active extensions (skb_ext_id types) 640 * @ndisc_nodetype: router type (from link layer) 641 * @ooo_okay: allow the mapping of a socket to a queue to be changed 642 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport 643 * ports. 644 * @sw_hash: indicates hash was computed in software stack 645 * @wifi_acked_valid: wifi_acked was set 646 * @wifi_acked: whether frame was acked on wifi or not 647 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS 648 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL 649 * @dst_pending_confirm: need to confirm neighbour 650 * @decrypted: Decrypted SKB 651 * @napi_id: id of the NAPI struct this skb came from 652 * @secmark: security marking 653 * @mark: Generic packet mark 654 * @vlan_proto: vlan encapsulation protocol 655 * @vlan_tci: vlan tag control information 656 * @inner_protocol: Protocol (encapsulation) 657 * @inner_transport_header: Inner transport layer header (encapsulation) 658 * @inner_network_header: Network layer header (encapsulation) 659 * @inner_mac_header: Link layer header (encapsulation) 660 * @transport_header: Transport layer header 661 * @network_header: Network layer header 662 * @mac_header: Link layer header 663 * @tail: Tail pointer 664 * @end: End pointer 665 * @head: Head of buffer 666 * @data: Data head pointer 667 * @truesize: Buffer size 668 * @users: User count - see {datagram,tcp}.c 669 * @extensions: allocated extensions, valid if active_extensions is nonzero 670 */ 671 672 struct sk_buff { 673 union { 674 struct { 675 /* These two members must be first. */ 676 struct sk_buff *next; 677 struct sk_buff *prev; 678 679 union { 680 struct net_device *dev; 681 /* Some protocols might use this space to store information, 682 * while device pointer would be NULL. 683 * UDP receive path is one user. 684 */ 685 unsigned long dev_scratch; 686 }; 687 }; 688 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */ 689 struct list_head list; 690 }; 691 692 union { 693 struct sock *sk; 694 int ip_defrag_offset; 695 }; 696 697 union { 698 ktime_t tstamp; 699 u64 skb_mstamp_ns; /* earliest departure time */ 700 }; 701 /* 702 * This is the control buffer. It is free to use for every 703 * layer. Please put your private variables there. If you 704 * want to keep them across layers you have to do a skb_clone() 705 * first. This is owned by whoever has the skb queued ATM. 706 */ 707 char cb[48] __aligned(8); 708 709 union { 710 struct { 711 unsigned long _skb_refdst; 712 void (*destructor)(struct sk_buff *skb); 713 }; 714 struct list_head tcp_tsorted_anchor; 715 }; 716 717 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 718 unsigned long _nfct; 719 #endif 720 unsigned int len, 721 data_len; 722 __u16 mac_len, 723 hdr_len; 724 725 /* Following fields are _not_ copied in __copy_skb_header() 726 * Note that queue_mapping is here mostly to fill a hole. 727 */ 728 __u16 queue_mapping; 729 730 /* if you move cloned around you also must adapt those constants */ 731 #ifdef __BIG_ENDIAN_BITFIELD 732 #define CLONED_MASK (1 << 7) 733 #else 734 #define CLONED_MASK 1 735 #endif 736 #define CLONED_OFFSET() offsetof(struct sk_buff, __cloned_offset) 737 738 __u8 __cloned_offset[0]; 739 __u8 cloned:1, 740 nohdr:1, 741 fclone:2, 742 peeked:1, 743 head_frag:1, 744 xmit_more:1, 745 pfmemalloc:1; 746 #ifdef CONFIG_SKB_EXTENSIONS 747 __u8 active_extensions; 748 #endif 749 /* fields enclosed in headers_start/headers_end are copied 750 * using a single memcpy() in __copy_skb_header() 751 */ 752 /* private: */ 753 __u32 headers_start[0]; 754 /* public: */ 755 756 /* if you move pkt_type around you also must adapt those constants */ 757 #ifdef __BIG_ENDIAN_BITFIELD 758 #define PKT_TYPE_MAX (7 << 5) 759 #else 760 #define PKT_TYPE_MAX 7 761 #endif 762 #define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset) 763 764 __u8 __pkt_type_offset[0]; 765 __u8 pkt_type:3; 766 __u8 ignore_df:1; 767 __u8 nf_trace:1; 768 __u8 ip_summed:2; 769 __u8 ooo_okay:1; 770 771 __u8 l4_hash:1; 772 __u8 sw_hash:1; 773 __u8 wifi_acked_valid:1; 774 __u8 wifi_acked:1; 775 __u8 no_fcs:1; 776 /* Indicates the inner headers are valid in the skbuff. */ 777 __u8 encapsulation:1; 778 __u8 encap_hdr_csum:1; 779 __u8 csum_valid:1; 780 781 #ifdef __BIG_ENDIAN_BITFIELD 782 #define PKT_VLAN_PRESENT_BIT 7 783 #else 784 #define PKT_VLAN_PRESENT_BIT 0 785 #endif 786 #define PKT_VLAN_PRESENT_OFFSET() offsetof(struct sk_buff, __pkt_vlan_present_offset) 787 __u8 __pkt_vlan_present_offset[0]; 788 __u8 vlan_present:1; 789 __u8 csum_complete_sw:1; 790 __u8 csum_level:2; 791 __u8 csum_not_inet:1; 792 __u8 dst_pending_confirm:1; 793 #ifdef CONFIG_IPV6_NDISC_NODETYPE 794 __u8 ndisc_nodetype:2; 795 #endif 796 797 __u8 ipvs_property:1; 798 __u8 inner_protocol_type:1; 799 __u8 remcsum_offload:1; 800 #ifdef CONFIG_NET_SWITCHDEV 801 __u8 offload_fwd_mark:1; 802 __u8 offload_l3_fwd_mark:1; 803 #endif 804 #ifdef CONFIG_NET_CLS_ACT 805 __u8 tc_skip_classify:1; 806 __u8 tc_at_ingress:1; 807 __u8 tc_redirected:1; 808 __u8 tc_from_ingress:1; 809 #endif 810 #ifdef CONFIG_TLS_DEVICE 811 __u8 decrypted:1; 812 #endif 813 814 #ifdef CONFIG_NET_SCHED 815 __u16 tc_index; /* traffic control index */ 816 #endif 817 818 union { 819 __wsum csum; 820 struct { 821 __u16 csum_start; 822 __u16 csum_offset; 823 }; 824 }; 825 __u32 priority; 826 int skb_iif; 827 __u32 hash; 828 __be16 vlan_proto; 829 __u16 vlan_tci; 830 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS) 831 union { 832 unsigned int napi_id; 833 unsigned int sender_cpu; 834 }; 835 #endif 836 #ifdef CONFIG_NETWORK_SECMARK 837 __u32 secmark; 838 #endif 839 840 union { 841 __u32 mark; 842 __u32 reserved_tailroom; 843 }; 844 845 union { 846 __be16 inner_protocol; 847 __u8 inner_ipproto; 848 }; 849 850 __u16 inner_transport_header; 851 __u16 inner_network_header; 852 __u16 inner_mac_header; 853 854 __be16 protocol; 855 __u16 transport_header; 856 __u16 network_header; 857 __u16 mac_header; 858 859 /* private: */ 860 __u32 headers_end[0]; 861 /* public: */ 862 863 /* These elements must be at the end, see alloc_skb() for details. */ 864 sk_buff_data_t tail; 865 sk_buff_data_t end; 866 unsigned char *head, 867 *data; 868 unsigned int truesize; 869 refcount_t users; 870 871 #ifdef CONFIG_SKB_EXTENSIONS 872 /* only useable after checking ->active_extensions != 0 */ 873 struct skb_ext *extensions; 874 #endif 875 }; 876 877 #ifdef __KERNEL__ 878 /* 879 * Handling routines are only of interest to the kernel 880 */ 881 882 #define SKB_ALLOC_FCLONE 0x01 883 #define SKB_ALLOC_RX 0x02 884 #define SKB_ALLOC_NAPI 0x04 885 886 /* Returns true if the skb was allocated from PFMEMALLOC reserves */ 887 static inline bool skb_pfmemalloc(const struct sk_buff *skb) 888 { 889 return unlikely(skb->pfmemalloc); 890 } 891 892 /* 893 * skb might have a dst pointer attached, refcounted or not. 894 * _skb_refdst low order bit is set if refcount was _not_ taken 895 */ 896 #define SKB_DST_NOREF 1UL 897 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 898 899 #define SKB_NFCT_PTRMASK ~(7UL) 900 /** 901 * skb_dst - returns skb dst_entry 902 * @skb: buffer 903 * 904 * Returns skb dst_entry, regardless of reference taken or not. 905 */ 906 static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 907 { 908 /* If refdst was not refcounted, check we still are in a 909 * rcu_read_lock section 910 */ 911 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 912 !rcu_read_lock_held() && 913 !rcu_read_lock_bh_held()); 914 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 915 } 916 917 /** 918 * skb_dst_set - sets skb dst 919 * @skb: buffer 920 * @dst: dst entry 921 * 922 * Sets skb dst, assuming a reference was taken on dst and should 923 * be released by skb_dst_drop() 924 */ 925 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 926 { 927 skb->_skb_refdst = (unsigned long)dst; 928 } 929 930 /** 931 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference 932 * @skb: buffer 933 * @dst: dst entry 934 * 935 * Sets skb dst, assuming a reference was not taken on dst. 936 * If dst entry is cached, we do not take reference and dst_release 937 * will be avoided by refdst_drop. If dst entry is not cached, we take 938 * reference, so that last dst_release can destroy the dst immediately. 939 */ 940 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) 941 { 942 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 943 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF; 944 } 945 946 /** 947 * skb_dst_is_noref - Test if skb dst isn't refcounted 948 * @skb: buffer 949 */ 950 static inline bool skb_dst_is_noref(const struct sk_buff *skb) 951 { 952 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 953 } 954 955 static inline struct rtable *skb_rtable(const struct sk_buff *skb) 956 { 957 return (struct rtable *)skb_dst(skb); 958 } 959 960 /* For mangling skb->pkt_type from user space side from applications 961 * such as nft, tc, etc, we only allow a conservative subset of 962 * possible pkt_types to be set. 963 */ 964 static inline bool skb_pkt_type_ok(u32 ptype) 965 { 966 return ptype <= PACKET_OTHERHOST; 967 } 968 969 static inline unsigned int skb_napi_id(const struct sk_buff *skb) 970 { 971 #ifdef CONFIG_NET_RX_BUSY_POLL 972 return skb->napi_id; 973 #else 974 return 0; 975 #endif 976 } 977 978 /* decrement the reference count and return true if we can free the skb */ 979 static inline bool skb_unref(struct sk_buff *skb) 980 { 981 if (unlikely(!skb)) 982 return false; 983 if (likely(refcount_read(&skb->users) == 1)) 984 smp_rmb(); 985 else if (likely(!refcount_dec_and_test(&skb->users))) 986 return false; 987 988 return true; 989 } 990 991 void skb_release_head_state(struct sk_buff *skb); 992 void kfree_skb(struct sk_buff *skb); 993 void kfree_skb_list(struct sk_buff *segs); 994 void skb_tx_error(struct sk_buff *skb); 995 void consume_skb(struct sk_buff *skb); 996 void __consume_stateless_skb(struct sk_buff *skb); 997 void __kfree_skb(struct sk_buff *skb); 998 extern struct kmem_cache *skbuff_head_cache; 999 1000 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); 1001 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 1002 bool *fragstolen, int *delta_truesize); 1003 1004 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags, 1005 int node); 1006 struct sk_buff *__build_skb(void *data, unsigned int frag_size); 1007 struct sk_buff *build_skb(void *data, unsigned int frag_size); 1008 static inline struct sk_buff *alloc_skb(unsigned int size, 1009 gfp_t priority) 1010 { 1011 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 1012 } 1013 1014 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 1015 unsigned long data_len, 1016 int max_page_order, 1017 int *errcode, 1018 gfp_t gfp_mask); 1019 1020 /* Layout of fast clones : [skb1][skb2][fclone_ref] */ 1021 struct sk_buff_fclones { 1022 struct sk_buff skb1; 1023 1024 struct sk_buff skb2; 1025 1026 refcount_t fclone_ref; 1027 }; 1028 1029 /** 1030 * skb_fclone_busy - check if fclone is busy 1031 * @sk: socket 1032 * @skb: buffer 1033 * 1034 * Returns true if skb is a fast clone, and its clone is not freed. 1035 * Some drivers call skb_orphan() in their ndo_start_xmit(), 1036 * so we also check that this didnt happen. 1037 */ 1038 static inline bool skb_fclone_busy(const struct sock *sk, 1039 const struct sk_buff *skb) 1040 { 1041 const struct sk_buff_fclones *fclones; 1042 1043 fclones = container_of(skb, struct sk_buff_fclones, skb1); 1044 1045 return skb->fclone == SKB_FCLONE_ORIG && 1046 refcount_read(&fclones->fclone_ref) > 1 && 1047 fclones->skb2.sk == sk; 1048 } 1049 1050 static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 1051 gfp_t priority) 1052 { 1053 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); 1054 } 1055 1056 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 1057 void skb_headers_offset_update(struct sk_buff *skb, int off); 1058 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); 1059 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority); 1060 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old); 1061 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority); 1062 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1063 gfp_t gfp_mask, bool fclone); 1064 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, 1065 gfp_t gfp_mask) 1066 { 1067 return __pskb_copy_fclone(skb, headroom, gfp_mask, false); 1068 } 1069 1070 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask); 1071 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 1072 unsigned int headroom); 1073 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, 1074 int newtailroom, gfp_t priority); 1075 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 1076 int offset, int len); 1077 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, 1078 int offset, int len); 1079 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer); 1080 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error); 1081 1082 /** 1083 * skb_pad - zero pad the tail of an skb 1084 * @skb: buffer to pad 1085 * @pad: space to pad 1086 * 1087 * Ensure that a buffer is followed by a padding area that is zero 1088 * filled. Used by network drivers which may DMA or transfer data 1089 * beyond the buffer end onto the wire. 1090 * 1091 * May return error in out of memory cases. The skb is freed on error. 1092 */ 1093 static inline int skb_pad(struct sk_buff *skb, int pad) 1094 { 1095 return __skb_pad(skb, pad, true); 1096 } 1097 #define dev_kfree_skb(a) consume_skb(a) 1098 1099 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 1100 int offset, size_t size); 1101 1102 struct skb_seq_state { 1103 __u32 lower_offset; 1104 __u32 upper_offset; 1105 __u32 frag_idx; 1106 __u32 stepped_offset; 1107 struct sk_buff *root_skb; 1108 struct sk_buff *cur_skb; 1109 __u8 *frag_data; 1110 }; 1111 1112 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 1113 unsigned int to, struct skb_seq_state *st); 1114 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 1115 struct skb_seq_state *st); 1116 void skb_abort_seq_read(struct skb_seq_state *st); 1117 1118 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 1119 unsigned int to, struct ts_config *config); 1120 1121 /* 1122 * Packet hash types specify the type of hash in skb_set_hash. 1123 * 1124 * Hash types refer to the protocol layer addresses which are used to 1125 * construct a packet's hash. The hashes are used to differentiate or identify 1126 * flows of the protocol layer for the hash type. Hash types are either 1127 * layer-2 (L2), layer-3 (L3), or layer-4 (L4). 1128 * 1129 * Properties of hashes: 1130 * 1131 * 1) Two packets in different flows have different hash values 1132 * 2) Two packets in the same flow should have the same hash value 1133 * 1134 * A hash at a higher layer is considered to be more specific. A driver should 1135 * set the most specific hash possible. 1136 * 1137 * A driver cannot indicate a more specific hash than the layer at which a hash 1138 * was computed. For instance an L3 hash cannot be set as an L4 hash. 1139 * 1140 * A driver may indicate a hash level which is less specific than the 1141 * actual layer the hash was computed on. For instance, a hash computed 1142 * at L4 may be considered an L3 hash. This should only be done if the 1143 * driver can't unambiguously determine that the HW computed the hash at 1144 * the higher layer. Note that the "should" in the second property above 1145 * permits this. 1146 */ 1147 enum pkt_hash_types { 1148 PKT_HASH_TYPE_NONE, /* Undefined type */ 1149 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */ 1150 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */ 1151 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */ 1152 }; 1153 1154 static inline void skb_clear_hash(struct sk_buff *skb) 1155 { 1156 skb->hash = 0; 1157 skb->sw_hash = 0; 1158 skb->l4_hash = 0; 1159 } 1160 1161 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb) 1162 { 1163 if (!skb->l4_hash) 1164 skb_clear_hash(skb); 1165 } 1166 1167 static inline void 1168 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4) 1169 { 1170 skb->l4_hash = is_l4; 1171 skb->sw_hash = is_sw; 1172 skb->hash = hash; 1173 } 1174 1175 static inline void 1176 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type) 1177 { 1178 /* Used by drivers to set hash from HW */ 1179 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4); 1180 } 1181 1182 static inline void 1183 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4) 1184 { 1185 __skb_set_hash(skb, hash, true, is_l4); 1186 } 1187 1188 void __skb_get_hash(struct sk_buff *skb); 1189 u32 __skb_get_hash_symmetric(const struct sk_buff *skb); 1190 u32 skb_get_poff(const struct sk_buff *skb); 1191 u32 __skb_get_poff(const struct sk_buff *skb, void *data, 1192 const struct flow_keys_basic *keys, int hlen); 1193 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto, 1194 void *data, int hlen_proto); 1195 1196 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb, 1197 int thoff, u8 ip_proto) 1198 { 1199 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0); 1200 } 1201 1202 void skb_flow_dissector_init(struct flow_dissector *flow_dissector, 1203 const struct flow_dissector_key *key, 1204 unsigned int key_count); 1205 1206 #ifdef CONFIG_NET 1207 int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr, 1208 struct bpf_prog *prog); 1209 1210 int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr); 1211 #else 1212 static inline int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr, 1213 struct bpf_prog *prog) 1214 { 1215 return -EOPNOTSUPP; 1216 } 1217 1218 static inline int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr) 1219 { 1220 return -EOPNOTSUPP; 1221 } 1222 #endif 1223 1224 struct bpf_flow_keys; 1225 bool __skb_flow_bpf_dissect(struct bpf_prog *prog, 1226 const struct sk_buff *skb, 1227 struct flow_dissector *flow_dissector, 1228 struct bpf_flow_keys *flow_keys); 1229 bool __skb_flow_dissect(const struct sk_buff *skb, 1230 struct flow_dissector *flow_dissector, 1231 void *target_container, 1232 void *data, __be16 proto, int nhoff, int hlen, 1233 unsigned int flags); 1234 1235 static inline bool skb_flow_dissect(const struct sk_buff *skb, 1236 struct flow_dissector *flow_dissector, 1237 void *target_container, unsigned int flags) 1238 { 1239 return __skb_flow_dissect(skb, flow_dissector, target_container, 1240 NULL, 0, 0, 0, flags); 1241 } 1242 1243 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb, 1244 struct flow_keys *flow, 1245 unsigned int flags) 1246 { 1247 memset(flow, 0, sizeof(*flow)); 1248 return __skb_flow_dissect(skb, &flow_keys_dissector, flow, 1249 NULL, 0, 0, 0, flags); 1250 } 1251 1252 static inline bool 1253 skb_flow_dissect_flow_keys_basic(const struct sk_buff *skb, 1254 struct flow_keys_basic *flow, void *data, 1255 __be16 proto, int nhoff, int hlen, 1256 unsigned int flags) 1257 { 1258 memset(flow, 0, sizeof(*flow)); 1259 return __skb_flow_dissect(skb, &flow_keys_basic_dissector, flow, 1260 data, proto, nhoff, hlen, flags); 1261 } 1262 1263 void 1264 skb_flow_dissect_tunnel_info(const struct sk_buff *skb, 1265 struct flow_dissector *flow_dissector, 1266 void *target_container); 1267 1268 static inline __u32 skb_get_hash(struct sk_buff *skb) 1269 { 1270 if (!skb->l4_hash && !skb->sw_hash) 1271 __skb_get_hash(skb); 1272 1273 return skb->hash; 1274 } 1275 1276 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6) 1277 { 1278 if (!skb->l4_hash && !skb->sw_hash) { 1279 struct flow_keys keys; 1280 __u32 hash = __get_hash_from_flowi6(fl6, &keys); 1281 1282 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys)); 1283 } 1284 1285 return skb->hash; 1286 } 1287 1288 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb); 1289 1290 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb) 1291 { 1292 return skb->hash; 1293 } 1294 1295 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from) 1296 { 1297 to->hash = from->hash; 1298 to->sw_hash = from->sw_hash; 1299 to->l4_hash = from->l4_hash; 1300 }; 1301 1302 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1303 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1304 { 1305 return skb->head + skb->end; 1306 } 1307 1308 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1309 { 1310 return skb->end; 1311 } 1312 #else 1313 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1314 { 1315 return skb->end; 1316 } 1317 1318 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1319 { 1320 return skb->end - skb->head; 1321 } 1322 #endif 1323 1324 /* Internal */ 1325 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 1326 1327 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 1328 { 1329 return &skb_shinfo(skb)->hwtstamps; 1330 } 1331 1332 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb) 1333 { 1334 bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY; 1335 1336 return is_zcopy ? skb_uarg(skb) : NULL; 1337 } 1338 1339 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg, 1340 bool *have_ref) 1341 { 1342 if (skb && uarg && !skb_zcopy(skb)) { 1343 if (unlikely(have_ref && *have_ref)) 1344 *have_ref = false; 1345 else 1346 sock_zerocopy_get(uarg); 1347 skb_shinfo(skb)->destructor_arg = uarg; 1348 skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG; 1349 } 1350 } 1351 1352 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val) 1353 { 1354 skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL); 1355 skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG; 1356 } 1357 1358 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb) 1359 { 1360 return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL; 1361 } 1362 1363 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb) 1364 { 1365 return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL); 1366 } 1367 1368 /* Release a reference on a zerocopy structure */ 1369 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy) 1370 { 1371 struct ubuf_info *uarg = skb_zcopy(skb); 1372 1373 if (uarg) { 1374 if (uarg->callback == sock_zerocopy_callback) { 1375 uarg->zerocopy = uarg->zerocopy && zerocopy; 1376 sock_zerocopy_put(uarg); 1377 } else if (!skb_zcopy_is_nouarg(skb)) { 1378 uarg->callback(uarg, zerocopy); 1379 } 1380 1381 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG; 1382 } 1383 } 1384 1385 /* Abort a zerocopy operation and revert zckey on error in send syscall */ 1386 static inline void skb_zcopy_abort(struct sk_buff *skb) 1387 { 1388 struct ubuf_info *uarg = skb_zcopy(skb); 1389 1390 if (uarg) { 1391 sock_zerocopy_put_abort(uarg, false); 1392 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG; 1393 } 1394 } 1395 1396 static inline void skb_mark_not_on_list(struct sk_buff *skb) 1397 { 1398 skb->next = NULL; 1399 } 1400 1401 static inline void skb_list_del_init(struct sk_buff *skb) 1402 { 1403 __list_del_entry(&skb->list); 1404 skb_mark_not_on_list(skb); 1405 } 1406 1407 /** 1408 * skb_queue_empty - check if a queue is empty 1409 * @list: queue head 1410 * 1411 * Returns true if the queue is empty, false otherwise. 1412 */ 1413 static inline int skb_queue_empty(const struct sk_buff_head *list) 1414 { 1415 return list->next == (const struct sk_buff *) list; 1416 } 1417 1418 /** 1419 * skb_queue_is_last - check if skb is the last entry in the queue 1420 * @list: queue head 1421 * @skb: buffer 1422 * 1423 * Returns true if @skb is the last buffer on the list. 1424 */ 1425 static inline bool skb_queue_is_last(const struct sk_buff_head *list, 1426 const struct sk_buff *skb) 1427 { 1428 return skb->next == (const struct sk_buff *) list; 1429 } 1430 1431 /** 1432 * skb_queue_is_first - check if skb is the first entry in the queue 1433 * @list: queue head 1434 * @skb: buffer 1435 * 1436 * Returns true if @skb is the first buffer on the list. 1437 */ 1438 static inline bool skb_queue_is_first(const struct sk_buff_head *list, 1439 const struct sk_buff *skb) 1440 { 1441 return skb->prev == (const struct sk_buff *) list; 1442 } 1443 1444 /** 1445 * skb_queue_next - return the next packet in the queue 1446 * @list: queue head 1447 * @skb: current buffer 1448 * 1449 * Return the next packet in @list after @skb. It is only valid to 1450 * call this if skb_queue_is_last() evaluates to false. 1451 */ 1452 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 1453 const struct sk_buff *skb) 1454 { 1455 /* This BUG_ON may seem severe, but if we just return then we 1456 * are going to dereference garbage. 1457 */ 1458 BUG_ON(skb_queue_is_last(list, skb)); 1459 return skb->next; 1460 } 1461 1462 /** 1463 * skb_queue_prev - return the prev packet in the queue 1464 * @list: queue head 1465 * @skb: current buffer 1466 * 1467 * Return the prev packet in @list before @skb. It is only valid to 1468 * call this if skb_queue_is_first() evaluates to false. 1469 */ 1470 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 1471 const struct sk_buff *skb) 1472 { 1473 /* This BUG_ON may seem severe, but if we just return then we 1474 * are going to dereference garbage. 1475 */ 1476 BUG_ON(skb_queue_is_first(list, skb)); 1477 return skb->prev; 1478 } 1479 1480 /** 1481 * skb_get - reference buffer 1482 * @skb: buffer to reference 1483 * 1484 * Makes another reference to a socket buffer and returns a pointer 1485 * to the buffer. 1486 */ 1487 static inline struct sk_buff *skb_get(struct sk_buff *skb) 1488 { 1489 refcount_inc(&skb->users); 1490 return skb; 1491 } 1492 1493 /* 1494 * If users == 1, we are the only owner and can avoid redundant atomic changes. 1495 */ 1496 1497 /** 1498 * skb_cloned - is the buffer a clone 1499 * @skb: buffer to check 1500 * 1501 * Returns true if the buffer was generated with skb_clone() and is 1502 * one of multiple shared copies of the buffer. Cloned buffers are 1503 * shared data so must not be written to under normal circumstances. 1504 */ 1505 static inline int skb_cloned(const struct sk_buff *skb) 1506 { 1507 return skb->cloned && 1508 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 1509 } 1510 1511 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) 1512 { 1513 might_sleep_if(gfpflags_allow_blocking(pri)); 1514 1515 if (skb_cloned(skb)) 1516 return pskb_expand_head(skb, 0, 0, pri); 1517 1518 return 0; 1519 } 1520 1521 /** 1522 * skb_header_cloned - is the header a clone 1523 * @skb: buffer to check 1524 * 1525 * Returns true if modifying the header part of the buffer requires 1526 * the data to be copied. 1527 */ 1528 static inline int skb_header_cloned(const struct sk_buff *skb) 1529 { 1530 int dataref; 1531 1532 if (!skb->cloned) 1533 return 0; 1534 1535 dataref = atomic_read(&skb_shinfo(skb)->dataref); 1536 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 1537 return dataref != 1; 1538 } 1539 1540 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri) 1541 { 1542 might_sleep_if(gfpflags_allow_blocking(pri)); 1543 1544 if (skb_header_cloned(skb)) 1545 return pskb_expand_head(skb, 0, 0, pri); 1546 1547 return 0; 1548 } 1549 1550 /** 1551 * __skb_header_release - release reference to header 1552 * @skb: buffer to operate on 1553 */ 1554 static inline void __skb_header_release(struct sk_buff *skb) 1555 { 1556 skb->nohdr = 1; 1557 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT)); 1558 } 1559 1560 1561 /** 1562 * skb_shared - is the buffer shared 1563 * @skb: buffer to check 1564 * 1565 * Returns true if more than one person has a reference to this 1566 * buffer. 1567 */ 1568 static inline int skb_shared(const struct sk_buff *skb) 1569 { 1570 return refcount_read(&skb->users) != 1; 1571 } 1572 1573 /** 1574 * skb_share_check - check if buffer is shared and if so clone it 1575 * @skb: buffer to check 1576 * @pri: priority for memory allocation 1577 * 1578 * If the buffer is shared the buffer is cloned and the old copy 1579 * drops a reference. A new clone with a single reference is returned. 1580 * If the buffer is not shared the original buffer is returned. When 1581 * being called from interrupt status or with spinlocks held pri must 1582 * be GFP_ATOMIC. 1583 * 1584 * NULL is returned on a memory allocation failure. 1585 */ 1586 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) 1587 { 1588 might_sleep_if(gfpflags_allow_blocking(pri)); 1589 if (skb_shared(skb)) { 1590 struct sk_buff *nskb = skb_clone(skb, pri); 1591 1592 if (likely(nskb)) 1593 consume_skb(skb); 1594 else 1595 kfree_skb(skb); 1596 skb = nskb; 1597 } 1598 return skb; 1599 } 1600 1601 /* 1602 * Copy shared buffers into a new sk_buff. We effectively do COW on 1603 * packets to handle cases where we have a local reader and forward 1604 * and a couple of other messy ones. The normal one is tcpdumping 1605 * a packet thats being forwarded. 1606 */ 1607 1608 /** 1609 * skb_unshare - make a copy of a shared buffer 1610 * @skb: buffer to check 1611 * @pri: priority for memory allocation 1612 * 1613 * If the socket buffer is a clone then this function creates a new 1614 * copy of the data, drops a reference count on the old copy and returns 1615 * the new copy with the reference count at 1. If the buffer is not a clone 1616 * the original buffer is returned. When called with a spinlock held or 1617 * from interrupt state @pri must be %GFP_ATOMIC 1618 * 1619 * %NULL is returned on a memory allocation failure. 1620 */ 1621 static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 1622 gfp_t pri) 1623 { 1624 might_sleep_if(gfpflags_allow_blocking(pri)); 1625 if (skb_cloned(skb)) { 1626 struct sk_buff *nskb = skb_copy(skb, pri); 1627 1628 /* Free our shared copy */ 1629 if (likely(nskb)) 1630 consume_skb(skb); 1631 else 1632 kfree_skb(skb); 1633 skb = nskb; 1634 } 1635 return skb; 1636 } 1637 1638 /** 1639 * skb_peek - peek at the head of an &sk_buff_head 1640 * @list_: list to peek at 1641 * 1642 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1643 * be careful with this one. A peek leaves the buffer on the 1644 * list and someone else may run off with it. You must hold 1645 * the appropriate locks or have a private queue to do this. 1646 * 1647 * Returns %NULL for an empty list or a pointer to the head element. 1648 * The reference count is not incremented and the reference is therefore 1649 * volatile. Use with caution. 1650 */ 1651 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) 1652 { 1653 struct sk_buff *skb = list_->next; 1654 1655 if (skb == (struct sk_buff *)list_) 1656 skb = NULL; 1657 return skb; 1658 } 1659 1660 /** 1661 * __skb_peek - peek at the head of a non-empty &sk_buff_head 1662 * @list_: list to peek at 1663 * 1664 * Like skb_peek(), but the caller knows that the list is not empty. 1665 */ 1666 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_) 1667 { 1668 return list_->next; 1669 } 1670 1671 /** 1672 * skb_peek_next - peek skb following the given one from a queue 1673 * @skb: skb to start from 1674 * @list_: list to peek at 1675 * 1676 * Returns %NULL when the end of the list is met or a pointer to the 1677 * next element. The reference count is not incremented and the 1678 * reference is therefore volatile. Use with caution. 1679 */ 1680 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, 1681 const struct sk_buff_head *list_) 1682 { 1683 struct sk_buff *next = skb->next; 1684 1685 if (next == (struct sk_buff *)list_) 1686 next = NULL; 1687 return next; 1688 } 1689 1690 /** 1691 * skb_peek_tail - peek at the tail of an &sk_buff_head 1692 * @list_: list to peek at 1693 * 1694 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1695 * be careful with this one. A peek leaves the buffer on the 1696 * list and someone else may run off with it. You must hold 1697 * the appropriate locks or have a private queue to do this. 1698 * 1699 * Returns %NULL for an empty list or a pointer to the tail element. 1700 * The reference count is not incremented and the reference is therefore 1701 * volatile. Use with caution. 1702 */ 1703 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) 1704 { 1705 struct sk_buff *skb = list_->prev; 1706 1707 if (skb == (struct sk_buff *)list_) 1708 skb = NULL; 1709 return skb; 1710 1711 } 1712 1713 /** 1714 * skb_queue_len - get queue length 1715 * @list_: list to measure 1716 * 1717 * Return the length of an &sk_buff queue. 1718 */ 1719 static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 1720 { 1721 return list_->qlen; 1722 } 1723 1724 /** 1725 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 1726 * @list: queue to initialize 1727 * 1728 * This initializes only the list and queue length aspects of 1729 * an sk_buff_head object. This allows to initialize the list 1730 * aspects of an sk_buff_head without reinitializing things like 1731 * the spinlock. It can also be used for on-stack sk_buff_head 1732 * objects where the spinlock is known to not be used. 1733 */ 1734 static inline void __skb_queue_head_init(struct sk_buff_head *list) 1735 { 1736 list->prev = list->next = (struct sk_buff *)list; 1737 list->qlen = 0; 1738 } 1739 1740 /* 1741 * This function creates a split out lock class for each invocation; 1742 * this is needed for now since a whole lot of users of the skb-queue 1743 * infrastructure in drivers have different locking usage (in hardirq) 1744 * than the networking core (in softirq only). In the long run either the 1745 * network layer or drivers should need annotation to consolidate the 1746 * main types of usage into 3 classes. 1747 */ 1748 static inline void skb_queue_head_init(struct sk_buff_head *list) 1749 { 1750 spin_lock_init(&list->lock); 1751 __skb_queue_head_init(list); 1752 } 1753 1754 static inline void skb_queue_head_init_class(struct sk_buff_head *list, 1755 struct lock_class_key *class) 1756 { 1757 skb_queue_head_init(list); 1758 lockdep_set_class(&list->lock, class); 1759 } 1760 1761 /* 1762 * Insert an sk_buff on a list. 1763 * 1764 * The "__skb_xxxx()" functions are the non-atomic ones that 1765 * can only be called with interrupts disabled. 1766 */ 1767 static inline void __skb_insert(struct sk_buff *newsk, 1768 struct sk_buff *prev, struct sk_buff *next, 1769 struct sk_buff_head *list) 1770 { 1771 newsk->next = next; 1772 newsk->prev = prev; 1773 next->prev = prev->next = newsk; 1774 list->qlen++; 1775 } 1776 1777 static inline void __skb_queue_splice(const struct sk_buff_head *list, 1778 struct sk_buff *prev, 1779 struct sk_buff *next) 1780 { 1781 struct sk_buff *first = list->next; 1782 struct sk_buff *last = list->prev; 1783 1784 first->prev = prev; 1785 prev->next = first; 1786 1787 last->next = next; 1788 next->prev = last; 1789 } 1790 1791 /** 1792 * skb_queue_splice - join two skb lists, this is designed for stacks 1793 * @list: the new list to add 1794 * @head: the place to add it in the first list 1795 */ 1796 static inline void skb_queue_splice(const struct sk_buff_head *list, 1797 struct sk_buff_head *head) 1798 { 1799 if (!skb_queue_empty(list)) { 1800 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1801 head->qlen += list->qlen; 1802 } 1803 } 1804 1805 /** 1806 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list 1807 * @list: the new list to add 1808 * @head: the place to add it in the first list 1809 * 1810 * The list at @list is reinitialised 1811 */ 1812 static inline void skb_queue_splice_init(struct sk_buff_head *list, 1813 struct sk_buff_head *head) 1814 { 1815 if (!skb_queue_empty(list)) { 1816 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1817 head->qlen += list->qlen; 1818 __skb_queue_head_init(list); 1819 } 1820 } 1821 1822 /** 1823 * skb_queue_splice_tail - join two skb lists, each list being a queue 1824 * @list: the new list to add 1825 * @head: the place to add it in the first list 1826 */ 1827 static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 1828 struct sk_buff_head *head) 1829 { 1830 if (!skb_queue_empty(list)) { 1831 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1832 head->qlen += list->qlen; 1833 } 1834 } 1835 1836 /** 1837 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list 1838 * @list: the new list to add 1839 * @head: the place to add it in the first list 1840 * 1841 * Each of the lists is a queue. 1842 * The list at @list is reinitialised 1843 */ 1844 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 1845 struct sk_buff_head *head) 1846 { 1847 if (!skb_queue_empty(list)) { 1848 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1849 head->qlen += list->qlen; 1850 __skb_queue_head_init(list); 1851 } 1852 } 1853 1854 /** 1855 * __skb_queue_after - queue a buffer at the list head 1856 * @list: list to use 1857 * @prev: place after this buffer 1858 * @newsk: buffer to queue 1859 * 1860 * Queue a buffer int the middle of a list. This function takes no locks 1861 * and you must therefore hold required locks before calling it. 1862 * 1863 * A buffer cannot be placed on two lists at the same time. 1864 */ 1865 static inline void __skb_queue_after(struct sk_buff_head *list, 1866 struct sk_buff *prev, 1867 struct sk_buff *newsk) 1868 { 1869 __skb_insert(newsk, prev, prev->next, list); 1870 } 1871 1872 void skb_append(struct sk_buff *old, struct sk_buff *newsk, 1873 struct sk_buff_head *list); 1874 1875 static inline void __skb_queue_before(struct sk_buff_head *list, 1876 struct sk_buff *next, 1877 struct sk_buff *newsk) 1878 { 1879 __skb_insert(newsk, next->prev, next, list); 1880 } 1881 1882 /** 1883 * __skb_queue_head - queue a buffer at the list head 1884 * @list: list to use 1885 * @newsk: buffer to queue 1886 * 1887 * Queue a buffer at the start of a list. This function takes no locks 1888 * and you must therefore hold required locks before calling it. 1889 * 1890 * A buffer cannot be placed on two lists at the same time. 1891 */ 1892 static inline void __skb_queue_head(struct sk_buff_head *list, 1893 struct sk_buff *newsk) 1894 { 1895 __skb_queue_after(list, (struct sk_buff *)list, newsk); 1896 } 1897 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 1898 1899 /** 1900 * __skb_queue_tail - queue a buffer at the list tail 1901 * @list: list to use 1902 * @newsk: buffer to queue 1903 * 1904 * Queue a buffer at the end of a list. This function takes no locks 1905 * and you must therefore hold required locks before calling it. 1906 * 1907 * A buffer cannot be placed on two lists at the same time. 1908 */ 1909 static inline void __skb_queue_tail(struct sk_buff_head *list, 1910 struct sk_buff *newsk) 1911 { 1912 __skb_queue_before(list, (struct sk_buff *)list, newsk); 1913 } 1914 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 1915 1916 /* 1917 * remove sk_buff from list. _Must_ be called atomically, and with 1918 * the list known.. 1919 */ 1920 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 1921 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 1922 { 1923 struct sk_buff *next, *prev; 1924 1925 list->qlen--; 1926 next = skb->next; 1927 prev = skb->prev; 1928 skb->next = skb->prev = NULL; 1929 next->prev = prev; 1930 prev->next = next; 1931 } 1932 1933 /** 1934 * __skb_dequeue - remove from the head of the queue 1935 * @list: list to dequeue from 1936 * 1937 * Remove the head of the list. This function does not take any locks 1938 * so must be used with appropriate locks held only. The head item is 1939 * returned or %NULL if the list is empty. 1940 */ 1941 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 1942 { 1943 struct sk_buff *skb = skb_peek(list); 1944 if (skb) 1945 __skb_unlink(skb, list); 1946 return skb; 1947 } 1948 struct sk_buff *skb_dequeue(struct sk_buff_head *list); 1949 1950 /** 1951 * __skb_dequeue_tail - remove from the tail of the queue 1952 * @list: list to dequeue from 1953 * 1954 * Remove the tail of the list. This function does not take any locks 1955 * so must be used with appropriate locks held only. The tail item is 1956 * returned or %NULL if the list is empty. 1957 */ 1958 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 1959 { 1960 struct sk_buff *skb = skb_peek_tail(list); 1961 if (skb) 1962 __skb_unlink(skb, list); 1963 return skb; 1964 } 1965 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 1966 1967 1968 static inline bool skb_is_nonlinear(const struct sk_buff *skb) 1969 { 1970 return skb->data_len; 1971 } 1972 1973 static inline unsigned int skb_headlen(const struct sk_buff *skb) 1974 { 1975 return skb->len - skb->data_len; 1976 } 1977 1978 static inline unsigned int __skb_pagelen(const struct sk_buff *skb) 1979 { 1980 unsigned int i, len = 0; 1981 1982 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--) 1983 len += skb_frag_size(&skb_shinfo(skb)->frags[i]); 1984 return len; 1985 } 1986 1987 static inline unsigned int skb_pagelen(const struct sk_buff *skb) 1988 { 1989 return skb_headlen(skb) + __skb_pagelen(skb); 1990 } 1991 1992 /** 1993 * __skb_fill_page_desc - initialise a paged fragment in an skb 1994 * @skb: buffer containing fragment to be initialised 1995 * @i: paged fragment index to initialise 1996 * @page: the page to use for this fragment 1997 * @off: the offset to the data with @page 1998 * @size: the length of the data 1999 * 2000 * Initialises the @i'th fragment of @skb to point to &size bytes at 2001 * offset @off within @page. 2002 * 2003 * Does not take any additional reference on the fragment. 2004 */ 2005 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, 2006 struct page *page, int off, int size) 2007 { 2008 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2009 2010 /* 2011 * Propagate page pfmemalloc to the skb if we can. The problem is 2012 * that not all callers have unique ownership of the page but rely 2013 * on page_is_pfmemalloc doing the right thing(tm). 2014 */ 2015 frag->page.p = page; 2016 frag->page_offset = off; 2017 skb_frag_size_set(frag, size); 2018 2019 page = compound_head(page); 2020 if (page_is_pfmemalloc(page)) 2021 skb->pfmemalloc = true; 2022 } 2023 2024 /** 2025 * skb_fill_page_desc - initialise a paged fragment in an skb 2026 * @skb: buffer containing fragment to be initialised 2027 * @i: paged fragment index to initialise 2028 * @page: the page to use for this fragment 2029 * @off: the offset to the data with @page 2030 * @size: the length of the data 2031 * 2032 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of 2033 * @skb to point to @size bytes at offset @off within @page. In 2034 * addition updates @skb such that @i is the last fragment. 2035 * 2036 * Does not take any additional reference on the fragment. 2037 */ 2038 static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 2039 struct page *page, int off, int size) 2040 { 2041 __skb_fill_page_desc(skb, i, page, off, size); 2042 skb_shinfo(skb)->nr_frags = i + 1; 2043 } 2044 2045 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 2046 int size, unsigned int truesize); 2047 2048 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 2049 unsigned int truesize); 2050 2051 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags) 2052 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb)) 2053 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 2054 2055 #ifdef NET_SKBUFF_DATA_USES_OFFSET 2056 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 2057 { 2058 return skb->head + skb->tail; 2059 } 2060 2061 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2062 { 2063 skb->tail = skb->data - skb->head; 2064 } 2065 2066 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2067 { 2068 skb_reset_tail_pointer(skb); 2069 skb->tail += offset; 2070 } 2071 2072 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 2073 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 2074 { 2075 return skb->tail; 2076 } 2077 2078 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2079 { 2080 skb->tail = skb->data; 2081 } 2082 2083 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2084 { 2085 skb->tail = skb->data + offset; 2086 } 2087 2088 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 2089 2090 /* 2091 * Add data to an sk_buff 2092 */ 2093 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len); 2094 void *skb_put(struct sk_buff *skb, unsigned int len); 2095 static inline void *__skb_put(struct sk_buff *skb, unsigned int len) 2096 { 2097 void *tmp = skb_tail_pointer(skb); 2098 SKB_LINEAR_ASSERT(skb); 2099 skb->tail += len; 2100 skb->len += len; 2101 return tmp; 2102 } 2103 2104 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len) 2105 { 2106 void *tmp = __skb_put(skb, len); 2107 2108 memset(tmp, 0, len); 2109 return tmp; 2110 } 2111 2112 static inline void *__skb_put_data(struct sk_buff *skb, const void *data, 2113 unsigned int len) 2114 { 2115 void *tmp = __skb_put(skb, len); 2116 2117 memcpy(tmp, data, len); 2118 return tmp; 2119 } 2120 2121 static inline void __skb_put_u8(struct sk_buff *skb, u8 val) 2122 { 2123 *(u8 *)__skb_put(skb, 1) = val; 2124 } 2125 2126 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len) 2127 { 2128 void *tmp = skb_put(skb, len); 2129 2130 memset(tmp, 0, len); 2131 2132 return tmp; 2133 } 2134 2135 static inline void *skb_put_data(struct sk_buff *skb, const void *data, 2136 unsigned int len) 2137 { 2138 void *tmp = skb_put(skb, len); 2139 2140 memcpy(tmp, data, len); 2141 2142 return tmp; 2143 } 2144 2145 static inline void skb_put_u8(struct sk_buff *skb, u8 val) 2146 { 2147 *(u8 *)skb_put(skb, 1) = val; 2148 } 2149 2150 void *skb_push(struct sk_buff *skb, unsigned int len); 2151 static inline void *__skb_push(struct sk_buff *skb, unsigned int len) 2152 { 2153 skb->data -= len; 2154 skb->len += len; 2155 return skb->data; 2156 } 2157 2158 void *skb_pull(struct sk_buff *skb, unsigned int len); 2159 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len) 2160 { 2161 skb->len -= len; 2162 BUG_ON(skb->len < skb->data_len); 2163 return skb->data += len; 2164 } 2165 2166 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len) 2167 { 2168 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 2169 } 2170 2171 void *__pskb_pull_tail(struct sk_buff *skb, int delta); 2172 2173 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len) 2174 { 2175 if (len > skb_headlen(skb) && 2176 !__pskb_pull_tail(skb, len - skb_headlen(skb))) 2177 return NULL; 2178 skb->len -= len; 2179 return skb->data += len; 2180 } 2181 2182 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len) 2183 { 2184 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 2185 } 2186 2187 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) 2188 { 2189 if (likely(len <= skb_headlen(skb))) 2190 return 1; 2191 if (unlikely(len > skb->len)) 2192 return 0; 2193 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; 2194 } 2195 2196 void skb_condense(struct sk_buff *skb); 2197 2198 /** 2199 * skb_headroom - bytes at buffer head 2200 * @skb: buffer to check 2201 * 2202 * Return the number of bytes of free space at the head of an &sk_buff. 2203 */ 2204 static inline unsigned int skb_headroom(const struct sk_buff *skb) 2205 { 2206 return skb->data - skb->head; 2207 } 2208 2209 /** 2210 * skb_tailroom - bytes at buffer end 2211 * @skb: buffer to check 2212 * 2213 * Return the number of bytes of free space at the tail of an sk_buff 2214 */ 2215 static inline int skb_tailroom(const struct sk_buff *skb) 2216 { 2217 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 2218 } 2219 2220 /** 2221 * skb_availroom - bytes at buffer end 2222 * @skb: buffer to check 2223 * 2224 * Return the number of bytes of free space at the tail of an sk_buff 2225 * allocated by sk_stream_alloc() 2226 */ 2227 static inline int skb_availroom(const struct sk_buff *skb) 2228 { 2229 if (skb_is_nonlinear(skb)) 2230 return 0; 2231 2232 return skb->end - skb->tail - skb->reserved_tailroom; 2233 } 2234 2235 /** 2236 * skb_reserve - adjust headroom 2237 * @skb: buffer to alter 2238 * @len: bytes to move 2239 * 2240 * Increase the headroom of an empty &sk_buff by reducing the tail 2241 * room. This is only allowed for an empty buffer. 2242 */ 2243 static inline void skb_reserve(struct sk_buff *skb, int len) 2244 { 2245 skb->data += len; 2246 skb->tail += len; 2247 } 2248 2249 /** 2250 * skb_tailroom_reserve - adjust reserved_tailroom 2251 * @skb: buffer to alter 2252 * @mtu: maximum amount of headlen permitted 2253 * @needed_tailroom: minimum amount of reserved_tailroom 2254 * 2255 * Set reserved_tailroom so that headlen can be as large as possible but 2256 * not larger than mtu and tailroom cannot be smaller than 2257 * needed_tailroom. 2258 * The required headroom should already have been reserved before using 2259 * this function. 2260 */ 2261 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu, 2262 unsigned int needed_tailroom) 2263 { 2264 SKB_LINEAR_ASSERT(skb); 2265 if (mtu < skb_tailroom(skb) - needed_tailroom) 2266 /* use at most mtu */ 2267 skb->reserved_tailroom = skb_tailroom(skb) - mtu; 2268 else 2269 /* use up to all available space */ 2270 skb->reserved_tailroom = needed_tailroom; 2271 } 2272 2273 #define ENCAP_TYPE_ETHER 0 2274 #define ENCAP_TYPE_IPPROTO 1 2275 2276 static inline void skb_set_inner_protocol(struct sk_buff *skb, 2277 __be16 protocol) 2278 { 2279 skb->inner_protocol = protocol; 2280 skb->inner_protocol_type = ENCAP_TYPE_ETHER; 2281 } 2282 2283 static inline void skb_set_inner_ipproto(struct sk_buff *skb, 2284 __u8 ipproto) 2285 { 2286 skb->inner_ipproto = ipproto; 2287 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO; 2288 } 2289 2290 static inline void skb_reset_inner_headers(struct sk_buff *skb) 2291 { 2292 skb->inner_mac_header = skb->mac_header; 2293 skb->inner_network_header = skb->network_header; 2294 skb->inner_transport_header = skb->transport_header; 2295 } 2296 2297 static inline void skb_reset_mac_len(struct sk_buff *skb) 2298 { 2299 skb->mac_len = skb->network_header - skb->mac_header; 2300 } 2301 2302 static inline unsigned char *skb_inner_transport_header(const struct sk_buff 2303 *skb) 2304 { 2305 return skb->head + skb->inner_transport_header; 2306 } 2307 2308 static inline int skb_inner_transport_offset(const struct sk_buff *skb) 2309 { 2310 return skb_inner_transport_header(skb) - skb->data; 2311 } 2312 2313 static inline void skb_reset_inner_transport_header(struct sk_buff *skb) 2314 { 2315 skb->inner_transport_header = skb->data - skb->head; 2316 } 2317 2318 static inline void skb_set_inner_transport_header(struct sk_buff *skb, 2319 const int offset) 2320 { 2321 skb_reset_inner_transport_header(skb); 2322 skb->inner_transport_header += offset; 2323 } 2324 2325 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) 2326 { 2327 return skb->head + skb->inner_network_header; 2328 } 2329 2330 static inline void skb_reset_inner_network_header(struct sk_buff *skb) 2331 { 2332 skb->inner_network_header = skb->data - skb->head; 2333 } 2334 2335 static inline void skb_set_inner_network_header(struct sk_buff *skb, 2336 const int offset) 2337 { 2338 skb_reset_inner_network_header(skb); 2339 skb->inner_network_header += offset; 2340 } 2341 2342 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) 2343 { 2344 return skb->head + skb->inner_mac_header; 2345 } 2346 2347 static inline void skb_reset_inner_mac_header(struct sk_buff *skb) 2348 { 2349 skb->inner_mac_header = skb->data - skb->head; 2350 } 2351 2352 static inline void skb_set_inner_mac_header(struct sk_buff *skb, 2353 const int offset) 2354 { 2355 skb_reset_inner_mac_header(skb); 2356 skb->inner_mac_header += offset; 2357 } 2358 static inline bool skb_transport_header_was_set(const struct sk_buff *skb) 2359 { 2360 return skb->transport_header != (typeof(skb->transport_header))~0U; 2361 } 2362 2363 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 2364 { 2365 return skb->head + skb->transport_header; 2366 } 2367 2368 static inline void skb_reset_transport_header(struct sk_buff *skb) 2369 { 2370 skb->transport_header = skb->data - skb->head; 2371 } 2372 2373 static inline void skb_set_transport_header(struct sk_buff *skb, 2374 const int offset) 2375 { 2376 skb_reset_transport_header(skb); 2377 skb->transport_header += offset; 2378 } 2379 2380 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 2381 { 2382 return skb->head + skb->network_header; 2383 } 2384 2385 static inline void skb_reset_network_header(struct sk_buff *skb) 2386 { 2387 skb->network_header = skb->data - skb->head; 2388 } 2389 2390 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 2391 { 2392 skb_reset_network_header(skb); 2393 skb->network_header += offset; 2394 } 2395 2396 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 2397 { 2398 return skb->head + skb->mac_header; 2399 } 2400 2401 static inline int skb_mac_offset(const struct sk_buff *skb) 2402 { 2403 return skb_mac_header(skb) - skb->data; 2404 } 2405 2406 static inline u32 skb_mac_header_len(const struct sk_buff *skb) 2407 { 2408 return skb->network_header - skb->mac_header; 2409 } 2410 2411 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 2412 { 2413 return skb->mac_header != (typeof(skb->mac_header))~0U; 2414 } 2415 2416 static inline void skb_reset_mac_header(struct sk_buff *skb) 2417 { 2418 skb->mac_header = skb->data - skb->head; 2419 } 2420 2421 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 2422 { 2423 skb_reset_mac_header(skb); 2424 skb->mac_header += offset; 2425 } 2426 2427 static inline void skb_pop_mac_header(struct sk_buff *skb) 2428 { 2429 skb->mac_header = skb->network_header; 2430 } 2431 2432 static inline void skb_probe_transport_header(struct sk_buff *skb) 2433 { 2434 struct flow_keys_basic keys; 2435 2436 if (skb_transport_header_was_set(skb)) 2437 return; 2438 2439 if (skb_flow_dissect_flow_keys_basic(skb, &keys, NULL, 0, 0, 0, 0)) 2440 skb_set_transport_header(skb, keys.control.thoff); 2441 } 2442 2443 static inline void skb_mac_header_rebuild(struct sk_buff *skb) 2444 { 2445 if (skb_mac_header_was_set(skb)) { 2446 const unsigned char *old_mac = skb_mac_header(skb); 2447 2448 skb_set_mac_header(skb, -skb->mac_len); 2449 memmove(skb_mac_header(skb), old_mac, skb->mac_len); 2450 } 2451 } 2452 2453 static inline int skb_checksum_start_offset(const struct sk_buff *skb) 2454 { 2455 return skb->csum_start - skb_headroom(skb); 2456 } 2457 2458 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb) 2459 { 2460 return skb->head + skb->csum_start; 2461 } 2462 2463 static inline int skb_transport_offset(const struct sk_buff *skb) 2464 { 2465 return skb_transport_header(skb) - skb->data; 2466 } 2467 2468 static inline u32 skb_network_header_len(const struct sk_buff *skb) 2469 { 2470 return skb->transport_header - skb->network_header; 2471 } 2472 2473 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) 2474 { 2475 return skb->inner_transport_header - skb->inner_network_header; 2476 } 2477 2478 static inline int skb_network_offset(const struct sk_buff *skb) 2479 { 2480 return skb_network_header(skb) - skb->data; 2481 } 2482 2483 static inline int skb_inner_network_offset(const struct sk_buff *skb) 2484 { 2485 return skb_inner_network_header(skb) - skb->data; 2486 } 2487 2488 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 2489 { 2490 return pskb_may_pull(skb, skb_network_offset(skb) + len); 2491 } 2492 2493 /* 2494 * CPUs often take a performance hit when accessing unaligned memory 2495 * locations. The actual performance hit varies, it can be small if the 2496 * hardware handles it or large if we have to take an exception and fix it 2497 * in software. 2498 * 2499 * Since an ethernet header is 14 bytes network drivers often end up with 2500 * the IP header at an unaligned offset. The IP header can be aligned by 2501 * shifting the start of the packet by 2 bytes. Drivers should do this 2502 * with: 2503 * 2504 * skb_reserve(skb, NET_IP_ALIGN); 2505 * 2506 * The downside to this alignment of the IP header is that the DMA is now 2507 * unaligned. On some architectures the cost of an unaligned DMA is high 2508 * and this cost outweighs the gains made by aligning the IP header. 2509 * 2510 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 2511 * to be overridden. 2512 */ 2513 #ifndef NET_IP_ALIGN 2514 #define NET_IP_ALIGN 2 2515 #endif 2516 2517 /* 2518 * The networking layer reserves some headroom in skb data (via 2519 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 2520 * the header has to grow. In the default case, if the header has to grow 2521 * 32 bytes or less we avoid the reallocation. 2522 * 2523 * Unfortunately this headroom changes the DMA alignment of the resulting 2524 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 2525 * on some architectures. An architecture can override this value, 2526 * perhaps setting it to a cacheline in size (since that will maintain 2527 * cacheline alignment of the DMA). It must be a power of 2. 2528 * 2529 * Various parts of the networking layer expect at least 32 bytes of 2530 * headroom, you should not reduce this. 2531 * 2532 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 2533 * to reduce average number of cache lines per packet. 2534 * get_rps_cpus() for example only access one 64 bytes aligned block : 2535 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 2536 */ 2537 #ifndef NET_SKB_PAD 2538 #define NET_SKB_PAD max(32, L1_CACHE_BYTES) 2539 #endif 2540 2541 int ___pskb_trim(struct sk_buff *skb, unsigned int len); 2542 2543 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len) 2544 { 2545 if (WARN_ON(skb_is_nonlinear(skb))) 2546 return; 2547 skb->len = len; 2548 skb_set_tail_pointer(skb, len); 2549 } 2550 2551 static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 2552 { 2553 __skb_set_length(skb, len); 2554 } 2555 2556 void skb_trim(struct sk_buff *skb, unsigned int len); 2557 2558 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 2559 { 2560 if (skb->data_len) 2561 return ___pskb_trim(skb, len); 2562 __skb_trim(skb, len); 2563 return 0; 2564 } 2565 2566 static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 2567 { 2568 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 2569 } 2570 2571 /** 2572 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 2573 * @skb: buffer to alter 2574 * @len: new length 2575 * 2576 * This is identical to pskb_trim except that the caller knows that 2577 * the skb is not cloned so we should never get an error due to out- 2578 * of-memory. 2579 */ 2580 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 2581 { 2582 int err = pskb_trim(skb, len); 2583 BUG_ON(err); 2584 } 2585 2586 static inline int __skb_grow(struct sk_buff *skb, unsigned int len) 2587 { 2588 unsigned int diff = len - skb->len; 2589 2590 if (skb_tailroom(skb) < diff) { 2591 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb), 2592 GFP_ATOMIC); 2593 if (ret) 2594 return ret; 2595 } 2596 __skb_set_length(skb, len); 2597 return 0; 2598 } 2599 2600 /** 2601 * skb_orphan - orphan a buffer 2602 * @skb: buffer to orphan 2603 * 2604 * If a buffer currently has an owner then we call the owner's 2605 * destructor function and make the @skb unowned. The buffer continues 2606 * to exist but is no longer charged to its former owner. 2607 */ 2608 static inline void skb_orphan(struct sk_buff *skb) 2609 { 2610 if (skb->destructor) { 2611 skb->destructor(skb); 2612 skb->destructor = NULL; 2613 skb->sk = NULL; 2614 } else { 2615 BUG_ON(skb->sk); 2616 } 2617 } 2618 2619 /** 2620 * skb_orphan_frags - orphan the frags contained in a buffer 2621 * @skb: buffer to orphan frags from 2622 * @gfp_mask: allocation mask for replacement pages 2623 * 2624 * For each frag in the SKB which needs a destructor (i.e. has an 2625 * owner) create a copy of that frag and release the original 2626 * page by calling the destructor. 2627 */ 2628 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) 2629 { 2630 if (likely(!skb_zcopy(skb))) 2631 return 0; 2632 if (skb_uarg(skb)->callback == sock_zerocopy_callback) 2633 return 0; 2634 return skb_copy_ubufs(skb, gfp_mask); 2635 } 2636 2637 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */ 2638 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask) 2639 { 2640 if (likely(!skb_zcopy(skb))) 2641 return 0; 2642 return skb_copy_ubufs(skb, gfp_mask); 2643 } 2644 2645 /** 2646 * __skb_queue_purge - empty a list 2647 * @list: list to empty 2648 * 2649 * Delete all buffers on an &sk_buff list. Each buffer is removed from 2650 * the list and one reference dropped. This function does not take the 2651 * list lock and the caller must hold the relevant locks to use it. 2652 */ 2653 static inline void __skb_queue_purge(struct sk_buff_head *list) 2654 { 2655 struct sk_buff *skb; 2656 while ((skb = __skb_dequeue(list)) != NULL) 2657 kfree_skb(skb); 2658 } 2659 void skb_queue_purge(struct sk_buff_head *list); 2660 2661 unsigned int skb_rbtree_purge(struct rb_root *root); 2662 2663 void *netdev_alloc_frag(unsigned int fragsz); 2664 2665 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length, 2666 gfp_t gfp_mask); 2667 2668 /** 2669 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 2670 * @dev: network device to receive on 2671 * @length: length to allocate 2672 * 2673 * Allocate a new &sk_buff and assign it a usage count of one. The 2674 * buffer has unspecified headroom built in. Users should allocate 2675 * the headroom they think they need without accounting for the 2676 * built in space. The built in space is used for optimisations. 2677 * 2678 * %NULL is returned if there is no free memory. Although this function 2679 * allocates memory it can be called from an interrupt. 2680 */ 2681 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 2682 unsigned int length) 2683 { 2684 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 2685 } 2686 2687 /* legacy helper around __netdev_alloc_skb() */ 2688 static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 2689 gfp_t gfp_mask) 2690 { 2691 return __netdev_alloc_skb(NULL, length, gfp_mask); 2692 } 2693 2694 /* legacy helper around netdev_alloc_skb() */ 2695 static inline struct sk_buff *dev_alloc_skb(unsigned int length) 2696 { 2697 return netdev_alloc_skb(NULL, length); 2698 } 2699 2700 2701 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, 2702 unsigned int length, gfp_t gfp) 2703 { 2704 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); 2705 2706 if (NET_IP_ALIGN && skb) 2707 skb_reserve(skb, NET_IP_ALIGN); 2708 return skb; 2709 } 2710 2711 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 2712 unsigned int length) 2713 { 2714 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); 2715 } 2716 2717 static inline void skb_free_frag(void *addr) 2718 { 2719 page_frag_free(addr); 2720 } 2721 2722 void *napi_alloc_frag(unsigned int fragsz); 2723 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, 2724 unsigned int length, gfp_t gfp_mask); 2725 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi, 2726 unsigned int length) 2727 { 2728 return __napi_alloc_skb(napi, length, GFP_ATOMIC); 2729 } 2730 void napi_consume_skb(struct sk_buff *skb, int budget); 2731 2732 void __kfree_skb_flush(void); 2733 void __kfree_skb_defer(struct sk_buff *skb); 2734 2735 /** 2736 * __dev_alloc_pages - allocate page for network Rx 2737 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 2738 * @order: size of the allocation 2739 * 2740 * Allocate a new page. 2741 * 2742 * %NULL is returned if there is no free memory. 2743 */ 2744 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask, 2745 unsigned int order) 2746 { 2747 /* This piece of code contains several assumptions. 2748 * 1. This is for device Rx, therefor a cold page is preferred. 2749 * 2. The expectation is the user wants a compound page. 2750 * 3. If requesting a order 0 page it will not be compound 2751 * due to the check to see if order has a value in prep_new_page 2752 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to 2753 * code in gfp_to_alloc_flags that should be enforcing this. 2754 */ 2755 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC; 2756 2757 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order); 2758 } 2759 2760 static inline struct page *dev_alloc_pages(unsigned int order) 2761 { 2762 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order); 2763 } 2764 2765 /** 2766 * __dev_alloc_page - allocate a page for network Rx 2767 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 2768 * 2769 * Allocate a new page. 2770 * 2771 * %NULL is returned if there is no free memory. 2772 */ 2773 static inline struct page *__dev_alloc_page(gfp_t gfp_mask) 2774 { 2775 return __dev_alloc_pages(gfp_mask, 0); 2776 } 2777 2778 static inline struct page *dev_alloc_page(void) 2779 { 2780 return dev_alloc_pages(0); 2781 } 2782 2783 /** 2784 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page 2785 * @page: The page that was allocated from skb_alloc_page 2786 * @skb: The skb that may need pfmemalloc set 2787 */ 2788 static inline void skb_propagate_pfmemalloc(struct page *page, 2789 struct sk_buff *skb) 2790 { 2791 if (page_is_pfmemalloc(page)) 2792 skb->pfmemalloc = true; 2793 } 2794 2795 /** 2796 * skb_frag_page - retrieve the page referred to by a paged fragment 2797 * @frag: the paged fragment 2798 * 2799 * Returns the &struct page associated with @frag. 2800 */ 2801 static inline struct page *skb_frag_page(const skb_frag_t *frag) 2802 { 2803 return frag->page.p; 2804 } 2805 2806 /** 2807 * __skb_frag_ref - take an addition reference on a paged fragment. 2808 * @frag: the paged fragment 2809 * 2810 * Takes an additional reference on the paged fragment @frag. 2811 */ 2812 static inline void __skb_frag_ref(skb_frag_t *frag) 2813 { 2814 get_page(skb_frag_page(frag)); 2815 } 2816 2817 /** 2818 * skb_frag_ref - take an addition reference on a paged fragment of an skb. 2819 * @skb: the buffer 2820 * @f: the fragment offset. 2821 * 2822 * Takes an additional reference on the @f'th paged fragment of @skb. 2823 */ 2824 static inline void skb_frag_ref(struct sk_buff *skb, int f) 2825 { 2826 __skb_frag_ref(&skb_shinfo(skb)->frags[f]); 2827 } 2828 2829 /** 2830 * __skb_frag_unref - release a reference on a paged fragment. 2831 * @frag: the paged fragment 2832 * 2833 * Releases a reference on the paged fragment @frag. 2834 */ 2835 static inline void __skb_frag_unref(skb_frag_t *frag) 2836 { 2837 put_page(skb_frag_page(frag)); 2838 } 2839 2840 /** 2841 * skb_frag_unref - release a reference on a paged fragment of an skb. 2842 * @skb: the buffer 2843 * @f: the fragment offset 2844 * 2845 * Releases a reference on the @f'th paged fragment of @skb. 2846 */ 2847 static inline void skb_frag_unref(struct sk_buff *skb, int f) 2848 { 2849 __skb_frag_unref(&skb_shinfo(skb)->frags[f]); 2850 } 2851 2852 /** 2853 * skb_frag_address - gets the address of the data contained in a paged fragment 2854 * @frag: the paged fragment buffer 2855 * 2856 * Returns the address of the data within @frag. The page must already 2857 * be mapped. 2858 */ 2859 static inline void *skb_frag_address(const skb_frag_t *frag) 2860 { 2861 return page_address(skb_frag_page(frag)) + frag->page_offset; 2862 } 2863 2864 /** 2865 * skb_frag_address_safe - gets the address of the data contained in a paged fragment 2866 * @frag: the paged fragment buffer 2867 * 2868 * Returns the address of the data within @frag. Checks that the page 2869 * is mapped and returns %NULL otherwise. 2870 */ 2871 static inline void *skb_frag_address_safe(const skb_frag_t *frag) 2872 { 2873 void *ptr = page_address(skb_frag_page(frag)); 2874 if (unlikely(!ptr)) 2875 return NULL; 2876 2877 return ptr + frag->page_offset; 2878 } 2879 2880 /** 2881 * __skb_frag_set_page - sets the page contained in a paged fragment 2882 * @frag: the paged fragment 2883 * @page: the page to set 2884 * 2885 * Sets the fragment @frag to contain @page. 2886 */ 2887 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page) 2888 { 2889 frag->page.p = page; 2890 } 2891 2892 /** 2893 * skb_frag_set_page - sets the page contained in a paged fragment of an skb 2894 * @skb: the buffer 2895 * @f: the fragment offset 2896 * @page: the page to set 2897 * 2898 * Sets the @f'th fragment of @skb to contain @page. 2899 */ 2900 static inline void skb_frag_set_page(struct sk_buff *skb, int f, 2901 struct page *page) 2902 { 2903 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page); 2904 } 2905 2906 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio); 2907 2908 /** 2909 * skb_frag_dma_map - maps a paged fragment via the DMA API 2910 * @dev: the device to map the fragment to 2911 * @frag: the paged fragment to map 2912 * @offset: the offset within the fragment (starting at the 2913 * fragment's own offset) 2914 * @size: the number of bytes to map 2915 * @dir: the direction of the mapping (``PCI_DMA_*``) 2916 * 2917 * Maps the page associated with @frag to @device. 2918 */ 2919 static inline dma_addr_t skb_frag_dma_map(struct device *dev, 2920 const skb_frag_t *frag, 2921 size_t offset, size_t size, 2922 enum dma_data_direction dir) 2923 { 2924 return dma_map_page(dev, skb_frag_page(frag), 2925 frag->page_offset + offset, size, dir); 2926 } 2927 2928 static inline struct sk_buff *pskb_copy(struct sk_buff *skb, 2929 gfp_t gfp_mask) 2930 { 2931 return __pskb_copy(skb, skb_headroom(skb), gfp_mask); 2932 } 2933 2934 2935 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb, 2936 gfp_t gfp_mask) 2937 { 2938 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true); 2939 } 2940 2941 2942 /** 2943 * skb_clone_writable - is the header of a clone writable 2944 * @skb: buffer to check 2945 * @len: length up to which to write 2946 * 2947 * Returns true if modifying the header part of the cloned buffer 2948 * does not requires the data to be copied. 2949 */ 2950 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) 2951 { 2952 return !skb_header_cloned(skb) && 2953 skb_headroom(skb) + len <= skb->hdr_len; 2954 } 2955 2956 static inline int skb_try_make_writable(struct sk_buff *skb, 2957 unsigned int write_len) 2958 { 2959 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) && 2960 pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2961 } 2962 2963 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 2964 int cloned) 2965 { 2966 int delta = 0; 2967 2968 if (headroom > skb_headroom(skb)) 2969 delta = headroom - skb_headroom(skb); 2970 2971 if (delta || cloned) 2972 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 2973 GFP_ATOMIC); 2974 return 0; 2975 } 2976 2977 /** 2978 * skb_cow - copy header of skb when it is required 2979 * @skb: buffer to cow 2980 * @headroom: needed headroom 2981 * 2982 * If the skb passed lacks sufficient headroom or its data part 2983 * is shared, data is reallocated. If reallocation fails, an error 2984 * is returned and original skb is not changed. 2985 * 2986 * The result is skb with writable area skb->head...skb->tail 2987 * and at least @headroom of space at head. 2988 */ 2989 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 2990 { 2991 return __skb_cow(skb, headroom, skb_cloned(skb)); 2992 } 2993 2994 /** 2995 * skb_cow_head - skb_cow but only making the head writable 2996 * @skb: buffer to cow 2997 * @headroom: needed headroom 2998 * 2999 * This function is identical to skb_cow except that we replace the 3000 * skb_cloned check by skb_header_cloned. It should be used when 3001 * you only need to push on some header and do not need to modify 3002 * the data. 3003 */ 3004 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 3005 { 3006 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 3007 } 3008 3009 /** 3010 * skb_padto - pad an skbuff up to a minimal size 3011 * @skb: buffer to pad 3012 * @len: minimal length 3013 * 3014 * Pads up a buffer to ensure the trailing bytes exist and are 3015 * blanked. If the buffer already contains sufficient data it 3016 * is untouched. Otherwise it is extended. Returns zero on 3017 * success. The skb is freed on error. 3018 */ 3019 static inline int skb_padto(struct sk_buff *skb, unsigned int len) 3020 { 3021 unsigned int size = skb->len; 3022 if (likely(size >= len)) 3023 return 0; 3024 return skb_pad(skb, len - size); 3025 } 3026 3027 /** 3028 * __skb_put_padto - increase size and pad an skbuff up to a minimal size 3029 * @skb: buffer to pad 3030 * @len: minimal length 3031 * @free_on_error: free buffer on error 3032 * 3033 * Pads up a buffer to ensure the trailing bytes exist and are 3034 * blanked. If the buffer already contains sufficient data it 3035 * is untouched. Otherwise it is extended. Returns zero on 3036 * success. The skb is freed on error if @free_on_error is true. 3037 */ 3038 static inline int __skb_put_padto(struct sk_buff *skb, unsigned int len, 3039 bool free_on_error) 3040 { 3041 unsigned int size = skb->len; 3042 3043 if (unlikely(size < len)) { 3044 len -= size; 3045 if (__skb_pad(skb, len, free_on_error)) 3046 return -ENOMEM; 3047 __skb_put(skb, len); 3048 } 3049 return 0; 3050 } 3051 3052 /** 3053 * skb_put_padto - increase size and pad an skbuff up to a minimal size 3054 * @skb: buffer to pad 3055 * @len: minimal length 3056 * 3057 * Pads up a buffer to ensure the trailing bytes exist and are 3058 * blanked. If the buffer already contains sufficient data it 3059 * is untouched. Otherwise it is extended. Returns zero on 3060 * success. The skb is freed on error. 3061 */ 3062 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len) 3063 { 3064 return __skb_put_padto(skb, len, true); 3065 } 3066 3067 static inline int skb_add_data(struct sk_buff *skb, 3068 struct iov_iter *from, int copy) 3069 { 3070 const int off = skb->len; 3071 3072 if (skb->ip_summed == CHECKSUM_NONE) { 3073 __wsum csum = 0; 3074 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy, 3075 &csum, from)) { 3076 skb->csum = csum_block_add(skb->csum, csum, off); 3077 return 0; 3078 } 3079 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from)) 3080 return 0; 3081 3082 __skb_trim(skb, off); 3083 return -EFAULT; 3084 } 3085 3086 static inline bool skb_can_coalesce(struct sk_buff *skb, int i, 3087 const struct page *page, int off) 3088 { 3089 if (skb_zcopy(skb)) 3090 return false; 3091 if (i) { 3092 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 3093 3094 return page == skb_frag_page(frag) && 3095 off == frag->page_offset + skb_frag_size(frag); 3096 } 3097 return false; 3098 } 3099 3100 static inline int __skb_linearize(struct sk_buff *skb) 3101 { 3102 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 3103 } 3104 3105 /** 3106 * skb_linearize - convert paged skb to linear one 3107 * @skb: buffer to linarize 3108 * 3109 * If there is no free memory -ENOMEM is returned, otherwise zero 3110 * is returned and the old skb data released. 3111 */ 3112 static inline int skb_linearize(struct sk_buff *skb) 3113 { 3114 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 3115 } 3116 3117 /** 3118 * skb_has_shared_frag - can any frag be overwritten 3119 * @skb: buffer to test 3120 * 3121 * Return true if the skb has at least one frag that might be modified 3122 * by an external entity (as in vmsplice()/sendfile()) 3123 */ 3124 static inline bool skb_has_shared_frag(const struct sk_buff *skb) 3125 { 3126 return skb_is_nonlinear(skb) && 3127 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG; 3128 } 3129 3130 /** 3131 * skb_linearize_cow - make sure skb is linear and writable 3132 * @skb: buffer to process 3133 * 3134 * If there is no free memory -ENOMEM is returned, otherwise zero 3135 * is returned and the old skb data released. 3136 */ 3137 static inline int skb_linearize_cow(struct sk_buff *skb) 3138 { 3139 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 3140 __skb_linearize(skb) : 0; 3141 } 3142 3143 static __always_inline void 3144 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3145 unsigned int off) 3146 { 3147 if (skb->ip_summed == CHECKSUM_COMPLETE) 3148 skb->csum = csum_block_sub(skb->csum, 3149 csum_partial(start, len, 0), off); 3150 else if (skb->ip_summed == CHECKSUM_PARTIAL && 3151 skb_checksum_start_offset(skb) < 0) 3152 skb->ip_summed = CHECKSUM_NONE; 3153 } 3154 3155 /** 3156 * skb_postpull_rcsum - update checksum for received skb after pull 3157 * @skb: buffer to update 3158 * @start: start of data before pull 3159 * @len: length of data pulled 3160 * 3161 * After doing a pull on a received packet, you need to call this to 3162 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 3163 * CHECKSUM_NONE so that it can be recomputed from scratch. 3164 */ 3165 static inline void skb_postpull_rcsum(struct sk_buff *skb, 3166 const void *start, unsigned int len) 3167 { 3168 __skb_postpull_rcsum(skb, start, len, 0); 3169 } 3170 3171 static __always_inline void 3172 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3173 unsigned int off) 3174 { 3175 if (skb->ip_summed == CHECKSUM_COMPLETE) 3176 skb->csum = csum_block_add(skb->csum, 3177 csum_partial(start, len, 0), off); 3178 } 3179 3180 /** 3181 * skb_postpush_rcsum - update checksum for received skb after push 3182 * @skb: buffer to update 3183 * @start: start of data after push 3184 * @len: length of data pushed 3185 * 3186 * After doing a push on a received packet, you need to call this to 3187 * update the CHECKSUM_COMPLETE checksum. 3188 */ 3189 static inline void skb_postpush_rcsum(struct sk_buff *skb, 3190 const void *start, unsigned int len) 3191 { 3192 __skb_postpush_rcsum(skb, start, len, 0); 3193 } 3194 3195 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 3196 3197 /** 3198 * skb_push_rcsum - push skb and update receive checksum 3199 * @skb: buffer to update 3200 * @len: length of data pulled 3201 * 3202 * This function performs an skb_push on the packet and updates 3203 * the CHECKSUM_COMPLETE checksum. It should be used on 3204 * receive path processing instead of skb_push unless you know 3205 * that the checksum difference is zero (e.g., a valid IP header) 3206 * or you are setting ip_summed to CHECKSUM_NONE. 3207 */ 3208 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len) 3209 { 3210 skb_push(skb, len); 3211 skb_postpush_rcsum(skb, skb->data, len); 3212 return skb->data; 3213 } 3214 3215 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len); 3216 /** 3217 * pskb_trim_rcsum - trim received skb and update checksum 3218 * @skb: buffer to trim 3219 * @len: new length 3220 * 3221 * This is exactly the same as pskb_trim except that it ensures the 3222 * checksum of received packets are still valid after the operation. 3223 * It can change skb pointers. 3224 */ 3225 3226 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3227 { 3228 if (likely(len >= skb->len)) 3229 return 0; 3230 return pskb_trim_rcsum_slow(skb, len); 3231 } 3232 3233 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3234 { 3235 if (skb->ip_summed == CHECKSUM_COMPLETE) 3236 skb->ip_summed = CHECKSUM_NONE; 3237 __skb_trim(skb, len); 3238 return 0; 3239 } 3240 3241 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len) 3242 { 3243 if (skb->ip_summed == CHECKSUM_COMPLETE) 3244 skb->ip_summed = CHECKSUM_NONE; 3245 return __skb_grow(skb, len); 3246 } 3247 3248 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode) 3249 #define skb_rb_first(root) rb_to_skb(rb_first(root)) 3250 #define skb_rb_last(root) rb_to_skb(rb_last(root)) 3251 #define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode)) 3252 #define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode)) 3253 3254 #define skb_queue_walk(queue, skb) \ 3255 for (skb = (queue)->next; \ 3256 skb != (struct sk_buff *)(queue); \ 3257 skb = skb->next) 3258 3259 #define skb_queue_walk_safe(queue, skb, tmp) \ 3260 for (skb = (queue)->next, tmp = skb->next; \ 3261 skb != (struct sk_buff *)(queue); \ 3262 skb = tmp, tmp = skb->next) 3263 3264 #define skb_queue_walk_from(queue, skb) \ 3265 for (; skb != (struct sk_buff *)(queue); \ 3266 skb = skb->next) 3267 3268 #define skb_rbtree_walk(skb, root) \ 3269 for (skb = skb_rb_first(root); skb != NULL; \ 3270 skb = skb_rb_next(skb)) 3271 3272 #define skb_rbtree_walk_from(skb) \ 3273 for (; skb != NULL; \ 3274 skb = skb_rb_next(skb)) 3275 3276 #define skb_rbtree_walk_from_safe(skb, tmp) \ 3277 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \ 3278 skb = tmp) 3279 3280 #define skb_queue_walk_from_safe(queue, skb, tmp) \ 3281 for (tmp = skb->next; \ 3282 skb != (struct sk_buff *)(queue); \ 3283 skb = tmp, tmp = skb->next) 3284 3285 #define skb_queue_reverse_walk(queue, skb) \ 3286 for (skb = (queue)->prev; \ 3287 skb != (struct sk_buff *)(queue); \ 3288 skb = skb->prev) 3289 3290 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \ 3291 for (skb = (queue)->prev, tmp = skb->prev; \ 3292 skb != (struct sk_buff *)(queue); \ 3293 skb = tmp, tmp = skb->prev) 3294 3295 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ 3296 for (tmp = skb->prev; \ 3297 skb != (struct sk_buff *)(queue); \ 3298 skb = tmp, tmp = skb->prev) 3299 3300 static inline bool skb_has_frag_list(const struct sk_buff *skb) 3301 { 3302 return skb_shinfo(skb)->frag_list != NULL; 3303 } 3304 3305 static inline void skb_frag_list_init(struct sk_buff *skb) 3306 { 3307 skb_shinfo(skb)->frag_list = NULL; 3308 } 3309 3310 #define skb_walk_frags(skb, iter) \ 3311 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 3312 3313 3314 int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p, 3315 const struct sk_buff *skb); 3316 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk, 3317 struct sk_buff_head *queue, 3318 unsigned int flags, 3319 void (*destructor)(struct sock *sk, 3320 struct sk_buff *skb), 3321 int *peeked, int *off, int *err, 3322 struct sk_buff **last); 3323 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags, 3324 void (*destructor)(struct sock *sk, 3325 struct sk_buff *skb), 3326 int *peeked, int *off, int *err, 3327 struct sk_buff **last); 3328 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags, 3329 void (*destructor)(struct sock *sk, 3330 struct sk_buff *skb), 3331 int *peeked, int *off, int *err); 3332 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock, 3333 int *err); 3334 __poll_t datagram_poll(struct file *file, struct socket *sock, 3335 struct poll_table_struct *wait); 3336 int skb_copy_datagram_iter(const struct sk_buff *from, int offset, 3337 struct iov_iter *to, int size); 3338 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset, 3339 struct msghdr *msg, int size) 3340 { 3341 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size); 3342 } 3343 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen, 3344 struct msghdr *msg); 3345 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset, 3346 struct iov_iter *to, int len, 3347 struct ahash_request *hash); 3348 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset, 3349 struct iov_iter *from, int len); 3350 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm); 3351 void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 3352 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len); 3353 static inline void skb_free_datagram_locked(struct sock *sk, 3354 struct sk_buff *skb) 3355 { 3356 __skb_free_datagram_locked(sk, skb, 0); 3357 } 3358 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags); 3359 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len); 3360 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len); 3361 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, 3362 int len, __wsum csum); 3363 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 3364 struct pipe_inode_info *pipe, unsigned int len, 3365 unsigned int flags); 3366 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 3367 int len); 3368 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 3369 unsigned int skb_zerocopy_headlen(const struct sk_buff *from); 3370 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from, 3371 int len, int hlen); 3372 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len); 3373 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen); 3374 void skb_scrub_packet(struct sk_buff *skb, bool xnet); 3375 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu); 3376 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len); 3377 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features); 3378 struct sk_buff *skb_vlan_untag(struct sk_buff *skb); 3379 int skb_ensure_writable(struct sk_buff *skb, int write_len); 3380 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci); 3381 int skb_vlan_pop(struct sk_buff *skb); 3382 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci); 3383 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy, 3384 gfp_t gfp); 3385 3386 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len) 3387 { 3388 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT; 3389 } 3390 3391 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len) 3392 { 3393 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT; 3394 } 3395 3396 struct skb_checksum_ops { 3397 __wsum (*update)(const void *mem, int len, __wsum wsum); 3398 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len); 3399 }; 3400 3401 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly; 3402 3403 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 3404 __wsum csum, const struct skb_checksum_ops *ops); 3405 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len, 3406 __wsum csum); 3407 3408 static inline void * __must_check 3409 __skb_header_pointer(const struct sk_buff *skb, int offset, 3410 int len, void *data, int hlen, void *buffer) 3411 { 3412 if (hlen - offset >= len) 3413 return data + offset; 3414 3415 if (!skb || 3416 skb_copy_bits(skb, offset, buffer, len) < 0) 3417 return NULL; 3418 3419 return buffer; 3420 } 3421 3422 static inline void * __must_check 3423 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer) 3424 { 3425 return __skb_header_pointer(skb, offset, len, skb->data, 3426 skb_headlen(skb), buffer); 3427 } 3428 3429 /** 3430 * skb_needs_linearize - check if we need to linearize a given skb 3431 * depending on the given device features. 3432 * @skb: socket buffer to check 3433 * @features: net device features 3434 * 3435 * Returns true if either: 3436 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 3437 * 2. skb is fragmented and the device does not support SG. 3438 */ 3439 static inline bool skb_needs_linearize(struct sk_buff *skb, 3440 netdev_features_t features) 3441 { 3442 return skb_is_nonlinear(skb) && 3443 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) || 3444 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG))); 3445 } 3446 3447 static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 3448 void *to, 3449 const unsigned int len) 3450 { 3451 memcpy(to, skb->data, len); 3452 } 3453 3454 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 3455 const int offset, void *to, 3456 const unsigned int len) 3457 { 3458 memcpy(to, skb->data + offset, len); 3459 } 3460 3461 static inline void skb_copy_to_linear_data(struct sk_buff *skb, 3462 const void *from, 3463 const unsigned int len) 3464 { 3465 memcpy(skb->data, from, len); 3466 } 3467 3468 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 3469 const int offset, 3470 const void *from, 3471 const unsigned int len) 3472 { 3473 memcpy(skb->data + offset, from, len); 3474 } 3475 3476 void skb_init(void); 3477 3478 static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 3479 { 3480 return skb->tstamp; 3481 } 3482 3483 /** 3484 * skb_get_timestamp - get timestamp from a skb 3485 * @skb: skb to get stamp from 3486 * @stamp: pointer to struct __kernel_old_timeval to store stamp in 3487 * 3488 * Timestamps are stored in the skb as offsets to a base timestamp. 3489 * This function converts the offset back to a struct timeval and stores 3490 * it in stamp. 3491 */ 3492 static inline void skb_get_timestamp(const struct sk_buff *skb, 3493 struct __kernel_old_timeval *stamp) 3494 { 3495 *stamp = ns_to_kernel_old_timeval(skb->tstamp); 3496 } 3497 3498 static inline void skb_get_new_timestamp(const struct sk_buff *skb, 3499 struct __kernel_sock_timeval *stamp) 3500 { 3501 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 3502 3503 stamp->tv_sec = ts.tv_sec; 3504 stamp->tv_usec = ts.tv_nsec / 1000; 3505 } 3506 3507 static inline void skb_get_timestampns(const struct sk_buff *skb, 3508 struct timespec *stamp) 3509 { 3510 *stamp = ktime_to_timespec(skb->tstamp); 3511 } 3512 3513 static inline void skb_get_new_timestampns(const struct sk_buff *skb, 3514 struct __kernel_timespec *stamp) 3515 { 3516 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 3517 3518 stamp->tv_sec = ts.tv_sec; 3519 stamp->tv_nsec = ts.tv_nsec; 3520 } 3521 3522 static inline void __net_timestamp(struct sk_buff *skb) 3523 { 3524 skb->tstamp = ktime_get_real(); 3525 } 3526 3527 static inline ktime_t net_timedelta(ktime_t t) 3528 { 3529 return ktime_sub(ktime_get_real(), t); 3530 } 3531 3532 static inline ktime_t net_invalid_timestamp(void) 3533 { 3534 return 0; 3535 } 3536 3537 static inline u8 skb_metadata_len(const struct sk_buff *skb) 3538 { 3539 return skb_shinfo(skb)->meta_len; 3540 } 3541 3542 static inline void *skb_metadata_end(const struct sk_buff *skb) 3543 { 3544 return skb_mac_header(skb); 3545 } 3546 3547 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a, 3548 const struct sk_buff *skb_b, 3549 u8 meta_len) 3550 { 3551 const void *a = skb_metadata_end(skb_a); 3552 const void *b = skb_metadata_end(skb_b); 3553 /* Using more efficient varaiant than plain call to memcmp(). */ 3554 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 3555 u64 diffs = 0; 3556 3557 switch (meta_len) { 3558 #define __it(x, op) (x -= sizeof(u##op)) 3559 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op)) 3560 case 32: diffs |= __it_diff(a, b, 64); 3561 /* fall through */ 3562 case 24: diffs |= __it_diff(a, b, 64); 3563 /* fall through */ 3564 case 16: diffs |= __it_diff(a, b, 64); 3565 /* fall through */ 3566 case 8: diffs |= __it_diff(a, b, 64); 3567 break; 3568 case 28: diffs |= __it_diff(a, b, 64); 3569 /* fall through */ 3570 case 20: diffs |= __it_diff(a, b, 64); 3571 /* fall through */ 3572 case 12: diffs |= __it_diff(a, b, 64); 3573 /* fall through */ 3574 case 4: diffs |= __it_diff(a, b, 32); 3575 break; 3576 } 3577 return diffs; 3578 #else 3579 return memcmp(a - meta_len, b - meta_len, meta_len); 3580 #endif 3581 } 3582 3583 static inline bool skb_metadata_differs(const struct sk_buff *skb_a, 3584 const struct sk_buff *skb_b) 3585 { 3586 u8 len_a = skb_metadata_len(skb_a); 3587 u8 len_b = skb_metadata_len(skb_b); 3588 3589 if (!(len_a | len_b)) 3590 return false; 3591 3592 return len_a != len_b ? 3593 true : __skb_metadata_differs(skb_a, skb_b, len_a); 3594 } 3595 3596 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len) 3597 { 3598 skb_shinfo(skb)->meta_len = meta_len; 3599 } 3600 3601 static inline void skb_metadata_clear(struct sk_buff *skb) 3602 { 3603 skb_metadata_set(skb, 0); 3604 } 3605 3606 struct sk_buff *skb_clone_sk(struct sk_buff *skb); 3607 3608 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 3609 3610 void skb_clone_tx_timestamp(struct sk_buff *skb); 3611 bool skb_defer_rx_timestamp(struct sk_buff *skb); 3612 3613 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 3614 3615 static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 3616 { 3617 } 3618 3619 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 3620 { 3621 return false; 3622 } 3623 3624 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 3625 3626 /** 3627 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 3628 * 3629 * PHY drivers may accept clones of transmitted packets for 3630 * timestamping via their phy_driver.txtstamp method. These drivers 3631 * must call this function to return the skb back to the stack with a 3632 * timestamp. 3633 * 3634 * @skb: clone of the the original outgoing packet 3635 * @hwtstamps: hardware time stamps 3636 * 3637 */ 3638 void skb_complete_tx_timestamp(struct sk_buff *skb, 3639 struct skb_shared_hwtstamps *hwtstamps); 3640 3641 void __skb_tstamp_tx(struct sk_buff *orig_skb, 3642 struct skb_shared_hwtstamps *hwtstamps, 3643 struct sock *sk, int tstype); 3644 3645 /** 3646 * skb_tstamp_tx - queue clone of skb with send time stamps 3647 * @orig_skb: the original outgoing packet 3648 * @hwtstamps: hardware time stamps, may be NULL if not available 3649 * 3650 * If the skb has a socket associated, then this function clones the 3651 * skb (thus sharing the actual data and optional structures), stores 3652 * the optional hardware time stamping information (if non NULL) or 3653 * generates a software time stamp (otherwise), then queues the clone 3654 * to the error queue of the socket. Errors are silently ignored. 3655 */ 3656 void skb_tstamp_tx(struct sk_buff *orig_skb, 3657 struct skb_shared_hwtstamps *hwtstamps); 3658 3659 /** 3660 * skb_tx_timestamp() - Driver hook for transmit timestamping 3661 * 3662 * Ethernet MAC Drivers should call this function in their hard_xmit() 3663 * function immediately before giving the sk_buff to the MAC hardware. 3664 * 3665 * Specifically, one should make absolutely sure that this function is 3666 * called before TX completion of this packet can trigger. Otherwise 3667 * the packet could potentially already be freed. 3668 * 3669 * @skb: A socket buffer. 3670 */ 3671 static inline void skb_tx_timestamp(struct sk_buff *skb) 3672 { 3673 skb_clone_tx_timestamp(skb); 3674 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP) 3675 skb_tstamp_tx(skb, NULL); 3676 } 3677 3678 /** 3679 * skb_complete_wifi_ack - deliver skb with wifi status 3680 * 3681 * @skb: the original outgoing packet 3682 * @acked: ack status 3683 * 3684 */ 3685 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); 3686 3687 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 3688 __sum16 __skb_checksum_complete(struct sk_buff *skb); 3689 3690 static inline int skb_csum_unnecessary(const struct sk_buff *skb) 3691 { 3692 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) || 3693 skb->csum_valid || 3694 (skb->ip_summed == CHECKSUM_PARTIAL && 3695 skb_checksum_start_offset(skb) >= 0)); 3696 } 3697 3698 /** 3699 * skb_checksum_complete - Calculate checksum of an entire packet 3700 * @skb: packet to process 3701 * 3702 * This function calculates the checksum over the entire packet plus 3703 * the value of skb->csum. The latter can be used to supply the 3704 * checksum of a pseudo header as used by TCP/UDP. It returns the 3705 * checksum. 3706 * 3707 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 3708 * this function can be used to verify that checksum on received 3709 * packets. In that case the function should return zero if the 3710 * checksum is correct. In particular, this function will return zero 3711 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 3712 * hardware has already verified the correctness of the checksum. 3713 */ 3714 static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 3715 { 3716 return skb_csum_unnecessary(skb) ? 3717 0 : __skb_checksum_complete(skb); 3718 } 3719 3720 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb) 3721 { 3722 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 3723 if (skb->csum_level == 0) 3724 skb->ip_summed = CHECKSUM_NONE; 3725 else 3726 skb->csum_level--; 3727 } 3728 } 3729 3730 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb) 3731 { 3732 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 3733 if (skb->csum_level < SKB_MAX_CSUM_LEVEL) 3734 skb->csum_level++; 3735 } else if (skb->ip_summed == CHECKSUM_NONE) { 3736 skb->ip_summed = CHECKSUM_UNNECESSARY; 3737 skb->csum_level = 0; 3738 } 3739 } 3740 3741 /* Check if we need to perform checksum complete validation. 3742 * 3743 * Returns true if checksum complete is needed, false otherwise 3744 * (either checksum is unnecessary or zero checksum is allowed). 3745 */ 3746 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb, 3747 bool zero_okay, 3748 __sum16 check) 3749 { 3750 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) { 3751 skb->csum_valid = 1; 3752 __skb_decr_checksum_unnecessary(skb); 3753 return false; 3754 } 3755 3756 return true; 3757 } 3758 3759 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly 3760 * in checksum_init. 3761 */ 3762 #define CHECKSUM_BREAK 76 3763 3764 /* Unset checksum-complete 3765 * 3766 * Unset checksum complete can be done when packet is being modified 3767 * (uncompressed for instance) and checksum-complete value is 3768 * invalidated. 3769 */ 3770 static inline void skb_checksum_complete_unset(struct sk_buff *skb) 3771 { 3772 if (skb->ip_summed == CHECKSUM_COMPLETE) 3773 skb->ip_summed = CHECKSUM_NONE; 3774 } 3775 3776 /* Validate (init) checksum based on checksum complete. 3777 * 3778 * Return values: 3779 * 0: checksum is validated or try to in skb_checksum_complete. In the latter 3780 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo 3781 * checksum is stored in skb->csum for use in __skb_checksum_complete 3782 * non-zero: value of invalid checksum 3783 * 3784 */ 3785 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb, 3786 bool complete, 3787 __wsum psum) 3788 { 3789 if (skb->ip_summed == CHECKSUM_COMPLETE) { 3790 if (!csum_fold(csum_add(psum, skb->csum))) { 3791 skb->csum_valid = 1; 3792 return 0; 3793 } 3794 } 3795 3796 skb->csum = psum; 3797 3798 if (complete || skb->len <= CHECKSUM_BREAK) { 3799 __sum16 csum; 3800 3801 csum = __skb_checksum_complete(skb); 3802 skb->csum_valid = !csum; 3803 return csum; 3804 } 3805 3806 return 0; 3807 } 3808 3809 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto) 3810 { 3811 return 0; 3812 } 3813 3814 /* Perform checksum validate (init). Note that this is a macro since we only 3815 * want to calculate the pseudo header which is an input function if necessary. 3816 * First we try to validate without any computation (checksum unnecessary) and 3817 * then calculate based on checksum complete calling the function to compute 3818 * pseudo header. 3819 * 3820 * Return values: 3821 * 0: checksum is validated or try to in skb_checksum_complete 3822 * non-zero: value of invalid checksum 3823 */ 3824 #define __skb_checksum_validate(skb, proto, complete, \ 3825 zero_okay, check, compute_pseudo) \ 3826 ({ \ 3827 __sum16 __ret = 0; \ 3828 skb->csum_valid = 0; \ 3829 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \ 3830 __ret = __skb_checksum_validate_complete(skb, \ 3831 complete, compute_pseudo(skb, proto)); \ 3832 __ret; \ 3833 }) 3834 3835 #define skb_checksum_init(skb, proto, compute_pseudo) \ 3836 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo) 3837 3838 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \ 3839 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo) 3840 3841 #define skb_checksum_validate(skb, proto, compute_pseudo) \ 3842 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo) 3843 3844 #define skb_checksum_validate_zero_check(skb, proto, check, \ 3845 compute_pseudo) \ 3846 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo) 3847 3848 #define skb_checksum_simple_validate(skb) \ 3849 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo) 3850 3851 static inline bool __skb_checksum_convert_check(struct sk_buff *skb) 3852 { 3853 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid); 3854 } 3855 3856 static inline void __skb_checksum_convert(struct sk_buff *skb, 3857 __sum16 check, __wsum pseudo) 3858 { 3859 skb->csum = ~pseudo; 3860 skb->ip_summed = CHECKSUM_COMPLETE; 3861 } 3862 3863 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo) \ 3864 do { \ 3865 if (__skb_checksum_convert_check(skb)) \ 3866 __skb_checksum_convert(skb, check, \ 3867 compute_pseudo(skb, proto)); \ 3868 } while (0) 3869 3870 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr, 3871 u16 start, u16 offset) 3872 { 3873 skb->ip_summed = CHECKSUM_PARTIAL; 3874 skb->csum_start = ((unsigned char *)ptr + start) - skb->head; 3875 skb->csum_offset = offset - start; 3876 } 3877 3878 /* Update skbuf and packet to reflect the remote checksum offload operation. 3879 * When called, ptr indicates the starting point for skb->csum when 3880 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete 3881 * here, skb_postpull_rcsum is done so skb->csum start is ptr. 3882 */ 3883 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr, 3884 int start, int offset, bool nopartial) 3885 { 3886 __wsum delta; 3887 3888 if (!nopartial) { 3889 skb_remcsum_adjust_partial(skb, ptr, start, offset); 3890 return; 3891 } 3892 3893 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) { 3894 __skb_checksum_complete(skb); 3895 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data); 3896 } 3897 3898 delta = remcsum_adjust(ptr, skb->csum, start, offset); 3899 3900 /* Adjust skb->csum since we changed the packet */ 3901 skb->csum = csum_add(skb->csum, delta); 3902 } 3903 3904 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb) 3905 { 3906 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 3907 return (void *)(skb->_nfct & SKB_NFCT_PTRMASK); 3908 #else 3909 return NULL; 3910 #endif 3911 } 3912 3913 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3914 void nf_conntrack_destroy(struct nf_conntrack *nfct); 3915 static inline void nf_conntrack_put(struct nf_conntrack *nfct) 3916 { 3917 if (nfct && atomic_dec_and_test(&nfct->use)) 3918 nf_conntrack_destroy(nfct); 3919 } 3920 static inline void nf_conntrack_get(struct nf_conntrack *nfct) 3921 { 3922 if (nfct) 3923 atomic_inc(&nfct->use); 3924 } 3925 #endif 3926 3927 #ifdef CONFIG_SKB_EXTENSIONS 3928 enum skb_ext_id { 3929 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3930 SKB_EXT_BRIDGE_NF, 3931 #endif 3932 #ifdef CONFIG_XFRM 3933 SKB_EXT_SEC_PATH, 3934 #endif 3935 SKB_EXT_NUM, /* must be last */ 3936 }; 3937 3938 /** 3939 * struct skb_ext - sk_buff extensions 3940 * @refcnt: 1 on allocation, deallocated on 0 3941 * @offset: offset to add to @data to obtain extension address 3942 * @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units 3943 * @data: start of extension data, variable sized 3944 * 3945 * Note: offsets/lengths are stored in chunks of 8 bytes, this allows 3946 * to use 'u8' types while allowing up to 2kb worth of extension data. 3947 */ 3948 struct skb_ext { 3949 refcount_t refcnt; 3950 u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */ 3951 u8 chunks; /* same */ 3952 char data[0] __aligned(8); 3953 }; 3954 3955 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id); 3956 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id); 3957 void __skb_ext_put(struct skb_ext *ext); 3958 3959 static inline void skb_ext_put(struct sk_buff *skb) 3960 { 3961 if (skb->active_extensions) 3962 __skb_ext_put(skb->extensions); 3963 } 3964 3965 static inline void __skb_ext_copy(struct sk_buff *dst, 3966 const struct sk_buff *src) 3967 { 3968 dst->active_extensions = src->active_extensions; 3969 3970 if (src->active_extensions) { 3971 struct skb_ext *ext = src->extensions; 3972 3973 refcount_inc(&ext->refcnt); 3974 dst->extensions = ext; 3975 } 3976 } 3977 3978 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src) 3979 { 3980 skb_ext_put(dst); 3981 __skb_ext_copy(dst, src); 3982 } 3983 3984 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i) 3985 { 3986 return !!ext->offset[i]; 3987 } 3988 3989 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id) 3990 { 3991 return skb->active_extensions & (1 << id); 3992 } 3993 3994 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 3995 { 3996 if (skb_ext_exist(skb, id)) 3997 __skb_ext_del(skb, id); 3998 } 3999 4000 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id) 4001 { 4002 if (skb_ext_exist(skb, id)) { 4003 struct skb_ext *ext = skb->extensions; 4004 4005 return (void *)ext + (ext->offset[id] << 3); 4006 } 4007 4008 return NULL; 4009 } 4010 #else 4011 static inline void skb_ext_put(struct sk_buff *skb) {} 4012 static inline void skb_ext_del(struct sk_buff *skb, int unused) {} 4013 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {} 4014 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {} 4015 #endif /* CONFIG_SKB_EXTENSIONS */ 4016 4017 static inline void nf_reset(struct sk_buff *skb) 4018 { 4019 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4020 nf_conntrack_put(skb_nfct(skb)); 4021 skb->_nfct = 0; 4022 #endif 4023 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4024 skb_ext_del(skb, SKB_EXT_BRIDGE_NF); 4025 #endif 4026 } 4027 4028 static inline void nf_reset_trace(struct sk_buff *skb) 4029 { 4030 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 4031 skb->nf_trace = 0; 4032 #endif 4033 } 4034 4035 static inline void ipvs_reset(struct sk_buff *skb) 4036 { 4037 #if IS_ENABLED(CONFIG_IP_VS) 4038 skb->ipvs_property = 0; 4039 #endif 4040 } 4041 4042 /* Note: This doesn't put any conntrack info in dst. */ 4043 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src, 4044 bool copy) 4045 { 4046 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4047 dst->_nfct = src->_nfct; 4048 nf_conntrack_get(skb_nfct(src)); 4049 #endif 4050 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 4051 if (copy) 4052 dst->nf_trace = src->nf_trace; 4053 #endif 4054 } 4055 4056 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 4057 { 4058 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4059 nf_conntrack_put(skb_nfct(dst)); 4060 #endif 4061 __nf_copy(dst, src, true); 4062 } 4063 4064 #ifdef CONFIG_NETWORK_SECMARK 4065 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 4066 { 4067 to->secmark = from->secmark; 4068 } 4069 4070 static inline void skb_init_secmark(struct sk_buff *skb) 4071 { 4072 skb->secmark = 0; 4073 } 4074 #else 4075 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 4076 { } 4077 4078 static inline void skb_init_secmark(struct sk_buff *skb) 4079 { } 4080 #endif 4081 4082 static inline int secpath_exists(const struct sk_buff *skb) 4083 { 4084 #ifdef CONFIG_XFRM 4085 return skb_ext_exist(skb, SKB_EXT_SEC_PATH); 4086 #else 4087 return 0; 4088 #endif 4089 } 4090 4091 static inline bool skb_irq_freeable(const struct sk_buff *skb) 4092 { 4093 return !skb->destructor && 4094 !secpath_exists(skb) && 4095 !skb_nfct(skb) && 4096 !skb->_skb_refdst && 4097 !skb_has_frag_list(skb); 4098 } 4099 4100 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 4101 { 4102 skb->queue_mapping = queue_mapping; 4103 } 4104 4105 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 4106 { 4107 return skb->queue_mapping; 4108 } 4109 4110 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 4111 { 4112 to->queue_mapping = from->queue_mapping; 4113 } 4114 4115 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 4116 { 4117 skb->queue_mapping = rx_queue + 1; 4118 } 4119 4120 static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 4121 { 4122 return skb->queue_mapping - 1; 4123 } 4124 4125 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 4126 { 4127 return skb->queue_mapping != 0; 4128 } 4129 4130 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val) 4131 { 4132 skb->dst_pending_confirm = val; 4133 } 4134 4135 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb) 4136 { 4137 return skb->dst_pending_confirm != 0; 4138 } 4139 4140 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb) 4141 { 4142 #ifdef CONFIG_XFRM 4143 return skb_ext_find(skb, SKB_EXT_SEC_PATH); 4144 #else 4145 return NULL; 4146 #endif 4147 } 4148 4149 /* Keeps track of mac header offset relative to skb->head. 4150 * It is useful for TSO of Tunneling protocol. e.g. GRE. 4151 * For non-tunnel skb it points to skb_mac_header() and for 4152 * tunnel skb it points to outer mac header. 4153 * Keeps track of level of encapsulation of network headers. 4154 */ 4155 struct skb_gso_cb { 4156 union { 4157 int mac_offset; 4158 int data_offset; 4159 }; 4160 int encap_level; 4161 __wsum csum; 4162 __u16 csum_start; 4163 }; 4164 #define SKB_SGO_CB_OFFSET 32 4165 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET)) 4166 4167 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb) 4168 { 4169 return (skb_mac_header(inner_skb) - inner_skb->head) - 4170 SKB_GSO_CB(inner_skb)->mac_offset; 4171 } 4172 4173 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra) 4174 { 4175 int new_headroom, headroom; 4176 int ret; 4177 4178 headroom = skb_headroom(skb); 4179 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC); 4180 if (ret) 4181 return ret; 4182 4183 new_headroom = skb_headroom(skb); 4184 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom); 4185 return 0; 4186 } 4187 4188 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res) 4189 { 4190 /* Do not update partial checksums if remote checksum is enabled. */ 4191 if (skb->remcsum_offload) 4192 return; 4193 4194 SKB_GSO_CB(skb)->csum = res; 4195 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head; 4196 } 4197 4198 /* Compute the checksum for a gso segment. First compute the checksum value 4199 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and 4200 * then add in skb->csum (checksum from csum_start to end of packet). 4201 * skb->csum and csum_start are then updated to reflect the checksum of the 4202 * resultant packet starting from the transport header-- the resultant checksum 4203 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo 4204 * header. 4205 */ 4206 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res) 4207 { 4208 unsigned char *csum_start = skb_transport_header(skb); 4209 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start; 4210 __wsum partial = SKB_GSO_CB(skb)->csum; 4211 4212 SKB_GSO_CB(skb)->csum = res; 4213 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head; 4214 4215 return csum_fold(csum_partial(csum_start, plen, partial)); 4216 } 4217 4218 static inline bool skb_is_gso(const struct sk_buff *skb) 4219 { 4220 return skb_shinfo(skb)->gso_size; 4221 } 4222 4223 /* Note: Should be called only if skb_is_gso(skb) is true */ 4224 static inline bool skb_is_gso_v6(const struct sk_buff *skb) 4225 { 4226 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 4227 } 4228 4229 /* Note: Should be called only if skb_is_gso(skb) is true */ 4230 static inline bool skb_is_gso_sctp(const struct sk_buff *skb) 4231 { 4232 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP; 4233 } 4234 4235 static inline bool skb_is_gso_tcp(const struct sk_buff *skb) 4236 { 4237 return skb_is_gso(skb) && 4238 skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6); 4239 } 4240 4241 static inline void skb_gso_reset(struct sk_buff *skb) 4242 { 4243 skb_shinfo(skb)->gso_size = 0; 4244 skb_shinfo(skb)->gso_segs = 0; 4245 skb_shinfo(skb)->gso_type = 0; 4246 } 4247 4248 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo, 4249 u16 increment) 4250 { 4251 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 4252 return; 4253 shinfo->gso_size += increment; 4254 } 4255 4256 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo, 4257 u16 decrement) 4258 { 4259 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 4260 return; 4261 shinfo->gso_size -= decrement; 4262 } 4263 4264 void __skb_warn_lro_forwarding(const struct sk_buff *skb); 4265 4266 static inline bool skb_warn_if_lro(const struct sk_buff *skb) 4267 { 4268 /* LRO sets gso_size but not gso_type, whereas if GSO is really 4269 * wanted then gso_type will be set. */ 4270 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4271 4272 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 4273 unlikely(shinfo->gso_type == 0)) { 4274 __skb_warn_lro_forwarding(skb); 4275 return true; 4276 } 4277 return false; 4278 } 4279 4280 static inline void skb_forward_csum(struct sk_buff *skb) 4281 { 4282 /* Unfortunately we don't support this one. Any brave souls? */ 4283 if (skb->ip_summed == CHECKSUM_COMPLETE) 4284 skb->ip_summed = CHECKSUM_NONE; 4285 } 4286 4287 /** 4288 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 4289 * @skb: skb to check 4290 * 4291 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 4292 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 4293 * use this helper, to document places where we make this assertion. 4294 */ 4295 static inline void skb_checksum_none_assert(const struct sk_buff *skb) 4296 { 4297 #ifdef DEBUG 4298 BUG_ON(skb->ip_summed != CHECKSUM_NONE); 4299 #endif 4300 } 4301 4302 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 4303 4304 int skb_checksum_setup(struct sk_buff *skb, bool recalculate); 4305 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 4306 unsigned int transport_len, 4307 __sum16(*skb_chkf)(struct sk_buff *skb)); 4308 4309 /** 4310 * skb_head_is_locked - Determine if the skb->head is locked down 4311 * @skb: skb to check 4312 * 4313 * The head on skbs build around a head frag can be removed if they are 4314 * not cloned. This function returns true if the skb head is locked down 4315 * due to either being allocated via kmalloc, or by being a clone with 4316 * multiple references to the head. 4317 */ 4318 static inline bool skb_head_is_locked(const struct sk_buff *skb) 4319 { 4320 return !skb->head_frag || skb_cloned(skb); 4321 } 4322 4323 /* Local Checksum Offload. 4324 * Compute outer checksum based on the assumption that the 4325 * inner checksum will be offloaded later. 4326 * See Documentation/networking/checksum-offloads.txt for 4327 * explanation of how this works. 4328 * Fill in outer checksum adjustment (e.g. with sum of outer 4329 * pseudo-header) before calling. 4330 * Also ensure that inner checksum is in linear data area. 4331 */ 4332 static inline __wsum lco_csum(struct sk_buff *skb) 4333 { 4334 unsigned char *csum_start = skb_checksum_start(skb); 4335 unsigned char *l4_hdr = skb_transport_header(skb); 4336 __wsum partial; 4337 4338 /* Start with complement of inner checksum adjustment */ 4339 partial = ~csum_unfold(*(__force __sum16 *)(csum_start + 4340 skb->csum_offset)); 4341 4342 /* Add in checksum of our headers (incl. outer checksum 4343 * adjustment filled in by caller) and return result. 4344 */ 4345 return csum_partial(l4_hdr, csum_start - l4_hdr, partial); 4346 } 4347 4348 #endif /* __KERNEL__ */ 4349 #endif /* _LINUX_SKBUFF_H */ 4350