xref: /linux-6.15/include/linux/skbuff.h (revision bd707f17)
1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <[email protected]>
6  *		Florian La Roche, <[email protected]>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/bug.h>
21 #include <linux/cache.h>
22 #include <linux/rbtree.h>
23 #include <linux/socket.h>
24 #include <linux/refcount.h>
25 
26 #include <linux/atomic.h>
27 #include <asm/types.h>
28 #include <linux/spinlock.h>
29 #include <linux/net.h>
30 #include <linux/textsearch.h>
31 #include <net/checksum.h>
32 #include <linux/rcupdate.h>
33 #include <linux/hrtimer.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/netdev_features.h>
36 #include <linux/sched.h>
37 #include <linux/sched/clock.h>
38 #include <net/flow_dissector.h>
39 #include <linux/splice.h>
40 #include <linux/in6.h>
41 #include <linux/if_packet.h>
42 #include <net/flow.h>
43 
44 /* The interface for checksum offload between the stack and networking drivers
45  * is as follows...
46  *
47  * A. IP checksum related features
48  *
49  * Drivers advertise checksum offload capabilities in the features of a device.
50  * From the stack's point of view these are capabilities offered by the driver,
51  * a driver typically only advertises features that it is capable of offloading
52  * to its device.
53  *
54  * The checksum related features are:
55  *
56  *	NETIF_F_HW_CSUM	- The driver (or its device) is able to compute one
57  *			  IP (one's complement) checksum for any combination
58  *			  of protocols or protocol layering. The checksum is
59  *			  computed and set in a packet per the CHECKSUM_PARTIAL
60  *			  interface (see below).
61  *
62  *	NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
63  *			  TCP or UDP packets over IPv4. These are specifically
64  *			  unencapsulated packets of the form IPv4|TCP or
65  *			  IPv4|UDP where the Protocol field in the IPv4 header
66  *			  is TCP or UDP. The IPv4 header may contain IP options
67  *			  This feature cannot be set in features for a device
68  *			  with NETIF_F_HW_CSUM also set. This feature is being
69  *			  DEPRECATED (see below).
70  *
71  *	NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
72  *			  TCP or UDP packets over IPv6. These are specifically
73  *			  unencapsulated packets of the form IPv6|TCP or
74  *			  IPv4|UDP where the Next Header field in the IPv6
75  *			  header is either TCP or UDP. IPv6 extension headers
76  *			  are not supported with this feature. This feature
77  *			  cannot be set in features for a device with
78  *			  NETIF_F_HW_CSUM also set. This feature is being
79  *			  DEPRECATED (see below).
80  *
81  *	NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
82  *			 This flag is used only used to disable the RX checksum
83  *			 feature for a device. The stack will accept receive
84  *			 checksum indication in packets received on a device
85  *			 regardless of whether NETIF_F_RXCSUM is set.
86  *
87  * B. Checksumming of received packets by device. Indication of checksum
88  *    verification is in set skb->ip_summed. Possible values are:
89  *
90  * CHECKSUM_NONE:
91  *
92  *   Device did not checksum this packet e.g. due to lack of capabilities.
93  *   The packet contains full (though not verified) checksum in packet but
94  *   not in skb->csum. Thus, skb->csum is undefined in this case.
95  *
96  * CHECKSUM_UNNECESSARY:
97  *
98  *   The hardware you're dealing with doesn't calculate the full checksum
99  *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
100  *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
101  *   if their checksums are okay. skb->csum is still undefined in this case
102  *   though. A driver or device must never modify the checksum field in the
103  *   packet even if checksum is verified.
104  *
105  *   CHECKSUM_UNNECESSARY is applicable to following protocols:
106  *     TCP: IPv6 and IPv4.
107  *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
108  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
109  *       may perform further validation in this case.
110  *     GRE: only if the checksum is present in the header.
111  *     SCTP: indicates the CRC in SCTP header has been validated.
112  *     FCOE: indicates the CRC in FC frame has been validated.
113  *
114  *   skb->csum_level indicates the number of consecutive checksums found in
115  *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
116  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
117  *   and a device is able to verify the checksums for UDP (possibly zero),
118  *   GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
119  *   two. If the device were only able to verify the UDP checksum and not
120  *   GRE, either because it doesn't support GRE checksum of because GRE
121  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
122  *   not considered in this case).
123  *
124  * CHECKSUM_COMPLETE:
125  *
126  *   This is the most generic way. The device supplied checksum of the _whole_
127  *   packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
128  *   hardware doesn't need to parse L3/L4 headers to implement this.
129  *
130  *   Notes:
131  *   - Even if device supports only some protocols, but is able to produce
132  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
133  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
134  *
135  * CHECKSUM_PARTIAL:
136  *
137  *   A checksum is set up to be offloaded to a device as described in the
138  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
139  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
140  *   on the same host, or it may be set in the input path in GRO or remote
141  *   checksum offload. For the purposes of checksum verification, the checksum
142  *   referred to by skb->csum_start + skb->csum_offset and any preceding
143  *   checksums in the packet are considered verified. Any checksums in the
144  *   packet that are after the checksum being offloaded are not considered to
145  *   be verified.
146  *
147  * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
148  *    in the skb->ip_summed for a packet. Values are:
149  *
150  * CHECKSUM_PARTIAL:
151  *
152  *   The driver is required to checksum the packet as seen by hard_start_xmit()
153  *   from skb->csum_start up to the end, and to record/write the checksum at
154  *   offset skb->csum_start + skb->csum_offset. A driver may verify that the
155  *   csum_start and csum_offset values are valid values given the length and
156  *   offset of the packet, however they should not attempt to validate that the
157  *   checksum refers to a legitimate transport layer checksum-- it is the
158  *   purview of the stack to validate that csum_start and csum_offset are set
159  *   correctly.
160  *
161  *   When the stack requests checksum offload for a packet, the driver MUST
162  *   ensure that the checksum is set correctly. A driver can either offload the
163  *   checksum calculation to the device, or call skb_checksum_help (in the case
164  *   that the device does not support offload for a particular checksum).
165  *
166  *   NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
167  *   NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
168  *   checksum offload capability.
169  *   skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
170  *   on network device checksumming capabilities: if a packet does not match
171  *   them, skb_checksum_help or skb_crc32c_help (depending on the value of
172  *   csum_not_inet, see item D.) is called to resolve the checksum.
173  *
174  * CHECKSUM_NONE:
175  *
176  *   The skb was already checksummed by the protocol, or a checksum is not
177  *   required.
178  *
179  * CHECKSUM_UNNECESSARY:
180  *
181  *   This has the same meaning on as CHECKSUM_NONE for checksum offload on
182  *   output.
183  *
184  * CHECKSUM_COMPLETE:
185  *   Not used in checksum output. If a driver observes a packet with this value
186  *   set in skbuff, if should treat as CHECKSUM_NONE being set.
187  *
188  * D. Non-IP checksum (CRC) offloads
189  *
190  *   NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
191  *     offloading the SCTP CRC in a packet. To perform this offload the stack
192  *     will set set csum_start and csum_offset accordingly, set ip_summed to
193  *     CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
194  *     the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
195  *     A driver that supports both IP checksum offload and SCTP CRC32c offload
196  *     must verify which offload is configured for a packet by testing the
197  *     value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
198  *     CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
199  *
200  *   NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
201  *     offloading the FCOE CRC in a packet. To perform this offload the stack
202  *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
203  *     accordingly. Note the there is no indication in the skbuff that the
204  *     CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
205  *     both IP checksum offload and FCOE CRC offload must verify which offload
206  *     is configured for a packet presumably by inspecting packet headers.
207  *
208  * E. Checksumming on output with GSO.
209  *
210  * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
211  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
212  * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
213  * part of the GSO operation is implied. If a checksum is being offloaded
214  * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
215  * are set to refer to the outermost checksum being offload (two offloaded
216  * checksums are possible with UDP encapsulation).
217  */
218 
219 /* Don't change this without changing skb_csum_unnecessary! */
220 #define CHECKSUM_NONE		0
221 #define CHECKSUM_UNNECESSARY	1
222 #define CHECKSUM_COMPLETE	2
223 #define CHECKSUM_PARTIAL	3
224 
225 /* Maximum value in skb->csum_level */
226 #define SKB_MAX_CSUM_LEVEL	3
227 
228 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
229 #define SKB_WITH_OVERHEAD(X)	\
230 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
231 #define SKB_MAX_ORDER(X, ORDER) \
232 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
233 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
234 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
235 
236 /* return minimum truesize of one skb containing X bytes of data */
237 #define SKB_TRUESIZE(X) ((X) +						\
238 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
239 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
240 
241 struct net_device;
242 struct scatterlist;
243 struct pipe_inode_info;
244 struct iov_iter;
245 struct napi_struct;
246 
247 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
248 struct nf_conntrack {
249 	atomic_t use;
250 };
251 #endif
252 
253 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
254 struct nf_bridge_info {
255 	refcount_t		use;
256 	enum {
257 		BRNF_PROTO_UNCHANGED,
258 		BRNF_PROTO_8021Q,
259 		BRNF_PROTO_PPPOE
260 	} orig_proto:8;
261 	u8			pkt_otherhost:1;
262 	u8			in_prerouting:1;
263 	u8			bridged_dnat:1;
264 	__u16			frag_max_size;
265 	struct net_device	*physindev;
266 
267 	/* always valid & non-NULL from FORWARD on, for physdev match */
268 	struct net_device	*physoutdev;
269 	union {
270 		/* prerouting: detect dnat in orig/reply direction */
271 		__be32          ipv4_daddr;
272 		struct in6_addr ipv6_daddr;
273 
274 		/* after prerouting + nat detected: store original source
275 		 * mac since neigh resolution overwrites it, only used while
276 		 * skb is out in neigh layer.
277 		 */
278 		char neigh_header[8];
279 	};
280 };
281 #endif
282 
283 struct sk_buff_head {
284 	/* These two members must be first. */
285 	struct sk_buff	*next;
286 	struct sk_buff	*prev;
287 
288 	__u32		qlen;
289 	spinlock_t	lock;
290 };
291 
292 struct sk_buff;
293 
294 /* To allow 64K frame to be packed as single skb without frag_list we
295  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
296  * buffers which do not start on a page boundary.
297  *
298  * Since GRO uses frags we allocate at least 16 regardless of page
299  * size.
300  */
301 #if (65536/PAGE_SIZE + 1) < 16
302 #define MAX_SKB_FRAGS 16UL
303 #else
304 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
305 #endif
306 extern int sysctl_max_skb_frags;
307 
308 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
309  * segment using its current segmentation instead.
310  */
311 #define GSO_BY_FRAGS	0xFFFF
312 
313 typedef struct skb_frag_struct skb_frag_t;
314 
315 struct skb_frag_struct {
316 	struct {
317 		struct page *p;
318 	} page;
319 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
320 	__u32 page_offset;
321 	__u32 size;
322 #else
323 	__u16 page_offset;
324 	__u16 size;
325 #endif
326 };
327 
328 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
329 {
330 	return frag->size;
331 }
332 
333 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
334 {
335 	frag->size = size;
336 }
337 
338 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
339 {
340 	frag->size += delta;
341 }
342 
343 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
344 {
345 	frag->size -= delta;
346 }
347 
348 static inline bool skb_frag_must_loop(struct page *p)
349 {
350 #if defined(CONFIG_HIGHMEM)
351 	if (PageHighMem(p))
352 		return true;
353 #endif
354 	return false;
355 }
356 
357 /**
358  *	skb_frag_foreach_page - loop over pages in a fragment
359  *
360  *	@f:		skb frag to operate on
361  *	@f_off:		offset from start of f->page.p
362  *	@f_len:		length from f_off to loop over
363  *	@p:		(temp var) current page
364  *	@p_off:		(temp var) offset from start of current page,
365  *	                           non-zero only on first page.
366  *	@p_len:		(temp var) length in current page,
367  *				   < PAGE_SIZE only on first and last page.
368  *	@copied:	(temp var) length so far, excluding current p_len.
369  *
370  *	A fragment can hold a compound page, in which case per-page
371  *	operations, notably kmap_atomic, must be called for each
372  *	regular page.
373  */
374 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
375 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
376 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
377 	     p_len = skb_frag_must_loop(p) ?				\
378 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
379 	     copied = 0;						\
380 	     copied < f_len;						\
381 	     copied += p_len, p++, p_off = 0,				\
382 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
383 
384 #define HAVE_HW_TIME_STAMP
385 
386 /**
387  * struct skb_shared_hwtstamps - hardware time stamps
388  * @hwtstamp:	hardware time stamp transformed into duration
389  *		since arbitrary point in time
390  *
391  * Software time stamps generated by ktime_get_real() are stored in
392  * skb->tstamp.
393  *
394  * hwtstamps can only be compared against other hwtstamps from
395  * the same device.
396  *
397  * This structure is attached to packets as part of the
398  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
399  */
400 struct skb_shared_hwtstamps {
401 	ktime_t	hwtstamp;
402 };
403 
404 /* Definitions for tx_flags in struct skb_shared_info */
405 enum {
406 	/* generate hardware time stamp */
407 	SKBTX_HW_TSTAMP = 1 << 0,
408 
409 	/* generate software time stamp when queueing packet to NIC */
410 	SKBTX_SW_TSTAMP = 1 << 1,
411 
412 	/* device driver is going to provide hardware time stamp */
413 	SKBTX_IN_PROGRESS = 1 << 2,
414 
415 	/* device driver supports TX zero-copy buffers */
416 	SKBTX_DEV_ZEROCOPY = 1 << 3,
417 
418 	/* generate wifi status information (where possible) */
419 	SKBTX_WIFI_STATUS = 1 << 4,
420 
421 	/* This indicates at least one fragment might be overwritten
422 	 * (as in vmsplice(), sendfile() ...)
423 	 * If we need to compute a TX checksum, we'll need to copy
424 	 * all frags to avoid possible bad checksum
425 	 */
426 	SKBTX_SHARED_FRAG = 1 << 5,
427 
428 	/* generate software time stamp when entering packet scheduling */
429 	SKBTX_SCHED_TSTAMP = 1 << 6,
430 };
431 
432 #define SKBTX_ZEROCOPY_FRAG	(SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG)
433 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
434 				 SKBTX_SCHED_TSTAMP)
435 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
436 
437 /*
438  * The callback notifies userspace to release buffers when skb DMA is done in
439  * lower device, the skb last reference should be 0 when calling this.
440  * The zerocopy_success argument is true if zero copy transmit occurred,
441  * false on data copy or out of memory error caused by data copy attempt.
442  * The ctx field is used to track device context.
443  * The desc field is used to track userspace buffer index.
444  */
445 struct ubuf_info {
446 	void (*callback)(struct ubuf_info *, bool zerocopy_success);
447 	union {
448 		struct {
449 			unsigned long desc;
450 			void *ctx;
451 		};
452 		struct {
453 			u32 id;
454 			u16 len;
455 			u16 zerocopy:1;
456 			u32 bytelen;
457 		};
458 	};
459 	refcount_t refcnt;
460 
461 	struct mmpin {
462 		struct user_struct *user;
463 		unsigned int num_pg;
464 	} mmp;
465 };
466 
467 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
468 
469 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
470 void mm_unaccount_pinned_pages(struct mmpin *mmp);
471 
472 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size);
473 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
474 					struct ubuf_info *uarg);
475 
476 static inline void sock_zerocopy_get(struct ubuf_info *uarg)
477 {
478 	refcount_inc(&uarg->refcnt);
479 }
480 
481 void sock_zerocopy_put(struct ubuf_info *uarg);
482 void sock_zerocopy_put_abort(struct ubuf_info *uarg);
483 
484 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success);
485 
486 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
487 			     struct msghdr *msg, int len,
488 			     struct ubuf_info *uarg);
489 
490 /* This data is invariant across clones and lives at
491  * the end of the header data, ie. at skb->end.
492  */
493 struct skb_shared_info {
494 	__u8		__unused;
495 	__u8		meta_len;
496 	__u8		nr_frags;
497 	__u8		tx_flags;
498 	unsigned short	gso_size;
499 	/* Warning: this field is not always filled in (UFO)! */
500 	unsigned short	gso_segs;
501 	struct sk_buff	*frag_list;
502 	struct skb_shared_hwtstamps hwtstamps;
503 	unsigned int	gso_type;
504 	u32		tskey;
505 
506 	/*
507 	 * Warning : all fields before dataref are cleared in __alloc_skb()
508 	 */
509 	atomic_t	dataref;
510 
511 	/* Intermediate layers must ensure that destructor_arg
512 	 * remains valid until skb destructor */
513 	void *		destructor_arg;
514 
515 	/* must be last field, see pskb_expand_head() */
516 	skb_frag_t	frags[MAX_SKB_FRAGS];
517 };
518 
519 /* We divide dataref into two halves.  The higher 16 bits hold references
520  * to the payload part of skb->data.  The lower 16 bits hold references to
521  * the entire skb->data.  A clone of a headerless skb holds the length of
522  * the header in skb->hdr_len.
523  *
524  * All users must obey the rule that the skb->data reference count must be
525  * greater than or equal to the payload reference count.
526  *
527  * Holding a reference to the payload part means that the user does not
528  * care about modifications to the header part of skb->data.
529  */
530 #define SKB_DATAREF_SHIFT 16
531 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
532 
533 
534 enum {
535 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
536 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
537 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
538 };
539 
540 enum {
541 	SKB_GSO_TCPV4 = 1 << 0,
542 
543 	/* This indicates the skb is from an untrusted source. */
544 	SKB_GSO_DODGY = 1 << 1,
545 
546 	/* This indicates the tcp segment has CWR set. */
547 	SKB_GSO_TCP_ECN = 1 << 2,
548 
549 	SKB_GSO_TCP_FIXEDID = 1 << 3,
550 
551 	SKB_GSO_TCPV6 = 1 << 4,
552 
553 	SKB_GSO_FCOE = 1 << 5,
554 
555 	SKB_GSO_GRE = 1 << 6,
556 
557 	SKB_GSO_GRE_CSUM = 1 << 7,
558 
559 	SKB_GSO_IPXIP4 = 1 << 8,
560 
561 	SKB_GSO_IPXIP6 = 1 << 9,
562 
563 	SKB_GSO_UDP_TUNNEL = 1 << 10,
564 
565 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
566 
567 	SKB_GSO_PARTIAL = 1 << 12,
568 
569 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
570 
571 	SKB_GSO_SCTP = 1 << 14,
572 
573 	SKB_GSO_ESP = 1 << 15,
574 
575 	SKB_GSO_UDP = 1 << 16,
576 
577 	SKB_GSO_UDP_L4 = 1 << 17,
578 };
579 
580 #if BITS_PER_LONG > 32
581 #define NET_SKBUFF_DATA_USES_OFFSET 1
582 #endif
583 
584 #ifdef NET_SKBUFF_DATA_USES_OFFSET
585 typedef unsigned int sk_buff_data_t;
586 #else
587 typedef unsigned char *sk_buff_data_t;
588 #endif
589 
590 /**
591  *	struct sk_buff - socket buffer
592  *	@next: Next buffer in list
593  *	@prev: Previous buffer in list
594  *	@tstamp: Time we arrived/left
595  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
596  *	@sk: Socket we are owned by
597  *	@dev: Device we arrived on/are leaving by
598  *	@cb: Control buffer. Free for use by every layer. Put private vars here
599  *	@_skb_refdst: destination entry (with norefcount bit)
600  *	@sp: the security path, used for xfrm
601  *	@len: Length of actual data
602  *	@data_len: Data length
603  *	@mac_len: Length of link layer header
604  *	@hdr_len: writable header length of cloned skb
605  *	@csum: Checksum (must include start/offset pair)
606  *	@csum_start: Offset from skb->head where checksumming should start
607  *	@csum_offset: Offset from csum_start where checksum should be stored
608  *	@priority: Packet queueing priority
609  *	@ignore_df: allow local fragmentation
610  *	@cloned: Head may be cloned (check refcnt to be sure)
611  *	@ip_summed: Driver fed us an IP checksum
612  *	@nohdr: Payload reference only, must not modify header
613  *	@pkt_type: Packet class
614  *	@fclone: skbuff clone status
615  *	@ipvs_property: skbuff is owned by ipvs
616  *	@tc_skip_classify: do not classify packet. set by IFB device
617  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
618  *	@tc_redirected: packet was redirected by a tc action
619  *	@tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect
620  *	@peeked: this packet has been seen already, so stats have been
621  *		done for it, don't do them again
622  *	@nf_trace: netfilter packet trace flag
623  *	@protocol: Packet protocol from driver
624  *	@destructor: Destruct function
625  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
626  *	@_nfct: Associated connection, if any (with nfctinfo bits)
627  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
628  *	@skb_iif: ifindex of device we arrived on
629  *	@tc_index: Traffic control index
630  *	@hash: the packet hash
631  *	@queue_mapping: Queue mapping for multiqueue devices
632  *	@xmit_more: More SKBs are pending for this queue
633  *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
634  *	@ndisc_nodetype: router type (from link layer)
635  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
636  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
637  *		ports.
638  *	@sw_hash: indicates hash was computed in software stack
639  *	@wifi_acked_valid: wifi_acked was set
640  *	@wifi_acked: whether frame was acked on wifi or not
641  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
642  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
643  *	@dst_pending_confirm: need to confirm neighbour
644  *	@decrypted: Decrypted SKB
645   *	@napi_id: id of the NAPI struct this skb came from
646  *	@secmark: security marking
647  *	@mark: Generic packet mark
648  *	@vlan_proto: vlan encapsulation protocol
649  *	@vlan_tci: vlan tag control information
650  *	@inner_protocol: Protocol (encapsulation)
651  *	@inner_transport_header: Inner transport layer header (encapsulation)
652  *	@inner_network_header: Network layer header (encapsulation)
653  *	@inner_mac_header: Link layer header (encapsulation)
654  *	@transport_header: Transport layer header
655  *	@network_header: Network layer header
656  *	@mac_header: Link layer header
657  *	@tail: Tail pointer
658  *	@end: End pointer
659  *	@head: Head of buffer
660  *	@data: Data head pointer
661  *	@truesize: Buffer size
662  *	@users: User count - see {datagram,tcp}.c
663  */
664 
665 struct sk_buff {
666 	union {
667 		struct {
668 			/* These two members must be first. */
669 			struct sk_buff		*next;
670 			struct sk_buff		*prev;
671 
672 			union {
673 				struct net_device	*dev;
674 				/* Some protocols might use this space to store information,
675 				 * while device pointer would be NULL.
676 				 * UDP receive path is one user.
677 				 */
678 				unsigned long		dev_scratch;
679 				int			ip_defrag_offset;
680 			};
681 		};
682 		struct rb_node		rbnode; /* used in netem & tcp stack */
683 		struct list_head	list;
684 	};
685 	struct sock		*sk;
686 
687 	union {
688 		ktime_t		tstamp;
689 		u64		skb_mstamp;
690 	};
691 	/*
692 	 * This is the control buffer. It is free to use for every
693 	 * layer. Please put your private variables there. If you
694 	 * want to keep them across layers you have to do a skb_clone()
695 	 * first. This is owned by whoever has the skb queued ATM.
696 	 */
697 	char			cb[48] __aligned(8);
698 
699 	union {
700 		struct {
701 			unsigned long	_skb_refdst;
702 			void		(*destructor)(struct sk_buff *skb);
703 		};
704 		struct list_head	tcp_tsorted_anchor;
705 	};
706 
707 #ifdef CONFIG_XFRM
708 	struct	sec_path	*sp;
709 #endif
710 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
711 	unsigned long		 _nfct;
712 #endif
713 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
714 	struct nf_bridge_info	*nf_bridge;
715 #endif
716 	unsigned int		len,
717 				data_len;
718 	__u16			mac_len,
719 				hdr_len;
720 
721 	/* Following fields are _not_ copied in __copy_skb_header()
722 	 * Note that queue_mapping is here mostly to fill a hole.
723 	 */
724 	__u16			queue_mapping;
725 
726 /* if you move cloned around you also must adapt those constants */
727 #ifdef __BIG_ENDIAN_BITFIELD
728 #define CLONED_MASK	(1 << 7)
729 #else
730 #define CLONED_MASK	1
731 #endif
732 #define CLONED_OFFSET()		offsetof(struct sk_buff, __cloned_offset)
733 
734 	__u8			__cloned_offset[0];
735 	__u8			cloned:1,
736 				nohdr:1,
737 				fclone:2,
738 				peeked:1,
739 				head_frag:1,
740 				xmit_more:1,
741 				pfmemalloc:1;
742 
743 	/* fields enclosed in headers_start/headers_end are copied
744 	 * using a single memcpy() in __copy_skb_header()
745 	 */
746 	/* private: */
747 	__u32			headers_start[0];
748 	/* public: */
749 
750 /* if you move pkt_type around you also must adapt those constants */
751 #ifdef __BIG_ENDIAN_BITFIELD
752 #define PKT_TYPE_MAX	(7 << 5)
753 #else
754 #define PKT_TYPE_MAX	7
755 #endif
756 #define PKT_TYPE_OFFSET()	offsetof(struct sk_buff, __pkt_type_offset)
757 
758 	__u8			__pkt_type_offset[0];
759 	__u8			pkt_type:3;
760 	__u8			ignore_df:1;
761 	__u8			nf_trace:1;
762 	__u8			ip_summed:2;
763 	__u8			ooo_okay:1;
764 
765 	__u8			l4_hash:1;
766 	__u8			sw_hash:1;
767 	__u8			wifi_acked_valid:1;
768 	__u8			wifi_acked:1;
769 	__u8			no_fcs:1;
770 	/* Indicates the inner headers are valid in the skbuff. */
771 	__u8			encapsulation:1;
772 	__u8			encap_hdr_csum:1;
773 	__u8			csum_valid:1;
774 
775 	__u8			csum_complete_sw:1;
776 	__u8			csum_level:2;
777 	__u8			csum_not_inet:1;
778 	__u8			dst_pending_confirm:1;
779 #ifdef CONFIG_IPV6_NDISC_NODETYPE
780 	__u8			ndisc_nodetype:2;
781 #endif
782 	__u8			ipvs_property:1;
783 
784 	__u8			inner_protocol_type:1;
785 	__u8			remcsum_offload:1;
786 #ifdef CONFIG_NET_SWITCHDEV
787 	__u8			offload_fwd_mark:1;
788 	__u8			offload_mr_fwd_mark:1;
789 #endif
790 #ifdef CONFIG_NET_CLS_ACT
791 	__u8			tc_skip_classify:1;
792 	__u8			tc_at_ingress:1;
793 	__u8			tc_redirected:1;
794 	__u8			tc_from_ingress:1;
795 #endif
796 #ifdef CONFIG_TLS_DEVICE
797 	__u8			decrypted:1;
798 #endif
799 
800 #ifdef CONFIG_NET_SCHED
801 	__u16			tc_index;	/* traffic control index */
802 #endif
803 
804 	union {
805 		__wsum		csum;
806 		struct {
807 			__u16	csum_start;
808 			__u16	csum_offset;
809 		};
810 	};
811 	__u32			priority;
812 	int			skb_iif;
813 	__u32			hash;
814 	__be16			vlan_proto;
815 	__u16			vlan_tci;
816 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
817 	union {
818 		unsigned int	napi_id;
819 		unsigned int	sender_cpu;
820 	};
821 #endif
822 #ifdef CONFIG_NETWORK_SECMARK
823 	__u32		secmark;
824 #endif
825 
826 	union {
827 		__u32		mark;
828 		__u32		reserved_tailroom;
829 	};
830 
831 	union {
832 		__be16		inner_protocol;
833 		__u8		inner_ipproto;
834 	};
835 
836 	__u16			inner_transport_header;
837 	__u16			inner_network_header;
838 	__u16			inner_mac_header;
839 
840 	__be16			protocol;
841 	__u16			transport_header;
842 	__u16			network_header;
843 	__u16			mac_header;
844 
845 	/* private: */
846 	__u32			headers_end[0];
847 	/* public: */
848 
849 	/* These elements must be at the end, see alloc_skb() for details.  */
850 	sk_buff_data_t		tail;
851 	sk_buff_data_t		end;
852 	unsigned char		*head,
853 				*data;
854 	unsigned int		truesize;
855 	refcount_t		users;
856 };
857 
858 #ifdef __KERNEL__
859 /*
860  *	Handling routines are only of interest to the kernel
861  */
862 
863 #define SKB_ALLOC_FCLONE	0x01
864 #define SKB_ALLOC_RX		0x02
865 #define SKB_ALLOC_NAPI		0x04
866 
867 /* Returns true if the skb was allocated from PFMEMALLOC reserves */
868 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
869 {
870 	return unlikely(skb->pfmemalloc);
871 }
872 
873 /*
874  * skb might have a dst pointer attached, refcounted or not.
875  * _skb_refdst low order bit is set if refcount was _not_ taken
876  */
877 #define SKB_DST_NOREF	1UL
878 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
879 
880 #define SKB_NFCT_PTRMASK	~(7UL)
881 /**
882  * skb_dst - returns skb dst_entry
883  * @skb: buffer
884  *
885  * Returns skb dst_entry, regardless of reference taken or not.
886  */
887 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
888 {
889 	/* If refdst was not refcounted, check we still are in a
890 	 * rcu_read_lock section
891 	 */
892 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
893 		!rcu_read_lock_held() &&
894 		!rcu_read_lock_bh_held());
895 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
896 }
897 
898 /**
899  * skb_dst_set - sets skb dst
900  * @skb: buffer
901  * @dst: dst entry
902  *
903  * Sets skb dst, assuming a reference was taken on dst and should
904  * be released by skb_dst_drop()
905  */
906 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
907 {
908 	skb->_skb_refdst = (unsigned long)dst;
909 }
910 
911 /**
912  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
913  * @skb: buffer
914  * @dst: dst entry
915  *
916  * Sets skb dst, assuming a reference was not taken on dst.
917  * If dst entry is cached, we do not take reference and dst_release
918  * will be avoided by refdst_drop. If dst entry is not cached, we take
919  * reference, so that last dst_release can destroy the dst immediately.
920  */
921 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
922 {
923 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
924 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
925 }
926 
927 /**
928  * skb_dst_is_noref - Test if skb dst isn't refcounted
929  * @skb: buffer
930  */
931 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
932 {
933 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
934 }
935 
936 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
937 {
938 	return (struct rtable *)skb_dst(skb);
939 }
940 
941 /* For mangling skb->pkt_type from user space side from applications
942  * such as nft, tc, etc, we only allow a conservative subset of
943  * possible pkt_types to be set.
944 */
945 static inline bool skb_pkt_type_ok(u32 ptype)
946 {
947 	return ptype <= PACKET_OTHERHOST;
948 }
949 
950 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
951 {
952 #ifdef CONFIG_NET_RX_BUSY_POLL
953 	return skb->napi_id;
954 #else
955 	return 0;
956 #endif
957 }
958 
959 /* decrement the reference count and return true if we can free the skb */
960 static inline bool skb_unref(struct sk_buff *skb)
961 {
962 	if (unlikely(!skb))
963 		return false;
964 	if (likely(refcount_read(&skb->users) == 1))
965 		smp_rmb();
966 	else if (likely(!refcount_dec_and_test(&skb->users)))
967 		return false;
968 
969 	return true;
970 }
971 
972 void skb_release_head_state(struct sk_buff *skb);
973 void kfree_skb(struct sk_buff *skb);
974 void kfree_skb_list(struct sk_buff *segs);
975 void skb_tx_error(struct sk_buff *skb);
976 void consume_skb(struct sk_buff *skb);
977 void __consume_stateless_skb(struct sk_buff *skb);
978 void  __kfree_skb(struct sk_buff *skb);
979 extern struct kmem_cache *skbuff_head_cache;
980 
981 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
982 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
983 		      bool *fragstolen, int *delta_truesize);
984 
985 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
986 			    int node);
987 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
988 struct sk_buff *build_skb(void *data, unsigned int frag_size);
989 static inline struct sk_buff *alloc_skb(unsigned int size,
990 					gfp_t priority)
991 {
992 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
993 }
994 
995 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
996 				     unsigned long data_len,
997 				     int max_page_order,
998 				     int *errcode,
999 				     gfp_t gfp_mask);
1000 
1001 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1002 struct sk_buff_fclones {
1003 	struct sk_buff	skb1;
1004 
1005 	struct sk_buff	skb2;
1006 
1007 	refcount_t	fclone_ref;
1008 };
1009 
1010 /**
1011  *	skb_fclone_busy - check if fclone is busy
1012  *	@sk: socket
1013  *	@skb: buffer
1014  *
1015  * Returns true if skb is a fast clone, and its clone is not freed.
1016  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1017  * so we also check that this didnt happen.
1018  */
1019 static inline bool skb_fclone_busy(const struct sock *sk,
1020 				   const struct sk_buff *skb)
1021 {
1022 	const struct sk_buff_fclones *fclones;
1023 
1024 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1025 
1026 	return skb->fclone == SKB_FCLONE_ORIG &&
1027 	       refcount_read(&fclones->fclone_ref) > 1 &&
1028 	       fclones->skb2.sk == sk;
1029 }
1030 
1031 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1032 					       gfp_t priority)
1033 {
1034 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1035 }
1036 
1037 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1038 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1039 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1040 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1041 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1042 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1043 				   gfp_t gfp_mask, bool fclone);
1044 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1045 					  gfp_t gfp_mask)
1046 {
1047 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1048 }
1049 
1050 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1051 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1052 				     unsigned int headroom);
1053 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1054 				int newtailroom, gfp_t priority);
1055 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1056 				     int offset, int len);
1057 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1058 			      int offset, int len);
1059 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1060 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1061 
1062 /**
1063  *	skb_pad			-	zero pad the tail of an skb
1064  *	@skb: buffer to pad
1065  *	@pad: space to pad
1066  *
1067  *	Ensure that a buffer is followed by a padding area that is zero
1068  *	filled. Used by network drivers which may DMA or transfer data
1069  *	beyond the buffer end onto the wire.
1070  *
1071  *	May return error in out of memory cases. The skb is freed on error.
1072  */
1073 static inline int skb_pad(struct sk_buff *skb, int pad)
1074 {
1075 	return __skb_pad(skb, pad, true);
1076 }
1077 #define dev_kfree_skb(a)	consume_skb(a)
1078 
1079 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
1080 			    int getfrag(void *from, char *to, int offset,
1081 					int len, int odd, struct sk_buff *skb),
1082 			    void *from, int length);
1083 
1084 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1085 			 int offset, size_t size);
1086 
1087 struct skb_seq_state {
1088 	__u32		lower_offset;
1089 	__u32		upper_offset;
1090 	__u32		frag_idx;
1091 	__u32		stepped_offset;
1092 	struct sk_buff	*root_skb;
1093 	struct sk_buff	*cur_skb;
1094 	__u8		*frag_data;
1095 };
1096 
1097 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1098 			  unsigned int to, struct skb_seq_state *st);
1099 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1100 			  struct skb_seq_state *st);
1101 void skb_abort_seq_read(struct skb_seq_state *st);
1102 
1103 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1104 			   unsigned int to, struct ts_config *config);
1105 
1106 /*
1107  * Packet hash types specify the type of hash in skb_set_hash.
1108  *
1109  * Hash types refer to the protocol layer addresses which are used to
1110  * construct a packet's hash. The hashes are used to differentiate or identify
1111  * flows of the protocol layer for the hash type. Hash types are either
1112  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1113  *
1114  * Properties of hashes:
1115  *
1116  * 1) Two packets in different flows have different hash values
1117  * 2) Two packets in the same flow should have the same hash value
1118  *
1119  * A hash at a higher layer is considered to be more specific. A driver should
1120  * set the most specific hash possible.
1121  *
1122  * A driver cannot indicate a more specific hash than the layer at which a hash
1123  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1124  *
1125  * A driver may indicate a hash level which is less specific than the
1126  * actual layer the hash was computed on. For instance, a hash computed
1127  * at L4 may be considered an L3 hash. This should only be done if the
1128  * driver can't unambiguously determine that the HW computed the hash at
1129  * the higher layer. Note that the "should" in the second property above
1130  * permits this.
1131  */
1132 enum pkt_hash_types {
1133 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1134 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1135 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1136 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1137 };
1138 
1139 static inline void skb_clear_hash(struct sk_buff *skb)
1140 {
1141 	skb->hash = 0;
1142 	skb->sw_hash = 0;
1143 	skb->l4_hash = 0;
1144 }
1145 
1146 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1147 {
1148 	if (!skb->l4_hash)
1149 		skb_clear_hash(skb);
1150 }
1151 
1152 static inline void
1153 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1154 {
1155 	skb->l4_hash = is_l4;
1156 	skb->sw_hash = is_sw;
1157 	skb->hash = hash;
1158 }
1159 
1160 static inline void
1161 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1162 {
1163 	/* Used by drivers to set hash from HW */
1164 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1165 }
1166 
1167 static inline void
1168 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1169 {
1170 	__skb_set_hash(skb, hash, true, is_l4);
1171 }
1172 
1173 void __skb_get_hash(struct sk_buff *skb);
1174 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1175 u32 skb_get_poff(const struct sk_buff *skb);
1176 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1177 		   const struct flow_keys_basic *keys, int hlen);
1178 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1179 			    void *data, int hlen_proto);
1180 
1181 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1182 					int thoff, u8 ip_proto)
1183 {
1184 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1185 }
1186 
1187 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1188 			     const struct flow_dissector_key *key,
1189 			     unsigned int key_count);
1190 
1191 bool __skb_flow_dissect(const struct sk_buff *skb,
1192 			struct flow_dissector *flow_dissector,
1193 			void *target_container,
1194 			void *data, __be16 proto, int nhoff, int hlen,
1195 			unsigned int flags);
1196 
1197 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1198 				    struct flow_dissector *flow_dissector,
1199 				    void *target_container, unsigned int flags)
1200 {
1201 	return __skb_flow_dissect(skb, flow_dissector, target_container,
1202 				  NULL, 0, 0, 0, flags);
1203 }
1204 
1205 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1206 					      struct flow_keys *flow,
1207 					      unsigned int flags)
1208 {
1209 	memset(flow, 0, sizeof(*flow));
1210 	return __skb_flow_dissect(skb, &flow_keys_dissector, flow,
1211 				  NULL, 0, 0, 0, flags);
1212 }
1213 
1214 static inline bool
1215 skb_flow_dissect_flow_keys_basic(const struct sk_buff *skb,
1216 				 struct flow_keys_basic *flow, void *data,
1217 				 __be16 proto, int nhoff, int hlen,
1218 				 unsigned int flags)
1219 {
1220 	memset(flow, 0, sizeof(*flow));
1221 	return __skb_flow_dissect(skb, &flow_keys_basic_dissector, flow,
1222 				  data, proto, nhoff, hlen, flags);
1223 }
1224 
1225 void
1226 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1227 			     struct flow_dissector *flow_dissector,
1228 			     void *target_container);
1229 
1230 static inline __u32 skb_get_hash(struct sk_buff *skb)
1231 {
1232 	if (!skb->l4_hash && !skb->sw_hash)
1233 		__skb_get_hash(skb);
1234 
1235 	return skb->hash;
1236 }
1237 
1238 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1239 {
1240 	if (!skb->l4_hash && !skb->sw_hash) {
1241 		struct flow_keys keys;
1242 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1243 
1244 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1245 	}
1246 
1247 	return skb->hash;
1248 }
1249 
1250 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);
1251 
1252 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1253 {
1254 	return skb->hash;
1255 }
1256 
1257 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1258 {
1259 	to->hash = from->hash;
1260 	to->sw_hash = from->sw_hash;
1261 	to->l4_hash = from->l4_hash;
1262 };
1263 
1264 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1265 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1266 {
1267 	return skb->head + skb->end;
1268 }
1269 
1270 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1271 {
1272 	return skb->end;
1273 }
1274 #else
1275 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1276 {
1277 	return skb->end;
1278 }
1279 
1280 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1281 {
1282 	return skb->end - skb->head;
1283 }
1284 #endif
1285 
1286 /* Internal */
1287 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1288 
1289 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1290 {
1291 	return &skb_shinfo(skb)->hwtstamps;
1292 }
1293 
1294 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1295 {
1296 	bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY;
1297 
1298 	return is_zcopy ? skb_uarg(skb) : NULL;
1299 }
1300 
1301 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg)
1302 {
1303 	if (skb && uarg && !skb_zcopy(skb)) {
1304 		sock_zerocopy_get(uarg);
1305 		skb_shinfo(skb)->destructor_arg = uarg;
1306 		skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1307 	}
1308 }
1309 
1310 /* Release a reference on a zerocopy structure */
1311 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy)
1312 {
1313 	struct ubuf_info *uarg = skb_zcopy(skb);
1314 
1315 	if (uarg) {
1316 		if (uarg->callback == sock_zerocopy_callback) {
1317 			uarg->zerocopy = uarg->zerocopy && zerocopy;
1318 			sock_zerocopy_put(uarg);
1319 		} else {
1320 			uarg->callback(uarg, zerocopy);
1321 		}
1322 
1323 		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1324 	}
1325 }
1326 
1327 /* Abort a zerocopy operation and revert zckey on error in send syscall */
1328 static inline void skb_zcopy_abort(struct sk_buff *skb)
1329 {
1330 	struct ubuf_info *uarg = skb_zcopy(skb);
1331 
1332 	if (uarg) {
1333 		sock_zerocopy_put_abort(uarg);
1334 		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1335 	}
1336 }
1337 
1338 /**
1339  *	skb_queue_empty - check if a queue is empty
1340  *	@list: queue head
1341  *
1342  *	Returns true if the queue is empty, false otherwise.
1343  */
1344 static inline int skb_queue_empty(const struct sk_buff_head *list)
1345 {
1346 	return list->next == (const struct sk_buff *) list;
1347 }
1348 
1349 /**
1350  *	skb_queue_is_last - check if skb is the last entry in the queue
1351  *	@list: queue head
1352  *	@skb: buffer
1353  *
1354  *	Returns true if @skb is the last buffer on the list.
1355  */
1356 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1357 				     const struct sk_buff *skb)
1358 {
1359 	return skb->next == (const struct sk_buff *) list;
1360 }
1361 
1362 /**
1363  *	skb_queue_is_first - check if skb is the first entry in the queue
1364  *	@list: queue head
1365  *	@skb: buffer
1366  *
1367  *	Returns true if @skb is the first buffer on the list.
1368  */
1369 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1370 				      const struct sk_buff *skb)
1371 {
1372 	return skb->prev == (const struct sk_buff *) list;
1373 }
1374 
1375 /**
1376  *	skb_queue_next - return the next packet in the queue
1377  *	@list: queue head
1378  *	@skb: current buffer
1379  *
1380  *	Return the next packet in @list after @skb.  It is only valid to
1381  *	call this if skb_queue_is_last() evaluates to false.
1382  */
1383 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1384 					     const struct sk_buff *skb)
1385 {
1386 	/* This BUG_ON may seem severe, but if we just return then we
1387 	 * are going to dereference garbage.
1388 	 */
1389 	BUG_ON(skb_queue_is_last(list, skb));
1390 	return skb->next;
1391 }
1392 
1393 /**
1394  *	skb_queue_prev - return the prev packet in the queue
1395  *	@list: queue head
1396  *	@skb: current buffer
1397  *
1398  *	Return the prev packet in @list before @skb.  It is only valid to
1399  *	call this if skb_queue_is_first() evaluates to false.
1400  */
1401 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1402 					     const struct sk_buff *skb)
1403 {
1404 	/* This BUG_ON may seem severe, but if we just return then we
1405 	 * are going to dereference garbage.
1406 	 */
1407 	BUG_ON(skb_queue_is_first(list, skb));
1408 	return skb->prev;
1409 }
1410 
1411 /**
1412  *	skb_get - reference buffer
1413  *	@skb: buffer to reference
1414  *
1415  *	Makes another reference to a socket buffer and returns a pointer
1416  *	to the buffer.
1417  */
1418 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1419 {
1420 	refcount_inc(&skb->users);
1421 	return skb;
1422 }
1423 
1424 /*
1425  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1426  */
1427 
1428 /**
1429  *	skb_cloned - is the buffer a clone
1430  *	@skb: buffer to check
1431  *
1432  *	Returns true if the buffer was generated with skb_clone() and is
1433  *	one of multiple shared copies of the buffer. Cloned buffers are
1434  *	shared data so must not be written to under normal circumstances.
1435  */
1436 static inline int skb_cloned(const struct sk_buff *skb)
1437 {
1438 	return skb->cloned &&
1439 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1440 }
1441 
1442 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1443 {
1444 	might_sleep_if(gfpflags_allow_blocking(pri));
1445 
1446 	if (skb_cloned(skb))
1447 		return pskb_expand_head(skb, 0, 0, pri);
1448 
1449 	return 0;
1450 }
1451 
1452 /**
1453  *	skb_header_cloned - is the header a clone
1454  *	@skb: buffer to check
1455  *
1456  *	Returns true if modifying the header part of the buffer requires
1457  *	the data to be copied.
1458  */
1459 static inline int skb_header_cloned(const struct sk_buff *skb)
1460 {
1461 	int dataref;
1462 
1463 	if (!skb->cloned)
1464 		return 0;
1465 
1466 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1467 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1468 	return dataref != 1;
1469 }
1470 
1471 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1472 {
1473 	might_sleep_if(gfpflags_allow_blocking(pri));
1474 
1475 	if (skb_header_cloned(skb))
1476 		return pskb_expand_head(skb, 0, 0, pri);
1477 
1478 	return 0;
1479 }
1480 
1481 /**
1482  *	__skb_header_release - release reference to header
1483  *	@skb: buffer to operate on
1484  */
1485 static inline void __skb_header_release(struct sk_buff *skb)
1486 {
1487 	skb->nohdr = 1;
1488 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1489 }
1490 
1491 
1492 /**
1493  *	skb_shared - is the buffer shared
1494  *	@skb: buffer to check
1495  *
1496  *	Returns true if more than one person has a reference to this
1497  *	buffer.
1498  */
1499 static inline int skb_shared(const struct sk_buff *skb)
1500 {
1501 	return refcount_read(&skb->users) != 1;
1502 }
1503 
1504 /**
1505  *	skb_share_check - check if buffer is shared and if so clone it
1506  *	@skb: buffer to check
1507  *	@pri: priority for memory allocation
1508  *
1509  *	If the buffer is shared the buffer is cloned and the old copy
1510  *	drops a reference. A new clone with a single reference is returned.
1511  *	If the buffer is not shared the original buffer is returned. When
1512  *	being called from interrupt status or with spinlocks held pri must
1513  *	be GFP_ATOMIC.
1514  *
1515  *	NULL is returned on a memory allocation failure.
1516  */
1517 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1518 {
1519 	might_sleep_if(gfpflags_allow_blocking(pri));
1520 	if (skb_shared(skb)) {
1521 		struct sk_buff *nskb = skb_clone(skb, pri);
1522 
1523 		if (likely(nskb))
1524 			consume_skb(skb);
1525 		else
1526 			kfree_skb(skb);
1527 		skb = nskb;
1528 	}
1529 	return skb;
1530 }
1531 
1532 /*
1533  *	Copy shared buffers into a new sk_buff. We effectively do COW on
1534  *	packets to handle cases where we have a local reader and forward
1535  *	and a couple of other messy ones. The normal one is tcpdumping
1536  *	a packet thats being forwarded.
1537  */
1538 
1539 /**
1540  *	skb_unshare - make a copy of a shared buffer
1541  *	@skb: buffer to check
1542  *	@pri: priority for memory allocation
1543  *
1544  *	If the socket buffer is a clone then this function creates a new
1545  *	copy of the data, drops a reference count on the old copy and returns
1546  *	the new copy with the reference count at 1. If the buffer is not a clone
1547  *	the original buffer is returned. When called with a spinlock held or
1548  *	from interrupt state @pri must be %GFP_ATOMIC
1549  *
1550  *	%NULL is returned on a memory allocation failure.
1551  */
1552 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1553 					  gfp_t pri)
1554 {
1555 	might_sleep_if(gfpflags_allow_blocking(pri));
1556 	if (skb_cloned(skb)) {
1557 		struct sk_buff *nskb = skb_copy(skb, pri);
1558 
1559 		/* Free our shared copy */
1560 		if (likely(nskb))
1561 			consume_skb(skb);
1562 		else
1563 			kfree_skb(skb);
1564 		skb = nskb;
1565 	}
1566 	return skb;
1567 }
1568 
1569 /**
1570  *	skb_peek - peek at the head of an &sk_buff_head
1571  *	@list_: list to peek at
1572  *
1573  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1574  *	be careful with this one. A peek leaves the buffer on the
1575  *	list and someone else may run off with it. You must hold
1576  *	the appropriate locks or have a private queue to do this.
1577  *
1578  *	Returns %NULL for an empty list or a pointer to the head element.
1579  *	The reference count is not incremented and the reference is therefore
1580  *	volatile. Use with caution.
1581  */
1582 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1583 {
1584 	struct sk_buff *skb = list_->next;
1585 
1586 	if (skb == (struct sk_buff *)list_)
1587 		skb = NULL;
1588 	return skb;
1589 }
1590 
1591 /**
1592  *	skb_peek_next - peek skb following the given one from a queue
1593  *	@skb: skb to start from
1594  *	@list_: list to peek at
1595  *
1596  *	Returns %NULL when the end of the list is met or a pointer to the
1597  *	next element. The reference count is not incremented and the
1598  *	reference is therefore volatile. Use with caution.
1599  */
1600 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1601 		const struct sk_buff_head *list_)
1602 {
1603 	struct sk_buff *next = skb->next;
1604 
1605 	if (next == (struct sk_buff *)list_)
1606 		next = NULL;
1607 	return next;
1608 }
1609 
1610 /**
1611  *	skb_peek_tail - peek at the tail of an &sk_buff_head
1612  *	@list_: list to peek at
1613  *
1614  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1615  *	be careful with this one. A peek leaves the buffer on the
1616  *	list and someone else may run off with it. You must hold
1617  *	the appropriate locks or have a private queue to do this.
1618  *
1619  *	Returns %NULL for an empty list or a pointer to the tail element.
1620  *	The reference count is not incremented and the reference is therefore
1621  *	volatile. Use with caution.
1622  */
1623 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1624 {
1625 	struct sk_buff *skb = list_->prev;
1626 
1627 	if (skb == (struct sk_buff *)list_)
1628 		skb = NULL;
1629 	return skb;
1630 
1631 }
1632 
1633 /**
1634  *	skb_queue_len	- get queue length
1635  *	@list_: list to measure
1636  *
1637  *	Return the length of an &sk_buff queue.
1638  */
1639 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1640 {
1641 	return list_->qlen;
1642 }
1643 
1644 /**
1645  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1646  *	@list: queue to initialize
1647  *
1648  *	This initializes only the list and queue length aspects of
1649  *	an sk_buff_head object.  This allows to initialize the list
1650  *	aspects of an sk_buff_head without reinitializing things like
1651  *	the spinlock.  It can also be used for on-stack sk_buff_head
1652  *	objects where the spinlock is known to not be used.
1653  */
1654 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1655 {
1656 	list->prev = list->next = (struct sk_buff *)list;
1657 	list->qlen = 0;
1658 }
1659 
1660 /*
1661  * This function creates a split out lock class for each invocation;
1662  * this is needed for now since a whole lot of users of the skb-queue
1663  * infrastructure in drivers have different locking usage (in hardirq)
1664  * than the networking core (in softirq only). In the long run either the
1665  * network layer or drivers should need annotation to consolidate the
1666  * main types of usage into 3 classes.
1667  */
1668 static inline void skb_queue_head_init(struct sk_buff_head *list)
1669 {
1670 	spin_lock_init(&list->lock);
1671 	__skb_queue_head_init(list);
1672 }
1673 
1674 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1675 		struct lock_class_key *class)
1676 {
1677 	skb_queue_head_init(list);
1678 	lockdep_set_class(&list->lock, class);
1679 }
1680 
1681 /*
1682  *	Insert an sk_buff on a list.
1683  *
1684  *	The "__skb_xxxx()" functions are the non-atomic ones that
1685  *	can only be called with interrupts disabled.
1686  */
1687 void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1688 		struct sk_buff_head *list);
1689 static inline void __skb_insert(struct sk_buff *newsk,
1690 				struct sk_buff *prev, struct sk_buff *next,
1691 				struct sk_buff_head *list)
1692 {
1693 	newsk->next = next;
1694 	newsk->prev = prev;
1695 	next->prev  = prev->next = newsk;
1696 	list->qlen++;
1697 }
1698 
1699 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1700 				      struct sk_buff *prev,
1701 				      struct sk_buff *next)
1702 {
1703 	struct sk_buff *first = list->next;
1704 	struct sk_buff *last = list->prev;
1705 
1706 	first->prev = prev;
1707 	prev->next = first;
1708 
1709 	last->next = next;
1710 	next->prev = last;
1711 }
1712 
1713 /**
1714  *	skb_queue_splice - join two skb lists, this is designed for stacks
1715  *	@list: the new list to add
1716  *	@head: the place to add it in the first list
1717  */
1718 static inline void skb_queue_splice(const struct sk_buff_head *list,
1719 				    struct sk_buff_head *head)
1720 {
1721 	if (!skb_queue_empty(list)) {
1722 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1723 		head->qlen += list->qlen;
1724 	}
1725 }
1726 
1727 /**
1728  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1729  *	@list: the new list to add
1730  *	@head: the place to add it in the first list
1731  *
1732  *	The list at @list is reinitialised
1733  */
1734 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1735 					 struct sk_buff_head *head)
1736 {
1737 	if (!skb_queue_empty(list)) {
1738 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1739 		head->qlen += list->qlen;
1740 		__skb_queue_head_init(list);
1741 	}
1742 }
1743 
1744 /**
1745  *	skb_queue_splice_tail - join two skb lists, each list being a queue
1746  *	@list: the new list to add
1747  *	@head: the place to add it in the first list
1748  */
1749 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1750 					 struct sk_buff_head *head)
1751 {
1752 	if (!skb_queue_empty(list)) {
1753 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1754 		head->qlen += list->qlen;
1755 	}
1756 }
1757 
1758 /**
1759  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1760  *	@list: the new list to add
1761  *	@head: the place to add it in the first list
1762  *
1763  *	Each of the lists is a queue.
1764  *	The list at @list is reinitialised
1765  */
1766 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1767 					      struct sk_buff_head *head)
1768 {
1769 	if (!skb_queue_empty(list)) {
1770 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1771 		head->qlen += list->qlen;
1772 		__skb_queue_head_init(list);
1773 	}
1774 }
1775 
1776 /**
1777  *	__skb_queue_after - queue a buffer at the list head
1778  *	@list: list to use
1779  *	@prev: place after this buffer
1780  *	@newsk: buffer to queue
1781  *
1782  *	Queue a buffer int the middle of a list. This function takes no locks
1783  *	and you must therefore hold required locks before calling it.
1784  *
1785  *	A buffer cannot be placed on two lists at the same time.
1786  */
1787 static inline void __skb_queue_after(struct sk_buff_head *list,
1788 				     struct sk_buff *prev,
1789 				     struct sk_buff *newsk)
1790 {
1791 	__skb_insert(newsk, prev, prev->next, list);
1792 }
1793 
1794 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1795 		struct sk_buff_head *list);
1796 
1797 static inline void __skb_queue_before(struct sk_buff_head *list,
1798 				      struct sk_buff *next,
1799 				      struct sk_buff *newsk)
1800 {
1801 	__skb_insert(newsk, next->prev, next, list);
1802 }
1803 
1804 /**
1805  *	__skb_queue_head - queue a buffer at the list head
1806  *	@list: list to use
1807  *	@newsk: buffer to queue
1808  *
1809  *	Queue a buffer at the start of a list. This function takes no locks
1810  *	and you must therefore hold required locks before calling it.
1811  *
1812  *	A buffer cannot be placed on two lists at the same time.
1813  */
1814 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1815 static inline void __skb_queue_head(struct sk_buff_head *list,
1816 				    struct sk_buff *newsk)
1817 {
1818 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
1819 }
1820 
1821 /**
1822  *	__skb_queue_tail - queue a buffer at the list tail
1823  *	@list: list to use
1824  *	@newsk: buffer to queue
1825  *
1826  *	Queue a buffer at the end of a list. This function takes no locks
1827  *	and you must therefore hold required locks before calling it.
1828  *
1829  *	A buffer cannot be placed on two lists at the same time.
1830  */
1831 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1832 static inline void __skb_queue_tail(struct sk_buff_head *list,
1833 				   struct sk_buff *newsk)
1834 {
1835 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
1836 }
1837 
1838 /*
1839  * remove sk_buff from list. _Must_ be called atomically, and with
1840  * the list known..
1841  */
1842 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1843 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1844 {
1845 	struct sk_buff *next, *prev;
1846 
1847 	list->qlen--;
1848 	next	   = skb->next;
1849 	prev	   = skb->prev;
1850 	skb->next  = skb->prev = NULL;
1851 	next->prev = prev;
1852 	prev->next = next;
1853 }
1854 
1855 /**
1856  *	__skb_dequeue - remove from the head of the queue
1857  *	@list: list to dequeue from
1858  *
1859  *	Remove the head of the list. This function does not take any locks
1860  *	so must be used with appropriate locks held only. The head item is
1861  *	returned or %NULL if the list is empty.
1862  */
1863 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1864 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1865 {
1866 	struct sk_buff *skb = skb_peek(list);
1867 	if (skb)
1868 		__skb_unlink(skb, list);
1869 	return skb;
1870 }
1871 
1872 /**
1873  *	__skb_dequeue_tail - remove from the tail of the queue
1874  *	@list: list to dequeue from
1875  *
1876  *	Remove the tail of the list. This function does not take any locks
1877  *	so must be used with appropriate locks held only. The tail item is
1878  *	returned or %NULL if the list is empty.
1879  */
1880 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1881 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1882 {
1883 	struct sk_buff *skb = skb_peek_tail(list);
1884 	if (skb)
1885 		__skb_unlink(skb, list);
1886 	return skb;
1887 }
1888 
1889 
1890 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1891 {
1892 	return skb->data_len;
1893 }
1894 
1895 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1896 {
1897 	return skb->len - skb->data_len;
1898 }
1899 
1900 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
1901 {
1902 	unsigned int i, len = 0;
1903 
1904 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
1905 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1906 	return len;
1907 }
1908 
1909 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
1910 {
1911 	return skb_headlen(skb) + __skb_pagelen(skb);
1912 }
1913 
1914 /**
1915  * __skb_fill_page_desc - initialise a paged fragment in an skb
1916  * @skb: buffer containing fragment to be initialised
1917  * @i: paged fragment index to initialise
1918  * @page: the page to use for this fragment
1919  * @off: the offset to the data with @page
1920  * @size: the length of the data
1921  *
1922  * Initialises the @i'th fragment of @skb to point to &size bytes at
1923  * offset @off within @page.
1924  *
1925  * Does not take any additional reference on the fragment.
1926  */
1927 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1928 					struct page *page, int off, int size)
1929 {
1930 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1931 
1932 	/*
1933 	 * Propagate page pfmemalloc to the skb if we can. The problem is
1934 	 * that not all callers have unique ownership of the page but rely
1935 	 * on page_is_pfmemalloc doing the right thing(tm).
1936 	 */
1937 	frag->page.p		  = page;
1938 	frag->page_offset	  = off;
1939 	skb_frag_size_set(frag, size);
1940 
1941 	page = compound_head(page);
1942 	if (page_is_pfmemalloc(page))
1943 		skb->pfmemalloc	= true;
1944 }
1945 
1946 /**
1947  * skb_fill_page_desc - initialise a paged fragment in an skb
1948  * @skb: buffer containing fragment to be initialised
1949  * @i: paged fragment index to initialise
1950  * @page: the page to use for this fragment
1951  * @off: the offset to the data with @page
1952  * @size: the length of the data
1953  *
1954  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1955  * @skb to point to @size bytes at offset @off within @page. In
1956  * addition updates @skb such that @i is the last fragment.
1957  *
1958  * Does not take any additional reference on the fragment.
1959  */
1960 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1961 				      struct page *page, int off, int size)
1962 {
1963 	__skb_fill_page_desc(skb, i, page, off, size);
1964 	skb_shinfo(skb)->nr_frags = i + 1;
1965 }
1966 
1967 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
1968 		     int size, unsigned int truesize);
1969 
1970 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
1971 			  unsigned int truesize);
1972 
1973 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
1974 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_has_frag_list(skb))
1975 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
1976 
1977 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1978 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1979 {
1980 	return skb->head + skb->tail;
1981 }
1982 
1983 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1984 {
1985 	skb->tail = skb->data - skb->head;
1986 }
1987 
1988 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1989 {
1990 	skb_reset_tail_pointer(skb);
1991 	skb->tail += offset;
1992 }
1993 
1994 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1995 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1996 {
1997 	return skb->tail;
1998 }
1999 
2000 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2001 {
2002 	skb->tail = skb->data;
2003 }
2004 
2005 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2006 {
2007 	skb->tail = skb->data + offset;
2008 }
2009 
2010 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2011 
2012 /*
2013  *	Add data to an sk_buff
2014  */
2015 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2016 void *skb_put(struct sk_buff *skb, unsigned int len);
2017 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2018 {
2019 	void *tmp = skb_tail_pointer(skb);
2020 	SKB_LINEAR_ASSERT(skb);
2021 	skb->tail += len;
2022 	skb->len  += len;
2023 	return tmp;
2024 }
2025 
2026 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2027 {
2028 	void *tmp = __skb_put(skb, len);
2029 
2030 	memset(tmp, 0, len);
2031 	return tmp;
2032 }
2033 
2034 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2035 				   unsigned int len)
2036 {
2037 	void *tmp = __skb_put(skb, len);
2038 
2039 	memcpy(tmp, data, len);
2040 	return tmp;
2041 }
2042 
2043 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2044 {
2045 	*(u8 *)__skb_put(skb, 1) = val;
2046 }
2047 
2048 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2049 {
2050 	void *tmp = skb_put(skb, len);
2051 
2052 	memset(tmp, 0, len);
2053 
2054 	return tmp;
2055 }
2056 
2057 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2058 				 unsigned int len)
2059 {
2060 	void *tmp = skb_put(skb, len);
2061 
2062 	memcpy(tmp, data, len);
2063 
2064 	return tmp;
2065 }
2066 
2067 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2068 {
2069 	*(u8 *)skb_put(skb, 1) = val;
2070 }
2071 
2072 void *skb_push(struct sk_buff *skb, unsigned int len);
2073 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2074 {
2075 	skb->data -= len;
2076 	skb->len  += len;
2077 	return skb->data;
2078 }
2079 
2080 void *skb_pull(struct sk_buff *skb, unsigned int len);
2081 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2082 {
2083 	skb->len -= len;
2084 	BUG_ON(skb->len < skb->data_len);
2085 	return skb->data += len;
2086 }
2087 
2088 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2089 {
2090 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2091 }
2092 
2093 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2094 
2095 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2096 {
2097 	if (len > skb_headlen(skb) &&
2098 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2099 		return NULL;
2100 	skb->len -= len;
2101 	return skb->data += len;
2102 }
2103 
2104 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2105 {
2106 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2107 }
2108 
2109 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
2110 {
2111 	if (likely(len <= skb_headlen(skb)))
2112 		return 1;
2113 	if (unlikely(len > skb->len))
2114 		return 0;
2115 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2116 }
2117 
2118 void skb_condense(struct sk_buff *skb);
2119 
2120 /**
2121  *	skb_headroom - bytes at buffer head
2122  *	@skb: buffer to check
2123  *
2124  *	Return the number of bytes of free space at the head of an &sk_buff.
2125  */
2126 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2127 {
2128 	return skb->data - skb->head;
2129 }
2130 
2131 /**
2132  *	skb_tailroom - bytes at buffer end
2133  *	@skb: buffer to check
2134  *
2135  *	Return the number of bytes of free space at the tail of an sk_buff
2136  */
2137 static inline int skb_tailroom(const struct sk_buff *skb)
2138 {
2139 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2140 }
2141 
2142 /**
2143  *	skb_availroom - bytes at buffer end
2144  *	@skb: buffer to check
2145  *
2146  *	Return the number of bytes of free space at the tail of an sk_buff
2147  *	allocated by sk_stream_alloc()
2148  */
2149 static inline int skb_availroom(const struct sk_buff *skb)
2150 {
2151 	if (skb_is_nonlinear(skb))
2152 		return 0;
2153 
2154 	return skb->end - skb->tail - skb->reserved_tailroom;
2155 }
2156 
2157 /**
2158  *	skb_reserve - adjust headroom
2159  *	@skb: buffer to alter
2160  *	@len: bytes to move
2161  *
2162  *	Increase the headroom of an empty &sk_buff by reducing the tail
2163  *	room. This is only allowed for an empty buffer.
2164  */
2165 static inline void skb_reserve(struct sk_buff *skb, int len)
2166 {
2167 	skb->data += len;
2168 	skb->tail += len;
2169 }
2170 
2171 /**
2172  *	skb_tailroom_reserve - adjust reserved_tailroom
2173  *	@skb: buffer to alter
2174  *	@mtu: maximum amount of headlen permitted
2175  *	@needed_tailroom: minimum amount of reserved_tailroom
2176  *
2177  *	Set reserved_tailroom so that headlen can be as large as possible but
2178  *	not larger than mtu and tailroom cannot be smaller than
2179  *	needed_tailroom.
2180  *	The required headroom should already have been reserved before using
2181  *	this function.
2182  */
2183 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2184 					unsigned int needed_tailroom)
2185 {
2186 	SKB_LINEAR_ASSERT(skb);
2187 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2188 		/* use at most mtu */
2189 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2190 	else
2191 		/* use up to all available space */
2192 		skb->reserved_tailroom = needed_tailroom;
2193 }
2194 
2195 #define ENCAP_TYPE_ETHER	0
2196 #define ENCAP_TYPE_IPPROTO	1
2197 
2198 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2199 					  __be16 protocol)
2200 {
2201 	skb->inner_protocol = protocol;
2202 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2203 }
2204 
2205 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2206 					 __u8 ipproto)
2207 {
2208 	skb->inner_ipproto = ipproto;
2209 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2210 }
2211 
2212 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2213 {
2214 	skb->inner_mac_header = skb->mac_header;
2215 	skb->inner_network_header = skb->network_header;
2216 	skb->inner_transport_header = skb->transport_header;
2217 }
2218 
2219 static inline void skb_reset_mac_len(struct sk_buff *skb)
2220 {
2221 	skb->mac_len = skb->network_header - skb->mac_header;
2222 }
2223 
2224 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2225 							*skb)
2226 {
2227 	return skb->head + skb->inner_transport_header;
2228 }
2229 
2230 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2231 {
2232 	return skb_inner_transport_header(skb) - skb->data;
2233 }
2234 
2235 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2236 {
2237 	skb->inner_transport_header = skb->data - skb->head;
2238 }
2239 
2240 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2241 						   const int offset)
2242 {
2243 	skb_reset_inner_transport_header(skb);
2244 	skb->inner_transport_header += offset;
2245 }
2246 
2247 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2248 {
2249 	return skb->head + skb->inner_network_header;
2250 }
2251 
2252 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2253 {
2254 	skb->inner_network_header = skb->data - skb->head;
2255 }
2256 
2257 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2258 						const int offset)
2259 {
2260 	skb_reset_inner_network_header(skb);
2261 	skb->inner_network_header += offset;
2262 }
2263 
2264 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2265 {
2266 	return skb->head + skb->inner_mac_header;
2267 }
2268 
2269 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2270 {
2271 	skb->inner_mac_header = skb->data - skb->head;
2272 }
2273 
2274 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2275 					    const int offset)
2276 {
2277 	skb_reset_inner_mac_header(skb);
2278 	skb->inner_mac_header += offset;
2279 }
2280 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2281 {
2282 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2283 }
2284 
2285 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2286 {
2287 	return skb->head + skb->transport_header;
2288 }
2289 
2290 static inline void skb_reset_transport_header(struct sk_buff *skb)
2291 {
2292 	skb->transport_header = skb->data - skb->head;
2293 }
2294 
2295 static inline void skb_set_transport_header(struct sk_buff *skb,
2296 					    const int offset)
2297 {
2298 	skb_reset_transport_header(skb);
2299 	skb->transport_header += offset;
2300 }
2301 
2302 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2303 {
2304 	return skb->head + skb->network_header;
2305 }
2306 
2307 static inline void skb_reset_network_header(struct sk_buff *skb)
2308 {
2309 	skb->network_header = skb->data - skb->head;
2310 }
2311 
2312 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2313 {
2314 	skb_reset_network_header(skb);
2315 	skb->network_header += offset;
2316 }
2317 
2318 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2319 {
2320 	return skb->head + skb->mac_header;
2321 }
2322 
2323 static inline int skb_mac_offset(const struct sk_buff *skb)
2324 {
2325 	return skb_mac_header(skb) - skb->data;
2326 }
2327 
2328 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2329 {
2330 	return skb->network_header - skb->mac_header;
2331 }
2332 
2333 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2334 {
2335 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2336 }
2337 
2338 static inline void skb_reset_mac_header(struct sk_buff *skb)
2339 {
2340 	skb->mac_header = skb->data - skb->head;
2341 }
2342 
2343 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2344 {
2345 	skb_reset_mac_header(skb);
2346 	skb->mac_header += offset;
2347 }
2348 
2349 static inline void skb_pop_mac_header(struct sk_buff *skb)
2350 {
2351 	skb->mac_header = skb->network_header;
2352 }
2353 
2354 static inline void skb_probe_transport_header(struct sk_buff *skb,
2355 					      const int offset_hint)
2356 {
2357 	struct flow_keys_basic keys;
2358 
2359 	if (skb_transport_header_was_set(skb))
2360 		return;
2361 
2362 	if (skb_flow_dissect_flow_keys_basic(skb, &keys, 0, 0, 0, 0, 0))
2363 		skb_set_transport_header(skb, keys.control.thoff);
2364 	else
2365 		skb_set_transport_header(skb, offset_hint);
2366 }
2367 
2368 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2369 {
2370 	if (skb_mac_header_was_set(skb)) {
2371 		const unsigned char *old_mac = skb_mac_header(skb);
2372 
2373 		skb_set_mac_header(skb, -skb->mac_len);
2374 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2375 	}
2376 }
2377 
2378 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2379 {
2380 	return skb->csum_start - skb_headroom(skb);
2381 }
2382 
2383 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2384 {
2385 	return skb->head + skb->csum_start;
2386 }
2387 
2388 static inline int skb_transport_offset(const struct sk_buff *skb)
2389 {
2390 	return skb_transport_header(skb) - skb->data;
2391 }
2392 
2393 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2394 {
2395 	return skb->transport_header - skb->network_header;
2396 }
2397 
2398 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2399 {
2400 	return skb->inner_transport_header - skb->inner_network_header;
2401 }
2402 
2403 static inline int skb_network_offset(const struct sk_buff *skb)
2404 {
2405 	return skb_network_header(skb) - skb->data;
2406 }
2407 
2408 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2409 {
2410 	return skb_inner_network_header(skb) - skb->data;
2411 }
2412 
2413 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2414 {
2415 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
2416 }
2417 
2418 /*
2419  * CPUs often take a performance hit when accessing unaligned memory
2420  * locations. The actual performance hit varies, it can be small if the
2421  * hardware handles it or large if we have to take an exception and fix it
2422  * in software.
2423  *
2424  * Since an ethernet header is 14 bytes network drivers often end up with
2425  * the IP header at an unaligned offset. The IP header can be aligned by
2426  * shifting the start of the packet by 2 bytes. Drivers should do this
2427  * with:
2428  *
2429  * skb_reserve(skb, NET_IP_ALIGN);
2430  *
2431  * The downside to this alignment of the IP header is that the DMA is now
2432  * unaligned. On some architectures the cost of an unaligned DMA is high
2433  * and this cost outweighs the gains made by aligning the IP header.
2434  *
2435  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2436  * to be overridden.
2437  */
2438 #ifndef NET_IP_ALIGN
2439 #define NET_IP_ALIGN	2
2440 #endif
2441 
2442 /*
2443  * The networking layer reserves some headroom in skb data (via
2444  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2445  * the header has to grow. In the default case, if the header has to grow
2446  * 32 bytes or less we avoid the reallocation.
2447  *
2448  * Unfortunately this headroom changes the DMA alignment of the resulting
2449  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2450  * on some architectures. An architecture can override this value,
2451  * perhaps setting it to a cacheline in size (since that will maintain
2452  * cacheline alignment of the DMA). It must be a power of 2.
2453  *
2454  * Various parts of the networking layer expect at least 32 bytes of
2455  * headroom, you should not reduce this.
2456  *
2457  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2458  * to reduce average number of cache lines per packet.
2459  * get_rps_cpus() for example only access one 64 bytes aligned block :
2460  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2461  */
2462 #ifndef NET_SKB_PAD
2463 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2464 #endif
2465 
2466 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2467 
2468 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2469 {
2470 	if (unlikely(skb_is_nonlinear(skb))) {
2471 		WARN_ON(1);
2472 		return;
2473 	}
2474 	skb->len = len;
2475 	skb_set_tail_pointer(skb, len);
2476 }
2477 
2478 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2479 {
2480 	__skb_set_length(skb, len);
2481 }
2482 
2483 void skb_trim(struct sk_buff *skb, unsigned int len);
2484 
2485 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2486 {
2487 	if (skb->data_len)
2488 		return ___pskb_trim(skb, len);
2489 	__skb_trim(skb, len);
2490 	return 0;
2491 }
2492 
2493 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2494 {
2495 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2496 }
2497 
2498 /**
2499  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2500  *	@skb: buffer to alter
2501  *	@len: new length
2502  *
2503  *	This is identical to pskb_trim except that the caller knows that
2504  *	the skb is not cloned so we should never get an error due to out-
2505  *	of-memory.
2506  */
2507 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2508 {
2509 	int err = pskb_trim(skb, len);
2510 	BUG_ON(err);
2511 }
2512 
2513 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2514 {
2515 	unsigned int diff = len - skb->len;
2516 
2517 	if (skb_tailroom(skb) < diff) {
2518 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2519 					   GFP_ATOMIC);
2520 		if (ret)
2521 			return ret;
2522 	}
2523 	__skb_set_length(skb, len);
2524 	return 0;
2525 }
2526 
2527 /**
2528  *	skb_orphan - orphan a buffer
2529  *	@skb: buffer to orphan
2530  *
2531  *	If a buffer currently has an owner then we call the owner's
2532  *	destructor function and make the @skb unowned. The buffer continues
2533  *	to exist but is no longer charged to its former owner.
2534  */
2535 static inline void skb_orphan(struct sk_buff *skb)
2536 {
2537 	if (skb->destructor) {
2538 		skb->destructor(skb);
2539 		skb->destructor = NULL;
2540 		skb->sk		= NULL;
2541 	} else {
2542 		BUG_ON(skb->sk);
2543 	}
2544 }
2545 
2546 /**
2547  *	skb_orphan_frags - orphan the frags contained in a buffer
2548  *	@skb: buffer to orphan frags from
2549  *	@gfp_mask: allocation mask for replacement pages
2550  *
2551  *	For each frag in the SKB which needs a destructor (i.e. has an
2552  *	owner) create a copy of that frag and release the original
2553  *	page by calling the destructor.
2554  */
2555 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2556 {
2557 	if (likely(!skb_zcopy(skb)))
2558 		return 0;
2559 	if (skb_uarg(skb)->callback == sock_zerocopy_callback)
2560 		return 0;
2561 	return skb_copy_ubufs(skb, gfp_mask);
2562 }
2563 
2564 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
2565 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2566 {
2567 	if (likely(!skb_zcopy(skb)))
2568 		return 0;
2569 	return skb_copy_ubufs(skb, gfp_mask);
2570 }
2571 
2572 /**
2573  *	__skb_queue_purge - empty a list
2574  *	@list: list to empty
2575  *
2576  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2577  *	the list and one reference dropped. This function does not take the
2578  *	list lock and the caller must hold the relevant locks to use it.
2579  */
2580 void skb_queue_purge(struct sk_buff_head *list);
2581 static inline void __skb_queue_purge(struct sk_buff_head *list)
2582 {
2583 	struct sk_buff *skb;
2584 	while ((skb = __skb_dequeue(list)) != NULL)
2585 		kfree_skb(skb);
2586 }
2587 
2588 void skb_rbtree_purge(struct rb_root *root);
2589 
2590 void *netdev_alloc_frag(unsigned int fragsz);
2591 
2592 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2593 				   gfp_t gfp_mask);
2594 
2595 /**
2596  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
2597  *	@dev: network device to receive on
2598  *	@length: length to allocate
2599  *
2600  *	Allocate a new &sk_buff and assign it a usage count of one. The
2601  *	buffer has unspecified headroom built in. Users should allocate
2602  *	the headroom they think they need without accounting for the
2603  *	built in space. The built in space is used for optimisations.
2604  *
2605  *	%NULL is returned if there is no free memory. Although this function
2606  *	allocates memory it can be called from an interrupt.
2607  */
2608 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2609 					       unsigned int length)
2610 {
2611 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2612 }
2613 
2614 /* legacy helper around __netdev_alloc_skb() */
2615 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2616 					      gfp_t gfp_mask)
2617 {
2618 	return __netdev_alloc_skb(NULL, length, gfp_mask);
2619 }
2620 
2621 /* legacy helper around netdev_alloc_skb() */
2622 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2623 {
2624 	return netdev_alloc_skb(NULL, length);
2625 }
2626 
2627 
2628 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2629 		unsigned int length, gfp_t gfp)
2630 {
2631 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2632 
2633 	if (NET_IP_ALIGN && skb)
2634 		skb_reserve(skb, NET_IP_ALIGN);
2635 	return skb;
2636 }
2637 
2638 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2639 		unsigned int length)
2640 {
2641 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2642 }
2643 
2644 static inline void skb_free_frag(void *addr)
2645 {
2646 	page_frag_free(addr);
2647 }
2648 
2649 void *napi_alloc_frag(unsigned int fragsz);
2650 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2651 				 unsigned int length, gfp_t gfp_mask);
2652 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2653 					     unsigned int length)
2654 {
2655 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2656 }
2657 void napi_consume_skb(struct sk_buff *skb, int budget);
2658 
2659 void __kfree_skb_flush(void);
2660 void __kfree_skb_defer(struct sk_buff *skb);
2661 
2662 /**
2663  * __dev_alloc_pages - allocate page for network Rx
2664  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2665  * @order: size of the allocation
2666  *
2667  * Allocate a new page.
2668  *
2669  * %NULL is returned if there is no free memory.
2670 */
2671 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2672 					     unsigned int order)
2673 {
2674 	/* This piece of code contains several assumptions.
2675 	 * 1.  This is for device Rx, therefor a cold page is preferred.
2676 	 * 2.  The expectation is the user wants a compound page.
2677 	 * 3.  If requesting a order 0 page it will not be compound
2678 	 *     due to the check to see if order has a value in prep_new_page
2679 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2680 	 *     code in gfp_to_alloc_flags that should be enforcing this.
2681 	 */
2682 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
2683 
2684 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2685 }
2686 
2687 static inline struct page *dev_alloc_pages(unsigned int order)
2688 {
2689 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2690 }
2691 
2692 /**
2693  * __dev_alloc_page - allocate a page for network Rx
2694  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2695  *
2696  * Allocate a new page.
2697  *
2698  * %NULL is returned if there is no free memory.
2699  */
2700 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2701 {
2702 	return __dev_alloc_pages(gfp_mask, 0);
2703 }
2704 
2705 static inline struct page *dev_alloc_page(void)
2706 {
2707 	return dev_alloc_pages(0);
2708 }
2709 
2710 /**
2711  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2712  *	@page: The page that was allocated from skb_alloc_page
2713  *	@skb: The skb that may need pfmemalloc set
2714  */
2715 static inline void skb_propagate_pfmemalloc(struct page *page,
2716 					     struct sk_buff *skb)
2717 {
2718 	if (page_is_pfmemalloc(page))
2719 		skb->pfmemalloc = true;
2720 }
2721 
2722 /**
2723  * skb_frag_page - retrieve the page referred to by a paged fragment
2724  * @frag: the paged fragment
2725  *
2726  * Returns the &struct page associated with @frag.
2727  */
2728 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2729 {
2730 	return frag->page.p;
2731 }
2732 
2733 /**
2734  * __skb_frag_ref - take an addition reference on a paged fragment.
2735  * @frag: the paged fragment
2736  *
2737  * Takes an additional reference on the paged fragment @frag.
2738  */
2739 static inline void __skb_frag_ref(skb_frag_t *frag)
2740 {
2741 	get_page(skb_frag_page(frag));
2742 }
2743 
2744 /**
2745  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2746  * @skb: the buffer
2747  * @f: the fragment offset.
2748  *
2749  * Takes an additional reference on the @f'th paged fragment of @skb.
2750  */
2751 static inline void skb_frag_ref(struct sk_buff *skb, int f)
2752 {
2753 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2754 }
2755 
2756 /**
2757  * __skb_frag_unref - release a reference on a paged fragment.
2758  * @frag: the paged fragment
2759  *
2760  * Releases a reference on the paged fragment @frag.
2761  */
2762 static inline void __skb_frag_unref(skb_frag_t *frag)
2763 {
2764 	put_page(skb_frag_page(frag));
2765 }
2766 
2767 /**
2768  * skb_frag_unref - release a reference on a paged fragment of an skb.
2769  * @skb: the buffer
2770  * @f: the fragment offset
2771  *
2772  * Releases a reference on the @f'th paged fragment of @skb.
2773  */
2774 static inline void skb_frag_unref(struct sk_buff *skb, int f)
2775 {
2776 	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2777 }
2778 
2779 /**
2780  * skb_frag_address - gets the address of the data contained in a paged fragment
2781  * @frag: the paged fragment buffer
2782  *
2783  * Returns the address of the data within @frag. The page must already
2784  * be mapped.
2785  */
2786 static inline void *skb_frag_address(const skb_frag_t *frag)
2787 {
2788 	return page_address(skb_frag_page(frag)) + frag->page_offset;
2789 }
2790 
2791 /**
2792  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2793  * @frag: the paged fragment buffer
2794  *
2795  * Returns the address of the data within @frag. Checks that the page
2796  * is mapped and returns %NULL otherwise.
2797  */
2798 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2799 {
2800 	void *ptr = page_address(skb_frag_page(frag));
2801 	if (unlikely(!ptr))
2802 		return NULL;
2803 
2804 	return ptr + frag->page_offset;
2805 }
2806 
2807 /**
2808  * __skb_frag_set_page - sets the page contained in a paged fragment
2809  * @frag: the paged fragment
2810  * @page: the page to set
2811  *
2812  * Sets the fragment @frag to contain @page.
2813  */
2814 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2815 {
2816 	frag->page.p = page;
2817 }
2818 
2819 /**
2820  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2821  * @skb: the buffer
2822  * @f: the fragment offset
2823  * @page: the page to set
2824  *
2825  * Sets the @f'th fragment of @skb to contain @page.
2826  */
2827 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2828 				     struct page *page)
2829 {
2830 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2831 }
2832 
2833 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2834 
2835 /**
2836  * skb_frag_dma_map - maps a paged fragment via the DMA API
2837  * @dev: the device to map the fragment to
2838  * @frag: the paged fragment to map
2839  * @offset: the offset within the fragment (starting at the
2840  *          fragment's own offset)
2841  * @size: the number of bytes to map
2842  * @dir: the direction of the mapping (``PCI_DMA_*``)
2843  *
2844  * Maps the page associated with @frag to @device.
2845  */
2846 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2847 					  const skb_frag_t *frag,
2848 					  size_t offset, size_t size,
2849 					  enum dma_data_direction dir)
2850 {
2851 	return dma_map_page(dev, skb_frag_page(frag),
2852 			    frag->page_offset + offset, size, dir);
2853 }
2854 
2855 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2856 					gfp_t gfp_mask)
2857 {
2858 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2859 }
2860 
2861 
2862 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2863 						  gfp_t gfp_mask)
2864 {
2865 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2866 }
2867 
2868 
2869 /**
2870  *	skb_clone_writable - is the header of a clone writable
2871  *	@skb: buffer to check
2872  *	@len: length up to which to write
2873  *
2874  *	Returns true if modifying the header part of the cloned buffer
2875  *	does not requires the data to be copied.
2876  */
2877 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2878 {
2879 	return !skb_header_cloned(skb) &&
2880 	       skb_headroom(skb) + len <= skb->hdr_len;
2881 }
2882 
2883 static inline int skb_try_make_writable(struct sk_buff *skb,
2884 					unsigned int write_len)
2885 {
2886 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
2887 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2888 }
2889 
2890 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2891 			    int cloned)
2892 {
2893 	int delta = 0;
2894 
2895 	if (headroom > skb_headroom(skb))
2896 		delta = headroom - skb_headroom(skb);
2897 
2898 	if (delta || cloned)
2899 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2900 					GFP_ATOMIC);
2901 	return 0;
2902 }
2903 
2904 /**
2905  *	skb_cow - copy header of skb when it is required
2906  *	@skb: buffer to cow
2907  *	@headroom: needed headroom
2908  *
2909  *	If the skb passed lacks sufficient headroom or its data part
2910  *	is shared, data is reallocated. If reallocation fails, an error
2911  *	is returned and original skb is not changed.
2912  *
2913  *	The result is skb with writable area skb->head...skb->tail
2914  *	and at least @headroom of space at head.
2915  */
2916 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2917 {
2918 	return __skb_cow(skb, headroom, skb_cloned(skb));
2919 }
2920 
2921 /**
2922  *	skb_cow_head - skb_cow but only making the head writable
2923  *	@skb: buffer to cow
2924  *	@headroom: needed headroom
2925  *
2926  *	This function is identical to skb_cow except that we replace the
2927  *	skb_cloned check by skb_header_cloned.  It should be used when
2928  *	you only need to push on some header and do not need to modify
2929  *	the data.
2930  */
2931 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2932 {
2933 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
2934 }
2935 
2936 /**
2937  *	skb_padto	- pad an skbuff up to a minimal size
2938  *	@skb: buffer to pad
2939  *	@len: minimal length
2940  *
2941  *	Pads up a buffer to ensure the trailing bytes exist and are
2942  *	blanked. If the buffer already contains sufficient data it
2943  *	is untouched. Otherwise it is extended. Returns zero on
2944  *	success. The skb is freed on error.
2945  */
2946 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
2947 {
2948 	unsigned int size = skb->len;
2949 	if (likely(size >= len))
2950 		return 0;
2951 	return skb_pad(skb, len - size);
2952 }
2953 
2954 /**
2955  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
2956  *	@skb: buffer to pad
2957  *	@len: minimal length
2958  *	@free_on_error: free buffer on error
2959  *
2960  *	Pads up a buffer to ensure the trailing bytes exist and are
2961  *	blanked. If the buffer already contains sufficient data it
2962  *	is untouched. Otherwise it is extended. Returns zero on
2963  *	success. The skb is freed on error if @free_on_error is true.
2964  */
2965 static inline int __skb_put_padto(struct sk_buff *skb, unsigned int len,
2966 				  bool free_on_error)
2967 {
2968 	unsigned int size = skb->len;
2969 
2970 	if (unlikely(size < len)) {
2971 		len -= size;
2972 		if (__skb_pad(skb, len, free_on_error))
2973 			return -ENOMEM;
2974 		__skb_put(skb, len);
2975 	}
2976 	return 0;
2977 }
2978 
2979 /**
2980  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
2981  *	@skb: buffer to pad
2982  *	@len: minimal length
2983  *
2984  *	Pads up a buffer to ensure the trailing bytes exist and are
2985  *	blanked. If the buffer already contains sufficient data it
2986  *	is untouched. Otherwise it is extended. Returns zero on
2987  *	success. The skb is freed on error.
2988  */
2989 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
2990 {
2991 	return __skb_put_padto(skb, len, true);
2992 }
2993 
2994 static inline int skb_add_data(struct sk_buff *skb,
2995 			       struct iov_iter *from, int copy)
2996 {
2997 	const int off = skb->len;
2998 
2999 	if (skb->ip_summed == CHECKSUM_NONE) {
3000 		__wsum csum = 0;
3001 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3002 					         &csum, from)) {
3003 			skb->csum = csum_block_add(skb->csum, csum, off);
3004 			return 0;
3005 		}
3006 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3007 		return 0;
3008 
3009 	__skb_trim(skb, off);
3010 	return -EFAULT;
3011 }
3012 
3013 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3014 				    const struct page *page, int off)
3015 {
3016 	if (skb_zcopy(skb))
3017 		return false;
3018 	if (i) {
3019 		const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
3020 
3021 		return page == skb_frag_page(frag) &&
3022 		       off == frag->page_offset + skb_frag_size(frag);
3023 	}
3024 	return false;
3025 }
3026 
3027 static inline int __skb_linearize(struct sk_buff *skb)
3028 {
3029 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3030 }
3031 
3032 /**
3033  *	skb_linearize - convert paged skb to linear one
3034  *	@skb: buffer to linarize
3035  *
3036  *	If there is no free memory -ENOMEM is returned, otherwise zero
3037  *	is returned and the old skb data released.
3038  */
3039 static inline int skb_linearize(struct sk_buff *skb)
3040 {
3041 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3042 }
3043 
3044 /**
3045  * skb_has_shared_frag - can any frag be overwritten
3046  * @skb: buffer to test
3047  *
3048  * Return true if the skb has at least one frag that might be modified
3049  * by an external entity (as in vmsplice()/sendfile())
3050  */
3051 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3052 {
3053 	return skb_is_nonlinear(skb) &&
3054 	       skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
3055 }
3056 
3057 /**
3058  *	skb_linearize_cow - make sure skb is linear and writable
3059  *	@skb: buffer to process
3060  *
3061  *	If there is no free memory -ENOMEM is returned, otherwise zero
3062  *	is returned and the old skb data released.
3063  */
3064 static inline int skb_linearize_cow(struct sk_buff *skb)
3065 {
3066 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3067 	       __skb_linearize(skb) : 0;
3068 }
3069 
3070 static __always_inline void
3071 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3072 		     unsigned int off)
3073 {
3074 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3075 		skb->csum = csum_block_sub(skb->csum,
3076 					   csum_partial(start, len, 0), off);
3077 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3078 		 skb_checksum_start_offset(skb) < 0)
3079 		skb->ip_summed = CHECKSUM_NONE;
3080 }
3081 
3082 /**
3083  *	skb_postpull_rcsum - update checksum for received skb after pull
3084  *	@skb: buffer to update
3085  *	@start: start of data before pull
3086  *	@len: length of data pulled
3087  *
3088  *	After doing a pull on a received packet, you need to call this to
3089  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3090  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3091  */
3092 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3093 				      const void *start, unsigned int len)
3094 {
3095 	__skb_postpull_rcsum(skb, start, len, 0);
3096 }
3097 
3098 static __always_inline void
3099 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3100 		     unsigned int off)
3101 {
3102 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3103 		skb->csum = csum_block_add(skb->csum,
3104 					   csum_partial(start, len, 0), off);
3105 }
3106 
3107 /**
3108  *	skb_postpush_rcsum - update checksum for received skb after push
3109  *	@skb: buffer to update
3110  *	@start: start of data after push
3111  *	@len: length of data pushed
3112  *
3113  *	After doing a push on a received packet, you need to call this to
3114  *	update the CHECKSUM_COMPLETE checksum.
3115  */
3116 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3117 				      const void *start, unsigned int len)
3118 {
3119 	__skb_postpush_rcsum(skb, start, len, 0);
3120 }
3121 
3122 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3123 
3124 /**
3125  *	skb_push_rcsum - push skb and update receive checksum
3126  *	@skb: buffer to update
3127  *	@len: length of data pulled
3128  *
3129  *	This function performs an skb_push on the packet and updates
3130  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3131  *	receive path processing instead of skb_push unless you know
3132  *	that the checksum difference is zero (e.g., a valid IP header)
3133  *	or you are setting ip_summed to CHECKSUM_NONE.
3134  */
3135 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3136 {
3137 	skb_push(skb, len);
3138 	skb_postpush_rcsum(skb, skb->data, len);
3139 	return skb->data;
3140 }
3141 
3142 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3143 /**
3144  *	pskb_trim_rcsum - trim received skb and update checksum
3145  *	@skb: buffer to trim
3146  *	@len: new length
3147  *
3148  *	This is exactly the same as pskb_trim except that it ensures the
3149  *	checksum of received packets are still valid after the operation.
3150  */
3151 
3152 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3153 {
3154 	if (likely(len >= skb->len))
3155 		return 0;
3156 	return pskb_trim_rcsum_slow(skb, len);
3157 }
3158 
3159 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3160 {
3161 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3162 		skb->ip_summed = CHECKSUM_NONE;
3163 	__skb_trim(skb, len);
3164 	return 0;
3165 }
3166 
3167 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3168 {
3169 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3170 		skb->ip_summed = CHECKSUM_NONE;
3171 	return __skb_grow(skb, len);
3172 }
3173 
3174 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3175 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3176 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3177 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3178 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3179 
3180 #define skb_queue_walk(queue, skb) \
3181 		for (skb = (queue)->next;					\
3182 		     skb != (struct sk_buff *)(queue);				\
3183 		     skb = skb->next)
3184 
3185 #define skb_queue_walk_safe(queue, skb, tmp)					\
3186 		for (skb = (queue)->next, tmp = skb->next;			\
3187 		     skb != (struct sk_buff *)(queue);				\
3188 		     skb = tmp, tmp = skb->next)
3189 
3190 #define skb_queue_walk_from(queue, skb)						\
3191 		for (; skb != (struct sk_buff *)(queue);			\
3192 		     skb = skb->next)
3193 
3194 #define skb_rbtree_walk(skb, root)						\
3195 		for (skb = skb_rb_first(root); skb != NULL;			\
3196 		     skb = skb_rb_next(skb))
3197 
3198 #define skb_rbtree_walk_from(skb)						\
3199 		for (; skb != NULL;						\
3200 		     skb = skb_rb_next(skb))
3201 
3202 #define skb_rbtree_walk_from_safe(skb, tmp)					\
3203 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
3204 		     skb = tmp)
3205 
3206 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3207 		for (tmp = skb->next;						\
3208 		     skb != (struct sk_buff *)(queue);				\
3209 		     skb = tmp, tmp = skb->next)
3210 
3211 #define skb_queue_reverse_walk(queue, skb) \
3212 		for (skb = (queue)->prev;					\
3213 		     skb != (struct sk_buff *)(queue);				\
3214 		     skb = skb->prev)
3215 
3216 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3217 		for (skb = (queue)->prev, tmp = skb->prev;			\
3218 		     skb != (struct sk_buff *)(queue);				\
3219 		     skb = tmp, tmp = skb->prev)
3220 
3221 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3222 		for (tmp = skb->prev;						\
3223 		     skb != (struct sk_buff *)(queue);				\
3224 		     skb = tmp, tmp = skb->prev)
3225 
3226 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3227 {
3228 	return skb_shinfo(skb)->frag_list != NULL;
3229 }
3230 
3231 static inline void skb_frag_list_init(struct sk_buff *skb)
3232 {
3233 	skb_shinfo(skb)->frag_list = NULL;
3234 }
3235 
3236 #define skb_walk_frags(skb, iter)	\
3237 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3238 
3239 
3240 int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
3241 				const struct sk_buff *skb);
3242 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3243 					  struct sk_buff_head *queue,
3244 					  unsigned int flags,
3245 					  void (*destructor)(struct sock *sk,
3246 							   struct sk_buff *skb),
3247 					  int *peeked, int *off, int *err,
3248 					  struct sk_buff **last);
3249 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
3250 					void (*destructor)(struct sock *sk,
3251 							   struct sk_buff *skb),
3252 					int *peeked, int *off, int *err,
3253 					struct sk_buff **last);
3254 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
3255 				    void (*destructor)(struct sock *sk,
3256 						       struct sk_buff *skb),
3257 				    int *peeked, int *off, int *err);
3258 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3259 				  int *err);
3260 __poll_t datagram_poll(struct file *file, struct socket *sock,
3261 			   struct poll_table_struct *wait);
3262 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3263 			   struct iov_iter *to, int size);
3264 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3265 					struct msghdr *msg, int size)
3266 {
3267 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3268 }
3269 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3270 				   struct msghdr *msg);
3271 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3272 				 struct iov_iter *from, int len);
3273 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3274 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3275 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3276 static inline void skb_free_datagram_locked(struct sock *sk,
3277 					    struct sk_buff *skb)
3278 {
3279 	__skb_free_datagram_locked(sk, skb, 0);
3280 }
3281 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3282 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3283 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3284 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3285 			      int len, __wsum csum);
3286 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3287 		    struct pipe_inode_info *pipe, unsigned int len,
3288 		    unsigned int flags);
3289 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3290 			 int len);
3291 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
3292 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3293 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3294 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3295 		 int len, int hlen);
3296 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3297 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3298 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3299 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3300 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3301 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3302 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3303 int skb_ensure_writable(struct sk_buff *skb, int write_len);
3304 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3305 int skb_vlan_pop(struct sk_buff *skb);
3306 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3307 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3308 			     gfp_t gfp);
3309 
3310 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3311 {
3312 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3313 }
3314 
3315 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3316 {
3317 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3318 }
3319 
3320 struct skb_checksum_ops {
3321 	__wsum (*update)(const void *mem, int len, __wsum wsum);
3322 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3323 };
3324 
3325 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3326 
3327 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3328 		      __wsum csum, const struct skb_checksum_ops *ops);
3329 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3330 		    __wsum csum);
3331 
3332 static inline void * __must_check
3333 __skb_header_pointer(const struct sk_buff *skb, int offset,
3334 		     int len, void *data, int hlen, void *buffer)
3335 {
3336 	if (hlen - offset >= len)
3337 		return data + offset;
3338 
3339 	if (!skb ||
3340 	    skb_copy_bits(skb, offset, buffer, len) < 0)
3341 		return NULL;
3342 
3343 	return buffer;
3344 }
3345 
3346 static inline void * __must_check
3347 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3348 {
3349 	return __skb_header_pointer(skb, offset, len, skb->data,
3350 				    skb_headlen(skb), buffer);
3351 }
3352 
3353 /**
3354  *	skb_needs_linearize - check if we need to linearize a given skb
3355  *			      depending on the given device features.
3356  *	@skb: socket buffer to check
3357  *	@features: net device features
3358  *
3359  *	Returns true if either:
3360  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
3361  *	2. skb is fragmented and the device does not support SG.
3362  */
3363 static inline bool skb_needs_linearize(struct sk_buff *skb,
3364 				       netdev_features_t features)
3365 {
3366 	return skb_is_nonlinear(skb) &&
3367 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3368 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3369 }
3370 
3371 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3372 					     void *to,
3373 					     const unsigned int len)
3374 {
3375 	memcpy(to, skb->data, len);
3376 }
3377 
3378 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3379 						    const int offset, void *to,
3380 						    const unsigned int len)
3381 {
3382 	memcpy(to, skb->data + offset, len);
3383 }
3384 
3385 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3386 					   const void *from,
3387 					   const unsigned int len)
3388 {
3389 	memcpy(skb->data, from, len);
3390 }
3391 
3392 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3393 						  const int offset,
3394 						  const void *from,
3395 						  const unsigned int len)
3396 {
3397 	memcpy(skb->data + offset, from, len);
3398 }
3399 
3400 void skb_init(void);
3401 
3402 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3403 {
3404 	return skb->tstamp;
3405 }
3406 
3407 /**
3408  *	skb_get_timestamp - get timestamp from a skb
3409  *	@skb: skb to get stamp from
3410  *	@stamp: pointer to struct timeval to store stamp in
3411  *
3412  *	Timestamps are stored in the skb as offsets to a base timestamp.
3413  *	This function converts the offset back to a struct timeval and stores
3414  *	it in stamp.
3415  */
3416 static inline void skb_get_timestamp(const struct sk_buff *skb,
3417 				     struct timeval *stamp)
3418 {
3419 	*stamp = ktime_to_timeval(skb->tstamp);
3420 }
3421 
3422 static inline void skb_get_timestampns(const struct sk_buff *skb,
3423 				       struct timespec *stamp)
3424 {
3425 	*stamp = ktime_to_timespec(skb->tstamp);
3426 }
3427 
3428 static inline void __net_timestamp(struct sk_buff *skb)
3429 {
3430 	skb->tstamp = ktime_get_real();
3431 }
3432 
3433 static inline ktime_t net_timedelta(ktime_t t)
3434 {
3435 	return ktime_sub(ktime_get_real(), t);
3436 }
3437 
3438 static inline ktime_t net_invalid_timestamp(void)
3439 {
3440 	return 0;
3441 }
3442 
3443 static inline u8 skb_metadata_len(const struct sk_buff *skb)
3444 {
3445 	return skb_shinfo(skb)->meta_len;
3446 }
3447 
3448 static inline void *skb_metadata_end(const struct sk_buff *skb)
3449 {
3450 	return skb_mac_header(skb);
3451 }
3452 
3453 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3454 					  const struct sk_buff *skb_b,
3455 					  u8 meta_len)
3456 {
3457 	const void *a = skb_metadata_end(skb_a);
3458 	const void *b = skb_metadata_end(skb_b);
3459 	/* Using more efficient varaiant than plain call to memcmp(). */
3460 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3461 	u64 diffs = 0;
3462 
3463 	switch (meta_len) {
3464 #define __it(x, op) (x -= sizeof(u##op))
3465 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3466 	case 32: diffs |= __it_diff(a, b, 64);
3467 	case 24: diffs |= __it_diff(a, b, 64);
3468 	case 16: diffs |= __it_diff(a, b, 64);
3469 	case  8: diffs |= __it_diff(a, b, 64);
3470 		break;
3471 	case 28: diffs |= __it_diff(a, b, 64);
3472 	case 20: diffs |= __it_diff(a, b, 64);
3473 	case 12: diffs |= __it_diff(a, b, 64);
3474 	case  4: diffs |= __it_diff(a, b, 32);
3475 		break;
3476 	}
3477 	return diffs;
3478 #else
3479 	return memcmp(a - meta_len, b - meta_len, meta_len);
3480 #endif
3481 }
3482 
3483 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3484 					const struct sk_buff *skb_b)
3485 {
3486 	u8 len_a = skb_metadata_len(skb_a);
3487 	u8 len_b = skb_metadata_len(skb_b);
3488 
3489 	if (!(len_a | len_b))
3490 		return false;
3491 
3492 	return len_a != len_b ?
3493 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
3494 }
3495 
3496 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3497 {
3498 	skb_shinfo(skb)->meta_len = meta_len;
3499 }
3500 
3501 static inline void skb_metadata_clear(struct sk_buff *skb)
3502 {
3503 	skb_metadata_set(skb, 0);
3504 }
3505 
3506 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3507 
3508 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3509 
3510 void skb_clone_tx_timestamp(struct sk_buff *skb);
3511 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3512 
3513 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3514 
3515 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3516 {
3517 }
3518 
3519 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3520 {
3521 	return false;
3522 }
3523 
3524 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3525 
3526 /**
3527  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3528  *
3529  * PHY drivers may accept clones of transmitted packets for
3530  * timestamping via their phy_driver.txtstamp method. These drivers
3531  * must call this function to return the skb back to the stack with a
3532  * timestamp.
3533  *
3534  * @skb: clone of the the original outgoing packet
3535  * @hwtstamps: hardware time stamps
3536  *
3537  */
3538 void skb_complete_tx_timestamp(struct sk_buff *skb,
3539 			       struct skb_shared_hwtstamps *hwtstamps);
3540 
3541 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3542 		     struct skb_shared_hwtstamps *hwtstamps,
3543 		     struct sock *sk, int tstype);
3544 
3545 /**
3546  * skb_tstamp_tx - queue clone of skb with send time stamps
3547  * @orig_skb:	the original outgoing packet
3548  * @hwtstamps:	hardware time stamps, may be NULL if not available
3549  *
3550  * If the skb has a socket associated, then this function clones the
3551  * skb (thus sharing the actual data and optional structures), stores
3552  * the optional hardware time stamping information (if non NULL) or
3553  * generates a software time stamp (otherwise), then queues the clone
3554  * to the error queue of the socket.  Errors are silently ignored.
3555  */
3556 void skb_tstamp_tx(struct sk_buff *orig_skb,
3557 		   struct skb_shared_hwtstamps *hwtstamps);
3558 
3559 /**
3560  * skb_tx_timestamp() - Driver hook for transmit timestamping
3561  *
3562  * Ethernet MAC Drivers should call this function in their hard_xmit()
3563  * function immediately before giving the sk_buff to the MAC hardware.
3564  *
3565  * Specifically, one should make absolutely sure that this function is
3566  * called before TX completion of this packet can trigger.  Otherwise
3567  * the packet could potentially already be freed.
3568  *
3569  * @skb: A socket buffer.
3570  */
3571 static inline void skb_tx_timestamp(struct sk_buff *skb)
3572 {
3573 	skb_clone_tx_timestamp(skb);
3574 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3575 		skb_tstamp_tx(skb, NULL);
3576 }
3577 
3578 /**
3579  * skb_complete_wifi_ack - deliver skb with wifi status
3580  *
3581  * @skb: the original outgoing packet
3582  * @acked: ack status
3583  *
3584  */
3585 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3586 
3587 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3588 __sum16 __skb_checksum_complete(struct sk_buff *skb);
3589 
3590 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3591 {
3592 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3593 		skb->csum_valid ||
3594 		(skb->ip_summed == CHECKSUM_PARTIAL &&
3595 		 skb_checksum_start_offset(skb) >= 0));
3596 }
3597 
3598 /**
3599  *	skb_checksum_complete - Calculate checksum of an entire packet
3600  *	@skb: packet to process
3601  *
3602  *	This function calculates the checksum over the entire packet plus
3603  *	the value of skb->csum.  The latter can be used to supply the
3604  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
3605  *	checksum.
3606  *
3607  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
3608  *	this function can be used to verify that checksum on received
3609  *	packets.  In that case the function should return zero if the
3610  *	checksum is correct.  In particular, this function will return zero
3611  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3612  *	hardware has already verified the correctness of the checksum.
3613  */
3614 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3615 {
3616 	return skb_csum_unnecessary(skb) ?
3617 	       0 : __skb_checksum_complete(skb);
3618 }
3619 
3620 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3621 {
3622 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3623 		if (skb->csum_level == 0)
3624 			skb->ip_summed = CHECKSUM_NONE;
3625 		else
3626 			skb->csum_level--;
3627 	}
3628 }
3629 
3630 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3631 {
3632 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3633 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3634 			skb->csum_level++;
3635 	} else if (skb->ip_summed == CHECKSUM_NONE) {
3636 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3637 		skb->csum_level = 0;
3638 	}
3639 }
3640 
3641 /* Check if we need to perform checksum complete validation.
3642  *
3643  * Returns true if checksum complete is needed, false otherwise
3644  * (either checksum is unnecessary or zero checksum is allowed).
3645  */
3646 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3647 						  bool zero_okay,
3648 						  __sum16 check)
3649 {
3650 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3651 		skb->csum_valid = 1;
3652 		__skb_decr_checksum_unnecessary(skb);
3653 		return false;
3654 	}
3655 
3656 	return true;
3657 }
3658 
3659 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
3660  * in checksum_init.
3661  */
3662 #define CHECKSUM_BREAK 76
3663 
3664 /* Unset checksum-complete
3665  *
3666  * Unset checksum complete can be done when packet is being modified
3667  * (uncompressed for instance) and checksum-complete value is
3668  * invalidated.
3669  */
3670 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3671 {
3672 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3673 		skb->ip_summed = CHECKSUM_NONE;
3674 }
3675 
3676 /* Validate (init) checksum based on checksum complete.
3677  *
3678  * Return values:
3679  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
3680  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3681  *	checksum is stored in skb->csum for use in __skb_checksum_complete
3682  *   non-zero: value of invalid checksum
3683  *
3684  */
3685 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3686 						       bool complete,
3687 						       __wsum psum)
3688 {
3689 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
3690 		if (!csum_fold(csum_add(psum, skb->csum))) {
3691 			skb->csum_valid = 1;
3692 			return 0;
3693 		}
3694 	}
3695 
3696 	skb->csum = psum;
3697 
3698 	if (complete || skb->len <= CHECKSUM_BREAK) {
3699 		__sum16 csum;
3700 
3701 		csum = __skb_checksum_complete(skb);
3702 		skb->csum_valid = !csum;
3703 		return csum;
3704 	}
3705 
3706 	return 0;
3707 }
3708 
3709 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3710 {
3711 	return 0;
3712 }
3713 
3714 /* Perform checksum validate (init). Note that this is a macro since we only
3715  * want to calculate the pseudo header which is an input function if necessary.
3716  * First we try to validate without any computation (checksum unnecessary) and
3717  * then calculate based on checksum complete calling the function to compute
3718  * pseudo header.
3719  *
3720  * Return values:
3721  *   0: checksum is validated or try to in skb_checksum_complete
3722  *   non-zero: value of invalid checksum
3723  */
3724 #define __skb_checksum_validate(skb, proto, complete,			\
3725 				zero_okay, check, compute_pseudo)	\
3726 ({									\
3727 	__sum16 __ret = 0;						\
3728 	skb->csum_valid = 0;						\
3729 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
3730 		__ret = __skb_checksum_validate_complete(skb,		\
3731 				complete, compute_pseudo(skb, proto));	\
3732 	__ret;								\
3733 })
3734 
3735 #define skb_checksum_init(skb, proto, compute_pseudo)			\
3736 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3737 
3738 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
3739 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3740 
3741 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
3742 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3743 
3744 #define skb_checksum_validate_zero_check(skb, proto, check,		\
3745 					 compute_pseudo)		\
3746 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
3747 
3748 #define skb_checksum_simple_validate(skb)				\
3749 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3750 
3751 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3752 {
3753 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
3754 }
3755 
3756 static inline void __skb_checksum_convert(struct sk_buff *skb,
3757 					  __sum16 check, __wsum pseudo)
3758 {
3759 	skb->csum = ~pseudo;
3760 	skb->ip_summed = CHECKSUM_COMPLETE;
3761 }
3762 
3763 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo)	\
3764 do {									\
3765 	if (__skb_checksum_convert_check(skb))				\
3766 		__skb_checksum_convert(skb, check,			\
3767 				       compute_pseudo(skb, proto));	\
3768 } while (0)
3769 
3770 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3771 					      u16 start, u16 offset)
3772 {
3773 	skb->ip_summed = CHECKSUM_PARTIAL;
3774 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3775 	skb->csum_offset = offset - start;
3776 }
3777 
3778 /* Update skbuf and packet to reflect the remote checksum offload operation.
3779  * When called, ptr indicates the starting point for skb->csum when
3780  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3781  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3782  */
3783 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
3784 				       int start, int offset, bool nopartial)
3785 {
3786 	__wsum delta;
3787 
3788 	if (!nopartial) {
3789 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
3790 		return;
3791 	}
3792 
3793 	 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3794 		__skb_checksum_complete(skb);
3795 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3796 	}
3797 
3798 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
3799 
3800 	/* Adjust skb->csum since we changed the packet */
3801 	skb->csum = csum_add(skb->csum, delta);
3802 }
3803 
3804 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
3805 {
3806 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
3807 	return (void *)(skb->_nfct & SKB_NFCT_PTRMASK);
3808 #else
3809 	return NULL;
3810 #endif
3811 }
3812 
3813 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3814 void nf_conntrack_destroy(struct nf_conntrack *nfct);
3815 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3816 {
3817 	if (nfct && atomic_dec_and_test(&nfct->use))
3818 		nf_conntrack_destroy(nfct);
3819 }
3820 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3821 {
3822 	if (nfct)
3823 		atomic_inc(&nfct->use);
3824 }
3825 #endif
3826 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3827 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
3828 {
3829 	if (nf_bridge && refcount_dec_and_test(&nf_bridge->use))
3830 		kfree(nf_bridge);
3831 }
3832 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
3833 {
3834 	if (nf_bridge)
3835 		refcount_inc(&nf_bridge->use);
3836 }
3837 #endif /* CONFIG_BRIDGE_NETFILTER */
3838 static inline void nf_reset(struct sk_buff *skb)
3839 {
3840 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3841 	nf_conntrack_put(skb_nfct(skb));
3842 	skb->_nfct = 0;
3843 #endif
3844 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3845 	nf_bridge_put(skb->nf_bridge);
3846 	skb->nf_bridge = NULL;
3847 #endif
3848 }
3849 
3850 static inline void nf_reset_trace(struct sk_buff *skb)
3851 {
3852 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3853 	skb->nf_trace = 0;
3854 #endif
3855 }
3856 
3857 static inline void ipvs_reset(struct sk_buff *skb)
3858 {
3859 #if IS_ENABLED(CONFIG_IP_VS)
3860 	skb->ipvs_property = 0;
3861 #endif
3862 }
3863 
3864 /* Note: This doesn't put any conntrack and bridge info in dst. */
3865 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
3866 			     bool copy)
3867 {
3868 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3869 	dst->_nfct = src->_nfct;
3870 	nf_conntrack_get(skb_nfct(src));
3871 #endif
3872 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3873 	dst->nf_bridge  = src->nf_bridge;
3874 	nf_bridge_get(src->nf_bridge);
3875 #endif
3876 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3877 	if (copy)
3878 		dst->nf_trace = src->nf_trace;
3879 #endif
3880 }
3881 
3882 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
3883 {
3884 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3885 	nf_conntrack_put(skb_nfct(dst));
3886 #endif
3887 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3888 	nf_bridge_put(dst->nf_bridge);
3889 #endif
3890 	__nf_copy(dst, src, true);
3891 }
3892 
3893 #ifdef CONFIG_NETWORK_SECMARK
3894 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3895 {
3896 	to->secmark = from->secmark;
3897 }
3898 
3899 static inline void skb_init_secmark(struct sk_buff *skb)
3900 {
3901 	skb->secmark = 0;
3902 }
3903 #else
3904 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3905 { }
3906 
3907 static inline void skb_init_secmark(struct sk_buff *skb)
3908 { }
3909 #endif
3910 
3911 static inline bool skb_irq_freeable(const struct sk_buff *skb)
3912 {
3913 	return !skb->destructor &&
3914 #if IS_ENABLED(CONFIG_XFRM)
3915 		!skb->sp &&
3916 #endif
3917 		!skb_nfct(skb) &&
3918 		!skb->_skb_refdst &&
3919 		!skb_has_frag_list(skb);
3920 }
3921 
3922 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
3923 {
3924 	skb->queue_mapping = queue_mapping;
3925 }
3926 
3927 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
3928 {
3929 	return skb->queue_mapping;
3930 }
3931 
3932 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
3933 {
3934 	to->queue_mapping = from->queue_mapping;
3935 }
3936 
3937 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
3938 {
3939 	skb->queue_mapping = rx_queue + 1;
3940 }
3941 
3942 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
3943 {
3944 	return skb->queue_mapping - 1;
3945 }
3946 
3947 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
3948 {
3949 	return skb->queue_mapping != 0;
3950 }
3951 
3952 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
3953 {
3954 	skb->dst_pending_confirm = val;
3955 }
3956 
3957 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
3958 {
3959 	return skb->dst_pending_confirm != 0;
3960 }
3961 
3962 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
3963 {
3964 #ifdef CONFIG_XFRM
3965 	return skb->sp;
3966 #else
3967 	return NULL;
3968 #endif
3969 }
3970 
3971 /* Keeps track of mac header offset relative to skb->head.
3972  * It is useful for TSO of Tunneling protocol. e.g. GRE.
3973  * For non-tunnel skb it points to skb_mac_header() and for
3974  * tunnel skb it points to outer mac header.
3975  * Keeps track of level of encapsulation of network headers.
3976  */
3977 struct skb_gso_cb {
3978 	union {
3979 		int	mac_offset;
3980 		int	data_offset;
3981 	};
3982 	int	encap_level;
3983 	__wsum	csum;
3984 	__u16	csum_start;
3985 };
3986 #define SKB_SGO_CB_OFFSET	32
3987 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
3988 
3989 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
3990 {
3991 	return (skb_mac_header(inner_skb) - inner_skb->head) -
3992 		SKB_GSO_CB(inner_skb)->mac_offset;
3993 }
3994 
3995 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
3996 {
3997 	int new_headroom, headroom;
3998 	int ret;
3999 
4000 	headroom = skb_headroom(skb);
4001 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4002 	if (ret)
4003 		return ret;
4004 
4005 	new_headroom = skb_headroom(skb);
4006 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4007 	return 0;
4008 }
4009 
4010 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4011 {
4012 	/* Do not update partial checksums if remote checksum is enabled. */
4013 	if (skb->remcsum_offload)
4014 		return;
4015 
4016 	SKB_GSO_CB(skb)->csum = res;
4017 	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4018 }
4019 
4020 /* Compute the checksum for a gso segment. First compute the checksum value
4021  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4022  * then add in skb->csum (checksum from csum_start to end of packet).
4023  * skb->csum and csum_start are then updated to reflect the checksum of the
4024  * resultant packet starting from the transport header-- the resultant checksum
4025  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4026  * header.
4027  */
4028 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4029 {
4030 	unsigned char *csum_start = skb_transport_header(skb);
4031 	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4032 	__wsum partial = SKB_GSO_CB(skb)->csum;
4033 
4034 	SKB_GSO_CB(skb)->csum = res;
4035 	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4036 
4037 	return csum_fold(csum_partial(csum_start, plen, partial));
4038 }
4039 
4040 static inline bool skb_is_gso(const struct sk_buff *skb)
4041 {
4042 	return skb_shinfo(skb)->gso_size;
4043 }
4044 
4045 /* Note: Should be called only if skb_is_gso(skb) is true */
4046 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4047 {
4048 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4049 }
4050 
4051 /* Note: Should be called only if skb_is_gso(skb) is true */
4052 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4053 {
4054 	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4055 }
4056 
4057 static inline void skb_gso_reset(struct sk_buff *skb)
4058 {
4059 	skb_shinfo(skb)->gso_size = 0;
4060 	skb_shinfo(skb)->gso_segs = 0;
4061 	skb_shinfo(skb)->gso_type = 0;
4062 }
4063 
4064 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4065 					 u16 increment)
4066 {
4067 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4068 		return;
4069 	shinfo->gso_size += increment;
4070 }
4071 
4072 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4073 					 u16 decrement)
4074 {
4075 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4076 		return;
4077 	shinfo->gso_size -= decrement;
4078 }
4079 
4080 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4081 
4082 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4083 {
4084 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
4085 	 * wanted then gso_type will be set. */
4086 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4087 
4088 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4089 	    unlikely(shinfo->gso_type == 0)) {
4090 		__skb_warn_lro_forwarding(skb);
4091 		return true;
4092 	}
4093 	return false;
4094 }
4095 
4096 static inline void skb_forward_csum(struct sk_buff *skb)
4097 {
4098 	/* Unfortunately we don't support this one.  Any brave souls? */
4099 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4100 		skb->ip_summed = CHECKSUM_NONE;
4101 }
4102 
4103 /**
4104  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4105  * @skb: skb to check
4106  *
4107  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4108  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4109  * use this helper, to document places where we make this assertion.
4110  */
4111 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4112 {
4113 #ifdef DEBUG
4114 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4115 #endif
4116 }
4117 
4118 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4119 
4120 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4121 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4122 				     unsigned int transport_len,
4123 				     __sum16(*skb_chkf)(struct sk_buff *skb));
4124 
4125 /**
4126  * skb_head_is_locked - Determine if the skb->head is locked down
4127  * @skb: skb to check
4128  *
4129  * The head on skbs build around a head frag can be removed if they are
4130  * not cloned.  This function returns true if the skb head is locked down
4131  * due to either being allocated via kmalloc, or by being a clone with
4132  * multiple references to the head.
4133  */
4134 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4135 {
4136 	return !skb->head_frag || skb_cloned(skb);
4137 }
4138 
4139 /* Local Checksum Offload.
4140  * Compute outer checksum based on the assumption that the
4141  * inner checksum will be offloaded later.
4142  * See Documentation/networking/checksum-offloads.txt for
4143  * explanation of how this works.
4144  * Fill in outer checksum adjustment (e.g. with sum of outer
4145  * pseudo-header) before calling.
4146  * Also ensure that inner checksum is in linear data area.
4147  */
4148 static inline __wsum lco_csum(struct sk_buff *skb)
4149 {
4150 	unsigned char *csum_start = skb_checksum_start(skb);
4151 	unsigned char *l4_hdr = skb_transport_header(skb);
4152 	__wsum partial;
4153 
4154 	/* Start with complement of inner checksum adjustment */
4155 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4156 						    skb->csum_offset));
4157 
4158 	/* Add in checksum of our headers (incl. outer checksum
4159 	 * adjustment filled in by caller) and return result.
4160 	 */
4161 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4162 }
4163 
4164 #endif	/* __KERNEL__ */
4165 #endif	/* _LINUX_SKBUFF_H */
4166