1 /* 2 * Definitions for the 'struct sk_buff' memory handlers. 3 * 4 * Authors: 5 * Alan Cox, <[email protected]> 6 * Florian La Roche, <[email protected]> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14 #ifndef _LINUX_SKBUFF_H 15 #define _LINUX_SKBUFF_H 16 17 #include <linux/kernel.h> 18 #include <linux/compiler.h> 19 #include <linux/time.h> 20 #include <linux/bug.h> 21 #include <linux/cache.h> 22 #include <linux/rbtree.h> 23 #include <linux/socket.h> 24 #include <linux/refcount.h> 25 26 #include <linux/atomic.h> 27 #include <asm/types.h> 28 #include <linux/spinlock.h> 29 #include <linux/net.h> 30 #include <linux/textsearch.h> 31 #include <net/checksum.h> 32 #include <linux/rcupdate.h> 33 #include <linux/hrtimer.h> 34 #include <linux/dma-mapping.h> 35 #include <linux/netdev_features.h> 36 #include <linux/sched.h> 37 #include <linux/sched/clock.h> 38 #include <net/flow_dissector.h> 39 #include <linux/splice.h> 40 #include <linux/in6.h> 41 #include <linux/if_packet.h> 42 #include <net/flow.h> 43 44 /* The interface for checksum offload between the stack and networking drivers 45 * is as follows... 46 * 47 * A. IP checksum related features 48 * 49 * Drivers advertise checksum offload capabilities in the features of a device. 50 * From the stack's point of view these are capabilities offered by the driver, 51 * a driver typically only advertises features that it is capable of offloading 52 * to its device. 53 * 54 * The checksum related features are: 55 * 56 * NETIF_F_HW_CSUM - The driver (or its device) is able to compute one 57 * IP (one's complement) checksum for any combination 58 * of protocols or protocol layering. The checksum is 59 * computed and set in a packet per the CHECKSUM_PARTIAL 60 * interface (see below). 61 * 62 * NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain 63 * TCP or UDP packets over IPv4. These are specifically 64 * unencapsulated packets of the form IPv4|TCP or 65 * IPv4|UDP where the Protocol field in the IPv4 header 66 * is TCP or UDP. The IPv4 header may contain IP options 67 * This feature cannot be set in features for a device 68 * with NETIF_F_HW_CSUM also set. This feature is being 69 * DEPRECATED (see below). 70 * 71 * NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain 72 * TCP or UDP packets over IPv6. These are specifically 73 * unencapsulated packets of the form IPv6|TCP or 74 * IPv4|UDP where the Next Header field in the IPv6 75 * header is either TCP or UDP. IPv6 extension headers 76 * are not supported with this feature. This feature 77 * cannot be set in features for a device with 78 * NETIF_F_HW_CSUM also set. This feature is being 79 * DEPRECATED (see below). 80 * 81 * NETIF_F_RXCSUM - Driver (device) performs receive checksum offload. 82 * This flag is used only used to disable the RX checksum 83 * feature for a device. The stack will accept receive 84 * checksum indication in packets received on a device 85 * regardless of whether NETIF_F_RXCSUM is set. 86 * 87 * B. Checksumming of received packets by device. Indication of checksum 88 * verification is in set skb->ip_summed. Possible values are: 89 * 90 * CHECKSUM_NONE: 91 * 92 * Device did not checksum this packet e.g. due to lack of capabilities. 93 * The packet contains full (though not verified) checksum in packet but 94 * not in skb->csum. Thus, skb->csum is undefined in this case. 95 * 96 * CHECKSUM_UNNECESSARY: 97 * 98 * The hardware you're dealing with doesn't calculate the full checksum 99 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums 100 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY 101 * if their checksums are okay. skb->csum is still undefined in this case 102 * though. A driver or device must never modify the checksum field in the 103 * packet even if checksum is verified. 104 * 105 * CHECKSUM_UNNECESSARY is applicable to following protocols: 106 * TCP: IPv6 and IPv4. 107 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a 108 * zero UDP checksum for either IPv4 or IPv6, the networking stack 109 * may perform further validation in this case. 110 * GRE: only if the checksum is present in the header. 111 * SCTP: indicates the CRC in SCTP header has been validated. 112 * FCOE: indicates the CRC in FC frame has been validated. 113 * 114 * skb->csum_level indicates the number of consecutive checksums found in 115 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY. 116 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet 117 * and a device is able to verify the checksums for UDP (possibly zero), 118 * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to 119 * two. If the device were only able to verify the UDP checksum and not 120 * GRE, either because it doesn't support GRE checksum of because GRE 121 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is 122 * not considered in this case). 123 * 124 * CHECKSUM_COMPLETE: 125 * 126 * This is the most generic way. The device supplied checksum of the _whole_ 127 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the 128 * hardware doesn't need to parse L3/L4 headers to implement this. 129 * 130 * Notes: 131 * - Even if device supports only some protocols, but is able to produce 132 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY. 133 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols. 134 * 135 * CHECKSUM_PARTIAL: 136 * 137 * A checksum is set up to be offloaded to a device as described in the 138 * output description for CHECKSUM_PARTIAL. This may occur on a packet 139 * received directly from another Linux OS, e.g., a virtualized Linux kernel 140 * on the same host, or it may be set in the input path in GRO or remote 141 * checksum offload. For the purposes of checksum verification, the checksum 142 * referred to by skb->csum_start + skb->csum_offset and any preceding 143 * checksums in the packet are considered verified. Any checksums in the 144 * packet that are after the checksum being offloaded are not considered to 145 * be verified. 146 * 147 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload 148 * in the skb->ip_summed for a packet. Values are: 149 * 150 * CHECKSUM_PARTIAL: 151 * 152 * The driver is required to checksum the packet as seen by hard_start_xmit() 153 * from skb->csum_start up to the end, and to record/write the checksum at 154 * offset skb->csum_start + skb->csum_offset. A driver may verify that the 155 * csum_start and csum_offset values are valid values given the length and 156 * offset of the packet, however they should not attempt to validate that the 157 * checksum refers to a legitimate transport layer checksum-- it is the 158 * purview of the stack to validate that csum_start and csum_offset are set 159 * correctly. 160 * 161 * When the stack requests checksum offload for a packet, the driver MUST 162 * ensure that the checksum is set correctly. A driver can either offload the 163 * checksum calculation to the device, or call skb_checksum_help (in the case 164 * that the device does not support offload for a particular checksum). 165 * 166 * NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of 167 * NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate 168 * checksum offload capability. 169 * skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based 170 * on network device checksumming capabilities: if a packet does not match 171 * them, skb_checksum_help or skb_crc32c_help (depending on the value of 172 * csum_not_inet, see item D.) is called to resolve the checksum. 173 * 174 * CHECKSUM_NONE: 175 * 176 * The skb was already checksummed by the protocol, or a checksum is not 177 * required. 178 * 179 * CHECKSUM_UNNECESSARY: 180 * 181 * This has the same meaning on as CHECKSUM_NONE for checksum offload on 182 * output. 183 * 184 * CHECKSUM_COMPLETE: 185 * Not used in checksum output. If a driver observes a packet with this value 186 * set in skbuff, if should treat as CHECKSUM_NONE being set. 187 * 188 * D. Non-IP checksum (CRC) offloads 189 * 190 * NETIF_F_SCTP_CRC - This feature indicates that a device is capable of 191 * offloading the SCTP CRC in a packet. To perform this offload the stack 192 * will set set csum_start and csum_offset accordingly, set ip_summed to 193 * CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in 194 * the skbuff that the CHECKSUM_PARTIAL refers to CRC32c. 195 * A driver that supports both IP checksum offload and SCTP CRC32c offload 196 * must verify which offload is configured for a packet by testing the 197 * value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve 198 * CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1. 199 * 200 * NETIF_F_FCOE_CRC - This feature indicates that a device is capable of 201 * offloading the FCOE CRC in a packet. To perform this offload the stack 202 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset 203 * accordingly. Note the there is no indication in the skbuff that the 204 * CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports 205 * both IP checksum offload and FCOE CRC offload must verify which offload 206 * is configured for a packet presumably by inspecting packet headers. 207 * 208 * E. Checksumming on output with GSO. 209 * 210 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload 211 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the 212 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as 213 * part of the GSO operation is implied. If a checksum is being offloaded 214 * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset 215 * are set to refer to the outermost checksum being offload (two offloaded 216 * checksums are possible with UDP encapsulation). 217 */ 218 219 /* Don't change this without changing skb_csum_unnecessary! */ 220 #define CHECKSUM_NONE 0 221 #define CHECKSUM_UNNECESSARY 1 222 #define CHECKSUM_COMPLETE 2 223 #define CHECKSUM_PARTIAL 3 224 225 /* Maximum value in skb->csum_level */ 226 #define SKB_MAX_CSUM_LEVEL 3 227 228 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES) 229 #define SKB_WITH_OVERHEAD(X) \ 230 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 231 #define SKB_MAX_ORDER(X, ORDER) \ 232 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 233 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 234 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 235 236 /* return minimum truesize of one skb containing X bytes of data */ 237 #define SKB_TRUESIZE(X) ((X) + \ 238 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ 239 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 240 241 struct net_device; 242 struct scatterlist; 243 struct pipe_inode_info; 244 struct iov_iter; 245 struct napi_struct; 246 247 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 248 struct nf_conntrack { 249 atomic_t use; 250 }; 251 #endif 252 253 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 254 struct nf_bridge_info { 255 refcount_t use; 256 enum { 257 BRNF_PROTO_UNCHANGED, 258 BRNF_PROTO_8021Q, 259 BRNF_PROTO_PPPOE 260 } orig_proto:8; 261 u8 pkt_otherhost:1; 262 u8 in_prerouting:1; 263 u8 bridged_dnat:1; 264 __u16 frag_max_size; 265 struct net_device *physindev; 266 267 /* always valid & non-NULL from FORWARD on, for physdev match */ 268 struct net_device *physoutdev; 269 union { 270 /* prerouting: detect dnat in orig/reply direction */ 271 __be32 ipv4_daddr; 272 struct in6_addr ipv6_daddr; 273 274 /* after prerouting + nat detected: store original source 275 * mac since neigh resolution overwrites it, only used while 276 * skb is out in neigh layer. 277 */ 278 char neigh_header[8]; 279 }; 280 }; 281 #endif 282 283 struct sk_buff_head { 284 /* These two members must be first. */ 285 struct sk_buff *next; 286 struct sk_buff *prev; 287 288 __u32 qlen; 289 spinlock_t lock; 290 }; 291 292 struct sk_buff; 293 294 /* To allow 64K frame to be packed as single skb without frag_list we 295 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for 296 * buffers which do not start on a page boundary. 297 * 298 * Since GRO uses frags we allocate at least 16 regardless of page 299 * size. 300 */ 301 #if (65536/PAGE_SIZE + 1) < 16 302 #define MAX_SKB_FRAGS 16UL 303 #else 304 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1) 305 #endif 306 extern int sysctl_max_skb_frags; 307 308 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to 309 * segment using its current segmentation instead. 310 */ 311 #define GSO_BY_FRAGS 0xFFFF 312 313 typedef struct skb_frag_struct skb_frag_t; 314 315 struct skb_frag_struct { 316 struct { 317 struct page *p; 318 } page; 319 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536) 320 __u32 page_offset; 321 __u32 size; 322 #else 323 __u16 page_offset; 324 __u16 size; 325 #endif 326 }; 327 328 static inline unsigned int skb_frag_size(const skb_frag_t *frag) 329 { 330 return frag->size; 331 } 332 333 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) 334 { 335 frag->size = size; 336 } 337 338 static inline void skb_frag_size_add(skb_frag_t *frag, int delta) 339 { 340 frag->size += delta; 341 } 342 343 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) 344 { 345 frag->size -= delta; 346 } 347 348 static inline bool skb_frag_must_loop(struct page *p) 349 { 350 #if defined(CONFIG_HIGHMEM) 351 if (PageHighMem(p)) 352 return true; 353 #endif 354 return false; 355 } 356 357 /** 358 * skb_frag_foreach_page - loop over pages in a fragment 359 * 360 * @f: skb frag to operate on 361 * @f_off: offset from start of f->page.p 362 * @f_len: length from f_off to loop over 363 * @p: (temp var) current page 364 * @p_off: (temp var) offset from start of current page, 365 * non-zero only on first page. 366 * @p_len: (temp var) length in current page, 367 * < PAGE_SIZE only on first and last page. 368 * @copied: (temp var) length so far, excluding current p_len. 369 * 370 * A fragment can hold a compound page, in which case per-page 371 * operations, notably kmap_atomic, must be called for each 372 * regular page. 373 */ 374 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \ 375 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \ 376 p_off = (f_off) & (PAGE_SIZE - 1), \ 377 p_len = skb_frag_must_loop(p) ? \ 378 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \ 379 copied = 0; \ 380 copied < f_len; \ 381 copied += p_len, p++, p_off = 0, \ 382 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \ 383 384 #define HAVE_HW_TIME_STAMP 385 386 /** 387 * struct skb_shared_hwtstamps - hardware time stamps 388 * @hwtstamp: hardware time stamp transformed into duration 389 * since arbitrary point in time 390 * 391 * Software time stamps generated by ktime_get_real() are stored in 392 * skb->tstamp. 393 * 394 * hwtstamps can only be compared against other hwtstamps from 395 * the same device. 396 * 397 * This structure is attached to packets as part of the 398 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 399 */ 400 struct skb_shared_hwtstamps { 401 ktime_t hwtstamp; 402 }; 403 404 /* Definitions for tx_flags in struct skb_shared_info */ 405 enum { 406 /* generate hardware time stamp */ 407 SKBTX_HW_TSTAMP = 1 << 0, 408 409 /* generate software time stamp when queueing packet to NIC */ 410 SKBTX_SW_TSTAMP = 1 << 1, 411 412 /* device driver is going to provide hardware time stamp */ 413 SKBTX_IN_PROGRESS = 1 << 2, 414 415 /* device driver supports TX zero-copy buffers */ 416 SKBTX_DEV_ZEROCOPY = 1 << 3, 417 418 /* generate wifi status information (where possible) */ 419 SKBTX_WIFI_STATUS = 1 << 4, 420 421 /* This indicates at least one fragment might be overwritten 422 * (as in vmsplice(), sendfile() ...) 423 * If we need to compute a TX checksum, we'll need to copy 424 * all frags to avoid possible bad checksum 425 */ 426 SKBTX_SHARED_FRAG = 1 << 5, 427 428 /* generate software time stamp when entering packet scheduling */ 429 SKBTX_SCHED_TSTAMP = 1 << 6, 430 }; 431 432 #define SKBTX_ZEROCOPY_FRAG (SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG) 433 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \ 434 SKBTX_SCHED_TSTAMP) 435 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP) 436 437 /* 438 * The callback notifies userspace to release buffers when skb DMA is done in 439 * lower device, the skb last reference should be 0 when calling this. 440 * The zerocopy_success argument is true if zero copy transmit occurred, 441 * false on data copy or out of memory error caused by data copy attempt. 442 * The ctx field is used to track device context. 443 * The desc field is used to track userspace buffer index. 444 */ 445 struct ubuf_info { 446 void (*callback)(struct ubuf_info *, bool zerocopy_success); 447 union { 448 struct { 449 unsigned long desc; 450 void *ctx; 451 }; 452 struct { 453 u32 id; 454 u16 len; 455 u16 zerocopy:1; 456 u32 bytelen; 457 }; 458 }; 459 refcount_t refcnt; 460 461 struct mmpin { 462 struct user_struct *user; 463 unsigned int num_pg; 464 } mmp; 465 }; 466 467 #define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg)) 468 469 int mm_account_pinned_pages(struct mmpin *mmp, size_t size); 470 void mm_unaccount_pinned_pages(struct mmpin *mmp); 471 472 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size); 473 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size, 474 struct ubuf_info *uarg); 475 476 static inline void sock_zerocopy_get(struct ubuf_info *uarg) 477 { 478 refcount_inc(&uarg->refcnt); 479 } 480 481 void sock_zerocopy_put(struct ubuf_info *uarg); 482 void sock_zerocopy_put_abort(struct ubuf_info *uarg); 483 484 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success); 485 486 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 487 struct msghdr *msg, int len, 488 struct ubuf_info *uarg); 489 490 /* This data is invariant across clones and lives at 491 * the end of the header data, ie. at skb->end. 492 */ 493 struct skb_shared_info { 494 __u8 __unused; 495 __u8 meta_len; 496 __u8 nr_frags; 497 __u8 tx_flags; 498 unsigned short gso_size; 499 /* Warning: this field is not always filled in (UFO)! */ 500 unsigned short gso_segs; 501 struct sk_buff *frag_list; 502 struct skb_shared_hwtstamps hwtstamps; 503 unsigned int gso_type; 504 u32 tskey; 505 506 /* 507 * Warning : all fields before dataref are cleared in __alloc_skb() 508 */ 509 atomic_t dataref; 510 511 /* Intermediate layers must ensure that destructor_arg 512 * remains valid until skb destructor */ 513 void * destructor_arg; 514 515 /* must be last field, see pskb_expand_head() */ 516 skb_frag_t frags[MAX_SKB_FRAGS]; 517 }; 518 519 /* We divide dataref into two halves. The higher 16 bits hold references 520 * to the payload part of skb->data. The lower 16 bits hold references to 521 * the entire skb->data. A clone of a headerless skb holds the length of 522 * the header in skb->hdr_len. 523 * 524 * All users must obey the rule that the skb->data reference count must be 525 * greater than or equal to the payload reference count. 526 * 527 * Holding a reference to the payload part means that the user does not 528 * care about modifications to the header part of skb->data. 529 */ 530 #define SKB_DATAREF_SHIFT 16 531 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 532 533 534 enum { 535 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */ 536 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */ 537 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */ 538 }; 539 540 enum { 541 SKB_GSO_TCPV4 = 1 << 0, 542 543 /* This indicates the skb is from an untrusted source. */ 544 SKB_GSO_DODGY = 1 << 1, 545 546 /* This indicates the tcp segment has CWR set. */ 547 SKB_GSO_TCP_ECN = 1 << 2, 548 549 SKB_GSO_TCP_FIXEDID = 1 << 3, 550 551 SKB_GSO_TCPV6 = 1 << 4, 552 553 SKB_GSO_FCOE = 1 << 5, 554 555 SKB_GSO_GRE = 1 << 6, 556 557 SKB_GSO_GRE_CSUM = 1 << 7, 558 559 SKB_GSO_IPXIP4 = 1 << 8, 560 561 SKB_GSO_IPXIP6 = 1 << 9, 562 563 SKB_GSO_UDP_TUNNEL = 1 << 10, 564 565 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11, 566 567 SKB_GSO_PARTIAL = 1 << 12, 568 569 SKB_GSO_TUNNEL_REMCSUM = 1 << 13, 570 571 SKB_GSO_SCTP = 1 << 14, 572 573 SKB_GSO_ESP = 1 << 15, 574 575 SKB_GSO_UDP = 1 << 16, 576 577 SKB_GSO_UDP_L4 = 1 << 17, 578 }; 579 580 #if BITS_PER_LONG > 32 581 #define NET_SKBUFF_DATA_USES_OFFSET 1 582 #endif 583 584 #ifdef NET_SKBUFF_DATA_USES_OFFSET 585 typedef unsigned int sk_buff_data_t; 586 #else 587 typedef unsigned char *sk_buff_data_t; 588 #endif 589 590 /** 591 * struct sk_buff - socket buffer 592 * @next: Next buffer in list 593 * @prev: Previous buffer in list 594 * @tstamp: Time we arrived/left 595 * @rbnode: RB tree node, alternative to next/prev for netem/tcp 596 * @sk: Socket we are owned by 597 * @dev: Device we arrived on/are leaving by 598 * @cb: Control buffer. Free for use by every layer. Put private vars here 599 * @_skb_refdst: destination entry (with norefcount bit) 600 * @sp: the security path, used for xfrm 601 * @len: Length of actual data 602 * @data_len: Data length 603 * @mac_len: Length of link layer header 604 * @hdr_len: writable header length of cloned skb 605 * @csum: Checksum (must include start/offset pair) 606 * @csum_start: Offset from skb->head where checksumming should start 607 * @csum_offset: Offset from csum_start where checksum should be stored 608 * @priority: Packet queueing priority 609 * @ignore_df: allow local fragmentation 610 * @cloned: Head may be cloned (check refcnt to be sure) 611 * @ip_summed: Driver fed us an IP checksum 612 * @nohdr: Payload reference only, must not modify header 613 * @pkt_type: Packet class 614 * @fclone: skbuff clone status 615 * @ipvs_property: skbuff is owned by ipvs 616 * @tc_skip_classify: do not classify packet. set by IFB device 617 * @tc_at_ingress: used within tc_classify to distinguish in/egress 618 * @tc_redirected: packet was redirected by a tc action 619 * @tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect 620 * @peeked: this packet has been seen already, so stats have been 621 * done for it, don't do them again 622 * @nf_trace: netfilter packet trace flag 623 * @protocol: Packet protocol from driver 624 * @destructor: Destruct function 625 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue) 626 * @_nfct: Associated connection, if any (with nfctinfo bits) 627 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 628 * @skb_iif: ifindex of device we arrived on 629 * @tc_index: Traffic control index 630 * @hash: the packet hash 631 * @queue_mapping: Queue mapping for multiqueue devices 632 * @xmit_more: More SKBs are pending for this queue 633 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves 634 * @ndisc_nodetype: router type (from link layer) 635 * @ooo_okay: allow the mapping of a socket to a queue to be changed 636 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport 637 * ports. 638 * @sw_hash: indicates hash was computed in software stack 639 * @wifi_acked_valid: wifi_acked was set 640 * @wifi_acked: whether frame was acked on wifi or not 641 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS 642 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL 643 * @dst_pending_confirm: need to confirm neighbour 644 * @decrypted: Decrypted SKB 645 * @napi_id: id of the NAPI struct this skb came from 646 * @secmark: security marking 647 * @mark: Generic packet mark 648 * @vlan_proto: vlan encapsulation protocol 649 * @vlan_tci: vlan tag control information 650 * @inner_protocol: Protocol (encapsulation) 651 * @inner_transport_header: Inner transport layer header (encapsulation) 652 * @inner_network_header: Network layer header (encapsulation) 653 * @inner_mac_header: Link layer header (encapsulation) 654 * @transport_header: Transport layer header 655 * @network_header: Network layer header 656 * @mac_header: Link layer header 657 * @tail: Tail pointer 658 * @end: End pointer 659 * @head: Head of buffer 660 * @data: Data head pointer 661 * @truesize: Buffer size 662 * @users: User count - see {datagram,tcp}.c 663 */ 664 665 struct sk_buff { 666 union { 667 struct { 668 /* These two members must be first. */ 669 struct sk_buff *next; 670 struct sk_buff *prev; 671 672 union { 673 struct net_device *dev; 674 /* Some protocols might use this space to store information, 675 * while device pointer would be NULL. 676 * UDP receive path is one user. 677 */ 678 unsigned long dev_scratch; 679 int ip_defrag_offset; 680 }; 681 }; 682 struct rb_node rbnode; /* used in netem & tcp stack */ 683 struct list_head list; 684 }; 685 struct sock *sk; 686 687 union { 688 ktime_t tstamp; 689 u64 skb_mstamp; 690 }; 691 /* 692 * This is the control buffer. It is free to use for every 693 * layer. Please put your private variables there. If you 694 * want to keep them across layers you have to do a skb_clone() 695 * first. This is owned by whoever has the skb queued ATM. 696 */ 697 char cb[48] __aligned(8); 698 699 union { 700 struct { 701 unsigned long _skb_refdst; 702 void (*destructor)(struct sk_buff *skb); 703 }; 704 struct list_head tcp_tsorted_anchor; 705 }; 706 707 #ifdef CONFIG_XFRM 708 struct sec_path *sp; 709 #endif 710 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 711 unsigned long _nfct; 712 #endif 713 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 714 struct nf_bridge_info *nf_bridge; 715 #endif 716 unsigned int len, 717 data_len; 718 __u16 mac_len, 719 hdr_len; 720 721 /* Following fields are _not_ copied in __copy_skb_header() 722 * Note that queue_mapping is here mostly to fill a hole. 723 */ 724 __u16 queue_mapping; 725 726 /* if you move cloned around you also must adapt those constants */ 727 #ifdef __BIG_ENDIAN_BITFIELD 728 #define CLONED_MASK (1 << 7) 729 #else 730 #define CLONED_MASK 1 731 #endif 732 #define CLONED_OFFSET() offsetof(struct sk_buff, __cloned_offset) 733 734 __u8 __cloned_offset[0]; 735 __u8 cloned:1, 736 nohdr:1, 737 fclone:2, 738 peeked:1, 739 head_frag:1, 740 xmit_more:1, 741 pfmemalloc:1; 742 743 /* fields enclosed in headers_start/headers_end are copied 744 * using a single memcpy() in __copy_skb_header() 745 */ 746 /* private: */ 747 __u32 headers_start[0]; 748 /* public: */ 749 750 /* if you move pkt_type around you also must adapt those constants */ 751 #ifdef __BIG_ENDIAN_BITFIELD 752 #define PKT_TYPE_MAX (7 << 5) 753 #else 754 #define PKT_TYPE_MAX 7 755 #endif 756 #define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset) 757 758 __u8 __pkt_type_offset[0]; 759 __u8 pkt_type:3; 760 __u8 ignore_df:1; 761 __u8 nf_trace:1; 762 __u8 ip_summed:2; 763 __u8 ooo_okay:1; 764 765 __u8 l4_hash:1; 766 __u8 sw_hash:1; 767 __u8 wifi_acked_valid:1; 768 __u8 wifi_acked:1; 769 __u8 no_fcs:1; 770 /* Indicates the inner headers are valid in the skbuff. */ 771 __u8 encapsulation:1; 772 __u8 encap_hdr_csum:1; 773 __u8 csum_valid:1; 774 775 __u8 csum_complete_sw:1; 776 __u8 csum_level:2; 777 __u8 csum_not_inet:1; 778 __u8 dst_pending_confirm:1; 779 #ifdef CONFIG_IPV6_NDISC_NODETYPE 780 __u8 ndisc_nodetype:2; 781 #endif 782 __u8 ipvs_property:1; 783 784 __u8 inner_protocol_type:1; 785 __u8 remcsum_offload:1; 786 #ifdef CONFIG_NET_SWITCHDEV 787 __u8 offload_fwd_mark:1; 788 __u8 offload_mr_fwd_mark:1; 789 #endif 790 #ifdef CONFIG_NET_CLS_ACT 791 __u8 tc_skip_classify:1; 792 __u8 tc_at_ingress:1; 793 __u8 tc_redirected:1; 794 __u8 tc_from_ingress:1; 795 #endif 796 #ifdef CONFIG_TLS_DEVICE 797 __u8 decrypted:1; 798 #endif 799 800 #ifdef CONFIG_NET_SCHED 801 __u16 tc_index; /* traffic control index */ 802 #endif 803 804 union { 805 __wsum csum; 806 struct { 807 __u16 csum_start; 808 __u16 csum_offset; 809 }; 810 }; 811 __u32 priority; 812 int skb_iif; 813 __u32 hash; 814 __be16 vlan_proto; 815 __u16 vlan_tci; 816 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS) 817 union { 818 unsigned int napi_id; 819 unsigned int sender_cpu; 820 }; 821 #endif 822 #ifdef CONFIG_NETWORK_SECMARK 823 __u32 secmark; 824 #endif 825 826 union { 827 __u32 mark; 828 __u32 reserved_tailroom; 829 }; 830 831 union { 832 __be16 inner_protocol; 833 __u8 inner_ipproto; 834 }; 835 836 __u16 inner_transport_header; 837 __u16 inner_network_header; 838 __u16 inner_mac_header; 839 840 __be16 protocol; 841 __u16 transport_header; 842 __u16 network_header; 843 __u16 mac_header; 844 845 /* private: */ 846 __u32 headers_end[0]; 847 /* public: */ 848 849 /* These elements must be at the end, see alloc_skb() for details. */ 850 sk_buff_data_t tail; 851 sk_buff_data_t end; 852 unsigned char *head, 853 *data; 854 unsigned int truesize; 855 refcount_t users; 856 }; 857 858 #ifdef __KERNEL__ 859 /* 860 * Handling routines are only of interest to the kernel 861 */ 862 863 #define SKB_ALLOC_FCLONE 0x01 864 #define SKB_ALLOC_RX 0x02 865 #define SKB_ALLOC_NAPI 0x04 866 867 /* Returns true if the skb was allocated from PFMEMALLOC reserves */ 868 static inline bool skb_pfmemalloc(const struct sk_buff *skb) 869 { 870 return unlikely(skb->pfmemalloc); 871 } 872 873 /* 874 * skb might have a dst pointer attached, refcounted or not. 875 * _skb_refdst low order bit is set if refcount was _not_ taken 876 */ 877 #define SKB_DST_NOREF 1UL 878 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 879 880 #define SKB_NFCT_PTRMASK ~(7UL) 881 /** 882 * skb_dst - returns skb dst_entry 883 * @skb: buffer 884 * 885 * Returns skb dst_entry, regardless of reference taken or not. 886 */ 887 static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 888 { 889 /* If refdst was not refcounted, check we still are in a 890 * rcu_read_lock section 891 */ 892 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 893 !rcu_read_lock_held() && 894 !rcu_read_lock_bh_held()); 895 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 896 } 897 898 /** 899 * skb_dst_set - sets skb dst 900 * @skb: buffer 901 * @dst: dst entry 902 * 903 * Sets skb dst, assuming a reference was taken on dst and should 904 * be released by skb_dst_drop() 905 */ 906 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 907 { 908 skb->_skb_refdst = (unsigned long)dst; 909 } 910 911 /** 912 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference 913 * @skb: buffer 914 * @dst: dst entry 915 * 916 * Sets skb dst, assuming a reference was not taken on dst. 917 * If dst entry is cached, we do not take reference and dst_release 918 * will be avoided by refdst_drop. If dst entry is not cached, we take 919 * reference, so that last dst_release can destroy the dst immediately. 920 */ 921 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) 922 { 923 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 924 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF; 925 } 926 927 /** 928 * skb_dst_is_noref - Test if skb dst isn't refcounted 929 * @skb: buffer 930 */ 931 static inline bool skb_dst_is_noref(const struct sk_buff *skb) 932 { 933 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 934 } 935 936 static inline struct rtable *skb_rtable(const struct sk_buff *skb) 937 { 938 return (struct rtable *)skb_dst(skb); 939 } 940 941 /* For mangling skb->pkt_type from user space side from applications 942 * such as nft, tc, etc, we only allow a conservative subset of 943 * possible pkt_types to be set. 944 */ 945 static inline bool skb_pkt_type_ok(u32 ptype) 946 { 947 return ptype <= PACKET_OTHERHOST; 948 } 949 950 static inline unsigned int skb_napi_id(const struct sk_buff *skb) 951 { 952 #ifdef CONFIG_NET_RX_BUSY_POLL 953 return skb->napi_id; 954 #else 955 return 0; 956 #endif 957 } 958 959 /* decrement the reference count and return true if we can free the skb */ 960 static inline bool skb_unref(struct sk_buff *skb) 961 { 962 if (unlikely(!skb)) 963 return false; 964 if (likely(refcount_read(&skb->users) == 1)) 965 smp_rmb(); 966 else if (likely(!refcount_dec_and_test(&skb->users))) 967 return false; 968 969 return true; 970 } 971 972 void skb_release_head_state(struct sk_buff *skb); 973 void kfree_skb(struct sk_buff *skb); 974 void kfree_skb_list(struct sk_buff *segs); 975 void skb_tx_error(struct sk_buff *skb); 976 void consume_skb(struct sk_buff *skb); 977 void __consume_stateless_skb(struct sk_buff *skb); 978 void __kfree_skb(struct sk_buff *skb); 979 extern struct kmem_cache *skbuff_head_cache; 980 981 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); 982 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 983 bool *fragstolen, int *delta_truesize); 984 985 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags, 986 int node); 987 struct sk_buff *__build_skb(void *data, unsigned int frag_size); 988 struct sk_buff *build_skb(void *data, unsigned int frag_size); 989 static inline struct sk_buff *alloc_skb(unsigned int size, 990 gfp_t priority) 991 { 992 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 993 } 994 995 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 996 unsigned long data_len, 997 int max_page_order, 998 int *errcode, 999 gfp_t gfp_mask); 1000 1001 /* Layout of fast clones : [skb1][skb2][fclone_ref] */ 1002 struct sk_buff_fclones { 1003 struct sk_buff skb1; 1004 1005 struct sk_buff skb2; 1006 1007 refcount_t fclone_ref; 1008 }; 1009 1010 /** 1011 * skb_fclone_busy - check if fclone is busy 1012 * @sk: socket 1013 * @skb: buffer 1014 * 1015 * Returns true if skb is a fast clone, and its clone is not freed. 1016 * Some drivers call skb_orphan() in their ndo_start_xmit(), 1017 * so we also check that this didnt happen. 1018 */ 1019 static inline bool skb_fclone_busy(const struct sock *sk, 1020 const struct sk_buff *skb) 1021 { 1022 const struct sk_buff_fclones *fclones; 1023 1024 fclones = container_of(skb, struct sk_buff_fclones, skb1); 1025 1026 return skb->fclone == SKB_FCLONE_ORIG && 1027 refcount_read(&fclones->fclone_ref) > 1 && 1028 fclones->skb2.sk == sk; 1029 } 1030 1031 static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 1032 gfp_t priority) 1033 { 1034 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); 1035 } 1036 1037 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 1038 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); 1039 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority); 1040 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old); 1041 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority); 1042 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1043 gfp_t gfp_mask, bool fclone); 1044 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, 1045 gfp_t gfp_mask) 1046 { 1047 return __pskb_copy_fclone(skb, headroom, gfp_mask, false); 1048 } 1049 1050 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask); 1051 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 1052 unsigned int headroom); 1053 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, 1054 int newtailroom, gfp_t priority); 1055 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 1056 int offset, int len); 1057 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, 1058 int offset, int len); 1059 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer); 1060 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error); 1061 1062 /** 1063 * skb_pad - zero pad the tail of an skb 1064 * @skb: buffer to pad 1065 * @pad: space to pad 1066 * 1067 * Ensure that a buffer is followed by a padding area that is zero 1068 * filled. Used by network drivers which may DMA or transfer data 1069 * beyond the buffer end onto the wire. 1070 * 1071 * May return error in out of memory cases. The skb is freed on error. 1072 */ 1073 static inline int skb_pad(struct sk_buff *skb, int pad) 1074 { 1075 return __skb_pad(skb, pad, true); 1076 } 1077 #define dev_kfree_skb(a) consume_skb(a) 1078 1079 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 1080 int getfrag(void *from, char *to, int offset, 1081 int len, int odd, struct sk_buff *skb), 1082 void *from, int length); 1083 1084 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 1085 int offset, size_t size); 1086 1087 struct skb_seq_state { 1088 __u32 lower_offset; 1089 __u32 upper_offset; 1090 __u32 frag_idx; 1091 __u32 stepped_offset; 1092 struct sk_buff *root_skb; 1093 struct sk_buff *cur_skb; 1094 __u8 *frag_data; 1095 }; 1096 1097 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 1098 unsigned int to, struct skb_seq_state *st); 1099 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 1100 struct skb_seq_state *st); 1101 void skb_abort_seq_read(struct skb_seq_state *st); 1102 1103 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 1104 unsigned int to, struct ts_config *config); 1105 1106 /* 1107 * Packet hash types specify the type of hash in skb_set_hash. 1108 * 1109 * Hash types refer to the protocol layer addresses which are used to 1110 * construct a packet's hash. The hashes are used to differentiate or identify 1111 * flows of the protocol layer for the hash type. Hash types are either 1112 * layer-2 (L2), layer-3 (L3), or layer-4 (L4). 1113 * 1114 * Properties of hashes: 1115 * 1116 * 1) Two packets in different flows have different hash values 1117 * 2) Two packets in the same flow should have the same hash value 1118 * 1119 * A hash at a higher layer is considered to be more specific. A driver should 1120 * set the most specific hash possible. 1121 * 1122 * A driver cannot indicate a more specific hash than the layer at which a hash 1123 * was computed. For instance an L3 hash cannot be set as an L4 hash. 1124 * 1125 * A driver may indicate a hash level which is less specific than the 1126 * actual layer the hash was computed on. For instance, a hash computed 1127 * at L4 may be considered an L3 hash. This should only be done if the 1128 * driver can't unambiguously determine that the HW computed the hash at 1129 * the higher layer. Note that the "should" in the second property above 1130 * permits this. 1131 */ 1132 enum pkt_hash_types { 1133 PKT_HASH_TYPE_NONE, /* Undefined type */ 1134 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */ 1135 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */ 1136 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */ 1137 }; 1138 1139 static inline void skb_clear_hash(struct sk_buff *skb) 1140 { 1141 skb->hash = 0; 1142 skb->sw_hash = 0; 1143 skb->l4_hash = 0; 1144 } 1145 1146 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb) 1147 { 1148 if (!skb->l4_hash) 1149 skb_clear_hash(skb); 1150 } 1151 1152 static inline void 1153 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4) 1154 { 1155 skb->l4_hash = is_l4; 1156 skb->sw_hash = is_sw; 1157 skb->hash = hash; 1158 } 1159 1160 static inline void 1161 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type) 1162 { 1163 /* Used by drivers to set hash from HW */ 1164 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4); 1165 } 1166 1167 static inline void 1168 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4) 1169 { 1170 __skb_set_hash(skb, hash, true, is_l4); 1171 } 1172 1173 void __skb_get_hash(struct sk_buff *skb); 1174 u32 __skb_get_hash_symmetric(const struct sk_buff *skb); 1175 u32 skb_get_poff(const struct sk_buff *skb); 1176 u32 __skb_get_poff(const struct sk_buff *skb, void *data, 1177 const struct flow_keys_basic *keys, int hlen); 1178 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto, 1179 void *data, int hlen_proto); 1180 1181 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb, 1182 int thoff, u8 ip_proto) 1183 { 1184 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0); 1185 } 1186 1187 void skb_flow_dissector_init(struct flow_dissector *flow_dissector, 1188 const struct flow_dissector_key *key, 1189 unsigned int key_count); 1190 1191 bool __skb_flow_dissect(const struct sk_buff *skb, 1192 struct flow_dissector *flow_dissector, 1193 void *target_container, 1194 void *data, __be16 proto, int nhoff, int hlen, 1195 unsigned int flags); 1196 1197 static inline bool skb_flow_dissect(const struct sk_buff *skb, 1198 struct flow_dissector *flow_dissector, 1199 void *target_container, unsigned int flags) 1200 { 1201 return __skb_flow_dissect(skb, flow_dissector, target_container, 1202 NULL, 0, 0, 0, flags); 1203 } 1204 1205 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb, 1206 struct flow_keys *flow, 1207 unsigned int flags) 1208 { 1209 memset(flow, 0, sizeof(*flow)); 1210 return __skb_flow_dissect(skb, &flow_keys_dissector, flow, 1211 NULL, 0, 0, 0, flags); 1212 } 1213 1214 static inline bool 1215 skb_flow_dissect_flow_keys_basic(const struct sk_buff *skb, 1216 struct flow_keys_basic *flow, void *data, 1217 __be16 proto, int nhoff, int hlen, 1218 unsigned int flags) 1219 { 1220 memset(flow, 0, sizeof(*flow)); 1221 return __skb_flow_dissect(skb, &flow_keys_basic_dissector, flow, 1222 data, proto, nhoff, hlen, flags); 1223 } 1224 1225 void 1226 skb_flow_dissect_tunnel_info(const struct sk_buff *skb, 1227 struct flow_dissector *flow_dissector, 1228 void *target_container); 1229 1230 static inline __u32 skb_get_hash(struct sk_buff *skb) 1231 { 1232 if (!skb->l4_hash && !skb->sw_hash) 1233 __skb_get_hash(skb); 1234 1235 return skb->hash; 1236 } 1237 1238 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6) 1239 { 1240 if (!skb->l4_hash && !skb->sw_hash) { 1241 struct flow_keys keys; 1242 __u32 hash = __get_hash_from_flowi6(fl6, &keys); 1243 1244 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys)); 1245 } 1246 1247 return skb->hash; 1248 } 1249 1250 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb); 1251 1252 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb) 1253 { 1254 return skb->hash; 1255 } 1256 1257 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from) 1258 { 1259 to->hash = from->hash; 1260 to->sw_hash = from->sw_hash; 1261 to->l4_hash = from->l4_hash; 1262 }; 1263 1264 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1265 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1266 { 1267 return skb->head + skb->end; 1268 } 1269 1270 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1271 { 1272 return skb->end; 1273 } 1274 #else 1275 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1276 { 1277 return skb->end; 1278 } 1279 1280 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1281 { 1282 return skb->end - skb->head; 1283 } 1284 #endif 1285 1286 /* Internal */ 1287 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 1288 1289 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 1290 { 1291 return &skb_shinfo(skb)->hwtstamps; 1292 } 1293 1294 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb) 1295 { 1296 bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY; 1297 1298 return is_zcopy ? skb_uarg(skb) : NULL; 1299 } 1300 1301 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg) 1302 { 1303 if (skb && uarg && !skb_zcopy(skb)) { 1304 sock_zerocopy_get(uarg); 1305 skb_shinfo(skb)->destructor_arg = uarg; 1306 skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG; 1307 } 1308 } 1309 1310 /* Release a reference on a zerocopy structure */ 1311 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy) 1312 { 1313 struct ubuf_info *uarg = skb_zcopy(skb); 1314 1315 if (uarg) { 1316 if (uarg->callback == sock_zerocopy_callback) { 1317 uarg->zerocopy = uarg->zerocopy && zerocopy; 1318 sock_zerocopy_put(uarg); 1319 } else { 1320 uarg->callback(uarg, zerocopy); 1321 } 1322 1323 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG; 1324 } 1325 } 1326 1327 /* Abort a zerocopy operation and revert zckey on error in send syscall */ 1328 static inline void skb_zcopy_abort(struct sk_buff *skb) 1329 { 1330 struct ubuf_info *uarg = skb_zcopy(skb); 1331 1332 if (uarg) { 1333 sock_zerocopy_put_abort(uarg); 1334 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG; 1335 } 1336 } 1337 1338 /** 1339 * skb_queue_empty - check if a queue is empty 1340 * @list: queue head 1341 * 1342 * Returns true if the queue is empty, false otherwise. 1343 */ 1344 static inline int skb_queue_empty(const struct sk_buff_head *list) 1345 { 1346 return list->next == (const struct sk_buff *) list; 1347 } 1348 1349 /** 1350 * skb_queue_is_last - check if skb is the last entry in the queue 1351 * @list: queue head 1352 * @skb: buffer 1353 * 1354 * Returns true if @skb is the last buffer on the list. 1355 */ 1356 static inline bool skb_queue_is_last(const struct sk_buff_head *list, 1357 const struct sk_buff *skb) 1358 { 1359 return skb->next == (const struct sk_buff *) list; 1360 } 1361 1362 /** 1363 * skb_queue_is_first - check if skb is the first entry in the queue 1364 * @list: queue head 1365 * @skb: buffer 1366 * 1367 * Returns true if @skb is the first buffer on the list. 1368 */ 1369 static inline bool skb_queue_is_first(const struct sk_buff_head *list, 1370 const struct sk_buff *skb) 1371 { 1372 return skb->prev == (const struct sk_buff *) list; 1373 } 1374 1375 /** 1376 * skb_queue_next - return the next packet in the queue 1377 * @list: queue head 1378 * @skb: current buffer 1379 * 1380 * Return the next packet in @list after @skb. It is only valid to 1381 * call this if skb_queue_is_last() evaluates to false. 1382 */ 1383 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 1384 const struct sk_buff *skb) 1385 { 1386 /* This BUG_ON may seem severe, but if we just return then we 1387 * are going to dereference garbage. 1388 */ 1389 BUG_ON(skb_queue_is_last(list, skb)); 1390 return skb->next; 1391 } 1392 1393 /** 1394 * skb_queue_prev - return the prev packet in the queue 1395 * @list: queue head 1396 * @skb: current buffer 1397 * 1398 * Return the prev packet in @list before @skb. It is only valid to 1399 * call this if skb_queue_is_first() evaluates to false. 1400 */ 1401 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 1402 const struct sk_buff *skb) 1403 { 1404 /* This BUG_ON may seem severe, but if we just return then we 1405 * are going to dereference garbage. 1406 */ 1407 BUG_ON(skb_queue_is_first(list, skb)); 1408 return skb->prev; 1409 } 1410 1411 /** 1412 * skb_get - reference buffer 1413 * @skb: buffer to reference 1414 * 1415 * Makes another reference to a socket buffer and returns a pointer 1416 * to the buffer. 1417 */ 1418 static inline struct sk_buff *skb_get(struct sk_buff *skb) 1419 { 1420 refcount_inc(&skb->users); 1421 return skb; 1422 } 1423 1424 /* 1425 * If users == 1, we are the only owner and can avoid redundant atomic changes. 1426 */ 1427 1428 /** 1429 * skb_cloned - is the buffer a clone 1430 * @skb: buffer to check 1431 * 1432 * Returns true if the buffer was generated with skb_clone() and is 1433 * one of multiple shared copies of the buffer. Cloned buffers are 1434 * shared data so must not be written to under normal circumstances. 1435 */ 1436 static inline int skb_cloned(const struct sk_buff *skb) 1437 { 1438 return skb->cloned && 1439 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 1440 } 1441 1442 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) 1443 { 1444 might_sleep_if(gfpflags_allow_blocking(pri)); 1445 1446 if (skb_cloned(skb)) 1447 return pskb_expand_head(skb, 0, 0, pri); 1448 1449 return 0; 1450 } 1451 1452 /** 1453 * skb_header_cloned - is the header a clone 1454 * @skb: buffer to check 1455 * 1456 * Returns true if modifying the header part of the buffer requires 1457 * the data to be copied. 1458 */ 1459 static inline int skb_header_cloned(const struct sk_buff *skb) 1460 { 1461 int dataref; 1462 1463 if (!skb->cloned) 1464 return 0; 1465 1466 dataref = atomic_read(&skb_shinfo(skb)->dataref); 1467 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 1468 return dataref != 1; 1469 } 1470 1471 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri) 1472 { 1473 might_sleep_if(gfpflags_allow_blocking(pri)); 1474 1475 if (skb_header_cloned(skb)) 1476 return pskb_expand_head(skb, 0, 0, pri); 1477 1478 return 0; 1479 } 1480 1481 /** 1482 * __skb_header_release - release reference to header 1483 * @skb: buffer to operate on 1484 */ 1485 static inline void __skb_header_release(struct sk_buff *skb) 1486 { 1487 skb->nohdr = 1; 1488 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT)); 1489 } 1490 1491 1492 /** 1493 * skb_shared - is the buffer shared 1494 * @skb: buffer to check 1495 * 1496 * Returns true if more than one person has a reference to this 1497 * buffer. 1498 */ 1499 static inline int skb_shared(const struct sk_buff *skb) 1500 { 1501 return refcount_read(&skb->users) != 1; 1502 } 1503 1504 /** 1505 * skb_share_check - check if buffer is shared and if so clone it 1506 * @skb: buffer to check 1507 * @pri: priority for memory allocation 1508 * 1509 * If the buffer is shared the buffer is cloned and the old copy 1510 * drops a reference. A new clone with a single reference is returned. 1511 * If the buffer is not shared the original buffer is returned. When 1512 * being called from interrupt status or with spinlocks held pri must 1513 * be GFP_ATOMIC. 1514 * 1515 * NULL is returned on a memory allocation failure. 1516 */ 1517 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) 1518 { 1519 might_sleep_if(gfpflags_allow_blocking(pri)); 1520 if (skb_shared(skb)) { 1521 struct sk_buff *nskb = skb_clone(skb, pri); 1522 1523 if (likely(nskb)) 1524 consume_skb(skb); 1525 else 1526 kfree_skb(skb); 1527 skb = nskb; 1528 } 1529 return skb; 1530 } 1531 1532 /* 1533 * Copy shared buffers into a new sk_buff. We effectively do COW on 1534 * packets to handle cases where we have a local reader and forward 1535 * and a couple of other messy ones. The normal one is tcpdumping 1536 * a packet thats being forwarded. 1537 */ 1538 1539 /** 1540 * skb_unshare - make a copy of a shared buffer 1541 * @skb: buffer to check 1542 * @pri: priority for memory allocation 1543 * 1544 * If the socket buffer is a clone then this function creates a new 1545 * copy of the data, drops a reference count on the old copy and returns 1546 * the new copy with the reference count at 1. If the buffer is not a clone 1547 * the original buffer is returned. When called with a spinlock held or 1548 * from interrupt state @pri must be %GFP_ATOMIC 1549 * 1550 * %NULL is returned on a memory allocation failure. 1551 */ 1552 static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 1553 gfp_t pri) 1554 { 1555 might_sleep_if(gfpflags_allow_blocking(pri)); 1556 if (skb_cloned(skb)) { 1557 struct sk_buff *nskb = skb_copy(skb, pri); 1558 1559 /* Free our shared copy */ 1560 if (likely(nskb)) 1561 consume_skb(skb); 1562 else 1563 kfree_skb(skb); 1564 skb = nskb; 1565 } 1566 return skb; 1567 } 1568 1569 /** 1570 * skb_peek - peek at the head of an &sk_buff_head 1571 * @list_: list to peek at 1572 * 1573 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1574 * be careful with this one. A peek leaves the buffer on the 1575 * list and someone else may run off with it. You must hold 1576 * the appropriate locks or have a private queue to do this. 1577 * 1578 * Returns %NULL for an empty list or a pointer to the head element. 1579 * The reference count is not incremented and the reference is therefore 1580 * volatile. Use with caution. 1581 */ 1582 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) 1583 { 1584 struct sk_buff *skb = list_->next; 1585 1586 if (skb == (struct sk_buff *)list_) 1587 skb = NULL; 1588 return skb; 1589 } 1590 1591 /** 1592 * skb_peek_next - peek skb following the given one from a queue 1593 * @skb: skb to start from 1594 * @list_: list to peek at 1595 * 1596 * Returns %NULL when the end of the list is met or a pointer to the 1597 * next element. The reference count is not incremented and the 1598 * reference is therefore volatile. Use with caution. 1599 */ 1600 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, 1601 const struct sk_buff_head *list_) 1602 { 1603 struct sk_buff *next = skb->next; 1604 1605 if (next == (struct sk_buff *)list_) 1606 next = NULL; 1607 return next; 1608 } 1609 1610 /** 1611 * skb_peek_tail - peek at the tail of an &sk_buff_head 1612 * @list_: list to peek at 1613 * 1614 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1615 * be careful with this one. A peek leaves the buffer on the 1616 * list and someone else may run off with it. You must hold 1617 * the appropriate locks or have a private queue to do this. 1618 * 1619 * Returns %NULL for an empty list or a pointer to the tail element. 1620 * The reference count is not incremented and the reference is therefore 1621 * volatile. Use with caution. 1622 */ 1623 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) 1624 { 1625 struct sk_buff *skb = list_->prev; 1626 1627 if (skb == (struct sk_buff *)list_) 1628 skb = NULL; 1629 return skb; 1630 1631 } 1632 1633 /** 1634 * skb_queue_len - get queue length 1635 * @list_: list to measure 1636 * 1637 * Return the length of an &sk_buff queue. 1638 */ 1639 static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 1640 { 1641 return list_->qlen; 1642 } 1643 1644 /** 1645 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 1646 * @list: queue to initialize 1647 * 1648 * This initializes only the list and queue length aspects of 1649 * an sk_buff_head object. This allows to initialize the list 1650 * aspects of an sk_buff_head without reinitializing things like 1651 * the spinlock. It can also be used for on-stack sk_buff_head 1652 * objects where the spinlock is known to not be used. 1653 */ 1654 static inline void __skb_queue_head_init(struct sk_buff_head *list) 1655 { 1656 list->prev = list->next = (struct sk_buff *)list; 1657 list->qlen = 0; 1658 } 1659 1660 /* 1661 * This function creates a split out lock class for each invocation; 1662 * this is needed for now since a whole lot of users of the skb-queue 1663 * infrastructure in drivers have different locking usage (in hardirq) 1664 * than the networking core (in softirq only). In the long run either the 1665 * network layer or drivers should need annotation to consolidate the 1666 * main types of usage into 3 classes. 1667 */ 1668 static inline void skb_queue_head_init(struct sk_buff_head *list) 1669 { 1670 spin_lock_init(&list->lock); 1671 __skb_queue_head_init(list); 1672 } 1673 1674 static inline void skb_queue_head_init_class(struct sk_buff_head *list, 1675 struct lock_class_key *class) 1676 { 1677 skb_queue_head_init(list); 1678 lockdep_set_class(&list->lock, class); 1679 } 1680 1681 /* 1682 * Insert an sk_buff on a list. 1683 * 1684 * The "__skb_xxxx()" functions are the non-atomic ones that 1685 * can only be called with interrupts disabled. 1686 */ 1687 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, 1688 struct sk_buff_head *list); 1689 static inline void __skb_insert(struct sk_buff *newsk, 1690 struct sk_buff *prev, struct sk_buff *next, 1691 struct sk_buff_head *list) 1692 { 1693 newsk->next = next; 1694 newsk->prev = prev; 1695 next->prev = prev->next = newsk; 1696 list->qlen++; 1697 } 1698 1699 static inline void __skb_queue_splice(const struct sk_buff_head *list, 1700 struct sk_buff *prev, 1701 struct sk_buff *next) 1702 { 1703 struct sk_buff *first = list->next; 1704 struct sk_buff *last = list->prev; 1705 1706 first->prev = prev; 1707 prev->next = first; 1708 1709 last->next = next; 1710 next->prev = last; 1711 } 1712 1713 /** 1714 * skb_queue_splice - join two skb lists, this is designed for stacks 1715 * @list: the new list to add 1716 * @head: the place to add it in the first list 1717 */ 1718 static inline void skb_queue_splice(const struct sk_buff_head *list, 1719 struct sk_buff_head *head) 1720 { 1721 if (!skb_queue_empty(list)) { 1722 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1723 head->qlen += list->qlen; 1724 } 1725 } 1726 1727 /** 1728 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list 1729 * @list: the new list to add 1730 * @head: the place to add it in the first list 1731 * 1732 * The list at @list is reinitialised 1733 */ 1734 static inline void skb_queue_splice_init(struct sk_buff_head *list, 1735 struct sk_buff_head *head) 1736 { 1737 if (!skb_queue_empty(list)) { 1738 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1739 head->qlen += list->qlen; 1740 __skb_queue_head_init(list); 1741 } 1742 } 1743 1744 /** 1745 * skb_queue_splice_tail - join two skb lists, each list being a queue 1746 * @list: the new list to add 1747 * @head: the place to add it in the first list 1748 */ 1749 static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 1750 struct sk_buff_head *head) 1751 { 1752 if (!skb_queue_empty(list)) { 1753 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1754 head->qlen += list->qlen; 1755 } 1756 } 1757 1758 /** 1759 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list 1760 * @list: the new list to add 1761 * @head: the place to add it in the first list 1762 * 1763 * Each of the lists is a queue. 1764 * The list at @list is reinitialised 1765 */ 1766 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 1767 struct sk_buff_head *head) 1768 { 1769 if (!skb_queue_empty(list)) { 1770 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1771 head->qlen += list->qlen; 1772 __skb_queue_head_init(list); 1773 } 1774 } 1775 1776 /** 1777 * __skb_queue_after - queue a buffer at the list head 1778 * @list: list to use 1779 * @prev: place after this buffer 1780 * @newsk: buffer to queue 1781 * 1782 * Queue a buffer int the middle of a list. This function takes no locks 1783 * and you must therefore hold required locks before calling it. 1784 * 1785 * A buffer cannot be placed on two lists at the same time. 1786 */ 1787 static inline void __skb_queue_after(struct sk_buff_head *list, 1788 struct sk_buff *prev, 1789 struct sk_buff *newsk) 1790 { 1791 __skb_insert(newsk, prev, prev->next, list); 1792 } 1793 1794 void skb_append(struct sk_buff *old, struct sk_buff *newsk, 1795 struct sk_buff_head *list); 1796 1797 static inline void __skb_queue_before(struct sk_buff_head *list, 1798 struct sk_buff *next, 1799 struct sk_buff *newsk) 1800 { 1801 __skb_insert(newsk, next->prev, next, list); 1802 } 1803 1804 /** 1805 * __skb_queue_head - queue a buffer at the list head 1806 * @list: list to use 1807 * @newsk: buffer to queue 1808 * 1809 * Queue a buffer at the start of a list. This function takes no locks 1810 * and you must therefore hold required locks before calling it. 1811 * 1812 * A buffer cannot be placed on two lists at the same time. 1813 */ 1814 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 1815 static inline void __skb_queue_head(struct sk_buff_head *list, 1816 struct sk_buff *newsk) 1817 { 1818 __skb_queue_after(list, (struct sk_buff *)list, newsk); 1819 } 1820 1821 /** 1822 * __skb_queue_tail - queue a buffer at the list tail 1823 * @list: list to use 1824 * @newsk: buffer to queue 1825 * 1826 * Queue a buffer at the end of a list. This function takes no locks 1827 * and you must therefore hold required locks before calling it. 1828 * 1829 * A buffer cannot be placed on two lists at the same time. 1830 */ 1831 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 1832 static inline void __skb_queue_tail(struct sk_buff_head *list, 1833 struct sk_buff *newsk) 1834 { 1835 __skb_queue_before(list, (struct sk_buff *)list, newsk); 1836 } 1837 1838 /* 1839 * remove sk_buff from list. _Must_ be called atomically, and with 1840 * the list known.. 1841 */ 1842 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 1843 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 1844 { 1845 struct sk_buff *next, *prev; 1846 1847 list->qlen--; 1848 next = skb->next; 1849 prev = skb->prev; 1850 skb->next = skb->prev = NULL; 1851 next->prev = prev; 1852 prev->next = next; 1853 } 1854 1855 /** 1856 * __skb_dequeue - remove from the head of the queue 1857 * @list: list to dequeue from 1858 * 1859 * Remove the head of the list. This function does not take any locks 1860 * so must be used with appropriate locks held only. The head item is 1861 * returned or %NULL if the list is empty. 1862 */ 1863 struct sk_buff *skb_dequeue(struct sk_buff_head *list); 1864 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 1865 { 1866 struct sk_buff *skb = skb_peek(list); 1867 if (skb) 1868 __skb_unlink(skb, list); 1869 return skb; 1870 } 1871 1872 /** 1873 * __skb_dequeue_tail - remove from the tail of the queue 1874 * @list: list to dequeue from 1875 * 1876 * Remove the tail of the list. This function does not take any locks 1877 * so must be used with appropriate locks held only. The tail item is 1878 * returned or %NULL if the list is empty. 1879 */ 1880 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 1881 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 1882 { 1883 struct sk_buff *skb = skb_peek_tail(list); 1884 if (skb) 1885 __skb_unlink(skb, list); 1886 return skb; 1887 } 1888 1889 1890 static inline bool skb_is_nonlinear(const struct sk_buff *skb) 1891 { 1892 return skb->data_len; 1893 } 1894 1895 static inline unsigned int skb_headlen(const struct sk_buff *skb) 1896 { 1897 return skb->len - skb->data_len; 1898 } 1899 1900 static inline unsigned int __skb_pagelen(const struct sk_buff *skb) 1901 { 1902 unsigned int i, len = 0; 1903 1904 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--) 1905 len += skb_frag_size(&skb_shinfo(skb)->frags[i]); 1906 return len; 1907 } 1908 1909 static inline unsigned int skb_pagelen(const struct sk_buff *skb) 1910 { 1911 return skb_headlen(skb) + __skb_pagelen(skb); 1912 } 1913 1914 /** 1915 * __skb_fill_page_desc - initialise a paged fragment in an skb 1916 * @skb: buffer containing fragment to be initialised 1917 * @i: paged fragment index to initialise 1918 * @page: the page to use for this fragment 1919 * @off: the offset to the data with @page 1920 * @size: the length of the data 1921 * 1922 * Initialises the @i'th fragment of @skb to point to &size bytes at 1923 * offset @off within @page. 1924 * 1925 * Does not take any additional reference on the fragment. 1926 */ 1927 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, 1928 struct page *page, int off, int size) 1929 { 1930 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1931 1932 /* 1933 * Propagate page pfmemalloc to the skb if we can. The problem is 1934 * that not all callers have unique ownership of the page but rely 1935 * on page_is_pfmemalloc doing the right thing(tm). 1936 */ 1937 frag->page.p = page; 1938 frag->page_offset = off; 1939 skb_frag_size_set(frag, size); 1940 1941 page = compound_head(page); 1942 if (page_is_pfmemalloc(page)) 1943 skb->pfmemalloc = true; 1944 } 1945 1946 /** 1947 * skb_fill_page_desc - initialise a paged fragment in an skb 1948 * @skb: buffer containing fragment to be initialised 1949 * @i: paged fragment index to initialise 1950 * @page: the page to use for this fragment 1951 * @off: the offset to the data with @page 1952 * @size: the length of the data 1953 * 1954 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of 1955 * @skb to point to @size bytes at offset @off within @page. In 1956 * addition updates @skb such that @i is the last fragment. 1957 * 1958 * Does not take any additional reference on the fragment. 1959 */ 1960 static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 1961 struct page *page, int off, int size) 1962 { 1963 __skb_fill_page_desc(skb, i, page, off, size); 1964 skb_shinfo(skb)->nr_frags = i + 1; 1965 } 1966 1967 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 1968 int size, unsigned int truesize); 1969 1970 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 1971 unsigned int truesize); 1972 1973 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags) 1974 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb)) 1975 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 1976 1977 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1978 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1979 { 1980 return skb->head + skb->tail; 1981 } 1982 1983 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1984 { 1985 skb->tail = skb->data - skb->head; 1986 } 1987 1988 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1989 { 1990 skb_reset_tail_pointer(skb); 1991 skb->tail += offset; 1992 } 1993 1994 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 1995 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1996 { 1997 return skb->tail; 1998 } 1999 2000 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2001 { 2002 skb->tail = skb->data; 2003 } 2004 2005 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2006 { 2007 skb->tail = skb->data + offset; 2008 } 2009 2010 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 2011 2012 /* 2013 * Add data to an sk_buff 2014 */ 2015 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len); 2016 void *skb_put(struct sk_buff *skb, unsigned int len); 2017 static inline void *__skb_put(struct sk_buff *skb, unsigned int len) 2018 { 2019 void *tmp = skb_tail_pointer(skb); 2020 SKB_LINEAR_ASSERT(skb); 2021 skb->tail += len; 2022 skb->len += len; 2023 return tmp; 2024 } 2025 2026 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len) 2027 { 2028 void *tmp = __skb_put(skb, len); 2029 2030 memset(tmp, 0, len); 2031 return tmp; 2032 } 2033 2034 static inline void *__skb_put_data(struct sk_buff *skb, const void *data, 2035 unsigned int len) 2036 { 2037 void *tmp = __skb_put(skb, len); 2038 2039 memcpy(tmp, data, len); 2040 return tmp; 2041 } 2042 2043 static inline void __skb_put_u8(struct sk_buff *skb, u8 val) 2044 { 2045 *(u8 *)__skb_put(skb, 1) = val; 2046 } 2047 2048 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len) 2049 { 2050 void *tmp = skb_put(skb, len); 2051 2052 memset(tmp, 0, len); 2053 2054 return tmp; 2055 } 2056 2057 static inline void *skb_put_data(struct sk_buff *skb, const void *data, 2058 unsigned int len) 2059 { 2060 void *tmp = skb_put(skb, len); 2061 2062 memcpy(tmp, data, len); 2063 2064 return tmp; 2065 } 2066 2067 static inline void skb_put_u8(struct sk_buff *skb, u8 val) 2068 { 2069 *(u8 *)skb_put(skb, 1) = val; 2070 } 2071 2072 void *skb_push(struct sk_buff *skb, unsigned int len); 2073 static inline void *__skb_push(struct sk_buff *skb, unsigned int len) 2074 { 2075 skb->data -= len; 2076 skb->len += len; 2077 return skb->data; 2078 } 2079 2080 void *skb_pull(struct sk_buff *skb, unsigned int len); 2081 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len) 2082 { 2083 skb->len -= len; 2084 BUG_ON(skb->len < skb->data_len); 2085 return skb->data += len; 2086 } 2087 2088 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len) 2089 { 2090 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 2091 } 2092 2093 void *__pskb_pull_tail(struct sk_buff *skb, int delta); 2094 2095 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len) 2096 { 2097 if (len > skb_headlen(skb) && 2098 !__pskb_pull_tail(skb, len - skb_headlen(skb))) 2099 return NULL; 2100 skb->len -= len; 2101 return skb->data += len; 2102 } 2103 2104 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len) 2105 { 2106 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 2107 } 2108 2109 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) 2110 { 2111 if (likely(len <= skb_headlen(skb))) 2112 return 1; 2113 if (unlikely(len > skb->len)) 2114 return 0; 2115 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; 2116 } 2117 2118 void skb_condense(struct sk_buff *skb); 2119 2120 /** 2121 * skb_headroom - bytes at buffer head 2122 * @skb: buffer to check 2123 * 2124 * Return the number of bytes of free space at the head of an &sk_buff. 2125 */ 2126 static inline unsigned int skb_headroom(const struct sk_buff *skb) 2127 { 2128 return skb->data - skb->head; 2129 } 2130 2131 /** 2132 * skb_tailroom - bytes at buffer end 2133 * @skb: buffer to check 2134 * 2135 * Return the number of bytes of free space at the tail of an sk_buff 2136 */ 2137 static inline int skb_tailroom(const struct sk_buff *skb) 2138 { 2139 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 2140 } 2141 2142 /** 2143 * skb_availroom - bytes at buffer end 2144 * @skb: buffer to check 2145 * 2146 * Return the number of bytes of free space at the tail of an sk_buff 2147 * allocated by sk_stream_alloc() 2148 */ 2149 static inline int skb_availroom(const struct sk_buff *skb) 2150 { 2151 if (skb_is_nonlinear(skb)) 2152 return 0; 2153 2154 return skb->end - skb->tail - skb->reserved_tailroom; 2155 } 2156 2157 /** 2158 * skb_reserve - adjust headroom 2159 * @skb: buffer to alter 2160 * @len: bytes to move 2161 * 2162 * Increase the headroom of an empty &sk_buff by reducing the tail 2163 * room. This is only allowed for an empty buffer. 2164 */ 2165 static inline void skb_reserve(struct sk_buff *skb, int len) 2166 { 2167 skb->data += len; 2168 skb->tail += len; 2169 } 2170 2171 /** 2172 * skb_tailroom_reserve - adjust reserved_tailroom 2173 * @skb: buffer to alter 2174 * @mtu: maximum amount of headlen permitted 2175 * @needed_tailroom: minimum amount of reserved_tailroom 2176 * 2177 * Set reserved_tailroom so that headlen can be as large as possible but 2178 * not larger than mtu and tailroom cannot be smaller than 2179 * needed_tailroom. 2180 * The required headroom should already have been reserved before using 2181 * this function. 2182 */ 2183 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu, 2184 unsigned int needed_tailroom) 2185 { 2186 SKB_LINEAR_ASSERT(skb); 2187 if (mtu < skb_tailroom(skb) - needed_tailroom) 2188 /* use at most mtu */ 2189 skb->reserved_tailroom = skb_tailroom(skb) - mtu; 2190 else 2191 /* use up to all available space */ 2192 skb->reserved_tailroom = needed_tailroom; 2193 } 2194 2195 #define ENCAP_TYPE_ETHER 0 2196 #define ENCAP_TYPE_IPPROTO 1 2197 2198 static inline void skb_set_inner_protocol(struct sk_buff *skb, 2199 __be16 protocol) 2200 { 2201 skb->inner_protocol = protocol; 2202 skb->inner_protocol_type = ENCAP_TYPE_ETHER; 2203 } 2204 2205 static inline void skb_set_inner_ipproto(struct sk_buff *skb, 2206 __u8 ipproto) 2207 { 2208 skb->inner_ipproto = ipproto; 2209 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO; 2210 } 2211 2212 static inline void skb_reset_inner_headers(struct sk_buff *skb) 2213 { 2214 skb->inner_mac_header = skb->mac_header; 2215 skb->inner_network_header = skb->network_header; 2216 skb->inner_transport_header = skb->transport_header; 2217 } 2218 2219 static inline void skb_reset_mac_len(struct sk_buff *skb) 2220 { 2221 skb->mac_len = skb->network_header - skb->mac_header; 2222 } 2223 2224 static inline unsigned char *skb_inner_transport_header(const struct sk_buff 2225 *skb) 2226 { 2227 return skb->head + skb->inner_transport_header; 2228 } 2229 2230 static inline int skb_inner_transport_offset(const struct sk_buff *skb) 2231 { 2232 return skb_inner_transport_header(skb) - skb->data; 2233 } 2234 2235 static inline void skb_reset_inner_transport_header(struct sk_buff *skb) 2236 { 2237 skb->inner_transport_header = skb->data - skb->head; 2238 } 2239 2240 static inline void skb_set_inner_transport_header(struct sk_buff *skb, 2241 const int offset) 2242 { 2243 skb_reset_inner_transport_header(skb); 2244 skb->inner_transport_header += offset; 2245 } 2246 2247 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) 2248 { 2249 return skb->head + skb->inner_network_header; 2250 } 2251 2252 static inline void skb_reset_inner_network_header(struct sk_buff *skb) 2253 { 2254 skb->inner_network_header = skb->data - skb->head; 2255 } 2256 2257 static inline void skb_set_inner_network_header(struct sk_buff *skb, 2258 const int offset) 2259 { 2260 skb_reset_inner_network_header(skb); 2261 skb->inner_network_header += offset; 2262 } 2263 2264 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) 2265 { 2266 return skb->head + skb->inner_mac_header; 2267 } 2268 2269 static inline void skb_reset_inner_mac_header(struct sk_buff *skb) 2270 { 2271 skb->inner_mac_header = skb->data - skb->head; 2272 } 2273 2274 static inline void skb_set_inner_mac_header(struct sk_buff *skb, 2275 const int offset) 2276 { 2277 skb_reset_inner_mac_header(skb); 2278 skb->inner_mac_header += offset; 2279 } 2280 static inline bool skb_transport_header_was_set(const struct sk_buff *skb) 2281 { 2282 return skb->transport_header != (typeof(skb->transport_header))~0U; 2283 } 2284 2285 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 2286 { 2287 return skb->head + skb->transport_header; 2288 } 2289 2290 static inline void skb_reset_transport_header(struct sk_buff *skb) 2291 { 2292 skb->transport_header = skb->data - skb->head; 2293 } 2294 2295 static inline void skb_set_transport_header(struct sk_buff *skb, 2296 const int offset) 2297 { 2298 skb_reset_transport_header(skb); 2299 skb->transport_header += offset; 2300 } 2301 2302 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 2303 { 2304 return skb->head + skb->network_header; 2305 } 2306 2307 static inline void skb_reset_network_header(struct sk_buff *skb) 2308 { 2309 skb->network_header = skb->data - skb->head; 2310 } 2311 2312 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 2313 { 2314 skb_reset_network_header(skb); 2315 skb->network_header += offset; 2316 } 2317 2318 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 2319 { 2320 return skb->head + skb->mac_header; 2321 } 2322 2323 static inline int skb_mac_offset(const struct sk_buff *skb) 2324 { 2325 return skb_mac_header(skb) - skb->data; 2326 } 2327 2328 static inline u32 skb_mac_header_len(const struct sk_buff *skb) 2329 { 2330 return skb->network_header - skb->mac_header; 2331 } 2332 2333 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 2334 { 2335 return skb->mac_header != (typeof(skb->mac_header))~0U; 2336 } 2337 2338 static inline void skb_reset_mac_header(struct sk_buff *skb) 2339 { 2340 skb->mac_header = skb->data - skb->head; 2341 } 2342 2343 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 2344 { 2345 skb_reset_mac_header(skb); 2346 skb->mac_header += offset; 2347 } 2348 2349 static inline void skb_pop_mac_header(struct sk_buff *skb) 2350 { 2351 skb->mac_header = skb->network_header; 2352 } 2353 2354 static inline void skb_probe_transport_header(struct sk_buff *skb, 2355 const int offset_hint) 2356 { 2357 struct flow_keys_basic keys; 2358 2359 if (skb_transport_header_was_set(skb)) 2360 return; 2361 2362 if (skb_flow_dissect_flow_keys_basic(skb, &keys, 0, 0, 0, 0, 0)) 2363 skb_set_transport_header(skb, keys.control.thoff); 2364 else 2365 skb_set_transport_header(skb, offset_hint); 2366 } 2367 2368 static inline void skb_mac_header_rebuild(struct sk_buff *skb) 2369 { 2370 if (skb_mac_header_was_set(skb)) { 2371 const unsigned char *old_mac = skb_mac_header(skb); 2372 2373 skb_set_mac_header(skb, -skb->mac_len); 2374 memmove(skb_mac_header(skb), old_mac, skb->mac_len); 2375 } 2376 } 2377 2378 static inline int skb_checksum_start_offset(const struct sk_buff *skb) 2379 { 2380 return skb->csum_start - skb_headroom(skb); 2381 } 2382 2383 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb) 2384 { 2385 return skb->head + skb->csum_start; 2386 } 2387 2388 static inline int skb_transport_offset(const struct sk_buff *skb) 2389 { 2390 return skb_transport_header(skb) - skb->data; 2391 } 2392 2393 static inline u32 skb_network_header_len(const struct sk_buff *skb) 2394 { 2395 return skb->transport_header - skb->network_header; 2396 } 2397 2398 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) 2399 { 2400 return skb->inner_transport_header - skb->inner_network_header; 2401 } 2402 2403 static inline int skb_network_offset(const struct sk_buff *skb) 2404 { 2405 return skb_network_header(skb) - skb->data; 2406 } 2407 2408 static inline int skb_inner_network_offset(const struct sk_buff *skb) 2409 { 2410 return skb_inner_network_header(skb) - skb->data; 2411 } 2412 2413 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 2414 { 2415 return pskb_may_pull(skb, skb_network_offset(skb) + len); 2416 } 2417 2418 /* 2419 * CPUs often take a performance hit when accessing unaligned memory 2420 * locations. The actual performance hit varies, it can be small if the 2421 * hardware handles it or large if we have to take an exception and fix it 2422 * in software. 2423 * 2424 * Since an ethernet header is 14 bytes network drivers often end up with 2425 * the IP header at an unaligned offset. The IP header can be aligned by 2426 * shifting the start of the packet by 2 bytes. Drivers should do this 2427 * with: 2428 * 2429 * skb_reserve(skb, NET_IP_ALIGN); 2430 * 2431 * The downside to this alignment of the IP header is that the DMA is now 2432 * unaligned. On some architectures the cost of an unaligned DMA is high 2433 * and this cost outweighs the gains made by aligning the IP header. 2434 * 2435 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 2436 * to be overridden. 2437 */ 2438 #ifndef NET_IP_ALIGN 2439 #define NET_IP_ALIGN 2 2440 #endif 2441 2442 /* 2443 * The networking layer reserves some headroom in skb data (via 2444 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 2445 * the header has to grow. In the default case, if the header has to grow 2446 * 32 bytes or less we avoid the reallocation. 2447 * 2448 * Unfortunately this headroom changes the DMA alignment of the resulting 2449 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 2450 * on some architectures. An architecture can override this value, 2451 * perhaps setting it to a cacheline in size (since that will maintain 2452 * cacheline alignment of the DMA). It must be a power of 2. 2453 * 2454 * Various parts of the networking layer expect at least 32 bytes of 2455 * headroom, you should not reduce this. 2456 * 2457 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 2458 * to reduce average number of cache lines per packet. 2459 * get_rps_cpus() for example only access one 64 bytes aligned block : 2460 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 2461 */ 2462 #ifndef NET_SKB_PAD 2463 #define NET_SKB_PAD max(32, L1_CACHE_BYTES) 2464 #endif 2465 2466 int ___pskb_trim(struct sk_buff *skb, unsigned int len); 2467 2468 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len) 2469 { 2470 if (unlikely(skb_is_nonlinear(skb))) { 2471 WARN_ON(1); 2472 return; 2473 } 2474 skb->len = len; 2475 skb_set_tail_pointer(skb, len); 2476 } 2477 2478 static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 2479 { 2480 __skb_set_length(skb, len); 2481 } 2482 2483 void skb_trim(struct sk_buff *skb, unsigned int len); 2484 2485 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 2486 { 2487 if (skb->data_len) 2488 return ___pskb_trim(skb, len); 2489 __skb_trim(skb, len); 2490 return 0; 2491 } 2492 2493 static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 2494 { 2495 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 2496 } 2497 2498 /** 2499 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 2500 * @skb: buffer to alter 2501 * @len: new length 2502 * 2503 * This is identical to pskb_trim except that the caller knows that 2504 * the skb is not cloned so we should never get an error due to out- 2505 * of-memory. 2506 */ 2507 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 2508 { 2509 int err = pskb_trim(skb, len); 2510 BUG_ON(err); 2511 } 2512 2513 static inline int __skb_grow(struct sk_buff *skb, unsigned int len) 2514 { 2515 unsigned int diff = len - skb->len; 2516 2517 if (skb_tailroom(skb) < diff) { 2518 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb), 2519 GFP_ATOMIC); 2520 if (ret) 2521 return ret; 2522 } 2523 __skb_set_length(skb, len); 2524 return 0; 2525 } 2526 2527 /** 2528 * skb_orphan - orphan a buffer 2529 * @skb: buffer to orphan 2530 * 2531 * If a buffer currently has an owner then we call the owner's 2532 * destructor function and make the @skb unowned. The buffer continues 2533 * to exist but is no longer charged to its former owner. 2534 */ 2535 static inline void skb_orphan(struct sk_buff *skb) 2536 { 2537 if (skb->destructor) { 2538 skb->destructor(skb); 2539 skb->destructor = NULL; 2540 skb->sk = NULL; 2541 } else { 2542 BUG_ON(skb->sk); 2543 } 2544 } 2545 2546 /** 2547 * skb_orphan_frags - orphan the frags contained in a buffer 2548 * @skb: buffer to orphan frags from 2549 * @gfp_mask: allocation mask for replacement pages 2550 * 2551 * For each frag in the SKB which needs a destructor (i.e. has an 2552 * owner) create a copy of that frag and release the original 2553 * page by calling the destructor. 2554 */ 2555 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) 2556 { 2557 if (likely(!skb_zcopy(skb))) 2558 return 0; 2559 if (skb_uarg(skb)->callback == sock_zerocopy_callback) 2560 return 0; 2561 return skb_copy_ubufs(skb, gfp_mask); 2562 } 2563 2564 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */ 2565 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask) 2566 { 2567 if (likely(!skb_zcopy(skb))) 2568 return 0; 2569 return skb_copy_ubufs(skb, gfp_mask); 2570 } 2571 2572 /** 2573 * __skb_queue_purge - empty a list 2574 * @list: list to empty 2575 * 2576 * Delete all buffers on an &sk_buff list. Each buffer is removed from 2577 * the list and one reference dropped. This function does not take the 2578 * list lock and the caller must hold the relevant locks to use it. 2579 */ 2580 void skb_queue_purge(struct sk_buff_head *list); 2581 static inline void __skb_queue_purge(struct sk_buff_head *list) 2582 { 2583 struct sk_buff *skb; 2584 while ((skb = __skb_dequeue(list)) != NULL) 2585 kfree_skb(skb); 2586 } 2587 2588 void skb_rbtree_purge(struct rb_root *root); 2589 2590 void *netdev_alloc_frag(unsigned int fragsz); 2591 2592 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length, 2593 gfp_t gfp_mask); 2594 2595 /** 2596 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 2597 * @dev: network device to receive on 2598 * @length: length to allocate 2599 * 2600 * Allocate a new &sk_buff and assign it a usage count of one. The 2601 * buffer has unspecified headroom built in. Users should allocate 2602 * the headroom they think they need without accounting for the 2603 * built in space. The built in space is used for optimisations. 2604 * 2605 * %NULL is returned if there is no free memory. Although this function 2606 * allocates memory it can be called from an interrupt. 2607 */ 2608 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 2609 unsigned int length) 2610 { 2611 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 2612 } 2613 2614 /* legacy helper around __netdev_alloc_skb() */ 2615 static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 2616 gfp_t gfp_mask) 2617 { 2618 return __netdev_alloc_skb(NULL, length, gfp_mask); 2619 } 2620 2621 /* legacy helper around netdev_alloc_skb() */ 2622 static inline struct sk_buff *dev_alloc_skb(unsigned int length) 2623 { 2624 return netdev_alloc_skb(NULL, length); 2625 } 2626 2627 2628 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, 2629 unsigned int length, gfp_t gfp) 2630 { 2631 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); 2632 2633 if (NET_IP_ALIGN && skb) 2634 skb_reserve(skb, NET_IP_ALIGN); 2635 return skb; 2636 } 2637 2638 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 2639 unsigned int length) 2640 { 2641 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); 2642 } 2643 2644 static inline void skb_free_frag(void *addr) 2645 { 2646 page_frag_free(addr); 2647 } 2648 2649 void *napi_alloc_frag(unsigned int fragsz); 2650 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, 2651 unsigned int length, gfp_t gfp_mask); 2652 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi, 2653 unsigned int length) 2654 { 2655 return __napi_alloc_skb(napi, length, GFP_ATOMIC); 2656 } 2657 void napi_consume_skb(struct sk_buff *skb, int budget); 2658 2659 void __kfree_skb_flush(void); 2660 void __kfree_skb_defer(struct sk_buff *skb); 2661 2662 /** 2663 * __dev_alloc_pages - allocate page for network Rx 2664 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 2665 * @order: size of the allocation 2666 * 2667 * Allocate a new page. 2668 * 2669 * %NULL is returned if there is no free memory. 2670 */ 2671 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask, 2672 unsigned int order) 2673 { 2674 /* This piece of code contains several assumptions. 2675 * 1. This is for device Rx, therefor a cold page is preferred. 2676 * 2. The expectation is the user wants a compound page. 2677 * 3. If requesting a order 0 page it will not be compound 2678 * due to the check to see if order has a value in prep_new_page 2679 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to 2680 * code in gfp_to_alloc_flags that should be enforcing this. 2681 */ 2682 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC; 2683 2684 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order); 2685 } 2686 2687 static inline struct page *dev_alloc_pages(unsigned int order) 2688 { 2689 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order); 2690 } 2691 2692 /** 2693 * __dev_alloc_page - allocate a page for network Rx 2694 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 2695 * 2696 * Allocate a new page. 2697 * 2698 * %NULL is returned if there is no free memory. 2699 */ 2700 static inline struct page *__dev_alloc_page(gfp_t gfp_mask) 2701 { 2702 return __dev_alloc_pages(gfp_mask, 0); 2703 } 2704 2705 static inline struct page *dev_alloc_page(void) 2706 { 2707 return dev_alloc_pages(0); 2708 } 2709 2710 /** 2711 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page 2712 * @page: The page that was allocated from skb_alloc_page 2713 * @skb: The skb that may need pfmemalloc set 2714 */ 2715 static inline void skb_propagate_pfmemalloc(struct page *page, 2716 struct sk_buff *skb) 2717 { 2718 if (page_is_pfmemalloc(page)) 2719 skb->pfmemalloc = true; 2720 } 2721 2722 /** 2723 * skb_frag_page - retrieve the page referred to by a paged fragment 2724 * @frag: the paged fragment 2725 * 2726 * Returns the &struct page associated with @frag. 2727 */ 2728 static inline struct page *skb_frag_page(const skb_frag_t *frag) 2729 { 2730 return frag->page.p; 2731 } 2732 2733 /** 2734 * __skb_frag_ref - take an addition reference on a paged fragment. 2735 * @frag: the paged fragment 2736 * 2737 * Takes an additional reference on the paged fragment @frag. 2738 */ 2739 static inline void __skb_frag_ref(skb_frag_t *frag) 2740 { 2741 get_page(skb_frag_page(frag)); 2742 } 2743 2744 /** 2745 * skb_frag_ref - take an addition reference on a paged fragment of an skb. 2746 * @skb: the buffer 2747 * @f: the fragment offset. 2748 * 2749 * Takes an additional reference on the @f'th paged fragment of @skb. 2750 */ 2751 static inline void skb_frag_ref(struct sk_buff *skb, int f) 2752 { 2753 __skb_frag_ref(&skb_shinfo(skb)->frags[f]); 2754 } 2755 2756 /** 2757 * __skb_frag_unref - release a reference on a paged fragment. 2758 * @frag: the paged fragment 2759 * 2760 * Releases a reference on the paged fragment @frag. 2761 */ 2762 static inline void __skb_frag_unref(skb_frag_t *frag) 2763 { 2764 put_page(skb_frag_page(frag)); 2765 } 2766 2767 /** 2768 * skb_frag_unref - release a reference on a paged fragment of an skb. 2769 * @skb: the buffer 2770 * @f: the fragment offset 2771 * 2772 * Releases a reference on the @f'th paged fragment of @skb. 2773 */ 2774 static inline void skb_frag_unref(struct sk_buff *skb, int f) 2775 { 2776 __skb_frag_unref(&skb_shinfo(skb)->frags[f]); 2777 } 2778 2779 /** 2780 * skb_frag_address - gets the address of the data contained in a paged fragment 2781 * @frag: the paged fragment buffer 2782 * 2783 * Returns the address of the data within @frag. The page must already 2784 * be mapped. 2785 */ 2786 static inline void *skb_frag_address(const skb_frag_t *frag) 2787 { 2788 return page_address(skb_frag_page(frag)) + frag->page_offset; 2789 } 2790 2791 /** 2792 * skb_frag_address_safe - gets the address of the data contained in a paged fragment 2793 * @frag: the paged fragment buffer 2794 * 2795 * Returns the address of the data within @frag. Checks that the page 2796 * is mapped and returns %NULL otherwise. 2797 */ 2798 static inline void *skb_frag_address_safe(const skb_frag_t *frag) 2799 { 2800 void *ptr = page_address(skb_frag_page(frag)); 2801 if (unlikely(!ptr)) 2802 return NULL; 2803 2804 return ptr + frag->page_offset; 2805 } 2806 2807 /** 2808 * __skb_frag_set_page - sets the page contained in a paged fragment 2809 * @frag: the paged fragment 2810 * @page: the page to set 2811 * 2812 * Sets the fragment @frag to contain @page. 2813 */ 2814 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page) 2815 { 2816 frag->page.p = page; 2817 } 2818 2819 /** 2820 * skb_frag_set_page - sets the page contained in a paged fragment of an skb 2821 * @skb: the buffer 2822 * @f: the fragment offset 2823 * @page: the page to set 2824 * 2825 * Sets the @f'th fragment of @skb to contain @page. 2826 */ 2827 static inline void skb_frag_set_page(struct sk_buff *skb, int f, 2828 struct page *page) 2829 { 2830 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page); 2831 } 2832 2833 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio); 2834 2835 /** 2836 * skb_frag_dma_map - maps a paged fragment via the DMA API 2837 * @dev: the device to map the fragment to 2838 * @frag: the paged fragment to map 2839 * @offset: the offset within the fragment (starting at the 2840 * fragment's own offset) 2841 * @size: the number of bytes to map 2842 * @dir: the direction of the mapping (``PCI_DMA_*``) 2843 * 2844 * Maps the page associated with @frag to @device. 2845 */ 2846 static inline dma_addr_t skb_frag_dma_map(struct device *dev, 2847 const skb_frag_t *frag, 2848 size_t offset, size_t size, 2849 enum dma_data_direction dir) 2850 { 2851 return dma_map_page(dev, skb_frag_page(frag), 2852 frag->page_offset + offset, size, dir); 2853 } 2854 2855 static inline struct sk_buff *pskb_copy(struct sk_buff *skb, 2856 gfp_t gfp_mask) 2857 { 2858 return __pskb_copy(skb, skb_headroom(skb), gfp_mask); 2859 } 2860 2861 2862 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb, 2863 gfp_t gfp_mask) 2864 { 2865 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true); 2866 } 2867 2868 2869 /** 2870 * skb_clone_writable - is the header of a clone writable 2871 * @skb: buffer to check 2872 * @len: length up to which to write 2873 * 2874 * Returns true if modifying the header part of the cloned buffer 2875 * does not requires the data to be copied. 2876 */ 2877 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) 2878 { 2879 return !skb_header_cloned(skb) && 2880 skb_headroom(skb) + len <= skb->hdr_len; 2881 } 2882 2883 static inline int skb_try_make_writable(struct sk_buff *skb, 2884 unsigned int write_len) 2885 { 2886 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) && 2887 pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2888 } 2889 2890 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 2891 int cloned) 2892 { 2893 int delta = 0; 2894 2895 if (headroom > skb_headroom(skb)) 2896 delta = headroom - skb_headroom(skb); 2897 2898 if (delta || cloned) 2899 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 2900 GFP_ATOMIC); 2901 return 0; 2902 } 2903 2904 /** 2905 * skb_cow - copy header of skb when it is required 2906 * @skb: buffer to cow 2907 * @headroom: needed headroom 2908 * 2909 * If the skb passed lacks sufficient headroom or its data part 2910 * is shared, data is reallocated. If reallocation fails, an error 2911 * is returned and original skb is not changed. 2912 * 2913 * The result is skb with writable area skb->head...skb->tail 2914 * and at least @headroom of space at head. 2915 */ 2916 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 2917 { 2918 return __skb_cow(skb, headroom, skb_cloned(skb)); 2919 } 2920 2921 /** 2922 * skb_cow_head - skb_cow but only making the head writable 2923 * @skb: buffer to cow 2924 * @headroom: needed headroom 2925 * 2926 * This function is identical to skb_cow except that we replace the 2927 * skb_cloned check by skb_header_cloned. It should be used when 2928 * you only need to push on some header and do not need to modify 2929 * the data. 2930 */ 2931 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 2932 { 2933 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 2934 } 2935 2936 /** 2937 * skb_padto - pad an skbuff up to a minimal size 2938 * @skb: buffer to pad 2939 * @len: minimal length 2940 * 2941 * Pads up a buffer to ensure the trailing bytes exist and are 2942 * blanked. If the buffer already contains sufficient data it 2943 * is untouched. Otherwise it is extended. Returns zero on 2944 * success. The skb is freed on error. 2945 */ 2946 static inline int skb_padto(struct sk_buff *skb, unsigned int len) 2947 { 2948 unsigned int size = skb->len; 2949 if (likely(size >= len)) 2950 return 0; 2951 return skb_pad(skb, len - size); 2952 } 2953 2954 /** 2955 * skb_put_padto - increase size and pad an skbuff up to a minimal size 2956 * @skb: buffer to pad 2957 * @len: minimal length 2958 * @free_on_error: free buffer on error 2959 * 2960 * Pads up a buffer to ensure the trailing bytes exist and are 2961 * blanked. If the buffer already contains sufficient data it 2962 * is untouched. Otherwise it is extended. Returns zero on 2963 * success. The skb is freed on error if @free_on_error is true. 2964 */ 2965 static inline int __skb_put_padto(struct sk_buff *skb, unsigned int len, 2966 bool free_on_error) 2967 { 2968 unsigned int size = skb->len; 2969 2970 if (unlikely(size < len)) { 2971 len -= size; 2972 if (__skb_pad(skb, len, free_on_error)) 2973 return -ENOMEM; 2974 __skb_put(skb, len); 2975 } 2976 return 0; 2977 } 2978 2979 /** 2980 * skb_put_padto - increase size and pad an skbuff up to a minimal size 2981 * @skb: buffer to pad 2982 * @len: minimal length 2983 * 2984 * Pads up a buffer to ensure the trailing bytes exist and are 2985 * blanked. If the buffer already contains sufficient data it 2986 * is untouched. Otherwise it is extended. Returns zero on 2987 * success. The skb is freed on error. 2988 */ 2989 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len) 2990 { 2991 return __skb_put_padto(skb, len, true); 2992 } 2993 2994 static inline int skb_add_data(struct sk_buff *skb, 2995 struct iov_iter *from, int copy) 2996 { 2997 const int off = skb->len; 2998 2999 if (skb->ip_summed == CHECKSUM_NONE) { 3000 __wsum csum = 0; 3001 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy, 3002 &csum, from)) { 3003 skb->csum = csum_block_add(skb->csum, csum, off); 3004 return 0; 3005 } 3006 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from)) 3007 return 0; 3008 3009 __skb_trim(skb, off); 3010 return -EFAULT; 3011 } 3012 3013 static inline bool skb_can_coalesce(struct sk_buff *skb, int i, 3014 const struct page *page, int off) 3015 { 3016 if (skb_zcopy(skb)) 3017 return false; 3018 if (i) { 3019 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 3020 3021 return page == skb_frag_page(frag) && 3022 off == frag->page_offset + skb_frag_size(frag); 3023 } 3024 return false; 3025 } 3026 3027 static inline int __skb_linearize(struct sk_buff *skb) 3028 { 3029 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 3030 } 3031 3032 /** 3033 * skb_linearize - convert paged skb to linear one 3034 * @skb: buffer to linarize 3035 * 3036 * If there is no free memory -ENOMEM is returned, otherwise zero 3037 * is returned and the old skb data released. 3038 */ 3039 static inline int skb_linearize(struct sk_buff *skb) 3040 { 3041 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 3042 } 3043 3044 /** 3045 * skb_has_shared_frag - can any frag be overwritten 3046 * @skb: buffer to test 3047 * 3048 * Return true if the skb has at least one frag that might be modified 3049 * by an external entity (as in vmsplice()/sendfile()) 3050 */ 3051 static inline bool skb_has_shared_frag(const struct sk_buff *skb) 3052 { 3053 return skb_is_nonlinear(skb) && 3054 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG; 3055 } 3056 3057 /** 3058 * skb_linearize_cow - make sure skb is linear and writable 3059 * @skb: buffer to process 3060 * 3061 * If there is no free memory -ENOMEM is returned, otherwise zero 3062 * is returned and the old skb data released. 3063 */ 3064 static inline int skb_linearize_cow(struct sk_buff *skb) 3065 { 3066 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 3067 __skb_linearize(skb) : 0; 3068 } 3069 3070 static __always_inline void 3071 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3072 unsigned int off) 3073 { 3074 if (skb->ip_summed == CHECKSUM_COMPLETE) 3075 skb->csum = csum_block_sub(skb->csum, 3076 csum_partial(start, len, 0), off); 3077 else if (skb->ip_summed == CHECKSUM_PARTIAL && 3078 skb_checksum_start_offset(skb) < 0) 3079 skb->ip_summed = CHECKSUM_NONE; 3080 } 3081 3082 /** 3083 * skb_postpull_rcsum - update checksum for received skb after pull 3084 * @skb: buffer to update 3085 * @start: start of data before pull 3086 * @len: length of data pulled 3087 * 3088 * After doing a pull on a received packet, you need to call this to 3089 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 3090 * CHECKSUM_NONE so that it can be recomputed from scratch. 3091 */ 3092 static inline void skb_postpull_rcsum(struct sk_buff *skb, 3093 const void *start, unsigned int len) 3094 { 3095 __skb_postpull_rcsum(skb, start, len, 0); 3096 } 3097 3098 static __always_inline void 3099 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3100 unsigned int off) 3101 { 3102 if (skb->ip_summed == CHECKSUM_COMPLETE) 3103 skb->csum = csum_block_add(skb->csum, 3104 csum_partial(start, len, 0), off); 3105 } 3106 3107 /** 3108 * skb_postpush_rcsum - update checksum for received skb after push 3109 * @skb: buffer to update 3110 * @start: start of data after push 3111 * @len: length of data pushed 3112 * 3113 * After doing a push on a received packet, you need to call this to 3114 * update the CHECKSUM_COMPLETE checksum. 3115 */ 3116 static inline void skb_postpush_rcsum(struct sk_buff *skb, 3117 const void *start, unsigned int len) 3118 { 3119 __skb_postpush_rcsum(skb, start, len, 0); 3120 } 3121 3122 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 3123 3124 /** 3125 * skb_push_rcsum - push skb and update receive checksum 3126 * @skb: buffer to update 3127 * @len: length of data pulled 3128 * 3129 * This function performs an skb_push on the packet and updates 3130 * the CHECKSUM_COMPLETE checksum. It should be used on 3131 * receive path processing instead of skb_push unless you know 3132 * that the checksum difference is zero (e.g., a valid IP header) 3133 * or you are setting ip_summed to CHECKSUM_NONE. 3134 */ 3135 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len) 3136 { 3137 skb_push(skb, len); 3138 skb_postpush_rcsum(skb, skb->data, len); 3139 return skb->data; 3140 } 3141 3142 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len); 3143 /** 3144 * pskb_trim_rcsum - trim received skb and update checksum 3145 * @skb: buffer to trim 3146 * @len: new length 3147 * 3148 * This is exactly the same as pskb_trim except that it ensures the 3149 * checksum of received packets are still valid after the operation. 3150 */ 3151 3152 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3153 { 3154 if (likely(len >= skb->len)) 3155 return 0; 3156 return pskb_trim_rcsum_slow(skb, len); 3157 } 3158 3159 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3160 { 3161 if (skb->ip_summed == CHECKSUM_COMPLETE) 3162 skb->ip_summed = CHECKSUM_NONE; 3163 __skb_trim(skb, len); 3164 return 0; 3165 } 3166 3167 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len) 3168 { 3169 if (skb->ip_summed == CHECKSUM_COMPLETE) 3170 skb->ip_summed = CHECKSUM_NONE; 3171 return __skb_grow(skb, len); 3172 } 3173 3174 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode) 3175 #define skb_rb_first(root) rb_to_skb(rb_first(root)) 3176 #define skb_rb_last(root) rb_to_skb(rb_last(root)) 3177 #define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode)) 3178 #define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode)) 3179 3180 #define skb_queue_walk(queue, skb) \ 3181 for (skb = (queue)->next; \ 3182 skb != (struct sk_buff *)(queue); \ 3183 skb = skb->next) 3184 3185 #define skb_queue_walk_safe(queue, skb, tmp) \ 3186 for (skb = (queue)->next, tmp = skb->next; \ 3187 skb != (struct sk_buff *)(queue); \ 3188 skb = tmp, tmp = skb->next) 3189 3190 #define skb_queue_walk_from(queue, skb) \ 3191 for (; skb != (struct sk_buff *)(queue); \ 3192 skb = skb->next) 3193 3194 #define skb_rbtree_walk(skb, root) \ 3195 for (skb = skb_rb_first(root); skb != NULL; \ 3196 skb = skb_rb_next(skb)) 3197 3198 #define skb_rbtree_walk_from(skb) \ 3199 for (; skb != NULL; \ 3200 skb = skb_rb_next(skb)) 3201 3202 #define skb_rbtree_walk_from_safe(skb, tmp) \ 3203 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \ 3204 skb = tmp) 3205 3206 #define skb_queue_walk_from_safe(queue, skb, tmp) \ 3207 for (tmp = skb->next; \ 3208 skb != (struct sk_buff *)(queue); \ 3209 skb = tmp, tmp = skb->next) 3210 3211 #define skb_queue_reverse_walk(queue, skb) \ 3212 for (skb = (queue)->prev; \ 3213 skb != (struct sk_buff *)(queue); \ 3214 skb = skb->prev) 3215 3216 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \ 3217 for (skb = (queue)->prev, tmp = skb->prev; \ 3218 skb != (struct sk_buff *)(queue); \ 3219 skb = tmp, tmp = skb->prev) 3220 3221 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ 3222 for (tmp = skb->prev; \ 3223 skb != (struct sk_buff *)(queue); \ 3224 skb = tmp, tmp = skb->prev) 3225 3226 static inline bool skb_has_frag_list(const struct sk_buff *skb) 3227 { 3228 return skb_shinfo(skb)->frag_list != NULL; 3229 } 3230 3231 static inline void skb_frag_list_init(struct sk_buff *skb) 3232 { 3233 skb_shinfo(skb)->frag_list = NULL; 3234 } 3235 3236 #define skb_walk_frags(skb, iter) \ 3237 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 3238 3239 3240 int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p, 3241 const struct sk_buff *skb); 3242 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk, 3243 struct sk_buff_head *queue, 3244 unsigned int flags, 3245 void (*destructor)(struct sock *sk, 3246 struct sk_buff *skb), 3247 int *peeked, int *off, int *err, 3248 struct sk_buff **last); 3249 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags, 3250 void (*destructor)(struct sock *sk, 3251 struct sk_buff *skb), 3252 int *peeked, int *off, int *err, 3253 struct sk_buff **last); 3254 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags, 3255 void (*destructor)(struct sock *sk, 3256 struct sk_buff *skb), 3257 int *peeked, int *off, int *err); 3258 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock, 3259 int *err); 3260 __poll_t datagram_poll(struct file *file, struct socket *sock, 3261 struct poll_table_struct *wait); 3262 int skb_copy_datagram_iter(const struct sk_buff *from, int offset, 3263 struct iov_iter *to, int size); 3264 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset, 3265 struct msghdr *msg, int size) 3266 { 3267 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size); 3268 } 3269 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen, 3270 struct msghdr *msg); 3271 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset, 3272 struct iov_iter *from, int len); 3273 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm); 3274 void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 3275 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len); 3276 static inline void skb_free_datagram_locked(struct sock *sk, 3277 struct sk_buff *skb) 3278 { 3279 __skb_free_datagram_locked(sk, skb, 0); 3280 } 3281 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags); 3282 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len); 3283 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len); 3284 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, 3285 int len, __wsum csum); 3286 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 3287 struct pipe_inode_info *pipe, unsigned int len, 3288 unsigned int flags); 3289 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 3290 int len); 3291 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len); 3292 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 3293 unsigned int skb_zerocopy_headlen(const struct sk_buff *from); 3294 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from, 3295 int len, int hlen); 3296 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len); 3297 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen); 3298 void skb_scrub_packet(struct sk_buff *skb, bool xnet); 3299 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu); 3300 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len); 3301 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features); 3302 struct sk_buff *skb_vlan_untag(struct sk_buff *skb); 3303 int skb_ensure_writable(struct sk_buff *skb, int write_len); 3304 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci); 3305 int skb_vlan_pop(struct sk_buff *skb); 3306 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci); 3307 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy, 3308 gfp_t gfp); 3309 3310 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len) 3311 { 3312 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT; 3313 } 3314 3315 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len) 3316 { 3317 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT; 3318 } 3319 3320 struct skb_checksum_ops { 3321 __wsum (*update)(const void *mem, int len, __wsum wsum); 3322 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len); 3323 }; 3324 3325 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly; 3326 3327 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 3328 __wsum csum, const struct skb_checksum_ops *ops); 3329 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len, 3330 __wsum csum); 3331 3332 static inline void * __must_check 3333 __skb_header_pointer(const struct sk_buff *skb, int offset, 3334 int len, void *data, int hlen, void *buffer) 3335 { 3336 if (hlen - offset >= len) 3337 return data + offset; 3338 3339 if (!skb || 3340 skb_copy_bits(skb, offset, buffer, len) < 0) 3341 return NULL; 3342 3343 return buffer; 3344 } 3345 3346 static inline void * __must_check 3347 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer) 3348 { 3349 return __skb_header_pointer(skb, offset, len, skb->data, 3350 skb_headlen(skb), buffer); 3351 } 3352 3353 /** 3354 * skb_needs_linearize - check if we need to linearize a given skb 3355 * depending on the given device features. 3356 * @skb: socket buffer to check 3357 * @features: net device features 3358 * 3359 * Returns true if either: 3360 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 3361 * 2. skb is fragmented and the device does not support SG. 3362 */ 3363 static inline bool skb_needs_linearize(struct sk_buff *skb, 3364 netdev_features_t features) 3365 { 3366 return skb_is_nonlinear(skb) && 3367 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) || 3368 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG))); 3369 } 3370 3371 static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 3372 void *to, 3373 const unsigned int len) 3374 { 3375 memcpy(to, skb->data, len); 3376 } 3377 3378 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 3379 const int offset, void *to, 3380 const unsigned int len) 3381 { 3382 memcpy(to, skb->data + offset, len); 3383 } 3384 3385 static inline void skb_copy_to_linear_data(struct sk_buff *skb, 3386 const void *from, 3387 const unsigned int len) 3388 { 3389 memcpy(skb->data, from, len); 3390 } 3391 3392 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 3393 const int offset, 3394 const void *from, 3395 const unsigned int len) 3396 { 3397 memcpy(skb->data + offset, from, len); 3398 } 3399 3400 void skb_init(void); 3401 3402 static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 3403 { 3404 return skb->tstamp; 3405 } 3406 3407 /** 3408 * skb_get_timestamp - get timestamp from a skb 3409 * @skb: skb to get stamp from 3410 * @stamp: pointer to struct timeval to store stamp in 3411 * 3412 * Timestamps are stored in the skb as offsets to a base timestamp. 3413 * This function converts the offset back to a struct timeval and stores 3414 * it in stamp. 3415 */ 3416 static inline void skb_get_timestamp(const struct sk_buff *skb, 3417 struct timeval *stamp) 3418 { 3419 *stamp = ktime_to_timeval(skb->tstamp); 3420 } 3421 3422 static inline void skb_get_timestampns(const struct sk_buff *skb, 3423 struct timespec *stamp) 3424 { 3425 *stamp = ktime_to_timespec(skb->tstamp); 3426 } 3427 3428 static inline void __net_timestamp(struct sk_buff *skb) 3429 { 3430 skb->tstamp = ktime_get_real(); 3431 } 3432 3433 static inline ktime_t net_timedelta(ktime_t t) 3434 { 3435 return ktime_sub(ktime_get_real(), t); 3436 } 3437 3438 static inline ktime_t net_invalid_timestamp(void) 3439 { 3440 return 0; 3441 } 3442 3443 static inline u8 skb_metadata_len(const struct sk_buff *skb) 3444 { 3445 return skb_shinfo(skb)->meta_len; 3446 } 3447 3448 static inline void *skb_metadata_end(const struct sk_buff *skb) 3449 { 3450 return skb_mac_header(skb); 3451 } 3452 3453 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a, 3454 const struct sk_buff *skb_b, 3455 u8 meta_len) 3456 { 3457 const void *a = skb_metadata_end(skb_a); 3458 const void *b = skb_metadata_end(skb_b); 3459 /* Using more efficient varaiant than plain call to memcmp(). */ 3460 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 3461 u64 diffs = 0; 3462 3463 switch (meta_len) { 3464 #define __it(x, op) (x -= sizeof(u##op)) 3465 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op)) 3466 case 32: diffs |= __it_diff(a, b, 64); 3467 case 24: diffs |= __it_diff(a, b, 64); 3468 case 16: diffs |= __it_diff(a, b, 64); 3469 case 8: diffs |= __it_diff(a, b, 64); 3470 break; 3471 case 28: diffs |= __it_diff(a, b, 64); 3472 case 20: diffs |= __it_diff(a, b, 64); 3473 case 12: diffs |= __it_diff(a, b, 64); 3474 case 4: diffs |= __it_diff(a, b, 32); 3475 break; 3476 } 3477 return diffs; 3478 #else 3479 return memcmp(a - meta_len, b - meta_len, meta_len); 3480 #endif 3481 } 3482 3483 static inline bool skb_metadata_differs(const struct sk_buff *skb_a, 3484 const struct sk_buff *skb_b) 3485 { 3486 u8 len_a = skb_metadata_len(skb_a); 3487 u8 len_b = skb_metadata_len(skb_b); 3488 3489 if (!(len_a | len_b)) 3490 return false; 3491 3492 return len_a != len_b ? 3493 true : __skb_metadata_differs(skb_a, skb_b, len_a); 3494 } 3495 3496 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len) 3497 { 3498 skb_shinfo(skb)->meta_len = meta_len; 3499 } 3500 3501 static inline void skb_metadata_clear(struct sk_buff *skb) 3502 { 3503 skb_metadata_set(skb, 0); 3504 } 3505 3506 struct sk_buff *skb_clone_sk(struct sk_buff *skb); 3507 3508 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 3509 3510 void skb_clone_tx_timestamp(struct sk_buff *skb); 3511 bool skb_defer_rx_timestamp(struct sk_buff *skb); 3512 3513 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 3514 3515 static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 3516 { 3517 } 3518 3519 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 3520 { 3521 return false; 3522 } 3523 3524 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 3525 3526 /** 3527 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 3528 * 3529 * PHY drivers may accept clones of transmitted packets for 3530 * timestamping via their phy_driver.txtstamp method. These drivers 3531 * must call this function to return the skb back to the stack with a 3532 * timestamp. 3533 * 3534 * @skb: clone of the the original outgoing packet 3535 * @hwtstamps: hardware time stamps 3536 * 3537 */ 3538 void skb_complete_tx_timestamp(struct sk_buff *skb, 3539 struct skb_shared_hwtstamps *hwtstamps); 3540 3541 void __skb_tstamp_tx(struct sk_buff *orig_skb, 3542 struct skb_shared_hwtstamps *hwtstamps, 3543 struct sock *sk, int tstype); 3544 3545 /** 3546 * skb_tstamp_tx - queue clone of skb with send time stamps 3547 * @orig_skb: the original outgoing packet 3548 * @hwtstamps: hardware time stamps, may be NULL if not available 3549 * 3550 * If the skb has a socket associated, then this function clones the 3551 * skb (thus sharing the actual data and optional structures), stores 3552 * the optional hardware time stamping information (if non NULL) or 3553 * generates a software time stamp (otherwise), then queues the clone 3554 * to the error queue of the socket. Errors are silently ignored. 3555 */ 3556 void skb_tstamp_tx(struct sk_buff *orig_skb, 3557 struct skb_shared_hwtstamps *hwtstamps); 3558 3559 /** 3560 * skb_tx_timestamp() - Driver hook for transmit timestamping 3561 * 3562 * Ethernet MAC Drivers should call this function in their hard_xmit() 3563 * function immediately before giving the sk_buff to the MAC hardware. 3564 * 3565 * Specifically, one should make absolutely sure that this function is 3566 * called before TX completion of this packet can trigger. Otherwise 3567 * the packet could potentially already be freed. 3568 * 3569 * @skb: A socket buffer. 3570 */ 3571 static inline void skb_tx_timestamp(struct sk_buff *skb) 3572 { 3573 skb_clone_tx_timestamp(skb); 3574 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP) 3575 skb_tstamp_tx(skb, NULL); 3576 } 3577 3578 /** 3579 * skb_complete_wifi_ack - deliver skb with wifi status 3580 * 3581 * @skb: the original outgoing packet 3582 * @acked: ack status 3583 * 3584 */ 3585 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); 3586 3587 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 3588 __sum16 __skb_checksum_complete(struct sk_buff *skb); 3589 3590 static inline int skb_csum_unnecessary(const struct sk_buff *skb) 3591 { 3592 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) || 3593 skb->csum_valid || 3594 (skb->ip_summed == CHECKSUM_PARTIAL && 3595 skb_checksum_start_offset(skb) >= 0)); 3596 } 3597 3598 /** 3599 * skb_checksum_complete - Calculate checksum of an entire packet 3600 * @skb: packet to process 3601 * 3602 * This function calculates the checksum over the entire packet plus 3603 * the value of skb->csum. The latter can be used to supply the 3604 * checksum of a pseudo header as used by TCP/UDP. It returns the 3605 * checksum. 3606 * 3607 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 3608 * this function can be used to verify that checksum on received 3609 * packets. In that case the function should return zero if the 3610 * checksum is correct. In particular, this function will return zero 3611 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 3612 * hardware has already verified the correctness of the checksum. 3613 */ 3614 static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 3615 { 3616 return skb_csum_unnecessary(skb) ? 3617 0 : __skb_checksum_complete(skb); 3618 } 3619 3620 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb) 3621 { 3622 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 3623 if (skb->csum_level == 0) 3624 skb->ip_summed = CHECKSUM_NONE; 3625 else 3626 skb->csum_level--; 3627 } 3628 } 3629 3630 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb) 3631 { 3632 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 3633 if (skb->csum_level < SKB_MAX_CSUM_LEVEL) 3634 skb->csum_level++; 3635 } else if (skb->ip_summed == CHECKSUM_NONE) { 3636 skb->ip_summed = CHECKSUM_UNNECESSARY; 3637 skb->csum_level = 0; 3638 } 3639 } 3640 3641 /* Check if we need to perform checksum complete validation. 3642 * 3643 * Returns true if checksum complete is needed, false otherwise 3644 * (either checksum is unnecessary or zero checksum is allowed). 3645 */ 3646 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb, 3647 bool zero_okay, 3648 __sum16 check) 3649 { 3650 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) { 3651 skb->csum_valid = 1; 3652 __skb_decr_checksum_unnecessary(skb); 3653 return false; 3654 } 3655 3656 return true; 3657 } 3658 3659 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly 3660 * in checksum_init. 3661 */ 3662 #define CHECKSUM_BREAK 76 3663 3664 /* Unset checksum-complete 3665 * 3666 * Unset checksum complete can be done when packet is being modified 3667 * (uncompressed for instance) and checksum-complete value is 3668 * invalidated. 3669 */ 3670 static inline void skb_checksum_complete_unset(struct sk_buff *skb) 3671 { 3672 if (skb->ip_summed == CHECKSUM_COMPLETE) 3673 skb->ip_summed = CHECKSUM_NONE; 3674 } 3675 3676 /* Validate (init) checksum based on checksum complete. 3677 * 3678 * Return values: 3679 * 0: checksum is validated or try to in skb_checksum_complete. In the latter 3680 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo 3681 * checksum is stored in skb->csum for use in __skb_checksum_complete 3682 * non-zero: value of invalid checksum 3683 * 3684 */ 3685 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb, 3686 bool complete, 3687 __wsum psum) 3688 { 3689 if (skb->ip_summed == CHECKSUM_COMPLETE) { 3690 if (!csum_fold(csum_add(psum, skb->csum))) { 3691 skb->csum_valid = 1; 3692 return 0; 3693 } 3694 } 3695 3696 skb->csum = psum; 3697 3698 if (complete || skb->len <= CHECKSUM_BREAK) { 3699 __sum16 csum; 3700 3701 csum = __skb_checksum_complete(skb); 3702 skb->csum_valid = !csum; 3703 return csum; 3704 } 3705 3706 return 0; 3707 } 3708 3709 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto) 3710 { 3711 return 0; 3712 } 3713 3714 /* Perform checksum validate (init). Note that this is a macro since we only 3715 * want to calculate the pseudo header which is an input function if necessary. 3716 * First we try to validate without any computation (checksum unnecessary) and 3717 * then calculate based on checksum complete calling the function to compute 3718 * pseudo header. 3719 * 3720 * Return values: 3721 * 0: checksum is validated or try to in skb_checksum_complete 3722 * non-zero: value of invalid checksum 3723 */ 3724 #define __skb_checksum_validate(skb, proto, complete, \ 3725 zero_okay, check, compute_pseudo) \ 3726 ({ \ 3727 __sum16 __ret = 0; \ 3728 skb->csum_valid = 0; \ 3729 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \ 3730 __ret = __skb_checksum_validate_complete(skb, \ 3731 complete, compute_pseudo(skb, proto)); \ 3732 __ret; \ 3733 }) 3734 3735 #define skb_checksum_init(skb, proto, compute_pseudo) \ 3736 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo) 3737 3738 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \ 3739 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo) 3740 3741 #define skb_checksum_validate(skb, proto, compute_pseudo) \ 3742 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo) 3743 3744 #define skb_checksum_validate_zero_check(skb, proto, check, \ 3745 compute_pseudo) \ 3746 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo) 3747 3748 #define skb_checksum_simple_validate(skb) \ 3749 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo) 3750 3751 static inline bool __skb_checksum_convert_check(struct sk_buff *skb) 3752 { 3753 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid); 3754 } 3755 3756 static inline void __skb_checksum_convert(struct sk_buff *skb, 3757 __sum16 check, __wsum pseudo) 3758 { 3759 skb->csum = ~pseudo; 3760 skb->ip_summed = CHECKSUM_COMPLETE; 3761 } 3762 3763 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo) \ 3764 do { \ 3765 if (__skb_checksum_convert_check(skb)) \ 3766 __skb_checksum_convert(skb, check, \ 3767 compute_pseudo(skb, proto)); \ 3768 } while (0) 3769 3770 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr, 3771 u16 start, u16 offset) 3772 { 3773 skb->ip_summed = CHECKSUM_PARTIAL; 3774 skb->csum_start = ((unsigned char *)ptr + start) - skb->head; 3775 skb->csum_offset = offset - start; 3776 } 3777 3778 /* Update skbuf and packet to reflect the remote checksum offload operation. 3779 * When called, ptr indicates the starting point for skb->csum when 3780 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete 3781 * here, skb_postpull_rcsum is done so skb->csum start is ptr. 3782 */ 3783 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr, 3784 int start, int offset, bool nopartial) 3785 { 3786 __wsum delta; 3787 3788 if (!nopartial) { 3789 skb_remcsum_adjust_partial(skb, ptr, start, offset); 3790 return; 3791 } 3792 3793 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) { 3794 __skb_checksum_complete(skb); 3795 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data); 3796 } 3797 3798 delta = remcsum_adjust(ptr, skb->csum, start, offset); 3799 3800 /* Adjust skb->csum since we changed the packet */ 3801 skb->csum = csum_add(skb->csum, delta); 3802 } 3803 3804 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb) 3805 { 3806 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 3807 return (void *)(skb->_nfct & SKB_NFCT_PTRMASK); 3808 #else 3809 return NULL; 3810 #endif 3811 } 3812 3813 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3814 void nf_conntrack_destroy(struct nf_conntrack *nfct); 3815 static inline void nf_conntrack_put(struct nf_conntrack *nfct) 3816 { 3817 if (nfct && atomic_dec_and_test(&nfct->use)) 3818 nf_conntrack_destroy(nfct); 3819 } 3820 static inline void nf_conntrack_get(struct nf_conntrack *nfct) 3821 { 3822 if (nfct) 3823 atomic_inc(&nfct->use); 3824 } 3825 #endif 3826 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3827 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge) 3828 { 3829 if (nf_bridge && refcount_dec_and_test(&nf_bridge->use)) 3830 kfree(nf_bridge); 3831 } 3832 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge) 3833 { 3834 if (nf_bridge) 3835 refcount_inc(&nf_bridge->use); 3836 } 3837 #endif /* CONFIG_BRIDGE_NETFILTER */ 3838 static inline void nf_reset(struct sk_buff *skb) 3839 { 3840 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3841 nf_conntrack_put(skb_nfct(skb)); 3842 skb->_nfct = 0; 3843 #endif 3844 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3845 nf_bridge_put(skb->nf_bridge); 3846 skb->nf_bridge = NULL; 3847 #endif 3848 } 3849 3850 static inline void nf_reset_trace(struct sk_buff *skb) 3851 { 3852 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 3853 skb->nf_trace = 0; 3854 #endif 3855 } 3856 3857 static inline void ipvs_reset(struct sk_buff *skb) 3858 { 3859 #if IS_ENABLED(CONFIG_IP_VS) 3860 skb->ipvs_property = 0; 3861 #endif 3862 } 3863 3864 /* Note: This doesn't put any conntrack and bridge info in dst. */ 3865 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src, 3866 bool copy) 3867 { 3868 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3869 dst->_nfct = src->_nfct; 3870 nf_conntrack_get(skb_nfct(src)); 3871 #endif 3872 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3873 dst->nf_bridge = src->nf_bridge; 3874 nf_bridge_get(src->nf_bridge); 3875 #endif 3876 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 3877 if (copy) 3878 dst->nf_trace = src->nf_trace; 3879 #endif 3880 } 3881 3882 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 3883 { 3884 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3885 nf_conntrack_put(skb_nfct(dst)); 3886 #endif 3887 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3888 nf_bridge_put(dst->nf_bridge); 3889 #endif 3890 __nf_copy(dst, src, true); 3891 } 3892 3893 #ifdef CONFIG_NETWORK_SECMARK 3894 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 3895 { 3896 to->secmark = from->secmark; 3897 } 3898 3899 static inline void skb_init_secmark(struct sk_buff *skb) 3900 { 3901 skb->secmark = 0; 3902 } 3903 #else 3904 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 3905 { } 3906 3907 static inline void skb_init_secmark(struct sk_buff *skb) 3908 { } 3909 #endif 3910 3911 static inline bool skb_irq_freeable(const struct sk_buff *skb) 3912 { 3913 return !skb->destructor && 3914 #if IS_ENABLED(CONFIG_XFRM) 3915 !skb->sp && 3916 #endif 3917 !skb_nfct(skb) && 3918 !skb->_skb_refdst && 3919 !skb_has_frag_list(skb); 3920 } 3921 3922 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 3923 { 3924 skb->queue_mapping = queue_mapping; 3925 } 3926 3927 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 3928 { 3929 return skb->queue_mapping; 3930 } 3931 3932 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 3933 { 3934 to->queue_mapping = from->queue_mapping; 3935 } 3936 3937 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 3938 { 3939 skb->queue_mapping = rx_queue + 1; 3940 } 3941 3942 static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 3943 { 3944 return skb->queue_mapping - 1; 3945 } 3946 3947 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 3948 { 3949 return skb->queue_mapping != 0; 3950 } 3951 3952 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val) 3953 { 3954 skb->dst_pending_confirm = val; 3955 } 3956 3957 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb) 3958 { 3959 return skb->dst_pending_confirm != 0; 3960 } 3961 3962 static inline struct sec_path *skb_sec_path(struct sk_buff *skb) 3963 { 3964 #ifdef CONFIG_XFRM 3965 return skb->sp; 3966 #else 3967 return NULL; 3968 #endif 3969 } 3970 3971 /* Keeps track of mac header offset relative to skb->head. 3972 * It is useful for TSO of Tunneling protocol. e.g. GRE. 3973 * For non-tunnel skb it points to skb_mac_header() and for 3974 * tunnel skb it points to outer mac header. 3975 * Keeps track of level of encapsulation of network headers. 3976 */ 3977 struct skb_gso_cb { 3978 union { 3979 int mac_offset; 3980 int data_offset; 3981 }; 3982 int encap_level; 3983 __wsum csum; 3984 __u16 csum_start; 3985 }; 3986 #define SKB_SGO_CB_OFFSET 32 3987 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET)) 3988 3989 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb) 3990 { 3991 return (skb_mac_header(inner_skb) - inner_skb->head) - 3992 SKB_GSO_CB(inner_skb)->mac_offset; 3993 } 3994 3995 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra) 3996 { 3997 int new_headroom, headroom; 3998 int ret; 3999 4000 headroom = skb_headroom(skb); 4001 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC); 4002 if (ret) 4003 return ret; 4004 4005 new_headroom = skb_headroom(skb); 4006 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom); 4007 return 0; 4008 } 4009 4010 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res) 4011 { 4012 /* Do not update partial checksums if remote checksum is enabled. */ 4013 if (skb->remcsum_offload) 4014 return; 4015 4016 SKB_GSO_CB(skb)->csum = res; 4017 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head; 4018 } 4019 4020 /* Compute the checksum for a gso segment. First compute the checksum value 4021 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and 4022 * then add in skb->csum (checksum from csum_start to end of packet). 4023 * skb->csum and csum_start are then updated to reflect the checksum of the 4024 * resultant packet starting from the transport header-- the resultant checksum 4025 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo 4026 * header. 4027 */ 4028 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res) 4029 { 4030 unsigned char *csum_start = skb_transport_header(skb); 4031 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start; 4032 __wsum partial = SKB_GSO_CB(skb)->csum; 4033 4034 SKB_GSO_CB(skb)->csum = res; 4035 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head; 4036 4037 return csum_fold(csum_partial(csum_start, plen, partial)); 4038 } 4039 4040 static inline bool skb_is_gso(const struct sk_buff *skb) 4041 { 4042 return skb_shinfo(skb)->gso_size; 4043 } 4044 4045 /* Note: Should be called only if skb_is_gso(skb) is true */ 4046 static inline bool skb_is_gso_v6(const struct sk_buff *skb) 4047 { 4048 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 4049 } 4050 4051 /* Note: Should be called only if skb_is_gso(skb) is true */ 4052 static inline bool skb_is_gso_sctp(const struct sk_buff *skb) 4053 { 4054 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP; 4055 } 4056 4057 static inline void skb_gso_reset(struct sk_buff *skb) 4058 { 4059 skb_shinfo(skb)->gso_size = 0; 4060 skb_shinfo(skb)->gso_segs = 0; 4061 skb_shinfo(skb)->gso_type = 0; 4062 } 4063 4064 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo, 4065 u16 increment) 4066 { 4067 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 4068 return; 4069 shinfo->gso_size += increment; 4070 } 4071 4072 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo, 4073 u16 decrement) 4074 { 4075 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 4076 return; 4077 shinfo->gso_size -= decrement; 4078 } 4079 4080 void __skb_warn_lro_forwarding(const struct sk_buff *skb); 4081 4082 static inline bool skb_warn_if_lro(const struct sk_buff *skb) 4083 { 4084 /* LRO sets gso_size but not gso_type, whereas if GSO is really 4085 * wanted then gso_type will be set. */ 4086 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4087 4088 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 4089 unlikely(shinfo->gso_type == 0)) { 4090 __skb_warn_lro_forwarding(skb); 4091 return true; 4092 } 4093 return false; 4094 } 4095 4096 static inline void skb_forward_csum(struct sk_buff *skb) 4097 { 4098 /* Unfortunately we don't support this one. Any brave souls? */ 4099 if (skb->ip_summed == CHECKSUM_COMPLETE) 4100 skb->ip_summed = CHECKSUM_NONE; 4101 } 4102 4103 /** 4104 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 4105 * @skb: skb to check 4106 * 4107 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 4108 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 4109 * use this helper, to document places where we make this assertion. 4110 */ 4111 static inline void skb_checksum_none_assert(const struct sk_buff *skb) 4112 { 4113 #ifdef DEBUG 4114 BUG_ON(skb->ip_summed != CHECKSUM_NONE); 4115 #endif 4116 } 4117 4118 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 4119 4120 int skb_checksum_setup(struct sk_buff *skb, bool recalculate); 4121 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 4122 unsigned int transport_len, 4123 __sum16(*skb_chkf)(struct sk_buff *skb)); 4124 4125 /** 4126 * skb_head_is_locked - Determine if the skb->head is locked down 4127 * @skb: skb to check 4128 * 4129 * The head on skbs build around a head frag can be removed if they are 4130 * not cloned. This function returns true if the skb head is locked down 4131 * due to either being allocated via kmalloc, or by being a clone with 4132 * multiple references to the head. 4133 */ 4134 static inline bool skb_head_is_locked(const struct sk_buff *skb) 4135 { 4136 return !skb->head_frag || skb_cloned(skb); 4137 } 4138 4139 /* Local Checksum Offload. 4140 * Compute outer checksum based on the assumption that the 4141 * inner checksum will be offloaded later. 4142 * See Documentation/networking/checksum-offloads.txt for 4143 * explanation of how this works. 4144 * Fill in outer checksum adjustment (e.g. with sum of outer 4145 * pseudo-header) before calling. 4146 * Also ensure that inner checksum is in linear data area. 4147 */ 4148 static inline __wsum lco_csum(struct sk_buff *skb) 4149 { 4150 unsigned char *csum_start = skb_checksum_start(skb); 4151 unsigned char *l4_hdr = skb_transport_header(skb); 4152 __wsum partial; 4153 4154 /* Start with complement of inner checksum adjustment */ 4155 partial = ~csum_unfold(*(__force __sum16 *)(csum_start + 4156 skb->csum_offset)); 4157 4158 /* Add in checksum of our headers (incl. outer checksum 4159 * adjustment filled in by caller) and return result. 4160 */ 4161 return csum_partial(l4_hdr, csum_start - l4_hdr, partial); 4162 } 4163 4164 #endif /* __KERNEL__ */ 4165 #endif /* _LINUX_SKBUFF_H */ 4166