1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * Definitions for the 'struct sk_buff' memory handlers. 4 * 5 * Authors: 6 * Alan Cox, <[email protected]> 7 * Florian La Roche, <[email protected]> 8 */ 9 10 #ifndef _LINUX_SKBUFF_H 11 #define _LINUX_SKBUFF_H 12 13 #include <linux/kernel.h> 14 #include <linux/compiler.h> 15 #include <linux/time.h> 16 #include <linux/bug.h> 17 #include <linux/bvec.h> 18 #include <linux/cache.h> 19 #include <linux/rbtree.h> 20 #include <linux/socket.h> 21 #include <linux/refcount.h> 22 23 #include <linux/atomic.h> 24 #include <asm/types.h> 25 #include <linux/spinlock.h> 26 #include <linux/net.h> 27 #include <linux/textsearch.h> 28 #include <net/checksum.h> 29 #include <linux/rcupdate.h> 30 #include <linux/hrtimer.h> 31 #include <linux/dma-mapping.h> 32 #include <linux/netdev_features.h> 33 #include <linux/sched.h> 34 #include <linux/sched/clock.h> 35 #include <net/flow_dissector.h> 36 #include <linux/splice.h> 37 #include <linux/in6.h> 38 #include <linux/if_packet.h> 39 #include <net/flow.h> 40 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 41 #include <linux/netfilter/nf_conntrack_common.h> 42 #endif 43 44 /* The interface for checksum offload between the stack and networking drivers 45 * is as follows... 46 * 47 * A. IP checksum related features 48 * 49 * Drivers advertise checksum offload capabilities in the features of a device. 50 * From the stack's point of view these are capabilities offered by the driver, 51 * a driver typically only advertises features that it is capable of offloading 52 * to its device. 53 * 54 * The checksum related features are: 55 * 56 * NETIF_F_HW_CSUM - The driver (or its device) is able to compute one 57 * IP (one's complement) checksum for any combination 58 * of protocols or protocol layering. The checksum is 59 * computed and set in a packet per the CHECKSUM_PARTIAL 60 * interface (see below). 61 * 62 * NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain 63 * TCP or UDP packets over IPv4. These are specifically 64 * unencapsulated packets of the form IPv4|TCP or 65 * IPv4|UDP where the Protocol field in the IPv4 header 66 * is TCP or UDP. The IPv4 header may contain IP options 67 * This feature cannot be set in features for a device 68 * with NETIF_F_HW_CSUM also set. This feature is being 69 * DEPRECATED (see below). 70 * 71 * NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain 72 * TCP or UDP packets over IPv6. These are specifically 73 * unencapsulated packets of the form IPv6|TCP or 74 * IPv4|UDP where the Next Header field in the IPv6 75 * header is either TCP or UDP. IPv6 extension headers 76 * are not supported with this feature. This feature 77 * cannot be set in features for a device with 78 * NETIF_F_HW_CSUM also set. This feature is being 79 * DEPRECATED (see below). 80 * 81 * NETIF_F_RXCSUM - Driver (device) performs receive checksum offload. 82 * This flag is used only used to disable the RX checksum 83 * feature for a device. The stack will accept receive 84 * checksum indication in packets received on a device 85 * regardless of whether NETIF_F_RXCSUM is set. 86 * 87 * B. Checksumming of received packets by device. Indication of checksum 88 * verification is in set skb->ip_summed. Possible values are: 89 * 90 * CHECKSUM_NONE: 91 * 92 * Device did not checksum this packet e.g. due to lack of capabilities. 93 * The packet contains full (though not verified) checksum in packet but 94 * not in skb->csum. Thus, skb->csum is undefined in this case. 95 * 96 * CHECKSUM_UNNECESSARY: 97 * 98 * The hardware you're dealing with doesn't calculate the full checksum 99 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums 100 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY 101 * if their checksums are okay. skb->csum is still undefined in this case 102 * though. A driver or device must never modify the checksum field in the 103 * packet even if checksum is verified. 104 * 105 * CHECKSUM_UNNECESSARY is applicable to following protocols: 106 * TCP: IPv6 and IPv4. 107 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a 108 * zero UDP checksum for either IPv4 or IPv6, the networking stack 109 * may perform further validation in this case. 110 * GRE: only if the checksum is present in the header. 111 * SCTP: indicates the CRC in SCTP header has been validated. 112 * FCOE: indicates the CRC in FC frame has been validated. 113 * 114 * skb->csum_level indicates the number of consecutive checksums found in 115 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY. 116 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet 117 * and a device is able to verify the checksums for UDP (possibly zero), 118 * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to 119 * two. If the device were only able to verify the UDP checksum and not 120 * GRE, either because it doesn't support GRE checksum of because GRE 121 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is 122 * not considered in this case). 123 * 124 * CHECKSUM_COMPLETE: 125 * 126 * This is the most generic way. The device supplied checksum of the _whole_ 127 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the 128 * hardware doesn't need to parse L3/L4 headers to implement this. 129 * 130 * Notes: 131 * - Even if device supports only some protocols, but is able to produce 132 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY. 133 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols. 134 * 135 * CHECKSUM_PARTIAL: 136 * 137 * A checksum is set up to be offloaded to a device as described in the 138 * output description for CHECKSUM_PARTIAL. This may occur on a packet 139 * received directly from another Linux OS, e.g., a virtualized Linux kernel 140 * on the same host, or it may be set in the input path in GRO or remote 141 * checksum offload. For the purposes of checksum verification, the checksum 142 * referred to by skb->csum_start + skb->csum_offset and any preceding 143 * checksums in the packet are considered verified. Any checksums in the 144 * packet that are after the checksum being offloaded are not considered to 145 * be verified. 146 * 147 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload 148 * in the skb->ip_summed for a packet. Values are: 149 * 150 * CHECKSUM_PARTIAL: 151 * 152 * The driver is required to checksum the packet as seen by hard_start_xmit() 153 * from skb->csum_start up to the end, and to record/write the checksum at 154 * offset skb->csum_start + skb->csum_offset. A driver may verify that the 155 * csum_start and csum_offset values are valid values given the length and 156 * offset of the packet, however they should not attempt to validate that the 157 * checksum refers to a legitimate transport layer checksum-- it is the 158 * purview of the stack to validate that csum_start and csum_offset are set 159 * correctly. 160 * 161 * When the stack requests checksum offload for a packet, the driver MUST 162 * ensure that the checksum is set correctly. A driver can either offload the 163 * checksum calculation to the device, or call skb_checksum_help (in the case 164 * that the device does not support offload for a particular checksum). 165 * 166 * NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of 167 * NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate 168 * checksum offload capability. 169 * skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based 170 * on network device checksumming capabilities: if a packet does not match 171 * them, skb_checksum_help or skb_crc32c_help (depending on the value of 172 * csum_not_inet, see item D.) is called to resolve the checksum. 173 * 174 * CHECKSUM_NONE: 175 * 176 * The skb was already checksummed by the protocol, or a checksum is not 177 * required. 178 * 179 * CHECKSUM_UNNECESSARY: 180 * 181 * This has the same meaning on as CHECKSUM_NONE for checksum offload on 182 * output. 183 * 184 * CHECKSUM_COMPLETE: 185 * Not used in checksum output. If a driver observes a packet with this value 186 * set in skbuff, if should treat as CHECKSUM_NONE being set. 187 * 188 * D. Non-IP checksum (CRC) offloads 189 * 190 * NETIF_F_SCTP_CRC - This feature indicates that a device is capable of 191 * offloading the SCTP CRC in a packet. To perform this offload the stack 192 * will set set csum_start and csum_offset accordingly, set ip_summed to 193 * CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in 194 * the skbuff that the CHECKSUM_PARTIAL refers to CRC32c. 195 * A driver that supports both IP checksum offload and SCTP CRC32c offload 196 * must verify which offload is configured for a packet by testing the 197 * value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve 198 * CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1. 199 * 200 * NETIF_F_FCOE_CRC - This feature indicates that a device is capable of 201 * offloading the FCOE CRC in a packet. To perform this offload the stack 202 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset 203 * accordingly. Note the there is no indication in the skbuff that the 204 * CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports 205 * both IP checksum offload and FCOE CRC offload must verify which offload 206 * is configured for a packet presumably by inspecting packet headers. 207 * 208 * E. Checksumming on output with GSO. 209 * 210 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload 211 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the 212 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as 213 * part of the GSO operation is implied. If a checksum is being offloaded 214 * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset 215 * are set to refer to the outermost checksum being offload (two offloaded 216 * checksums are possible with UDP encapsulation). 217 */ 218 219 /* Don't change this without changing skb_csum_unnecessary! */ 220 #define CHECKSUM_NONE 0 221 #define CHECKSUM_UNNECESSARY 1 222 #define CHECKSUM_COMPLETE 2 223 #define CHECKSUM_PARTIAL 3 224 225 /* Maximum value in skb->csum_level */ 226 #define SKB_MAX_CSUM_LEVEL 3 227 228 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES) 229 #define SKB_WITH_OVERHEAD(X) \ 230 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 231 #define SKB_MAX_ORDER(X, ORDER) \ 232 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 233 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 234 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 235 236 /* return minimum truesize of one skb containing X bytes of data */ 237 #define SKB_TRUESIZE(X) ((X) + \ 238 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ 239 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 240 241 struct net_device; 242 struct scatterlist; 243 struct pipe_inode_info; 244 struct iov_iter; 245 struct napi_struct; 246 struct bpf_prog; 247 union bpf_attr; 248 struct skb_ext; 249 250 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 251 struct nf_bridge_info { 252 enum { 253 BRNF_PROTO_UNCHANGED, 254 BRNF_PROTO_8021Q, 255 BRNF_PROTO_PPPOE 256 } orig_proto:8; 257 u8 pkt_otherhost:1; 258 u8 in_prerouting:1; 259 u8 bridged_dnat:1; 260 __u16 frag_max_size; 261 struct net_device *physindev; 262 263 /* always valid & non-NULL from FORWARD on, for physdev match */ 264 struct net_device *physoutdev; 265 union { 266 /* prerouting: detect dnat in orig/reply direction */ 267 __be32 ipv4_daddr; 268 struct in6_addr ipv6_daddr; 269 270 /* after prerouting + nat detected: store original source 271 * mac since neigh resolution overwrites it, only used while 272 * skb is out in neigh layer. 273 */ 274 char neigh_header[8]; 275 }; 276 }; 277 #endif 278 279 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 280 /* Chain in tc_skb_ext will be used to share the tc chain with 281 * ovs recirc_id. It will be set to the current chain by tc 282 * and read by ovs to recirc_id. 283 */ 284 struct tc_skb_ext { 285 __u32 chain; 286 }; 287 #endif 288 289 struct sk_buff_head { 290 /* These two members must be first. */ 291 struct sk_buff *next; 292 struct sk_buff *prev; 293 294 __u32 qlen; 295 spinlock_t lock; 296 }; 297 298 struct sk_buff; 299 300 /* To allow 64K frame to be packed as single skb without frag_list we 301 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for 302 * buffers which do not start on a page boundary. 303 * 304 * Since GRO uses frags we allocate at least 16 regardless of page 305 * size. 306 */ 307 #if (65536/PAGE_SIZE + 1) < 16 308 #define MAX_SKB_FRAGS 16UL 309 #else 310 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1) 311 #endif 312 extern int sysctl_max_skb_frags; 313 314 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to 315 * segment using its current segmentation instead. 316 */ 317 #define GSO_BY_FRAGS 0xFFFF 318 319 typedef struct bio_vec skb_frag_t; 320 321 /** 322 * skb_frag_size() - Returns the size of a skb fragment 323 * @frag: skb fragment 324 */ 325 static inline unsigned int skb_frag_size(const skb_frag_t *frag) 326 { 327 return frag->bv_len; 328 } 329 330 /** 331 * skb_frag_size_set() - Sets the size of a skb fragment 332 * @frag: skb fragment 333 * @size: size of fragment 334 */ 335 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) 336 { 337 frag->bv_len = size; 338 } 339 340 /** 341 * skb_frag_size_add() - Increments the size of a skb fragment by @delta 342 * @frag: skb fragment 343 * @delta: value to add 344 */ 345 static inline void skb_frag_size_add(skb_frag_t *frag, int delta) 346 { 347 frag->bv_len += delta; 348 } 349 350 /** 351 * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta 352 * @frag: skb fragment 353 * @delta: value to subtract 354 */ 355 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) 356 { 357 frag->bv_len -= delta; 358 } 359 360 /** 361 * skb_frag_must_loop - Test if %p is a high memory page 362 * @p: fragment's page 363 */ 364 static inline bool skb_frag_must_loop(struct page *p) 365 { 366 #if defined(CONFIG_HIGHMEM) 367 if (PageHighMem(p)) 368 return true; 369 #endif 370 return false; 371 } 372 373 /** 374 * skb_frag_foreach_page - loop over pages in a fragment 375 * 376 * @f: skb frag to operate on 377 * @f_off: offset from start of f->bv_page 378 * @f_len: length from f_off to loop over 379 * @p: (temp var) current page 380 * @p_off: (temp var) offset from start of current page, 381 * non-zero only on first page. 382 * @p_len: (temp var) length in current page, 383 * < PAGE_SIZE only on first and last page. 384 * @copied: (temp var) length so far, excluding current p_len. 385 * 386 * A fragment can hold a compound page, in which case per-page 387 * operations, notably kmap_atomic, must be called for each 388 * regular page. 389 */ 390 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \ 391 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \ 392 p_off = (f_off) & (PAGE_SIZE - 1), \ 393 p_len = skb_frag_must_loop(p) ? \ 394 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \ 395 copied = 0; \ 396 copied < f_len; \ 397 copied += p_len, p++, p_off = 0, \ 398 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \ 399 400 #define HAVE_HW_TIME_STAMP 401 402 /** 403 * struct skb_shared_hwtstamps - hardware time stamps 404 * @hwtstamp: hardware time stamp transformed into duration 405 * since arbitrary point in time 406 * 407 * Software time stamps generated by ktime_get_real() are stored in 408 * skb->tstamp. 409 * 410 * hwtstamps can only be compared against other hwtstamps from 411 * the same device. 412 * 413 * This structure is attached to packets as part of the 414 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 415 */ 416 struct skb_shared_hwtstamps { 417 ktime_t hwtstamp; 418 }; 419 420 /* Definitions for tx_flags in struct skb_shared_info */ 421 enum { 422 /* generate hardware time stamp */ 423 SKBTX_HW_TSTAMP = 1 << 0, 424 425 /* generate software time stamp when queueing packet to NIC */ 426 SKBTX_SW_TSTAMP = 1 << 1, 427 428 /* device driver is going to provide hardware time stamp */ 429 SKBTX_IN_PROGRESS = 1 << 2, 430 431 /* device driver supports TX zero-copy buffers */ 432 SKBTX_DEV_ZEROCOPY = 1 << 3, 433 434 /* generate wifi status information (where possible) */ 435 SKBTX_WIFI_STATUS = 1 << 4, 436 437 /* This indicates at least one fragment might be overwritten 438 * (as in vmsplice(), sendfile() ...) 439 * If we need to compute a TX checksum, we'll need to copy 440 * all frags to avoid possible bad checksum 441 */ 442 SKBTX_SHARED_FRAG = 1 << 5, 443 444 /* generate software time stamp when entering packet scheduling */ 445 SKBTX_SCHED_TSTAMP = 1 << 6, 446 }; 447 448 #define SKBTX_ZEROCOPY_FRAG (SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG) 449 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \ 450 SKBTX_SCHED_TSTAMP) 451 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP) 452 453 /* 454 * The callback notifies userspace to release buffers when skb DMA is done in 455 * lower device, the skb last reference should be 0 when calling this. 456 * The zerocopy_success argument is true if zero copy transmit occurred, 457 * false on data copy or out of memory error caused by data copy attempt. 458 * The ctx field is used to track device context. 459 * The desc field is used to track userspace buffer index. 460 */ 461 struct ubuf_info { 462 void (*callback)(struct ubuf_info *, bool zerocopy_success); 463 union { 464 struct { 465 unsigned long desc; 466 void *ctx; 467 }; 468 struct { 469 u32 id; 470 u16 len; 471 u16 zerocopy:1; 472 u32 bytelen; 473 }; 474 }; 475 refcount_t refcnt; 476 477 struct mmpin { 478 struct user_struct *user; 479 unsigned int num_pg; 480 } mmp; 481 }; 482 483 #define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg)) 484 485 int mm_account_pinned_pages(struct mmpin *mmp, size_t size); 486 void mm_unaccount_pinned_pages(struct mmpin *mmp); 487 488 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size); 489 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size, 490 struct ubuf_info *uarg); 491 492 static inline void sock_zerocopy_get(struct ubuf_info *uarg) 493 { 494 refcount_inc(&uarg->refcnt); 495 } 496 497 void sock_zerocopy_put(struct ubuf_info *uarg); 498 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref); 499 500 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success); 501 502 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len); 503 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 504 struct msghdr *msg, int len, 505 struct ubuf_info *uarg); 506 507 /* This data is invariant across clones and lives at 508 * the end of the header data, ie. at skb->end. 509 */ 510 struct skb_shared_info { 511 __u8 __unused; 512 __u8 meta_len; 513 __u8 nr_frags; 514 __u8 tx_flags; 515 unsigned short gso_size; 516 /* Warning: this field is not always filled in (UFO)! */ 517 unsigned short gso_segs; 518 struct sk_buff *frag_list; 519 struct skb_shared_hwtstamps hwtstamps; 520 unsigned int gso_type; 521 u32 tskey; 522 523 /* 524 * Warning : all fields before dataref are cleared in __alloc_skb() 525 */ 526 atomic_t dataref; 527 528 /* Intermediate layers must ensure that destructor_arg 529 * remains valid until skb destructor */ 530 void * destructor_arg; 531 532 /* must be last field, see pskb_expand_head() */ 533 skb_frag_t frags[MAX_SKB_FRAGS]; 534 }; 535 536 /* We divide dataref into two halves. The higher 16 bits hold references 537 * to the payload part of skb->data. The lower 16 bits hold references to 538 * the entire skb->data. A clone of a headerless skb holds the length of 539 * the header in skb->hdr_len. 540 * 541 * All users must obey the rule that the skb->data reference count must be 542 * greater than or equal to the payload reference count. 543 * 544 * Holding a reference to the payload part means that the user does not 545 * care about modifications to the header part of skb->data. 546 */ 547 #define SKB_DATAREF_SHIFT 16 548 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 549 550 551 enum { 552 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */ 553 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */ 554 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */ 555 }; 556 557 enum { 558 SKB_GSO_TCPV4 = 1 << 0, 559 560 /* This indicates the skb is from an untrusted source. */ 561 SKB_GSO_DODGY = 1 << 1, 562 563 /* This indicates the tcp segment has CWR set. */ 564 SKB_GSO_TCP_ECN = 1 << 2, 565 566 SKB_GSO_TCP_FIXEDID = 1 << 3, 567 568 SKB_GSO_TCPV6 = 1 << 4, 569 570 SKB_GSO_FCOE = 1 << 5, 571 572 SKB_GSO_GRE = 1 << 6, 573 574 SKB_GSO_GRE_CSUM = 1 << 7, 575 576 SKB_GSO_IPXIP4 = 1 << 8, 577 578 SKB_GSO_IPXIP6 = 1 << 9, 579 580 SKB_GSO_UDP_TUNNEL = 1 << 10, 581 582 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11, 583 584 SKB_GSO_PARTIAL = 1 << 12, 585 586 SKB_GSO_TUNNEL_REMCSUM = 1 << 13, 587 588 SKB_GSO_SCTP = 1 << 14, 589 590 SKB_GSO_ESP = 1 << 15, 591 592 SKB_GSO_UDP = 1 << 16, 593 594 SKB_GSO_UDP_L4 = 1 << 17, 595 596 SKB_GSO_FRAGLIST = 1 << 18, 597 }; 598 599 #if BITS_PER_LONG > 32 600 #define NET_SKBUFF_DATA_USES_OFFSET 1 601 #endif 602 603 #ifdef NET_SKBUFF_DATA_USES_OFFSET 604 typedef unsigned int sk_buff_data_t; 605 #else 606 typedef unsigned char *sk_buff_data_t; 607 #endif 608 609 /** 610 * struct sk_buff - socket buffer 611 * @next: Next buffer in list 612 * @prev: Previous buffer in list 613 * @tstamp: Time we arrived/left 614 * @skb_mstamp_ns: (aka @tstamp) earliest departure time; start point 615 * for retransmit timer 616 * @rbnode: RB tree node, alternative to next/prev for netem/tcp 617 * @list: queue head 618 * @sk: Socket we are owned by 619 * @ip_defrag_offset: (aka @sk) alternate use of @sk, used in 620 * fragmentation management 621 * @dev: Device we arrived on/are leaving by 622 * @dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL 623 * @cb: Control buffer. Free for use by every layer. Put private vars here 624 * @_skb_refdst: destination entry (with norefcount bit) 625 * @sp: the security path, used for xfrm 626 * @len: Length of actual data 627 * @data_len: Data length 628 * @mac_len: Length of link layer header 629 * @hdr_len: writable header length of cloned skb 630 * @csum: Checksum (must include start/offset pair) 631 * @csum_start: Offset from skb->head where checksumming should start 632 * @csum_offset: Offset from csum_start where checksum should be stored 633 * @priority: Packet queueing priority 634 * @ignore_df: allow local fragmentation 635 * @cloned: Head may be cloned (check refcnt to be sure) 636 * @ip_summed: Driver fed us an IP checksum 637 * @nohdr: Payload reference only, must not modify header 638 * @pkt_type: Packet class 639 * @fclone: skbuff clone status 640 * @ipvs_property: skbuff is owned by ipvs 641 * @inner_protocol_type: whether the inner protocol is 642 * ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO 643 * @remcsum_offload: remote checksum offload is enabled 644 * @offload_fwd_mark: Packet was L2-forwarded in hardware 645 * @offload_l3_fwd_mark: Packet was L3-forwarded in hardware 646 * @tc_skip_classify: do not classify packet. set by IFB device 647 * @tc_at_ingress: used within tc_classify to distinguish in/egress 648 * @tc_redirected: packet was redirected by a tc action 649 * @tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect 650 * @peeked: this packet has been seen already, so stats have been 651 * done for it, don't do them again 652 * @nf_trace: netfilter packet trace flag 653 * @protocol: Packet protocol from driver 654 * @destructor: Destruct function 655 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue) 656 * @_nfct: Associated connection, if any (with nfctinfo bits) 657 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 658 * @skb_iif: ifindex of device we arrived on 659 * @tc_index: Traffic control index 660 * @hash: the packet hash 661 * @queue_mapping: Queue mapping for multiqueue devices 662 * @head_frag: skb was allocated from page fragments, 663 * not allocated by kmalloc() or vmalloc(). 664 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves 665 * @active_extensions: active extensions (skb_ext_id types) 666 * @ndisc_nodetype: router type (from link layer) 667 * @ooo_okay: allow the mapping of a socket to a queue to be changed 668 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport 669 * ports. 670 * @sw_hash: indicates hash was computed in software stack 671 * @wifi_acked_valid: wifi_acked was set 672 * @wifi_acked: whether frame was acked on wifi or not 673 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS 674 * @encapsulation: indicates the inner headers in the skbuff are valid 675 * @encap_hdr_csum: software checksum is needed 676 * @csum_valid: checksum is already valid 677 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL 678 * @csum_complete_sw: checksum was completed by software 679 * @csum_level: indicates the number of consecutive checksums found in 680 * the packet minus one that have been verified as 681 * CHECKSUM_UNNECESSARY (max 3) 682 * @dst_pending_confirm: need to confirm neighbour 683 * @decrypted: Decrypted SKB 684 * @napi_id: id of the NAPI struct this skb came from 685 * @sender_cpu: (aka @napi_id) source CPU in XPS 686 * @secmark: security marking 687 * @mark: Generic packet mark 688 * @reserved_tailroom: (aka @mark) number of bytes of free space available 689 * at the tail of an sk_buff 690 * @vlan_present: VLAN tag is present 691 * @vlan_proto: vlan encapsulation protocol 692 * @vlan_tci: vlan tag control information 693 * @inner_protocol: Protocol (encapsulation) 694 * @inner_ipproto: (aka @inner_protocol) stores ipproto when 695 * skb->inner_protocol_type == ENCAP_TYPE_IPPROTO; 696 * @inner_transport_header: Inner transport layer header (encapsulation) 697 * @inner_network_header: Network layer header (encapsulation) 698 * @inner_mac_header: Link layer header (encapsulation) 699 * @transport_header: Transport layer header 700 * @network_header: Network layer header 701 * @mac_header: Link layer header 702 * @tail: Tail pointer 703 * @end: End pointer 704 * @head: Head of buffer 705 * @data: Data head pointer 706 * @truesize: Buffer size 707 * @users: User count - see {datagram,tcp}.c 708 * @extensions: allocated extensions, valid if active_extensions is nonzero 709 */ 710 711 struct sk_buff { 712 union { 713 struct { 714 /* These two members must be first. */ 715 struct sk_buff *next; 716 struct sk_buff *prev; 717 718 union { 719 struct net_device *dev; 720 /* Some protocols might use this space to store information, 721 * while device pointer would be NULL. 722 * UDP receive path is one user. 723 */ 724 unsigned long dev_scratch; 725 }; 726 }; 727 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */ 728 struct list_head list; 729 }; 730 731 union { 732 struct sock *sk; 733 int ip_defrag_offset; 734 }; 735 736 union { 737 ktime_t tstamp; 738 u64 skb_mstamp_ns; /* earliest departure time */ 739 }; 740 /* 741 * This is the control buffer. It is free to use for every 742 * layer. Please put your private variables there. If you 743 * want to keep them across layers you have to do a skb_clone() 744 * first. This is owned by whoever has the skb queued ATM. 745 */ 746 char cb[48] __aligned(8); 747 748 union { 749 struct { 750 unsigned long _skb_refdst; 751 void (*destructor)(struct sk_buff *skb); 752 }; 753 struct list_head tcp_tsorted_anchor; 754 }; 755 756 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 757 unsigned long _nfct; 758 #endif 759 unsigned int len, 760 data_len; 761 __u16 mac_len, 762 hdr_len; 763 764 /* Following fields are _not_ copied in __copy_skb_header() 765 * Note that queue_mapping is here mostly to fill a hole. 766 */ 767 __u16 queue_mapping; 768 769 /* if you move cloned around you also must adapt those constants */ 770 #ifdef __BIG_ENDIAN_BITFIELD 771 #define CLONED_MASK (1 << 7) 772 #else 773 #define CLONED_MASK 1 774 #endif 775 #define CLONED_OFFSET() offsetof(struct sk_buff, __cloned_offset) 776 777 /* private: */ 778 __u8 __cloned_offset[0]; 779 /* public: */ 780 __u8 cloned:1, 781 nohdr:1, 782 fclone:2, 783 peeked:1, 784 head_frag:1, 785 pfmemalloc:1; 786 #ifdef CONFIG_SKB_EXTENSIONS 787 __u8 active_extensions; 788 #endif 789 /* fields enclosed in headers_start/headers_end are copied 790 * using a single memcpy() in __copy_skb_header() 791 */ 792 /* private: */ 793 __u32 headers_start[0]; 794 /* public: */ 795 796 /* if you move pkt_type around you also must adapt those constants */ 797 #ifdef __BIG_ENDIAN_BITFIELD 798 #define PKT_TYPE_MAX (7 << 5) 799 #else 800 #define PKT_TYPE_MAX 7 801 #endif 802 #define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset) 803 804 /* private: */ 805 __u8 __pkt_type_offset[0]; 806 /* public: */ 807 __u8 pkt_type:3; 808 __u8 ignore_df:1; 809 __u8 nf_trace:1; 810 __u8 ip_summed:2; 811 __u8 ooo_okay:1; 812 813 __u8 l4_hash:1; 814 __u8 sw_hash:1; 815 __u8 wifi_acked_valid:1; 816 __u8 wifi_acked:1; 817 __u8 no_fcs:1; 818 /* Indicates the inner headers are valid in the skbuff. */ 819 __u8 encapsulation:1; 820 __u8 encap_hdr_csum:1; 821 __u8 csum_valid:1; 822 823 #ifdef __BIG_ENDIAN_BITFIELD 824 #define PKT_VLAN_PRESENT_BIT 7 825 #else 826 #define PKT_VLAN_PRESENT_BIT 0 827 #endif 828 #define PKT_VLAN_PRESENT_OFFSET() offsetof(struct sk_buff, __pkt_vlan_present_offset) 829 /* private: */ 830 __u8 __pkt_vlan_present_offset[0]; 831 /* public: */ 832 __u8 vlan_present:1; 833 __u8 csum_complete_sw:1; 834 __u8 csum_level:2; 835 __u8 csum_not_inet:1; 836 __u8 dst_pending_confirm:1; 837 #ifdef CONFIG_IPV6_NDISC_NODETYPE 838 __u8 ndisc_nodetype:2; 839 #endif 840 841 __u8 ipvs_property:1; 842 __u8 inner_protocol_type:1; 843 __u8 remcsum_offload:1; 844 #ifdef CONFIG_NET_SWITCHDEV 845 __u8 offload_fwd_mark:1; 846 __u8 offload_l3_fwd_mark:1; 847 #endif 848 #ifdef CONFIG_NET_CLS_ACT 849 __u8 tc_skip_classify:1; 850 __u8 tc_at_ingress:1; 851 __u8 tc_redirected:1; 852 __u8 tc_from_ingress:1; 853 #endif 854 #ifdef CONFIG_TLS_DEVICE 855 __u8 decrypted:1; 856 #endif 857 858 #ifdef CONFIG_NET_SCHED 859 __u16 tc_index; /* traffic control index */ 860 #endif 861 862 union { 863 __wsum csum; 864 struct { 865 __u16 csum_start; 866 __u16 csum_offset; 867 }; 868 }; 869 __u32 priority; 870 int skb_iif; 871 __u32 hash; 872 __be16 vlan_proto; 873 __u16 vlan_tci; 874 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS) 875 union { 876 unsigned int napi_id; 877 unsigned int sender_cpu; 878 }; 879 #endif 880 #ifdef CONFIG_NETWORK_SECMARK 881 __u32 secmark; 882 #endif 883 884 union { 885 __u32 mark; 886 __u32 reserved_tailroom; 887 }; 888 889 union { 890 __be16 inner_protocol; 891 __u8 inner_ipproto; 892 }; 893 894 __u16 inner_transport_header; 895 __u16 inner_network_header; 896 __u16 inner_mac_header; 897 898 __be16 protocol; 899 __u16 transport_header; 900 __u16 network_header; 901 __u16 mac_header; 902 903 /* private: */ 904 __u32 headers_end[0]; 905 /* public: */ 906 907 /* These elements must be at the end, see alloc_skb() for details. */ 908 sk_buff_data_t tail; 909 sk_buff_data_t end; 910 unsigned char *head, 911 *data; 912 unsigned int truesize; 913 refcount_t users; 914 915 #ifdef CONFIG_SKB_EXTENSIONS 916 /* only useable after checking ->active_extensions != 0 */ 917 struct skb_ext *extensions; 918 #endif 919 }; 920 921 #ifdef __KERNEL__ 922 /* 923 * Handling routines are only of interest to the kernel 924 */ 925 926 #define SKB_ALLOC_FCLONE 0x01 927 #define SKB_ALLOC_RX 0x02 928 #define SKB_ALLOC_NAPI 0x04 929 930 /** 931 * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves 932 * @skb: buffer 933 */ 934 static inline bool skb_pfmemalloc(const struct sk_buff *skb) 935 { 936 return unlikely(skb->pfmemalloc); 937 } 938 939 /* 940 * skb might have a dst pointer attached, refcounted or not. 941 * _skb_refdst low order bit is set if refcount was _not_ taken 942 */ 943 #define SKB_DST_NOREF 1UL 944 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 945 946 /** 947 * skb_dst - returns skb dst_entry 948 * @skb: buffer 949 * 950 * Returns skb dst_entry, regardless of reference taken or not. 951 */ 952 static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 953 { 954 /* If refdst was not refcounted, check we still are in a 955 * rcu_read_lock section 956 */ 957 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 958 !rcu_read_lock_held() && 959 !rcu_read_lock_bh_held()); 960 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 961 } 962 963 /** 964 * skb_dst_set - sets skb dst 965 * @skb: buffer 966 * @dst: dst entry 967 * 968 * Sets skb dst, assuming a reference was taken on dst and should 969 * be released by skb_dst_drop() 970 */ 971 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 972 { 973 skb->_skb_refdst = (unsigned long)dst; 974 } 975 976 /** 977 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference 978 * @skb: buffer 979 * @dst: dst entry 980 * 981 * Sets skb dst, assuming a reference was not taken on dst. 982 * If dst entry is cached, we do not take reference and dst_release 983 * will be avoided by refdst_drop. If dst entry is not cached, we take 984 * reference, so that last dst_release can destroy the dst immediately. 985 */ 986 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) 987 { 988 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 989 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF; 990 } 991 992 /** 993 * skb_dst_is_noref - Test if skb dst isn't refcounted 994 * @skb: buffer 995 */ 996 static inline bool skb_dst_is_noref(const struct sk_buff *skb) 997 { 998 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 999 } 1000 1001 /** 1002 * skb_rtable - Returns the skb &rtable 1003 * @skb: buffer 1004 */ 1005 static inline struct rtable *skb_rtable(const struct sk_buff *skb) 1006 { 1007 return (struct rtable *)skb_dst(skb); 1008 } 1009 1010 /* For mangling skb->pkt_type from user space side from applications 1011 * such as nft, tc, etc, we only allow a conservative subset of 1012 * possible pkt_types to be set. 1013 */ 1014 static inline bool skb_pkt_type_ok(u32 ptype) 1015 { 1016 return ptype <= PACKET_OTHERHOST; 1017 } 1018 1019 /** 1020 * skb_napi_id - Returns the skb's NAPI id 1021 * @skb: buffer 1022 */ 1023 static inline unsigned int skb_napi_id(const struct sk_buff *skb) 1024 { 1025 #ifdef CONFIG_NET_RX_BUSY_POLL 1026 return skb->napi_id; 1027 #else 1028 return 0; 1029 #endif 1030 } 1031 1032 /** 1033 * skb_unref - decrement the skb's reference count 1034 * @skb: buffer 1035 * 1036 * Returns true if we can free the skb. 1037 */ 1038 static inline bool skb_unref(struct sk_buff *skb) 1039 { 1040 if (unlikely(!skb)) 1041 return false; 1042 if (likely(refcount_read(&skb->users) == 1)) 1043 smp_rmb(); 1044 else if (likely(!refcount_dec_and_test(&skb->users))) 1045 return false; 1046 1047 return true; 1048 } 1049 1050 void skb_release_head_state(struct sk_buff *skb); 1051 void kfree_skb(struct sk_buff *skb); 1052 void kfree_skb_list(struct sk_buff *segs); 1053 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt); 1054 void skb_tx_error(struct sk_buff *skb); 1055 void consume_skb(struct sk_buff *skb); 1056 void __consume_stateless_skb(struct sk_buff *skb); 1057 void __kfree_skb(struct sk_buff *skb); 1058 extern struct kmem_cache *skbuff_head_cache; 1059 1060 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); 1061 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 1062 bool *fragstolen, int *delta_truesize); 1063 1064 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags, 1065 int node); 1066 struct sk_buff *__build_skb(void *data, unsigned int frag_size); 1067 struct sk_buff *build_skb(void *data, unsigned int frag_size); 1068 struct sk_buff *build_skb_around(struct sk_buff *skb, 1069 void *data, unsigned int frag_size); 1070 1071 /** 1072 * alloc_skb - allocate a network buffer 1073 * @size: size to allocate 1074 * @priority: allocation mask 1075 * 1076 * This function is a convenient wrapper around __alloc_skb(). 1077 */ 1078 static inline struct sk_buff *alloc_skb(unsigned int size, 1079 gfp_t priority) 1080 { 1081 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 1082 } 1083 1084 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 1085 unsigned long data_len, 1086 int max_page_order, 1087 int *errcode, 1088 gfp_t gfp_mask); 1089 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first); 1090 1091 /* Layout of fast clones : [skb1][skb2][fclone_ref] */ 1092 struct sk_buff_fclones { 1093 struct sk_buff skb1; 1094 1095 struct sk_buff skb2; 1096 1097 refcount_t fclone_ref; 1098 }; 1099 1100 /** 1101 * skb_fclone_busy - check if fclone is busy 1102 * @sk: socket 1103 * @skb: buffer 1104 * 1105 * Returns true if skb is a fast clone, and its clone is not freed. 1106 * Some drivers call skb_orphan() in their ndo_start_xmit(), 1107 * so we also check that this didnt happen. 1108 */ 1109 static inline bool skb_fclone_busy(const struct sock *sk, 1110 const struct sk_buff *skb) 1111 { 1112 const struct sk_buff_fclones *fclones; 1113 1114 fclones = container_of(skb, struct sk_buff_fclones, skb1); 1115 1116 return skb->fclone == SKB_FCLONE_ORIG && 1117 refcount_read(&fclones->fclone_ref) > 1 && 1118 fclones->skb2.sk == sk; 1119 } 1120 1121 /** 1122 * alloc_skb_fclone - allocate a network buffer from fclone cache 1123 * @size: size to allocate 1124 * @priority: allocation mask 1125 * 1126 * This function is a convenient wrapper around __alloc_skb(). 1127 */ 1128 static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 1129 gfp_t priority) 1130 { 1131 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); 1132 } 1133 1134 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 1135 void skb_headers_offset_update(struct sk_buff *skb, int off); 1136 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); 1137 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority); 1138 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old); 1139 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority); 1140 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1141 gfp_t gfp_mask, bool fclone); 1142 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, 1143 gfp_t gfp_mask) 1144 { 1145 return __pskb_copy_fclone(skb, headroom, gfp_mask, false); 1146 } 1147 1148 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask); 1149 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 1150 unsigned int headroom); 1151 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, 1152 int newtailroom, gfp_t priority); 1153 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 1154 int offset, int len); 1155 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, 1156 int offset, int len); 1157 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer); 1158 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error); 1159 1160 /** 1161 * skb_pad - zero pad the tail of an skb 1162 * @skb: buffer to pad 1163 * @pad: space to pad 1164 * 1165 * Ensure that a buffer is followed by a padding area that is zero 1166 * filled. Used by network drivers which may DMA or transfer data 1167 * beyond the buffer end onto the wire. 1168 * 1169 * May return error in out of memory cases. The skb is freed on error. 1170 */ 1171 static inline int skb_pad(struct sk_buff *skb, int pad) 1172 { 1173 return __skb_pad(skb, pad, true); 1174 } 1175 #define dev_kfree_skb(a) consume_skb(a) 1176 1177 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 1178 int offset, size_t size); 1179 1180 struct skb_seq_state { 1181 __u32 lower_offset; 1182 __u32 upper_offset; 1183 __u32 frag_idx; 1184 __u32 stepped_offset; 1185 struct sk_buff *root_skb; 1186 struct sk_buff *cur_skb; 1187 __u8 *frag_data; 1188 }; 1189 1190 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 1191 unsigned int to, struct skb_seq_state *st); 1192 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 1193 struct skb_seq_state *st); 1194 void skb_abort_seq_read(struct skb_seq_state *st); 1195 1196 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 1197 unsigned int to, struct ts_config *config); 1198 1199 /* 1200 * Packet hash types specify the type of hash in skb_set_hash. 1201 * 1202 * Hash types refer to the protocol layer addresses which are used to 1203 * construct a packet's hash. The hashes are used to differentiate or identify 1204 * flows of the protocol layer for the hash type. Hash types are either 1205 * layer-2 (L2), layer-3 (L3), or layer-4 (L4). 1206 * 1207 * Properties of hashes: 1208 * 1209 * 1) Two packets in different flows have different hash values 1210 * 2) Two packets in the same flow should have the same hash value 1211 * 1212 * A hash at a higher layer is considered to be more specific. A driver should 1213 * set the most specific hash possible. 1214 * 1215 * A driver cannot indicate a more specific hash than the layer at which a hash 1216 * was computed. For instance an L3 hash cannot be set as an L4 hash. 1217 * 1218 * A driver may indicate a hash level which is less specific than the 1219 * actual layer the hash was computed on. For instance, a hash computed 1220 * at L4 may be considered an L3 hash. This should only be done if the 1221 * driver can't unambiguously determine that the HW computed the hash at 1222 * the higher layer. Note that the "should" in the second property above 1223 * permits this. 1224 */ 1225 enum pkt_hash_types { 1226 PKT_HASH_TYPE_NONE, /* Undefined type */ 1227 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */ 1228 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */ 1229 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */ 1230 }; 1231 1232 static inline void skb_clear_hash(struct sk_buff *skb) 1233 { 1234 skb->hash = 0; 1235 skb->sw_hash = 0; 1236 skb->l4_hash = 0; 1237 } 1238 1239 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb) 1240 { 1241 if (!skb->l4_hash) 1242 skb_clear_hash(skb); 1243 } 1244 1245 static inline void 1246 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4) 1247 { 1248 skb->l4_hash = is_l4; 1249 skb->sw_hash = is_sw; 1250 skb->hash = hash; 1251 } 1252 1253 static inline void 1254 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type) 1255 { 1256 /* Used by drivers to set hash from HW */ 1257 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4); 1258 } 1259 1260 static inline void 1261 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4) 1262 { 1263 __skb_set_hash(skb, hash, true, is_l4); 1264 } 1265 1266 void __skb_get_hash(struct sk_buff *skb); 1267 u32 __skb_get_hash_symmetric(const struct sk_buff *skb); 1268 u32 skb_get_poff(const struct sk_buff *skb); 1269 u32 __skb_get_poff(const struct sk_buff *skb, void *data, 1270 const struct flow_keys_basic *keys, int hlen); 1271 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto, 1272 void *data, int hlen_proto); 1273 1274 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb, 1275 int thoff, u8 ip_proto) 1276 { 1277 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0); 1278 } 1279 1280 void skb_flow_dissector_init(struct flow_dissector *flow_dissector, 1281 const struct flow_dissector_key *key, 1282 unsigned int key_count); 1283 1284 #ifdef CONFIG_NET 1285 int skb_flow_dissector_prog_query(const union bpf_attr *attr, 1286 union bpf_attr __user *uattr); 1287 int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr, 1288 struct bpf_prog *prog); 1289 1290 int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr); 1291 #else 1292 static inline int skb_flow_dissector_prog_query(const union bpf_attr *attr, 1293 union bpf_attr __user *uattr) 1294 { 1295 return -EOPNOTSUPP; 1296 } 1297 1298 static inline int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr, 1299 struct bpf_prog *prog) 1300 { 1301 return -EOPNOTSUPP; 1302 } 1303 1304 static inline int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr) 1305 { 1306 return -EOPNOTSUPP; 1307 } 1308 #endif 1309 1310 struct bpf_flow_dissector; 1311 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx, 1312 __be16 proto, int nhoff, int hlen, unsigned int flags); 1313 1314 bool __skb_flow_dissect(const struct net *net, 1315 const struct sk_buff *skb, 1316 struct flow_dissector *flow_dissector, 1317 void *target_container, 1318 void *data, __be16 proto, int nhoff, int hlen, 1319 unsigned int flags); 1320 1321 static inline bool skb_flow_dissect(const struct sk_buff *skb, 1322 struct flow_dissector *flow_dissector, 1323 void *target_container, unsigned int flags) 1324 { 1325 return __skb_flow_dissect(NULL, skb, flow_dissector, 1326 target_container, NULL, 0, 0, 0, flags); 1327 } 1328 1329 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb, 1330 struct flow_keys *flow, 1331 unsigned int flags) 1332 { 1333 memset(flow, 0, sizeof(*flow)); 1334 return __skb_flow_dissect(NULL, skb, &flow_keys_dissector, 1335 flow, NULL, 0, 0, 0, flags); 1336 } 1337 1338 static inline bool 1339 skb_flow_dissect_flow_keys_basic(const struct net *net, 1340 const struct sk_buff *skb, 1341 struct flow_keys_basic *flow, void *data, 1342 __be16 proto, int nhoff, int hlen, 1343 unsigned int flags) 1344 { 1345 memset(flow, 0, sizeof(*flow)); 1346 return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow, 1347 data, proto, nhoff, hlen, flags); 1348 } 1349 1350 void skb_flow_dissect_meta(const struct sk_buff *skb, 1351 struct flow_dissector *flow_dissector, 1352 void *target_container); 1353 1354 /* Gets a skb connection tracking info, ctinfo map should be a 1355 * a map of mapsize to translate enum ip_conntrack_info states 1356 * to user states. 1357 */ 1358 void 1359 skb_flow_dissect_ct(const struct sk_buff *skb, 1360 struct flow_dissector *flow_dissector, 1361 void *target_container, 1362 u16 *ctinfo_map, 1363 size_t mapsize); 1364 void 1365 skb_flow_dissect_tunnel_info(const struct sk_buff *skb, 1366 struct flow_dissector *flow_dissector, 1367 void *target_container); 1368 1369 static inline __u32 skb_get_hash(struct sk_buff *skb) 1370 { 1371 if (!skb->l4_hash && !skb->sw_hash) 1372 __skb_get_hash(skb); 1373 1374 return skb->hash; 1375 } 1376 1377 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6) 1378 { 1379 if (!skb->l4_hash && !skb->sw_hash) { 1380 struct flow_keys keys; 1381 __u32 hash = __get_hash_from_flowi6(fl6, &keys); 1382 1383 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys)); 1384 } 1385 1386 return skb->hash; 1387 } 1388 1389 __u32 skb_get_hash_perturb(const struct sk_buff *skb, 1390 const siphash_key_t *perturb); 1391 1392 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb) 1393 { 1394 return skb->hash; 1395 } 1396 1397 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from) 1398 { 1399 to->hash = from->hash; 1400 to->sw_hash = from->sw_hash; 1401 to->l4_hash = from->l4_hash; 1402 }; 1403 1404 static inline void skb_copy_decrypted(struct sk_buff *to, 1405 const struct sk_buff *from) 1406 { 1407 #ifdef CONFIG_TLS_DEVICE 1408 to->decrypted = from->decrypted; 1409 #endif 1410 } 1411 1412 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1413 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1414 { 1415 return skb->head + skb->end; 1416 } 1417 1418 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1419 { 1420 return skb->end; 1421 } 1422 #else 1423 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1424 { 1425 return skb->end; 1426 } 1427 1428 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1429 { 1430 return skb->end - skb->head; 1431 } 1432 #endif 1433 1434 /* Internal */ 1435 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 1436 1437 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 1438 { 1439 return &skb_shinfo(skb)->hwtstamps; 1440 } 1441 1442 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb) 1443 { 1444 bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY; 1445 1446 return is_zcopy ? skb_uarg(skb) : NULL; 1447 } 1448 1449 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg, 1450 bool *have_ref) 1451 { 1452 if (skb && uarg && !skb_zcopy(skb)) { 1453 if (unlikely(have_ref && *have_ref)) 1454 *have_ref = false; 1455 else 1456 sock_zerocopy_get(uarg); 1457 skb_shinfo(skb)->destructor_arg = uarg; 1458 skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG; 1459 } 1460 } 1461 1462 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val) 1463 { 1464 skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL); 1465 skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG; 1466 } 1467 1468 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb) 1469 { 1470 return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL; 1471 } 1472 1473 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb) 1474 { 1475 return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL); 1476 } 1477 1478 /* Release a reference on a zerocopy structure */ 1479 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy) 1480 { 1481 struct ubuf_info *uarg = skb_zcopy(skb); 1482 1483 if (uarg) { 1484 if (skb_zcopy_is_nouarg(skb)) { 1485 /* no notification callback */ 1486 } else if (uarg->callback == sock_zerocopy_callback) { 1487 uarg->zerocopy = uarg->zerocopy && zerocopy; 1488 sock_zerocopy_put(uarg); 1489 } else { 1490 uarg->callback(uarg, zerocopy); 1491 } 1492 1493 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG; 1494 } 1495 } 1496 1497 /* Abort a zerocopy operation and revert zckey on error in send syscall */ 1498 static inline void skb_zcopy_abort(struct sk_buff *skb) 1499 { 1500 struct ubuf_info *uarg = skb_zcopy(skb); 1501 1502 if (uarg) { 1503 sock_zerocopy_put_abort(uarg, false); 1504 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG; 1505 } 1506 } 1507 1508 static inline void skb_mark_not_on_list(struct sk_buff *skb) 1509 { 1510 skb->next = NULL; 1511 } 1512 1513 /* Iterate through singly-linked GSO fragments of an skb. */ 1514 #define skb_list_walk_safe(first, skb, next_skb) \ 1515 for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb); \ 1516 (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL) 1517 1518 static inline void skb_list_del_init(struct sk_buff *skb) 1519 { 1520 __list_del_entry(&skb->list); 1521 skb_mark_not_on_list(skb); 1522 } 1523 1524 /** 1525 * skb_queue_empty - check if a queue is empty 1526 * @list: queue head 1527 * 1528 * Returns true if the queue is empty, false otherwise. 1529 */ 1530 static inline int skb_queue_empty(const struct sk_buff_head *list) 1531 { 1532 return list->next == (const struct sk_buff *) list; 1533 } 1534 1535 /** 1536 * skb_queue_empty_lockless - check if a queue is empty 1537 * @list: queue head 1538 * 1539 * Returns true if the queue is empty, false otherwise. 1540 * This variant can be used in lockless contexts. 1541 */ 1542 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list) 1543 { 1544 return READ_ONCE(list->next) == (const struct sk_buff *) list; 1545 } 1546 1547 1548 /** 1549 * skb_queue_is_last - check if skb is the last entry in the queue 1550 * @list: queue head 1551 * @skb: buffer 1552 * 1553 * Returns true if @skb is the last buffer on the list. 1554 */ 1555 static inline bool skb_queue_is_last(const struct sk_buff_head *list, 1556 const struct sk_buff *skb) 1557 { 1558 return skb->next == (const struct sk_buff *) list; 1559 } 1560 1561 /** 1562 * skb_queue_is_first - check if skb is the first entry in the queue 1563 * @list: queue head 1564 * @skb: buffer 1565 * 1566 * Returns true if @skb is the first buffer on the list. 1567 */ 1568 static inline bool skb_queue_is_first(const struct sk_buff_head *list, 1569 const struct sk_buff *skb) 1570 { 1571 return skb->prev == (const struct sk_buff *) list; 1572 } 1573 1574 /** 1575 * skb_queue_next - return the next packet in the queue 1576 * @list: queue head 1577 * @skb: current buffer 1578 * 1579 * Return the next packet in @list after @skb. It is only valid to 1580 * call this if skb_queue_is_last() evaluates to false. 1581 */ 1582 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 1583 const struct sk_buff *skb) 1584 { 1585 /* This BUG_ON may seem severe, but if we just return then we 1586 * are going to dereference garbage. 1587 */ 1588 BUG_ON(skb_queue_is_last(list, skb)); 1589 return skb->next; 1590 } 1591 1592 /** 1593 * skb_queue_prev - return the prev packet in the queue 1594 * @list: queue head 1595 * @skb: current buffer 1596 * 1597 * Return the prev packet in @list before @skb. It is only valid to 1598 * call this if skb_queue_is_first() evaluates to false. 1599 */ 1600 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 1601 const struct sk_buff *skb) 1602 { 1603 /* This BUG_ON may seem severe, but if we just return then we 1604 * are going to dereference garbage. 1605 */ 1606 BUG_ON(skb_queue_is_first(list, skb)); 1607 return skb->prev; 1608 } 1609 1610 /** 1611 * skb_get - reference buffer 1612 * @skb: buffer to reference 1613 * 1614 * Makes another reference to a socket buffer and returns a pointer 1615 * to the buffer. 1616 */ 1617 static inline struct sk_buff *skb_get(struct sk_buff *skb) 1618 { 1619 refcount_inc(&skb->users); 1620 return skb; 1621 } 1622 1623 /* 1624 * If users == 1, we are the only owner and can avoid redundant atomic changes. 1625 */ 1626 1627 /** 1628 * skb_cloned - is the buffer a clone 1629 * @skb: buffer to check 1630 * 1631 * Returns true if the buffer was generated with skb_clone() and is 1632 * one of multiple shared copies of the buffer. Cloned buffers are 1633 * shared data so must not be written to under normal circumstances. 1634 */ 1635 static inline int skb_cloned(const struct sk_buff *skb) 1636 { 1637 return skb->cloned && 1638 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 1639 } 1640 1641 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) 1642 { 1643 might_sleep_if(gfpflags_allow_blocking(pri)); 1644 1645 if (skb_cloned(skb)) 1646 return pskb_expand_head(skb, 0, 0, pri); 1647 1648 return 0; 1649 } 1650 1651 /** 1652 * skb_header_cloned - is the header a clone 1653 * @skb: buffer to check 1654 * 1655 * Returns true if modifying the header part of the buffer requires 1656 * the data to be copied. 1657 */ 1658 static inline int skb_header_cloned(const struct sk_buff *skb) 1659 { 1660 int dataref; 1661 1662 if (!skb->cloned) 1663 return 0; 1664 1665 dataref = atomic_read(&skb_shinfo(skb)->dataref); 1666 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 1667 return dataref != 1; 1668 } 1669 1670 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri) 1671 { 1672 might_sleep_if(gfpflags_allow_blocking(pri)); 1673 1674 if (skb_header_cloned(skb)) 1675 return pskb_expand_head(skb, 0, 0, pri); 1676 1677 return 0; 1678 } 1679 1680 /** 1681 * __skb_header_release - release reference to header 1682 * @skb: buffer to operate on 1683 */ 1684 static inline void __skb_header_release(struct sk_buff *skb) 1685 { 1686 skb->nohdr = 1; 1687 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT)); 1688 } 1689 1690 1691 /** 1692 * skb_shared - is the buffer shared 1693 * @skb: buffer to check 1694 * 1695 * Returns true if more than one person has a reference to this 1696 * buffer. 1697 */ 1698 static inline int skb_shared(const struct sk_buff *skb) 1699 { 1700 return refcount_read(&skb->users) != 1; 1701 } 1702 1703 /** 1704 * skb_share_check - check if buffer is shared and if so clone it 1705 * @skb: buffer to check 1706 * @pri: priority for memory allocation 1707 * 1708 * If the buffer is shared the buffer is cloned and the old copy 1709 * drops a reference. A new clone with a single reference is returned. 1710 * If the buffer is not shared the original buffer is returned. When 1711 * being called from interrupt status or with spinlocks held pri must 1712 * be GFP_ATOMIC. 1713 * 1714 * NULL is returned on a memory allocation failure. 1715 */ 1716 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) 1717 { 1718 might_sleep_if(gfpflags_allow_blocking(pri)); 1719 if (skb_shared(skb)) { 1720 struct sk_buff *nskb = skb_clone(skb, pri); 1721 1722 if (likely(nskb)) 1723 consume_skb(skb); 1724 else 1725 kfree_skb(skb); 1726 skb = nskb; 1727 } 1728 return skb; 1729 } 1730 1731 /* 1732 * Copy shared buffers into a new sk_buff. We effectively do COW on 1733 * packets to handle cases where we have a local reader and forward 1734 * and a couple of other messy ones. The normal one is tcpdumping 1735 * a packet thats being forwarded. 1736 */ 1737 1738 /** 1739 * skb_unshare - make a copy of a shared buffer 1740 * @skb: buffer to check 1741 * @pri: priority for memory allocation 1742 * 1743 * If the socket buffer is a clone then this function creates a new 1744 * copy of the data, drops a reference count on the old copy and returns 1745 * the new copy with the reference count at 1. If the buffer is not a clone 1746 * the original buffer is returned. When called with a spinlock held or 1747 * from interrupt state @pri must be %GFP_ATOMIC 1748 * 1749 * %NULL is returned on a memory allocation failure. 1750 */ 1751 static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 1752 gfp_t pri) 1753 { 1754 might_sleep_if(gfpflags_allow_blocking(pri)); 1755 if (skb_cloned(skb)) { 1756 struct sk_buff *nskb = skb_copy(skb, pri); 1757 1758 /* Free our shared copy */ 1759 if (likely(nskb)) 1760 consume_skb(skb); 1761 else 1762 kfree_skb(skb); 1763 skb = nskb; 1764 } 1765 return skb; 1766 } 1767 1768 /** 1769 * skb_peek - peek at the head of an &sk_buff_head 1770 * @list_: list to peek at 1771 * 1772 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1773 * be careful with this one. A peek leaves the buffer on the 1774 * list and someone else may run off with it. You must hold 1775 * the appropriate locks or have a private queue to do this. 1776 * 1777 * Returns %NULL for an empty list or a pointer to the head element. 1778 * The reference count is not incremented and the reference is therefore 1779 * volatile. Use with caution. 1780 */ 1781 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) 1782 { 1783 struct sk_buff *skb = list_->next; 1784 1785 if (skb == (struct sk_buff *)list_) 1786 skb = NULL; 1787 return skb; 1788 } 1789 1790 /** 1791 * __skb_peek - peek at the head of a non-empty &sk_buff_head 1792 * @list_: list to peek at 1793 * 1794 * Like skb_peek(), but the caller knows that the list is not empty. 1795 */ 1796 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_) 1797 { 1798 return list_->next; 1799 } 1800 1801 /** 1802 * skb_peek_next - peek skb following the given one from a queue 1803 * @skb: skb to start from 1804 * @list_: list to peek at 1805 * 1806 * Returns %NULL when the end of the list is met or a pointer to the 1807 * next element. The reference count is not incremented and the 1808 * reference is therefore volatile. Use with caution. 1809 */ 1810 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, 1811 const struct sk_buff_head *list_) 1812 { 1813 struct sk_buff *next = skb->next; 1814 1815 if (next == (struct sk_buff *)list_) 1816 next = NULL; 1817 return next; 1818 } 1819 1820 /** 1821 * skb_peek_tail - peek at the tail of an &sk_buff_head 1822 * @list_: list to peek at 1823 * 1824 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1825 * be careful with this one. A peek leaves the buffer on the 1826 * list and someone else may run off with it. You must hold 1827 * the appropriate locks or have a private queue to do this. 1828 * 1829 * Returns %NULL for an empty list or a pointer to the tail element. 1830 * The reference count is not incremented and the reference is therefore 1831 * volatile. Use with caution. 1832 */ 1833 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) 1834 { 1835 struct sk_buff *skb = READ_ONCE(list_->prev); 1836 1837 if (skb == (struct sk_buff *)list_) 1838 skb = NULL; 1839 return skb; 1840 1841 } 1842 1843 /** 1844 * skb_queue_len - get queue length 1845 * @list_: list to measure 1846 * 1847 * Return the length of an &sk_buff queue. 1848 */ 1849 static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 1850 { 1851 return list_->qlen; 1852 } 1853 1854 /** 1855 * skb_queue_len_lockless - get queue length 1856 * @list_: list to measure 1857 * 1858 * Return the length of an &sk_buff queue. 1859 * This variant can be used in lockless contexts. 1860 */ 1861 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_) 1862 { 1863 return READ_ONCE(list_->qlen); 1864 } 1865 1866 /** 1867 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 1868 * @list: queue to initialize 1869 * 1870 * This initializes only the list and queue length aspects of 1871 * an sk_buff_head object. This allows to initialize the list 1872 * aspects of an sk_buff_head without reinitializing things like 1873 * the spinlock. It can also be used for on-stack sk_buff_head 1874 * objects where the spinlock is known to not be used. 1875 */ 1876 static inline void __skb_queue_head_init(struct sk_buff_head *list) 1877 { 1878 list->prev = list->next = (struct sk_buff *)list; 1879 list->qlen = 0; 1880 } 1881 1882 /* 1883 * This function creates a split out lock class for each invocation; 1884 * this is needed for now since a whole lot of users of the skb-queue 1885 * infrastructure in drivers have different locking usage (in hardirq) 1886 * than the networking core (in softirq only). In the long run either the 1887 * network layer or drivers should need annotation to consolidate the 1888 * main types of usage into 3 classes. 1889 */ 1890 static inline void skb_queue_head_init(struct sk_buff_head *list) 1891 { 1892 spin_lock_init(&list->lock); 1893 __skb_queue_head_init(list); 1894 } 1895 1896 static inline void skb_queue_head_init_class(struct sk_buff_head *list, 1897 struct lock_class_key *class) 1898 { 1899 skb_queue_head_init(list); 1900 lockdep_set_class(&list->lock, class); 1901 } 1902 1903 /* 1904 * Insert an sk_buff on a list. 1905 * 1906 * The "__skb_xxxx()" functions are the non-atomic ones that 1907 * can only be called with interrupts disabled. 1908 */ 1909 static inline void __skb_insert(struct sk_buff *newsk, 1910 struct sk_buff *prev, struct sk_buff *next, 1911 struct sk_buff_head *list) 1912 { 1913 /* See skb_queue_empty_lockless() and skb_peek_tail() 1914 * for the opposite READ_ONCE() 1915 */ 1916 WRITE_ONCE(newsk->next, next); 1917 WRITE_ONCE(newsk->prev, prev); 1918 WRITE_ONCE(next->prev, newsk); 1919 WRITE_ONCE(prev->next, newsk); 1920 list->qlen++; 1921 } 1922 1923 static inline void __skb_queue_splice(const struct sk_buff_head *list, 1924 struct sk_buff *prev, 1925 struct sk_buff *next) 1926 { 1927 struct sk_buff *first = list->next; 1928 struct sk_buff *last = list->prev; 1929 1930 WRITE_ONCE(first->prev, prev); 1931 WRITE_ONCE(prev->next, first); 1932 1933 WRITE_ONCE(last->next, next); 1934 WRITE_ONCE(next->prev, last); 1935 } 1936 1937 /** 1938 * skb_queue_splice - join two skb lists, this is designed for stacks 1939 * @list: the new list to add 1940 * @head: the place to add it in the first list 1941 */ 1942 static inline void skb_queue_splice(const struct sk_buff_head *list, 1943 struct sk_buff_head *head) 1944 { 1945 if (!skb_queue_empty(list)) { 1946 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1947 head->qlen += list->qlen; 1948 } 1949 } 1950 1951 /** 1952 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list 1953 * @list: the new list to add 1954 * @head: the place to add it in the first list 1955 * 1956 * The list at @list is reinitialised 1957 */ 1958 static inline void skb_queue_splice_init(struct sk_buff_head *list, 1959 struct sk_buff_head *head) 1960 { 1961 if (!skb_queue_empty(list)) { 1962 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1963 head->qlen += list->qlen; 1964 __skb_queue_head_init(list); 1965 } 1966 } 1967 1968 /** 1969 * skb_queue_splice_tail - join two skb lists, each list being a queue 1970 * @list: the new list to add 1971 * @head: the place to add it in the first list 1972 */ 1973 static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 1974 struct sk_buff_head *head) 1975 { 1976 if (!skb_queue_empty(list)) { 1977 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1978 head->qlen += list->qlen; 1979 } 1980 } 1981 1982 /** 1983 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list 1984 * @list: the new list to add 1985 * @head: the place to add it in the first list 1986 * 1987 * Each of the lists is a queue. 1988 * The list at @list is reinitialised 1989 */ 1990 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 1991 struct sk_buff_head *head) 1992 { 1993 if (!skb_queue_empty(list)) { 1994 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1995 head->qlen += list->qlen; 1996 __skb_queue_head_init(list); 1997 } 1998 } 1999 2000 /** 2001 * __skb_queue_after - queue a buffer at the list head 2002 * @list: list to use 2003 * @prev: place after this buffer 2004 * @newsk: buffer to queue 2005 * 2006 * Queue a buffer int the middle of a list. This function takes no locks 2007 * and you must therefore hold required locks before calling it. 2008 * 2009 * A buffer cannot be placed on two lists at the same time. 2010 */ 2011 static inline void __skb_queue_after(struct sk_buff_head *list, 2012 struct sk_buff *prev, 2013 struct sk_buff *newsk) 2014 { 2015 __skb_insert(newsk, prev, prev->next, list); 2016 } 2017 2018 void skb_append(struct sk_buff *old, struct sk_buff *newsk, 2019 struct sk_buff_head *list); 2020 2021 static inline void __skb_queue_before(struct sk_buff_head *list, 2022 struct sk_buff *next, 2023 struct sk_buff *newsk) 2024 { 2025 __skb_insert(newsk, next->prev, next, list); 2026 } 2027 2028 /** 2029 * __skb_queue_head - queue a buffer at the list head 2030 * @list: list to use 2031 * @newsk: buffer to queue 2032 * 2033 * Queue a buffer at the start of a list. This function takes no locks 2034 * and you must therefore hold required locks before calling it. 2035 * 2036 * A buffer cannot be placed on two lists at the same time. 2037 */ 2038 static inline void __skb_queue_head(struct sk_buff_head *list, 2039 struct sk_buff *newsk) 2040 { 2041 __skb_queue_after(list, (struct sk_buff *)list, newsk); 2042 } 2043 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 2044 2045 /** 2046 * __skb_queue_tail - queue a buffer at the list tail 2047 * @list: list to use 2048 * @newsk: buffer to queue 2049 * 2050 * Queue a buffer at the end of a list. This function takes no locks 2051 * and you must therefore hold required locks before calling it. 2052 * 2053 * A buffer cannot be placed on two lists at the same time. 2054 */ 2055 static inline void __skb_queue_tail(struct sk_buff_head *list, 2056 struct sk_buff *newsk) 2057 { 2058 __skb_queue_before(list, (struct sk_buff *)list, newsk); 2059 } 2060 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 2061 2062 /* 2063 * remove sk_buff from list. _Must_ be called atomically, and with 2064 * the list known.. 2065 */ 2066 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 2067 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 2068 { 2069 struct sk_buff *next, *prev; 2070 2071 WRITE_ONCE(list->qlen, list->qlen - 1); 2072 next = skb->next; 2073 prev = skb->prev; 2074 skb->next = skb->prev = NULL; 2075 WRITE_ONCE(next->prev, prev); 2076 WRITE_ONCE(prev->next, next); 2077 } 2078 2079 /** 2080 * __skb_dequeue - remove from the head of the queue 2081 * @list: list to dequeue from 2082 * 2083 * Remove the head of the list. This function does not take any locks 2084 * so must be used with appropriate locks held only. The head item is 2085 * returned or %NULL if the list is empty. 2086 */ 2087 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 2088 { 2089 struct sk_buff *skb = skb_peek(list); 2090 if (skb) 2091 __skb_unlink(skb, list); 2092 return skb; 2093 } 2094 struct sk_buff *skb_dequeue(struct sk_buff_head *list); 2095 2096 /** 2097 * __skb_dequeue_tail - remove from the tail of the queue 2098 * @list: list to dequeue from 2099 * 2100 * Remove the tail of the list. This function does not take any locks 2101 * so must be used with appropriate locks held only. The tail item is 2102 * returned or %NULL if the list is empty. 2103 */ 2104 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 2105 { 2106 struct sk_buff *skb = skb_peek_tail(list); 2107 if (skb) 2108 __skb_unlink(skb, list); 2109 return skb; 2110 } 2111 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 2112 2113 2114 static inline bool skb_is_nonlinear(const struct sk_buff *skb) 2115 { 2116 return skb->data_len; 2117 } 2118 2119 static inline unsigned int skb_headlen(const struct sk_buff *skb) 2120 { 2121 return skb->len - skb->data_len; 2122 } 2123 2124 static inline unsigned int __skb_pagelen(const struct sk_buff *skb) 2125 { 2126 unsigned int i, len = 0; 2127 2128 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--) 2129 len += skb_frag_size(&skb_shinfo(skb)->frags[i]); 2130 return len; 2131 } 2132 2133 static inline unsigned int skb_pagelen(const struct sk_buff *skb) 2134 { 2135 return skb_headlen(skb) + __skb_pagelen(skb); 2136 } 2137 2138 /** 2139 * __skb_fill_page_desc - initialise a paged fragment in an skb 2140 * @skb: buffer containing fragment to be initialised 2141 * @i: paged fragment index to initialise 2142 * @page: the page to use for this fragment 2143 * @off: the offset to the data with @page 2144 * @size: the length of the data 2145 * 2146 * Initialises the @i'th fragment of @skb to point to &size bytes at 2147 * offset @off within @page. 2148 * 2149 * Does not take any additional reference on the fragment. 2150 */ 2151 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, 2152 struct page *page, int off, int size) 2153 { 2154 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2155 2156 /* 2157 * Propagate page pfmemalloc to the skb if we can. The problem is 2158 * that not all callers have unique ownership of the page but rely 2159 * on page_is_pfmemalloc doing the right thing(tm). 2160 */ 2161 frag->bv_page = page; 2162 frag->bv_offset = off; 2163 skb_frag_size_set(frag, size); 2164 2165 page = compound_head(page); 2166 if (page_is_pfmemalloc(page)) 2167 skb->pfmemalloc = true; 2168 } 2169 2170 /** 2171 * skb_fill_page_desc - initialise a paged fragment in an skb 2172 * @skb: buffer containing fragment to be initialised 2173 * @i: paged fragment index to initialise 2174 * @page: the page to use for this fragment 2175 * @off: the offset to the data with @page 2176 * @size: the length of the data 2177 * 2178 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of 2179 * @skb to point to @size bytes at offset @off within @page. In 2180 * addition updates @skb such that @i is the last fragment. 2181 * 2182 * Does not take any additional reference on the fragment. 2183 */ 2184 static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 2185 struct page *page, int off, int size) 2186 { 2187 __skb_fill_page_desc(skb, i, page, off, size); 2188 skb_shinfo(skb)->nr_frags = i + 1; 2189 } 2190 2191 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 2192 int size, unsigned int truesize); 2193 2194 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 2195 unsigned int truesize); 2196 2197 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 2198 2199 #ifdef NET_SKBUFF_DATA_USES_OFFSET 2200 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 2201 { 2202 return skb->head + skb->tail; 2203 } 2204 2205 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2206 { 2207 skb->tail = skb->data - skb->head; 2208 } 2209 2210 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2211 { 2212 skb_reset_tail_pointer(skb); 2213 skb->tail += offset; 2214 } 2215 2216 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 2217 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 2218 { 2219 return skb->tail; 2220 } 2221 2222 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2223 { 2224 skb->tail = skb->data; 2225 } 2226 2227 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2228 { 2229 skb->tail = skb->data + offset; 2230 } 2231 2232 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 2233 2234 /* 2235 * Add data to an sk_buff 2236 */ 2237 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len); 2238 void *skb_put(struct sk_buff *skb, unsigned int len); 2239 static inline void *__skb_put(struct sk_buff *skb, unsigned int len) 2240 { 2241 void *tmp = skb_tail_pointer(skb); 2242 SKB_LINEAR_ASSERT(skb); 2243 skb->tail += len; 2244 skb->len += len; 2245 return tmp; 2246 } 2247 2248 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len) 2249 { 2250 void *tmp = __skb_put(skb, len); 2251 2252 memset(tmp, 0, len); 2253 return tmp; 2254 } 2255 2256 static inline void *__skb_put_data(struct sk_buff *skb, const void *data, 2257 unsigned int len) 2258 { 2259 void *tmp = __skb_put(skb, len); 2260 2261 memcpy(tmp, data, len); 2262 return tmp; 2263 } 2264 2265 static inline void __skb_put_u8(struct sk_buff *skb, u8 val) 2266 { 2267 *(u8 *)__skb_put(skb, 1) = val; 2268 } 2269 2270 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len) 2271 { 2272 void *tmp = skb_put(skb, len); 2273 2274 memset(tmp, 0, len); 2275 2276 return tmp; 2277 } 2278 2279 static inline void *skb_put_data(struct sk_buff *skb, const void *data, 2280 unsigned int len) 2281 { 2282 void *tmp = skb_put(skb, len); 2283 2284 memcpy(tmp, data, len); 2285 2286 return tmp; 2287 } 2288 2289 static inline void skb_put_u8(struct sk_buff *skb, u8 val) 2290 { 2291 *(u8 *)skb_put(skb, 1) = val; 2292 } 2293 2294 void *skb_push(struct sk_buff *skb, unsigned int len); 2295 static inline void *__skb_push(struct sk_buff *skb, unsigned int len) 2296 { 2297 skb->data -= len; 2298 skb->len += len; 2299 return skb->data; 2300 } 2301 2302 void *skb_pull(struct sk_buff *skb, unsigned int len); 2303 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len) 2304 { 2305 skb->len -= len; 2306 BUG_ON(skb->len < skb->data_len); 2307 return skb->data += len; 2308 } 2309 2310 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len) 2311 { 2312 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 2313 } 2314 2315 void *__pskb_pull_tail(struct sk_buff *skb, int delta); 2316 2317 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len) 2318 { 2319 if (len > skb_headlen(skb) && 2320 !__pskb_pull_tail(skb, len - skb_headlen(skb))) 2321 return NULL; 2322 skb->len -= len; 2323 return skb->data += len; 2324 } 2325 2326 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len) 2327 { 2328 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 2329 } 2330 2331 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len) 2332 { 2333 if (likely(len <= skb_headlen(skb))) 2334 return true; 2335 if (unlikely(len > skb->len)) 2336 return false; 2337 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; 2338 } 2339 2340 void skb_condense(struct sk_buff *skb); 2341 2342 /** 2343 * skb_headroom - bytes at buffer head 2344 * @skb: buffer to check 2345 * 2346 * Return the number of bytes of free space at the head of an &sk_buff. 2347 */ 2348 static inline unsigned int skb_headroom(const struct sk_buff *skb) 2349 { 2350 return skb->data - skb->head; 2351 } 2352 2353 /** 2354 * skb_tailroom - bytes at buffer end 2355 * @skb: buffer to check 2356 * 2357 * Return the number of bytes of free space at the tail of an sk_buff 2358 */ 2359 static inline int skb_tailroom(const struct sk_buff *skb) 2360 { 2361 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 2362 } 2363 2364 /** 2365 * skb_availroom - bytes at buffer end 2366 * @skb: buffer to check 2367 * 2368 * Return the number of bytes of free space at the tail of an sk_buff 2369 * allocated by sk_stream_alloc() 2370 */ 2371 static inline int skb_availroom(const struct sk_buff *skb) 2372 { 2373 if (skb_is_nonlinear(skb)) 2374 return 0; 2375 2376 return skb->end - skb->tail - skb->reserved_tailroom; 2377 } 2378 2379 /** 2380 * skb_reserve - adjust headroom 2381 * @skb: buffer to alter 2382 * @len: bytes to move 2383 * 2384 * Increase the headroom of an empty &sk_buff by reducing the tail 2385 * room. This is only allowed for an empty buffer. 2386 */ 2387 static inline void skb_reserve(struct sk_buff *skb, int len) 2388 { 2389 skb->data += len; 2390 skb->tail += len; 2391 } 2392 2393 /** 2394 * skb_tailroom_reserve - adjust reserved_tailroom 2395 * @skb: buffer to alter 2396 * @mtu: maximum amount of headlen permitted 2397 * @needed_tailroom: minimum amount of reserved_tailroom 2398 * 2399 * Set reserved_tailroom so that headlen can be as large as possible but 2400 * not larger than mtu and tailroom cannot be smaller than 2401 * needed_tailroom. 2402 * The required headroom should already have been reserved before using 2403 * this function. 2404 */ 2405 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu, 2406 unsigned int needed_tailroom) 2407 { 2408 SKB_LINEAR_ASSERT(skb); 2409 if (mtu < skb_tailroom(skb) - needed_tailroom) 2410 /* use at most mtu */ 2411 skb->reserved_tailroom = skb_tailroom(skb) - mtu; 2412 else 2413 /* use up to all available space */ 2414 skb->reserved_tailroom = needed_tailroom; 2415 } 2416 2417 #define ENCAP_TYPE_ETHER 0 2418 #define ENCAP_TYPE_IPPROTO 1 2419 2420 static inline void skb_set_inner_protocol(struct sk_buff *skb, 2421 __be16 protocol) 2422 { 2423 skb->inner_protocol = protocol; 2424 skb->inner_protocol_type = ENCAP_TYPE_ETHER; 2425 } 2426 2427 static inline void skb_set_inner_ipproto(struct sk_buff *skb, 2428 __u8 ipproto) 2429 { 2430 skb->inner_ipproto = ipproto; 2431 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO; 2432 } 2433 2434 static inline void skb_reset_inner_headers(struct sk_buff *skb) 2435 { 2436 skb->inner_mac_header = skb->mac_header; 2437 skb->inner_network_header = skb->network_header; 2438 skb->inner_transport_header = skb->transport_header; 2439 } 2440 2441 static inline void skb_reset_mac_len(struct sk_buff *skb) 2442 { 2443 skb->mac_len = skb->network_header - skb->mac_header; 2444 } 2445 2446 static inline unsigned char *skb_inner_transport_header(const struct sk_buff 2447 *skb) 2448 { 2449 return skb->head + skb->inner_transport_header; 2450 } 2451 2452 static inline int skb_inner_transport_offset(const struct sk_buff *skb) 2453 { 2454 return skb_inner_transport_header(skb) - skb->data; 2455 } 2456 2457 static inline void skb_reset_inner_transport_header(struct sk_buff *skb) 2458 { 2459 skb->inner_transport_header = skb->data - skb->head; 2460 } 2461 2462 static inline void skb_set_inner_transport_header(struct sk_buff *skb, 2463 const int offset) 2464 { 2465 skb_reset_inner_transport_header(skb); 2466 skb->inner_transport_header += offset; 2467 } 2468 2469 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) 2470 { 2471 return skb->head + skb->inner_network_header; 2472 } 2473 2474 static inline void skb_reset_inner_network_header(struct sk_buff *skb) 2475 { 2476 skb->inner_network_header = skb->data - skb->head; 2477 } 2478 2479 static inline void skb_set_inner_network_header(struct sk_buff *skb, 2480 const int offset) 2481 { 2482 skb_reset_inner_network_header(skb); 2483 skb->inner_network_header += offset; 2484 } 2485 2486 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) 2487 { 2488 return skb->head + skb->inner_mac_header; 2489 } 2490 2491 static inline void skb_reset_inner_mac_header(struct sk_buff *skb) 2492 { 2493 skb->inner_mac_header = skb->data - skb->head; 2494 } 2495 2496 static inline void skb_set_inner_mac_header(struct sk_buff *skb, 2497 const int offset) 2498 { 2499 skb_reset_inner_mac_header(skb); 2500 skb->inner_mac_header += offset; 2501 } 2502 static inline bool skb_transport_header_was_set(const struct sk_buff *skb) 2503 { 2504 return skb->transport_header != (typeof(skb->transport_header))~0U; 2505 } 2506 2507 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 2508 { 2509 return skb->head + skb->transport_header; 2510 } 2511 2512 static inline void skb_reset_transport_header(struct sk_buff *skb) 2513 { 2514 skb->transport_header = skb->data - skb->head; 2515 } 2516 2517 static inline void skb_set_transport_header(struct sk_buff *skb, 2518 const int offset) 2519 { 2520 skb_reset_transport_header(skb); 2521 skb->transport_header += offset; 2522 } 2523 2524 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 2525 { 2526 return skb->head + skb->network_header; 2527 } 2528 2529 static inline void skb_reset_network_header(struct sk_buff *skb) 2530 { 2531 skb->network_header = skb->data - skb->head; 2532 } 2533 2534 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 2535 { 2536 skb_reset_network_header(skb); 2537 skb->network_header += offset; 2538 } 2539 2540 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 2541 { 2542 return skb->head + skb->mac_header; 2543 } 2544 2545 static inline int skb_mac_offset(const struct sk_buff *skb) 2546 { 2547 return skb_mac_header(skb) - skb->data; 2548 } 2549 2550 static inline u32 skb_mac_header_len(const struct sk_buff *skb) 2551 { 2552 return skb->network_header - skb->mac_header; 2553 } 2554 2555 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 2556 { 2557 return skb->mac_header != (typeof(skb->mac_header))~0U; 2558 } 2559 2560 static inline void skb_reset_mac_header(struct sk_buff *skb) 2561 { 2562 skb->mac_header = skb->data - skb->head; 2563 } 2564 2565 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 2566 { 2567 skb_reset_mac_header(skb); 2568 skb->mac_header += offset; 2569 } 2570 2571 static inline void skb_pop_mac_header(struct sk_buff *skb) 2572 { 2573 skb->mac_header = skb->network_header; 2574 } 2575 2576 static inline void skb_probe_transport_header(struct sk_buff *skb) 2577 { 2578 struct flow_keys_basic keys; 2579 2580 if (skb_transport_header_was_set(skb)) 2581 return; 2582 2583 if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys, 2584 NULL, 0, 0, 0, 0)) 2585 skb_set_transport_header(skb, keys.control.thoff); 2586 } 2587 2588 static inline void skb_mac_header_rebuild(struct sk_buff *skb) 2589 { 2590 if (skb_mac_header_was_set(skb)) { 2591 const unsigned char *old_mac = skb_mac_header(skb); 2592 2593 skb_set_mac_header(skb, -skb->mac_len); 2594 memmove(skb_mac_header(skb), old_mac, skb->mac_len); 2595 } 2596 } 2597 2598 static inline int skb_checksum_start_offset(const struct sk_buff *skb) 2599 { 2600 return skb->csum_start - skb_headroom(skb); 2601 } 2602 2603 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb) 2604 { 2605 return skb->head + skb->csum_start; 2606 } 2607 2608 static inline int skb_transport_offset(const struct sk_buff *skb) 2609 { 2610 return skb_transport_header(skb) - skb->data; 2611 } 2612 2613 static inline u32 skb_network_header_len(const struct sk_buff *skb) 2614 { 2615 return skb->transport_header - skb->network_header; 2616 } 2617 2618 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) 2619 { 2620 return skb->inner_transport_header - skb->inner_network_header; 2621 } 2622 2623 static inline int skb_network_offset(const struct sk_buff *skb) 2624 { 2625 return skb_network_header(skb) - skb->data; 2626 } 2627 2628 static inline int skb_inner_network_offset(const struct sk_buff *skb) 2629 { 2630 return skb_inner_network_header(skb) - skb->data; 2631 } 2632 2633 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 2634 { 2635 return pskb_may_pull(skb, skb_network_offset(skb) + len); 2636 } 2637 2638 /* 2639 * CPUs often take a performance hit when accessing unaligned memory 2640 * locations. The actual performance hit varies, it can be small if the 2641 * hardware handles it or large if we have to take an exception and fix it 2642 * in software. 2643 * 2644 * Since an ethernet header is 14 bytes network drivers often end up with 2645 * the IP header at an unaligned offset. The IP header can be aligned by 2646 * shifting the start of the packet by 2 bytes. Drivers should do this 2647 * with: 2648 * 2649 * skb_reserve(skb, NET_IP_ALIGN); 2650 * 2651 * The downside to this alignment of the IP header is that the DMA is now 2652 * unaligned. On some architectures the cost of an unaligned DMA is high 2653 * and this cost outweighs the gains made by aligning the IP header. 2654 * 2655 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 2656 * to be overridden. 2657 */ 2658 #ifndef NET_IP_ALIGN 2659 #define NET_IP_ALIGN 2 2660 #endif 2661 2662 /* 2663 * The networking layer reserves some headroom in skb data (via 2664 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 2665 * the header has to grow. In the default case, if the header has to grow 2666 * 32 bytes or less we avoid the reallocation. 2667 * 2668 * Unfortunately this headroom changes the DMA alignment of the resulting 2669 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 2670 * on some architectures. An architecture can override this value, 2671 * perhaps setting it to a cacheline in size (since that will maintain 2672 * cacheline alignment of the DMA). It must be a power of 2. 2673 * 2674 * Various parts of the networking layer expect at least 32 bytes of 2675 * headroom, you should not reduce this. 2676 * 2677 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 2678 * to reduce average number of cache lines per packet. 2679 * get_rps_cpus() for example only access one 64 bytes aligned block : 2680 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 2681 */ 2682 #ifndef NET_SKB_PAD 2683 #define NET_SKB_PAD max(32, L1_CACHE_BYTES) 2684 #endif 2685 2686 int ___pskb_trim(struct sk_buff *skb, unsigned int len); 2687 2688 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len) 2689 { 2690 if (WARN_ON(skb_is_nonlinear(skb))) 2691 return; 2692 skb->len = len; 2693 skb_set_tail_pointer(skb, len); 2694 } 2695 2696 static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 2697 { 2698 __skb_set_length(skb, len); 2699 } 2700 2701 void skb_trim(struct sk_buff *skb, unsigned int len); 2702 2703 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 2704 { 2705 if (skb->data_len) 2706 return ___pskb_trim(skb, len); 2707 __skb_trim(skb, len); 2708 return 0; 2709 } 2710 2711 static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 2712 { 2713 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 2714 } 2715 2716 /** 2717 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 2718 * @skb: buffer to alter 2719 * @len: new length 2720 * 2721 * This is identical to pskb_trim except that the caller knows that 2722 * the skb is not cloned so we should never get an error due to out- 2723 * of-memory. 2724 */ 2725 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 2726 { 2727 int err = pskb_trim(skb, len); 2728 BUG_ON(err); 2729 } 2730 2731 static inline int __skb_grow(struct sk_buff *skb, unsigned int len) 2732 { 2733 unsigned int diff = len - skb->len; 2734 2735 if (skb_tailroom(skb) < diff) { 2736 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb), 2737 GFP_ATOMIC); 2738 if (ret) 2739 return ret; 2740 } 2741 __skb_set_length(skb, len); 2742 return 0; 2743 } 2744 2745 /** 2746 * skb_orphan - orphan a buffer 2747 * @skb: buffer to orphan 2748 * 2749 * If a buffer currently has an owner then we call the owner's 2750 * destructor function and make the @skb unowned. The buffer continues 2751 * to exist but is no longer charged to its former owner. 2752 */ 2753 static inline void skb_orphan(struct sk_buff *skb) 2754 { 2755 if (skb->destructor) { 2756 skb->destructor(skb); 2757 skb->destructor = NULL; 2758 skb->sk = NULL; 2759 } else { 2760 BUG_ON(skb->sk); 2761 } 2762 } 2763 2764 /** 2765 * skb_orphan_frags - orphan the frags contained in a buffer 2766 * @skb: buffer to orphan frags from 2767 * @gfp_mask: allocation mask for replacement pages 2768 * 2769 * For each frag in the SKB which needs a destructor (i.e. has an 2770 * owner) create a copy of that frag and release the original 2771 * page by calling the destructor. 2772 */ 2773 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) 2774 { 2775 if (likely(!skb_zcopy(skb))) 2776 return 0; 2777 if (!skb_zcopy_is_nouarg(skb) && 2778 skb_uarg(skb)->callback == sock_zerocopy_callback) 2779 return 0; 2780 return skb_copy_ubufs(skb, gfp_mask); 2781 } 2782 2783 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */ 2784 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask) 2785 { 2786 if (likely(!skb_zcopy(skb))) 2787 return 0; 2788 return skb_copy_ubufs(skb, gfp_mask); 2789 } 2790 2791 /** 2792 * __skb_queue_purge - empty a list 2793 * @list: list to empty 2794 * 2795 * Delete all buffers on an &sk_buff list. Each buffer is removed from 2796 * the list and one reference dropped. This function does not take the 2797 * list lock and the caller must hold the relevant locks to use it. 2798 */ 2799 static inline void __skb_queue_purge(struct sk_buff_head *list) 2800 { 2801 struct sk_buff *skb; 2802 while ((skb = __skb_dequeue(list)) != NULL) 2803 kfree_skb(skb); 2804 } 2805 void skb_queue_purge(struct sk_buff_head *list); 2806 2807 unsigned int skb_rbtree_purge(struct rb_root *root); 2808 2809 void *netdev_alloc_frag(unsigned int fragsz); 2810 2811 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length, 2812 gfp_t gfp_mask); 2813 2814 /** 2815 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 2816 * @dev: network device to receive on 2817 * @length: length to allocate 2818 * 2819 * Allocate a new &sk_buff and assign it a usage count of one. The 2820 * buffer has unspecified headroom built in. Users should allocate 2821 * the headroom they think they need without accounting for the 2822 * built in space. The built in space is used for optimisations. 2823 * 2824 * %NULL is returned if there is no free memory. Although this function 2825 * allocates memory it can be called from an interrupt. 2826 */ 2827 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 2828 unsigned int length) 2829 { 2830 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 2831 } 2832 2833 /* legacy helper around __netdev_alloc_skb() */ 2834 static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 2835 gfp_t gfp_mask) 2836 { 2837 return __netdev_alloc_skb(NULL, length, gfp_mask); 2838 } 2839 2840 /* legacy helper around netdev_alloc_skb() */ 2841 static inline struct sk_buff *dev_alloc_skb(unsigned int length) 2842 { 2843 return netdev_alloc_skb(NULL, length); 2844 } 2845 2846 2847 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, 2848 unsigned int length, gfp_t gfp) 2849 { 2850 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); 2851 2852 if (NET_IP_ALIGN && skb) 2853 skb_reserve(skb, NET_IP_ALIGN); 2854 return skb; 2855 } 2856 2857 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 2858 unsigned int length) 2859 { 2860 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); 2861 } 2862 2863 static inline void skb_free_frag(void *addr) 2864 { 2865 page_frag_free(addr); 2866 } 2867 2868 void *napi_alloc_frag(unsigned int fragsz); 2869 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, 2870 unsigned int length, gfp_t gfp_mask); 2871 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi, 2872 unsigned int length) 2873 { 2874 return __napi_alloc_skb(napi, length, GFP_ATOMIC); 2875 } 2876 void napi_consume_skb(struct sk_buff *skb, int budget); 2877 2878 void __kfree_skb_flush(void); 2879 void __kfree_skb_defer(struct sk_buff *skb); 2880 2881 /** 2882 * __dev_alloc_pages - allocate page for network Rx 2883 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 2884 * @order: size of the allocation 2885 * 2886 * Allocate a new page. 2887 * 2888 * %NULL is returned if there is no free memory. 2889 */ 2890 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask, 2891 unsigned int order) 2892 { 2893 /* This piece of code contains several assumptions. 2894 * 1. This is for device Rx, therefor a cold page is preferred. 2895 * 2. The expectation is the user wants a compound page. 2896 * 3. If requesting a order 0 page it will not be compound 2897 * due to the check to see if order has a value in prep_new_page 2898 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to 2899 * code in gfp_to_alloc_flags that should be enforcing this. 2900 */ 2901 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC; 2902 2903 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order); 2904 } 2905 2906 static inline struct page *dev_alloc_pages(unsigned int order) 2907 { 2908 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order); 2909 } 2910 2911 /** 2912 * __dev_alloc_page - allocate a page for network Rx 2913 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 2914 * 2915 * Allocate a new page. 2916 * 2917 * %NULL is returned if there is no free memory. 2918 */ 2919 static inline struct page *__dev_alloc_page(gfp_t gfp_mask) 2920 { 2921 return __dev_alloc_pages(gfp_mask, 0); 2922 } 2923 2924 static inline struct page *dev_alloc_page(void) 2925 { 2926 return dev_alloc_pages(0); 2927 } 2928 2929 /** 2930 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page 2931 * @page: The page that was allocated from skb_alloc_page 2932 * @skb: The skb that may need pfmemalloc set 2933 */ 2934 static inline void skb_propagate_pfmemalloc(struct page *page, 2935 struct sk_buff *skb) 2936 { 2937 if (page_is_pfmemalloc(page)) 2938 skb->pfmemalloc = true; 2939 } 2940 2941 /** 2942 * skb_frag_off() - Returns the offset of a skb fragment 2943 * @frag: the paged fragment 2944 */ 2945 static inline unsigned int skb_frag_off(const skb_frag_t *frag) 2946 { 2947 return frag->bv_offset; 2948 } 2949 2950 /** 2951 * skb_frag_off_add() - Increments the offset of a skb fragment by @delta 2952 * @frag: skb fragment 2953 * @delta: value to add 2954 */ 2955 static inline void skb_frag_off_add(skb_frag_t *frag, int delta) 2956 { 2957 frag->bv_offset += delta; 2958 } 2959 2960 /** 2961 * skb_frag_off_set() - Sets the offset of a skb fragment 2962 * @frag: skb fragment 2963 * @offset: offset of fragment 2964 */ 2965 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset) 2966 { 2967 frag->bv_offset = offset; 2968 } 2969 2970 /** 2971 * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment 2972 * @fragto: skb fragment where offset is set 2973 * @fragfrom: skb fragment offset is copied from 2974 */ 2975 static inline void skb_frag_off_copy(skb_frag_t *fragto, 2976 const skb_frag_t *fragfrom) 2977 { 2978 fragto->bv_offset = fragfrom->bv_offset; 2979 } 2980 2981 /** 2982 * skb_frag_page - retrieve the page referred to by a paged fragment 2983 * @frag: the paged fragment 2984 * 2985 * Returns the &struct page associated with @frag. 2986 */ 2987 static inline struct page *skb_frag_page(const skb_frag_t *frag) 2988 { 2989 return frag->bv_page; 2990 } 2991 2992 /** 2993 * __skb_frag_ref - take an addition reference on a paged fragment. 2994 * @frag: the paged fragment 2995 * 2996 * Takes an additional reference on the paged fragment @frag. 2997 */ 2998 static inline void __skb_frag_ref(skb_frag_t *frag) 2999 { 3000 get_page(skb_frag_page(frag)); 3001 } 3002 3003 /** 3004 * skb_frag_ref - take an addition reference on a paged fragment of an skb. 3005 * @skb: the buffer 3006 * @f: the fragment offset. 3007 * 3008 * Takes an additional reference on the @f'th paged fragment of @skb. 3009 */ 3010 static inline void skb_frag_ref(struct sk_buff *skb, int f) 3011 { 3012 __skb_frag_ref(&skb_shinfo(skb)->frags[f]); 3013 } 3014 3015 /** 3016 * __skb_frag_unref - release a reference on a paged fragment. 3017 * @frag: the paged fragment 3018 * 3019 * Releases a reference on the paged fragment @frag. 3020 */ 3021 static inline void __skb_frag_unref(skb_frag_t *frag) 3022 { 3023 put_page(skb_frag_page(frag)); 3024 } 3025 3026 /** 3027 * skb_frag_unref - release a reference on a paged fragment of an skb. 3028 * @skb: the buffer 3029 * @f: the fragment offset 3030 * 3031 * Releases a reference on the @f'th paged fragment of @skb. 3032 */ 3033 static inline void skb_frag_unref(struct sk_buff *skb, int f) 3034 { 3035 __skb_frag_unref(&skb_shinfo(skb)->frags[f]); 3036 } 3037 3038 /** 3039 * skb_frag_address - gets the address of the data contained in a paged fragment 3040 * @frag: the paged fragment buffer 3041 * 3042 * Returns the address of the data within @frag. The page must already 3043 * be mapped. 3044 */ 3045 static inline void *skb_frag_address(const skb_frag_t *frag) 3046 { 3047 return page_address(skb_frag_page(frag)) + skb_frag_off(frag); 3048 } 3049 3050 /** 3051 * skb_frag_address_safe - gets the address of the data contained in a paged fragment 3052 * @frag: the paged fragment buffer 3053 * 3054 * Returns the address of the data within @frag. Checks that the page 3055 * is mapped and returns %NULL otherwise. 3056 */ 3057 static inline void *skb_frag_address_safe(const skb_frag_t *frag) 3058 { 3059 void *ptr = page_address(skb_frag_page(frag)); 3060 if (unlikely(!ptr)) 3061 return NULL; 3062 3063 return ptr + skb_frag_off(frag); 3064 } 3065 3066 /** 3067 * skb_frag_page_copy() - sets the page in a fragment from another fragment 3068 * @fragto: skb fragment where page is set 3069 * @fragfrom: skb fragment page is copied from 3070 */ 3071 static inline void skb_frag_page_copy(skb_frag_t *fragto, 3072 const skb_frag_t *fragfrom) 3073 { 3074 fragto->bv_page = fragfrom->bv_page; 3075 } 3076 3077 /** 3078 * __skb_frag_set_page - sets the page contained in a paged fragment 3079 * @frag: the paged fragment 3080 * @page: the page to set 3081 * 3082 * Sets the fragment @frag to contain @page. 3083 */ 3084 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page) 3085 { 3086 frag->bv_page = page; 3087 } 3088 3089 /** 3090 * skb_frag_set_page - sets the page contained in a paged fragment of an skb 3091 * @skb: the buffer 3092 * @f: the fragment offset 3093 * @page: the page to set 3094 * 3095 * Sets the @f'th fragment of @skb to contain @page. 3096 */ 3097 static inline void skb_frag_set_page(struct sk_buff *skb, int f, 3098 struct page *page) 3099 { 3100 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page); 3101 } 3102 3103 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio); 3104 3105 /** 3106 * skb_frag_dma_map - maps a paged fragment via the DMA API 3107 * @dev: the device to map the fragment to 3108 * @frag: the paged fragment to map 3109 * @offset: the offset within the fragment (starting at the 3110 * fragment's own offset) 3111 * @size: the number of bytes to map 3112 * @dir: the direction of the mapping (``PCI_DMA_*``) 3113 * 3114 * Maps the page associated with @frag to @device. 3115 */ 3116 static inline dma_addr_t skb_frag_dma_map(struct device *dev, 3117 const skb_frag_t *frag, 3118 size_t offset, size_t size, 3119 enum dma_data_direction dir) 3120 { 3121 return dma_map_page(dev, skb_frag_page(frag), 3122 skb_frag_off(frag) + offset, size, dir); 3123 } 3124 3125 static inline struct sk_buff *pskb_copy(struct sk_buff *skb, 3126 gfp_t gfp_mask) 3127 { 3128 return __pskb_copy(skb, skb_headroom(skb), gfp_mask); 3129 } 3130 3131 3132 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb, 3133 gfp_t gfp_mask) 3134 { 3135 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true); 3136 } 3137 3138 3139 /** 3140 * skb_clone_writable - is the header of a clone writable 3141 * @skb: buffer to check 3142 * @len: length up to which to write 3143 * 3144 * Returns true if modifying the header part of the cloned buffer 3145 * does not requires the data to be copied. 3146 */ 3147 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) 3148 { 3149 return !skb_header_cloned(skb) && 3150 skb_headroom(skb) + len <= skb->hdr_len; 3151 } 3152 3153 static inline int skb_try_make_writable(struct sk_buff *skb, 3154 unsigned int write_len) 3155 { 3156 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) && 3157 pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 3158 } 3159 3160 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 3161 int cloned) 3162 { 3163 int delta = 0; 3164 3165 if (headroom > skb_headroom(skb)) 3166 delta = headroom - skb_headroom(skb); 3167 3168 if (delta || cloned) 3169 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 3170 GFP_ATOMIC); 3171 return 0; 3172 } 3173 3174 /** 3175 * skb_cow - copy header of skb when it is required 3176 * @skb: buffer to cow 3177 * @headroom: needed headroom 3178 * 3179 * If the skb passed lacks sufficient headroom or its data part 3180 * is shared, data is reallocated. If reallocation fails, an error 3181 * is returned and original skb is not changed. 3182 * 3183 * The result is skb with writable area skb->head...skb->tail 3184 * and at least @headroom of space at head. 3185 */ 3186 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 3187 { 3188 return __skb_cow(skb, headroom, skb_cloned(skb)); 3189 } 3190 3191 /** 3192 * skb_cow_head - skb_cow but only making the head writable 3193 * @skb: buffer to cow 3194 * @headroom: needed headroom 3195 * 3196 * This function is identical to skb_cow except that we replace the 3197 * skb_cloned check by skb_header_cloned. It should be used when 3198 * you only need to push on some header and do not need to modify 3199 * the data. 3200 */ 3201 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 3202 { 3203 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 3204 } 3205 3206 /** 3207 * skb_padto - pad an skbuff up to a minimal size 3208 * @skb: buffer to pad 3209 * @len: minimal length 3210 * 3211 * Pads up a buffer to ensure the trailing bytes exist and are 3212 * blanked. If the buffer already contains sufficient data it 3213 * is untouched. Otherwise it is extended. Returns zero on 3214 * success. The skb is freed on error. 3215 */ 3216 static inline int skb_padto(struct sk_buff *skb, unsigned int len) 3217 { 3218 unsigned int size = skb->len; 3219 if (likely(size >= len)) 3220 return 0; 3221 return skb_pad(skb, len - size); 3222 } 3223 3224 /** 3225 * __skb_put_padto - increase size and pad an skbuff up to a minimal size 3226 * @skb: buffer to pad 3227 * @len: minimal length 3228 * @free_on_error: free buffer on error 3229 * 3230 * Pads up a buffer to ensure the trailing bytes exist and are 3231 * blanked. If the buffer already contains sufficient data it 3232 * is untouched. Otherwise it is extended. Returns zero on 3233 * success. The skb is freed on error if @free_on_error is true. 3234 */ 3235 static inline int __skb_put_padto(struct sk_buff *skb, unsigned int len, 3236 bool free_on_error) 3237 { 3238 unsigned int size = skb->len; 3239 3240 if (unlikely(size < len)) { 3241 len -= size; 3242 if (__skb_pad(skb, len, free_on_error)) 3243 return -ENOMEM; 3244 __skb_put(skb, len); 3245 } 3246 return 0; 3247 } 3248 3249 /** 3250 * skb_put_padto - increase size and pad an skbuff up to a minimal size 3251 * @skb: buffer to pad 3252 * @len: minimal length 3253 * 3254 * Pads up a buffer to ensure the trailing bytes exist and are 3255 * blanked. If the buffer already contains sufficient data it 3256 * is untouched. Otherwise it is extended. Returns zero on 3257 * success. The skb is freed on error. 3258 */ 3259 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len) 3260 { 3261 return __skb_put_padto(skb, len, true); 3262 } 3263 3264 static inline int skb_add_data(struct sk_buff *skb, 3265 struct iov_iter *from, int copy) 3266 { 3267 const int off = skb->len; 3268 3269 if (skb->ip_summed == CHECKSUM_NONE) { 3270 __wsum csum = 0; 3271 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy, 3272 &csum, from)) { 3273 skb->csum = csum_block_add(skb->csum, csum, off); 3274 return 0; 3275 } 3276 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from)) 3277 return 0; 3278 3279 __skb_trim(skb, off); 3280 return -EFAULT; 3281 } 3282 3283 static inline bool skb_can_coalesce(struct sk_buff *skb, int i, 3284 const struct page *page, int off) 3285 { 3286 if (skb_zcopy(skb)) 3287 return false; 3288 if (i) { 3289 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1]; 3290 3291 return page == skb_frag_page(frag) && 3292 off == skb_frag_off(frag) + skb_frag_size(frag); 3293 } 3294 return false; 3295 } 3296 3297 static inline int __skb_linearize(struct sk_buff *skb) 3298 { 3299 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 3300 } 3301 3302 /** 3303 * skb_linearize - convert paged skb to linear one 3304 * @skb: buffer to linarize 3305 * 3306 * If there is no free memory -ENOMEM is returned, otherwise zero 3307 * is returned and the old skb data released. 3308 */ 3309 static inline int skb_linearize(struct sk_buff *skb) 3310 { 3311 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 3312 } 3313 3314 /** 3315 * skb_has_shared_frag - can any frag be overwritten 3316 * @skb: buffer to test 3317 * 3318 * Return true if the skb has at least one frag that might be modified 3319 * by an external entity (as in vmsplice()/sendfile()) 3320 */ 3321 static inline bool skb_has_shared_frag(const struct sk_buff *skb) 3322 { 3323 return skb_is_nonlinear(skb) && 3324 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG; 3325 } 3326 3327 /** 3328 * skb_linearize_cow - make sure skb is linear and writable 3329 * @skb: buffer to process 3330 * 3331 * If there is no free memory -ENOMEM is returned, otherwise zero 3332 * is returned and the old skb data released. 3333 */ 3334 static inline int skb_linearize_cow(struct sk_buff *skb) 3335 { 3336 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 3337 __skb_linearize(skb) : 0; 3338 } 3339 3340 static __always_inline void 3341 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3342 unsigned int off) 3343 { 3344 if (skb->ip_summed == CHECKSUM_COMPLETE) 3345 skb->csum = csum_block_sub(skb->csum, 3346 csum_partial(start, len, 0), off); 3347 else if (skb->ip_summed == CHECKSUM_PARTIAL && 3348 skb_checksum_start_offset(skb) < 0) 3349 skb->ip_summed = CHECKSUM_NONE; 3350 } 3351 3352 /** 3353 * skb_postpull_rcsum - update checksum for received skb after pull 3354 * @skb: buffer to update 3355 * @start: start of data before pull 3356 * @len: length of data pulled 3357 * 3358 * After doing a pull on a received packet, you need to call this to 3359 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 3360 * CHECKSUM_NONE so that it can be recomputed from scratch. 3361 */ 3362 static inline void skb_postpull_rcsum(struct sk_buff *skb, 3363 const void *start, unsigned int len) 3364 { 3365 __skb_postpull_rcsum(skb, start, len, 0); 3366 } 3367 3368 static __always_inline void 3369 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3370 unsigned int off) 3371 { 3372 if (skb->ip_summed == CHECKSUM_COMPLETE) 3373 skb->csum = csum_block_add(skb->csum, 3374 csum_partial(start, len, 0), off); 3375 } 3376 3377 /** 3378 * skb_postpush_rcsum - update checksum for received skb after push 3379 * @skb: buffer to update 3380 * @start: start of data after push 3381 * @len: length of data pushed 3382 * 3383 * After doing a push on a received packet, you need to call this to 3384 * update the CHECKSUM_COMPLETE checksum. 3385 */ 3386 static inline void skb_postpush_rcsum(struct sk_buff *skb, 3387 const void *start, unsigned int len) 3388 { 3389 __skb_postpush_rcsum(skb, start, len, 0); 3390 } 3391 3392 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 3393 3394 /** 3395 * skb_push_rcsum - push skb and update receive checksum 3396 * @skb: buffer to update 3397 * @len: length of data pulled 3398 * 3399 * This function performs an skb_push on the packet and updates 3400 * the CHECKSUM_COMPLETE checksum. It should be used on 3401 * receive path processing instead of skb_push unless you know 3402 * that the checksum difference is zero (e.g., a valid IP header) 3403 * or you are setting ip_summed to CHECKSUM_NONE. 3404 */ 3405 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len) 3406 { 3407 skb_push(skb, len); 3408 skb_postpush_rcsum(skb, skb->data, len); 3409 return skb->data; 3410 } 3411 3412 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len); 3413 /** 3414 * pskb_trim_rcsum - trim received skb and update checksum 3415 * @skb: buffer to trim 3416 * @len: new length 3417 * 3418 * This is exactly the same as pskb_trim except that it ensures the 3419 * checksum of received packets are still valid after the operation. 3420 * It can change skb pointers. 3421 */ 3422 3423 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3424 { 3425 if (likely(len >= skb->len)) 3426 return 0; 3427 return pskb_trim_rcsum_slow(skb, len); 3428 } 3429 3430 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3431 { 3432 if (skb->ip_summed == CHECKSUM_COMPLETE) 3433 skb->ip_summed = CHECKSUM_NONE; 3434 __skb_trim(skb, len); 3435 return 0; 3436 } 3437 3438 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len) 3439 { 3440 if (skb->ip_summed == CHECKSUM_COMPLETE) 3441 skb->ip_summed = CHECKSUM_NONE; 3442 return __skb_grow(skb, len); 3443 } 3444 3445 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode) 3446 #define skb_rb_first(root) rb_to_skb(rb_first(root)) 3447 #define skb_rb_last(root) rb_to_skb(rb_last(root)) 3448 #define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode)) 3449 #define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode)) 3450 3451 #define skb_queue_walk(queue, skb) \ 3452 for (skb = (queue)->next; \ 3453 skb != (struct sk_buff *)(queue); \ 3454 skb = skb->next) 3455 3456 #define skb_queue_walk_safe(queue, skb, tmp) \ 3457 for (skb = (queue)->next, tmp = skb->next; \ 3458 skb != (struct sk_buff *)(queue); \ 3459 skb = tmp, tmp = skb->next) 3460 3461 #define skb_queue_walk_from(queue, skb) \ 3462 for (; skb != (struct sk_buff *)(queue); \ 3463 skb = skb->next) 3464 3465 #define skb_rbtree_walk(skb, root) \ 3466 for (skb = skb_rb_first(root); skb != NULL; \ 3467 skb = skb_rb_next(skb)) 3468 3469 #define skb_rbtree_walk_from(skb) \ 3470 for (; skb != NULL; \ 3471 skb = skb_rb_next(skb)) 3472 3473 #define skb_rbtree_walk_from_safe(skb, tmp) \ 3474 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \ 3475 skb = tmp) 3476 3477 #define skb_queue_walk_from_safe(queue, skb, tmp) \ 3478 for (tmp = skb->next; \ 3479 skb != (struct sk_buff *)(queue); \ 3480 skb = tmp, tmp = skb->next) 3481 3482 #define skb_queue_reverse_walk(queue, skb) \ 3483 for (skb = (queue)->prev; \ 3484 skb != (struct sk_buff *)(queue); \ 3485 skb = skb->prev) 3486 3487 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \ 3488 for (skb = (queue)->prev, tmp = skb->prev; \ 3489 skb != (struct sk_buff *)(queue); \ 3490 skb = tmp, tmp = skb->prev) 3491 3492 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ 3493 for (tmp = skb->prev; \ 3494 skb != (struct sk_buff *)(queue); \ 3495 skb = tmp, tmp = skb->prev) 3496 3497 static inline bool skb_has_frag_list(const struct sk_buff *skb) 3498 { 3499 return skb_shinfo(skb)->frag_list != NULL; 3500 } 3501 3502 static inline void skb_frag_list_init(struct sk_buff *skb) 3503 { 3504 skb_shinfo(skb)->frag_list = NULL; 3505 } 3506 3507 #define skb_walk_frags(skb, iter) \ 3508 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 3509 3510 3511 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue, 3512 int *err, long *timeo_p, 3513 const struct sk_buff *skb); 3514 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk, 3515 struct sk_buff_head *queue, 3516 unsigned int flags, 3517 void (*destructor)(struct sock *sk, 3518 struct sk_buff *skb), 3519 int *off, int *err, 3520 struct sk_buff **last); 3521 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, 3522 struct sk_buff_head *queue, 3523 unsigned int flags, 3524 void (*destructor)(struct sock *sk, 3525 struct sk_buff *skb), 3526 int *off, int *err, 3527 struct sk_buff **last); 3528 struct sk_buff *__skb_recv_datagram(struct sock *sk, 3529 struct sk_buff_head *sk_queue, 3530 unsigned int flags, 3531 void (*destructor)(struct sock *sk, 3532 struct sk_buff *skb), 3533 int *off, int *err); 3534 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock, 3535 int *err); 3536 __poll_t datagram_poll(struct file *file, struct socket *sock, 3537 struct poll_table_struct *wait); 3538 int skb_copy_datagram_iter(const struct sk_buff *from, int offset, 3539 struct iov_iter *to, int size); 3540 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset, 3541 struct msghdr *msg, int size) 3542 { 3543 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size); 3544 } 3545 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen, 3546 struct msghdr *msg); 3547 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset, 3548 struct iov_iter *to, int len, 3549 struct ahash_request *hash); 3550 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset, 3551 struct iov_iter *from, int len); 3552 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm); 3553 void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 3554 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len); 3555 static inline void skb_free_datagram_locked(struct sock *sk, 3556 struct sk_buff *skb) 3557 { 3558 __skb_free_datagram_locked(sk, skb, 0); 3559 } 3560 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags); 3561 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len); 3562 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len); 3563 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, 3564 int len, __wsum csum); 3565 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 3566 struct pipe_inode_info *pipe, unsigned int len, 3567 unsigned int flags); 3568 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 3569 int len); 3570 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 3571 unsigned int skb_zerocopy_headlen(const struct sk_buff *from); 3572 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from, 3573 int len, int hlen); 3574 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len); 3575 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen); 3576 void skb_scrub_packet(struct sk_buff *skb, bool xnet); 3577 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu); 3578 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len); 3579 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features); 3580 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features, 3581 unsigned int offset); 3582 struct sk_buff *skb_vlan_untag(struct sk_buff *skb); 3583 int skb_ensure_writable(struct sk_buff *skb, int write_len); 3584 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci); 3585 int skb_vlan_pop(struct sk_buff *skb); 3586 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci); 3587 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 3588 int mac_len, bool ethernet); 3589 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 3590 bool ethernet); 3591 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse); 3592 int skb_mpls_dec_ttl(struct sk_buff *skb); 3593 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy, 3594 gfp_t gfp); 3595 3596 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len) 3597 { 3598 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT; 3599 } 3600 3601 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len) 3602 { 3603 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT; 3604 } 3605 3606 struct skb_checksum_ops { 3607 __wsum (*update)(const void *mem, int len, __wsum wsum); 3608 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len); 3609 }; 3610 3611 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly; 3612 3613 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 3614 __wsum csum, const struct skb_checksum_ops *ops); 3615 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len, 3616 __wsum csum); 3617 3618 static inline void * __must_check 3619 __skb_header_pointer(const struct sk_buff *skb, int offset, 3620 int len, void *data, int hlen, void *buffer) 3621 { 3622 if (hlen - offset >= len) 3623 return data + offset; 3624 3625 if (!skb || 3626 skb_copy_bits(skb, offset, buffer, len) < 0) 3627 return NULL; 3628 3629 return buffer; 3630 } 3631 3632 static inline void * __must_check 3633 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer) 3634 { 3635 return __skb_header_pointer(skb, offset, len, skb->data, 3636 skb_headlen(skb), buffer); 3637 } 3638 3639 /** 3640 * skb_needs_linearize - check if we need to linearize a given skb 3641 * depending on the given device features. 3642 * @skb: socket buffer to check 3643 * @features: net device features 3644 * 3645 * Returns true if either: 3646 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 3647 * 2. skb is fragmented and the device does not support SG. 3648 */ 3649 static inline bool skb_needs_linearize(struct sk_buff *skb, 3650 netdev_features_t features) 3651 { 3652 return skb_is_nonlinear(skb) && 3653 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) || 3654 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG))); 3655 } 3656 3657 static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 3658 void *to, 3659 const unsigned int len) 3660 { 3661 memcpy(to, skb->data, len); 3662 } 3663 3664 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 3665 const int offset, void *to, 3666 const unsigned int len) 3667 { 3668 memcpy(to, skb->data + offset, len); 3669 } 3670 3671 static inline void skb_copy_to_linear_data(struct sk_buff *skb, 3672 const void *from, 3673 const unsigned int len) 3674 { 3675 memcpy(skb->data, from, len); 3676 } 3677 3678 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 3679 const int offset, 3680 const void *from, 3681 const unsigned int len) 3682 { 3683 memcpy(skb->data + offset, from, len); 3684 } 3685 3686 void skb_init(void); 3687 3688 static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 3689 { 3690 return skb->tstamp; 3691 } 3692 3693 /** 3694 * skb_get_timestamp - get timestamp from a skb 3695 * @skb: skb to get stamp from 3696 * @stamp: pointer to struct __kernel_old_timeval to store stamp in 3697 * 3698 * Timestamps are stored in the skb as offsets to a base timestamp. 3699 * This function converts the offset back to a struct timeval and stores 3700 * it in stamp. 3701 */ 3702 static inline void skb_get_timestamp(const struct sk_buff *skb, 3703 struct __kernel_old_timeval *stamp) 3704 { 3705 *stamp = ns_to_kernel_old_timeval(skb->tstamp); 3706 } 3707 3708 static inline void skb_get_new_timestamp(const struct sk_buff *skb, 3709 struct __kernel_sock_timeval *stamp) 3710 { 3711 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 3712 3713 stamp->tv_sec = ts.tv_sec; 3714 stamp->tv_usec = ts.tv_nsec / 1000; 3715 } 3716 3717 static inline void skb_get_timestampns(const struct sk_buff *skb, 3718 struct __kernel_old_timespec *stamp) 3719 { 3720 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 3721 3722 stamp->tv_sec = ts.tv_sec; 3723 stamp->tv_nsec = ts.tv_nsec; 3724 } 3725 3726 static inline void skb_get_new_timestampns(const struct sk_buff *skb, 3727 struct __kernel_timespec *stamp) 3728 { 3729 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 3730 3731 stamp->tv_sec = ts.tv_sec; 3732 stamp->tv_nsec = ts.tv_nsec; 3733 } 3734 3735 static inline void __net_timestamp(struct sk_buff *skb) 3736 { 3737 skb->tstamp = ktime_get_real(); 3738 } 3739 3740 static inline ktime_t net_timedelta(ktime_t t) 3741 { 3742 return ktime_sub(ktime_get_real(), t); 3743 } 3744 3745 static inline ktime_t net_invalid_timestamp(void) 3746 { 3747 return 0; 3748 } 3749 3750 static inline u8 skb_metadata_len(const struct sk_buff *skb) 3751 { 3752 return skb_shinfo(skb)->meta_len; 3753 } 3754 3755 static inline void *skb_metadata_end(const struct sk_buff *skb) 3756 { 3757 return skb_mac_header(skb); 3758 } 3759 3760 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a, 3761 const struct sk_buff *skb_b, 3762 u8 meta_len) 3763 { 3764 const void *a = skb_metadata_end(skb_a); 3765 const void *b = skb_metadata_end(skb_b); 3766 /* Using more efficient varaiant than plain call to memcmp(). */ 3767 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 3768 u64 diffs = 0; 3769 3770 switch (meta_len) { 3771 #define __it(x, op) (x -= sizeof(u##op)) 3772 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op)) 3773 case 32: diffs |= __it_diff(a, b, 64); 3774 /* fall through */ 3775 case 24: diffs |= __it_diff(a, b, 64); 3776 /* fall through */ 3777 case 16: diffs |= __it_diff(a, b, 64); 3778 /* fall through */ 3779 case 8: diffs |= __it_diff(a, b, 64); 3780 break; 3781 case 28: diffs |= __it_diff(a, b, 64); 3782 /* fall through */ 3783 case 20: diffs |= __it_diff(a, b, 64); 3784 /* fall through */ 3785 case 12: diffs |= __it_diff(a, b, 64); 3786 /* fall through */ 3787 case 4: diffs |= __it_diff(a, b, 32); 3788 break; 3789 } 3790 return diffs; 3791 #else 3792 return memcmp(a - meta_len, b - meta_len, meta_len); 3793 #endif 3794 } 3795 3796 static inline bool skb_metadata_differs(const struct sk_buff *skb_a, 3797 const struct sk_buff *skb_b) 3798 { 3799 u8 len_a = skb_metadata_len(skb_a); 3800 u8 len_b = skb_metadata_len(skb_b); 3801 3802 if (!(len_a | len_b)) 3803 return false; 3804 3805 return len_a != len_b ? 3806 true : __skb_metadata_differs(skb_a, skb_b, len_a); 3807 } 3808 3809 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len) 3810 { 3811 skb_shinfo(skb)->meta_len = meta_len; 3812 } 3813 3814 static inline void skb_metadata_clear(struct sk_buff *skb) 3815 { 3816 skb_metadata_set(skb, 0); 3817 } 3818 3819 struct sk_buff *skb_clone_sk(struct sk_buff *skb); 3820 3821 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 3822 3823 void skb_clone_tx_timestamp(struct sk_buff *skb); 3824 bool skb_defer_rx_timestamp(struct sk_buff *skb); 3825 3826 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 3827 3828 static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 3829 { 3830 } 3831 3832 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 3833 { 3834 return false; 3835 } 3836 3837 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 3838 3839 /** 3840 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 3841 * 3842 * PHY drivers may accept clones of transmitted packets for 3843 * timestamping via their phy_driver.txtstamp method. These drivers 3844 * must call this function to return the skb back to the stack with a 3845 * timestamp. 3846 * 3847 * @skb: clone of the the original outgoing packet 3848 * @hwtstamps: hardware time stamps 3849 * 3850 */ 3851 void skb_complete_tx_timestamp(struct sk_buff *skb, 3852 struct skb_shared_hwtstamps *hwtstamps); 3853 3854 void __skb_tstamp_tx(struct sk_buff *orig_skb, 3855 struct skb_shared_hwtstamps *hwtstamps, 3856 struct sock *sk, int tstype); 3857 3858 /** 3859 * skb_tstamp_tx - queue clone of skb with send time stamps 3860 * @orig_skb: the original outgoing packet 3861 * @hwtstamps: hardware time stamps, may be NULL if not available 3862 * 3863 * If the skb has a socket associated, then this function clones the 3864 * skb (thus sharing the actual data and optional structures), stores 3865 * the optional hardware time stamping information (if non NULL) or 3866 * generates a software time stamp (otherwise), then queues the clone 3867 * to the error queue of the socket. Errors are silently ignored. 3868 */ 3869 void skb_tstamp_tx(struct sk_buff *orig_skb, 3870 struct skb_shared_hwtstamps *hwtstamps); 3871 3872 /** 3873 * skb_tx_timestamp() - Driver hook for transmit timestamping 3874 * 3875 * Ethernet MAC Drivers should call this function in their hard_xmit() 3876 * function immediately before giving the sk_buff to the MAC hardware. 3877 * 3878 * Specifically, one should make absolutely sure that this function is 3879 * called before TX completion of this packet can trigger. Otherwise 3880 * the packet could potentially already be freed. 3881 * 3882 * @skb: A socket buffer. 3883 */ 3884 static inline void skb_tx_timestamp(struct sk_buff *skb) 3885 { 3886 skb_clone_tx_timestamp(skb); 3887 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP) 3888 skb_tstamp_tx(skb, NULL); 3889 } 3890 3891 /** 3892 * skb_complete_wifi_ack - deliver skb with wifi status 3893 * 3894 * @skb: the original outgoing packet 3895 * @acked: ack status 3896 * 3897 */ 3898 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); 3899 3900 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 3901 __sum16 __skb_checksum_complete(struct sk_buff *skb); 3902 3903 static inline int skb_csum_unnecessary(const struct sk_buff *skb) 3904 { 3905 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) || 3906 skb->csum_valid || 3907 (skb->ip_summed == CHECKSUM_PARTIAL && 3908 skb_checksum_start_offset(skb) >= 0)); 3909 } 3910 3911 /** 3912 * skb_checksum_complete - Calculate checksum of an entire packet 3913 * @skb: packet to process 3914 * 3915 * This function calculates the checksum over the entire packet plus 3916 * the value of skb->csum. The latter can be used to supply the 3917 * checksum of a pseudo header as used by TCP/UDP. It returns the 3918 * checksum. 3919 * 3920 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 3921 * this function can be used to verify that checksum on received 3922 * packets. In that case the function should return zero if the 3923 * checksum is correct. In particular, this function will return zero 3924 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 3925 * hardware has already verified the correctness of the checksum. 3926 */ 3927 static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 3928 { 3929 return skb_csum_unnecessary(skb) ? 3930 0 : __skb_checksum_complete(skb); 3931 } 3932 3933 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb) 3934 { 3935 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 3936 if (skb->csum_level == 0) 3937 skb->ip_summed = CHECKSUM_NONE; 3938 else 3939 skb->csum_level--; 3940 } 3941 } 3942 3943 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb) 3944 { 3945 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 3946 if (skb->csum_level < SKB_MAX_CSUM_LEVEL) 3947 skb->csum_level++; 3948 } else if (skb->ip_summed == CHECKSUM_NONE) { 3949 skb->ip_summed = CHECKSUM_UNNECESSARY; 3950 skb->csum_level = 0; 3951 } 3952 } 3953 3954 /* Check if we need to perform checksum complete validation. 3955 * 3956 * Returns true if checksum complete is needed, false otherwise 3957 * (either checksum is unnecessary or zero checksum is allowed). 3958 */ 3959 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb, 3960 bool zero_okay, 3961 __sum16 check) 3962 { 3963 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) { 3964 skb->csum_valid = 1; 3965 __skb_decr_checksum_unnecessary(skb); 3966 return false; 3967 } 3968 3969 return true; 3970 } 3971 3972 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly 3973 * in checksum_init. 3974 */ 3975 #define CHECKSUM_BREAK 76 3976 3977 /* Unset checksum-complete 3978 * 3979 * Unset checksum complete can be done when packet is being modified 3980 * (uncompressed for instance) and checksum-complete value is 3981 * invalidated. 3982 */ 3983 static inline void skb_checksum_complete_unset(struct sk_buff *skb) 3984 { 3985 if (skb->ip_summed == CHECKSUM_COMPLETE) 3986 skb->ip_summed = CHECKSUM_NONE; 3987 } 3988 3989 /* Validate (init) checksum based on checksum complete. 3990 * 3991 * Return values: 3992 * 0: checksum is validated or try to in skb_checksum_complete. In the latter 3993 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo 3994 * checksum is stored in skb->csum for use in __skb_checksum_complete 3995 * non-zero: value of invalid checksum 3996 * 3997 */ 3998 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb, 3999 bool complete, 4000 __wsum psum) 4001 { 4002 if (skb->ip_summed == CHECKSUM_COMPLETE) { 4003 if (!csum_fold(csum_add(psum, skb->csum))) { 4004 skb->csum_valid = 1; 4005 return 0; 4006 } 4007 } 4008 4009 skb->csum = psum; 4010 4011 if (complete || skb->len <= CHECKSUM_BREAK) { 4012 __sum16 csum; 4013 4014 csum = __skb_checksum_complete(skb); 4015 skb->csum_valid = !csum; 4016 return csum; 4017 } 4018 4019 return 0; 4020 } 4021 4022 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto) 4023 { 4024 return 0; 4025 } 4026 4027 /* Perform checksum validate (init). Note that this is a macro since we only 4028 * want to calculate the pseudo header which is an input function if necessary. 4029 * First we try to validate without any computation (checksum unnecessary) and 4030 * then calculate based on checksum complete calling the function to compute 4031 * pseudo header. 4032 * 4033 * Return values: 4034 * 0: checksum is validated or try to in skb_checksum_complete 4035 * non-zero: value of invalid checksum 4036 */ 4037 #define __skb_checksum_validate(skb, proto, complete, \ 4038 zero_okay, check, compute_pseudo) \ 4039 ({ \ 4040 __sum16 __ret = 0; \ 4041 skb->csum_valid = 0; \ 4042 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \ 4043 __ret = __skb_checksum_validate_complete(skb, \ 4044 complete, compute_pseudo(skb, proto)); \ 4045 __ret; \ 4046 }) 4047 4048 #define skb_checksum_init(skb, proto, compute_pseudo) \ 4049 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo) 4050 4051 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \ 4052 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo) 4053 4054 #define skb_checksum_validate(skb, proto, compute_pseudo) \ 4055 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo) 4056 4057 #define skb_checksum_validate_zero_check(skb, proto, check, \ 4058 compute_pseudo) \ 4059 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo) 4060 4061 #define skb_checksum_simple_validate(skb) \ 4062 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo) 4063 4064 static inline bool __skb_checksum_convert_check(struct sk_buff *skb) 4065 { 4066 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid); 4067 } 4068 4069 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo) 4070 { 4071 skb->csum = ~pseudo; 4072 skb->ip_summed = CHECKSUM_COMPLETE; 4073 } 4074 4075 #define skb_checksum_try_convert(skb, proto, compute_pseudo) \ 4076 do { \ 4077 if (__skb_checksum_convert_check(skb)) \ 4078 __skb_checksum_convert(skb, compute_pseudo(skb, proto)); \ 4079 } while (0) 4080 4081 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr, 4082 u16 start, u16 offset) 4083 { 4084 skb->ip_summed = CHECKSUM_PARTIAL; 4085 skb->csum_start = ((unsigned char *)ptr + start) - skb->head; 4086 skb->csum_offset = offset - start; 4087 } 4088 4089 /* Update skbuf and packet to reflect the remote checksum offload operation. 4090 * When called, ptr indicates the starting point for skb->csum when 4091 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete 4092 * here, skb_postpull_rcsum is done so skb->csum start is ptr. 4093 */ 4094 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr, 4095 int start, int offset, bool nopartial) 4096 { 4097 __wsum delta; 4098 4099 if (!nopartial) { 4100 skb_remcsum_adjust_partial(skb, ptr, start, offset); 4101 return; 4102 } 4103 4104 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) { 4105 __skb_checksum_complete(skb); 4106 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data); 4107 } 4108 4109 delta = remcsum_adjust(ptr, skb->csum, start, offset); 4110 4111 /* Adjust skb->csum since we changed the packet */ 4112 skb->csum = csum_add(skb->csum, delta); 4113 } 4114 4115 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb) 4116 { 4117 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 4118 return (void *)(skb->_nfct & NFCT_PTRMASK); 4119 #else 4120 return NULL; 4121 #endif 4122 } 4123 4124 static inline unsigned long skb_get_nfct(const struct sk_buff *skb) 4125 { 4126 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 4127 return skb->_nfct; 4128 #else 4129 return 0UL; 4130 #endif 4131 } 4132 4133 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct) 4134 { 4135 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 4136 skb->_nfct = nfct; 4137 #endif 4138 } 4139 4140 #ifdef CONFIG_SKB_EXTENSIONS 4141 enum skb_ext_id { 4142 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4143 SKB_EXT_BRIDGE_NF, 4144 #endif 4145 #ifdef CONFIG_XFRM 4146 SKB_EXT_SEC_PATH, 4147 #endif 4148 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4149 TC_SKB_EXT, 4150 #endif 4151 #if IS_ENABLED(CONFIG_MPTCP) 4152 SKB_EXT_MPTCP, 4153 #endif 4154 SKB_EXT_NUM, /* must be last */ 4155 }; 4156 4157 /** 4158 * struct skb_ext - sk_buff extensions 4159 * @refcnt: 1 on allocation, deallocated on 0 4160 * @offset: offset to add to @data to obtain extension address 4161 * @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units 4162 * @data: start of extension data, variable sized 4163 * 4164 * Note: offsets/lengths are stored in chunks of 8 bytes, this allows 4165 * to use 'u8' types while allowing up to 2kb worth of extension data. 4166 */ 4167 struct skb_ext { 4168 refcount_t refcnt; 4169 u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */ 4170 u8 chunks; /* same */ 4171 char data[0] __aligned(8); 4172 }; 4173 4174 struct skb_ext *__skb_ext_alloc(void); 4175 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 4176 struct skb_ext *ext); 4177 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id); 4178 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id); 4179 void __skb_ext_put(struct skb_ext *ext); 4180 4181 static inline void skb_ext_put(struct sk_buff *skb) 4182 { 4183 if (skb->active_extensions) 4184 __skb_ext_put(skb->extensions); 4185 } 4186 4187 static inline void __skb_ext_copy(struct sk_buff *dst, 4188 const struct sk_buff *src) 4189 { 4190 dst->active_extensions = src->active_extensions; 4191 4192 if (src->active_extensions) { 4193 struct skb_ext *ext = src->extensions; 4194 4195 refcount_inc(&ext->refcnt); 4196 dst->extensions = ext; 4197 } 4198 } 4199 4200 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src) 4201 { 4202 skb_ext_put(dst); 4203 __skb_ext_copy(dst, src); 4204 } 4205 4206 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i) 4207 { 4208 return !!ext->offset[i]; 4209 } 4210 4211 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id) 4212 { 4213 return skb->active_extensions & (1 << id); 4214 } 4215 4216 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 4217 { 4218 if (skb_ext_exist(skb, id)) 4219 __skb_ext_del(skb, id); 4220 } 4221 4222 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id) 4223 { 4224 if (skb_ext_exist(skb, id)) { 4225 struct skb_ext *ext = skb->extensions; 4226 4227 return (void *)ext + (ext->offset[id] << 3); 4228 } 4229 4230 return NULL; 4231 } 4232 4233 static inline void skb_ext_reset(struct sk_buff *skb) 4234 { 4235 if (unlikely(skb->active_extensions)) { 4236 __skb_ext_put(skb->extensions); 4237 skb->active_extensions = 0; 4238 } 4239 } 4240 4241 static inline bool skb_has_extensions(struct sk_buff *skb) 4242 { 4243 return unlikely(skb->active_extensions); 4244 } 4245 #else 4246 static inline void skb_ext_put(struct sk_buff *skb) {} 4247 static inline void skb_ext_reset(struct sk_buff *skb) {} 4248 static inline void skb_ext_del(struct sk_buff *skb, int unused) {} 4249 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {} 4250 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {} 4251 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; } 4252 #endif /* CONFIG_SKB_EXTENSIONS */ 4253 4254 static inline void nf_reset_ct(struct sk_buff *skb) 4255 { 4256 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4257 nf_conntrack_put(skb_nfct(skb)); 4258 skb->_nfct = 0; 4259 #endif 4260 } 4261 4262 static inline void nf_reset_trace(struct sk_buff *skb) 4263 { 4264 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 4265 skb->nf_trace = 0; 4266 #endif 4267 } 4268 4269 static inline void ipvs_reset(struct sk_buff *skb) 4270 { 4271 #if IS_ENABLED(CONFIG_IP_VS) 4272 skb->ipvs_property = 0; 4273 #endif 4274 } 4275 4276 /* Note: This doesn't put any conntrack info in dst. */ 4277 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src, 4278 bool copy) 4279 { 4280 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4281 dst->_nfct = src->_nfct; 4282 nf_conntrack_get(skb_nfct(src)); 4283 #endif 4284 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 4285 if (copy) 4286 dst->nf_trace = src->nf_trace; 4287 #endif 4288 } 4289 4290 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 4291 { 4292 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4293 nf_conntrack_put(skb_nfct(dst)); 4294 #endif 4295 __nf_copy(dst, src, true); 4296 } 4297 4298 #ifdef CONFIG_NETWORK_SECMARK 4299 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 4300 { 4301 to->secmark = from->secmark; 4302 } 4303 4304 static inline void skb_init_secmark(struct sk_buff *skb) 4305 { 4306 skb->secmark = 0; 4307 } 4308 #else 4309 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 4310 { } 4311 4312 static inline void skb_init_secmark(struct sk_buff *skb) 4313 { } 4314 #endif 4315 4316 static inline int secpath_exists(const struct sk_buff *skb) 4317 { 4318 #ifdef CONFIG_XFRM 4319 return skb_ext_exist(skb, SKB_EXT_SEC_PATH); 4320 #else 4321 return 0; 4322 #endif 4323 } 4324 4325 static inline bool skb_irq_freeable(const struct sk_buff *skb) 4326 { 4327 return !skb->destructor && 4328 !secpath_exists(skb) && 4329 !skb_nfct(skb) && 4330 !skb->_skb_refdst && 4331 !skb_has_frag_list(skb); 4332 } 4333 4334 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 4335 { 4336 skb->queue_mapping = queue_mapping; 4337 } 4338 4339 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 4340 { 4341 return skb->queue_mapping; 4342 } 4343 4344 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 4345 { 4346 to->queue_mapping = from->queue_mapping; 4347 } 4348 4349 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 4350 { 4351 skb->queue_mapping = rx_queue + 1; 4352 } 4353 4354 static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 4355 { 4356 return skb->queue_mapping - 1; 4357 } 4358 4359 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 4360 { 4361 return skb->queue_mapping != 0; 4362 } 4363 4364 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val) 4365 { 4366 skb->dst_pending_confirm = val; 4367 } 4368 4369 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb) 4370 { 4371 return skb->dst_pending_confirm != 0; 4372 } 4373 4374 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb) 4375 { 4376 #ifdef CONFIG_XFRM 4377 return skb_ext_find(skb, SKB_EXT_SEC_PATH); 4378 #else 4379 return NULL; 4380 #endif 4381 } 4382 4383 /* Keeps track of mac header offset relative to skb->head. 4384 * It is useful for TSO of Tunneling protocol. e.g. GRE. 4385 * For non-tunnel skb it points to skb_mac_header() and for 4386 * tunnel skb it points to outer mac header. 4387 * Keeps track of level of encapsulation of network headers. 4388 */ 4389 struct skb_gso_cb { 4390 union { 4391 int mac_offset; 4392 int data_offset; 4393 }; 4394 int encap_level; 4395 __wsum csum; 4396 __u16 csum_start; 4397 }; 4398 #define SKB_SGO_CB_OFFSET 32 4399 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET)) 4400 4401 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb) 4402 { 4403 return (skb_mac_header(inner_skb) - inner_skb->head) - 4404 SKB_GSO_CB(inner_skb)->mac_offset; 4405 } 4406 4407 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra) 4408 { 4409 int new_headroom, headroom; 4410 int ret; 4411 4412 headroom = skb_headroom(skb); 4413 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC); 4414 if (ret) 4415 return ret; 4416 4417 new_headroom = skb_headroom(skb); 4418 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom); 4419 return 0; 4420 } 4421 4422 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res) 4423 { 4424 /* Do not update partial checksums if remote checksum is enabled. */ 4425 if (skb->remcsum_offload) 4426 return; 4427 4428 SKB_GSO_CB(skb)->csum = res; 4429 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head; 4430 } 4431 4432 /* Compute the checksum for a gso segment. First compute the checksum value 4433 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and 4434 * then add in skb->csum (checksum from csum_start to end of packet). 4435 * skb->csum and csum_start are then updated to reflect the checksum of the 4436 * resultant packet starting from the transport header-- the resultant checksum 4437 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo 4438 * header. 4439 */ 4440 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res) 4441 { 4442 unsigned char *csum_start = skb_transport_header(skb); 4443 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start; 4444 __wsum partial = SKB_GSO_CB(skb)->csum; 4445 4446 SKB_GSO_CB(skb)->csum = res; 4447 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head; 4448 4449 return csum_fold(csum_partial(csum_start, plen, partial)); 4450 } 4451 4452 static inline bool skb_is_gso(const struct sk_buff *skb) 4453 { 4454 return skb_shinfo(skb)->gso_size; 4455 } 4456 4457 /* Note: Should be called only if skb_is_gso(skb) is true */ 4458 static inline bool skb_is_gso_v6(const struct sk_buff *skb) 4459 { 4460 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 4461 } 4462 4463 /* Note: Should be called only if skb_is_gso(skb) is true */ 4464 static inline bool skb_is_gso_sctp(const struct sk_buff *skb) 4465 { 4466 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP; 4467 } 4468 4469 /* Note: Should be called only if skb_is_gso(skb) is true */ 4470 static inline bool skb_is_gso_tcp(const struct sk_buff *skb) 4471 { 4472 return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6); 4473 } 4474 4475 static inline void skb_gso_reset(struct sk_buff *skb) 4476 { 4477 skb_shinfo(skb)->gso_size = 0; 4478 skb_shinfo(skb)->gso_segs = 0; 4479 skb_shinfo(skb)->gso_type = 0; 4480 } 4481 4482 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo, 4483 u16 increment) 4484 { 4485 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 4486 return; 4487 shinfo->gso_size += increment; 4488 } 4489 4490 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo, 4491 u16 decrement) 4492 { 4493 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 4494 return; 4495 shinfo->gso_size -= decrement; 4496 } 4497 4498 void __skb_warn_lro_forwarding(const struct sk_buff *skb); 4499 4500 static inline bool skb_warn_if_lro(const struct sk_buff *skb) 4501 { 4502 /* LRO sets gso_size but not gso_type, whereas if GSO is really 4503 * wanted then gso_type will be set. */ 4504 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4505 4506 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 4507 unlikely(shinfo->gso_type == 0)) { 4508 __skb_warn_lro_forwarding(skb); 4509 return true; 4510 } 4511 return false; 4512 } 4513 4514 static inline void skb_forward_csum(struct sk_buff *skb) 4515 { 4516 /* Unfortunately we don't support this one. Any brave souls? */ 4517 if (skb->ip_summed == CHECKSUM_COMPLETE) 4518 skb->ip_summed = CHECKSUM_NONE; 4519 } 4520 4521 /** 4522 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 4523 * @skb: skb to check 4524 * 4525 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 4526 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 4527 * use this helper, to document places where we make this assertion. 4528 */ 4529 static inline void skb_checksum_none_assert(const struct sk_buff *skb) 4530 { 4531 #ifdef DEBUG 4532 BUG_ON(skb->ip_summed != CHECKSUM_NONE); 4533 #endif 4534 } 4535 4536 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 4537 4538 int skb_checksum_setup(struct sk_buff *skb, bool recalculate); 4539 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 4540 unsigned int transport_len, 4541 __sum16(*skb_chkf)(struct sk_buff *skb)); 4542 4543 /** 4544 * skb_head_is_locked - Determine if the skb->head is locked down 4545 * @skb: skb to check 4546 * 4547 * The head on skbs build around a head frag can be removed if they are 4548 * not cloned. This function returns true if the skb head is locked down 4549 * due to either being allocated via kmalloc, or by being a clone with 4550 * multiple references to the head. 4551 */ 4552 static inline bool skb_head_is_locked(const struct sk_buff *skb) 4553 { 4554 return !skb->head_frag || skb_cloned(skb); 4555 } 4556 4557 /* Local Checksum Offload. 4558 * Compute outer checksum based on the assumption that the 4559 * inner checksum will be offloaded later. 4560 * See Documentation/networking/checksum-offloads.rst for 4561 * explanation of how this works. 4562 * Fill in outer checksum adjustment (e.g. with sum of outer 4563 * pseudo-header) before calling. 4564 * Also ensure that inner checksum is in linear data area. 4565 */ 4566 static inline __wsum lco_csum(struct sk_buff *skb) 4567 { 4568 unsigned char *csum_start = skb_checksum_start(skb); 4569 unsigned char *l4_hdr = skb_transport_header(skb); 4570 __wsum partial; 4571 4572 /* Start with complement of inner checksum adjustment */ 4573 partial = ~csum_unfold(*(__force __sum16 *)(csum_start + 4574 skb->csum_offset)); 4575 4576 /* Add in checksum of our headers (incl. outer checksum 4577 * adjustment filled in by caller) and return result. 4578 */ 4579 return csum_partial(l4_hdr, csum_start - l4_hdr, partial); 4580 } 4581 4582 #endif /* __KERNEL__ */ 4583 #endif /* _LINUX_SKBUFF_H */ 4584