1 /* 2 * Definitions for the 'struct sk_buff' memory handlers. 3 * 4 * Authors: 5 * Alan Cox, <[email protected]> 6 * Florian La Roche, <[email protected]> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14 #ifndef _LINUX_SKBUFF_H 15 #define _LINUX_SKBUFF_H 16 17 #include <linux/kernel.h> 18 #include <linux/kmemcheck.h> 19 #include <linux/compiler.h> 20 #include <linux/time.h> 21 #include <linux/bug.h> 22 #include <linux/cache.h> 23 #include <linux/rbtree.h> 24 #include <linux/socket.h> 25 26 #include <linux/atomic.h> 27 #include <asm/types.h> 28 #include <linux/spinlock.h> 29 #include <linux/net.h> 30 #include <linux/textsearch.h> 31 #include <net/checksum.h> 32 #include <linux/rcupdate.h> 33 #include <linux/hrtimer.h> 34 #include <linux/dma-mapping.h> 35 #include <linux/netdev_features.h> 36 #include <linux/sched.h> 37 #include <linux/sched/clock.h> 38 #include <net/flow_dissector.h> 39 #include <linux/splice.h> 40 #include <linux/in6.h> 41 #include <linux/if_packet.h> 42 #include <net/flow.h> 43 44 /* The interface for checksum offload between the stack and networking drivers 45 * is as follows... 46 * 47 * A. IP checksum related features 48 * 49 * Drivers advertise checksum offload capabilities in the features of a device. 50 * From the stack's point of view these are capabilities offered by the driver, 51 * a driver typically only advertises features that it is capable of offloading 52 * to its device. 53 * 54 * The checksum related features are: 55 * 56 * NETIF_F_HW_CSUM - The driver (or its device) is able to compute one 57 * IP (one's complement) checksum for any combination 58 * of protocols or protocol layering. The checksum is 59 * computed and set in a packet per the CHECKSUM_PARTIAL 60 * interface (see below). 61 * 62 * NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain 63 * TCP or UDP packets over IPv4. These are specifically 64 * unencapsulated packets of the form IPv4|TCP or 65 * IPv4|UDP where the Protocol field in the IPv4 header 66 * is TCP or UDP. The IPv4 header may contain IP options 67 * This feature cannot be set in features for a device 68 * with NETIF_F_HW_CSUM also set. This feature is being 69 * DEPRECATED (see below). 70 * 71 * NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain 72 * TCP or UDP packets over IPv6. These are specifically 73 * unencapsulated packets of the form IPv6|TCP or 74 * IPv4|UDP where the Next Header field in the IPv6 75 * header is either TCP or UDP. IPv6 extension headers 76 * are not supported with this feature. This feature 77 * cannot be set in features for a device with 78 * NETIF_F_HW_CSUM also set. This feature is being 79 * DEPRECATED (see below). 80 * 81 * NETIF_F_RXCSUM - Driver (device) performs receive checksum offload. 82 * This flag is used only used to disable the RX checksum 83 * feature for a device. The stack will accept receive 84 * checksum indication in packets received on a device 85 * regardless of whether NETIF_F_RXCSUM is set. 86 * 87 * B. Checksumming of received packets by device. Indication of checksum 88 * verification is in set skb->ip_summed. Possible values are: 89 * 90 * CHECKSUM_NONE: 91 * 92 * Device did not checksum this packet e.g. due to lack of capabilities. 93 * The packet contains full (though not verified) checksum in packet but 94 * not in skb->csum. Thus, skb->csum is undefined in this case. 95 * 96 * CHECKSUM_UNNECESSARY: 97 * 98 * The hardware you're dealing with doesn't calculate the full checksum 99 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums 100 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY 101 * if their checksums are okay. skb->csum is still undefined in this case 102 * though. A driver or device must never modify the checksum field in the 103 * packet even if checksum is verified. 104 * 105 * CHECKSUM_UNNECESSARY is applicable to following protocols: 106 * TCP: IPv6 and IPv4. 107 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a 108 * zero UDP checksum for either IPv4 or IPv6, the networking stack 109 * may perform further validation in this case. 110 * GRE: only if the checksum is present in the header. 111 * SCTP: indicates the CRC in SCTP header has been validated. 112 * FCOE: indicates the CRC in FC frame has been validated. 113 * 114 * skb->csum_level indicates the number of consecutive checksums found in 115 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY. 116 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet 117 * and a device is able to verify the checksums for UDP (possibly zero), 118 * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to 119 * two. If the device were only able to verify the UDP checksum and not 120 * GRE, either because it doesn't support GRE checksum of because GRE 121 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is 122 * not considered in this case). 123 * 124 * CHECKSUM_COMPLETE: 125 * 126 * This is the most generic way. The device supplied checksum of the _whole_ 127 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the 128 * hardware doesn't need to parse L3/L4 headers to implement this. 129 * 130 * Notes: 131 * - Even if device supports only some protocols, but is able to produce 132 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY. 133 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols. 134 * 135 * CHECKSUM_PARTIAL: 136 * 137 * A checksum is set up to be offloaded to a device as described in the 138 * output description for CHECKSUM_PARTIAL. This may occur on a packet 139 * received directly from another Linux OS, e.g., a virtualized Linux kernel 140 * on the same host, or it may be set in the input path in GRO or remote 141 * checksum offload. For the purposes of checksum verification, the checksum 142 * referred to by skb->csum_start + skb->csum_offset and any preceding 143 * checksums in the packet are considered verified. Any checksums in the 144 * packet that are after the checksum being offloaded are not considered to 145 * be verified. 146 * 147 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload 148 * in the skb->ip_summed for a packet. Values are: 149 * 150 * CHECKSUM_PARTIAL: 151 * 152 * The driver is required to checksum the packet as seen by hard_start_xmit() 153 * from skb->csum_start up to the end, and to record/write the checksum at 154 * offset skb->csum_start + skb->csum_offset. A driver may verify that the 155 * csum_start and csum_offset values are valid values given the length and 156 * offset of the packet, however they should not attempt to validate that the 157 * checksum refers to a legitimate transport layer checksum-- it is the 158 * purview of the stack to validate that csum_start and csum_offset are set 159 * correctly. 160 * 161 * When the stack requests checksum offload for a packet, the driver MUST 162 * ensure that the checksum is set correctly. A driver can either offload the 163 * checksum calculation to the device, or call skb_checksum_help (in the case 164 * that the device does not support offload for a particular checksum). 165 * 166 * NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of 167 * NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate 168 * checksum offload capability. 169 * skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based 170 * on network device checksumming capabilities: if a packet does not match 171 * them, skb_checksum_help or skb_crc32c_help (depending on the value of 172 * csum_not_inet, see item D.) is called to resolve the checksum. 173 * 174 * CHECKSUM_NONE: 175 * 176 * The skb was already checksummed by the protocol, or a checksum is not 177 * required. 178 * 179 * CHECKSUM_UNNECESSARY: 180 * 181 * This has the same meaning on as CHECKSUM_NONE for checksum offload on 182 * output. 183 * 184 * CHECKSUM_COMPLETE: 185 * Not used in checksum output. If a driver observes a packet with this value 186 * set in skbuff, if should treat as CHECKSUM_NONE being set. 187 * 188 * D. Non-IP checksum (CRC) offloads 189 * 190 * NETIF_F_SCTP_CRC - This feature indicates that a device is capable of 191 * offloading the SCTP CRC in a packet. To perform this offload the stack 192 * will set set csum_start and csum_offset accordingly, set ip_summed to 193 * CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in 194 * the skbuff that the CHECKSUM_PARTIAL refers to CRC32c. 195 * A driver that supports both IP checksum offload and SCTP CRC32c offload 196 * must verify which offload is configured for a packet by testing the 197 * value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve 198 * CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1. 199 * 200 * NETIF_F_FCOE_CRC - This feature indicates that a device is capable of 201 * offloading the FCOE CRC in a packet. To perform this offload the stack 202 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset 203 * accordingly. Note the there is no indication in the skbuff that the 204 * CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports 205 * both IP checksum offload and FCOE CRC offload must verify which offload 206 * is configured for a packet presumably by inspecting packet headers. 207 * 208 * E. Checksumming on output with GSO. 209 * 210 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload 211 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the 212 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as 213 * part of the GSO operation is implied. If a checksum is being offloaded 214 * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset 215 * are set to refer to the outermost checksum being offload (two offloaded 216 * checksums are possible with UDP encapsulation). 217 */ 218 219 /* Don't change this without changing skb_csum_unnecessary! */ 220 #define CHECKSUM_NONE 0 221 #define CHECKSUM_UNNECESSARY 1 222 #define CHECKSUM_COMPLETE 2 223 #define CHECKSUM_PARTIAL 3 224 225 /* Maximum value in skb->csum_level */ 226 #define SKB_MAX_CSUM_LEVEL 3 227 228 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES) 229 #define SKB_WITH_OVERHEAD(X) \ 230 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 231 #define SKB_MAX_ORDER(X, ORDER) \ 232 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 233 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 234 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 235 236 /* return minimum truesize of one skb containing X bytes of data */ 237 #define SKB_TRUESIZE(X) ((X) + \ 238 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ 239 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 240 241 struct net_device; 242 struct scatterlist; 243 struct pipe_inode_info; 244 struct iov_iter; 245 struct napi_struct; 246 247 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 248 struct nf_conntrack { 249 atomic_t use; 250 }; 251 #endif 252 253 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 254 struct nf_bridge_info { 255 refcount_t use; 256 enum { 257 BRNF_PROTO_UNCHANGED, 258 BRNF_PROTO_8021Q, 259 BRNF_PROTO_PPPOE 260 } orig_proto:8; 261 u8 pkt_otherhost:1; 262 u8 in_prerouting:1; 263 u8 bridged_dnat:1; 264 __u16 frag_max_size; 265 struct net_device *physindev; 266 267 /* always valid & non-NULL from FORWARD on, for physdev match */ 268 struct net_device *physoutdev; 269 union { 270 /* prerouting: detect dnat in orig/reply direction */ 271 __be32 ipv4_daddr; 272 struct in6_addr ipv6_daddr; 273 274 /* after prerouting + nat detected: store original source 275 * mac since neigh resolution overwrites it, only used while 276 * skb is out in neigh layer. 277 */ 278 char neigh_header[8]; 279 }; 280 }; 281 #endif 282 283 struct sk_buff_head { 284 /* These two members must be first. */ 285 struct sk_buff *next; 286 struct sk_buff *prev; 287 288 __u32 qlen; 289 spinlock_t lock; 290 }; 291 292 struct sk_buff; 293 294 /* To allow 64K frame to be packed as single skb without frag_list we 295 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for 296 * buffers which do not start on a page boundary. 297 * 298 * Since GRO uses frags we allocate at least 16 regardless of page 299 * size. 300 */ 301 #if (65536/PAGE_SIZE + 1) < 16 302 #define MAX_SKB_FRAGS 16UL 303 #else 304 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1) 305 #endif 306 extern int sysctl_max_skb_frags; 307 308 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to 309 * segment using its current segmentation instead. 310 */ 311 #define GSO_BY_FRAGS 0xFFFF 312 313 typedef struct skb_frag_struct skb_frag_t; 314 315 struct skb_frag_struct { 316 struct { 317 struct page *p; 318 } page; 319 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536) 320 __u32 page_offset; 321 __u32 size; 322 #else 323 __u16 page_offset; 324 __u16 size; 325 #endif 326 }; 327 328 static inline unsigned int skb_frag_size(const skb_frag_t *frag) 329 { 330 return frag->size; 331 } 332 333 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) 334 { 335 frag->size = size; 336 } 337 338 static inline void skb_frag_size_add(skb_frag_t *frag, int delta) 339 { 340 frag->size += delta; 341 } 342 343 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) 344 { 345 frag->size -= delta; 346 } 347 348 #define HAVE_HW_TIME_STAMP 349 350 /** 351 * struct skb_shared_hwtstamps - hardware time stamps 352 * @hwtstamp: hardware time stamp transformed into duration 353 * since arbitrary point in time 354 * 355 * Software time stamps generated by ktime_get_real() are stored in 356 * skb->tstamp. 357 * 358 * hwtstamps can only be compared against other hwtstamps from 359 * the same device. 360 * 361 * This structure is attached to packets as part of the 362 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 363 */ 364 struct skb_shared_hwtstamps { 365 ktime_t hwtstamp; 366 }; 367 368 /* Definitions for tx_flags in struct skb_shared_info */ 369 enum { 370 /* generate hardware time stamp */ 371 SKBTX_HW_TSTAMP = 1 << 0, 372 373 /* generate software time stamp when queueing packet to NIC */ 374 SKBTX_SW_TSTAMP = 1 << 1, 375 376 /* device driver is going to provide hardware time stamp */ 377 SKBTX_IN_PROGRESS = 1 << 2, 378 379 /* device driver supports TX zero-copy buffers */ 380 SKBTX_DEV_ZEROCOPY = 1 << 3, 381 382 /* generate wifi status information (where possible) */ 383 SKBTX_WIFI_STATUS = 1 << 4, 384 385 /* This indicates at least one fragment might be overwritten 386 * (as in vmsplice(), sendfile() ...) 387 * If we need to compute a TX checksum, we'll need to copy 388 * all frags to avoid possible bad checksum 389 */ 390 SKBTX_SHARED_FRAG = 1 << 5, 391 392 /* generate software time stamp when entering packet scheduling */ 393 SKBTX_SCHED_TSTAMP = 1 << 6, 394 }; 395 396 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \ 397 SKBTX_SCHED_TSTAMP) 398 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP) 399 400 /* 401 * The callback notifies userspace to release buffers when skb DMA is done in 402 * lower device, the skb last reference should be 0 when calling this. 403 * The zerocopy_success argument is true if zero copy transmit occurred, 404 * false on data copy or out of memory error caused by data copy attempt. 405 * The ctx field is used to track device context. 406 * The desc field is used to track userspace buffer index. 407 */ 408 struct ubuf_info { 409 void (*callback)(struct ubuf_info *, bool zerocopy_success); 410 void *ctx; 411 unsigned long desc; 412 }; 413 414 /* This data is invariant across clones and lives at 415 * the end of the header data, ie. at skb->end. 416 */ 417 struct skb_shared_info { 418 unsigned short _unused; 419 unsigned char nr_frags; 420 __u8 tx_flags; 421 unsigned short gso_size; 422 /* Warning: this field is not always filled in (UFO)! */ 423 unsigned short gso_segs; 424 struct sk_buff *frag_list; 425 struct skb_shared_hwtstamps hwtstamps; 426 unsigned int gso_type; 427 u32 tskey; 428 __be32 ip6_frag_id; 429 430 /* 431 * Warning : all fields before dataref are cleared in __alloc_skb() 432 */ 433 atomic_t dataref; 434 435 /* Intermediate layers must ensure that destructor_arg 436 * remains valid until skb destructor */ 437 void * destructor_arg; 438 439 /* must be last field, see pskb_expand_head() */ 440 skb_frag_t frags[MAX_SKB_FRAGS]; 441 }; 442 443 /* We divide dataref into two halves. The higher 16 bits hold references 444 * to the payload part of skb->data. The lower 16 bits hold references to 445 * the entire skb->data. A clone of a headerless skb holds the length of 446 * the header in skb->hdr_len. 447 * 448 * All users must obey the rule that the skb->data reference count must be 449 * greater than or equal to the payload reference count. 450 * 451 * Holding a reference to the payload part means that the user does not 452 * care about modifications to the header part of skb->data. 453 */ 454 #define SKB_DATAREF_SHIFT 16 455 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 456 457 458 enum { 459 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */ 460 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */ 461 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */ 462 }; 463 464 enum { 465 SKB_GSO_TCPV4 = 1 << 0, 466 467 /* This indicates the skb is from an untrusted source. */ 468 SKB_GSO_DODGY = 1 << 1, 469 470 /* This indicates the tcp segment has CWR set. */ 471 SKB_GSO_TCP_ECN = 1 << 2, 472 473 SKB_GSO_TCP_FIXEDID = 1 << 3, 474 475 SKB_GSO_TCPV6 = 1 << 4, 476 477 SKB_GSO_FCOE = 1 << 5, 478 479 SKB_GSO_GRE = 1 << 6, 480 481 SKB_GSO_GRE_CSUM = 1 << 7, 482 483 SKB_GSO_IPXIP4 = 1 << 8, 484 485 SKB_GSO_IPXIP6 = 1 << 9, 486 487 SKB_GSO_UDP_TUNNEL = 1 << 10, 488 489 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11, 490 491 SKB_GSO_PARTIAL = 1 << 12, 492 493 SKB_GSO_TUNNEL_REMCSUM = 1 << 13, 494 495 SKB_GSO_SCTP = 1 << 14, 496 497 SKB_GSO_ESP = 1 << 15, 498 }; 499 500 #if BITS_PER_LONG > 32 501 #define NET_SKBUFF_DATA_USES_OFFSET 1 502 #endif 503 504 #ifdef NET_SKBUFF_DATA_USES_OFFSET 505 typedef unsigned int sk_buff_data_t; 506 #else 507 typedef unsigned char *sk_buff_data_t; 508 #endif 509 510 /** 511 * struct sk_buff - socket buffer 512 * @next: Next buffer in list 513 * @prev: Previous buffer in list 514 * @tstamp: Time we arrived/left 515 * @rbnode: RB tree node, alternative to next/prev for netem/tcp 516 * @sk: Socket we are owned by 517 * @dev: Device we arrived on/are leaving by 518 * @cb: Control buffer. Free for use by every layer. Put private vars here 519 * @_skb_refdst: destination entry (with norefcount bit) 520 * @sp: the security path, used for xfrm 521 * @len: Length of actual data 522 * @data_len: Data length 523 * @mac_len: Length of link layer header 524 * @hdr_len: writable header length of cloned skb 525 * @csum: Checksum (must include start/offset pair) 526 * @csum_start: Offset from skb->head where checksumming should start 527 * @csum_offset: Offset from csum_start where checksum should be stored 528 * @priority: Packet queueing priority 529 * @ignore_df: allow local fragmentation 530 * @cloned: Head may be cloned (check refcnt to be sure) 531 * @ip_summed: Driver fed us an IP checksum 532 * @nohdr: Payload reference only, must not modify header 533 * @pkt_type: Packet class 534 * @fclone: skbuff clone status 535 * @ipvs_property: skbuff is owned by ipvs 536 * @tc_skip_classify: do not classify packet. set by IFB device 537 * @tc_at_ingress: used within tc_classify to distinguish in/egress 538 * @tc_redirected: packet was redirected by a tc action 539 * @tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect 540 * @peeked: this packet has been seen already, so stats have been 541 * done for it, don't do them again 542 * @nf_trace: netfilter packet trace flag 543 * @protocol: Packet protocol from driver 544 * @destructor: Destruct function 545 * @_nfct: Associated connection, if any (with nfctinfo bits) 546 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 547 * @skb_iif: ifindex of device we arrived on 548 * @tc_index: Traffic control index 549 * @hash: the packet hash 550 * @queue_mapping: Queue mapping for multiqueue devices 551 * @xmit_more: More SKBs are pending for this queue 552 * @ndisc_nodetype: router type (from link layer) 553 * @ooo_okay: allow the mapping of a socket to a queue to be changed 554 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport 555 * ports. 556 * @sw_hash: indicates hash was computed in software stack 557 * @wifi_acked_valid: wifi_acked was set 558 * @wifi_acked: whether frame was acked on wifi or not 559 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS 560 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL 561 * @dst_pending_confirm: need to confirm neighbour 562 * @napi_id: id of the NAPI struct this skb came from 563 * @secmark: security marking 564 * @mark: Generic packet mark 565 * @vlan_proto: vlan encapsulation protocol 566 * @vlan_tci: vlan tag control information 567 * @inner_protocol: Protocol (encapsulation) 568 * @inner_transport_header: Inner transport layer header (encapsulation) 569 * @inner_network_header: Network layer header (encapsulation) 570 * @inner_mac_header: Link layer header (encapsulation) 571 * @transport_header: Transport layer header 572 * @network_header: Network layer header 573 * @mac_header: Link layer header 574 * @tail: Tail pointer 575 * @end: End pointer 576 * @head: Head of buffer 577 * @data: Data head pointer 578 * @truesize: Buffer size 579 * @users: User count - see {datagram,tcp}.c 580 */ 581 582 struct sk_buff { 583 union { 584 struct { 585 /* These two members must be first. */ 586 struct sk_buff *next; 587 struct sk_buff *prev; 588 589 union { 590 ktime_t tstamp; 591 u64 skb_mstamp; 592 }; 593 }; 594 struct rb_node rbnode; /* used in netem & tcp stack */ 595 }; 596 struct sock *sk; 597 598 union { 599 struct net_device *dev; 600 /* Some protocols might use this space to store information, 601 * while device pointer would be NULL. 602 * UDP receive path is one user. 603 */ 604 unsigned long dev_scratch; 605 }; 606 /* 607 * This is the control buffer. It is free to use for every 608 * layer. Please put your private variables there. If you 609 * want to keep them across layers you have to do a skb_clone() 610 * first. This is owned by whoever has the skb queued ATM. 611 */ 612 char cb[48] __aligned(8); 613 614 unsigned long _skb_refdst; 615 void (*destructor)(struct sk_buff *skb); 616 #ifdef CONFIG_XFRM 617 struct sec_path *sp; 618 #endif 619 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 620 unsigned long _nfct; 621 #endif 622 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 623 struct nf_bridge_info *nf_bridge; 624 #endif 625 unsigned int len, 626 data_len; 627 __u16 mac_len, 628 hdr_len; 629 630 /* Following fields are _not_ copied in __copy_skb_header() 631 * Note that queue_mapping is here mostly to fill a hole. 632 */ 633 kmemcheck_bitfield_begin(flags1); 634 __u16 queue_mapping; 635 636 /* if you move cloned around you also must adapt those constants */ 637 #ifdef __BIG_ENDIAN_BITFIELD 638 #define CLONED_MASK (1 << 7) 639 #else 640 #define CLONED_MASK 1 641 #endif 642 #define CLONED_OFFSET() offsetof(struct sk_buff, __cloned_offset) 643 644 __u8 __cloned_offset[0]; 645 __u8 cloned:1, 646 nohdr:1, 647 fclone:2, 648 peeked:1, 649 head_frag:1, 650 xmit_more:1, 651 __unused:1; /* one bit hole */ 652 kmemcheck_bitfield_end(flags1); 653 654 /* fields enclosed in headers_start/headers_end are copied 655 * using a single memcpy() in __copy_skb_header() 656 */ 657 /* private: */ 658 __u32 headers_start[0]; 659 /* public: */ 660 661 /* if you move pkt_type around you also must adapt those constants */ 662 #ifdef __BIG_ENDIAN_BITFIELD 663 #define PKT_TYPE_MAX (7 << 5) 664 #else 665 #define PKT_TYPE_MAX 7 666 #endif 667 #define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset) 668 669 __u8 __pkt_type_offset[0]; 670 __u8 pkt_type:3; 671 __u8 pfmemalloc:1; 672 __u8 ignore_df:1; 673 674 __u8 nf_trace:1; 675 __u8 ip_summed:2; 676 __u8 ooo_okay:1; 677 __u8 l4_hash:1; 678 __u8 sw_hash:1; 679 __u8 wifi_acked_valid:1; 680 __u8 wifi_acked:1; 681 682 __u8 no_fcs:1; 683 /* Indicates the inner headers are valid in the skbuff. */ 684 __u8 encapsulation:1; 685 __u8 encap_hdr_csum:1; 686 __u8 csum_valid:1; 687 __u8 csum_complete_sw:1; 688 __u8 csum_level:2; 689 __u8 csum_not_inet:1; 690 691 __u8 dst_pending_confirm:1; 692 #ifdef CONFIG_IPV6_NDISC_NODETYPE 693 __u8 ndisc_nodetype:2; 694 #endif 695 __u8 ipvs_property:1; 696 __u8 inner_protocol_type:1; 697 __u8 remcsum_offload:1; 698 #ifdef CONFIG_NET_SWITCHDEV 699 __u8 offload_fwd_mark:1; 700 #endif 701 #ifdef CONFIG_NET_CLS_ACT 702 __u8 tc_skip_classify:1; 703 __u8 tc_at_ingress:1; 704 __u8 tc_redirected:1; 705 __u8 tc_from_ingress:1; 706 #endif 707 708 #ifdef CONFIG_NET_SCHED 709 __u16 tc_index; /* traffic control index */ 710 #endif 711 712 union { 713 __wsum csum; 714 struct { 715 __u16 csum_start; 716 __u16 csum_offset; 717 }; 718 }; 719 __u32 priority; 720 int skb_iif; 721 __u32 hash; 722 __be16 vlan_proto; 723 __u16 vlan_tci; 724 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS) 725 union { 726 unsigned int napi_id; 727 unsigned int sender_cpu; 728 }; 729 #endif 730 #ifdef CONFIG_NETWORK_SECMARK 731 __u32 secmark; 732 #endif 733 734 union { 735 __u32 mark; 736 __u32 reserved_tailroom; 737 }; 738 739 union { 740 __be16 inner_protocol; 741 __u8 inner_ipproto; 742 }; 743 744 __u16 inner_transport_header; 745 __u16 inner_network_header; 746 __u16 inner_mac_header; 747 748 __be16 protocol; 749 __u16 transport_header; 750 __u16 network_header; 751 __u16 mac_header; 752 753 /* private: */ 754 __u32 headers_end[0]; 755 /* public: */ 756 757 /* These elements must be at the end, see alloc_skb() for details. */ 758 sk_buff_data_t tail; 759 sk_buff_data_t end; 760 unsigned char *head, 761 *data; 762 unsigned int truesize; 763 refcount_t users; 764 }; 765 766 #ifdef __KERNEL__ 767 /* 768 * Handling routines are only of interest to the kernel 769 */ 770 #include <linux/slab.h> 771 772 773 #define SKB_ALLOC_FCLONE 0x01 774 #define SKB_ALLOC_RX 0x02 775 #define SKB_ALLOC_NAPI 0x04 776 777 /* Returns true if the skb was allocated from PFMEMALLOC reserves */ 778 static inline bool skb_pfmemalloc(const struct sk_buff *skb) 779 { 780 return unlikely(skb->pfmemalloc); 781 } 782 783 /* 784 * skb might have a dst pointer attached, refcounted or not. 785 * _skb_refdst low order bit is set if refcount was _not_ taken 786 */ 787 #define SKB_DST_NOREF 1UL 788 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 789 790 #define SKB_NFCT_PTRMASK ~(7UL) 791 /** 792 * skb_dst - returns skb dst_entry 793 * @skb: buffer 794 * 795 * Returns skb dst_entry, regardless of reference taken or not. 796 */ 797 static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 798 { 799 /* If refdst was not refcounted, check we still are in a 800 * rcu_read_lock section 801 */ 802 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 803 !rcu_read_lock_held() && 804 !rcu_read_lock_bh_held()); 805 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 806 } 807 808 /** 809 * skb_dst_set - sets skb dst 810 * @skb: buffer 811 * @dst: dst entry 812 * 813 * Sets skb dst, assuming a reference was taken on dst and should 814 * be released by skb_dst_drop() 815 */ 816 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 817 { 818 skb->_skb_refdst = (unsigned long)dst; 819 } 820 821 /** 822 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference 823 * @skb: buffer 824 * @dst: dst entry 825 * 826 * Sets skb dst, assuming a reference was not taken on dst. 827 * If dst entry is cached, we do not take reference and dst_release 828 * will be avoided by refdst_drop. If dst entry is not cached, we take 829 * reference, so that last dst_release can destroy the dst immediately. 830 */ 831 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) 832 { 833 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 834 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF; 835 } 836 837 /** 838 * skb_dst_is_noref - Test if skb dst isn't refcounted 839 * @skb: buffer 840 */ 841 static inline bool skb_dst_is_noref(const struct sk_buff *skb) 842 { 843 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 844 } 845 846 static inline struct rtable *skb_rtable(const struct sk_buff *skb) 847 { 848 return (struct rtable *)skb_dst(skb); 849 } 850 851 /* For mangling skb->pkt_type from user space side from applications 852 * such as nft, tc, etc, we only allow a conservative subset of 853 * possible pkt_types to be set. 854 */ 855 static inline bool skb_pkt_type_ok(u32 ptype) 856 { 857 return ptype <= PACKET_OTHERHOST; 858 } 859 860 static inline unsigned int skb_napi_id(const struct sk_buff *skb) 861 { 862 #ifdef CONFIG_NET_RX_BUSY_POLL 863 return skb->napi_id; 864 #else 865 return 0; 866 #endif 867 } 868 869 /* decrement the reference count and return true if we can free the skb */ 870 static inline bool skb_unref(struct sk_buff *skb) 871 { 872 if (unlikely(!skb)) 873 return false; 874 if (likely(refcount_read(&skb->users) == 1)) 875 smp_rmb(); 876 else if (likely(!refcount_dec_and_test(&skb->users))) 877 return false; 878 879 return true; 880 } 881 882 void skb_release_head_state(struct sk_buff *skb); 883 void kfree_skb(struct sk_buff *skb); 884 void kfree_skb_list(struct sk_buff *segs); 885 void skb_tx_error(struct sk_buff *skb); 886 void consume_skb(struct sk_buff *skb); 887 void consume_stateless_skb(struct sk_buff *skb); 888 void __kfree_skb(struct sk_buff *skb); 889 extern struct kmem_cache *skbuff_head_cache; 890 891 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); 892 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 893 bool *fragstolen, int *delta_truesize); 894 895 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags, 896 int node); 897 struct sk_buff *__build_skb(void *data, unsigned int frag_size); 898 struct sk_buff *build_skb(void *data, unsigned int frag_size); 899 static inline struct sk_buff *alloc_skb(unsigned int size, 900 gfp_t priority) 901 { 902 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 903 } 904 905 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 906 unsigned long data_len, 907 int max_page_order, 908 int *errcode, 909 gfp_t gfp_mask); 910 911 /* Layout of fast clones : [skb1][skb2][fclone_ref] */ 912 struct sk_buff_fclones { 913 struct sk_buff skb1; 914 915 struct sk_buff skb2; 916 917 refcount_t fclone_ref; 918 }; 919 920 /** 921 * skb_fclone_busy - check if fclone is busy 922 * @sk: socket 923 * @skb: buffer 924 * 925 * Returns true if skb is a fast clone, and its clone is not freed. 926 * Some drivers call skb_orphan() in their ndo_start_xmit(), 927 * so we also check that this didnt happen. 928 */ 929 static inline bool skb_fclone_busy(const struct sock *sk, 930 const struct sk_buff *skb) 931 { 932 const struct sk_buff_fclones *fclones; 933 934 fclones = container_of(skb, struct sk_buff_fclones, skb1); 935 936 return skb->fclone == SKB_FCLONE_ORIG && 937 refcount_read(&fclones->fclone_ref) > 1 && 938 fclones->skb2.sk == sk; 939 } 940 941 static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 942 gfp_t priority) 943 { 944 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); 945 } 946 947 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 948 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); 949 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority); 950 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority); 951 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 952 gfp_t gfp_mask, bool fclone); 953 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, 954 gfp_t gfp_mask) 955 { 956 return __pskb_copy_fclone(skb, headroom, gfp_mask, false); 957 } 958 959 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask); 960 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 961 unsigned int headroom); 962 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, 963 int newtailroom, gfp_t priority); 964 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 965 int offset, int len); 966 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, 967 int offset, int len); 968 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer); 969 int skb_pad(struct sk_buff *skb, int pad); 970 #define dev_kfree_skb(a) consume_skb(a) 971 972 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 973 int getfrag(void *from, char *to, int offset, 974 int len, int odd, struct sk_buff *skb), 975 void *from, int length); 976 977 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 978 int offset, size_t size); 979 980 struct skb_seq_state { 981 __u32 lower_offset; 982 __u32 upper_offset; 983 __u32 frag_idx; 984 __u32 stepped_offset; 985 struct sk_buff *root_skb; 986 struct sk_buff *cur_skb; 987 __u8 *frag_data; 988 }; 989 990 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 991 unsigned int to, struct skb_seq_state *st); 992 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 993 struct skb_seq_state *st); 994 void skb_abort_seq_read(struct skb_seq_state *st); 995 996 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 997 unsigned int to, struct ts_config *config); 998 999 /* 1000 * Packet hash types specify the type of hash in skb_set_hash. 1001 * 1002 * Hash types refer to the protocol layer addresses which are used to 1003 * construct a packet's hash. The hashes are used to differentiate or identify 1004 * flows of the protocol layer for the hash type. Hash types are either 1005 * layer-2 (L2), layer-3 (L3), or layer-4 (L4). 1006 * 1007 * Properties of hashes: 1008 * 1009 * 1) Two packets in different flows have different hash values 1010 * 2) Two packets in the same flow should have the same hash value 1011 * 1012 * A hash at a higher layer is considered to be more specific. A driver should 1013 * set the most specific hash possible. 1014 * 1015 * A driver cannot indicate a more specific hash than the layer at which a hash 1016 * was computed. For instance an L3 hash cannot be set as an L4 hash. 1017 * 1018 * A driver may indicate a hash level which is less specific than the 1019 * actual layer the hash was computed on. For instance, a hash computed 1020 * at L4 may be considered an L3 hash. This should only be done if the 1021 * driver can't unambiguously determine that the HW computed the hash at 1022 * the higher layer. Note that the "should" in the second property above 1023 * permits this. 1024 */ 1025 enum pkt_hash_types { 1026 PKT_HASH_TYPE_NONE, /* Undefined type */ 1027 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */ 1028 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */ 1029 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */ 1030 }; 1031 1032 static inline void skb_clear_hash(struct sk_buff *skb) 1033 { 1034 skb->hash = 0; 1035 skb->sw_hash = 0; 1036 skb->l4_hash = 0; 1037 } 1038 1039 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb) 1040 { 1041 if (!skb->l4_hash) 1042 skb_clear_hash(skb); 1043 } 1044 1045 static inline void 1046 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4) 1047 { 1048 skb->l4_hash = is_l4; 1049 skb->sw_hash = is_sw; 1050 skb->hash = hash; 1051 } 1052 1053 static inline void 1054 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type) 1055 { 1056 /* Used by drivers to set hash from HW */ 1057 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4); 1058 } 1059 1060 static inline void 1061 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4) 1062 { 1063 __skb_set_hash(skb, hash, true, is_l4); 1064 } 1065 1066 void __skb_get_hash(struct sk_buff *skb); 1067 u32 __skb_get_hash_symmetric(const struct sk_buff *skb); 1068 u32 skb_get_poff(const struct sk_buff *skb); 1069 u32 __skb_get_poff(const struct sk_buff *skb, void *data, 1070 const struct flow_keys *keys, int hlen); 1071 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto, 1072 void *data, int hlen_proto); 1073 1074 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb, 1075 int thoff, u8 ip_proto) 1076 { 1077 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0); 1078 } 1079 1080 void skb_flow_dissector_init(struct flow_dissector *flow_dissector, 1081 const struct flow_dissector_key *key, 1082 unsigned int key_count); 1083 1084 bool __skb_flow_dissect(const struct sk_buff *skb, 1085 struct flow_dissector *flow_dissector, 1086 void *target_container, 1087 void *data, __be16 proto, int nhoff, int hlen, 1088 unsigned int flags); 1089 1090 static inline bool skb_flow_dissect(const struct sk_buff *skb, 1091 struct flow_dissector *flow_dissector, 1092 void *target_container, unsigned int flags) 1093 { 1094 return __skb_flow_dissect(skb, flow_dissector, target_container, 1095 NULL, 0, 0, 0, flags); 1096 } 1097 1098 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb, 1099 struct flow_keys *flow, 1100 unsigned int flags) 1101 { 1102 memset(flow, 0, sizeof(*flow)); 1103 return __skb_flow_dissect(skb, &flow_keys_dissector, flow, 1104 NULL, 0, 0, 0, flags); 1105 } 1106 1107 static inline bool skb_flow_dissect_flow_keys_buf(struct flow_keys *flow, 1108 void *data, __be16 proto, 1109 int nhoff, int hlen, 1110 unsigned int flags) 1111 { 1112 memset(flow, 0, sizeof(*flow)); 1113 return __skb_flow_dissect(NULL, &flow_keys_buf_dissector, flow, 1114 data, proto, nhoff, hlen, flags); 1115 } 1116 1117 static inline __u32 skb_get_hash(struct sk_buff *skb) 1118 { 1119 if (!skb->l4_hash && !skb->sw_hash) 1120 __skb_get_hash(skb); 1121 1122 return skb->hash; 1123 } 1124 1125 __u32 __skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6); 1126 1127 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6) 1128 { 1129 if (!skb->l4_hash && !skb->sw_hash) { 1130 struct flow_keys keys; 1131 __u32 hash = __get_hash_from_flowi6(fl6, &keys); 1132 1133 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys)); 1134 } 1135 1136 return skb->hash; 1137 } 1138 1139 __u32 __skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl); 1140 1141 static inline __u32 skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl4) 1142 { 1143 if (!skb->l4_hash && !skb->sw_hash) { 1144 struct flow_keys keys; 1145 __u32 hash = __get_hash_from_flowi4(fl4, &keys); 1146 1147 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys)); 1148 } 1149 1150 return skb->hash; 1151 } 1152 1153 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb); 1154 1155 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb) 1156 { 1157 return skb->hash; 1158 } 1159 1160 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from) 1161 { 1162 to->hash = from->hash; 1163 to->sw_hash = from->sw_hash; 1164 to->l4_hash = from->l4_hash; 1165 }; 1166 1167 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1168 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1169 { 1170 return skb->head + skb->end; 1171 } 1172 1173 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1174 { 1175 return skb->end; 1176 } 1177 #else 1178 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1179 { 1180 return skb->end; 1181 } 1182 1183 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1184 { 1185 return skb->end - skb->head; 1186 } 1187 #endif 1188 1189 /* Internal */ 1190 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 1191 1192 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 1193 { 1194 return &skb_shinfo(skb)->hwtstamps; 1195 } 1196 1197 /** 1198 * skb_queue_empty - check if a queue is empty 1199 * @list: queue head 1200 * 1201 * Returns true if the queue is empty, false otherwise. 1202 */ 1203 static inline int skb_queue_empty(const struct sk_buff_head *list) 1204 { 1205 return list->next == (const struct sk_buff *) list; 1206 } 1207 1208 /** 1209 * skb_queue_is_last - check if skb is the last entry in the queue 1210 * @list: queue head 1211 * @skb: buffer 1212 * 1213 * Returns true if @skb is the last buffer on the list. 1214 */ 1215 static inline bool skb_queue_is_last(const struct sk_buff_head *list, 1216 const struct sk_buff *skb) 1217 { 1218 return skb->next == (const struct sk_buff *) list; 1219 } 1220 1221 /** 1222 * skb_queue_is_first - check if skb is the first entry in the queue 1223 * @list: queue head 1224 * @skb: buffer 1225 * 1226 * Returns true if @skb is the first buffer on the list. 1227 */ 1228 static inline bool skb_queue_is_first(const struct sk_buff_head *list, 1229 const struct sk_buff *skb) 1230 { 1231 return skb->prev == (const struct sk_buff *) list; 1232 } 1233 1234 /** 1235 * skb_queue_next - return the next packet in the queue 1236 * @list: queue head 1237 * @skb: current buffer 1238 * 1239 * Return the next packet in @list after @skb. It is only valid to 1240 * call this if skb_queue_is_last() evaluates to false. 1241 */ 1242 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 1243 const struct sk_buff *skb) 1244 { 1245 /* This BUG_ON may seem severe, but if we just return then we 1246 * are going to dereference garbage. 1247 */ 1248 BUG_ON(skb_queue_is_last(list, skb)); 1249 return skb->next; 1250 } 1251 1252 /** 1253 * skb_queue_prev - return the prev packet in the queue 1254 * @list: queue head 1255 * @skb: current buffer 1256 * 1257 * Return the prev packet in @list before @skb. It is only valid to 1258 * call this if skb_queue_is_first() evaluates to false. 1259 */ 1260 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 1261 const struct sk_buff *skb) 1262 { 1263 /* This BUG_ON may seem severe, but if we just return then we 1264 * are going to dereference garbage. 1265 */ 1266 BUG_ON(skb_queue_is_first(list, skb)); 1267 return skb->prev; 1268 } 1269 1270 /** 1271 * skb_get - reference buffer 1272 * @skb: buffer to reference 1273 * 1274 * Makes another reference to a socket buffer and returns a pointer 1275 * to the buffer. 1276 */ 1277 static inline struct sk_buff *skb_get(struct sk_buff *skb) 1278 { 1279 refcount_inc(&skb->users); 1280 return skb; 1281 } 1282 1283 /* 1284 * If users == 1, we are the only owner and are can avoid redundant 1285 * atomic change. 1286 */ 1287 1288 /** 1289 * skb_cloned - is the buffer a clone 1290 * @skb: buffer to check 1291 * 1292 * Returns true if the buffer was generated with skb_clone() and is 1293 * one of multiple shared copies of the buffer. Cloned buffers are 1294 * shared data so must not be written to under normal circumstances. 1295 */ 1296 static inline int skb_cloned(const struct sk_buff *skb) 1297 { 1298 return skb->cloned && 1299 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 1300 } 1301 1302 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) 1303 { 1304 might_sleep_if(gfpflags_allow_blocking(pri)); 1305 1306 if (skb_cloned(skb)) 1307 return pskb_expand_head(skb, 0, 0, pri); 1308 1309 return 0; 1310 } 1311 1312 /** 1313 * skb_header_cloned - is the header a clone 1314 * @skb: buffer to check 1315 * 1316 * Returns true if modifying the header part of the buffer requires 1317 * the data to be copied. 1318 */ 1319 static inline int skb_header_cloned(const struct sk_buff *skb) 1320 { 1321 int dataref; 1322 1323 if (!skb->cloned) 1324 return 0; 1325 1326 dataref = atomic_read(&skb_shinfo(skb)->dataref); 1327 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 1328 return dataref != 1; 1329 } 1330 1331 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri) 1332 { 1333 might_sleep_if(gfpflags_allow_blocking(pri)); 1334 1335 if (skb_header_cloned(skb)) 1336 return pskb_expand_head(skb, 0, 0, pri); 1337 1338 return 0; 1339 } 1340 1341 /** 1342 * skb_header_release - release reference to header 1343 * @skb: buffer to operate on 1344 * 1345 * Drop a reference to the header part of the buffer. This is done 1346 * by acquiring a payload reference. You must not read from the header 1347 * part of skb->data after this. 1348 * Note : Check if you can use __skb_header_release() instead. 1349 */ 1350 static inline void skb_header_release(struct sk_buff *skb) 1351 { 1352 BUG_ON(skb->nohdr); 1353 skb->nohdr = 1; 1354 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref); 1355 } 1356 1357 /** 1358 * __skb_header_release - release reference to header 1359 * @skb: buffer to operate on 1360 * 1361 * Variant of skb_header_release() assuming skb is private to caller. 1362 * We can avoid one atomic operation. 1363 */ 1364 static inline void __skb_header_release(struct sk_buff *skb) 1365 { 1366 skb->nohdr = 1; 1367 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT)); 1368 } 1369 1370 1371 /** 1372 * skb_shared - is the buffer shared 1373 * @skb: buffer to check 1374 * 1375 * Returns true if more than one person has a reference to this 1376 * buffer. 1377 */ 1378 static inline int skb_shared(const struct sk_buff *skb) 1379 { 1380 return refcount_read(&skb->users) != 1; 1381 } 1382 1383 /** 1384 * skb_share_check - check if buffer is shared and if so clone it 1385 * @skb: buffer to check 1386 * @pri: priority for memory allocation 1387 * 1388 * If the buffer is shared the buffer is cloned and the old copy 1389 * drops a reference. A new clone with a single reference is returned. 1390 * If the buffer is not shared the original buffer is returned. When 1391 * being called from interrupt status or with spinlocks held pri must 1392 * be GFP_ATOMIC. 1393 * 1394 * NULL is returned on a memory allocation failure. 1395 */ 1396 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) 1397 { 1398 might_sleep_if(gfpflags_allow_blocking(pri)); 1399 if (skb_shared(skb)) { 1400 struct sk_buff *nskb = skb_clone(skb, pri); 1401 1402 if (likely(nskb)) 1403 consume_skb(skb); 1404 else 1405 kfree_skb(skb); 1406 skb = nskb; 1407 } 1408 return skb; 1409 } 1410 1411 /* 1412 * Copy shared buffers into a new sk_buff. We effectively do COW on 1413 * packets to handle cases where we have a local reader and forward 1414 * and a couple of other messy ones. The normal one is tcpdumping 1415 * a packet thats being forwarded. 1416 */ 1417 1418 /** 1419 * skb_unshare - make a copy of a shared buffer 1420 * @skb: buffer to check 1421 * @pri: priority for memory allocation 1422 * 1423 * If the socket buffer is a clone then this function creates a new 1424 * copy of the data, drops a reference count on the old copy and returns 1425 * the new copy with the reference count at 1. If the buffer is not a clone 1426 * the original buffer is returned. When called with a spinlock held or 1427 * from interrupt state @pri must be %GFP_ATOMIC 1428 * 1429 * %NULL is returned on a memory allocation failure. 1430 */ 1431 static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 1432 gfp_t pri) 1433 { 1434 might_sleep_if(gfpflags_allow_blocking(pri)); 1435 if (skb_cloned(skb)) { 1436 struct sk_buff *nskb = skb_copy(skb, pri); 1437 1438 /* Free our shared copy */ 1439 if (likely(nskb)) 1440 consume_skb(skb); 1441 else 1442 kfree_skb(skb); 1443 skb = nskb; 1444 } 1445 return skb; 1446 } 1447 1448 /** 1449 * skb_peek - peek at the head of an &sk_buff_head 1450 * @list_: list to peek at 1451 * 1452 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1453 * be careful with this one. A peek leaves the buffer on the 1454 * list and someone else may run off with it. You must hold 1455 * the appropriate locks or have a private queue to do this. 1456 * 1457 * Returns %NULL for an empty list or a pointer to the head element. 1458 * The reference count is not incremented and the reference is therefore 1459 * volatile. Use with caution. 1460 */ 1461 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) 1462 { 1463 struct sk_buff *skb = list_->next; 1464 1465 if (skb == (struct sk_buff *)list_) 1466 skb = NULL; 1467 return skb; 1468 } 1469 1470 /** 1471 * skb_peek_next - peek skb following the given one from a queue 1472 * @skb: skb to start from 1473 * @list_: list to peek at 1474 * 1475 * Returns %NULL when the end of the list is met or a pointer to the 1476 * next element. The reference count is not incremented and the 1477 * reference is therefore volatile. Use with caution. 1478 */ 1479 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, 1480 const struct sk_buff_head *list_) 1481 { 1482 struct sk_buff *next = skb->next; 1483 1484 if (next == (struct sk_buff *)list_) 1485 next = NULL; 1486 return next; 1487 } 1488 1489 /** 1490 * skb_peek_tail - peek at the tail of an &sk_buff_head 1491 * @list_: list to peek at 1492 * 1493 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1494 * be careful with this one. A peek leaves the buffer on the 1495 * list and someone else may run off with it. You must hold 1496 * the appropriate locks or have a private queue to do this. 1497 * 1498 * Returns %NULL for an empty list or a pointer to the tail element. 1499 * The reference count is not incremented and the reference is therefore 1500 * volatile. Use with caution. 1501 */ 1502 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) 1503 { 1504 struct sk_buff *skb = list_->prev; 1505 1506 if (skb == (struct sk_buff *)list_) 1507 skb = NULL; 1508 return skb; 1509 1510 } 1511 1512 /** 1513 * skb_queue_len - get queue length 1514 * @list_: list to measure 1515 * 1516 * Return the length of an &sk_buff queue. 1517 */ 1518 static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 1519 { 1520 return list_->qlen; 1521 } 1522 1523 /** 1524 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 1525 * @list: queue to initialize 1526 * 1527 * This initializes only the list and queue length aspects of 1528 * an sk_buff_head object. This allows to initialize the list 1529 * aspects of an sk_buff_head without reinitializing things like 1530 * the spinlock. It can also be used for on-stack sk_buff_head 1531 * objects where the spinlock is known to not be used. 1532 */ 1533 static inline void __skb_queue_head_init(struct sk_buff_head *list) 1534 { 1535 list->prev = list->next = (struct sk_buff *)list; 1536 list->qlen = 0; 1537 } 1538 1539 /* 1540 * This function creates a split out lock class for each invocation; 1541 * this is needed for now since a whole lot of users of the skb-queue 1542 * infrastructure in drivers have different locking usage (in hardirq) 1543 * than the networking core (in softirq only). In the long run either the 1544 * network layer or drivers should need annotation to consolidate the 1545 * main types of usage into 3 classes. 1546 */ 1547 static inline void skb_queue_head_init(struct sk_buff_head *list) 1548 { 1549 spin_lock_init(&list->lock); 1550 __skb_queue_head_init(list); 1551 } 1552 1553 static inline void skb_queue_head_init_class(struct sk_buff_head *list, 1554 struct lock_class_key *class) 1555 { 1556 skb_queue_head_init(list); 1557 lockdep_set_class(&list->lock, class); 1558 } 1559 1560 /* 1561 * Insert an sk_buff on a list. 1562 * 1563 * The "__skb_xxxx()" functions are the non-atomic ones that 1564 * can only be called with interrupts disabled. 1565 */ 1566 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, 1567 struct sk_buff_head *list); 1568 static inline void __skb_insert(struct sk_buff *newsk, 1569 struct sk_buff *prev, struct sk_buff *next, 1570 struct sk_buff_head *list) 1571 { 1572 newsk->next = next; 1573 newsk->prev = prev; 1574 next->prev = prev->next = newsk; 1575 list->qlen++; 1576 } 1577 1578 static inline void __skb_queue_splice(const struct sk_buff_head *list, 1579 struct sk_buff *prev, 1580 struct sk_buff *next) 1581 { 1582 struct sk_buff *first = list->next; 1583 struct sk_buff *last = list->prev; 1584 1585 first->prev = prev; 1586 prev->next = first; 1587 1588 last->next = next; 1589 next->prev = last; 1590 } 1591 1592 /** 1593 * skb_queue_splice - join two skb lists, this is designed for stacks 1594 * @list: the new list to add 1595 * @head: the place to add it in the first list 1596 */ 1597 static inline void skb_queue_splice(const struct sk_buff_head *list, 1598 struct sk_buff_head *head) 1599 { 1600 if (!skb_queue_empty(list)) { 1601 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1602 head->qlen += list->qlen; 1603 } 1604 } 1605 1606 /** 1607 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list 1608 * @list: the new list to add 1609 * @head: the place to add it in the first list 1610 * 1611 * The list at @list is reinitialised 1612 */ 1613 static inline void skb_queue_splice_init(struct sk_buff_head *list, 1614 struct sk_buff_head *head) 1615 { 1616 if (!skb_queue_empty(list)) { 1617 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1618 head->qlen += list->qlen; 1619 __skb_queue_head_init(list); 1620 } 1621 } 1622 1623 /** 1624 * skb_queue_splice_tail - join two skb lists, each list being a queue 1625 * @list: the new list to add 1626 * @head: the place to add it in the first list 1627 */ 1628 static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 1629 struct sk_buff_head *head) 1630 { 1631 if (!skb_queue_empty(list)) { 1632 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1633 head->qlen += list->qlen; 1634 } 1635 } 1636 1637 /** 1638 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list 1639 * @list: the new list to add 1640 * @head: the place to add it in the first list 1641 * 1642 * Each of the lists is a queue. 1643 * The list at @list is reinitialised 1644 */ 1645 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 1646 struct sk_buff_head *head) 1647 { 1648 if (!skb_queue_empty(list)) { 1649 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1650 head->qlen += list->qlen; 1651 __skb_queue_head_init(list); 1652 } 1653 } 1654 1655 /** 1656 * __skb_queue_after - queue a buffer at the list head 1657 * @list: list to use 1658 * @prev: place after this buffer 1659 * @newsk: buffer to queue 1660 * 1661 * Queue a buffer int the middle of a list. This function takes no locks 1662 * and you must therefore hold required locks before calling it. 1663 * 1664 * A buffer cannot be placed on two lists at the same time. 1665 */ 1666 static inline void __skb_queue_after(struct sk_buff_head *list, 1667 struct sk_buff *prev, 1668 struct sk_buff *newsk) 1669 { 1670 __skb_insert(newsk, prev, prev->next, list); 1671 } 1672 1673 void skb_append(struct sk_buff *old, struct sk_buff *newsk, 1674 struct sk_buff_head *list); 1675 1676 static inline void __skb_queue_before(struct sk_buff_head *list, 1677 struct sk_buff *next, 1678 struct sk_buff *newsk) 1679 { 1680 __skb_insert(newsk, next->prev, next, list); 1681 } 1682 1683 /** 1684 * __skb_queue_head - queue a buffer at the list head 1685 * @list: list to use 1686 * @newsk: buffer to queue 1687 * 1688 * Queue a buffer at the start of a list. This function takes no locks 1689 * and you must therefore hold required locks before calling it. 1690 * 1691 * A buffer cannot be placed on two lists at the same time. 1692 */ 1693 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 1694 static inline void __skb_queue_head(struct sk_buff_head *list, 1695 struct sk_buff *newsk) 1696 { 1697 __skb_queue_after(list, (struct sk_buff *)list, newsk); 1698 } 1699 1700 /** 1701 * __skb_queue_tail - queue a buffer at the list tail 1702 * @list: list to use 1703 * @newsk: buffer to queue 1704 * 1705 * Queue a buffer at the end of a list. This function takes no locks 1706 * and you must therefore hold required locks before calling it. 1707 * 1708 * A buffer cannot be placed on two lists at the same time. 1709 */ 1710 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 1711 static inline void __skb_queue_tail(struct sk_buff_head *list, 1712 struct sk_buff *newsk) 1713 { 1714 __skb_queue_before(list, (struct sk_buff *)list, newsk); 1715 } 1716 1717 /* 1718 * remove sk_buff from list. _Must_ be called atomically, and with 1719 * the list known.. 1720 */ 1721 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 1722 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 1723 { 1724 struct sk_buff *next, *prev; 1725 1726 list->qlen--; 1727 next = skb->next; 1728 prev = skb->prev; 1729 skb->next = skb->prev = NULL; 1730 next->prev = prev; 1731 prev->next = next; 1732 } 1733 1734 /** 1735 * __skb_dequeue - remove from the head of the queue 1736 * @list: list to dequeue from 1737 * 1738 * Remove the head of the list. This function does not take any locks 1739 * so must be used with appropriate locks held only. The head item is 1740 * returned or %NULL if the list is empty. 1741 */ 1742 struct sk_buff *skb_dequeue(struct sk_buff_head *list); 1743 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 1744 { 1745 struct sk_buff *skb = skb_peek(list); 1746 if (skb) 1747 __skb_unlink(skb, list); 1748 return skb; 1749 } 1750 1751 /** 1752 * __skb_dequeue_tail - remove from the tail of the queue 1753 * @list: list to dequeue from 1754 * 1755 * Remove the tail of the list. This function does not take any locks 1756 * so must be used with appropriate locks held only. The tail item is 1757 * returned or %NULL if the list is empty. 1758 */ 1759 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 1760 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 1761 { 1762 struct sk_buff *skb = skb_peek_tail(list); 1763 if (skb) 1764 __skb_unlink(skb, list); 1765 return skb; 1766 } 1767 1768 1769 static inline bool skb_is_nonlinear(const struct sk_buff *skb) 1770 { 1771 return skb->data_len; 1772 } 1773 1774 static inline unsigned int skb_headlen(const struct sk_buff *skb) 1775 { 1776 return skb->len - skb->data_len; 1777 } 1778 1779 static inline unsigned int skb_pagelen(const struct sk_buff *skb) 1780 { 1781 unsigned int i, len = 0; 1782 1783 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--) 1784 len += skb_frag_size(&skb_shinfo(skb)->frags[i]); 1785 return len + skb_headlen(skb); 1786 } 1787 1788 /** 1789 * __skb_fill_page_desc - initialise a paged fragment in an skb 1790 * @skb: buffer containing fragment to be initialised 1791 * @i: paged fragment index to initialise 1792 * @page: the page to use for this fragment 1793 * @off: the offset to the data with @page 1794 * @size: the length of the data 1795 * 1796 * Initialises the @i'th fragment of @skb to point to &size bytes at 1797 * offset @off within @page. 1798 * 1799 * Does not take any additional reference on the fragment. 1800 */ 1801 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, 1802 struct page *page, int off, int size) 1803 { 1804 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1805 1806 /* 1807 * Propagate page pfmemalloc to the skb if we can. The problem is 1808 * that not all callers have unique ownership of the page but rely 1809 * on page_is_pfmemalloc doing the right thing(tm). 1810 */ 1811 frag->page.p = page; 1812 frag->page_offset = off; 1813 skb_frag_size_set(frag, size); 1814 1815 page = compound_head(page); 1816 if (page_is_pfmemalloc(page)) 1817 skb->pfmemalloc = true; 1818 } 1819 1820 /** 1821 * skb_fill_page_desc - initialise a paged fragment in an skb 1822 * @skb: buffer containing fragment to be initialised 1823 * @i: paged fragment index to initialise 1824 * @page: the page to use for this fragment 1825 * @off: the offset to the data with @page 1826 * @size: the length of the data 1827 * 1828 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of 1829 * @skb to point to @size bytes at offset @off within @page. In 1830 * addition updates @skb such that @i is the last fragment. 1831 * 1832 * Does not take any additional reference on the fragment. 1833 */ 1834 static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 1835 struct page *page, int off, int size) 1836 { 1837 __skb_fill_page_desc(skb, i, page, off, size); 1838 skb_shinfo(skb)->nr_frags = i + 1; 1839 } 1840 1841 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 1842 int size, unsigned int truesize); 1843 1844 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 1845 unsigned int truesize); 1846 1847 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags) 1848 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb)) 1849 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 1850 1851 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1852 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1853 { 1854 return skb->head + skb->tail; 1855 } 1856 1857 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1858 { 1859 skb->tail = skb->data - skb->head; 1860 } 1861 1862 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1863 { 1864 skb_reset_tail_pointer(skb); 1865 skb->tail += offset; 1866 } 1867 1868 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 1869 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1870 { 1871 return skb->tail; 1872 } 1873 1874 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1875 { 1876 skb->tail = skb->data; 1877 } 1878 1879 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1880 { 1881 skb->tail = skb->data + offset; 1882 } 1883 1884 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1885 1886 /* 1887 * Add data to an sk_buff 1888 */ 1889 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len); 1890 void *skb_put(struct sk_buff *skb, unsigned int len); 1891 static inline void *__skb_put(struct sk_buff *skb, unsigned int len) 1892 { 1893 void *tmp = skb_tail_pointer(skb); 1894 SKB_LINEAR_ASSERT(skb); 1895 skb->tail += len; 1896 skb->len += len; 1897 return tmp; 1898 } 1899 1900 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len) 1901 { 1902 void *tmp = __skb_put(skb, len); 1903 1904 memset(tmp, 0, len); 1905 return tmp; 1906 } 1907 1908 static inline void *__skb_put_data(struct sk_buff *skb, const void *data, 1909 unsigned int len) 1910 { 1911 void *tmp = __skb_put(skb, len); 1912 1913 memcpy(tmp, data, len); 1914 return tmp; 1915 } 1916 1917 static inline void __skb_put_u8(struct sk_buff *skb, u8 val) 1918 { 1919 *(u8 *)__skb_put(skb, 1) = val; 1920 } 1921 1922 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len) 1923 { 1924 void *tmp = skb_put(skb, len); 1925 1926 memset(tmp, 0, len); 1927 1928 return tmp; 1929 } 1930 1931 static inline void *skb_put_data(struct sk_buff *skb, const void *data, 1932 unsigned int len) 1933 { 1934 void *tmp = skb_put(skb, len); 1935 1936 memcpy(tmp, data, len); 1937 1938 return tmp; 1939 } 1940 1941 static inline void skb_put_u8(struct sk_buff *skb, u8 val) 1942 { 1943 *(u8 *)skb_put(skb, 1) = val; 1944 } 1945 1946 void *skb_push(struct sk_buff *skb, unsigned int len); 1947 static inline void *__skb_push(struct sk_buff *skb, unsigned int len) 1948 { 1949 skb->data -= len; 1950 skb->len += len; 1951 return skb->data; 1952 } 1953 1954 void *skb_pull(struct sk_buff *skb, unsigned int len); 1955 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len) 1956 { 1957 skb->len -= len; 1958 BUG_ON(skb->len < skb->data_len); 1959 return skb->data += len; 1960 } 1961 1962 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len) 1963 { 1964 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 1965 } 1966 1967 void *__pskb_pull_tail(struct sk_buff *skb, int delta); 1968 1969 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len) 1970 { 1971 if (len > skb_headlen(skb) && 1972 !__pskb_pull_tail(skb, len - skb_headlen(skb))) 1973 return NULL; 1974 skb->len -= len; 1975 return skb->data += len; 1976 } 1977 1978 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len) 1979 { 1980 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 1981 } 1982 1983 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) 1984 { 1985 if (likely(len <= skb_headlen(skb))) 1986 return 1; 1987 if (unlikely(len > skb->len)) 1988 return 0; 1989 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; 1990 } 1991 1992 void skb_condense(struct sk_buff *skb); 1993 1994 /** 1995 * skb_headroom - bytes at buffer head 1996 * @skb: buffer to check 1997 * 1998 * Return the number of bytes of free space at the head of an &sk_buff. 1999 */ 2000 static inline unsigned int skb_headroom(const struct sk_buff *skb) 2001 { 2002 return skb->data - skb->head; 2003 } 2004 2005 /** 2006 * skb_tailroom - bytes at buffer end 2007 * @skb: buffer to check 2008 * 2009 * Return the number of bytes of free space at the tail of an sk_buff 2010 */ 2011 static inline int skb_tailroom(const struct sk_buff *skb) 2012 { 2013 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 2014 } 2015 2016 /** 2017 * skb_availroom - bytes at buffer end 2018 * @skb: buffer to check 2019 * 2020 * Return the number of bytes of free space at the tail of an sk_buff 2021 * allocated by sk_stream_alloc() 2022 */ 2023 static inline int skb_availroom(const struct sk_buff *skb) 2024 { 2025 if (skb_is_nonlinear(skb)) 2026 return 0; 2027 2028 return skb->end - skb->tail - skb->reserved_tailroom; 2029 } 2030 2031 /** 2032 * skb_reserve - adjust headroom 2033 * @skb: buffer to alter 2034 * @len: bytes to move 2035 * 2036 * Increase the headroom of an empty &sk_buff by reducing the tail 2037 * room. This is only allowed for an empty buffer. 2038 */ 2039 static inline void skb_reserve(struct sk_buff *skb, int len) 2040 { 2041 skb->data += len; 2042 skb->tail += len; 2043 } 2044 2045 /** 2046 * skb_tailroom_reserve - adjust reserved_tailroom 2047 * @skb: buffer to alter 2048 * @mtu: maximum amount of headlen permitted 2049 * @needed_tailroom: minimum amount of reserved_tailroom 2050 * 2051 * Set reserved_tailroom so that headlen can be as large as possible but 2052 * not larger than mtu and tailroom cannot be smaller than 2053 * needed_tailroom. 2054 * The required headroom should already have been reserved before using 2055 * this function. 2056 */ 2057 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu, 2058 unsigned int needed_tailroom) 2059 { 2060 SKB_LINEAR_ASSERT(skb); 2061 if (mtu < skb_tailroom(skb) - needed_tailroom) 2062 /* use at most mtu */ 2063 skb->reserved_tailroom = skb_tailroom(skb) - mtu; 2064 else 2065 /* use up to all available space */ 2066 skb->reserved_tailroom = needed_tailroom; 2067 } 2068 2069 #define ENCAP_TYPE_ETHER 0 2070 #define ENCAP_TYPE_IPPROTO 1 2071 2072 static inline void skb_set_inner_protocol(struct sk_buff *skb, 2073 __be16 protocol) 2074 { 2075 skb->inner_protocol = protocol; 2076 skb->inner_protocol_type = ENCAP_TYPE_ETHER; 2077 } 2078 2079 static inline void skb_set_inner_ipproto(struct sk_buff *skb, 2080 __u8 ipproto) 2081 { 2082 skb->inner_ipproto = ipproto; 2083 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO; 2084 } 2085 2086 static inline void skb_reset_inner_headers(struct sk_buff *skb) 2087 { 2088 skb->inner_mac_header = skb->mac_header; 2089 skb->inner_network_header = skb->network_header; 2090 skb->inner_transport_header = skb->transport_header; 2091 } 2092 2093 static inline void skb_reset_mac_len(struct sk_buff *skb) 2094 { 2095 skb->mac_len = skb->network_header - skb->mac_header; 2096 } 2097 2098 static inline unsigned char *skb_inner_transport_header(const struct sk_buff 2099 *skb) 2100 { 2101 return skb->head + skb->inner_transport_header; 2102 } 2103 2104 static inline int skb_inner_transport_offset(const struct sk_buff *skb) 2105 { 2106 return skb_inner_transport_header(skb) - skb->data; 2107 } 2108 2109 static inline void skb_reset_inner_transport_header(struct sk_buff *skb) 2110 { 2111 skb->inner_transport_header = skb->data - skb->head; 2112 } 2113 2114 static inline void skb_set_inner_transport_header(struct sk_buff *skb, 2115 const int offset) 2116 { 2117 skb_reset_inner_transport_header(skb); 2118 skb->inner_transport_header += offset; 2119 } 2120 2121 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) 2122 { 2123 return skb->head + skb->inner_network_header; 2124 } 2125 2126 static inline void skb_reset_inner_network_header(struct sk_buff *skb) 2127 { 2128 skb->inner_network_header = skb->data - skb->head; 2129 } 2130 2131 static inline void skb_set_inner_network_header(struct sk_buff *skb, 2132 const int offset) 2133 { 2134 skb_reset_inner_network_header(skb); 2135 skb->inner_network_header += offset; 2136 } 2137 2138 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) 2139 { 2140 return skb->head + skb->inner_mac_header; 2141 } 2142 2143 static inline void skb_reset_inner_mac_header(struct sk_buff *skb) 2144 { 2145 skb->inner_mac_header = skb->data - skb->head; 2146 } 2147 2148 static inline void skb_set_inner_mac_header(struct sk_buff *skb, 2149 const int offset) 2150 { 2151 skb_reset_inner_mac_header(skb); 2152 skb->inner_mac_header += offset; 2153 } 2154 static inline bool skb_transport_header_was_set(const struct sk_buff *skb) 2155 { 2156 return skb->transport_header != (typeof(skb->transport_header))~0U; 2157 } 2158 2159 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 2160 { 2161 return skb->head + skb->transport_header; 2162 } 2163 2164 static inline void skb_reset_transport_header(struct sk_buff *skb) 2165 { 2166 skb->transport_header = skb->data - skb->head; 2167 } 2168 2169 static inline void skb_set_transport_header(struct sk_buff *skb, 2170 const int offset) 2171 { 2172 skb_reset_transport_header(skb); 2173 skb->transport_header += offset; 2174 } 2175 2176 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 2177 { 2178 return skb->head + skb->network_header; 2179 } 2180 2181 static inline void skb_reset_network_header(struct sk_buff *skb) 2182 { 2183 skb->network_header = skb->data - skb->head; 2184 } 2185 2186 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 2187 { 2188 skb_reset_network_header(skb); 2189 skb->network_header += offset; 2190 } 2191 2192 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 2193 { 2194 return skb->head + skb->mac_header; 2195 } 2196 2197 static inline int skb_mac_offset(const struct sk_buff *skb) 2198 { 2199 return skb_mac_header(skb) - skb->data; 2200 } 2201 2202 static inline u32 skb_mac_header_len(const struct sk_buff *skb) 2203 { 2204 return skb->network_header - skb->mac_header; 2205 } 2206 2207 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 2208 { 2209 return skb->mac_header != (typeof(skb->mac_header))~0U; 2210 } 2211 2212 static inline void skb_reset_mac_header(struct sk_buff *skb) 2213 { 2214 skb->mac_header = skb->data - skb->head; 2215 } 2216 2217 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 2218 { 2219 skb_reset_mac_header(skb); 2220 skb->mac_header += offset; 2221 } 2222 2223 static inline void skb_pop_mac_header(struct sk_buff *skb) 2224 { 2225 skb->mac_header = skb->network_header; 2226 } 2227 2228 static inline void skb_probe_transport_header(struct sk_buff *skb, 2229 const int offset_hint) 2230 { 2231 struct flow_keys keys; 2232 2233 if (skb_transport_header_was_set(skb)) 2234 return; 2235 else if (skb_flow_dissect_flow_keys(skb, &keys, 0)) 2236 skb_set_transport_header(skb, keys.control.thoff); 2237 else 2238 skb_set_transport_header(skb, offset_hint); 2239 } 2240 2241 static inline void skb_mac_header_rebuild(struct sk_buff *skb) 2242 { 2243 if (skb_mac_header_was_set(skb)) { 2244 const unsigned char *old_mac = skb_mac_header(skb); 2245 2246 skb_set_mac_header(skb, -skb->mac_len); 2247 memmove(skb_mac_header(skb), old_mac, skb->mac_len); 2248 } 2249 } 2250 2251 static inline int skb_checksum_start_offset(const struct sk_buff *skb) 2252 { 2253 return skb->csum_start - skb_headroom(skb); 2254 } 2255 2256 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb) 2257 { 2258 return skb->head + skb->csum_start; 2259 } 2260 2261 static inline int skb_transport_offset(const struct sk_buff *skb) 2262 { 2263 return skb_transport_header(skb) - skb->data; 2264 } 2265 2266 static inline u32 skb_network_header_len(const struct sk_buff *skb) 2267 { 2268 return skb->transport_header - skb->network_header; 2269 } 2270 2271 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) 2272 { 2273 return skb->inner_transport_header - skb->inner_network_header; 2274 } 2275 2276 static inline int skb_network_offset(const struct sk_buff *skb) 2277 { 2278 return skb_network_header(skb) - skb->data; 2279 } 2280 2281 static inline int skb_inner_network_offset(const struct sk_buff *skb) 2282 { 2283 return skb_inner_network_header(skb) - skb->data; 2284 } 2285 2286 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 2287 { 2288 return pskb_may_pull(skb, skb_network_offset(skb) + len); 2289 } 2290 2291 /* 2292 * CPUs often take a performance hit when accessing unaligned memory 2293 * locations. The actual performance hit varies, it can be small if the 2294 * hardware handles it or large if we have to take an exception and fix it 2295 * in software. 2296 * 2297 * Since an ethernet header is 14 bytes network drivers often end up with 2298 * the IP header at an unaligned offset. The IP header can be aligned by 2299 * shifting the start of the packet by 2 bytes. Drivers should do this 2300 * with: 2301 * 2302 * skb_reserve(skb, NET_IP_ALIGN); 2303 * 2304 * The downside to this alignment of the IP header is that the DMA is now 2305 * unaligned. On some architectures the cost of an unaligned DMA is high 2306 * and this cost outweighs the gains made by aligning the IP header. 2307 * 2308 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 2309 * to be overridden. 2310 */ 2311 #ifndef NET_IP_ALIGN 2312 #define NET_IP_ALIGN 2 2313 #endif 2314 2315 /* 2316 * The networking layer reserves some headroom in skb data (via 2317 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 2318 * the header has to grow. In the default case, if the header has to grow 2319 * 32 bytes or less we avoid the reallocation. 2320 * 2321 * Unfortunately this headroom changes the DMA alignment of the resulting 2322 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 2323 * on some architectures. An architecture can override this value, 2324 * perhaps setting it to a cacheline in size (since that will maintain 2325 * cacheline alignment of the DMA). It must be a power of 2. 2326 * 2327 * Various parts of the networking layer expect at least 32 bytes of 2328 * headroom, you should not reduce this. 2329 * 2330 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 2331 * to reduce average number of cache lines per packet. 2332 * get_rps_cpus() for example only access one 64 bytes aligned block : 2333 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 2334 */ 2335 #ifndef NET_SKB_PAD 2336 #define NET_SKB_PAD max(32, L1_CACHE_BYTES) 2337 #endif 2338 2339 int ___pskb_trim(struct sk_buff *skb, unsigned int len); 2340 2341 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len) 2342 { 2343 if (unlikely(skb_is_nonlinear(skb))) { 2344 WARN_ON(1); 2345 return; 2346 } 2347 skb->len = len; 2348 skb_set_tail_pointer(skb, len); 2349 } 2350 2351 static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 2352 { 2353 __skb_set_length(skb, len); 2354 } 2355 2356 void skb_trim(struct sk_buff *skb, unsigned int len); 2357 2358 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 2359 { 2360 if (skb->data_len) 2361 return ___pskb_trim(skb, len); 2362 __skb_trim(skb, len); 2363 return 0; 2364 } 2365 2366 static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 2367 { 2368 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 2369 } 2370 2371 /** 2372 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 2373 * @skb: buffer to alter 2374 * @len: new length 2375 * 2376 * This is identical to pskb_trim except that the caller knows that 2377 * the skb is not cloned so we should never get an error due to out- 2378 * of-memory. 2379 */ 2380 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 2381 { 2382 int err = pskb_trim(skb, len); 2383 BUG_ON(err); 2384 } 2385 2386 static inline int __skb_grow(struct sk_buff *skb, unsigned int len) 2387 { 2388 unsigned int diff = len - skb->len; 2389 2390 if (skb_tailroom(skb) < diff) { 2391 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb), 2392 GFP_ATOMIC); 2393 if (ret) 2394 return ret; 2395 } 2396 __skb_set_length(skb, len); 2397 return 0; 2398 } 2399 2400 /** 2401 * skb_orphan - orphan a buffer 2402 * @skb: buffer to orphan 2403 * 2404 * If a buffer currently has an owner then we call the owner's 2405 * destructor function and make the @skb unowned. The buffer continues 2406 * to exist but is no longer charged to its former owner. 2407 */ 2408 static inline void skb_orphan(struct sk_buff *skb) 2409 { 2410 if (skb->destructor) { 2411 skb->destructor(skb); 2412 skb->destructor = NULL; 2413 skb->sk = NULL; 2414 } else { 2415 BUG_ON(skb->sk); 2416 } 2417 } 2418 2419 /** 2420 * skb_orphan_frags - orphan the frags contained in a buffer 2421 * @skb: buffer to orphan frags from 2422 * @gfp_mask: allocation mask for replacement pages 2423 * 2424 * For each frag in the SKB which needs a destructor (i.e. has an 2425 * owner) create a copy of that frag and release the original 2426 * page by calling the destructor. 2427 */ 2428 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) 2429 { 2430 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY))) 2431 return 0; 2432 return skb_copy_ubufs(skb, gfp_mask); 2433 } 2434 2435 /** 2436 * __skb_queue_purge - empty a list 2437 * @list: list to empty 2438 * 2439 * Delete all buffers on an &sk_buff list. Each buffer is removed from 2440 * the list and one reference dropped. This function does not take the 2441 * list lock and the caller must hold the relevant locks to use it. 2442 */ 2443 void skb_queue_purge(struct sk_buff_head *list); 2444 static inline void __skb_queue_purge(struct sk_buff_head *list) 2445 { 2446 struct sk_buff *skb; 2447 while ((skb = __skb_dequeue(list)) != NULL) 2448 kfree_skb(skb); 2449 } 2450 2451 void skb_rbtree_purge(struct rb_root *root); 2452 2453 void *netdev_alloc_frag(unsigned int fragsz); 2454 2455 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length, 2456 gfp_t gfp_mask); 2457 2458 /** 2459 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 2460 * @dev: network device to receive on 2461 * @length: length to allocate 2462 * 2463 * Allocate a new &sk_buff and assign it a usage count of one. The 2464 * buffer has unspecified headroom built in. Users should allocate 2465 * the headroom they think they need without accounting for the 2466 * built in space. The built in space is used for optimisations. 2467 * 2468 * %NULL is returned if there is no free memory. Although this function 2469 * allocates memory it can be called from an interrupt. 2470 */ 2471 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 2472 unsigned int length) 2473 { 2474 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 2475 } 2476 2477 /* legacy helper around __netdev_alloc_skb() */ 2478 static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 2479 gfp_t gfp_mask) 2480 { 2481 return __netdev_alloc_skb(NULL, length, gfp_mask); 2482 } 2483 2484 /* legacy helper around netdev_alloc_skb() */ 2485 static inline struct sk_buff *dev_alloc_skb(unsigned int length) 2486 { 2487 return netdev_alloc_skb(NULL, length); 2488 } 2489 2490 2491 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, 2492 unsigned int length, gfp_t gfp) 2493 { 2494 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); 2495 2496 if (NET_IP_ALIGN && skb) 2497 skb_reserve(skb, NET_IP_ALIGN); 2498 return skb; 2499 } 2500 2501 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 2502 unsigned int length) 2503 { 2504 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); 2505 } 2506 2507 static inline void skb_free_frag(void *addr) 2508 { 2509 page_frag_free(addr); 2510 } 2511 2512 void *napi_alloc_frag(unsigned int fragsz); 2513 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, 2514 unsigned int length, gfp_t gfp_mask); 2515 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi, 2516 unsigned int length) 2517 { 2518 return __napi_alloc_skb(napi, length, GFP_ATOMIC); 2519 } 2520 void napi_consume_skb(struct sk_buff *skb, int budget); 2521 2522 void __kfree_skb_flush(void); 2523 void __kfree_skb_defer(struct sk_buff *skb); 2524 2525 /** 2526 * __dev_alloc_pages - allocate page for network Rx 2527 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 2528 * @order: size of the allocation 2529 * 2530 * Allocate a new page. 2531 * 2532 * %NULL is returned if there is no free memory. 2533 */ 2534 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask, 2535 unsigned int order) 2536 { 2537 /* This piece of code contains several assumptions. 2538 * 1. This is for device Rx, therefor a cold page is preferred. 2539 * 2. The expectation is the user wants a compound page. 2540 * 3. If requesting a order 0 page it will not be compound 2541 * due to the check to see if order has a value in prep_new_page 2542 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to 2543 * code in gfp_to_alloc_flags that should be enforcing this. 2544 */ 2545 gfp_mask |= __GFP_COLD | __GFP_COMP | __GFP_MEMALLOC; 2546 2547 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order); 2548 } 2549 2550 static inline struct page *dev_alloc_pages(unsigned int order) 2551 { 2552 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order); 2553 } 2554 2555 /** 2556 * __dev_alloc_page - allocate a page for network Rx 2557 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 2558 * 2559 * Allocate a new page. 2560 * 2561 * %NULL is returned if there is no free memory. 2562 */ 2563 static inline struct page *__dev_alloc_page(gfp_t gfp_mask) 2564 { 2565 return __dev_alloc_pages(gfp_mask, 0); 2566 } 2567 2568 static inline struct page *dev_alloc_page(void) 2569 { 2570 return dev_alloc_pages(0); 2571 } 2572 2573 /** 2574 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page 2575 * @page: The page that was allocated from skb_alloc_page 2576 * @skb: The skb that may need pfmemalloc set 2577 */ 2578 static inline void skb_propagate_pfmemalloc(struct page *page, 2579 struct sk_buff *skb) 2580 { 2581 if (page_is_pfmemalloc(page)) 2582 skb->pfmemalloc = true; 2583 } 2584 2585 /** 2586 * skb_frag_page - retrieve the page referred to by a paged fragment 2587 * @frag: the paged fragment 2588 * 2589 * Returns the &struct page associated with @frag. 2590 */ 2591 static inline struct page *skb_frag_page(const skb_frag_t *frag) 2592 { 2593 return frag->page.p; 2594 } 2595 2596 /** 2597 * __skb_frag_ref - take an addition reference on a paged fragment. 2598 * @frag: the paged fragment 2599 * 2600 * Takes an additional reference on the paged fragment @frag. 2601 */ 2602 static inline void __skb_frag_ref(skb_frag_t *frag) 2603 { 2604 get_page(skb_frag_page(frag)); 2605 } 2606 2607 /** 2608 * skb_frag_ref - take an addition reference on a paged fragment of an skb. 2609 * @skb: the buffer 2610 * @f: the fragment offset. 2611 * 2612 * Takes an additional reference on the @f'th paged fragment of @skb. 2613 */ 2614 static inline void skb_frag_ref(struct sk_buff *skb, int f) 2615 { 2616 __skb_frag_ref(&skb_shinfo(skb)->frags[f]); 2617 } 2618 2619 /** 2620 * __skb_frag_unref - release a reference on a paged fragment. 2621 * @frag: the paged fragment 2622 * 2623 * Releases a reference on the paged fragment @frag. 2624 */ 2625 static inline void __skb_frag_unref(skb_frag_t *frag) 2626 { 2627 put_page(skb_frag_page(frag)); 2628 } 2629 2630 /** 2631 * skb_frag_unref - release a reference on a paged fragment of an skb. 2632 * @skb: the buffer 2633 * @f: the fragment offset 2634 * 2635 * Releases a reference on the @f'th paged fragment of @skb. 2636 */ 2637 static inline void skb_frag_unref(struct sk_buff *skb, int f) 2638 { 2639 __skb_frag_unref(&skb_shinfo(skb)->frags[f]); 2640 } 2641 2642 /** 2643 * skb_frag_address - gets the address of the data contained in a paged fragment 2644 * @frag: the paged fragment buffer 2645 * 2646 * Returns the address of the data within @frag. The page must already 2647 * be mapped. 2648 */ 2649 static inline void *skb_frag_address(const skb_frag_t *frag) 2650 { 2651 return page_address(skb_frag_page(frag)) + frag->page_offset; 2652 } 2653 2654 /** 2655 * skb_frag_address_safe - gets the address of the data contained in a paged fragment 2656 * @frag: the paged fragment buffer 2657 * 2658 * Returns the address of the data within @frag. Checks that the page 2659 * is mapped and returns %NULL otherwise. 2660 */ 2661 static inline void *skb_frag_address_safe(const skb_frag_t *frag) 2662 { 2663 void *ptr = page_address(skb_frag_page(frag)); 2664 if (unlikely(!ptr)) 2665 return NULL; 2666 2667 return ptr + frag->page_offset; 2668 } 2669 2670 /** 2671 * __skb_frag_set_page - sets the page contained in a paged fragment 2672 * @frag: the paged fragment 2673 * @page: the page to set 2674 * 2675 * Sets the fragment @frag to contain @page. 2676 */ 2677 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page) 2678 { 2679 frag->page.p = page; 2680 } 2681 2682 /** 2683 * skb_frag_set_page - sets the page contained in a paged fragment of an skb 2684 * @skb: the buffer 2685 * @f: the fragment offset 2686 * @page: the page to set 2687 * 2688 * Sets the @f'th fragment of @skb to contain @page. 2689 */ 2690 static inline void skb_frag_set_page(struct sk_buff *skb, int f, 2691 struct page *page) 2692 { 2693 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page); 2694 } 2695 2696 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio); 2697 2698 /** 2699 * skb_frag_dma_map - maps a paged fragment via the DMA API 2700 * @dev: the device to map the fragment to 2701 * @frag: the paged fragment to map 2702 * @offset: the offset within the fragment (starting at the 2703 * fragment's own offset) 2704 * @size: the number of bytes to map 2705 * @dir: the direction of the mapping (``PCI_DMA_*``) 2706 * 2707 * Maps the page associated with @frag to @device. 2708 */ 2709 static inline dma_addr_t skb_frag_dma_map(struct device *dev, 2710 const skb_frag_t *frag, 2711 size_t offset, size_t size, 2712 enum dma_data_direction dir) 2713 { 2714 return dma_map_page(dev, skb_frag_page(frag), 2715 frag->page_offset + offset, size, dir); 2716 } 2717 2718 static inline struct sk_buff *pskb_copy(struct sk_buff *skb, 2719 gfp_t gfp_mask) 2720 { 2721 return __pskb_copy(skb, skb_headroom(skb), gfp_mask); 2722 } 2723 2724 2725 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb, 2726 gfp_t gfp_mask) 2727 { 2728 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true); 2729 } 2730 2731 2732 /** 2733 * skb_clone_writable - is the header of a clone writable 2734 * @skb: buffer to check 2735 * @len: length up to which to write 2736 * 2737 * Returns true if modifying the header part of the cloned buffer 2738 * does not requires the data to be copied. 2739 */ 2740 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) 2741 { 2742 return !skb_header_cloned(skb) && 2743 skb_headroom(skb) + len <= skb->hdr_len; 2744 } 2745 2746 static inline int skb_try_make_writable(struct sk_buff *skb, 2747 unsigned int write_len) 2748 { 2749 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) && 2750 pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2751 } 2752 2753 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 2754 int cloned) 2755 { 2756 int delta = 0; 2757 2758 if (headroom > skb_headroom(skb)) 2759 delta = headroom - skb_headroom(skb); 2760 2761 if (delta || cloned) 2762 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 2763 GFP_ATOMIC); 2764 return 0; 2765 } 2766 2767 /** 2768 * skb_cow - copy header of skb when it is required 2769 * @skb: buffer to cow 2770 * @headroom: needed headroom 2771 * 2772 * If the skb passed lacks sufficient headroom or its data part 2773 * is shared, data is reallocated. If reallocation fails, an error 2774 * is returned and original skb is not changed. 2775 * 2776 * The result is skb with writable area skb->head...skb->tail 2777 * and at least @headroom of space at head. 2778 */ 2779 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 2780 { 2781 return __skb_cow(skb, headroom, skb_cloned(skb)); 2782 } 2783 2784 /** 2785 * skb_cow_head - skb_cow but only making the head writable 2786 * @skb: buffer to cow 2787 * @headroom: needed headroom 2788 * 2789 * This function is identical to skb_cow except that we replace the 2790 * skb_cloned check by skb_header_cloned. It should be used when 2791 * you only need to push on some header and do not need to modify 2792 * the data. 2793 */ 2794 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 2795 { 2796 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 2797 } 2798 2799 /** 2800 * skb_padto - pad an skbuff up to a minimal size 2801 * @skb: buffer to pad 2802 * @len: minimal length 2803 * 2804 * Pads up a buffer to ensure the trailing bytes exist and are 2805 * blanked. If the buffer already contains sufficient data it 2806 * is untouched. Otherwise it is extended. Returns zero on 2807 * success. The skb is freed on error. 2808 */ 2809 static inline int skb_padto(struct sk_buff *skb, unsigned int len) 2810 { 2811 unsigned int size = skb->len; 2812 if (likely(size >= len)) 2813 return 0; 2814 return skb_pad(skb, len - size); 2815 } 2816 2817 /** 2818 * skb_put_padto - increase size and pad an skbuff up to a minimal size 2819 * @skb: buffer to pad 2820 * @len: minimal length 2821 * 2822 * Pads up a buffer to ensure the trailing bytes exist and are 2823 * blanked. If the buffer already contains sufficient data it 2824 * is untouched. Otherwise it is extended. Returns zero on 2825 * success. The skb is freed on error. 2826 */ 2827 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len) 2828 { 2829 unsigned int size = skb->len; 2830 2831 if (unlikely(size < len)) { 2832 len -= size; 2833 if (skb_pad(skb, len)) 2834 return -ENOMEM; 2835 __skb_put(skb, len); 2836 } 2837 return 0; 2838 } 2839 2840 static inline int skb_add_data(struct sk_buff *skb, 2841 struct iov_iter *from, int copy) 2842 { 2843 const int off = skb->len; 2844 2845 if (skb->ip_summed == CHECKSUM_NONE) { 2846 __wsum csum = 0; 2847 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy, 2848 &csum, from)) { 2849 skb->csum = csum_block_add(skb->csum, csum, off); 2850 return 0; 2851 } 2852 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from)) 2853 return 0; 2854 2855 __skb_trim(skb, off); 2856 return -EFAULT; 2857 } 2858 2859 static inline bool skb_can_coalesce(struct sk_buff *skb, int i, 2860 const struct page *page, int off) 2861 { 2862 if (i) { 2863 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 2864 2865 return page == skb_frag_page(frag) && 2866 off == frag->page_offset + skb_frag_size(frag); 2867 } 2868 return false; 2869 } 2870 2871 static inline int __skb_linearize(struct sk_buff *skb) 2872 { 2873 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 2874 } 2875 2876 /** 2877 * skb_linearize - convert paged skb to linear one 2878 * @skb: buffer to linarize 2879 * 2880 * If there is no free memory -ENOMEM is returned, otherwise zero 2881 * is returned and the old skb data released. 2882 */ 2883 static inline int skb_linearize(struct sk_buff *skb) 2884 { 2885 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 2886 } 2887 2888 /** 2889 * skb_has_shared_frag - can any frag be overwritten 2890 * @skb: buffer to test 2891 * 2892 * Return true if the skb has at least one frag that might be modified 2893 * by an external entity (as in vmsplice()/sendfile()) 2894 */ 2895 static inline bool skb_has_shared_frag(const struct sk_buff *skb) 2896 { 2897 return skb_is_nonlinear(skb) && 2898 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG; 2899 } 2900 2901 /** 2902 * skb_linearize_cow - make sure skb is linear and writable 2903 * @skb: buffer to process 2904 * 2905 * If there is no free memory -ENOMEM is returned, otherwise zero 2906 * is returned and the old skb data released. 2907 */ 2908 static inline int skb_linearize_cow(struct sk_buff *skb) 2909 { 2910 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 2911 __skb_linearize(skb) : 0; 2912 } 2913 2914 static __always_inline void 2915 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 2916 unsigned int off) 2917 { 2918 if (skb->ip_summed == CHECKSUM_COMPLETE) 2919 skb->csum = csum_block_sub(skb->csum, 2920 csum_partial(start, len, 0), off); 2921 else if (skb->ip_summed == CHECKSUM_PARTIAL && 2922 skb_checksum_start_offset(skb) < 0) 2923 skb->ip_summed = CHECKSUM_NONE; 2924 } 2925 2926 /** 2927 * skb_postpull_rcsum - update checksum for received skb after pull 2928 * @skb: buffer to update 2929 * @start: start of data before pull 2930 * @len: length of data pulled 2931 * 2932 * After doing a pull on a received packet, you need to call this to 2933 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 2934 * CHECKSUM_NONE so that it can be recomputed from scratch. 2935 */ 2936 static inline void skb_postpull_rcsum(struct sk_buff *skb, 2937 const void *start, unsigned int len) 2938 { 2939 __skb_postpull_rcsum(skb, start, len, 0); 2940 } 2941 2942 static __always_inline void 2943 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 2944 unsigned int off) 2945 { 2946 if (skb->ip_summed == CHECKSUM_COMPLETE) 2947 skb->csum = csum_block_add(skb->csum, 2948 csum_partial(start, len, 0), off); 2949 } 2950 2951 /** 2952 * skb_postpush_rcsum - update checksum for received skb after push 2953 * @skb: buffer to update 2954 * @start: start of data after push 2955 * @len: length of data pushed 2956 * 2957 * After doing a push on a received packet, you need to call this to 2958 * update the CHECKSUM_COMPLETE checksum. 2959 */ 2960 static inline void skb_postpush_rcsum(struct sk_buff *skb, 2961 const void *start, unsigned int len) 2962 { 2963 __skb_postpush_rcsum(skb, start, len, 0); 2964 } 2965 2966 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 2967 2968 /** 2969 * skb_push_rcsum - push skb and update receive checksum 2970 * @skb: buffer to update 2971 * @len: length of data pulled 2972 * 2973 * This function performs an skb_push on the packet and updates 2974 * the CHECKSUM_COMPLETE checksum. It should be used on 2975 * receive path processing instead of skb_push unless you know 2976 * that the checksum difference is zero (e.g., a valid IP header) 2977 * or you are setting ip_summed to CHECKSUM_NONE. 2978 */ 2979 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len) 2980 { 2981 skb_push(skb, len); 2982 skb_postpush_rcsum(skb, skb->data, len); 2983 return skb->data; 2984 } 2985 2986 /** 2987 * pskb_trim_rcsum - trim received skb and update checksum 2988 * @skb: buffer to trim 2989 * @len: new length 2990 * 2991 * This is exactly the same as pskb_trim except that it ensures the 2992 * checksum of received packets are still valid after the operation. 2993 */ 2994 2995 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 2996 { 2997 if (likely(len >= skb->len)) 2998 return 0; 2999 if (skb->ip_summed == CHECKSUM_COMPLETE) 3000 skb->ip_summed = CHECKSUM_NONE; 3001 return __pskb_trim(skb, len); 3002 } 3003 3004 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3005 { 3006 if (skb->ip_summed == CHECKSUM_COMPLETE) 3007 skb->ip_summed = CHECKSUM_NONE; 3008 __skb_trim(skb, len); 3009 return 0; 3010 } 3011 3012 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len) 3013 { 3014 if (skb->ip_summed == CHECKSUM_COMPLETE) 3015 skb->ip_summed = CHECKSUM_NONE; 3016 return __skb_grow(skb, len); 3017 } 3018 3019 #define skb_queue_walk(queue, skb) \ 3020 for (skb = (queue)->next; \ 3021 skb != (struct sk_buff *)(queue); \ 3022 skb = skb->next) 3023 3024 #define skb_queue_walk_safe(queue, skb, tmp) \ 3025 for (skb = (queue)->next, tmp = skb->next; \ 3026 skb != (struct sk_buff *)(queue); \ 3027 skb = tmp, tmp = skb->next) 3028 3029 #define skb_queue_walk_from(queue, skb) \ 3030 for (; skb != (struct sk_buff *)(queue); \ 3031 skb = skb->next) 3032 3033 #define skb_queue_walk_from_safe(queue, skb, tmp) \ 3034 for (tmp = skb->next; \ 3035 skb != (struct sk_buff *)(queue); \ 3036 skb = tmp, tmp = skb->next) 3037 3038 #define skb_queue_reverse_walk(queue, skb) \ 3039 for (skb = (queue)->prev; \ 3040 skb != (struct sk_buff *)(queue); \ 3041 skb = skb->prev) 3042 3043 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \ 3044 for (skb = (queue)->prev, tmp = skb->prev; \ 3045 skb != (struct sk_buff *)(queue); \ 3046 skb = tmp, tmp = skb->prev) 3047 3048 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ 3049 for (tmp = skb->prev; \ 3050 skb != (struct sk_buff *)(queue); \ 3051 skb = tmp, tmp = skb->prev) 3052 3053 static inline bool skb_has_frag_list(const struct sk_buff *skb) 3054 { 3055 return skb_shinfo(skb)->frag_list != NULL; 3056 } 3057 3058 static inline void skb_frag_list_init(struct sk_buff *skb) 3059 { 3060 skb_shinfo(skb)->frag_list = NULL; 3061 } 3062 3063 #define skb_walk_frags(skb, iter) \ 3064 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 3065 3066 3067 int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p, 3068 const struct sk_buff *skb); 3069 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk, 3070 struct sk_buff_head *queue, 3071 unsigned int flags, 3072 void (*destructor)(struct sock *sk, 3073 struct sk_buff *skb), 3074 int *peeked, int *off, int *err, 3075 struct sk_buff **last); 3076 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags, 3077 void (*destructor)(struct sock *sk, 3078 struct sk_buff *skb), 3079 int *peeked, int *off, int *err, 3080 struct sk_buff **last); 3081 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags, 3082 void (*destructor)(struct sock *sk, 3083 struct sk_buff *skb), 3084 int *peeked, int *off, int *err); 3085 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock, 3086 int *err); 3087 unsigned int datagram_poll(struct file *file, struct socket *sock, 3088 struct poll_table_struct *wait); 3089 int skb_copy_datagram_iter(const struct sk_buff *from, int offset, 3090 struct iov_iter *to, int size); 3091 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset, 3092 struct msghdr *msg, int size) 3093 { 3094 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size); 3095 } 3096 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen, 3097 struct msghdr *msg); 3098 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset, 3099 struct iov_iter *from, int len); 3100 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm); 3101 void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 3102 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len); 3103 static inline void skb_free_datagram_locked(struct sock *sk, 3104 struct sk_buff *skb) 3105 { 3106 __skb_free_datagram_locked(sk, skb, 0); 3107 } 3108 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags); 3109 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len); 3110 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len); 3111 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, 3112 int len, __wsum csum); 3113 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 3114 struct pipe_inode_info *pipe, unsigned int len, 3115 unsigned int flags); 3116 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 3117 int len); 3118 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len); 3119 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 3120 unsigned int skb_zerocopy_headlen(const struct sk_buff *from); 3121 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from, 3122 int len, int hlen); 3123 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len); 3124 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen); 3125 void skb_scrub_packet(struct sk_buff *skb, bool xnet); 3126 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb); 3127 bool skb_gso_validate_mtu(const struct sk_buff *skb, unsigned int mtu); 3128 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features); 3129 struct sk_buff *skb_vlan_untag(struct sk_buff *skb); 3130 int skb_ensure_writable(struct sk_buff *skb, int write_len); 3131 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci); 3132 int skb_vlan_pop(struct sk_buff *skb); 3133 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci); 3134 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy, 3135 gfp_t gfp); 3136 3137 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len) 3138 { 3139 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT; 3140 } 3141 3142 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len) 3143 { 3144 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT; 3145 } 3146 3147 struct skb_checksum_ops { 3148 __wsum (*update)(const void *mem, int len, __wsum wsum); 3149 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len); 3150 }; 3151 3152 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly; 3153 3154 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 3155 __wsum csum, const struct skb_checksum_ops *ops); 3156 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len, 3157 __wsum csum); 3158 3159 static inline void * __must_check 3160 __skb_header_pointer(const struct sk_buff *skb, int offset, 3161 int len, void *data, int hlen, void *buffer) 3162 { 3163 if (hlen - offset >= len) 3164 return data + offset; 3165 3166 if (!skb || 3167 skb_copy_bits(skb, offset, buffer, len) < 0) 3168 return NULL; 3169 3170 return buffer; 3171 } 3172 3173 static inline void * __must_check 3174 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer) 3175 { 3176 return __skb_header_pointer(skb, offset, len, skb->data, 3177 skb_headlen(skb), buffer); 3178 } 3179 3180 /** 3181 * skb_needs_linearize - check if we need to linearize a given skb 3182 * depending on the given device features. 3183 * @skb: socket buffer to check 3184 * @features: net device features 3185 * 3186 * Returns true if either: 3187 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 3188 * 2. skb is fragmented and the device does not support SG. 3189 */ 3190 static inline bool skb_needs_linearize(struct sk_buff *skb, 3191 netdev_features_t features) 3192 { 3193 return skb_is_nonlinear(skb) && 3194 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) || 3195 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG))); 3196 } 3197 3198 static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 3199 void *to, 3200 const unsigned int len) 3201 { 3202 memcpy(to, skb->data, len); 3203 } 3204 3205 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 3206 const int offset, void *to, 3207 const unsigned int len) 3208 { 3209 memcpy(to, skb->data + offset, len); 3210 } 3211 3212 static inline void skb_copy_to_linear_data(struct sk_buff *skb, 3213 const void *from, 3214 const unsigned int len) 3215 { 3216 memcpy(skb->data, from, len); 3217 } 3218 3219 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 3220 const int offset, 3221 const void *from, 3222 const unsigned int len) 3223 { 3224 memcpy(skb->data + offset, from, len); 3225 } 3226 3227 void skb_init(void); 3228 3229 static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 3230 { 3231 return skb->tstamp; 3232 } 3233 3234 /** 3235 * skb_get_timestamp - get timestamp from a skb 3236 * @skb: skb to get stamp from 3237 * @stamp: pointer to struct timeval to store stamp in 3238 * 3239 * Timestamps are stored in the skb as offsets to a base timestamp. 3240 * This function converts the offset back to a struct timeval and stores 3241 * it in stamp. 3242 */ 3243 static inline void skb_get_timestamp(const struct sk_buff *skb, 3244 struct timeval *stamp) 3245 { 3246 *stamp = ktime_to_timeval(skb->tstamp); 3247 } 3248 3249 static inline void skb_get_timestampns(const struct sk_buff *skb, 3250 struct timespec *stamp) 3251 { 3252 *stamp = ktime_to_timespec(skb->tstamp); 3253 } 3254 3255 static inline void __net_timestamp(struct sk_buff *skb) 3256 { 3257 skb->tstamp = ktime_get_real(); 3258 } 3259 3260 static inline ktime_t net_timedelta(ktime_t t) 3261 { 3262 return ktime_sub(ktime_get_real(), t); 3263 } 3264 3265 static inline ktime_t net_invalid_timestamp(void) 3266 { 3267 return 0; 3268 } 3269 3270 struct sk_buff *skb_clone_sk(struct sk_buff *skb); 3271 3272 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 3273 3274 void skb_clone_tx_timestamp(struct sk_buff *skb); 3275 bool skb_defer_rx_timestamp(struct sk_buff *skb); 3276 3277 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 3278 3279 static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 3280 { 3281 } 3282 3283 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 3284 { 3285 return false; 3286 } 3287 3288 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 3289 3290 /** 3291 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 3292 * 3293 * PHY drivers may accept clones of transmitted packets for 3294 * timestamping via their phy_driver.txtstamp method. These drivers 3295 * must call this function to return the skb back to the stack with a 3296 * timestamp. 3297 * 3298 * @skb: clone of the the original outgoing packet 3299 * @hwtstamps: hardware time stamps 3300 * 3301 */ 3302 void skb_complete_tx_timestamp(struct sk_buff *skb, 3303 struct skb_shared_hwtstamps *hwtstamps); 3304 3305 void __skb_tstamp_tx(struct sk_buff *orig_skb, 3306 struct skb_shared_hwtstamps *hwtstamps, 3307 struct sock *sk, int tstype); 3308 3309 /** 3310 * skb_tstamp_tx - queue clone of skb with send time stamps 3311 * @orig_skb: the original outgoing packet 3312 * @hwtstamps: hardware time stamps, may be NULL if not available 3313 * 3314 * If the skb has a socket associated, then this function clones the 3315 * skb (thus sharing the actual data and optional structures), stores 3316 * the optional hardware time stamping information (if non NULL) or 3317 * generates a software time stamp (otherwise), then queues the clone 3318 * to the error queue of the socket. Errors are silently ignored. 3319 */ 3320 void skb_tstamp_tx(struct sk_buff *orig_skb, 3321 struct skb_shared_hwtstamps *hwtstamps); 3322 3323 /** 3324 * skb_tx_timestamp() - Driver hook for transmit timestamping 3325 * 3326 * Ethernet MAC Drivers should call this function in their hard_xmit() 3327 * function immediately before giving the sk_buff to the MAC hardware. 3328 * 3329 * Specifically, one should make absolutely sure that this function is 3330 * called before TX completion of this packet can trigger. Otherwise 3331 * the packet could potentially already be freed. 3332 * 3333 * @skb: A socket buffer. 3334 */ 3335 static inline void skb_tx_timestamp(struct sk_buff *skb) 3336 { 3337 skb_clone_tx_timestamp(skb); 3338 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP) 3339 skb_tstamp_tx(skb, NULL); 3340 } 3341 3342 /** 3343 * skb_complete_wifi_ack - deliver skb with wifi status 3344 * 3345 * @skb: the original outgoing packet 3346 * @acked: ack status 3347 * 3348 */ 3349 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); 3350 3351 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 3352 __sum16 __skb_checksum_complete(struct sk_buff *skb); 3353 3354 static inline int skb_csum_unnecessary(const struct sk_buff *skb) 3355 { 3356 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) || 3357 skb->csum_valid || 3358 (skb->ip_summed == CHECKSUM_PARTIAL && 3359 skb_checksum_start_offset(skb) >= 0)); 3360 } 3361 3362 /** 3363 * skb_checksum_complete - Calculate checksum of an entire packet 3364 * @skb: packet to process 3365 * 3366 * This function calculates the checksum over the entire packet plus 3367 * the value of skb->csum. The latter can be used to supply the 3368 * checksum of a pseudo header as used by TCP/UDP. It returns the 3369 * checksum. 3370 * 3371 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 3372 * this function can be used to verify that checksum on received 3373 * packets. In that case the function should return zero if the 3374 * checksum is correct. In particular, this function will return zero 3375 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 3376 * hardware has already verified the correctness of the checksum. 3377 */ 3378 static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 3379 { 3380 return skb_csum_unnecessary(skb) ? 3381 0 : __skb_checksum_complete(skb); 3382 } 3383 3384 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb) 3385 { 3386 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 3387 if (skb->csum_level == 0) 3388 skb->ip_summed = CHECKSUM_NONE; 3389 else 3390 skb->csum_level--; 3391 } 3392 } 3393 3394 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb) 3395 { 3396 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 3397 if (skb->csum_level < SKB_MAX_CSUM_LEVEL) 3398 skb->csum_level++; 3399 } else if (skb->ip_summed == CHECKSUM_NONE) { 3400 skb->ip_summed = CHECKSUM_UNNECESSARY; 3401 skb->csum_level = 0; 3402 } 3403 } 3404 3405 /* Check if we need to perform checksum complete validation. 3406 * 3407 * Returns true if checksum complete is needed, false otherwise 3408 * (either checksum is unnecessary or zero checksum is allowed). 3409 */ 3410 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb, 3411 bool zero_okay, 3412 __sum16 check) 3413 { 3414 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) { 3415 skb->csum_valid = 1; 3416 __skb_decr_checksum_unnecessary(skb); 3417 return false; 3418 } 3419 3420 return true; 3421 } 3422 3423 /* For small packets <= CHECKSUM_BREAK peform checksum complete directly 3424 * in checksum_init. 3425 */ 3426 #define CHECKSUM_BREAK 76 3427 3428 /* Unset checksum-complete 3429 * 3430 * Unset checksum complete can be done when packet is being modified 3431 * (uncompressed for instance) and checksum-complete value is 3432 * invalidated. 3433 */ 3434 static inline void skb_checksum_complete_unset(struct sk_buff *skb) 3435 { 3436 if (skb->ip_summed == CHECKSUM_COMPLETE) 3437 skb->ip_summed = CHECKSUM_NONE; 3438 } 3439 3440 /* Validate (init) checksum based on checksum complete. 3441 * 3442 * Return values: 3443 * 0: checksum is validated or try to in skb_checksum_complete. In the latter 3444 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo 3445 * checksum is stored in skb->csum for use in __skb_checksum_complete 3446 * non-zero: value of invalid checksum 3447 * 3448 */ 3449 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb, 3450 bool complete, 3451 __wsum psum) 3452 { 3453 if (skb->ip_summed == CHECKSUM_COMPLETE) { 3454 if (!csum_fold(csum_add(psum, skb->csum))) { 3455 skb->csum_valid = 1; 3456 return 0; 3457 } 3458 } 3459 3460 skb->csum = psum; 3461 3462 if (complete || skb->len <= CHECKSUM_BREAK) { 3463 __sum16 csum; 3464 3465 csum = __skb_checksum_complete(skb); 3466 skb->csum_valid = !csum; 3467 return csum; 3468 } 3469 3470 return 0; 3471 } 3472 3473 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto) 3474 { 3475 return 0; 3476 } 3477 3478 /* Perform checksum validate (init). Note that this is a macro since we only 3479 * want to calculate the pseudo header which is an input function if necessary. 3480 * First we try to validate without any computation (checksum unnecessary) and 3481 * then calculate based on checksum complete calling the function to compute 3482 * pseudo header. 3483 * 3484 * Return values: 3485 * 0: checksum is validated or try to in skb_checksum_complete 3486 * non-zero: value of invalid checksum 3487 */ 3488 #define __skb_checksum_validate(skb, proto, complete, \ 3489 zero_okay, check, compute_pseudo) \ 3490 ({ \ 3491 __sum16 __ret = 0; \ 3492 skb->csum_valid = 0; \ 3493 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \ 3494 __ret = __skb_checksum_validate_complete(skb, \ 3495 complete, compute_pseudo(skb, proto)); \ 3496 __ret; \ 3497 }) 3498 3499 #define skb_checksum_init(skb, proto, compute_pseudo) \ 3500 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo) 3501 3502 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \ 3503 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo) 3504 3505 #define skb_checksum_validate(skb, proto, compute_pseudo) \ 3506 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo) 3507 3508 #define skb_checksum_validate_zero_check(skb, proto, check, \ 3509 compute_pseudo) \ 3510 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo) 3511 3512 #define skb_checksum_simple_validate(skb) \ 3513 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo) 3514 3515 static inline bool __skb_checksum_convert_check(struct sk_buff *skb) 3516 { 3517 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid); 3518 } 3519 3520 static inline void __skb_checksum_convert(struct sk_buff *skb, 3521 __sum16 check, __wsum pseudo) 3522 { 3523 skb->csum = ~pseudo; 3524 skb->ip_summed = CHECKSUM_COMPLETE; 3525 } 3526 3527 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo) \ 3528 do { \ 3529 if (__skb_checksum_convert_check(skb)) \ 3530 __skb_checksum_convert(skb, check, \ 3531 compute_pseudo(skb, proto)); \ 3532 } while (0) 3533 3534 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr, 3535 u16 start, u16 offset) 3536 { 3537 skb->ip_summed = CHECKSUM_PARTIAL; 3538 skb->csum_start = ((unsigned char *)ptr + start) - skb->head; 3539 skb->csum_offset = offset - start; 3540 } 3541 3542 /* Update skbuf and packet to reflect the remote checksum offload operation. 3543 * When called, ptr indicates the starting point for skb->csum when 3544 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete 3545 * here, skb_postpull_rcsum is done so skb->csum start is ptr. 3546 */ 3547 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr, 3548 int start, int offset, bool nopartial) 3549 { 3550 __wsum delta; 3551 3552 if (!nopartial) { 3553 skb_remcsum_adjust_partial(skb, ptr, start, offset); 3554 return; 3555 } 3556 3557 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) { 3558 __skb_checksum_complete(skb); 3559 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data); 3560 } 3561 3562 delta = remcsum_adjust(ptr, skb->csum, start, offset); 3563 3564 /* Adjust skb->csum since we changed the packet */ 3565 skb->csum = csum_add(skb->csum, delta); 3566 } 3567 3568 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb) 3569 { 3570 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 3571 return (void *)(skb->_nfct & SKB_NFCT_PTRMASK); 3572 #else 3573 return NULL; 3574 #endif 3575 } 3576 3577 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3578 void nf_conntrack_destroy(struct nf_conntrack *nfct); 3579 static inline void nf_conntrack_put(struct nf_conntrack *nfct) 3580 { 3581 if (nfct && atomic_dec_and_test(&nfct->use)) 3582 nf_conntrack_destroy(nfct); 3583 } 3584 static inline void nf_conntrack_get(struct nf_conntrack *nfct) 3585 { 3586 if (nfct) 3587 atomic_inc(&nfct->use); 3588 } 3589 #endif 3590 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3591 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge) 3592 { 3593 if (nf_bridge && refcount_dec_and_test(&nf_bridge->use)) 3594 kfree(nf_bridge); 3595 } 3596 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge) 3597 { 3598 if (nf_bridge) 3599 refcount_inc(&nf_bridge->use); 3600 } 3601 #endif /* CONFIG_BRIDGE_NETFILTER */ 3602 static inline void nf_reset(struct sk_buff *skb) 3603 { 3604 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3605 nf_conntrack_put(skb_nfct(skb)); 3606 skb->_nfct = 0; 3607 #endif 3608 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3609 nf_bridge_put(skb->nf_bridge); 3610 skb->nf_bridge = NULL; 3611 #endif 3612 } 3613 3614 static inline void nf_reset_trace(struct sk_buff *skb) 3615 { 3616 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 3617 skb->nf_trace = 0; 3618 #endif 3619 } 3620 3621 /* Note: This doesn't put any conntrack and bridge info in dst. */ 3622 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src, 3623 bool copy) 3624 { 3625 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3626 dst->_nfct = src->_nfct; 3627 nf_conntrack_get(skb_nfct(src)); 3628 #endif 3629 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3630 dst->nf_bridge = src->nf_bridge; 3631 nf_bridge_get(src->nf_bridge); 3632 #endif 3633 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 3634 if (copy) 3635 dst->nf_trace = src->nf_trace; 3636 #endif 3637 } 3638 3639 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 3640 { 3641 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3642 nf_conntrack_put(skb_nfct(dst)); 3643 #endif 3644 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3645 nf_bridge_put(dst->nf_bridge); 3646 #endif 3647 __nf_copy(dst, src, true); 3648 } 3649 3650 #ifdef CONFIG_NETWORK_SECMARK 3651 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 3652 { 3653 to->secmark = from->secmark; 3654 } 3655 3656 static inline void skb_init_secmark(struct sk_buff *skb) 3657 { 3658 skb->secmark = 0; 3659 } 3660 #else 3661 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 3662 { } 3663 3664 static inline void skb_init_secmark(struct sk_buff *skb) 3665 { } 3666 #endif 3667 3668 static inline bool skb_irq_freeable(const struct sk_buff *skb) 3669 { 3670 return !skb->destructor && 3671 #if IS_ENABLED(CONFIG_XFRM) 3672 !skb->sp && 3673 #endif 3674 !skb_nfct(skb) && 3675 !skb->_skb_refdst && 3676 !skb_has_frag_list(skb); 3677 } 3678 3679 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 3680 { 3681 skb->queue_mapping = queue_mapping; 3682 } 3683 3684 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 3685 { 3686 return skb->queue_mapping; 3687 } 3688 3689 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 3690 { 3691 to->queue_mapping = from->queue_mapping; 3692 } 3693 3694 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 3695 { 3696 skb->queue_mapping = rx_queue + 1; 3697 } 3698 3699 static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 3700 { 3701 return skb->queue_mapping - 1; 3702 } 3703 3704 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 3705 { 3706 return skb->queue_mapping != 0; 3707 } 3708 3709 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val) 3710 { 3711 skb->dst_pending_confirm = val; 3712 } 3713 3714 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb) 3715 { 3716 return skb->dst_pending_confirm != 0; 3717 } 3718 3719 static inline struct sec_path *skb_sec_path(struct sk_buff *skb) 3720 { 3721 #ifdef CONFIG_XFRM 3722 return skb->sp; 3723 #else 3724 return NULL; 3725 #endif 3726 } 3727 3728 /* Keeps track of mac header offset relative to skb->head. 3729 * It is useful for TSO of Tunneling protocol. e.g. GRE. 3730 * For non-tunnel skb it points to skb_mac_header() and for 3731 * tunnel skb it points to outer mac header. 3732 * Keeps track of level of encapsulation of network headers. 3733 */ 3734 struct skb_gso_cb { 3735 union { 3736 int mac_offset; 3737 int data_offset; 3738 }; 3739 int encap_level; 3740 __wsum csum; 3741 __u16 csum_start; 3742 }; 3743 #define SKB_SGO_CB_OFFSET 32 3744 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET)) 3745 3746 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb) 3747 { 3748 return (skb_mac_header(inner_skb) - inner_skb->head) - 3749 SKB_GSO_CB(inner_skb)->mac_offset; 3750 } 3751 3752 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra) 3753 { 3754 int new_headroom, headroom; 3755 int ret; 3756 3757 headroom = skb_headroom(skb); 3758 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC); 3759 if (ret) 3760 return ret; 3761 3762 new_headroom = skb_headroom(skb); 3763 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom); 3764 return 0; 3765 } 3766 3767 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res) 3768 { 3769 /* Do not update partial checksums if remote checksum is enabled. */ 3770 if (skb->remcsum_offload) 3771 return; 3772 3773 SKB_GSO_CB(skb)->csum = res; 3774 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head; 3775 } 3776 3777 /* Compute the checksum for a gso segment. First compute the checksum value 3778 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and 3779 * then add in skb->csum (checksum from csum_start to end of packet). 3780 * skb->csum and csum_start are then updated to reflect the checksum of the 3781 * resultant packet starting from the transport header-- the resultant checksum 3782 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo 3783 * header. 3784 */ 3785 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res) 3786 { 3787 unsigned char *csum_start = skb_transport_header(skb); 3788 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start; 3789 __wsum partial = SKB_GSO_CB(skb)->csum; 3790 3791 SKB_GSO_CB(skb)->csum = res; 3792 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head; 3793 3794 return csum_fold(csum_partial(csum_start, plen, partial)); 3795 } 3796 3797 static inline bool skb_is_gso(const struct sk_buff *skb) 3798 { 3799 return skb_shinfo(skb)->gso_size; 3800 } 3801 3802 /* Note: Should be called only if skb_is_gso(skb) is true */ 3803 static inline bool skb_is_gso_v6(const struct sk_buff *skb) 3804 { 3805 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 3806 } 3807 3808 static inline void skb_gso_reset(struct sk_buff *skb) 3809 { 3810 skb_shinfo(skb)->gso_size = 0; 3811 skb_shinfo(skb)->gso_segs = 0; 3812 skb_shinfo(skb)->gso_type = 0; 3813 } 3814 3815 void __skb_warn_lro_forwarding(const struct sk_buff *skb); 3816 3817 static inline bool skb_warn_if_lro(const struct sk_buff *skb) 3818 { 3819 /* LRO sets gso_size but not gso_type, whereas if GSO is really 3820 * wanted then gso_type will be set. */ 3821 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3822 3823 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 3824 unlikely(shinfo->gso_type == 0)) { 3825 __skb_warn_lro_forwarding(skb); 3826 return true; 3827 } 3828 return false; 3829 } 3830 3831 static inline void skb_forward_csum(struct sk_buff *skb) 3832 { 3833 /* Unfortunately we don't support this one. Any brave souls? */ 3834 if (skb->ip_summed == CHECKSUM_COMPLETE) 3835 skb->ip_summed = CHECKSUM_NONE; 3836 } 3837 3838 /** 3839 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 3840 * @skb: skb to check 3841 * 3842 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 3843 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 3844 * use this helper, to document places where we make this assertion. 3845 */ 3846 static inline void skb_checksum_none_assert(const struct sk_buff *skb) 3847 { 3848 #ifdef DEBUG 3849 BUG_ON(skb->ip_summed != CHECKSUM_NONE); 3850 #endif 3851 } 3852 3853 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 3854 3855 int skb_checksum_setup(struct sk_buff *skb, bool recalculate); 3856 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 3857 unsigned int transport_len, 3858 __sum16(*skb_chkf)(struct sk_buff *skb)); 3859 3860 /** 3861 * skb_head_is_locked - Determine if the skb->head is locked down 3862 * @skb: skb to check 3863 * 3864 * The head on skbs build around a head frag can be removed if they are 3865 * not cloned. This function returns true if the skb head is locked down 3866 * due to either being allocated via kmalloc, or by being a clone with 3867 * multiple references to the head. 3868 */ 3869 static inline bool skb_head_is_locked(const struct sk_buff *skb) 3870 { 3871 return !skb->head_frag || skb_cloned(skb); 3872 } 3873 3874 /** 3875 * skb_gso_network_seglen - Return length of individual segments of a gso packet 3876 * 3877 * @skb: GSO skb 3878 * 3879 * skb_gso_network_seglen is used to determine the real size of the 3880 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP). 3881 * 3882 * The MAC/L2 header is not accounted for. 3883 */ 3884 static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb) 3885 { 3886 unsigned int hdr_len = skb_transport_header(skb) - 3887 skb_network_header(skb); 3888 return hdr_len + skb_gso_transport_seglen(skb); 3889 } 3890 3891 /* Local Checksum Offload. 3892 * Compute outer checksum based on the assumption that the 3893 * inner checksum will be offloaded later. 3894 * See Documentation/networking/checksum-offloads.txt for 3895 * explanation of how this works. 3896 * Fill in outer checksum adjustment (e.g. with sum of outer 3897 * pseudo-header) before calling. 3898 * Also ensure that inner checksum is in linear data area. 3899 */ 3900 static inline __wsum lco_csum(struct sk_buff *skb) 3901 { 3902 unsigned char *csum_start = skb_checksum_start(skb); 3903 unsigned char *l4_hdr = skb_transport_header(skb); 3904 __wsum partial; 3905 3906 /* Start with complement of inner checksum adjustment */ 3907 partial = ~csum_unfold(*(__force __sum16 *)(csum_start + 3908 skb->csum_offset)); 3909 3910 /* Add in checksum of our headers (incl. outer checksum 3911 * adjustment filled in by caller) and return result. 3912 */ 3913 return csum_partial(l4_hdr, csum_start - l4_hdr, partial); 3914 } 3915 3916 #endif /* __KERNEL__ */ 3917 #endif /* _LINUX_SKBUFF_H */ 3918