xref: /linux-6.15/include/linux/skbuff.h (revision bbaf1ff0)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  *	Definitions for the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:
6  *		Alan Cox, <[email protected]>
7  *		Florian La Roche, <[email protected]>
8  */
9 
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12 
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
22 
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <net/checksum.h>
27 #include <linux/rcupdate.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/netdev_features.h>
30 #include <net/flow_dissector.h>
31 #include <linux/in6.h>
32 #include <linux/if_packet.h>
33 #include <linux/llist.h>
34 #include <net/flow.h>
35 #include <net/page_pool.h>
36 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
37 #include <linux/netfilter/nf_conntrack_common.h>
38 #endif
39 #include <net/net_debug.h>
40 #include <net/dropreason-core.h>
41 
42 /**
43  * DOC: skb checksums
44  *
45  * The interface for checksum offload between the stack and networking drivers
46  * is as follows...
47  *
48  * IP checksum related features
49  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
50  *
51  * Drivers advertise checksum offload capabilities in the features of a device.
52  * From the stack's point of view these are capabilities offered by the driver.
53  * A driver typically only advertises features that it is capable of offloading
54  * to its device.
55  *
56  * .. flat-table:: Checksum related device features
57  *   :widths: 1 10
58  *
59  *   * - %NETIF_F_HW_CSUM
60  *     - The driver (or its device) is able to compute one
61  *	 IP (one's complement) checksum for any combination
62  *	 of protocols or protocol layering. The checksum is
63  *	 computed and set in a packet per the CHECKSUM_PARTIAL
64  *	 interface (see below).
65  *
66  *   * - %NETIF_F_IP_CSUM
67  *     - Driver (device) is only able to checksum plain
68  *	 TCP or UDP packets over IPv4. These are specifically
69  *	 unencapsulated packets of the form IPv4|TCP or
70  *	 IPv4|UDP where the Protocol field in the IPv4 header
71  *	 is TCP or UDP. The IPv4 header may contain IP options.
72  *	 This feature cannot be set in features for a device
73  *	 with NETIF_F_HW_CSUM also set. This feature is being
74  *	 DEPRECATED (see below).
75  *
76  *   * - %NETIF_F_IPV6_CSUM
77  *     - Driver (device) is only able to checksum plain
78  *	 TCP or UDP packets over IPv6. These are specifically
79  *	 unencapsulated packets of the form IPv6|TCP or
80  *	 IPv6|UDP where the Next Header field in the IPv6
81  *	 header is either TCP or UDP. IPv6 extension headers
82  *	 are not supported with this feature. This feature
83  *	 cannot be set in features for a device with
84  *	 NETIF_F_HW_CSUM also set. This feature is being
85  *	 DEPRECATED (see below).
86  *
87  *   * - %NETIF_F_RXCSUM
88  *     - Driver (device) performs receive checksum offload.
89  *	 This flag is only used to disable the RX checksum
90  *	 feature for a device. The stack will accept receive
91  *	 checksum indication in packets received on a device
92  *	 regardless of whether NETIF_F_RXCSUM is set.
93  *
94  * Checksumming of received packets by device
95  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
96  *
97  * Indication of checksum verification is set in &sk_buff.ip_summed.
98  * Possible values are:
99  *
100  * - %CHECKSUM_NONE
101  *
102  *   Device did not checksum this packet e.g. due to lack of capabilities.
103  *   The packet contains full (though not verified) checksum in packet but
104  *   not in skb->csum. Thus, skb->csum is undefined in this case.
105  *
106  * - %CHECKSUM_UNNECESSARY
107  *
108  *   The hardware you're dealing with doesn't calculate the full checksum
109  *   (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums
110  *   for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY
111  *   if their checksums are okay. &sk_buff.csum is still undefined in this case
112  *   though. A driver or device must never modify the checksum field in the
113  *   packet even if checksum is verified.
114  *
115  *   %CHECKSUM_UNNECESSARY is applicable to following protocols:
116  *
117  *     - TCP: IPv6 and IPv4.
118  *     - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
119  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
120  *       may perform further validation in this case.
121  *     - GRE: only if the checksum is present in the header.
122  *     - SCTP: indicates the CRC in SCTP header has been validated.
123  *     - FCOE: indicates the CRC in FC frame has been validated.
124  *
125  *   &sk_buff.csum_level indicates the number of consecutive checksums found in
126  *   the packet minus one that have been verified as %CHECKSUM_UNNECESSARY.
127  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
128  *   and a device is able to verify the checksums for UDP (possibly zero),
129  *   GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to
130  *   two. If the device were only able to verify the UDP checksum and not
131  *   GRE, either because it doesn't support GRE checksum or because GRE
132  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
133  *   not considered in this case).
134  *
135  * - %CHECKSUM_COMPLETE
136  *
137  *   This is the most generic way. The device supplied checksum of the _whole_
138  *   packet as seen by netif_rx() and fills in &sk_buff.csum. This means the
139  *   hardware doesn't need to parse L3/L4 headers to implement this.
140  *
141  *   Notes:
142  *
143  *   - Even if device supports only some protocols, but is able to produce
144  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
145  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
146  *
147  * - %CHECKSUM_PARTIAL
148  *
149  *   A checksum is set up to be offloaded to a device as described in the
150  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
151  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
152  *   on the same host, or it may be set in the input path in GRO or remote
153  *   checksum offload. For the purposes of checksum verification, the checksum
154  *   referred to by skb->csum_start + skb->csum_offset and any preceding
155  *   checksums in the packet are considered verified. Any checksums in the
156  *   packet that are after the checksum being offloaded are not considered to
157  *   be verified.
158  *
159  * Checksumming on transmit for non-GSO
160  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
161  *
162  * The stack requests checksum offload in the &sk_buff.ip_summed for a packet.
163  * Values are:
164  *
165  * - %CHECKSUM_PARTIAL
166  *
167  *   The driver is required to checksum the packet as seen by hard_start_xmit()
168  *   from &sk_buff.csum_start up to the end, and to record/write the checksum at
169  *   offset &sk_buff.csum_start + &sk_buff.csum_offset.
170  *   A driver may verify that the
171  *   csum_start and csum_offset values are valid values given the length and
172  *   offset of the packet, but it should not attempt to validate that the
173  *   checksum refers to a legitimate transport layer checksum -- it is the
174  *   purview of the stack to validate that csum_start and csum_offset are set
175  *   correctly.
176  *
177  *   When the stack requests checksum offload for a packet, the driver MUST
178  *   ensure that the checksum is set correctly. A driver can either offload the
179  *   checksum calculation to the device, or call skb_checksum_help (in the case
180  *   that the device does not support offload for a particular checksum).
181  *
182  *   %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of
183  *   %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate
184  *   checksum offload capability.
185  *   skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based
186  *   on network device checksumming capabilities: if a packet does not match
187  *   them, skb_checksum_help() or skb_crc32c_help() (depending on the value of
188  *   &sk_buff.csum_not_inet, see :ref:`crc`)
189  *   is called to resolve the checksum.
190  *
191  * - %CHECKSUM_NONE
192  *
193  *   The skb was already checksummed by the protocol, or a checksum is not
194  *   required.
195  *
196  * - %CHECKSUM_UNNECESSARY
197  *
198  *   This has the same meaning as CHECKSUM_NONE for checksum offload on
199  *   output.
200  *
201  * - %CHECKSUM_COMPLETE
202  *
203  *   Not used in checksum output. If a driver observes a packet with this value
204  *   set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set.
205  *
206  * .. _crc:
207  *
208  * Non-IP checksum (CRC) offloads
209  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
210  *
211  * .. flat-table::
212  *   :widths: 1 10
213  *
214  *   * - %NETIF_F_SCTP_CRC
215  *     - This feature indicates that a device is capable of
216  *	 offloading the SCTP CRC in a packet. To perform this offload the stack
217  *	 will set csum_start and csum_offset accordingly, set ip_summed to
218  *	 %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication
219  *	 in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c.
220  *	 A driver that supports both IP checksum offload and SCTP CRC32c offload
221  *	 must verify which offload is configured for a packet by testing the
222  *	 value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to
223  *	 resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
224  *
225  *   * - %NETIF_F_FCOE_CRC
226  *     - This feature indicates that a device is capable of offloading the FCOE
227  *	 CRC in a packet. To perform this offload the stack will set ip_summed
228  *	 to %CHECKSUM_PARTIAL and set csum_start and csum_offset
229  *	 accordingly. Note that there is no indication in the skbuff that the
230  *	 %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
231  *	 both IP checksum offload and FCOE CRC offload must verify which offload
232  *	 is configured for a packet, presumably by inspecting packet headers.
233  *
234  * Checksumming on output with GSO
235  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
236  *
237  * In the case of a GSO packet (skb_is_gso() is true), checksum offload
238  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
239  * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as
240  * part of the GSO operation is implied. If a checksum is being offloaded
241  * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and
242  * csum_offset are set to refer to the outermost checksum being offloaded
243  * (two offloaded checksums are possible with UDP encapsulation).
244  */
245 
246 /* Don't change this without changing skb_csum_unnecessary! */
247 #define CHECKSUM_NONE		0
248 #define CHECKSUM_UNNECESSARY	1
249 #define CHECKSUM_COMPLETE	2
250 #define CHECKSUM_PARTIAL	3
251 
252 /* Maximum value in skb->csum_level */
253 #define SKB_MAX_CSUM_LEVEL	3
254 
255 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
256 #define SKB_WITH_OVERHEAD(X)	\
257 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
258 
259 /* For X bytes available in skb->head, what is the minimal
260  * allocation needed, knowing struct skb_shared_info needs
261  * to be aligned.
262  */
263 #define SKB_HEAD_ALIGN(X) (SKB_DATA_ALIGN(X) + \
264 	SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
265 
266 #define SKB_MAX_ORDER(X, ORDER) \
267 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
268 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
269 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
270 
271 /* return minimum truesize of one skb containing X bytes of data */
272 #define SKB_TRUESIZE(X) ((X) +						\
273 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
274 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
275 
276 struct ahash_request;
277 struct net_device;
278 struct scatterlist;
279 struct pipe_inode_info;
280 struct iov_iter;
281 struct napi_struct;
282 struct bpf_prog;
283 union bpf_attr;
284 struct skb_ext;
285 struct ts_config;
286 
287 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
288 struct nf_bridge_info {
289 	enum {
290 		BRNF_PROTO_UNCHANGED,
291 		BRNF_PROTO_8021Q,
292 		BRNF_PROTO_PPPOE
293 	} orig_proto:8;
294 	u8			pkt_otherhost:1;
295 	u8			in_prerouting:1;
296 	u8			bridged_dnat:1;
297 	u8			sabotage_in_done:1;
298 	__u16			frag_max_size;
299 	struct net_device	*physindev;
300 
301 	/* always valid & non-NULL from FORWARD on, for physdev match */
302 	struct net_device	*physoutdev;
303 	union {
304 		/* prerouting: detect dnat in orig/reply direction */
305 		__be32          ipv4_daddr;
306 		struct in6_addr ipv6_daddr;
307 
308 		/* after prerouting + nat detected: store original source
309 		 * mac since neigh resolution overwrites it, only used while
310 		 * skb is out in neigh layer.
311 		 */
312 		char neigh_header[8];
313 	};
314 };
315 #endif
316 
317 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
318 /* Chain in tc_skb_ext will be used to share the tc chain with
319  * ovs recirc_id. It will be set to the current chain by tc
320  * and read by ovs to recirc_id.
321  */
322 struct tc_skb_ext {
323 	union {
324 		u64 act_miss_cookie;
325 		__u32 chain;
326 	};
327 	__u16 mru;
328 	__u16 zone;
329 	u8 post_ct:1;
330 	u8 post_ct_snat:1;
331 	u8 post_ct_dnat:1;
332 	u8 act_miss:1; /* Set if act_miss_cookie is used */
333 	u8 l2_miss:1; /* Set by bridge upon FDB or MDB miss */
334 };
335 #endif
336 
337 struct sk_buff_head {
338 	/* These two members must be first to match sk_buff. */
339 	struct_group_tagged(sk_buff_list, list,
340 		struct sk_buff	*next;
341 		struct sk_buff	*prev;
342 	);
343 
344 	__u32		qlen;
345 	spinlock_t	lock;
346 };
347 
348 struct sk_buff;
349 
350 #ifndef CONFIG_MAX_SKB_FRAGS
351 # define CONFIG_MAX_SKB_FRAGS 17
352 #endif
353 
354 #define MAX_SKB_FRAGS CONFIG_MAX_SKB_FRAGS
355 
356 extern int sysctl_max_skb_frags;
357 
358 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
359  * segment using its current segmentation instead.
360  */
361 #define GSO_BY_FRAGS	0xFFFF
362 
363 typedef struct bio_vec skb_frag_t;
364 
365 /**
366  * skb_frag_size() - Returns the size of a skb fragment
367  * @frag: skb fragment
368  */
369 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
370 {
371 	return frag->bv_len;
372 }
373 
374 /**
375  * skb_frag_size_set() - Sets the size of a skb fragment
376  * @frag: skb fragment
377  * @size: size of fragment
378  */
379 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
380 {
381 	frag->bv_len = size;
382 }
383 
384 /**
385  * skb_frag_size_add() - Increments the size of a skb fragment by @delta
386  * @frag: skb fragment
387  * @delta: value to add
388  */
389 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
390 {
391 	frag->bv_len += delta;
392 }
393 
394 /**
395  * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
396  * @frag: skb fragment
397  * @delta: value to subtract
398  */
399 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
400 {
401 	frag->bv_len -= delta;
402 }
403 
404 /**
405  * skb_frag_must_loop - Test if %p is a high memory page
406  * @p: fragment's page
407  */
408 static inline bool skb_frag_must_loop(struct page *p)
409 {
410 #if defined(CONFIG_HIGHMEM)
411 	if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p))
412 		return true;
413 #endif
414 	return false;
415 }
416 
417 /**
418  *	skb_frag_foreach_page - loop over pages in a fragment
419  *
420  *	@f:		skb frag to operate on
421  *	@f_off:		offset from start of f->bv_page
422  *	@f_len:		length from f_off to loop over
423  *	@p:		(temp var) current page
424  *	@p_off:		(temp var) offset from start of current page,
425  *	                           non-zero only on first page.
426  *	@p_len:		(temp var) length in current page,
427  *				   < PAGE_SIZE only on first and last page.
428  *	@copied:	(temp var) length so far, excluding current p_len.
429  *
430  *	A fragment can hold a compound page, in which case per-page
431  *	operations, notably kmap_atomic, must be called for each
432  *	regular page.
433  */
434 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
435 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
436 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
437 	     p_len = skb_frag_must_loop(p) ?				\
438 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
439 	     copied = 0;						\
440 	     copied < f_len;						\
441 	     copied += p_len, p++, p_off = 0,				\
442 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
443 
444 #define HAVE_HW_TIME_STAMP
445 
446 /**
447  * struct skb_shared_hwtstamps - hardware time stamps
448  * @hwtstamp:		hardware time stamp transformed into duration
449  *			since arbitrary point in time
450  * @netdev_data:	address/cookie of network device driver used as
451  *			reference to actual hardware time stamp
452  *
453  * Software time stamps generated by ktime_get_real() are stored in
454  * skb->tstamp.
455  *
456  * hwtstamps can only be compared against other hwtstamps from
457  * the same device.
458  *
459  * This structure is attached to packets as part of the
460  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
461  */
462 struct skb_shared_hwtstamps {
463 	union {
464 		ktime_t	hwtstamp;
465 		void *netdev_data;
466 	};
467 };
468 
469 /* Definitions for tx_flags in struct skb_shared_info */
470 enum {
471 	/* generate hardware time stamp */
472 	SKBTX_HW_TSTAMP = 1 << 0,
473 
474 	/* generate software time stamp when queueing packet to NIC */
475 	SKBTX_SW_TSTAMP = 1 << 1,
476 
477 	/* device driver is going to provide hardware time stamp */
478 	SKBTX_IN_PROGRESS = 1 << 2,
479 
480 	/* generate hardware time stamp based on cycles if supported */
481 	SKBTX_HW_TSTAMP_USE_CYCLES = 1 << 3,
482 
483 	/* generate wifi status information (where possible) */
484 	SKBTX_WIFI_STATUS = 1 << 4,
485 
486 	/* determine hardware time stamp based on time or cycles */
487 	SKBTX_HW_TSTAMP_NETDEV = 1 << 5,
488 
489 	/* generate software time stamp when entering packet scheduling */
490 	SKBTX_SCHED_TSTAMP = 1 << 6,
491 };
492 
493 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
494 				 SKBTX_SCHED_TSTAMP)
495 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | \
496 				 SKBTX_HW_TSTAMP_USE_CYCLES | \
497 				 SKBTX_ANY_SW_TSTAMP)
498 
499 /* Definitions for flags in struct skb_shared_info */
500 enum {
501 	/* use zcopy routines */
502 	SKBFL_ZEROCOPY_ENABLE = BIT(0),
503 
504 	/* This indicates at least one fragment might be overwritten
505 	 * (as in vmsplice(), sendfile() ...)
506 	 * If we need to compute a TX checksum, we'll need to copy
507 	 * all frags to avoid possible bad checksum
508 	 */
509 	SKBFL_SHARED_FRAG = BIT(1),
510 
511 	/* segment contains only zerocopy data and should not be
512 	 * charged to the kernel memory.
513 	 */
514 	SKBFL_PURE_ZEROCOPY = BIT(2),
515 
516 	SKBFL_DONT_ORPHAN = BIT(3),
517 
518 	/* page references are managed by the ubuf_info, so it's safe to
519 	 * use frags only up until ubuf_info is released
520 	 */
521 	SKBFL_MANAGED_FRAG_REFS = BIT(4),
522 };
523 
524 #define SKBFL_ZEROCOPY_FRAG	(SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG)
525 #define SKBFL_ALL_ZEROCOPY	(SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY | \
526 				 SKBFL_DONT_ORPHAN | SKBFL_MANAGED_FRAG_REFS)
527 
528 /*
529  * The callback notifies userspace to release buffers when skb DMA is done in
530  * lower device, the skb last reference should be 0 when calling this.
531  * The zerocopy_success argument is true if zero copy transmit occurred,
532  * false on data copy or out of memory error caused by data copy attempt.
533  * The ctx field is used to track device context.
534  * The desc field is used to track userspace buffer index.
535  */
536 struct ubuf_info {
537 	void (*callback)(struct sk_buff *, struct ubuf_info *,
538 			 bool zerocopy_success);
539 	refcount_t refcnt;
540 	u8 flags;
541 };
542 
543 struct ubuf_info_msgzc {
544 	struct ubuf_info ubuf;
545 
546 	union {
547 		struct {
548 			unsigned long desc;
549 			void *ctx;
550 		};
551 		struct {
552 			u32 id;
553 			u16 len;
554 			u16 zerocopy:1;
555 			u32 bytelen;
556 		};
557 	};
558 
559 	struct mmpin {
560 		struct user_struct *user;
561 		unsigned int num_pg;
562 	} mmp;
563 };
564 
565 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
566 #define uarg_to_msgzc(ubuf_ptr)	container_of((ubuf_ptr), struct ubuf_info_msgzc, \
567 					     ubuf)
568 
569 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
570 void mm_unaccount_pinned_pages(struct mmpin *mmp);
571 
572 /* This data is invariant across clones and lives at
573  * the end of the header data, ie. at skb->end.
574  */
575 struct skb_shared_info {
576 	__u8		flags;
577 	__u8		meta_len;
578 	__u8		nr_frags;
579 	__u8		tx_flags;
580 	unsigned short	gso_size;
581 	/* Warning: this field is not always filled in (UFO)! */
582 	unsigned short	gso_segs;
583 	struct sk_buff	*frag_list;
584 	struct skb_shared_hwtstamps hwtstamps;
585 	unsigned int	gso_type;
586 	u32		tskey;
587 
588 	/*
589 	 * Warning : all fields before dataref are cleared in __alloc_skb()
590 	 */
591 	atomic_t	dataref;
592 	unsigned int	xdp_frags_size;
593 
594 	/* Intermediate layers must ensure that destructor_arg
595 	 * remains valid until skb destructor */
596 	void *		destructor_arg;
597 
598 	/* must be last field, see pskb_expand_head() */
599 	skb_frag_t	frags[MAX_SKB_FRAGS];
600 };
601 
602 /**
603  * DOC: dataref and headerless skbs
604  *
605  * Transport layers send out clones of payload skbs they hold for
606  * retransmissions. To allow lower layers of the stack to prepend their headers
607  * we split &skb_shared_info.dataref into two halves.
608  * The lower 16 bits count the overall number of references.
609  * The higher 16 bits indicate how many of the references are payload-only.
610  * skb_header_cloned() checks if skb is allowed to add / write the headers.
611  *
612  * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr
613  * (via __skb_header_release()). Any clone created from marked skb will get
614  * &sk_buff.hdr_len populated with the available headroom.
615  * If there's the only clone in existence it's able to modify the headroom
616  * at will. The sequence of calls inside the transport layer is::
617  *
618  *  <alloc skb>
619  *  skb_reserve()
620  *  __skb_header_release()
621  *  skb_clone()
622  *  // send the clone down the stack
623  *
624  * This is not a very generic construct and it depends on the transport layers
625  * doing the right thing. In practice there's usually only one payload-only skb.
626  * Having multiple payload-only skbs with different lengths of hdr_len is not
627  * possible. The payload-only skbs should never leave their owner.
628  */
629 #define SKB_DATAREF_SHIFT 16
630 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
631 
632 
633 enum {
634 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
635 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
636 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
637 };
638 
639 enum {
640 	SKB_GSO_TCPV4 = 1 << 0,
641 
642 	/* This indicates the skb is from an untrusted source. */
643 	SKB_GSO_DODGY = 1 << 1,
644 
645 	/* This indicates the tcp segment has CWR set. */
646 	SKB_GSO_TCP_ECN = 1 << 2,
647 
648 	SKB_GSO_TCP_FIXEDID = 1 << 3,
649 
650 	SKB_GSO_TCPV6 = 1 << 4,
651 
652 	SKB_GSO_FCOE = 1 << 5,
653 
654 	SKB_GSO_GRE = 1 << 6,
655 
656 	SKB_GSO_GRE_CSUM = 1 << 7,
657 
658 	SKB_GSO_IPXIP4 = 1 << 8,
659 
660 	SKB_GSO_IPXIP6 = 1 << 9,
661 
662 	SKB_GSO_UDP_TUNNEL = 1 << 10,
663 
664 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
665 
666 	SKB_GSO_PARTIAL = 1 << 12,
667 
668 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
669 
670 	SKB_GSO_SCTP = 1 << 14,
671 
672 	SKB_GSO_ESP = 1 << 15,
673 
674 	SKB_GSO_UDP = 1 << 16,
675 
676 	SKB_GSO_UDP_L4 = 1 << 17,
677 
678 	SKB_GSO_FRAGLIST = 1 << 18,
679 };
680 
681 #if BITS_PER_LONG > 32
682 #define NET_SKBUFF_DATA_USES_OFFSET 1
683 #endif
684 
685 #ifdef NET_SKBUFF_DATA_USES_OFFSET
686 typedef unsigned int sk_buff_data_t;
687 #else
688 typedef unsigned char *sk_buff_data_t;
689 #endif
690 
691 /**
692  * DOC: Basic sk_buff geometry
693  *
694  * struct sk_buff itself is a metadata structure and does not hold any packet
695  * data. All the data is held in associated buffers.
696  *
697  * &sk_buff.head points to the main "head" buffer. The head buffer is divided
698  * into two parts:
699  *
700  *  - data buffer, containing headers and sometimes payload;
701  *    this is the part of the skb operated on by the common helpers
702  *    such as skb_put() or skb_pull();
703  *  - shared info (struct skb_shared_info) which holds an array of pointers
704  *    to read-only data in the (page, offset, length) format.
705  *
706  * Optionally &skb_shared_info.frag_list may point to another skb.
707  *
708  * Basic diagram may look like this::
709  *
710  *                                  ---------------
711  *                                 | sk_buff       |
712  *                                  ---------------
713  *     ,---------------------------  + head
714  *    /          ,-----------------  + data
715  *   /          /      ,-----------  + tail
716  *  |          |      |            , + end
717  *  |          |      |           |
718  *  v          v      v           v
719  *   -----------------------------------------------
720  *  | headroom | data |  tailroom | skb_shared_info |
721  *   -----------------------------------------------
722  *                                 + [page frag]
723  *                                 + [page frag]
724  *                                 + [page frag]
725  *                                 + [page frag]       ---------
726  *                                 + frag_list    --> | sk_buff |
727  *                                                     ---------
728  *
729  */
730 
731 /**
732  *	struct sk_buff - socket buffer
733  *	@next: Next buffer in list
734  *	@prev: Previous buffer in list
735  *	@tstamp: Time we arrived/left
736  *	@skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
737  *		for retransmit timer
738  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
739  *	@list: queue head
740  *	@ll_node: anchor in an llist (eg socket defer_list)
741  *	@sk: Socket we are owned by
742  *	@ip_defrag_offset: (aka @sk) alternate use of @sk, used in
743  *		fragmentation management
744  *	@dev: Device we arrived on/are leaving by
745  *	@dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
746  *	@cb: Control buffer. Free for use by every layer. Put private vars here
747  *	@_skb_refdst: destination entry (with norefcount bit)
748  *	@sp: the security path, used for xfrm
749  *	@len: Length of actual data
750  *	@data_len: Data length
751  *	@mac_len: Length of link layer header
752  *	@hdr_len: writable header length of cloned skb
753  *	@csum: Checksum (must include start/offset pair)
754  *	@csum_start: Offset from skb->head where checksumming should start
755  *	@csum_offset: Offset from csum_start where checksum should be stored
756  *	@priority: Packet queueing priority
757  *	@ignore_df: allow local fragmentation
758  *	@cloned: Head may be cloned (check refcnt to be sure)
759  *	@ip_summed: Driver fed us an IP checksum
760  *	@nohdr: Payload reference only, must not modify header
761  *	@pkt_type: Packet class
762  *	@fclone: skbuff clone status
763  *	@ipvs_property: skbuff is owned by ipvs
764  *	@inner_protocol_type: whether the inner protocol is
765  *		ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
766  *	@remcsum_offload: remote checksum offload is enabled
767  *	@offload_fwd_mark: Packet was L2-forwarded in hardware
768  *	@offload_l3_fwd_mark: Packet was L3-forwarded in hardware
769  *	@tc_skip_classify: do not classify packet. set by IFB device
770  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
771  *	@redirected: packet was redirected by packet classifier
772  *	@from_ingress: packet was redirected from the ingress path
773  *	@nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h
774  *	@peeked: this packet has been seen already, so stats have been
775  *		done for it, don't do them again
776  *	@nf_trace: netfilter packet trace flag
777  *	@protocol: Packet protocol from driver
778  *	@destructor: Destruct function
779  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
780  *	@_sk_redir: socket redirection information for skmsg
781  *	@_nfct: Associated connection, if any (with nfctinfo bits)
782  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
783  *	@skb_iif: ifindex of device we arrived on
784  *	@tc_index: Traffic control index
785  *	@hash: the packet hash
786  *	@queue_mapping: Queue mapping for multiqueue devices
787  *	@head_frag: skb was allocated from page fragments,
788  *		not allocated by kmalloc() or vmalloc().
789  *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
790  *	@pp_recycle: mark the packet for recycling instead of freeing (implies
791  *		page_pool support on driver)
792  *	@active_extensions: active extensions (skb_ext_id types)
793  *	@ndisc_nodetype: router type (from link layer)
794  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
795  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
796  *		ports.
797  *	@sw_hash: indicates hash was computed in software stack
798  *	@wifi_acked_valid: wifi_acked was set
799  *	@wifi_acked: whether frame was acked on wifi or not
800  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
801  *	@encapsulation: indicates the inner headers in the skbuff are valid
802  *	@encap_hdr_csum: software checksum is needed
803  *	@csum_valid: checksum is already valid
804  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
805  *	@csum_complete_sw: checksum was completed by software
806  *	@csum_level: indicates the number of consecutive checksums found in
807  *		the packet minus one that have been verified as
808  *		CHECKSUM_UNNECESSARY (max 3)
809  *	@dst_pending_confirm: need to confirm neighbour
810  *	@decrypted: Decrypted SKB
811  *	@slow_gro: state present at GRO time, slower prepare step required
812  *	@mono_delivery_time: When set, skb->tstamp has the
813  *		delivery_time in mono clock base (i.e. EDT).  Otherwise, the
814  *		skb->tstamp has the (rcv) timestamp at ingress and
815  *		delivery_time at egress.
816  *	@napi_id: id of the NAPI struct this skb came from
817  *	@sender_cpu: (aka @napi_id) source CPU in XPS
818  *	@alloc_cpu: CPU which did the skb allocation.
819  *	@secmark: security marking
820  *	@mark: Generic packet mark
821  *	@reserved_tailroom: (aka @mark) number of bytes of free space available
822  *		at the tail of an sk_buff
823  *	@vlan_all: vlan fields (proto & tci)
824  *	@vlan_proto: vlan encapsulation protocol
825  *	@vlan_tci: vlan tag control information
826  *	@inner_protocol: Protocol (encapsulation)
827  *	@inner_ipproto: (aka @inner_protocol) stores ipproto when
828  *		skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
829  *	@inner_transport_header: Inner transport layer header (encapsulation)
830  *	@inner_network_header: Network layer header (encapsulation)
831  *	@inner_mac_header: Link layer header (encapsulation)
832  *	@transport_header: Transport layer header
833  *	@network_header: Network layer header
834  *	@mac_header: Link layer header
835  *	@kcov_handle: KCOV remote handle for remote coverage collection
836  *	@tail: Tail pointer
837  *	@end: End pointer
838  *	@head: Head of buffer
839  *	@data: Data head pointer
840  *	@truesize: Buffer size
841  *	@users: User count - see {datagram,tcp}.c
842  *	@extensions: allocated extensions, valid if active_extensions is nonzero
843  */
844 
845 struct sk_buff {
846 	union {
847 		struct {
848 			/* These two members must be first to match sk_buff_head. */
849 			struct sk_buff		*next;
850 			struct sk_buff		*prev;
851 
852 			union {
853 				struct net_device	*dev;
854 				/* Some protocols might use this space to store information,
855 				 * while device pointer would be NULL.
856 				 * UDP receive path is one user.
857 				 */
858 				unsigned long		dev_scratch;
859 			};
860 		};
861 		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
862 		struct list_head	list;
863 		struct llist_node	ll_node;
864 	};
865 
866 	union {
867 		struct sock		*sk;
868 		int			ip_defrag_offset;
869 	};
870 
871 	union {
872 		ktime_t		tstamp;
873 		u64		skb_mstamp_ns; /* earliest departure time */
874 	};
875 	/*
876 	 * This is the control buffer. It is free to use for every
877 	 * layer. Please put your private variables there. If you
878 	 * want to keep them across layers you have to do a skb_clone()
879 	 * first. This is owned by whoever has the skb queued ATM.
880 	 */
881 	char			cb[48] __aligned(8);
882 
883 	union {
884 		struct {
885 			unsigned long	_skb_refdst;
886 			void		(*destructor)(struct sk_buff *skb);
887 		};
888 		struct list_head	tcp_tsorted_anchor;
889 #ifdef CONFIG_NET_SOCK_MSG
890 		unsigned long		_sk_redir;
891 #endif
892 	};
893 
894 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
895 	unsigned long		 _nfct;
896 #endif
897 	unsigned int		len,
898 				data_len;
899 	__u16			mac_len,
900 				hdr_len;
901 
902 	/* Following fields are _not_ copied in __copy_skb_header()
903 	 * Note that queue_mapping is here mostly to fill a hole.
904 	 */
905 	__u16			queue_mapping;
906 
907 /* if you move cloned around you also must adapt those constants */
908 #ifdef __BIG_ENDIAN_BITFIELD
909 #define CLONED_MASK	(1 << 7)
910 #else
911 #define CLONED_MASK	1
912 #endif
913 #define CLONED_OFFSET		offsetof(struct sk_buff, __cloned_offset)
914 
915 	/* private: */
916 	__u8			__cloned_offset[0];
917 	/* public: */
918 	__u8			cloned:1,
919 				nohdr:1,
920 				fclone:2,
921 				peeked:1,
922 				head_frag:1,
923 				pfmemalloc:1,
924 				pp_recycle:1; /* page_pool recycle indicator */
925 #ifdef CONFIG_SKB_EXTENSIONS
926 	__u8			active_extensions;
927 #endif
928 
929 	/* Fields enclosed in headers group are copied
930 	 * using a single memcpy() in __copy_skb_header()
931 	 */
932 	struct_group(headers,
933 
934 	/* private: */
935 	__u8			__pkt_type_offset[0];
936 	/* public: */
937 	__u8			pkt_type:3; /* see PKT_TYPE_MAX */
938 	__u8			ignore_df:1;
939 	__u8			dst_pending_confirm:1;
940 	__u8			ip_summed:2;
941 	__u8			ooo_okay:1;
942 
943 	/* private: */
944 	__u8			__mono_tc_offset[0];
945 	/* public: */
946 	__u8			mono_delivery_time:1;	/* See SKB_MONO_DELIVERY_TIME_MASK */
947 #ifdef CONFIG_NET_CLS_ACT
948 	__u8			tc_at_ingress:1;	/* See TC_AT_INGRESS_MASK */
949 	__u8			tc_skip_classify:1;
950 #endif
951 	__u8			remcsum_offload:1;
952 	__u8			csum_complete_sw:1;
953 	__u8			csum_level:2;
954 	__u8			inner_protocol_type:1;
955 
956 	__u8			l4_hash:1;
957 	__u8			sw_hash:1;
958 #ifdef CONFIG_WIRELESS
959 	__u8			wifi_acked_valid:1;
960 	__u8			wifi_acked:1;
961 #endif
962 	__u8			no_fcs:1;
963 	/* Indicates the inner headers are valid in the skbuff. */
964 	__u8			encapsulation:1;
965 	__u8			encap_hdr_csum:1;
966 	__u8			csum_valid:1;
967 #ifdef CONFIG_IPV6_NDISC_NODETYPE
968 	__u8			ndisc_nodetype:2;
969 #endif
970 
971 #if IS_ENABLED(CONFIG_IP_VS)
972 	__u8			ipvs_property:1;
973 #endif
974 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
975 	__u8			nf_trace:1;
976 #endif
977 #ifdef CONFIG_NET_SWITCHDEV
978 	__u8			offload_fwd_mark:1;
979 	__u8			offload_l3_fwd_mark:1;
980 #endif
981 	__u8			redirected:1;
982 #ifdef CONFIG_NET_REDIRECT
983 	__u8			from_ingress:1;
984 #endif
985 #ifdef CONFIG_NETFILTER_SKIP_EGRESS
986 	__u8			nf_skip_egress:1;
987 #endif
988 #ifdef CONFIG_TLS_DEVICE
989 	__u8			decrypted:1;
990 #endif
991 	__u8			slow_gro:1;
992 #if IS_ENABLED(CONFIG_IP_SCTP)
993 	__u8			csum_not_inet:1;
994 #endif
995 
996 #ifdef CONFIG_NET_SCHED
997 	__u16			tc_index;	/* traffic control index */
998 #endif
999 
1000 	u16			alloc_cpu;
1001 
1002 	union {
1003 		__wsum		csum;
1004 		struct {
1005 			__u16	csum_start;
1006 			__u16	csum_offset;
1007 		};
1008 	};
1009 	__u32			priority;
1010 	int			skb_iif;
1011 	__u32			hash;
1012 	union {
1013 		u32		vlan_all;
1014 		struct {
1015 			__be16	vlan_proto;
1016 			__u16	vlan_tci;
1017 		};
1018 	};
1019 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
1020 	union {
1021 		unsigned int	napi_id;
1022 		unsigned int	sender_cpu;
1023 	};
1024 #endif
1025 #ifdef CONFIG_NETWORK_SECMARK
1026 	__u32		secmark;
1027 #endif
1028 
1029 	union {
1030 		__u32		mark;
1031 		__u32		reserved_tailroom;
1032 	};
1033 
1034 	union {
1035 		__be16		inner_protocol;
1036 		__u8		inner_ipproto;
1037 	};
1038 
1039 	__u16			inner_transport_header;
1040 	__u16			inner_network_header;
1041 	__u16			inner_mac_header;
1042 
1043 	__be16			protocol;
1044 	__u16			transport_header;
1045 	__u16			network_header;
1046 	__u16			mac_header;
1047 
1048 #ifdef CONFIG_KCOV
1049 	u64			kcov_handle;
1050 #endif
1051 
1052 	); /* end headers group */
1053 
1054 	/* These elements must be at the end, see alloc_skb() for details.  */
1055 	sk_buff_data_t		tail;
1056 	sk_buff_data_t		end;
1057 	unsigned char		*head,
1058 				*data;
1059 	unsigned int		truesize;
1060 	refcount_t		users;
1061 
1062 #ifdef CONFIG_SKB_EXTENSIONS
1063 	/* only useable after checking ->active_extensions != 0 */
1064 	struct skb_ext		*extensions;
1065 #endif
1066 };
1067 
1068 /* if you move pkt_type around you also must adapt those constants */
1069 #ifdef __BIG_ENDIAN_BITFIELD
1070 #define PKT_TYPE_MAX	(7 << 5)
1071 #else
1072 #define PKT_TYPE_MAX	7
1073 #endif
1074 #define PKT_TYPE_OFFSET		offsetof(struct sk_buff, __pkt_type_offset)
1075 
1076 /* if you move tc_at_ingress or mono_delivery_time
1077  * around, you also must adapt these constants.
1078  */
1079 #ifdef __BIG_ENDIAN_BITFIELD
1080 #define SKB_MONO_DELIVERY_TIME_MASK	(1 << 7)
1081 #define TC_AT_INGRESS_MASK		(1 << 6)
1082 #else
1083 #define SKB_MONO_DELIVERY_TIME_MASK	(1 << 0)
1084 #define TC_AT_INGRESS_MASK		(1 << 1)
1085 #endif
1086 #define SKB_BF_MONO_TC_OFFSET		offsetof(struct sk_buff, __mono_tc_offset)
1087 
1088 #ifdef __KERNEL__
1089 /*
1090  *	Handling routines are only of interest to the kernel
1091  */
1092 
1093 #define SKB_ALLOC_FCLONE	0x01
1094 #define SKB_ALLOC_RX		0x02
1095 #define SKB_ALLOC_NAPI		0x04
1096 
1097 /**
1098  * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
1099  * @skb: buffer
1100  */
1101 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
1102 {
1103 	return unlikely(skb->pfmemalloc);
1104 }
1105 
1106 /*
1107  * skb might have a dst pointer attached, refcounted or not.
1108  * _skb_refdst low order bit is set if refcount was _not_ taken
1109  */
1110 #define SKB_DST_NOREF	1UL
1111 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
1112 
1113 /**
1114  * skb_dst - returns skb dst_entry
1115  * @skb: buffer
1116  *
1117  * Returns skb dst_entry, regardless of reference taken or not.
1118  */
1119 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
1120 {
1121 	/* If refdst was not refcounted, check we still are in a
1122 	 * rcu_read_lock section
1123 	 */
1124 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
1125 		!rcu_read_lock_held() &&
1126 		!rcu_read_lock_bh_held());
1127 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
1128 }
1129 
1130 /**
1131  * skb_dst_set - sets skb dst
1132  * @skb: buffer
1133  * @dst: dst entry
1134  *
1135  * Sets skb dst, assuming a reference was taken on dst and should
1136  * be released by skb_dst_drop()
1137  */
1138 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
1139 {
1140 	skb->slow_gro |= !!dst;
1141 	skb->_skb_refdst = (unsigned long)dst;
1142 }
1143 
1144 /**
1145  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
1146  * @skb: buffer
1147  * @dst: dst entry
1148  *
1149  * Sets skb dst, assuming a reference was not taken on dst.
1150  * If dst entry is cached, we do not take reference and dst_release
1151  * will be avoided by refdst_drop. If dst entry is not cached, we take
1152  * reference, so that last dst_release can destroy the dst immediately.
1153  */
1154 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
1155 {
1156 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
1157 	skb->slow_gro |= !!dst;
1158 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
1159 }
1160 
1161 /**
1162  * skb_dst_is_noref - Test if skb dst isn't refcounted
1163  * @skb: buffer
1164  */
1165 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1166 {
1167 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1168 }
1169 
1170 /**
1171  * skb_rtable - Returns the skb &rtable
1172  * @skb: buffer
1173  */
1174 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
1175 {
1176 	return (struct rtable *)skb_dst(skb);
1177 }
1178 
1179 /* For mangling skb->pkt_type from user space side from applications
1180  * such as nft, tc, etc, we only allow a conservative subset of
1181  * possible pkt_types to be set.
1182 */
1183 static inline bool skb_pkt_type_ok(u32 ptype)
1184 {
1185 	return ptype <= PACKET_OTHERHOST;
1186 }
1187 
1188 /**
1189  * skb_napi_id - Returns the skb's NAPI id
1190  * @skb: buffer
1191  */
1192 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1193 {
1194 #ifdef CONFIG_NET_RX_BUSY_POLL
1195 	return skb->napi_id;
1196 #else
1197 	return 0;
1198 #endif
1199 }
1200 
1201 static inline bool skb_wifi_acked_valid(const struct sk_buff *skb)
1202 {
1203 #ifdef CONFIG_WIRELESS
1204 	return skb->wifi_acked_valid;
1205 #else
1206 	return 0;
1207 #endif
1208 }
1209 
1210 /**
1211  * skb_unref - decrement the skb's reference count
1212  * @skb: buffer
1213  *
1214  * Returns true if we can free the skb.
1215  */
1216 static inline bool skb_unref(struct sk_buff *skb)
1217 {
1218 	if (unlikely(!skb))
1219 		return false;
1220 	if (likely(refcount_read(&skb->users) == 1))
1221 		smp_rmb();
1222 	else if (likely(!refcount_dec_and_test(&skb->users)))
1223 		return false;
1224 
1225 	return true;
1226 }
1227 
1228 void __fix_address
1229 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason);
1230 
1231 /**
1232  *	kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason
1233  *	@skb: buffer to free
1234  */
1235 static inline void kfree_skb(struct sk_buff *skb)
1236 {
1237 	kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1238 }
1239 
1240 void skb_release_head_state(struct sk_buff *skb);
1241 void kfree_skb_list_reason(struct sk_buff *segs,
1242 			   enum skb_drop_reason reason);
1243 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1244 void skb_tx_error(struct sk_buff *skb);
1245 
1246 static inline void kfree_skb_list(struct sk_buff *segs)
1247 {
1248 	kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED);
1249 }
1250 
1251 #ifdef CONFIG_TRACEPOINTS
1252 void consume_skb(struct sk_buff *skb);
1253 #else
1254 static inline void consume_skb(struct sk_buff *skb)
1255 {
1256 	return kfree_skb(skb);
1257 }
1258 #endif
1259 
1260 void __consume_stateless_skb(struct sk_buff *skb);
1261 void  __kfree_skb(struct sk_buff *skb);
1262 extern struct kmem_cache *skbuff_cache;
1263 
1264 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1265 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1266 		      bool *fragstolen, int *delta_truesize);
1267 
1268 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1269 			    int node);
1270 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1271 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1272 struct sk_buff *build_skb_around(struct sk_buff *skb,
1273 				 void *data, unsigned int frag_size);
1274 void skb_attempt_defer_free(struct sk_buff *skb);
1275 
1276 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size);
1277 struct sk_buff *slab_build_skb(void *data);
1278 
1279 /**
1280  * alloc_skb - allocate a network buffer
1281  * @size: size to allocate
1282  * @priority: allocation mask
1283  *
1284  * This function is a convenient wrapper around __alloc_skb().
1285  */
1286 static inline struct sk_buff *alloc_skb(unsigned int size,
1287 					gfp_t priority)
1288 {
1289 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1290 }
1291 
1292 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1293 				     unsigned long data_len,
1294 				     int max_page_order,
1295 				     int *errcode,
1296 				     gfp_t gfp_mask);
1297 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1298 
1299 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1300 struct sk_buff_fclones {
1301 	struct sk_buff	skb1;
1302 
1303 	struct sk_buff	skb2;
1304 
1305 	refcount_t	fclone_ref;
1306 };
1307 
1308 /**
1309  *	skb_fclone_busy - check if fclone is busy
1310  *	@sk: socket
1311  *	@skb: buffer
1312  *
1313  * Returns true if skb is a fast clone, and its clone is not freed.
1314  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1315  * so we also check that this didnt happen.
1316  */
1317 static inline bool skb_fclone_busy(const struct sock *sk,
1318 				   const struct sk_buff *skb)
1319 {
1320 	const struct sk_buff_fclones *fclones;
1321 
1322 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1323 
1324 	return skb->fclone == SKB_FCLONE_ORIG &&
1325 	       refcount_read(&fclones->fclone_ref) > 1 &&
1326 	       READ_ONCE(fclones->skb2.sk) == sk;
1327 }
1328 
1329 /**
1330  * alloc_skb_fclone - allocate a network buffer from fclone cache
1331  * @size: size to allocate
1332  * @priority: allocation mask
1333  *
1334  * This function is a convenient wrapper around __alloc_skb().
1335  */
1336 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1337 					       gfp_t priority)
1338 {
1339 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1340 }
1341 
1342 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1343 void skb_headers_offset_update(struct sk_buff *skb, int off);
1344 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1345 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1346 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1347 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1348 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1349 				   gfp_t gfp_mask, bool fclone);
1350 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1351 					  gfp_t gfp_mask)
1352 {
1353 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1354 }
1355 
1356 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1357 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1358 				     unsigned int headroom);
1359 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom);
1360 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1361 				int newtailroom, gfp_t priority);
1362 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1363 				     int offset, int len);
1364 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1365 			      int offset, int len);
1366 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1367 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1368 
1369 /**
1370  *	skb_pad			-	zero pad the tail of an skb
1371  *	@skb: buffer to pad
1372  *	@pad: space to pad
1373  *
1374  *	Ensure that a buffer is followed by a padding area that is zero
1375  *	filled. Used by network drivers which may DMA or transfer data
1376  *	beyond the buffer end onto the wire.
1377  *
1378  *	May return error in out of memory cases. The skb is freed on error.
1379  */
1380 static inline int skb_pad(struct sk_buff *skb, int pad)
1381 {
1382 	return __skb_pad(skb, pad, true);
1383 }
1384 #define dev_kfree_skb(a)	consume_skb(a)
1385 
1386 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1387 			 int offset, size_t size, size_t max_frags);
1388 
1389 struct skb_seq_state {
1390 	__u32		lower_offset;
1391 	__u32		upper_offset;
1392 	__u32		frag_idx;
1393 	__u32		stepped_offset;
1394 	struct sk_buff	*root_skb;
1395 	struct sk_buff	*cur_skb;
1396 	__u8		*frag_data;
1397 	__u32		frag_off;
1398 };
1399 
1400 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1401 			  unsigned int to, struct skb_seq_state *st);
1402 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1403 			  struct skb_seq_state *st);
1404 void skb_abort_seq_read(struct skb_seq_state *st);
1405 
1406 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1407 			   unsigned int to, struct ts_config *config);
1408 
1409 /*
1410  * Packet hash types specify the type of hash in skb_set_hash.
1411  *
1412  * Hash types refer to the protocol layer addresses which are used to
1413  * construct a packet's hash. The hashes are used to differentiate or identify
1414  * flows of the protocol layer for the hash type. Hash types are either
1415  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1416  *
1417  * Properties of hashes:
1418  *
1419  * 1) Two packets in different flows have different hash values
1420  * 2) Two packets in the same flow should have the same hash value
1421  *
1422  * A hash at a higher layer is considered to be more specific. A driver should
1423  * set the most specific hash possible.
1424  *
1425  * A driver cannot indicate a more specific hash than the layer at which a hash
1426  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1427  *
1428  * A driver may indicate a hash level which is less specific than the
1429  * actual layer the hash was computed on. For instance, a hash computed
1430  * at L4 may be considered an L3 hash. This should only be done if the
1431  * driver can't unambiguously determine that the HW computed the hash at
1432  * the higher layer. Note that the "should" in the second property above
1433  * permits this.
1434  */
1435 enum pkt_hash_types {
1436 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1437 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1438 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1439 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1440 };
1441 
1442 static inline void skb_clear_hash(struct sk_buff *skb)
1443 {
1444 	skb->hash = 0;
1445 	skb->sw_hash = 0;
1446 	skb->l4_hash = 0;
1447 }
1448 
1449 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1450 {
1451 	if (!skb->l4_hash)
1452 		skb_clear_hash(skb);
1453 }
1454 
1455 static inline void
1456 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1457 {
1458 	skb->l4_hash = is_l4;
1459 	skb->sw_hash = is_sw;
1460 	skb->hash = hash;
1461 }
1462 
1463 static inline void
1464 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1465 {
1466 	/* Used by drivers to set hash from HW */
1467 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1468 }
1469 
1470 static inline void
1471 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1472 {
1473 	__skb_set_hash(skb, hash, true, is_l4);
1474 }
1475 
1476 void __skb_get_hash(struct sk_buff *skb);
1477 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1478 u32 skb_get_poff(const struct sk_buff *skb);
1479 u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
1480 		   const struct flow_keys_basic *keys, int hlen);
1481 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1482 			    const void *data, int hlen_proto);
1483 
1484 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1485 					int thoff, u8 ip_proto)
1486 {
1487 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1488 }
1489 
1490 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1491 			     const struct flow_dissector_key *key,
1492 			     unsigned int key_count);
1493 
1494 struct bpf_flow_dissector;
1495 u32 bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1496 		     __be16 proto, int nhoff, int hlen, unsigned int flags);
1497 
1498 bool __skb_flow_dissect(const struct net *net,
1499 			const struct sk_buff *skb,
1500 			struct flow_dissector *flow_dissector,
1501 			void *target_container, const void *data,
1502 			__be16 proto, int nhoff, int hlen, unsigned int flags);
1503 
1504 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1505 				    struct flow_dissector *flow_dissector,
1506 				    void *target_container, unsigned int flags)
1507 {
1508 	return __skb_flow_dissect(NULL, skb, flow_dissector,
1509 				  target_container, NULL, 0, 0, 0, flags);
1510 }
1511 
1512 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1513 					      struct flow_keys *flow,
1514 					      unsigned int flags)
1515 {
1516 	memset(flow, 0, sizeof(*flow));
1517 	return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1518 				  flow, NULL, 0, 0, 0, flags);
1519 }
1520 
1521 static inline bool
1522 skb_flow_dissect_flow_keys_basic(const struct net *net,
1523 				 const struct sk_buff *skb,
1524 				 struct flow_keys_basic *flow,
1525 				 const void *data, __be16 proto,
1526 				 int nhoff, int hlen, unsigned int flags)
1527 {
1528 	memset(flow, 0, sizeof(*flow));
1529 	return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1530 				  data, proto, nhoff, hlen, flags);
1531 }
1532 
1533 void skb_flow_dissect_meta(const struct sk_buff *skb,
1534 			   struct flow_dissector *flow_dissector,
1535 			   void *target_container);
1536 
1537 /* Gets a skb connection tracking info, ctinfo map should be a
1538  * map of mapsize to translate enum ip_conntrack_info states
1539  * to user states.
1540  */
1541 void
1542 skb_flow_dissect_ct(const struct sk_buff *skb,
1543 		    struct flow_dissector *flow_dissector,
1544 		    void *target_container,
1545 		    u16 *ctinfo_map, size_t mapsize,
1546 		    bool post_ct, u16 zone);
1547 void
1548 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1549 			     struct flow_dissector *flow_dissector,
1550 			     void *target_container);
1551 
1552 void skb_flow_dissect_hash(const struct sk_buff *skb,
1553 			   struct flow_dissector *flow_dissector,
1554 			   void *target_container);
1555 
1556 static inline __u32 skb_get_hash(struct sk_buff *skb)
1557 {
1558 	if (!skb->l4_hash && !skb->sw_hash)
1559 		__skb_get_hash(skb);
1560 
1561 	return skb->hash;
1562 }
1563 
1564 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1565 {
1566 	if (!skb->l4_hash && !skb->sw_hash) {
1567 		struct flow_keys keys;
1568 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1569 
1570 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1571 	}
1572 
1573 	return skb->hash;
1574 }
1575 
1576 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1577 			   const siphash_key_t *perturb);
1578 
1579 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1580 {
1581 	return skb->hash;
1582 }
1583 
1584 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1585 {
1586 	to->hash = from->hash;
1587 	to->sw_hash = from->sw_hash;
1588 	to->l4_hash = from->l4_hash;
1589 };
1590 
1591 static inline int skb_cmp_decrypted(const struct sk_buff *skb1,
1592 				    const struct sk_buff *skb2)
1593 {
1594 #ifdef CONFIG_TLS_DEVICE
1595 	return skb2->decrypted - skb1->decrypted;
1596 #else
1597 	return 0;
1598 #endif
1599 }
1600 
1601 static inline void skb_copy_decrypted(struct sk_buff *to,
1602 				      const struct sk_buff *from)
1603 {
1604 #ifdef CONFIG_TLS_DEVICE
1605 	to->decrypted = from->decrypted;
1606 #endif
1607 }
1608 
1609 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1610 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1611 {
1612 	return skb->head + skb->end;
1613 }
1614 
1615 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1616 {
1617 	return skb->end;
1618 }
1619 
1620 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1621 {
1622 	skb->end = offset;
1623 }
1624 #else
1625 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1626 {
1627 	return skb->end;
1628 }
1629 
1630 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1631 {
1632 	return skb->end - skb->head;
1633 }
1634 
1635 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1636 {
1637 	skb->end = skb->head + offset;
1638 }
1639 #endif
1640 
1641 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1642 				       struct ubuf_info *uarg);
1643 
1644 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
1645 
1646 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1647 			   bool success);
1648 
1649 int __zerocopy_sg_from_iter(struct msghdr *msg, struct sock *sk,
1650 			    struct sk_buff *skb, struct iov_iter *from,
1651 			    size_t length);
1652 
1653 static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb,
1654 					  struct msghdr *msg, int len)
1655 {
1656 	return __zerocopy_sg_from_iter(msg, skb->sk, skb, &msg->msg_iter, len);
1657 }
1658 
1659 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1660 			     struct msghdr *msg, int len,
1661 			     struct ubuf_info *uarg);
1662 
1663 /* Internal */
1664 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1665 
1666 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1667 {
1668 	return &skb_shinfo(skb)->hwtstamps;
1669 }
1670 
1671 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1672 {
1673 	bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE;
1674 
1675 	return is_zcopy ? skb_uarg(skb) : NULL;
1676 }
1677 
1678 static inline bool skb_zcopy_pure(const struct sk_buff *skb)
1679 {
1680 	return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY;
1681 }
1682 
1683 static inline bool skb_zcopy_managed(const struct sk_buff *skb)
1684 {
1685 	return skb_shinfo(skb)->flags & SKBFL_MANAGED_FRAG_REFS;
1686 }
1687 
1688 static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1,
1689 				       const struct sk_buff *skb2)
1690 {
1691 	return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2);
1692 }
1693 
1694 static inline void net_zcopy_get(struct ubuf_info *uarg)
1695 {
1696 	refcount_inc(&uarg->refcnt);
1697 }
1698 
1699 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg)
1700 {
1701 	skb_shinfo(skb)->destructor_arg = uarg;
1702 	skb_shinfo(skb)->flags |= uarg->flags;
1703 }
1704 
1705 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1706 				 bool *have_ref)
1707 {
1708 	if (skb && uarg && !skb_zcopy(skb)) {
1709 		if (unlikely(have_ref && *have_ref))
1710 			*have_ref = false;
1711 		else
1712 			net_zcopy_get(uarg);
1713 		skb_zcopy_init(skb, uarg);
1714 	}
1715 }
1716 
1717 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1718 {
1719 	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1720 	skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG;
1721 }
1722 
1723 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1724 {
1725 	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1726 }
1727 
1728 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1729 {
1730 	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1731 }
1732 
1733 static inline void net_zcopy_put(struct ubuf_info *uarg)
1734 {
1735 	if (uarg)
1736 		uarg->callback(NULL, uarg, true);
1737 }
1738 
1739 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1740 {
1741 	if (uarg) {
1742 		if (uarg->callback == msg_zerocopy_callback)
1743 			msg_zerocopy_put_abort(uarg, have_uref);
1744 		else if (have_uref)
1745 			net_zcopy_put(uarg);
1746 	}
1747 }
1748 
1749 /* Release a reference on a zerocopy structure */
1750 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success)
1751 {
1752 	struct ubuf_info *uarg = skb_zcopy(skb);
1753 
1754 	if (uarg) {
1755 		if (!skb_zcopy_is_nouarg(skb))
1756 			uarg->callback(skb, uarg, zerocopy_success);
1757 
1758 		skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY;
1759 	}
1760 }
1761 
1762 void __skb_zcopy_downgrade_managed(struct sk_buff *skb);
1763 
1764 static inline void skb_zcopy_downgrade_managed(struct sk_buff *skb)
1765 {
1766 	if (unlikely(skb_zcopy_managed(skb)))
1767 		__skb_zcopy_downgrade_managed(skb);
1768 }
1769 
1770 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1771 {
1772 	skb->next = NULL;
1773 }
1774 
1775 static inline void skb_poison_list(struct sk_buff *skb)
1776 {
1777 #ifdef CONFIG_DEBUG_NET
1778 	skb->next = SKB_LIST_POISON_NEXT;
1779 #endif
1780 }
1781 
1782 /* Iterate through singly-linked GSO fragments of an skb. */
1783 #define skb_list_walk_safe(first, skb, next_skb)                               \
1784 	for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb);  \
1785 	     (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1786 
1787 static inline void skb_list_del_init(struct sk_buff *skb)
1788 {
1789 	__list_del_entry(&skb->list);
1790 	skb_mark_not_on_list(skb);
1791 }
1792 
1793 /**
1794  *	skb_queue_empty - check if a queue is empty
1795  *	@list: queue head
1796  *
1797  *	Returns true if the queue is empty, false otherwise.
1798  */
1799 static inline int skb_queue_empty(const struct sk_buff_head *list)
1800 {
1801 	return list->next == (const struct sk_buff *) list;
1802 }
1803 
1804 /**
1805  *	skb_queue_empty_lockless - check if a queue is empty
1806  *	@list: queue head
1807  *
1808  *	Returns true if the queue is empty, false otherwise.
1809  *	This variant can be used in lockless contexts.
1810  */
1811 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1812 {
1813 	return READ_ONCE(list->next) == (const struct sk_buff *) list;
1814 }
1815 
1816 
1817 /**
1818  *	skb_queue_is_last - check if skb is the last entry in the queue
1819  *	@list: queue head
1820  *	@skb: buffer
1821  *
1822  *	Returns true if @skb is the last buffer on the list.
1823  */
1824 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1825 				     const struct sk_buff *skb)
1826 {
1827 	return skb->next == (const struct sk_buff *) list;
1828 }
1829 
1830 /**
1831  *	skb_queue_is_first - check if skb is the first entry in the queue
1832  *	@list: queue head
1833  *	@skb: buffer
1834  *
1835  *	Returns true if @skb is the first buffer on the list.
1836  */
1837 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1838 				      const struct sk_buff *skb)
1839 {
1840 	return skb->prev == (const struct sk_buff *) list;
1841 }
1842 
1843 /**
1844  *	skb_queue_next - return the next packet in the queue
1845  *	@list: queue head
1846  *	@skb: current buffer
1847  *
1848  *	Return the next packet in @list after @skb.  It is only valid to
1849  *	call this if skb_queue_is_last() evaluates to false.
1850  */
1851 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1852 					     const struct sk_buff *skb)
1853 {
1854 	/* This BUG_ON may seem severe, but if we just return then we
1855 	 * are going to dereference garbage.
1856 	 */
1857 	BUG_ON(skb_queue_is_last(list, skb));
1858 	return skb->next;
1859 }
1860 
1861 /**
1862  *	skb_queue_prev - return the prev packet in the queue
1863  *	@list: queue head
1864  *	@skb: current buffer
1865  *
1866  *	Return the prev packet in @list before @skb.  It is only valid to
1867  *	call this if skb_queue_is_first() evaluates to false.
1868  */
1869 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1870 					     const struct sk_buff *skb)
1871 {
1872 	/* This BUG_ON may seem severe, but if we just return then we
1873 	 * are going to dereference garbage.
1874 	 */
1875 	BUG_ON(skb_queue_is_first(list, skb));
1876 	return skb->prev;
1877 }
1878 
1879 /**
1880  *	skb_get - reference buffer
1881  *	@skb: buffer to reference
1882  *
1883  *	Makes another reference to a socket buffer and returns a pointer
1884  *	to the buffer.
1885  */
1886 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1887 {
1888 	refcount_inc(&skb->users);
1889 	return skb;
1890 }
1891 
1892 /*
1893  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1894  */
1895 
1896 /**
1897  *	skb_cloned - is the buffer a clone
1898  *	@skb: buffer to check
1899  *
1900  *	Returns true if the buffer was generated with skb_clone() and is
1901  *	one of multiple shared copies of the buffer. Cloned buffers are
1902  *	shared data so must not be written to under normal circumstances.
1903  */
1904 static inline int skb_cloned(const struct sk_buff *skb)
1905 {
1906 	return skb->cloned &&
1907 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1908 }
1909 
1910 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1911 {
1912 	might_sleep_if(gfpflags_allow_blocking(pri));
1913 
1914 	if (skb_cloned(skb))
1915 		return pskb_expand_head(skb, 0, 0, pri);
1916 
1917 	return 0;
1918 }
1919 
1920 /* This variant of skb_unclone() makes sure skb->truesize
1921  * and skb_end_offset() are not changed, whenever a new skb->head is needed.
1922  *
1923  * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X))
1924  * when various debugging features are in place.
1925  */
1926 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri);
1927 static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1928 {
1929 	might_sleep_if(gfpflags_allow_blocking(pri));
1930 
1931 	if (skb_cloned(skb))
1932 		return __skb_unclone_keeptruesize(skb, pri);
1933 	return 0;
1934 }
1935 
1936 /**
1937  *	skb_header_cloned - is the header a clone
1938  *	@skb: buffer to check
1939  *
1940  *	Returns true if modifying the header part of the buffer requires
1941  *	the data to be copied.
1942  */
1943 static inline int skb_header_cloned(const struct sk_buff *skb)
1944 {
1945 	int dataref;
1946 
1947 	if (!skb->cloned)
1948 		return 0;
1949 
1950 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1951 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1952 	return dataref != 1;
1953 }
1954 
1955 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1956 {
1957 	might_sleep_if(gfpflags_allow_blocking(pri));
1958 
1959 	if (skb_header_cloned(skb))
1960 		return pskb_expand_head(skb, 0, 0, pri);
1961 
1962 	return 0;
1963 }
1964 
1965 /**
1966  * __skb_header_release() - allow clones to use the headroom
1967  * @skb: buffer to operate on
1968  *
1969  * See "DOC: dataref and headerless skbs".
1970  */
1971 static inline void __skb_header_release(struct sk_buff *skb)
1972 {
1973 	skb->nohdr = 1;
1974 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1975 }
1976 
1977 
1978 /**
1979  *	skb_shared - is the buffer shared
1980  *	@skb: buffer to check
1981  *
1982  *	Returns true if more than one person has a reference to this
1983  *	buffer.
1984  */
1985 static inline int skb_shared(const struct sk_buff *skb)
1986 {
1987 	return refcount_read(&skb->users) != 1;
1988 }
1989 
1990 /**
1991  *	skb_share_check - check if buffer is shared and if so clone it
1992  *	@skb: buffer to check
1993  *	@pri: priority for memory allocation
1994  *
1995  *	If the buffer is shared the buffer is cloned and the old copy
1996  *	drops a reference. A new clone with a single reference is returned.
1997  *	If the buffer is not shared the original buffer is returned. When
1998  *	being called from interrupt status or with spinlocks held pri must
1999  *	be GFP_ATOMIC.
2000  *
2001  *	NULL is returned on a memory allocation failure.
2002  */
2003 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
2004 {
2005 	might_sleep_if(gfpflags_allow_blocking(pri));
2006 	if (skb_shared(skb)) {
2007 		struct sk_buff *nskb = skb_clone(skb, pri);
2008 
2009 		if (likely(nskb))
2010 			consume_skb(skb);
2011 		else
2012 			kfree_skb(skb);
2013 		skb = nskb;
2014 	}
2015 	return skb;
2016 }
2017 
2018 /*
2019  *	Copy shared buffers into a new sk_buff. We effectively do COW on
2020  *	packets to handle cases where we have a local reader and forward
2021  *	and a couple of other messy ones. The normal one is tcpdumping
2022  *	a packet thats being forwarded.
2023  */
2024 
2025 /**
2026  *	skb_unshare - make a copy of a shared buffer
2027  *	@skb: buffer to check
2028  *	@pri: priority for memory allocation
2029  *
2030  *	If the socket buffer is a clone then this function creates a new
2031  *	copy of the data, drops a reference count on the old copy and returns
2032  *	the new copy with the reference count at 1. If the buffer is not a clone
2033  *	the original buffer is returned. When called with a spinlock held or
2034  *	from interrupt state @pri must be %GFP_ATOMIC
2035  *
2036  *	%NULL is returned on a memory allocation failure.
2037  */
2038 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
2039 					  gfp_t pri)
2040 {
2041 	might_sleep_if(gfpflags_allow_blocking(pri));
2042 	if (skb_cloned(skb)) {
2043 		struct sk_buff *nskb = skb_copy(skb, pri);
2044 
2045 		/* Free our shared copy */
2046 		if (likely(nskb))
2047 			consume_skb(skb);
2048 		else
2049 			kfree_skb(skb);
2050 		skb = nskb;
2051 	}
2052 	return skb;
2053 }
2054 
2055 /**
2056  *	skb_peek - peek at the head of an &sk_buff_head
2057  *	@list_: list to peek at
2058  *
2059  *	Peek an &sk_buff. Unlike most other operations you _MUST_
2060  *	be careful with this one. A peek leaves the buffer on the
2061  *	list and someone else may run off with it. You must hold
2062  *	the appropriate locks or have a private queue to do this.
2063  *
2064  *	Returns %NULL for an empty list or a pointer to the head element.
2065  *	The reference count is not incremented and the reference is therefore
2066  *	volatile. Use with caution.
2067  */
2068 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
2069 {
2070 	struct sk_buff *skb = list_->next;
2071 
2072 	if (skb == (struct sk_buff *)list_)
2073 		skb = NULL;
2074 	return skb;
2075 }
2076 
2077 /**
2078  *	__skb_peek - peek at the head of a non-empty &sk_buff_head
2079  *	@list_: list to peek at
2080  *
2081  *	Like skb_peek(), but the caller knows that the list is not empty.
2082  */
2083 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
2084 {
2085 	return list_->next;
2086 }
2087 
2088 /**
2089  *	skb_peek_next - peek skb following the given one from a queue
2090  *	@skb: skb to start from
2091  *	@list_: list to peek at
2092  *
2093  *	Returns %NULL when the end of the list is met or a pointer to the
2094  *	next element. The reference count is not incremented and the
2095  *	reference is therefore volatile. Use with caution.
2096  */
2097 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
2098 		const struct sk_buff_head *list_)
2099 {
2100 	struct sk_buff *next = skb->next;
2101 
2102 	if (next == (struct sk_buff *)list_)
2103 		next = NULL;
2104 	return next;
2105 }
2106 
2107 /**
2108  *	skb_peek_tail - peek at the tail of an &sk_buff_head
2109  *	@list_: list to peek at
2110  *
2111  *	Peek an &sk_buff. Unlike most other operations you _MUST_
2112  *	be careful with this one. A peek leaves the buffer on the
2113  *	list and someone else may run off with it. You must hold
2114  *	the appropriate locks or have a private queue to do this.
2115  *
2116  *	Returns %NULL for an empty list or a pointer to the tail element.
2117  *	The reference count is not incremented and the reference is therefore
2118  *	volatile. Use with caution.
2119  */
2120 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
2121 {
2122 	struct sk_buff *skb = READ_ONCE(list_->prev);
2123 
2124 	if (skb == (struct sk_buff *)list_)
2125 		skb = NULL;
2126 	return skb;
2127 
2128 }
2129 
2130 /**
2131  *	skb_queue_len	- get queue length
2132  *	@list_: list to measure
2133  *
2134  *	Return the length of an &sk_buff queue.
2135  */
2136 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
2137 {
2138 	return list_->qlen;
2139 }
2140 
2141 /**
2142  *	skb_queue_len_lockless	- get queue length
2143  *	@list_: list to measure
2144  *
2145  *	Return the length of an &sk_buff queue.
2146  *	This variant can be used in lockless contexts.
2147  */
2148 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
2149 {
2150 	return READ_ONCE(list_->qlen);
2151 }
2152 
2153 /**
2154  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
2155  *	@list: queue to initialize
2156  *
2157  *	This initializes only the list and queue length aspects of
2158  *	an sk_buff_head object.  This allows to initialize the list
2159  *	aspects of an sk_buff_head without reinitializing things like
2160  *	the spinlock.  It can also be used for on-stack sk_buff_head
2161  *	objects where the spinlock is known to not be used.
2162  */
2163 static inline void __skb_queue_head_init(struct sk_buff_head *list)
2164 {
2165 	list->prev = list->next = (struct sk_buff *)list;
2166 	list->qlen = 0;
2167 }
2168 
2169 /*
2170  * This function creates a split out lock class for each invocation;
2171  * this is needed for now since a whole lot of users of the skb-queue
2172  * infrastructure in drivers have different locking usage (in hardirq)
2173  * than the networking core (in softirq only). In the long run either the
2174  * network layer or drivers should need annotation to consolidate the
2175  * main types of usage into 3 classes.
2176  */
2177 static inline void skb_queue_head_init(struct sk_buff_head *list)
2178 {
2179 	spin_lock_init(&list->lock);
2180 	__skb_queue_head_init(list);
2181 }
2182 
2183 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
2184 		struct lock_class_key *class)
2185 {
2186 	skb_queue_head_init(list);
2187 	lockdep_set_class(&list->lock, class);
2188 }
2189 
2190 /*
2191  *	Insert an sk_buff on a list.
2192  *
2193  *	The "__skb_xxxx()" functions are the non-atomic ones that
2194  *	can only be called with interrupts disabled.
2195  */
2196 static inline void __skb_insert(struct sk_buff *newsk,
2197 				struct sk_buff *prev, struct sk_buff *next,
2198 				struct sk_buff_head *list)
2199 {
2200 	/* See skb_queue_empty_lockless() and skb_peek_tail()
2201 	 * for the opposite READ_ONCE()
2202 	 */
2203 	WRITE_ONCE(newsk->next, next);
2204 	WRITE_ONCE(newsk->prev, prev);
2205 	WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk);
2206 	WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk);
2207 	WRITE_ONCE(list->qlen, list->qlen + 1);
2208 }
2209 
2210 static inline void __skb_queue_splice(const struct sk_buff_head *list,
2211 				      struct sk_buff *prev,
2212 				      struct sk_buff *next)
2213 {
2214 	struct sk_buff *first = list->next;
2215 	struct sk_buff *last = list->prev;
2216 
2217 	WRITE_ONCE(first->prev, prev);
2218 	WRITE_ONCE(prev->next, first);
2219 
2220 	WRITE_ONCE(last->next, next);
2221 	WRITE_ONCE(next->prev, last);
2222 }
2223 
2224 /**
2225  *	skb_queue_splice - join two skb lists, this is designed for stacks
2226  *	@list: the new list to add
2227  *	@head: the place to add it in the first list
2228  */
2229 static inline void skb_queue_splice(const struct sk_buff_head *list,
2230 				    struct sk_buff_head *head)
2231 {
2232 	if (!skb_queue_empty(list)) {
2233 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2234 		head->qlen += list->qlen;
2235 	}
2236 }
2237 
2238 /**
2239  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
2240  *	@list: the new list to add
2241  *	@head: the place to add it in the first list
2242  *
2243  *	The list at @list is reinitialised
2244  */
2245 static inline void skb_queue_splice_init(struct sk_buff_head *list,
2246 					 struct sk_buff_head *head)
2247 {
2248 	if (!skb_queue_empty(list)) {
2249 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2250 		head->qlen += list->qlen;
2251 		__skb_queue_head_init(list);
2252 	}
2253 }
2254 
2255 /**
2256  *	skb_queue_splice_tail - join two skb lists, each list being a queue
2257  *	@list: the new list to add
2258  *	@head: the place to add it in the first list
2259  */
2260 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
2261 					 struct sk_buff_head *head)
2262 {
2263 	if (!skb_queue_empty(list)) {
2264 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2265 		head->qlen += list->qlen;
2266 	}
2267 }
2268 
2269 /**
2270  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
2271  *	@list: the new list to add
2272  *	@head: the place to add it in the first list
2273  *
2274  *	Each of the lists is a queue.
2275  *	The list at @list is reinitialised
2276  */
2277 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
2278 					      struct sk_buff_head *head)
2279 {
2280 	if (!skb_queue_empty(list)) {
2281 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2282 		head->qlen += list->qlen;
2283 		__skb_queue_head_init(list);
2284 	}
2285 }
2286 
2287 /**
2288  *	__skb_queue_after - queue a buffer at the list head
2289  *	@list: list to use
2290  *	@prev: place after this buffer
2291  *	@newsk: buffer to queue
2292  *
2293  *	Queue a buffer int the middle of a list. This function takes no locks
2294  *	and you must therefore hold required locks before calling it.
2295  *
2296  *	A buffer cannot be placed on two lists at the same time.
2297  */
2298 static inline void __skb_queue_after(struct sk_buff_head *list,
2299 				     struct sk_buff *prev,
2300 				     struct sk_buff *newsk)
2301 {
2302 	__skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list);
2303 }
2304 
2305 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2306 		struct sk_buff_head *list);
2307 
2308 static inline void __skb_queue_before(struct sk_buff_head *list,
2309 				      struct sk_buff *next,
2310 				      struct sk_buff *newsk)
2311 {
2312 	__skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list);
2313 }
2314 
2315 /**
2316  *	__skb_queue_head - queue a buffer at the list head
2317  *	@list: list to use
2318  *	@newsk: buffer to queue
2319  *
2320  *	Queue a buffer at the start of a list. This function takes no locks
2321  *	and you must therefore hold required locks before calling it.
2322  *
2323  *	A buffer cannot be placed on two lists at the same time.
2324  */
2325 static inline void __skb_queue_head(struct sk_buff_head *list,
2326 				    struct sk_buff *newsk)
2327 {
2328 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
2329 }
2330 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2331 
2332 /**
2333  *	__skb_queue_tail - queue a buffer at the list tail
2334  *	@list: list to use
2335  *	@newsk: buffer to queue
2336  *
2337  *	Queue a buffer at the end of a list. This function takes no locks
2338  *	and you must therefore hold required locks before calling it.
2339  *
2340  *	A buffer cannot be placed on two lists at the same time.
2341  */
2342 static inline void __skb_queue_tail(struct sk_buff_head *list,
2343 				   struct sk_buff *newsk)
2344 {
2345 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
2346 }
2347 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2348 
2349 /*
2350  * remove sk_buff from list. _Must_ be called atomically, and with
2351  * the list known..
2352  */
2353 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
2354 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2355 {
2356 	struct sk_buff *next, *prev;
2357 
2358 	WRITE_ONCE(list->qlen, list->qlen - 1);
2359 	next	   = skb->next;
2360 	prev	   = skb->prev;
2361 	skb->next  = skb->prev = NULL;
2362 	WRITE_ONCE(next->prev, prev);
2363 	WRITE_ONCE(prev->next, next);
2364 }
2365 
2366 /**
2367  *	__skb_dequeue - remove from the head of the queue
2368  *	@list: list to dequeue from
2369  *
2370  *	Remove the head of the list. This function does not take any locks
2371  *	so must be used with appropriate locks held only. The head item is
2372  *	returned or %NULL if the list is empty.
2373  */
2374 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2375 {
2376 	struct sk_buff *skb = skb_peek(list);
2377 	if (skb)
2378 		__skb_unlink(skb, list);
2379 	return skb;
2380 }
2381 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2382 
2383 /**
2384  *	__skb_dequeue_tail - remove from the tail of the queue
2385  *	@list: list to dequeue from
2386  *
2387  *	Remove the tail of the list. This function does not take any locks
2388  *	so must be used with appropriate locks held only. The tail item is
2389  *	returned or %NULL if the list is empty.
2390  */
2391 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2392 {
2393 	struct sk_buff *skb = skb_peek_tail(list);
2394 	if (skb)
2395 		__skb_unlink(skb, list);
2396 	return skb;
2397 }
2398 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2399 
2400 
2401 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2402 {
2403 	return skb->data_len;
2404 }
2405 
2406 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2407 {
2408 	return skb->len - skb->data_len;
2409 }
2410 
2411 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2412 {
2413 	unsigned int i, len = 0;
2414 
2415 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2416 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2417 	return len;
2418 }
2419 
2420 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2421 {
2422 	return skb_headlen(skb) + __skb_pagelen(skb);
2423 }
2424 
2425 static inline void skb_frag_fill_page_desc(skb_frag_t *frag,
2426 					   struct page *page,
2427 					   int off, int size)
2428 {
2429 	frag->bv_page = page;
2430 	frag->bv_offset = off;
2431 	skb_frag_size_set(frag, size);
2432 }
2433 
2434 static inline void __skb_fill_page_desc_noacc(struct skb_shared_info *shinfo,
2435 					      int i, struct page *page,
2436 					      int off, int size)
2437 {
2438 	skb_frag_t *frag = &shinfo->frags[i];
2439 
2440 	skb_frag_fill_page_desc(frag, page, off, size);
2441 }
2442 
2443 /**
2444  * skb_len_add - adds a number to len fields of skb
2445  * @skb: buffer to add len to
2446  * @delta: number of bytes to add
2447  */
2448 static inline void skb_len_add(struct sk_buff *skb, int delta)
2449 {
2450 	skb->len += delta;
2451 	skb->data_len += delta;
2452 	skb->truesize += delta;
2453 }
2454 
2455 /**
2456  * __skb_fill_page_desc - initialise a paged fragment in an skb
2457  * @skb: buffer containing fragment to be initialised
2458  * @i: paged fragment index to initialise
2459  * @page: the page to use for this fragment
2460  * @off: the offset to the data with @page
2461  * @size: the length of the data
2462  *
2463  * Initialises the @i'th fragment of @skb to point to &size bytes at
2464  * offset @off within @page.
2465  *
2466  * Does not take any additional reference on the fragment.
2467  */
2468 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2469 					struct page *page, int off, int size)
2470 {
2471 	__skb_fill_page_desc_noacc(skb_shinfo(skb), i, page, off, size);
2472 
2473 	/* Propagate page pfmemalloc to the skb if we can. The problem is
2474 	 * that not all callers have unique ownership of the page but rely
2475 	 * on page_is_pfmemalloc doing the right thing(tm).
2476 	 */
2477 	page = compound_head(page);
2478 	if (page_is_pfmemalloc(page))
2479 		skb->pfmemalloc	= true;
2480 }
2481 
2482 /**
2483  * skb_fill_page_desc - initialise a paged fragment in an skb
2484  * @skb: buffer containing fragment to be initialised
2485  * @i: paged fragment index to initialise
2486  * @page: the page to use for this fragment
2487  * @off: the offset to the data with @page
2488  * @size: the length of the data
2489  *
2490  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2491  * @skb to point to @size bytes at offset @off within @page. In
2492  * addition updates @skb such that @i is the last fragment.
2493  *
2494  * Does not take any additional reference on the fragment.
2495  */
2496 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2497 				      struct page *page, int off, int size)
2498 {
2499 	__skb_fill_page_desc(skb, i, page, off, size);
2500 	skb_shinfo(skb)->nr_frags = i + 1;
2501 }
2502 
2503 /**
2504  * skb_fill_page_desc_noacc - initialise a paged fragment in an skb
2505  * @skb: buffer containing fragment to be initialised
2506  * @i: paged fragment index to initialise
2507  * @page: the page to use for this fragment
2508  * @off: the offset to the data with @page
2509  * @size: the length of the data
2510  *
2511  * Variant of skb_fill_page_desc() which does not deal with
2512  * pfmemalloc, if page is not owned by us.
2513  */
2514 static inline void skb_fill_page_desc_noacc(struct sk_buff *skb, int i,
2515 					    struct page *page, int off,
2516 					    int size)
2517 {
2518 	struct skb_shared_info *shinfo = skb_shinfo(skb);
2519 
2520 	__skb_fill_page_desc_noacc(shinfo, i, page, off, size);
2521 	shinfo->nr_frags = i + 1;
2522 }
2523 
2524 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2525 		     int size, unsigned int truesize);
2526 
2527 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2528 			  unsigned int truesize);
2529 
2530 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2531 
2532 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2533 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2534 {
2535 	return skb->head + skb->tail;
2536 }
2537 
2538 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2539 {
2540 	skb->tail = skb->data - skb->head;
2541 }
2542 
2543 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2544 {
2545 	skb_reset_tail_pointer(skb);
2546 	skb->tail += offset;
2547 }
2548 
2549 #else /* NET_SKBUFF_DATA_USES_OFFSET */
2550 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2551 {
2552 	return skb->tail;
2553 }
2554 
2555 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2556 {
2557 	skb->tail = skb->data;
2558 }
2559 
2560 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2561 {
2562 	skb->tail = skb->data + offset;
2563 }
2564 
2565 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2566 
2567 static inline void skb_assert_len(struct sk_buff *skb)
2568 {
2569 #ifdef CONFIG_DEBUG_NET
2570 	if (WARN_ONCE(!skb->len, "%s\n", __func__))
2571 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
2572 #endif /* CONFIG_DEBUG_NET */
2573 }
2574 
2575 /*
2576  *	Add data to an sk_buff
2577  */
2578 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2579 void *skb_put(struct sk_buff *skb, unsigned int len);
2580 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2581 {
2582 	void *tmp = skb_tail_pointer(skb);
2583 	SKB_LINEAR_ASSERT(skb);
2584 	skb->tail += len;
2585 	skb->len  += len;
2586 	return tmp;
2587 }
2588 
2589 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2590 {
2591 	void *tmp = __skb_put(skb, len);
2592 
2593 	memset(tmp, 0, len);
2594 	return tmp;
2595 }
2596 
2597 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2598 				   unsigned int len)
2599 {
2600 	void *tmp = __skb_put(skb, len);
2601 
2602 	memcpy(tmp, data, len);
2603 	return tmp;
2604 }
2605 
2606 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2607 {
2608 	*(u8 *)__skb_put(skb, 1) = val;
2609 }
2610 
2611 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2612 {
2613 	void *tmp = skb_put(skb, len);
2614 
2615 	memset(tmp, 0, len);
2616 
2617 	return tmp;
2618 }
2619 
2620 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2621 				 unsigned int len)
2622 {
2623 	void *tmp = skb_put(skb, len);
2624 
2625 	memcpy(tmp, data, len);
2626 
2627 	return tmp;
2628 }
2629 
2630 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2631 {
2632 	*(u8 *)skb_put(skb, 1) = val;
2633 }
2634 
2635 void *skb_push(struct sk_buff *skb, unsigned int len);
2636 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2637 {
2638 	skb->data -= len;
2639 	skb->len  += len;
2640 	return skb->data;
2641 }
2642 
2643 void *skb_pull(struct sk_buff *skb, unsigned int len);
2644 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2645 {
2646 	skb->len -= len;
2647 	if (unlikely(skb->len < skb->data_len)) {
2648 #if defined(CONFIG_DEBUG_NET)
2649 		skb->len += len;
2650 		pr_err("__skb_pull(len=%u)\n", len);
2651 		skb_dump(KERN_ERR, skb, false);
2652 #endif
2653 		BUG();
2654 	}
2655 	return skb->data += len;
2656 }
2657 
2658 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2659 {
2660 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2661 }
2662 
2663 void *skb_pull_data(struct sk_buff *skb, size_t len);
2664 
2665 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2666 
2667 static inline enum skb_drop_reason
2668 pskb_may_pull_reason(struct sk_buff *skb, unsigned int len)
2669 {
2670 	if (likely(len <= skb_headlen(skb)))
2671 		return SKB_NOT_DROPPED_YET;
2672 
2673 	if (unlikely(len > skb->len))
2674 		return SKB_DROP_REASON_PKT_TOO_SMALL;
2675 
2676 	if (unlikely(!__pskb_pull_tail(skb, len - skb_headlen(skb))))
2677 		return SKB_DROP_REASON_NOMEM;
2678 
2679 	return SKB_NOT_DROPPED_YET;
2680 }
2681 
2682 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2683 {
2684 	return pskb_may_pull_reason(skb, len) == SKB_NOT_DROPPED_YET;
2685 }
2686 
2687 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2688 {
2689 	if (!pskb_may_pull(skb, len))
2690 		return NULL;
2691 
2692 	skb->len -= len;
2693 	return skb->data += len;
2694 }
2695 
2696 void skb_condense(struct sk_buff *skb);
2697 
2698 /**
2699  *	skb_headroom - bytes at buffer head
2700  *	@skb: buffer to check
2701  *
2702  *	Return the number of bytes of free space at the head of an &sk_buff.
2703  */
2704 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2705 {
2706 	return skb->data - skb->head;
2707 }
2708 
2709 /**
2710  *	skb_tailroom - bytes at buffer end
2711  *	@skb: buffer to check
2712  *
2713  *	Return the number of bytes of free space at the tail of an sk_buff
2714  */
2715 static inline int skb_tailroom(const struct sk_buff *skb)
2716 {
2717 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2718 }
2719 
2720 /**
2721  *	skb_availroom - bytes at buffer end
2722  *	@skb: buffer to check
2723  *
2724  *	Return the number of bytes of free space at the tail of an sk_buff
2725  *	allocated by sk_stream_alloc()
2726  */
2727 static inline int skb_availroom(const struct sk_buff *skb)
2728 {
2729 	if (skb_is_nonlinear(skb))
2730 		return 0;
2731 
2732 	return skb->end - skb->tail - skb->reserved_tailroom;
2733 }
2734 
2735 /**
2736  *	skb_reserve - adjust headroom
2737  *	@skb: buffer to alter
2738  *	@len: bytes to move
2739  *
2740  *	Increase the headroom of an empty &sk_buff by reducing the tail
2741  *	room. This is only allowed for an empty buffer.
2742  */
2743 static inline void skb_reserve(struct sk_buff *skb, int len)
2744 {
2745 	skb->data += len;
2746 	skb->tail += len;
2747 }
2748 
2749 /**
2750  *	skb_tailroom_reserve - adjust reserved_tailroom
2751  *	@skb: buffer to alter
2752  *	@mtu: maximum amount of headlen permitted
2753  *	@needed_tailroom: minimum amount of reserved_tailroom
2754  *
2755  *	Set reserved_tailroom so that headlen can be as large as possible but
2756  *	not larger than mtu and tailroom cannot be smaller than
2757  *	needed_tailroom.
2758  *	The required headroom should already have been reserved before using
2759  *	this function.
2760  */
2761 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2762 					unsigned int needed_tailroom)
2763 {
2764 	SKB_LINEAR_ASSERT(skb);
2765 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2766 		/* use at most mtu */
2767 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2768 	else
2769 		/* use up to all available space */
2770 		skb->reserved_tailroom = needed_tailroom;
2771 }
2772 
2773 #define ENCAP_TYPE_ETHER	0
2774 #define ENCAP_TYPE_IPPROTO	1
2775 
2776 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2777 					  __be16 protocol)
2778 {
2779 	skb->inner_protocol = protocol;
2780 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2781 }
2782 
2783 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2784 					 __u8 ipproto)
2785 {
2786 	skb->inner_ipproto = ipproto;
2787 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2788 }
2789 
2790 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2791 {
2792 	skb->inner_mac_header = skb->mac_header;
2793 	skb->inner_network_header = skb->network_header;
2794 	skb->inner_transport_header = skb->transport_header;
2795 }
2796 
2797 static inline void skb_reset_mac_len(struct sk_buff *skb)
2798 {
2799 	skb->mac_len = skb->network_header - skb->mac_header;
2800 }
2801 
2802 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2803 							*skb)
2804 {
2805 	return skb->head + skb->inner_transport_header;
2806 }
2807 
2808 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2809 {
2810 	return skb_inner_transport_header(skb) - skb->data;
2811 }
2812 
2813 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2814 {
2815 	skb->inner_transport_header = skb->data - skb->head;
2816 }
2817 
2818 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2819 						   const int offset)
2820 {
2821 	skb_reset_inner_transport_header(skb);
2822 	skb->inner_transport_header += offset;
2823 }
2824 
2825 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2826 {
2827 	return skb->head + skb->inner_network_header;
2828 }
2829 
2830 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2831 {
2832 	skb->inner_network_header = skb->data - skb->head;
2833 }
2834 
2835 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2836 						const int offset)
2837 {
2838 	skb_reset_inner_network_header(skb);
2839 	skb->inner_network_header += offset;
2840 }
2841 
2842 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2843 {
2844 	return skb->head + skb->inner_mac_header;
2845 }
2846 
2847 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2848 {
2849 	skb->inner_mac_header = skb->data - skb->head;
2850 }
2851 
2852 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2853 					    const int offset)
2854 {
2855 	skb_reset_inner_mac_header(skb);
2856 	skb->inner_mac_header += offset;
2857 }
2858 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2859 {
2860 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2861 }
2862 
2863 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2864 {
2865 	DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb));
2866 	return skb->head + skb->transport_header;
2867 }
2868 
2869 static inline void skb_reset_transport_header(struct sk_buff *skb)
2870 {
2871 	skb->transport_header = skb->data - skb->head;
2872 }
2873 
2874 static inline void skb_set_transport_header(struct sk_buff *skb,
2875 					    const int offset)
2876 {
2877 	skb_reset_transport_header(skb);
2878 	skb->transport_header += offset;
2879 }
2880 
2881 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2882 {
2883 	return skb->head + skb->network_header;
2884 }
2885 
2886 static inline void skb_reset_network_header(struct sk_buff *skb)
2887 {
2888 	skb->network_header = skb->data - skb->head;
2889 }
2890 
2891 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2892 {
2893 	skb_reset_network_header(skb);
2894 	skb->network_header += offset;
2895 }
2896 
2897 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2898 {
2899 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2900 }
2901 
2902 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2903 {
2904 	DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
2905 	return skb->head + skb->mac_header;
2906 }
2907 
2908 static inline int skb_mac_offset(const struct sk_buff *skb)
2909 {
2910 	return skb_mac_header(skb) - skb->data;
2911 }
2912 
2913 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2914 {
2915 	DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
2916 	return skb->network_header - skb->mac_header;
2917 }
2918 
2919 static inline void skb_unset_mac_header(struct sk_buff *skb)
2920 {
2921 	skb->mac_header = (typeof(skb->mac_header))~0U;
2922 }
2923 
2924 static inline void skb_reset_mac_header(struct sk_buff *skb)
2925 {
2926 	skb->mac_header = skb->data - skb->head;
2927 }
2928 
2929 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2930 {
2931 	skb_reset_mac_header(skb);
2932 	skb->mac_header += offset;
2933 }
2934 
2935 static inline void skb_pop_mac_header(struct sk_buff *skb)
2936 {
2937 	skb->mac_header = skb->network_header;
2938 }
2939 
2940 static inline void skb_probe_transport_header(struct sk_buff *skb)
2941 {
2942 	struct flow_keys_basic keys;
2943 
2944 	if (skb_transport_header_was_set(skb))
2945 		return;
2946 
2947 	if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2948 					     NULL, 0, 0, 0, 0))
2949 		skb_set_transport_header(skb, keys.control.thoff);
2950 }
2951 
2952 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2953 {
2954 	if (skb_mac_header_was_set(skb)) {
2955 		const unsigned char *old_mac = skb_mac_header(skb);
2956 
2957 		skb_set_mac_header(skb, -skb->mac_len);
2958 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2959 	}
2960 }
2961 
2962 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2963 {
2964 	return skb->csum_start - skb_headroom(skb);
2965 }
2966 
2967 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2968 {
2969 	return skb->head + skb->csum_start;
2970 }
2971 
2972 static inline int skb_transport_offset(const struct sk_buff *skb)
2973 {
2974 	return skb_transport_header(skb) - skb->data;
2975 }
2976 
2977 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2978 {
2979 	return skb->transport_header - skb->network_header;
2980 }
2981 
2982 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2983 {
2984 	return skb->inner_transport_header - skb->inner_network_header;
2985 }
2986 
2987 static inline int skb_network_offset(const struct sk_buff *skb)
2988 {
2989 	return skb_network_header(skb) - skb->data;
2990 }
2991 
2992 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2993 {
2994 	return skb_inner_network_header(skb) - skb->data;
2995 }
2996 
2997 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2998 {
2999 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
3000 }
3001 
3002 /*
3003  * CPUs often take a performance hit when accessing unaligned memory
3004  * locations. The actual performance hit varies, it can be small if the
3005  * hardware handles it or large if we have to take an exception and fix it
3006  * in software.
3007  *
3008  * Since an ethernet header is 14 bytes network drivers often end up with
3009  * the IP header at an unaligned offset. The IP header can be aligned by
3010  * shifting the start of the packet by 2 bytes. Drivers should do this
3011  * with:
3012  *
3013  * skb_reserve(skb, NET_IP_ALIGN);
3014  *
3015  * The downside to this alignment of the IP header is that the DMA is now
3016  * unaligned. On some architectures the cost of an unaligned DMA is high
3017  * and this cost outweighs the gains made by aligning the IP header.
3018  *
3019  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
3020  * to be overridden.
3021  */
3022 #ifndef NET_IP_ALIGN
3023 #define NET_IP_ALIGN	2
3024 #endif
3025 
3026 /*
3027  * The networking layer reserves some headroom in skb data (via
3028  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
3029  * the header has to grow. In the default case, if the header has to grow
3030  * 32 bytes or less we avoid the reallocation.
3031  *
3032  * Unfortunately this headroom changes the DMA alignment of the resulting
3033  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
3034  * on some architectures. An architecture can override this value,
3035  * perhaps setting it to a cacheline in size (since that will maintain
3036  * cacheline alignment of the DMA). It must be a power of 2.
3037  *
3038  * Various parts of the networking layer expect at least 32 bytes of
3039  * headroom, you should not reduce this.
3040  *
3041  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
3042  * to reduce average number of cache lines per packet.
3043  * get_rps_cpu() for example only access one 64 bytes aligned block :
3044  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
3045  */
3046 #ifndef NET_SKB_PAD
3047 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
3048 #endif
3049 
3050 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
3051 
3052 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
3053 {
3054 	if (WARN_ON(skb_is_nonlinear(skb)))
3055 		return;
3056 	skb->len = len;
3057 	skb_set_tail_pointer(skb, len);
3058 }
3059 
3060 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
3061 {
3062 	__skb_set_length(skb, len);
3063 }
3064 
3065 void skb_trim(struct sk_buff *skb, unsigned int len);
3066 
3067 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
3068 {
3069 	if (skb->data_len)
3070 		return ___pskb_trim(skb, len);
3071 	__skb_trim(skb, len);
3072 	return 0;
3073 }
3074 
3075 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
3076 {
3077 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
3078 }
3079 
3080 /**
3081  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
3082  *	@skb: buffer to alter
3083  *	@len: new length
3084  *
3085  *	This is identical to pskb_trim except that the caller knows that
3086  *	the skb is not cloned so we should never get an error due to out-
3087  *	of-memory.
3088  */
3089 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
3090 {
3091 	int err = pskb_trim(skb, len);
3092 	BUG_ON(err);
3093 }
3094 
3095 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
3096 {
3097 	unsigned int diff = len - skb->len;
3098 
3099 	if (skb_tailroom(skb) < diff) {
3100 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
3101 					   GFP_ATOMIC);
3102 		if (ret)
3103 			return ret;
3104 	}
3105 	__skb_set_length(skb, len);
3106 	return 0;
3107 }
3108 
3109 /**
3110  *	skb_orphan - orphan a buffer
3111  *	@skb: buffer to orphan
3112  *
3113  *	If a buffer currently has an owner then we call the owner's
3114  *	destructor function and make the @skb unowned. The buffer continues
3115  *	to exist but is no longer charged to its former owner.
3116  */
3117 static inline void skb_orphan(struct sk_buff *skb)
3118 {
3119 	if (skb->destructor) {
3120 		skb->destructor(skb);
3121 		skb->destructor = NULL;
3122 		skb->sk		= NULL;
3123 	} else {
3124 		BUG_ON(skb->sk);
3125 	}
3126 }
3127 
3128 /**
3129  *	skb_orphan_frags - orphan the frags contained in a buffer
3130  *	@skb: buffer to orphan frags from
3131  *	@gfp_mask: allocation mask for replacement pages
3132  *
3133  *	For each frag in the SKB which needs a destructor (i.e. has an
3134  *	owner) create a copy of that frag and release the original
3135  *	page by calling the destructor.
3136  */
3137 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
3138 {
3139 	if (likely(!skb_zcopy(skb)))
3140 		return 0;
3141 	if (skb_shinfo(skb)->flags & SKBFL_DONT_ORPHAN)
3142 		return 0;
3143 	return skb_copy_ubufs(skb, gfp_mask);
3144 }
3145 
3146 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
3147 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
3148 {
3149 	if (likely(!skb_zcopy(skb)))
3150 		return 0;
3151 	return skb_copy_ubufs(skb, gfp_mask);
3152 }
3153 
3154 /**
3155  *	__skb_queue_purge - empty a list
3156  *	@list: list to empty
3157  *
3158  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3159  *	the list and one reference dropped. This function does not take the
3160  *	list lock and the caller must hold the relevant locks to use it.
3161  */
3162 static inline void __skb_queue_purge(struct sk_buff_head *list)
3163 {
3164 	struct sk_buff *skb;
3165 	while ((skb = __skb_dequeue(list)) != NULL)
3166 		kfree_skb(skb);
3167 }
3168 void skb_queue_purge(struct sk_buff_head *list);
3169 
3170 unsigned int skb_rbtree_purge(struct rb_root *root);
3171 
3172 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3173 
3174 /**
3175  * netdev_alloc_frag - allocate a page fragment
3176  * @fragsz: fragment size
3177  *
3178  * Allocates a frag from a page for receive buffer.
3179  * Uses GFP_ATOMIC allocations.
3180  */
3181 static inline void *netdev_alloc_frag(unsigned int fragsz)
3182 {
3183 	return __netdev_alloc_frag_align(fragsz, ~0u);
3184 }
3185 
3186 static inline void *netdev_alloc_frag_align(unsigned int fragsz,
3187 					    unsigned int align)
3188 {
3189 	WARN_ON_ONCE(!is_power_of_2(align));
3190 	return __netdev_alloc_frag_align(fragsz, -align);
3191 }
3192 
3193 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
3194 				   gfp_t gfp_mask);
3195 
3196 /**
3197  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
3198  *	@dev: network device to receive on
3199  *	@length: length to allocate
3200  *
3201  *	Allocate a new &sk_buff and assign it a usage count of one. The
3202  *	buffer has unspecified headroom built in. Users should allocate
3203  *	the headroom they think they need without accounting for the
3204  *	built in space. The built in space is used for optimisations.
3205  *
3206  *	%NULL is returned if there is no free memory. Although this function
3207  *	allocates memory it can be called from an interrupt.
3208  */
3209 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
3210 					       unsigned int length)
3211 {
3212 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
3213 }
3214 
3215 /* legacy helper around __netdev_alloc_skb() */
3216 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
3217 					      gfp_t gfp_mask)
3218 {
3219 	return __netdev_alloc_skb(NULL, length, gfp_mask);
3220 }
3221 
3222 /* legacy helper around netdev_alloc_skb() */
3223 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
3224 {
3225 	return netdev_alloc_skb(NULL, length);
3226 }
3227 
3228 
3229 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
3230 		unsigned int length, gfp_t gfp)
3231 {
3232 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
3233 
3234 	if (NET_IP_ALIGN && skb)
3235 		skb_reserve(skb, NET_IP_ALIGN);
3236 	return skb;
3237 }
3238 
3239 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
3240 		unsigned int length)
3241 {
3242 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
3243 }
3244 
3245 static inline void skb_free_frag(void *addr)
3246 {
3247 	page_frag_free(addr);
3248 }
3249 
3250 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3251 
3252 static inline void *napi_alloc_frag(unsigned int fragsz)
3253 {
3254 	return __napi_alloc_frag_align(fragsz, ~0u);
3255 }
3256 
3257 static inline void *napi_alloc_frag_align(unsigned int fragsz,
3258 					  unsigned int align)
3259 {
3260 	WARN_ON_ONCE(!is_power_of_2(align));
3261 	return __napi_alloc_frag_align(fragsz, -align);
3262 }
3263 
3264 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
3265 				 unsigned int length, gfp_t gfp_mask);
3266 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
3267 					     unsigned int length)
3268 {
3269 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
3270 }
3271 void napi_consume_skb(struct sk_buff *skb, int budget);
3272 
3273 void napi_skb_free_stolen_head(struct sk_buff *skb);
3274 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason);
3275 
3276 /**
3277  * __dev_alloc_pages - allocate page for network Rx
3278  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3279  * @order: size of the allocation
3280  *
3281  * Allocate a new page.
3282  *
3283  * %NULL is returned if there is no free memory.
3284 */
3285 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
3286 					     unsigned int order)
3287 {
3288 	/* This piece of code contains several assumptions.
3289 	 * 1.  This is for device Rx, therefor a cold page is preferred.
3290 	 * 2.  The expectation is the user wants a compound page.
3291 	 * 3.  If requesting a order 0 page it will not be compound
3292 	 *     due to the check to see if order has a value in prep_new_page
3293 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
3294 	 *     code in gfp_to_alloc_flags that should be enforcing this.
3295 	 */
3296 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
3297 
3298 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
3299 }
3300 
3301 static inline struct page *dev_alloc_pages(unsigned int order)
3302 {
3303 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
3304 }
3305 
3306 /**
3307  * __dev_alloc_page - allocate a page for network Rx
3308  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3309  *
3310  * Allocate a new page.
3311  *
3312  * %NULL is returned if there is no free memory.
3313  */
3314 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
3315 {
3316 	return __dev_alloc_pages(gfp_mask, 0);
3317 }
3318 
3319 static inline struct page *dev_alloc_page(void)
3320 {
3321 	return dev_alloc_pages(0);
3322 }
3323 
3324 /**
3325  * dev_page_is_reusable - check whether a page can be reused for network Rx
3326  * @page: the page to test
3327  *
3328  * A page shouldn't be considered for reusing/recycling if it was allocated
3329  * under memory pressure or at a distant memory node.
3330  *
3331  * Returns false if this page should be returned to page allocator, true
3332  * otherwise.
3333  */
3334 static inline bool dev_page_is_reusable(const struct page *page)
3335 {
3336 	return likely(page_to_nid(page) == numa_mem_id() &&
3337 		      !page_is_pfmemalloc(page));
3338 }
3339 
3340 /**
3341  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
3342  *	@page: The page that was allocated from skb_alloc_page
3343  *	@skb: The skb that may need pfmemalloc set
3344  */
3345 static inline void skb_propagate_pfmemalloc(const struct page *page,
3346 					    struct sk_buff *skb)
3347 {
3348 	if (page_is_pfmemalloc(page))
3349 		skb->pfmemalloc = true;
3350 }
3351 
3352 /**
3353  * skb_frag_off() - Returns the offset of a skb fragment
3354  * @frag: the paged fragment
3355  */
3356 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
3357 {
3358 	return frag->bv_offset;
3359 }
3360 
3361 /**
3362  * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
3363  * @frag: skb fragment
3364  * @delta: value to add
3365  */
3366 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
3367 {
3368 	frag->bv_offset += delta;
3369 }
3370 
3371 /**
3372  * skb_frag_off_set() - Sets the offset of a skb fragment
3373  * @frag: skb fragment
3374  * @offset: offset of fragment
3375  */
3376 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
3377 {
3378 	frag->bv_offset = offset;
3379 }
3380 
3381 /**
3382  * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
3383  * @fragto: skb fragment where offset is set
3384  * @fragfrom: skb fragment offset is copied from
3385  */
3386 static inline void skb_frag_off_copy(skb_frag_t *fragto,
3387 				     const skb_frag_t *fragfrom)
3388 {
3389 	fragto->bv_offset = fragfrom->bv_offset;
3390 }
3391 
3392 /**
3393  * skb_frag_page - retrieve the page referred to by a paged fragment
3394  * @frag: the paged fragment
3395  *
3396  * Returns the &struct page associated with @frag.
3397  */
3398 static inline struct page *skb_frag_page(const skb_frag_t *frag)
3399 {
3400 	return frag->bv_page;
3401 }
3402 
3403 /**
3404  * __skb_frag_ref - take an addition reference on a paged fragment.
3405  * @frag: the paged fragment
3406  *
3407  * Takes an additional reference on the paged fragment @frag.
3408  */
3409 static inline void __skb_frag_ref(skb_frag_t *frag)
3410 {
3411 	get_page(skb_frag_page(frag));
3412 }
3413 
3414 /**
3415  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
3416  * @skb: the buffer
3417  * @f: the fragment offset.
3418  *
3419  * Takes an additional reference on the @f'th paged fragment of @skb.
3420  */
3421 static inline void skb_frag_ref(struct sk_buff *skb, int f)
3422 {
3423 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
3424 }
3425 
3426 static inline void
3427 napi_frag_unref(skb_frag_t *frag, bool recycle, bool napi_safe)
3428 {
3429 	struct page *page = skb_frag_page(frag);
3430 
3431 #ifdef CONFIG_PAGE_POOL
3432 	if (recycle && page_pool_return_skb_page(page, napi_safe))
3433 		return;
3434 #endif
3435 	put_page(page);
3436 }
3437 
3438 /**
3439  * __skb_frag_unref - release a reference on a paged fragment.
3440  * @frag: the paged fragment
3441  * @recycle: recycle the page if allocated via page_pool
3442  *
3443  * Releases a reference on the paged fragment @frag
3444  * or recycles the page via the page_pool API.
3445  */
3446 static inline void __skb_frag_unref(skb_frag_t *frag, bool recycle)
3447 {
3448 	napi_frag_unref(frag, recycle, false);
3449 }
3450 
3451 /**
3452  * skb_frag_unref - release a reference on a paged fragment of an skb.
3453  * @skb: the buffer
3454  * @f: the fragment offset
3455  *
3456  * Releases a reference on the @f'th paged fragment of @skb.
3457  */
3458 static inline void skb_frag_unref(struct sk_buff *skb, int f)
3459 {
3460 	struct skb_shared_info *shinfo = skb_shinfo(skb);
3461 
3462 	if (!skb_zcopy_managed(skb))
3463 		__skb_frag_unref(&shinfo->frags[f], skb->pp_recycle);
3464 }
3465 
3466 /**
3467  * skb_frag_address - gets the address of the data contained in a paged fragment
3468  * @frag: the paged fragment buffer
3469  *
3470  * Returns the address of the data within @frag. The page must already
3471  * be mapped.
3472  */
3473 static inline void *skb_frag_address(const skb_frag_t *frag)
3474 {
3475 	return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3476 }
3477 
3478 /**
3479  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3480  * @frag: the paged fragment buffer
3481  *
3482  * Returns the address of the data within @frag. Checks that the page
3483  * is mapped and returns %NULL otherwise.
3484  */
3485 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3486 {
3487 	void *ptr = page_address(skb_frag_page(frag));
3488 	if (unlikely(!ptr))
3489 		return NULL;
3490 
3491 	return ptr + skb_frag_off(frag);
3492 }
3493 
3494 /**
3495  * skb_frag_page_copy() - sets the page in a fragment from another fragment
3496  * @fragto: skb fragment where page is set
3497  * @fragfrom: skb fragment page is copied from
3498  */
3499 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3500 				      const skb_frag_t *fragfrom)
3501 {
3502 	fragto->bv_page = fragfrom->bv_page;
3503 }
3504 
3505 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3506 
3507 /**
3508  * skb_frag_dma_map - maps a paged fragment via the DMA API
3509  * @dev: the device to map the fragment to
3510  * @frag: the paged fragment to map
3511  * @offset: the offset within the fragment (starting at the
3512  *          fragment's own offset)
3513  * @size: the number of bytes to map
3514  * @dir: the direction of the mapping (``PCI_DMA_*``)
3515  *
3516  * Maps the page associated with @frag to @device.
3517  */
3518 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3519 					  const skb_frag_t *frag,
3520 					  size_t offset, size_t size,
3521 					  enum dma_data_direction dir)
3522 {
3523 	return dma_map_page(dev, skb_frag_page(frag),
3524 			    skb_frag_off(frag) + offset, size, dir);
3525 }
3526 
3527 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3528 					gfp_t gfp_mask)
3529 {
3530 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3531 }
3532 
3533 
3534 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3535 						  gfp_t gfp_mask)
3536 {
3537 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3538 }
3539 
3540 
3541 /**
3542  *	skb_clone_writable - is the header of a clone writable
3543  *	@skb: buffer to check
3544  *	@len: length up to which to write
3545  *
3546  *	Returns true if modifying the header part of the cloned buffer
3547  *	does not requires the data to be copied.
3548  */
3549 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3550 {
3551 	return !skb_header_cloned(skb) &&
3552 	       skb_headroom(skb) + len <= skb->hdr_len;
3553 }
3554 
3555 static inline int skb_try_make_writable(struct sk_buff *skb,
3556 					unsigned int write_len)
3557 {
3558 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3559 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3560 }
3561 
3562 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3563 			    int cloned)
3564 {
3565 	int delta = 0;
3566 
3567 	if (headroom > skb_headroom(skb))
3568 		delta = headroom - skb_headroom(skb);
3569 
3570 	if (delta || cloned)
3571 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3572 					GFP_ATOMIC);
3573 	return 0;
3574 }
3575 
3576 /**
3577  *	skb_cow - copy header of skb when it is required
3578  *	@skb: buffer to cow
3579  *	@headroom: needed headroom
3580  *
3581  *	If the skb passed lacks sufficient headroom or its data part
3582  *	is shared, data is reallocated. If reallocation fails, an error
3583  *	is returned and original skb is not changed.
3584  *
3585  *	The result is skb with writable area skb->head...skb->tail
3586  *	and at least @headroom of space at head.
3587  */
3588 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3589 {
3590 	return __skb_cow(skb, headroom, skb_cloned(skb));
3591 }
3592 
3593 /**
3594  *	skb_cow_head - skb_cow but only making the head writable
3595  *	@skb: buffer to cow
3596  *	@headroom: needed headroom
3597  *
3598  *	This function is identical to skb_cow except that we replace the
3599  *	skb_cloned check by skb_header_cloned.  It should be used when
3600  *	you only need to push on some header and do not need to modify
3601  *	the data.
3602  */
3603 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3604 {
3605 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
3606 }
3607 
3608 /**
3609  *	skb_padto	- pad an skbuff up to a minimal size
3610  *	@skb: buffer to pad
3611  *	@len: minimal length
3612  *
3613  *	Pads up a buffer to ensure the trailing bytes exist and are
3614  *	blanked. If the buffer already contains sufficient data it
3615  *	is untouched. Otherwise it is extended. Returns zero on
3616  *	success. The skb is freed on error.
3617  */
3618 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3619 {
3620 	unsigned int size = skb->len;
3621 	if (likely(size >= len))
3622 		return 0;
3623 	return skb_pad(skb, len - size);
3624 }
3625 
3626 /**
3627  *	__skb_put_padto - increase size and pad an skbuff up to a minimal size
3628  *	@skb: buffer to pad
3629  *	@len: minimal length
3630  *	@free_on_error: free buffer on error
3631  *
3632  *	Pads up a buffer to ensure the trailing bytes exist and are
3633  *	blanked. If the buffer already contains sufficient data it
3634  *	is untouched. Otherwise it is extended. Returns zero on
3635  *	success. The skb is freed on error if @free_on_error is true.
3636  */
3637 static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3638 					       unsigned int len,
3639 					       bool free_on_error)
3640 {
3641 	unsigned int size = skb->len;
3642 
3643 	if (unlikely(size < len)) {
3644 		len -= size;
3645 		if (__skb_pad(skb, len, free_on_error))
3646 			return -ENOMEM;
3647 		__skb_put(skb, len);
3648 	}
3649 	return 0;
3650 }
3651 
3652 /**
3653  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3654  *	@skb: buffer to pad
3655  *	@len: minimal length
3656  *
3657  *	Pads up a buffer to ensure the trailing bytes exist and are
3658  *	blanked. If the buffer already contains sufficient data it
3659  *	is untouched. Otherwise it is extended. Returns zero on
3660  *	success. The skb is freed on error.
3661  */
3662 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3663 {
3664 	return __skb_put_padto(skb, len, true);
3665 }
3666 
3667 static inline int skb_add_data(struct sk_buff *skb,
3668 			       struct iov_iter *from, int copy)
3669 {
3670 	const int off = skb->len;
3671 
3672 	if (skb->ip_summed == CHECKSUM_NONE) {
3673 		__wsum csum = 0;
3674 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3675 					         &csum, from)) {
3676 			skb->csum = csum_block_add(skb->csum, csum, off);
3677 			return 0;
3678 		}
3679 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3680 		return 0;
3681 
3682 	__skb_trim(skb, off);
3683 	return -EFAULT;
3684 }
3685 
3686 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3687 				    const struct page *page, int off)
3688 {
3689 	if (skb_zcopy(skb))
3690 		return false;
3691 	if (i) {
3692 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3693 
3694 		return page == skb_frag_page(frag) &&
3695 		       off == skb_frag_off(frag) + skb_frag_size(frag);
3696 	}
3697 	return false;
3698 }
3699 
3700 static inline int __skb_linearize(struct sk_buff *skb)
3701 {
3702 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3703 }
3704 
3705 /**
3706  *	skb_linearize - convert paged skb to linear one
3707  *	@skb: buffer to linarize
3708  *
3709  *	If there is no free memory -ENOMEM is returned, otherwise zero
3710  *	is returned and the old skb data released.
3711  */
3712 static inline int skb_linearize(struct sk_buff *skb)
3713 {
3714 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3715 }
3716 
3717 /**
3718  * skb_has_shared_frag - can any frag be overwritten
3719  * @skb: buffer to test
3720  *
3721  * Return true if the skb has at least one frag that might be modified
3722  * by an external entity (as in vmsplice()/sendfile())
3723  */
3724 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3725 {
3726 	return skb_is_nonlinear(skb) &&
3727 	       skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3728 }
3729 
3730 /**
3731  *	skb_linearize_cow - make sure skb is linear and writable
3732  *	@skb: buffer to process
3733  *
3734  *	If there is no free memory -ENOMEM is returned, otherwise zero
3735  *	is returned and the old skb data released.
3736  */
3737 static inline int skb_linearize_cow(struct sk_buff *skb)
3738 {
3739 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3740 	       __skb_linearize(skb) : 0;
3741 }
3742 
3743 static __always_inline void
3744 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3745 		     unsigned int off)
3746 {
3747 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3748 		skb->csum = csum_block_sub(skb->csum,
3749 					   csum_partial(start, len, 0), off);
3750 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3751 		 skb_checksum_start_offset(skb) < 0)
3752 		skb->ip_summed = CHECKSUM_NONE;
3753 }
3754 
3755 /**
3756  *	skb_postpull_rcsum - update checksum for received skb after pull
3757  *	@skb: buffer to update
3758  *	@start: start of data before pull
3759  *	@len: length of data pulled
3760  *
3761  *	After doing a pull on a received packet, you need to call this to
3762  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3763  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3764  */
3765 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3766 				      const void *start, unsigned int len)
3767 {
3768 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3769 		skb->csum = wsum_negate(csum_partial(start, len,
3770 						     wsum_negate(skb->csum)));
3771 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3772 		 skb_checksum_start_offset(skb) < 0)
3773 		skb->ip_summed = CHECKSUM_NONE;
3774 }
3775 
3776 static __always_inline void
3777 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3778 		     unsigned int off)
3779 {
3780 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3781 		skb->csum = csum_block_add(skb->csum,
3782 					   csum_partial(start, len, 0), off);
3783 }
3784 
3785 /**
3786  *	skb_postpush_rcsum - update checksum for received skb after push
3787  *	@skb: buffer to update
3788  *	@start: start of data after push
3789  *	@len: length of data pushed
3790  *
3791  *	After doing a push on a received packet, you need to call this to
3792  *	update the CHECKSUM_COMPLETE checksum.
3793  */
3794 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3795 				      const void *start, unsigned int len)
3796 {
3797 	__skb_postpush_rcsum(skb, start, len, 0);
3798 }
3799 
3800 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3801 
3802 /**
3803  *	skb_push_rcsum - push skb and update receive checksum
3804  *	@skb: buffer to update
3805  *	@len: length of data pulled
3806  *
3807  *	This function performs an skb_push on the packet and updates
3808  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3809  *	receive path processing instead of skb_push unless you know
3810  *	that the checksum difference is zero (e.g., a valid IP header)
3811  *	or you are setting ip_summed to CHECKSUM_NONE.
3812  */
3813 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3814 {
3815 	skb_push(skb, len);
3816 	skb_postpush_rcsum(skb, skb->data, len);
3817 	return skb->data;
3818 }
3819 
3820 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3821 /**
3822  *	pskb_trim_rcsum - trim received skb and update checksum
3823  *	@skb: buffer to trim
3824  *	@len: new length
3825  *
3826  *	This is exactly the same as pskb_trim except that it ensures the
3827  *	checksum of received packets are still valid after the operation.
3828  *	It can change skb pointers.
3829  */
3830 
3831 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3832 {
3833 	if (likely(len >= skb->len))
3834 		return 0;
3835 	return pskb_trim_rcsum_slow(skb, len);
3836 }
3837 
3838 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3839 {
3840 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3841 		skb->ip_summed = CHECKSUM_NONE;
3842 	__skb_trim(skb, len);
3843 	return 0;
3844 }
3845 
3846 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3847 {
3848 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3849 		skb->ip_summed = CHECKSUM_NONE;
3850 	return __skb_grow(skb, len);
3851 }
3852 
3853 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3854 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3855 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3856 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3857 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3858 
3859 #define skb_queue_walk(queue, skb) \
3860 		for (skb = (queue)->next;					\
3861 		     skb != (struct sk_buff *)(queue);				\
3862 		     skb = skb->next)
3863 
3864 #define skb_queue_walk_safe(queue, skb, tmp)					\
3865 		for (skb = (queue)->next, tmp = skb->next;			\
3866 		     skb != (struct sk_buff *)(queue);				\
3867 		     skb = tmp, tmp = skb->next)
3868 
3869 #define skb_queue_walk_from(queue, skb)						\
3870 		for (; skb != (struct sk_buff *)(queue);			\
3871 		     skb = skb->next)
3872 
3873 #define skb_rbtree_walk(skb, root)						\
3874 		for (skb = skb_rb_first(root); skb != NULL;			\
3875 		     skb = skb_rb_next(skb))
3876 
3877 #define skb_rbtree_walk_from(skb)						\
3878 		for (; skb != NULL;						\
3879 		     skb = skb_rb_next(skb))
3880 
3881 #define skb_rbtree_walk_from_safe(skb, tmp)					\
3882 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
3883 		     skb = tmp)
3884 
3885 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3886 		for (tmp = skb->next;						\
3887 		     skb != (struct sk_buff *)(queue);				\
3888 		     skb = tmp, tmp = skb->next)
3889 
3890 #define skb_queue_reverse_walk(queue, skb) \
3891 		for (skb = (queue)->prev;					\
3892 		     skb != (struct sk_buff *)(queue);				\
3893 		     skb = skb->prev)
3894 
3895 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3896 		for (skb = (queue)->prev, tmp = skb->prev;			\
3897 		     skb != (struct sk_buff *)(queue);				\
3898 		     skb = tmp, tmp = skb->prev)
3899 
3900 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3901 		for (tmp = skb->prev;						\
3902 		     skb != (struct sk_buff *)(queue);				\
3903 		     skb = tmp, tmp = skb->prev)
3904 
3905 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3906 {
3907 	return skb_shinfo(skb)->frag_list != NULL;
3908 }
3909 
3910 static inline void skb_frag_list_init(struct sk_buff *skb)
3911 {
3912 	skb_shinfo(skb)->frag_list = NULL;
3913 }
3914 
3915 #define skb_walk_frags(skb, iter)	\
3916 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3917 
3918 
3919 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3920 				int *err, long *timeo_p,
3921 				const struct sk_buff *skb);
3922 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3923 					  struct sk_buff_head *queue,
3924 					  unsigned int flags,
3925 					  int *off, int *err,
3926 					  struct sk_buff **last);
3927 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
3928 					struct sk_buff_head *queue,
3929 					unsigned int flags, int *off, int *err,
3930 					struct sk_buff **last);
3931 struct sk_buff *__skb_recv_datagram(struct sock *sk,
3932 				    struct sk_buff_head *sk_queue,
3933 				    unsigned int flags, int *off, int *err);
3934 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err);
3935 __poll_t datagram_poll(struct file *file, struct socket *sock,
3936 			   struct poll_table_struct *wait);
3937 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3938 			   struct iov_iter *to, int size);
3939 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3940 					struct msghdr *msg, int size)
3941 {
3942 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3943 }
3944 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3945 				   struct msghdr *msg);
3946 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3947 			   struct iov_iter *to, int len,
3948 			   struct ahash_request *hash);
3949 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3950 				 struct iov_iter *from, int len);
3951 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3952 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3953 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3954 static inline void skb_free_datagram_locked(struct sock *sk,
3955 					    struct sk_buff *skb)
3956 {
3957 	__skb_free_datagram_locked(sk, skb, 0);
3958 }
3959 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3960 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3961 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3962 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3963 			      int len);
3964 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3965 		    struct pipe_inode_info *pipe, unsigned int len,
3966 		    unsigned int flags);
3967 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3968 			 int len);
3969 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
3970 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3971 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3972 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3973 		 int len, int hlen);
3974 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3975 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3976 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3977 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3978 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
3979 				 unsigned int offset);
3980 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3981 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len);
3982 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3983 int skb_vlan_pop(struct sk_buff *skb);
3984 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3985 int skb_eth_pop(struct sk_buff *skb);
3986 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
3987 		 const unsigned char *src);
3988 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
3989 		  int mac_len, bool ethernet);
3990 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
3991 		 bool ethernet);
3992 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
3993 int skb_mpls_dec_ttl(struct sk_buff *skb);
3994 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3995 			     gfp_t gfp);
3996 
3997 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3998 {
3999 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
4000 }
4001 
4002 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
4003 {
4004 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
4005 }
4006 
4007 struct skb_checksum_ops {
4008 	__wsum (*update)(const void *mem, int len, __wsum wsum);
4009 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
4010 };
4011 
4012 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
4013 
4014 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
4015 		      __wsum csum, const struct skb_checksum_ops *ops);
4016 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
4017 		    __wsum csum);
4018 
4019 static inline void * __must_check
4020 __skb_header_pointer(const struct sk_buff *skb, int offset, int len,
4021 		     const void *data, int hlen, void *buffer)
4022 {
4023 	if (likely(hlen - offset >= len))
4024 		return (void *)data + offset;
4025 
4026 	if (!skb || !buffer || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0))
4027 		return NULL;
4028 
4029 	return buffer;
4030 }
4031 
4032 static inline void * __must_check
4033 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
4034 {
4035 	return __skb_header_pointer(skb, offset, len, skb->data,
4036 				    skb_headlen(skb), buffer);
4037 }
4038 
4039 /**
4040  *	skb_needs_linearize - check if we need to linearize a given skb
4041  *			      depending on the given device features.
4042  *	@skb: socket buffer to check
4043  *	@features: net device features
4044  *
4045  *	Returns true if either:
4046  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
4047  *	2. skb is fragmented and the device does not support SG.
4048  */
4049 static inline bool skb_needs_linearize(struct sk_buff *skb,
4050 				       netdev_features_t features)
4051 {
4052 	return skb_is_nonlinear(skb) &&
4053 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
4054 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
4055 }
4056 
4057 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
4058 					     void *to,
4059 					     const unsigned int len)
4060 {
4061 	memcpy(to, skb->data, len);
4062 }
4063 
4064 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
4065 						    const int offset, void *to,
4066 						    const unsigned int len)
4067 {
4068 	memcpy(to, skb->data + offset, len);
4069 }
4070 
4071 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
4072 					   const void *from,
4073 					   const unsigned int len)
4074 {
4075 	memcpy(skb->data, from, len);
4076 }
4077 
4078 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
4079 						  const int offset,
4080 						  const void *from,
4081 						  const unsigned int len)
4082 {
4083 	memcpy(skb->data + offset, from, len);
4084 }
4085 
4086 void skb_init(void);
4087 
4088 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
4089 {
4090 	return skb->tstamp;
4091 }
4092 
4093 /**
4094  *	skb_get_timestamp - get timestamp from a skb
4095  *	@skb: skb to get stamp from
4096  *	@stamp: pointer to struct __kernel_old_timeval to store stamp in
4097  *
4098  *	Timestamps are stored in the skb as offsets to a base timestamp.
4099  *	This function converts the offset back to a struct timeval and stores
4100  *	it in stamp.
4101  */
4102 static inline void skb_get_timestamp(const struct sk_buff *skb,
4103 				     struct __kernel_old_timeval *stamp)
4104 {
4105 	*stamp = ns_to_kernel_old_timeval(skb->tstamp);
4106 }
4107 
4108 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
4109 					 struct __kernel_sock_timeval *stamp)
4110 {
4111 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4112 
4113 	stamp->tv_sec = ts.tv_sec;
4114 	stamp->tv_usec = ts.tv_nsec / 1000;
4115 }
4116 
4117 static inline void skb_get_timestampns(const struct sk_buff *skb,
4118 				       struct __kernel_old_timespec *stamp)
4119 {
4120 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4121 
4122 	stamp->tv_sec = ts.tv_sec;
4123 	stamp->tv_nsec = ts.tv_nsec;
4124 }
4125 
4126 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
4127 					   struct __kernel_timespec *stamp)
4128 {
4129 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4130 
4131 	stamp->tv_sec = ts.tv_sec;
4132 	stamp->tv_nsec = ts.tv_nsec;
4133 }
4134 
4135 static inline void __net_timestamp(struct sk_buff *skb)
4136 {
4137 	skb->tstamp = ktime_get_real();
4138 	skb->mono_delivery_time = 0;
4139 }
4140 
4141 static inline ktime_t net_timedelta(ktime_t t)
4142 {
4143 	return ktime_sub(ktime_get_real(), t);
4144 }
4145 
4146 static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt,
4147 					 bool mono)
4148 {
4149 	skb->tstamp = kt;
4150 	skb->mono_delivery_time = kt && mono;
4151 }
4152 
4153 DECLARE_STATIC_KEY_FALSE(netstamp_needed_key);
4154 
4155 /* It is used in the ingress path to clear the delivery_time.
4156  * If needed, set the skb->tstamp to the (rcv) timestamp.
4157  */
4158 static inline void skb_clear_delivery_time(struct sk_buff *skb)
4159 {
4160 	if (skb->mono_delivery_time) {
4161 		skb->mono_delivery_time = 0;
4162 		if (static_branch_unlikely(&netstamp_needed_key))
4163 			skb->tstamp = ktime_get_real();
4164 		else
4165 			skb->tstamp = 0;
4166 	}
4167 }
4168 
4169 static inline void skb_clear_tstamp(struct sk_buff *skb)
4170 {
4171 	if (skb->mono_delivery_time)
4172 		return;
4173 
4174 	skb->tstamp = 0;
4175 }
4176 
4177 static inline ktime_t skb_tstamp(const struct sk_buff *skb)
4178 {
4179 	if (skb->mono_delivery_time)
4180 		return 0;
4181 
4182 	return skb->tstamp;
4183 }
4184 
4185 static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond)
4186 {
4187 	if (!skb->mono_delivery_time && skb->tstamp)
4188 		return skb->tstamp;
4189 
4190 	if (static_branch_unlikely(&netstamp_needed_key) || cond)
4191 		return ktime_get_real();
4192 
4193 	return 0;
4194 }
4195 
4196 static inline u8 skb_metadata_len(const struct sk_buff *skb)
4197 {
4198 	return skb_shinfo(skb)->meta_len;
4199 }
4200 
4201 static inline void *skb_metadata_end(const struct sk_buff *skb)
4202 {
4203 	return skb_mac_header(skb);
4204 }
4205 
4206 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
4207 					  const struct sk_buff *skb_b,
4208 					  u8 meta_len)
4209 {
4210 	const void *a = skb_metadata_end(skb_a);
4211 	const void *b = skb_metadata_end(skb_b);
4212 	/* Using more efficient varaiant than plain call to memcmp(). */
4213 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
4214 	u64 diffs = 0;
4215 
4216 	switch (meta_len) {
4217 #define __it(x, op) (x -= sizeof(u##op))
4218 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
4219 	case 32: diffs |= __it_diff(a, b, 64);
4220 		fallthrough;
4221 	case 24: diffs |= __it_diff(a, b, 64);
4222 		fallthrough;
4223 	case 16: diffs |= __it_diff(a, b, 64);
4224 		fallthrough;
4225 	case  8: diffs |= __it_diff(a, b, 64);
4226 		break;
4227 	case 28: diffs |= __it_diff(a, b, 64);
4228 		fallthrough;
4229 	case 20: diffs |= __it_diff(a, b, 64);
4230 		fallthrough;
4231 	case 12: diffs |= __it_diff(a, b, 64);
4232 		fallthrough;
4233 	case  4: diffs |= __it_diff(a, b, 32);
4234 		break;
4235 	}
4236 	return diffs;
4237 #else
4238 	return memcmp(a - meta_len, b - meta_len, meta_len);
4239 #endif
4240 }
4241 
4242 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
4243 					const struct sk_buff *skb_b)
4244 {
4245 	u8 len_a = skb_metadata_len(skb_a);
4246 	u8 len_b = skb_metadata_len(skb_b);
4247 
4248 	if (!(len_a | len_b))
4249 		return false;
4250 
4251 	return len_a != len_b ?
4252 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
4253 }
4254 
4255 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
4256 {
4257 	skb_shinfo(skb)->meta_len = meta_len;
4258 }
4259 
4260 static inline void skb_metadata_clear(struct sk_buff *skb)
4261 {
4262 	skb_metadata_set(skb, 0);
4263 }
4264 
4265 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
4266 
4267 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
4268 
4269 void skb_clone_tx_timestamp(struct sk_buff *skb);
4270 bool skb_defer_rx_timestamp(struct sk_buff *skb);
4271 
4272 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
4273 
4274 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
4275 {
4276 }
4277 
4278 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
4279 {
4280 	return false;
4281 }
4282 
4283 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
4284 
4285 /**
4286  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
4287  *
4288  * PHY drivers may accept clones of transmitted packets for
4289  * timestamping via their phy_driver.txtstamp method. These drivers
4290  * must call this function to return the skb back to the stack with a
4291  * timestamp.
4292  *
4293  * @skb: clone of the original outgoing packet
4294  * @hwtstamps: hardware time stamps
4295  *
4296  */
4297 void skb_complete_tx_timestamp(struct sk_buff *skb,
4298 			       struct skb_shared_hwtstamps *hwtstamps);
4299 
4300 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb,
4301 		     struct skb_shared_hwtstamps *hwtstamps,
4302 		     struct sock *sk, int tstype);
4303 
4304 /**
4305  * skb_tstamp_tx - queue clone of skb with send time stamps
4306  * @orig_skb:	the original outgoing packet
4307  * @hwtstamps:	hardware time stamps, may be NULL if not available
4308  *
4309  * If the skb has a socket associated, then this function clones the
4310  * skb (thus sharing the actual data and optional structures), stores
4311  * the optional hardware time stamping information (if non NULL) or
4312  * generates a software time stamp (otherwise), then queues the clone
4313  * to the error queue of the socket.  Errors are silently ignored.
4314  */
4315 void skb_tstamp_tx(struct sk_buff *orig_skb,
4316 		   struct skb_shared_hwtstamps *hwtstamps);
4317 
4318 /**
4319  * skb_tx_timestamp() - Driver hook for transmit timestamping
4320  *
4321  * Ethernet MAC Drivers should call this function in their hard_xmit()
4322  * function immediately before giving the sk_buff to the MAC hardware.
4323  *
4324  * Specifically, one should make absolutely sure that this function is
4325  * called before TX completion of this packet can trigger.  Otherwise
4326  * the packet could potentially already be freed.
4327  *
4328  * @skb: A socket buffer.
4329  */
4330 static inline void skb_tx_timestamp(struct sk_buff *skb)
4331 {
4332 	skb_clone_tx_timestamp(skb);
4333 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
4334 		skb_tstamp_tx(skb, NULL);
4335 }
4336 
4337 /**
4338  * skb_complete_wifi_ack - deliver skb with wifi status
4339  *
4340  * @skb: the original outgoing packet
4341  * @acked: ack status
4342  *
4343  */
4344 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
4345 
4346 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
4347 __sum16 __skb_checksum_complete(struct sk_buff *skb);
4348 
4349 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
4350 {
4351 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
4352 		skb->csum_valid ||
4353 		(skb->ip_summed == CHECKSUM_PARTIAL &&
4354 		 skb_checksum_start_offset(skb) >= 0));
4355 }
4356 
4357 /**
4358  *	skb_checksum_complete - Calculate checksum of an entire packet
4359  *	@skb: packet to process
4360  *
4361  *	This function calculates the checksum over the entire packet plus
4362  *	the value of skb->csum.  The latter can be used to supply the
4363  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
4364  *	checksum.
4365  *
4366  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
4367  *	this function can be used to verify that checksum on received
4368  *	packets.  In that case the function should return zero if the
4369  *	checksum is correct.  In particular, this function will return zero
4370  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
4371  *	hardware has already verified the correctness of the checksum.
4372  */
4373 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
4374 {
4375 	return skb_csum_unnecessary(skb) ?
4376 	       0 : __skb_checksum_complete(skb);
4377 }
4378 
4379 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
4380 {
4381 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4382 		if (skb->csum_level == 0)
4383 			skb->ip_summed = CHECKSUM_NONE;
4384 		else
4385 			skb->csum_level--;
4386 	}
4387 }
4388 
4389 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
4390 {
4391 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4392 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
4393 			skb->csum_level++;
4394 	} else if (skb->ip_summed == CHECKSUM_NONE) {
4395 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4396 		skb->csum_level = 0;
4397 	}
4398 }
4399 
4400 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
4401 {
4402 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4403 		skb->ip_summed = CHECKSUM_NONE;
4404 		skb->csum_level = 0;
4405 	}
4406 }
4407 
4408 /* Check if we need to perform checksum complete validation.
4409  *
4410  * Returns true if checksum complete is needed, false otherwise
4411  * (either checksum is unnecessary or zero checksum is allowed).
4412  */
4413 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
4414 						  bool zero_okay,
4415 						  __sum16 check)
4416 {
4417 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
4418 		skb->csum_valid = 1;
4419 		__skb_decr_checksum_unnecessary(skb);
4420 		return false;
4421 	}
4422 
4423 	return true;
4424 }
4425 
4426 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
4427  * in checksum_init.
4428  */
4429 #define CHECKSUM_BREAK 76
4430 
4431 /* Unset checksum-complete
4432  *
4433  * Unset checksum complete can be done when packet is being modified
4434  * (uncompressed for instance) and checksum-complete value is
4435  * invalidated.
4436  */
4437 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
4438 {
4439 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4440 		skb->ip_summed = CHECKSUM_NONE;
4441 }
4442 
4443 /* Validate (init) checksum based on checksum complete.
4444  *
4445  * Return values:
4446  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
4447  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4448  *	checksum is stored in skb->csum for use in __skb_checksum_complete
4449  *   non-zero: value of invalid checksum
4450  *
4451  */
4452 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4453 						       bool complete,
4454 						       __wsum psum)
4455 {
4456 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
4457 		if (!csum_fold(csum_add(psum, skb->csum))) {
4458 			skb->csum_valid = 1;
4459 			return 0;
4460 		}
4461 	}
4462 
4463 	skb->csum = psum;
4464 
4465 	if (complete || skb->len <= CHECKSUM_BREAK) {
4466 		__sum16 csum;
4467 
4468 		csum = __skb_checksum_complete(skb);
4469 		skb->csum_valid = !csum;
4470 		return csum;
4471 	}
4472 
4473 	return 0;
4474 }
4475 
4476 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4477 {
4478 	return 0;
4479 }
4480 
4481 /* Perform checksum validate (init). Note that this is a macro since we only
4482  * want to calculate the pseudo header which is an input function if necessary.
4483  * First we try to validate without any computation (checksum unnecessary) and
4484  * then calculate based on checksum complete calling the function to compute
4485  * pseudo header.
4486  *
4487  * Return values:
4488  *   0: checksum is validated or try to in skb_checksum_complete
4489  *   non-zero: value of invalid checksum
4490  */
4491 #define __skb_checksum_validate(skb, proto, complete,			\
4492 				zero_okay, check, compute_pseudo)	\
4493 ({									\
4494 	__sum16 __ret = 0;						\
4495 	skb->csum_valid = 0;						\
4496 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
4497 		__ret = __skb_checksum_validate_complete(skb,		\
4498 				complete, compute_pseudo(skb, proto));	\
4499 	__ret;								\
4500 })
4501 
4502 #define skb_checksum_init(skb, proto, compute_pseudo)			\
4503 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4504 
4505 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
4506 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4507 
4508 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
4509 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4510 
4511 #define skb_checksum_validate_zero_check(skb, proto, check,		\
4512 					 compute_pseudo)		\
4513 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4514 
4515 #define skb_checksum_simple_validate(skb)				\
4516 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4517 
4518 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4519 {
4520 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4521 }
4522 
4523 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4524 {
4525 	skb->csum = ~pseudo;
4526 	skb->ip_summed = CHECKSUM_COMPLETE;
4527 }
4528 
4529 #define skb_checksum_try_convert(skb, proto, compute_pseudo)	\
4530 do {									\
4531 	if (__skb_checksum_convert_check(skb))				\
4532 		__skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4533 } while (0)
4534 
4535 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4536 					      u16 start, u16 offset)
4537 {
4538 	skb->ip_summed = CHECKSUM_PARTIAL;
4539 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4540 	skb->csum_offset = offset - start;
4541 }
4542 
4543 /* Update skbuf and packet to reflect the remote checksum offload operation.
4544  * When called, ptr indicates the starting point for skb->csum when
4545  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4546  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4547  */
4548 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4549 				       int start, int offset, bool nopartial)
4550 {
4551 	__wsum delta;
4552 
4553 	if (!nopartial) {
4554 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
4555 		return;
4556 	}
4557 
4558 	if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4559 		__skb_checksum_complete(skb);
4560 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4561 	}
4562 
4563 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
4564 
4565 	/* Adjust skb->csum since we changed the packet */
4566 	skb->csum = csum_add(skb->csum, delta);
4567 }
4568 
4569 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4570 {
4571 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4572 	return (void *)(skb->_nfct & NFCT_PTRMASK);
4573 #else
4574 	return NULL;
4575 #endif
4576 }
4577 
4578 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4579 {
4580 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4581 	return skb->_nfct;
4582 #else
4583 	return 0UL;
4584 #endif
4585 }
4586 
4587 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4588 {
4589 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4590 	skb->slow_gro |= !!nfct;
4591 	skb->_nfct = nfct;
4592 #endif
4593 }
4594 
4595 #ifdef CONFIG_SKB_EXTENSIONS
4596 enum skb_ext_id {
4597 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4598 	SKB_EXT_BRIDGE_NF,
4599 #endif
4600 #ifdef CONFIG_XFRM
4601 	SKB_EXT_SEC_PATH,
4602 #endif
4603 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4604 	TC_SKB_EXT,
4605 #endif
4606 #if IS_ENABLED(CONFIG_MPTCP)
4607 	SKB_EXT_MPTCP,
4608 #endif
4609 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4610 	SKB_EXT_MCTP,
4611 #endif
4612 	SKB_EXT_NUM, /* must be last */
4613 };
4614 
4615 /**
4616  *	struct skb_ext - sk_buff extensions
4617  *	@refcnt: 1 on allocation, deallocated on 0
4618  *	@offset: offset to add to @data to obtain extension address
4619  *	@chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4620  *	@data: start of extension data, variable sized
4621  *
4622  *	Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4623  *	to use 'u8' types while allowing up to 2kb worth of extension data.
4624  */
4625 struct skb_ext {
4626 	refcount_t refcnt;
4627 	u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4628 	u8 chunks;		/* same */
4629 	char data[] __aligned(8);
4630 };
4631 
4632 struct skb_ext *__skb_ext_alloc(gfp_t flags);
4633 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4634 		    struct skb_ext *ext);
4635 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4636 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4637 void __skb_ext_put(struct skb_ext *ext);
4638 
4639 static inline void skb_ext_put(struct sk_buff *skb)
4640 {
4641 	if (skb->active_extensions)
4642 		__skb_ext_put(skb->extensions);
4643 }
4644 
4645 static inline void __skb_ext_copy(struct sk_buff *dst,
4646 				  const struct sk_buff *src)
4647 {
4648 	dst->active_extensions = src->active_extensions;
4649 
4650 	if (src->active_extensions) {
4651 		struct skb_ext *ext = src->extensions;
4652 
4653 		refcount_inc(&ext->refcnt);
4654 		dst->extensions = ext;
4655 	}
4656 }
4657 
4658 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4659 {
4660 	skb_ext_put(dst);
4661 	__skb_ext_copy(dst, src);
4662 }
4663 
4664 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4665 {
4666 	return !!ext->offset[i];
4667 }
4668 
4669 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4670 {
4671 	return skb->active_extensions & (1 << id);
4672 }
4673 
4674 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4675 {
4676 	if (skb_ext_exist(skb, id))
4677 		__skb_ext_del(skb, id);
4678 }
4679 
4680 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4681 {
4682 	if (skb_ext_exist(skb, id)) {
4683 		struct skb_ext *ext = skb->extensions;
4684 
4685 		return (void *)ext + (ext->offset[id] << 3);
4686 	}
4687 
4688 	return NULL;
4689 }
4690 
4691 static inline void skb_ext_reset(struct sk_buff *skb)
4692 {
4693 	if (unlikely(skb->active_extensions)) {
4694 		__skb_ext_put(skb->extensions);
4695 		skb->active_extensions = 0;
4696 	}
4697 }
4698 
4699 static inline bool skb_has_extensions(struct sk_buff *skb)
4700 {
4701 	return unlikely(skb->active_extensions);
4702 }
4703 #else
4704 static inline void skb_ext_put(struct sk_buff *skb) {}
4705 static inline void skb_ext_reset(struct sk_buff *skb) {}
4706 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4707 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4708 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4709 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4710 #endif /* CONFIG_SKB_EXTENSIONS */
4711 
4712 static inline void nf_reset_ct(struct sk_buff *skb)
4713 {
4714 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4715 	nf_conntrack_put(skb_nfct(skb));
4716 	skb->_nfct = 0;
4717 #endif
4718 }
4719 
4720 static inline void nf_reset_trace(struct sk_buff *skb)
4721 {
4722 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
4723 	skb->nf_trace = 0;
4724 #endif
4725 }
4726 
4727 static inline void ipvs_reset(struct sk_buff *skb)
4728 {
4729 #if IS_ENABLED(CONFIG_IP_VS)
4730 	skb->ipvs_property = 0;
4731 #endif
4732 }
4733 
4734 /* Note: This doesn't put any conntrack info in dst. */
4735 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4736 			     bool copy)
4737 {
4738 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4739 	dst->_nfct = src->_nfct;
4740 	nf_conntrack_get(skb_nfct(src));
4741 #endif
4742 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
4743 	if (copy)
4744 		dst->nf_trace = src->nf_trace;
4745 #endif
4746 }
4747 
4748 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4749 {
4750 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4751 	nf_conntrack_put(skb_nfct(dst));
4752 #endif
4753 	dst->slow_gro = src->slow_gro;
4754 	__nf_copy(dst, src, true);
4755 }
4756 
4757 #ifdef CONFIG_NETWORK_SECMARK
4758 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4759 {
4760 	to->secmark = from->secmark;
4761 }
4762 
4763 static inline void skb_init_secmark(struct sk_buff *skb)
4764 {
4765 	skb->secmark = 0;
4766 }
4767 #else
4768 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4769 { }
4770 
4771 static inline void skb_init_secmark(struct sk_buff *skb)
4772 { }
4773 #endif
4774 
4775 static inline int secpath_exists(const struct sk_buff *skb)
4776 {
4777 #ifdef CONFIG_XFRM
4778 	return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4779 #else
4780 	return 0;
4781 #endif
4782 }
4783 
4784 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4785 {
4786 	return !skb->destructor &&
4787 		!secpath_exists(skb) &&
4788 		!skb_nfct(skb) &&
4789 		!skb->_skb_refdst &&
4790 		!skb_has_frag_list(skb);
4791 }
4792 
4793 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4794 {
4795 	skb->queue_mapping = queue_mapping;
4796 }
4797 
4798 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4799 {
4800 	return skb->queue_mapping;
4801 }
4802 
4803 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4804 {
4805 	to->queue_mapping = from->queue_mapping;
4806 }
4807 
4808 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4809 {
4810 	skb->queue_mapping = rx_queue + 1;
4811 }
4812 
4813 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4814 {
4815 	return skb->queue_mapping - 1;
4816 }
4817 
4818 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4819 {
4820 	return skb->queue_mapping != 0;
4821 }
4822 
4823 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4824 {
4825 	skb->dst_pending_confirm = val;
4826 }
4827 
4828 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4829 {
4830 	return skb->dst_pending_confirm != 0;
4831 }
4832 
4833 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4834 {
4835 #ifdef CONFIG_XFRM
4836 	return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4837 #else
4838 	return NULL;
4839 #endif
4840 }
4841 
4842 static inline bool skb_is_gso(const struct sk_buff *skb)
4843 {
4844 	return skb_shinfo(skb)->gso_size;
4845 }
4846 
4847 /* Note: Should be called only if skb_is_gso(skb) is true */
4848 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4849 {
4850 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4851 }
4852 
4853 /* Note: Should be called only if skb_is_gso(skb) is true */
4854 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4855 {
4856 	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4857 }
4858 
4859 /* Note: Should be called only if skb_is_gso(skb) is true */
4860 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4861 {
4862 	return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4863 }
4864 
4865 static inline void skb_gso_reset(struct sk_buff *skb)
4866 {
4867 	skb_shinfo(skb)->gso_size = 0;
4868 	skb_shinfo(skb)->gso_segs = 0;
4869 	skb_shinfo(skb)->gso_type = 0;
4870 }
4871 
4872 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4873 					 u16 increment)
4874 {
4875 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4876 		return;
4877 	shinfo->gso_size += increment;
4878 }
4879 
4880 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4881 					 u16 decrement)
4882 {
4883 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4884 		return;
4885 	shinfo->gso_size -= decrement;
4886 }
4887 
4888 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4889 
4890 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4891 {
4892 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
4893 	 * wanted then gso_type will be set. */
4894 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4895 
4896 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4897 	    unlikely(shinfo->gso_type == 0)) {
4898 		__skb_warn_lro_forwarding(skb);
4899 		return true;
4900 	}
4901 	return false;
4902 }
4903 
4904 static inline void skb_forward_csum(struct sk_buff *skb)
4905 {
4906 	/* Unfortunately we don't support this one.  Any brave souls? */
4907 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4908 		skb->ip_summed = CHECKSUM_NONE;
4909 }
4910 
4911 /**
4912  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4913  * @skb: skb to check
4914  *
4915  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4916  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4917  * use this helper, to document places where we make this assertion.
4918  */
4919 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4920 {
4921 	DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE);
4922 }
4923 
4924 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4925 
4926 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4927 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4928 				     unsigned int transport_len,
4929 				     __sum16(*skb_chkf)(struct sk_buff *skb));
4930 
4931 /**
4932  * skb_head_is_locked - Determine if the skb->head is locked down
4933  * @skb: skb to check
4934  *
4935  * The head on skbs build around a head frag can be removed if they are
4936  * not cloned.  This function returns true if the skb head is locked down
4937  * due to either being allocated via kmalloc, or by being a clone with
4938  * multiple references to the head.
4939  */
4940 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4941 {
4942 	return !skb->head_frag || skb_cloned(skb);
4943 }
4944 
4945 /* Local Checksum Offload.
4946  * Compute outer checksum based on the assumption that the
4947  * inner checksum will be offloaded later.
4948  * See Documentation/networking/checksum-offloads.rst for
4949  * explanation of how this works.
4950  * Fill in outer checksum adjustment (e.g. with sum of outer
4951  * pseudo-header) before calling.
4952  * Also ensure that inner checksum is in linear data area.
4953  */
4954 static inline __wsum lco_csum(struct sk_buff *skb)
4955 {
4956 	unsigned char *csum_start = skb_checksum_start(skb);
4957 	unsigned char *l4_hdr = skb_transport_header(skb);
4958 	__wsum partial;
4959 
4960 	/* Start with complement of inner checksum adjustment */
4961 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4962 						    skb->csum_offset));
4963 
4964 	/* Add in checksum of our headers (incl. outer checksum
4965 	 * adjustment filled in by caller) and return result.
4966 	 */
4967 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4968 }
4969 
4970 static inline bool skb_is_redirected(const struct sk_buff *skb)
4971 {
4972 	return skb->redirected;
4973 }
4974 
4975 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
4976 {
4977 	skb->redirected = 1;
4978 #ifdef CONFIG_NET_REDIRECT
4979 	skb->from_ingress = from_ingress;
4980 	if (skb->from_ingress)
4981 		skb_clear_tstamp(skb);
4982 #endif
4983 }
4984 
4985 static inline void skb_reset_redirect(struct sk_buff *skb)
4986 {
4987 	skb->redirected = 0;
4988 }
4989 
4990 static inline void skb_set_redirected_noclear(struct sk_buff *skb,
4991 					      bool from_ingress)
4992 {
4993 	skb->redirected = 1;
4994 #ifdef CONFIG_NET_REDIRECT
4995 	skb->from_ingress = from_ingress;
4996 #endif
4997 }
4998 
4999 static inline bool skb_csum_is_sctp(struct sk_buff *skb)
5000 {
5001 #if IS_ENABLED(CONFIG_IP_SCTP)
5002 	return skb->csum_not_inet;
5003 #else
5004 	return 0;
5005 #endif
5006 }
5007 
5008 static inline void skb_reset_csum_not_inet(struct sk_buff *skb)
5009 {
5010 	skb->ip_summed = CHECKSUM_NONE;
5011 #if IS_ENABLED(CONFIG_IP_SCTP)
5012 	skb->csum_not_inet = 0;
5013 #endif
5014 }
5015 
5016 static inline void skb_set_kcov_handle(struct sk_buff *skb,
5017 				       const u64 kcov_handle)
5018 {
5019 #ifdef CONFIG_KCOV
5020 	skb->kcov_handle = kcov_handle;
5021 #endif
5022 }
5023 
5024 static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
5025 {
5026 #ifdef CONFIG_KCOV
5027 	return skb->kcov_handle;
5028 #else
5029 	return 0;
5030 #endif
5031 }
5032 
5033 static inline void skb_mark_for_recycle(struct sk_buff *skb)
5034 {
5035 #ifdef CONFIG_PAGE_POOL
5036 	skb->pp_recycle = 1;
5037 #endif
5038 }
5039 
5040 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter,
5041 			     ssize_t maxsize, gfp_t gfp);
5042 
5043 #endif	/* __KERNEL__ */
5044 #endif	/* _LINUX_SKBUFF_H */
5045