xref: /linux-6.15/include/linux/skbuff.h (revision bb970707)
1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <[email protected]>
6  *		Florian La Roche, <[email protected]>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/bug.h>
22 #include <linux/cache.h>
23 #include <linux/rbtree.h>
24 #include <linux/socket.h>
25 
26 #include <linux/atomic.h>
27 #include <asm/types.h>
28 #include <linux/spinlock.h>
29 #include <linux/net.h>
30 #include <linux/textsearch.h>
31 #include <net/checksum.h>
32 #include <linux/rcupdate.h>
33 #include <linux/hrtimer.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/netdev_features.h>
36 #include <linux/sched.h>
37 #include <net/flow_dissector.h>
38 #include <linux/splice.h>
39 #include <linux/in6.h>
40 #include <net/flow.h>
41 
42 /* The interface for checksum offload between the stack and networking drivers
43  * is as follows...
44  *
45  * A. IP checksum related features
46  *
47  * Drivers advertise checksum offload capabilities in the features of a device.
48  * From the stack's point of view these are capabilities offered by the driver,
49  * a driver typically only advertises features that it is capable of offloading
50  * to its device.
51  *
52  * The checksum related features are:
53  *
54  *	NETIF_F_HW_CSUM	- The driver (or its device) is able to compute one
55  *			  IP (one's complement) checksum for any combination
56  *			  of protocols or protocol layering. The checksum is
57  *			  computed and set in a packet per the CHECKSUM_PARTIAL
58  *			  interface (see below).
59  *
60  *	NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
61  *			  TCP or UDP packets over IPv4. These are specifically
62  *			  unencapsulated packets of the form IPv4|TCP or
63  *			  IPv4|UDP where the Protocol field in the IPv4 header
64  *			  is TCP or UDP. The IPv4 header may contain IP options
65  *			  This feature cannot be set in features for a device
66  *			  with NETIF_F_HW_CSUM also set. This feature is being
67  *			  DEPRECATED (see below).
68  *
69  *	NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
70  *			  TCP or UDP packets over IPv6. These are specifically
71  *			  unencapsulated packets of the form IPv6|TCP or
72  *			  IPv4|UDP where the Next Header field in the IPv6
73  *			  header is either TCP or UDP. IPv6 extension headers
74  *			  are not supported with this feature. This feature
75  *			  cannot be set in features for a device with
76  *			  NETIF_F_HW_CSUM also set. This feature is being
77  *			  DEPRECATED (see below).
78  *
79  *	NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
80  *			 This flag is used only used to disable the RX checksum
81  *			 feature for a device. The stack will accept receive
82  *			 checksum indication in packets received on a device
83  *			 regardless of whether NETIF_F_RXCSUM is set.
84  *
85  * B. Checksumming of received packets by device. Indication of checksum
86  *    verification is in set skb->ip_summed. Possible values are:
87  *
88  * CHECKSUM_NONE:
89  *
90  *   Device did not checksum this packet e.g. due to lack of capabilities.
91  *   The packet contains full (though not verified) checksum in packet but
92  *   not in skb->csum. Thus, skb->csum is undefined in this case.
93  *
94  * CHECKSUM_UNNECESSARY:
95  *
96  *   The hardware you're dealing with doesn't calculate the full checksum
97  *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
98  *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
99  *   if their checksums are okay. skb->csum is still undefined in this case
100  *   though. A driver or device must never modify the checksum field in the
101  *   packet even if checksum is verified.
102  *
103  *   CHECKSUM_UNNECESSARY is applicable to following protocols:
104  *     TCP: IPv6 and IPv4.
105  *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
106  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
107  *       may perform further validation in this case.
108  *     GRE: only if the checksum is present in the header.
109  *     SCTP: indicates the CRC in SCTP header has been validated.
110  *
111  *   skb->csum_level indicates the number of consecutive checksums found in
112  *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
113  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
114  *   and a device is able to verify the checksums for UDP (possibly zero),
115  *   GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
116  *   two. If the device were only able to verify the UDP checksum and not
117  *   GRE, either because it doesn't support GRE checksum of because GRE
118  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
119  *   not considered in this case).
120  *
121  * CHECKSUM_COMPLETE:
122  *
123  *   This is the most generic way. The device supplied checksum of the _whole_
124  *   packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
125  *   hardware doesn't need to parse L3/L4 headers to implement this.
126  *
127  *   Note: Even if device supports only some protocols, but is able to produce
128  *   skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
129  *
130  * CHECKSUM_PARTIAL:
131  *
132  *   A checksum is set up to be offloaded to a device as described in the
133  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
134  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
135  *   on the same host, or it may be set in the input path in GRO or remote
136  *   checksum offload. For the purposes of checksum verification, the checksum
137  *   referred to by skb->csum_start + skb->csum_offset and any preceding
138  *   checksums in the packet are considered verified. Any checksums in the
139  *   packet that are after the checksum being offloaded are not considered to
140  *   be verified.
141  *
142  * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
143  *    in the skb->ip_summed for a packet. Values are:
144  *
145  * CHECKSUM_PARTIAL:
146  *
147  *   The driver is required to checksum the packet as seen by hard_start_xmit()
148  *   from skb->csum_start up to the end, and to record/write the checksum at
149  *   offset skb->csum_start + skb->csum_offset. A driver may verify that the
150  *   csum_start and csum_offset values are valid values given the length and
151  *   offset of the packet, however they should not attempt to validate that the
152  *   checksum refers to a legitimate transport layer checksum-- it is the
153  *   purview of the stack to validate that csum_start and csum_offset are set
154  *   correctly.
155  *
156  *   When the stack requests checksum offload for a packet, the driver MUST
157  *   ensure that the checksum is set correctly. A driver can either offload the
158  *   checksum calculation to the device, or call skb_checksum_help (in the case
159  *   that the device does not support offload for a particular checksum).
160  *
161  *   NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
162  *   NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
163  *   checksum offload capability. If a	device has limited checksum capabilities
164  *   (for instance can only perform NETIF_F_IP_CSUM or NETIF_F_IPV6_CSUM as
165  *   described above) a helper function can be called to resolve
166  *   CHECKSUM_PARTIAL. The helper functions are skb_csum_off_chk*. The helper
167  *   function takes a spec argument that describes the protocol layer that is
168  *   supported for checksum offload and can be called for each packet. If a
169  *   packet does not match the specification for offload, skb_checksum_help
170  *   is called to resolve the checksum.
171  *
172  * CHECKSUM_NONE:
173  *
174  *   The skb was already checksummed by the protocol, or a checksum is not
175  *   required.
176  *
177  * CHECKSUM_UNNECESSARY:
178  *
179  *   This has the same meaning on as CHECKSUM_NONE for checksum offload on
180  *   output.
181  *
182  * CHECKSUM_COMPLETE:
183  *   Not used in checksum output. If a driver observes a packet with this value
184  *   set in skbuff, if should treat as CHECKSUM_NONE being set.
185  *
186  * D. Non-IP checksum (CRC) offloads
187  *
188  *   NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
189  *     offloading the SCTP CRC in a packet. To perform this offload the stack
190  *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
191  *     accordingly. Note the there is no indication in the skbuff that the
192  *     CHECKSUM_PARTIAL refers to an SCTP checksum, a driver that supports
193  *     both IP checksum offload and SCTP CRC offload must verify which offload
194  *     is configured for a packet presumably by inspecting packet headers.
195  *
196  *   NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
197  *     offloading the FCOE CRC in a packet. To perform this offload the stack
198  *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
199  *     accordingly. Note the there is no indication in the skbuff that the
200  *     CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
201  *     both IP checksum offload and FCOE CRC offload must verify which offload
202  *     is configured for a packet presumably by inspecting packet headers.
203  *
204  * E. Checksumming on output with GSO.
205  *
206  * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
207  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
208  * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
209  * part of the GSO operation is implied. If a checksum is being offloaded
210  * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
211  * are set to refer to the outermost checksum being offload (two offloaded
212  * checksums are possible with UDP encapsulation).
213  */
214 
215 /* Don't change this without changing skb_csum_unnecessary! */
216 #define CHECKSUM_NONE		0
217 #define CHECKSUM_UNNECESSARY	1
218 #define CHECKSUM_COMPLETE	2
219 #define CHECKSUM_PARTIAL	3
220 
221 /* Maximum value in skb->csum_level */
222 #define SKB_MAX_CSUM_LEVEL	3
223 
224 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
225 #define SKB_WITH_OVERHEAD(X)	\
226 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
227 #define SKB_MAX_ORDER(X, ORDER) \
228 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
229 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
230 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
231 
232 /* return minimum truesize of one skb containing X bytes of data */
233 #define SKB_TRUESIZE(X) ((X) +						\
234 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
235 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
236 
237 struct net_device;
238 struct scatterlist;
239 struct pipe_inode_info;
240 struct iov_iter;
241 struct napi_struct;
242 
243 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
244 struct nf_conntrack {
245 	atomic_t use;
246 };
247 #endif
248 
249 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
250 struct nf_bridge_info {
251 	atomic_t		use;
252 	enum {
253 		BRNF_PROTO_UNCHANGED,
254 		BRNF_PROTO_8021Q,
255 		BRNF_PROTO_PPPOE
256 	} orig_proto:8;
257 	u8			pkt_otherhost:1;
258 	u8			in_prerouting:1;
259 	u8			bridged_dnat:1;
260 	__u16			frag_max_size;
261 	struct net_device	*physindev;
262 
263 	/* always valid & non-NULL from FORWARD on, for physdev match */
264 	struct net_device	*physoutdev;
265 	union {
266 		/* prerouting: detect dnat in orig/reply direction */
267 		__be32          ipv4_daddr;
268 		struct in6_addr ipv6_daddr;
269 
270 		/* after prerouting + nat detected: store original source
271 		 * mac since neigh resolution overwrites it, only used while
272 		 * skb is out in neigh layer.
273 		 */
274 		char neigh_header[8];
275 	};
276 };
277 #endif
278 
279 struct sk_buff_head {
280 	/* These two members must be first. */
281 	struct sk_buff	*next;
282 	struct sk_buff	*prev;
283 
284 	__u32		qlen;
285 	spinlock_t	lock;
286 };
287 
288 struct sk_buff;
289 
290 /* To allow 64K frame to be packed as single skb without frag_list we
291  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
292  * buffers which do not start on a page boundary.
293  *
294  * Since GRO uses frags we allocate at least 16 regardless of page
295  * size.
296  */
297 #if (65536/PAGE_SIZE + 1) < 16
298 #define MAX_SKB_FRAGS 16UL
299 #else
300 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
301 #endif
302 extern int sysctl_max_skb_frags;
303 
304 typedef struct skb_frag_struct skb_frag_t;
305 
306 struct skb_frag_struct {
307 	struct {
308 		struct page *p;
309 	} page;
310 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
311 	__u32 page_offset;
312 	__u32 size;
313 #else
314 	__u16 page_offset;
315 	__u16 size;
316 #endif
317 };
318 
319 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
320 {
321 	return frag->size;
322 }
323 
324 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
325 {
326 	frag->size = size;
327 }
328 
329 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
330 {
331 	frag->size += delta;
332 }
333 
334 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
335 {
336 	frag->size -= delta;
337 }
338 
339 #define HAVE_HW_TIME_STAMP
340 
341 /**
342  * struct skb_shared_hwtstamps - hardware time stamps
343  * @hwtstamp:	hardware time stamp transformed into duration
344  *		since arbitrary point in time
345  *
346  * Software time stamps generated by ktime_get_real() are stored in
347  * skb->tstamp.
348  *
349  * hwtstamps can only be compared against other hwtstamps from
350  * the same device.
351  *
352  * This structure is attached to packets as part of the
353  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
354  */
355 struct skb_shared_hwtstamps {
356 	ktime_t	hwtstamp;
357 };
358 
359 /* Definitions for tx_flags in struct skb_shared_info */
360 enum {
361 	/* generate hardware time stamp */
362 	SKBTX_HW_TSTAMP = 1 << 0,
363 
364 	/* generate software time stamp when queueing packet to NIC */
365 	SKBTX_SW_TSTAMP = 1 << 1,
366 
367 	/* device driver is going to provide hardware time stamp */
368 	SKBTX_IN_PROGRESS = 1 << 2,
369 
370 	/* device driver supports TX zero-copy buffers */
371 	SKBTX_DEV_ZEROCOPY = 1 << 3,
372 
373 	/* generate wifi status information (where possible) */
374 	SKBTX_WIFI_STATUS = 1 << 4,
375 
376 	/* This indicates at least one fragment might be overwritten
377 	 * (as in vmsplice(), sendfile() ...)
378 	 * If we need to compute a TX checksum, we'll need to copy
379 	 * all frags to avoid possible bad checksum
380 	 */
381 	SKBTX_SHARED_FRAG = 1 << 5,
382 
383 	/* generate software time stamp when entering packet scheduling */
384 	SKBTX_SCHED_TSTAMP = 1 << 6,
385 };
386 
387 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
388 				 SKBTX_SCHED_TSTAMP)
389 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
390 
391 /*
392  * The callback notifies userspace to release buffers when skb DMA is done in
393  * lower device, the skb last reference should be 0 when calling this.
394  * The zerocopy_success argument is true if zero copy transmit occurred,
395  * false on data copy or out of memory error caused by data copy attempt.
396  * The ctx field is used to track device context.
397  * The desc field is used to track userspace buffer index.
398  */
399 struct ubuf_info {
400 	void (*callback)(struct ubuf_info *, bool zerocopy_success);
401 	void *ctx;
402 	unsigned long desc;
403 };
404 
405 /* This data is invariant across clones and lives at
406  * the end of the header data, ie. at skb->end.
407  */
408 struct skb_shared_info {
409 	unsigned char	nr_frags;
410 	__u8		tx_flags;
411 	unsigned short	gso_size;
412 	/* Warning: this field is not always filled in (UFO)! */
413 	unsigned short	gso_segs;
414 	unsigned short  gso_type;
415 	struct sk_buff	*frag_list;
416 	struct skb_shared_hwtstamps hwtstamps;
417 	u32		tskey;
418 	__be32          ip6_frag_id;
419 
420 	/*
421 	 * Warning : all fields before dataref are cleared in __alloc_skb()
422 	 */
423 	atomic_t	dataref;
424 
425 	/* Intermediate layers must ensure that destructor_arg
426 	 * remains valid until skb destructor */
427 	void *		destructor_arg;
428 
429 	/* must be last field, see pskb_expand_head() */
430 	skb_frag_t	frags[MAX_SKB_FRAGS];
431 };
432 
433 /* We divide dataref into two halves.  The higher 16 bits hold references
434  * to the payload part of skb->data.  The lower 16 bits hold references to
435  * the entire skb->data.  A clone of a headerless skb holds the length of
436  * the header in skb->hdr_len.
437  *
438  * All users must obey the rule that the skb->data reference count must be
439  * greater than or equal to the payload reference count.
440  *
441  * Holding a reference to the payload part means that the user does not
442  * care about modifications to the header part of skb->data.
443  */
444 #define SKB_DATAREF_SHIFT 16
445 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
446 
447 
448 enum {
449 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
450 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
451 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
452 };
453 
454 enum {
455 	SKB_GSO_TCPV4 = 1 << 0,
456 	SKB_GSO_UDP = 1 << 1,
457 
458 	/* This indicates the skb is from an untrusted source. */
459 	SKB_GSO_DODGY = 1 << 2,
460 
461 	/* This indicates the tcp segment has CWR set. */
462 	SKB_GSO_TCP_ECN = 1 << 3,
463 
464 	SKB_GSO_TCP_FIXEDID = 1 << 4,
465 
466 	SKB_GSO_TCPV6 = 1 << 5,
467 
468 	SKB_GSO_FCOE = 1 << 6,
469 
470 	SKB_GSO_GRE = 1 << 7,
471 
472 	SKB_GSO_GRE_CSUM = 1 << 8,
473 
474 	SKB_GSO_IPXIP4 = 1 << 9,
475 
476 	SKB_GSO_IPXIP6 = 1 << 10,
477 
478 	SKB_GSO_UDP_TUNNEL = 1 << 11,
479 
480 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 12,
481 
482 	SKB_GSO_PARTIAL = 1 << 13,
483 
484 	SKB_GSO_TUNNEL_REMCSUM = 1 << 14,
485 };
486 
487 #if BITS_PER_LONG > 32
488 #define NET_SKBUFF_DATA_USES_OFFSET 1
489 #endif
490 
491 #ifdef NET_SKBUFF_DATA_USES_OFFSET
492 typedef unsigned int sk_buff_data_t;
493 #else
494 typedef unsigned char *sk_buff_data_t;
495 #endif
496 
497 /**
498  * struct skb_mstamp - multi resolution time stamps
499  * @stamp_us: timestamp in us resolution
500  * @stamp_jiffies: timestamp in jiffies
501  */
502 struct skb_mstamp {
503 	union {
504 		u64		v64;
505 		struct {
506 			u32	stamp_us;
507 			u32	stamp_jiffies;
508 		};
509 	};
510 };
511 
512 /**
513  * skb_mstamp_get - get current timestamp
514  * @cl: place to store timestamps
515  */
516 static inline void skb_mstamp_get(struct skb_mstamp *cl)
517 {
518 	u64 val = local_clock();
519 
520 	do_div(val, NSEC_PER_USEC);
521 	cl->stamp_us = (u32)val;
522 	cl->stamp_jiffies = (u32)jiffies;
523 }
524 
525 /**
526  * skb_mstamp_delta - compute the difference in usec between two skb_mstamp
527  * @t1: pointer to newest sample
528  * @t0: pointer to oldest sample
529  */
530 static inline u32 skb_mstamp_us_delta(const struct skb_mstamp *t1,
531 				      const struct skb_mstamp *t0)
532 {
533 	s32 delta_us = t1->stamp_us - t0->stamp_us;
534 	u32 delta_jiffies = t1->stamp_jiffies - t0->stamp_jiffies;
535 
536 	/* If delta_us is negative, this might be because interval is too big,
537 	 * or local_clock() drift is too big : fallback using jiffies.
538 	 */
539 	if (delta_us <= 0 ||
540 	    delta_jiffies >= (INT_MAX / (USEC_PER_SEC / HZ)))
541 
542 		delta_us = jiffies_to_usecs(delta_jiffies);
543 
544 	return delta_us;
545 }
546 
547 static inline bool skb_mstamp_after(const struct skb_mstamp *t1,
548 				    const struct skb_mstamp *t0)
549 {
550 	s32 diff = t1->stamp_jiffies - t0->stamp_jiffies;
551 
552 	if (!diff)
553 		diff = t1->stamp_us - t0->stamp_us;
554 	return diff > 0;
555 }
556 
557 /**
558  *	struct sk_buff - socket buffer
559  *	@next: Next buffer in list
560  *	@prev: Previous buffer in list
561  *	@tstamp: Time we arrived/left
562  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
563  *	@sk: Socket we are owned by
564  *	@dev: Device we arrived on/are leaving by
565  *	@cb: Control buffer. Free for use by every layer. Put private vars here
566  *	@_skb_refdst: destination entry (with norefcount bit)
567  *	@sp: the security path, used for xfrm
568  *	@len: Length of actual data
569  *	@data_len: Data length
570  *	@mac_len: Length of link layer header
571  *	@hdr_len: writable header length of cloned skb
572  *	@csum: Checksum (must include start/offset pair)
573  *	@csum_start: Offset from skb->head where checksumming should start
574  *	@csum_offset: Offset from csum_start where checksum should be stored
575  *	@priority: Packet queueing priority
576  *	@ignore_df: allow local fragmentation
577  *	@cloned: Head may be cloned (check refcnt to be sure)
578  *	@ip_summed: Driver fed us an IP checksum
579  *	@nohdr: Payload reference only, must not modify header
580  *	@nfctinfo: Relationship of this skb to the connection
581  *	@pkt_type: Packet class
582  *	@fclone: skbuff clone status
583  *	@ipvs_property: skbuff is owned by ipvs
584  *	@peeked: this packet has been seen already, so stats have been
585  *		done for it, don't do them again
586  *	@nf_trace: netfilter packet trace flag
587  *	@protocol: Packet protocol from driver
588  *	@destructor: Destruct function
589  *	@nfct: Associated connection, if any
590  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
591  *	@skb_iif: ifindex of device we arrived on
592  *	@tc_index: Traffic control index
593  *	@tc_verd: traffic control verdict
594  *	@hash: the packet hash
595  *	@queue_mapping: Queue mapping for multiqueue devices
596  *	@xmit_more: More SKBs are pending for this queue
597  *	@ndisc_nodetype: router type (from link layer)
598  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
599  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
600  *		ports.
601  *	@sw_hash: indicates hash was computed in software stack
602  *	@wifi_acked_valid: wifi_acked was set
603  *	@wifi_acked: whether frame was acked on wifi or not
604  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
605   *	@napi_id: id of the NAPI struct this skb came from
606  *	@secmark: security marking
607  *	@offload_fwd_mark: fwding offload mark
608  *	@mark: Generic packet mark
609  *	@vlan_proto: vlan encapsulation protocol
610  *	@vlan_tci: vlan tag control information
611  *	@inner_protocol: Protocol (encapsulation)
612  *	@inner_transport_header: Inner transport layer header (encapsulation)
613  *	@inner_network_header: Network layer header (encapsulation)
614  *	@inner_mac_header: Link layer header (encapsulation)
615  *	@transport_header: Transport layer header
616  *	@network_header: Network layer header
617  *	@mac_header: Link layer header
618  *	@tail: Tail pointer
619  *	@end: End pointer
620  *	@head: Head of buffer
621  *	@data: Data head pointer
622  *	@truesize: Buffer size
623  *	@users: User count - see {datagram,tcp}.c
624  */
625 
626 struct sk_buff {
627 	union {
628 		struct {
629 			/* These two members must be first. */
630 			struct sk_buff		*next;
631 			struct sk_buff		*prev;
632 
633 			union {
634 				ktime_t		tstamp;
635 				struct skb_mstamp skb_mstamp;
636 			};
637 		};
638 		struct rb_node	rbnode; /* used in netem & tcp stack */
639 	};
640 	struct sock		*sk;
641 	struct net_device	*dev;
642 
643 	/*
644 	 * This is the control buffer. It is free to use for every
645 	 * layer. Please put your private variables there. If you
646 	 * want to keep them across layers you have to do a skb_clone()
647 	 * first. This is owned by whoever has the skb queued ATM.
648 	 */
649 	char			cb[48] __aligned(8);
650 
651 	unsigned long		_skb_refdst;
652 	void			(*destructor)(struct sk_buff *skb);
653 #ifdef CONFIG_XFRM
654 	struct	sec_path	*sp;
655 #endif
656 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
657 	struct nf_conntrack	*nfct;
658 #endif
659 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
660 	struct nf_bridge_info	*nf_bridge;
661 #endif
662 	unsigned int		len,
663 				data_len;
664 	__u16			mac_len,
665 				hdr_len;
666 
667 	/* Following fields are _not_ copied in __copy_skb_header()
668 	 * Note that queue_mapping is here mostly to fill a hole.
669 	 */
670 	kmemcheck_bitfield_begin(flags1);
671 	__u16			queue_mapping;
672 	__u8			cloned:1,
673 				nohdr:1,
674 				fclone:2,
675 				peeked:1,
676 				head_frag:1,
677 				xmit_more:1;
678 	/* one bit hole */
679 	kmemcheck_bitfield_end(flags1);
680 
681 	/* fields enclosed in headers_start/headers_end are copied
682 	 * using a single memcpy() in __copy_skb_header()
683 	 */
684 	/* private: */
685 	__u32			headers_start[0];
686 	/* public: */
687 
688 /* if you move pkt_type around you also must adapt those constants */
689 #ifdef __BIG_ENDIAN_BITFIELD
690 #define PKT_TYPE_MAX	(7 << 5)
691 #else
692 #define PKT_TYPE_MAX	7
693 #endif
694 #define PKT_TYPE_OFFSET()	offsetof(struct sk_buff, __pkt_type_offset)
695 
696 	__u8			__pkt_type_offset[0];
697 	__u8			pkt_type:3;
698 	__u8			pfmemalloc:1;
699 	__u8			ignore_df:1;
700 	__u8			nfctinfo:3;
701 
702 	__u8			nf_trace:1;
703 	__u8			ip_summed:2;
704 	__u8			ooo_okay:1;
705 	__u8			l4_hash:1;
706 	__u8			sw_hash:1;
707 	__u8			wifi_acked_valid:1;
708 	__u8			wifi_acked:1;
709 
710 	__u8			no_fcs:1;
711 	/* Indicates the inner headers are valid in the skbuff. */
712 	__u8			encapsulation:1;
713 	__u8			encap_hdr_csum:1;
714 	__u8			csum_valid:1;
715 	__u8			csum_complete_sw:1;
716 	__u8			csum_level:2;
717 	__u8			csum_bad:1;
718 
719 #ifdef CONFIG_IPV6_NDISC_NODETYPE
720 	__u8			ndisc_nodetype:2;
721 #endif
722 	__u8			ipvs_property:1;
723 	__u8			inner_protocol_type:1;
724 	__u8			remcsum_offload:1;
725 	/* 3 or 5 bit hole */
726 
727 #ifdef CONFIG_NET_SCHED
728 	__u16			tc_index;	/* traffic control index */
729 #ifdef CONFIG_NET_CLS_ACT
730 	__u16			tc_verd;	/* traffic control verdict */
731 #endif
732 #endif
733 
734 	union {
735 		__wsum		csum;
736 		struct {
737 			__u16	csum_start;
738 			__u16	csum_offset;
739 		};
740 	};
741 	__u32			priority;
742 	int			skb_iif;
743 	__u32			hash;
744 	__be16			vlan_proto;
745 	__u16			vlan_tci;
746 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
747 	union {
748 		unsigned int	napi_id;
749 		unsigned int	sender_cpu;
750 	};
751 #endif
752 	union {
753 #ifdef CONFIG_NETWORK_SECMARK
754 		__u32		secmark;
755 #endif
756 #ifdef CONFIG_NET_SWITCHDEV
757 		__u32		offload_fwd_mark;
758 #endif
759 	};
760 
761 	union {
762 		__u32		mark;
763 		__u32		reserved_tailroom;
764 	};
765 
766 	union {
767 		__be16		inner_protocol;
768 		__u8		inner_ipproto;
769 	};
770 
771 	__u16			inner_transport_header;
772 	__u16			inner_network_header;
773 	__u16			inner_mac_header;
774 
775 	__be16			protocol;
776 	__u16			transport_header;
777 	__u16			network_header;
778 	__u16			mac_header;
779 
780 	/* private: */
781 	__u32			headers_end[0];
782 	/* public: */
783 
784 	/* These elements must be at the end, see alloc_skb() for details.  */
785 	sk_buff_data_t		tail;
786 	sk_buff_data_t		end;
787 	unsigned char		*head,
788 				*data;
789 	unsigned int		truesize;
790 	atomic_t		users;
791 };
792 
793 #ifdef __KERNEL__
794 /*
795  *	Handling routines are only of interest to the kernel
796  */
797 #include <linux/slab.h>
798 
799 
800 #define SKB_ALLOC_FCLONE	0x01
801 #define SKB_ALLOC_RX		0x02
802 #define SKB_ALLOC_NAPI		0x04
803 
804 /* Returns true if the skb was allocated from PFMEMALLOC reserves */
805 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
806 {
807 	return unlikely(skb->pfmemalloc);
808 }
809 
810 /*
811  * skb might have a dst pointer attached, refcounted or not.
812  * _skb_refdst low order bit is set if refcount was _not_ taken
813  */
814 #define SKB_DST_NOREF	1UL
815 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
816 
817 /**
818  * skb_dst - returns skb dst_entry
819  * @skb: buffer
820  *
821  * Returns skb dst_entry, regardless of reference taken or not.
822  */
823 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
824 {
825 	/* If refdst was not refcounted, check we still are in a
826 	 * rcu_read_lock section
827 	 */
828 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
829 		!rcu_read_lock_held() &&
830 		!rcu_read_lock_bh_held());
831 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
832 }
833 
834 /**
835  * skb_dst_set - sets skb dst
836  * @skb: buffer
837  * @dst: dst entry
838  *
839  * Sets skb dst, assuming a reference was taken on dst and should
840  * be released by skb_dst_drop()
841  */
842 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
843 {
844 	skb->_skb_refdst = (unsigned long)dst;
845 }
846 
847 /**
848  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
849  * @skb: buffer
850  * @dst: dst entry
851  *
852  * Sets skb dst, assuming a reference was not taken on dst.
853  * If dst entry is cached, we do not take reference and dst_release
854  * will be avoided by refdst_drop. If dst entry is not cached, we take
855  * reference, so that last dst_release can destroy the dst immediately.
856  */
857 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
858 {
859 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
860 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
861 }
862 
863 /**
864  * skb_dst_is_noref - Test if skb dst isn't refcounted
865  * @skb: buffer
866  */
867 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
868 {
869 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
870 }
871 
872 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
873 {
874 	return (struct rtable *)skb_dst(skb);
875 }
876 
877 void kfree_skb(struct sk_buff *skb);
878 void kfree_skb_list(struct sk_buff *segs);
879 void skb_tx_error(struct sk_buff *skb);
880 void consume_skb(struct sk_buff *skb);
881 void  __kfree_skb(struct sk_buff *skb);
882 extern struct kmem_cache *skbuff_head_cache;
883 
884 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
885 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
886 		      bool *fragstolen, int *delta_truesize);
887 
888 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
889 			    int node);
890 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
891 struct sk_buff *build_skb(void *data, unsigned int frag_size);
892 static inline struct sk_buff *alloc_skb(unsigned int size,
893 					gfp_t priority)
894 {
895 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
896 }
897 
898 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
899 				     unsigned long data_len,
900 				     int max_page_order,
901 				     int *errcode,
902 				     gfp_t gfp_mask);
903 
904 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
905 struct sk_buff_fclones {
906 	struct sk_buff	skb1;
907 
908 	struct sk_buff	skb2;
909 
910 	atomic_t	fclone_ref;
911 };
912 
913 /**
914  *	skb_fclone_busy - check if fclone is busy
915  *	@skb: buffer
916  *
917  * Returns true if skb is a fast clone, and its clone is not freed.
918  * Some drivers call skb_orphan() in their ndo_start_xmit(),
919  * so we also check that this didnt happen.
920  */
921 static inline bool skb_fclone_busy(const struct sock *sk,
922 				   const struct sk_buff *skb)
923 {
924 	const struct sk_buff_fclones *fclones;
925 
926 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
927 
928 	return skb->fclone == SKB_FCLONE_ORIG &&
929 	       atomic_read(&fclones->fclone_ref) > 1 &&
930 	       fclones->skb2.sk == sk;
931 }
932 
933 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
934 					       gfp_t priority)
935 {
936 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
937 }
938 
939 struct sk_buff *__alloc_skb_head(gfp_t priority, int node);
940 static inline struct sk_buff *alloc_skb_head(gfp_t priority)
941 {
942 	return __alloc_skb_head(priority, -1);
943 }
944 
945 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
946 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
947 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
948 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
949 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
950 				   gfp_t gfp_mask, bool fclone);
951 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
952 					  gfp_t gfp_mask)
953 {
954 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
955 }
956 
957 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
958 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
959 				     unsigned int headroom);
960 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
961 				int newtailroom, gfp_t priority);
962 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
963 			int offset, int len);
964 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset,
965 		 int len);
966 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
967 int skb_pad(struct sk_buff *skb, int pad);
968 #define dev_kfree_skb(a)	consume_skb(a)
969 
970 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
971 			    int getfrag(void *from, char *to, int offset,
972 					int len, int odd, struct sk_buff *skb),
973 			    void *from, int length);
974 
975 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
976 			 int offset, size_t size);
977 
978 struct skb_seq_state {
979 	__u32		lower_offset;
980 	__u32		upper_offset;
981 	__u32		frag_idx;
982 	__u32		stepped_offset;
983 	struct sk_buff	*root_skb;
984 	struct sk_buff	*cur_skb;
985 	__u8		*frag_data;
986 };
987 
988 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
989 			  unsigned int to, struct skb_seq_state *st);
990 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
991 			  struct skb_seq_state *st);
992 void skb_abort_seq_read(struct skb_seq_state *st);
993 
994 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
995 			   unsigned int to, struct ts_config *config);
996 
997 /*
998  * Packet hash types specify the type of hash in skb_set_hash.
999  *
1000  * Hash types refer to the protocol layer addresses which are used to
1001  * construct a packet's hash. The hashes are used to differentiate or identify
1002  * flows of the protocol layer for the hash type. Hash types are either
1003  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1004  *
1005  * Properties of hashes:
1006  *
1007  * 1) Two packets in different flows have different hash values
1008  * 2) Two packets in the same flow should have the same hash value
1009  *
1010  * A hash at a higher layer is considered to be more specific. A driver should
1011  * set the most specific hash possible.
1012  *
1013  * A driver cannot indicate a more specific hash than the layer at which a hash
1014  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1015  *
1016  * A driver may indicate a hash level which is less specific than the
1017  * actual layer the hash was computed on. For instance, a hash computed
1018  * at L4 may be considered an L3 hash. This should only be done if the
1019  * driver can't unambiguously determine that the HW computed the hash at
1020  * the higher layer. Note that the "should" in the second property above
1021  * permits this.
1022  */
1023 enum pkt_hash_types {
1024 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1025 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1026 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1027 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1028 };
1029 
1030 static inline void skb_clear_hash(struct sk_buff *skb)
1031 {
1032 	skb->hash = 0;
1033 	skb->sw_hash = 0;
1034 	skb->l4_hash = 0;
1035 }
1036 
1037 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1038 {
1039 	if (!skb->l4_hash)
1040 		skb_clear_hash(skb);
1041 }
1042 
1043 static inline void
1044 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1045 {
1046 	skb->l4_hash = is_l4;
1047 	skb->sw_hash = is_sw;
1048 	skb->hash = hash;
1049 }
1050 
1051 static inline void
1052 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1053 {
1054 	/* Used by drivers to set hash from HW */
1055 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1056 }
1057 
1058 static inline void
1059 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1060 {
1061 	__skb_set_hash(skb, hash, true, is_l4);
1062 }
1063 
1064 void __skb_get_hash(struct sk_buff *skb);
1065 u32 skb_get_poff(const struct sk_buff *skb);
1066 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1067 		   const struct flow_keys *keys, int hlen);
1068 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1069 			    void *data, int hlen_proto);
1070 
1071 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1072 					int thoff, u8 ip_proto)
1073 {
1074 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1075 }
1076 
1077 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1078 			     const struct flow_dissector_key *key,
1079 			     unsigned int key_count);
1080 
1081 bool __skb_flow_dissect(const struct sk_buff *skb,
1082 			struct flow_dissector *flow_dissector,
1083 			void *target_container,
1084 			void *data, __be16 proto, int nhoff, int hlen,
1085 			unsigned int flags);
1086 
1087 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1088 				    struct flow_dissector *flow_dissector,
1089 				    void *target_container, unsigned int flags)
1090 {
1091 	return __skb_flow_dissect(skb, flow_dissector, target_container,
1092 				  NULL, 0, 0, 0, flags);
1093 }
1094 
1095 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1096 					      struct flow_keys *flow,
1097 					      unsigned int flags)
1098 {
1099 	memset(flow, 0, sizeof(*flow));
1100 	return __skb_flow_dissect(skb, &flow_keys_dissector, flow,
1101 				  NULL, 0, 0, 0, flags);
1102 }
1103 
1104 static inline bool skb_flow_dissect_flow_keys_buf(struct flow_keys *flow,
1105 						  void *data, __be16 proto,
1106 						  int nhoff, int hlen,
1107 						  unsigned int flags)
1108 {
1109 	memset(flow, 0, sizeof(*flow));
1110 	return __skb_flow_dissect(NULL, &flow_keys_buf_dissector, flow,
1111 				  data, proto, nhoff, hlen, flags);
1112 }
1113 
1114 static inline __u32 skb_get_hash(struct sk_buff *skb)
1115 {
1116 	if (!skb->l4_hash && !skb->sw_hash)
1117 		__skb_get_hash(skb);
1118 
1119 	return skb->hash;
1120 }
1121 
1122 __u32 __skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6);
1123 
1124 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1125 {
1126 	if (!skb->l4_hash && !skb->sw_hash) {
1127 		struct flow_keys keys;
1128 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1129 
1130 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1131 	}
1132 
1133 	return skb->hash;
1134 }
1135 
1136 __u32 __skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl);
1137 
1138 static inline __u32 skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl4)
1139 {
1140 	if (!skb->l4_hash && !skb->sw_hash) {
1141 		struct flow_keys keys;
1142 		__u32 hash = __get_hash_from_flowi4(fl4, &keys);
1143 
1144 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1145 	}
1146 
1147 	return skb->hash;
1148 }
1149 
1150 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);
1151 
1152 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1153 {
1154 	return skb->hash;
1155 }
1156 
1157 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1158 {
1159 	to->hash = from->hash;
1160 	to->sw_hash = from->sw_hash;
1161 	to->l4_hash = from->l4_hash;
1162 };
1163 
1164 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1165 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1166 {
1167 	return skb->head + skb->end;
1168 }
1169 
1170 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1171 {
1172 	return skb->end;
1173 }
1174 #else
1175 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1176 {
1177 	return skb->end;
1178 }
1179 
1180 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1181 {
1182 	return skb->end - skb->head;
1183 }
1184 #endif
1185 
1186 /* Internal */
1187 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1188 
1189 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1190 {
1191 	return &skb_shinfo(skb)->hwtstamps;
1192 }
1193 
1194 /**
1195  *	skb_queue_empty - check if a queue is empty
1196  *	@list: queue head
1197  *
1198  *	Returns true if the queue is empty, false otherwise.
1199  */
1200 static inline int skb_queue_empty(const struct sk_buff_head *list)
1201 {
1202 	return list->next == (const struct sk_buff *) list;
1203 }
1204 
1205 /**
1206  *	skb_queue_is_last - check if skb is the last entry in the queue
1207  *	@list: queue head
1208  *	@skb: buffer
1209  *
1210  *	Returns true if @skb is the last buffer on the list.
1211  */
1212 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1213 				     const struct sk_buff *skb)
1214 {
1215 	return skb->next == (const struct sk_buff *) list;
1216 }
1217 
1218 /**
1219  *	skb_queue_is_first - check if skb is the first entry in the queue
1220  *	@list: queue head
1221  *	@skb: buffer
1222  *
1223  *	Returns true if @skb is the first buffer on the list.
1224  */
1225 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1226 				      const struct sk_buff *skb)
1227 {
1228 	return skb->prev == (const struct sk_buff *) list;
1229 }
1230 
1231 /**
1232  *	skb_queue_next - return the next packet in the queue
1233  *	@list: queue head
1234  *	@skb: current buffer
1235  *
1236  *	Return the next packet in @list after @skb.  It is only valid to
1237  *	call this if skb_queue_is_last() evaluates to false.
1238  */
1239 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1240 					     const struct sk_buff *skb)
1241 {
1242 	/* This BUG_ON may seem severe, but if we just return then we
1243 	 * are going to dereference garbage.
1244 	 */
1245 	BUG_ON(skb_queue_is_last(list, skb));
1246 	return skb->next;
1247 }
1248 
1249 /**
1250  *	skb_queue_prev - return the prev packet in the queue
1251  *	@list: queue head
1252  *	@skb: current buffer
1253  *
1254  *	Return the prev packet in @list before @skb.  It is only valid to
1255  *	call this if skb_queue_is_first() evaluates to false.
1256  */
1257 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1258 					     const struct sk_buff *skb)
1259 {
1260 	/* This BUG_ON may seem severe, but if we just return then we
1261 	 * are going to dereference garbage.
1262 	 */
1263 	BUG_ON(skb_queue_is_first(list, skb));
1264 	return skb->prev;
1265 }
1266 
1267 /**
1268  *	skb_get - reference buffer
1269  *	@skb: buffer to reference
1270  *
1271  *	Makes another reference to a socket buffer and returns a pointer
1272  *	to the buffer.
1273  */
1274 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1275 {
1276 	atomic_inc(&skb->users);
1277 	return skb;
1278 }
1279 
1280 /*
1281  * If users == 1, we are the only owner and are can avoid redundant
1282  * atomic change.
1283  */
1284 
1285 /**
1286  *	skb_cloned - is the buffer a clone
1287  *	@skb: buffer to check
1288  *
1289  *	Returns true if the buffer was generated with skb_clone() and is
1290  *	one of multiple shared copies of the buffer. Cloned buffers are
1291  *	shared data so must not be written to under normal circumstances.
1292  */
1293 static inline int skb_cloned(const struct sk_buff *skb)
1294 {
1295 	return skb->cloned &&
1296 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1297 }
1298 
1299 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1300 {
1301 	might_sleep_if(gfpflags_allow_blocking(pri));
1302 
1303 	if (skb_cloned(skb))
1304 		return pskb_expand_head(skb, 0, 0, pri);
1305 
1306 	return 0;
1307 }
1308 
1309 /**
1310  *	skb_header_cloned - is the header a clone
1311  *	@skb: buffer to check
1312  *
1313  *	Returns true if modifying the header part of the buffer requires
1314  *	the data to be copied.
1315  */
1316 static inline int skb_header_cloned(const struct sk_buff *skb)
1317 {
1318 	int dataref;
1319 
1320 	if (!skb->cloned)
1321 		return 0;
1322 
1323 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1324 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1325 	return dataref != 1;
1326 }
1327 
1328 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1329 {
1330 	might_sleep_if(gfpflags_allow_blocking(pri));
1331 
1332 	if (skb_header_cloned(skb))
1333 		return pskb_expand_head(skb, 0, 0, pri);
1334 
1335 	return 0;
1336 }
1337 
1338 /**
1339  *	skb_header_release - release reference to header
1340  *	@skb: buffer to operate on
1341  *
1342  *	Drop a reference to the header part of the buffer.  This is done
1343  *	by acquiring a payload reference.  You must not read from the header
1344  *	part of skb->data after this.
1345  *	Note : Check if you can use __skb_header_release() instead.
1346  */
1347 static inline void skb_header_release(struct sk_buff *skb)
1348 {
1349 	BUG_ON(skb->nohdr);
1350 	skb->nohdr = 1;
1351 	atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
1352 }
1353 
1354 /**
1355  *	__skb_header_release - release reference to header
1356  *	@skb: buffer to operate on
1357  *
1358  *	Variant of skb_header_release() assuming skb is private to caller.
1359  *	We can avoid one atomic operation.
1360  */
1361 static inline void __skb_header_release(struct sk_buff *skb)
1362 {
1363 	skb->nohdr = 1;
1364 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1365 }
1366 
1367 
1368 /**
1369  *	skb_shared - is the buffer shared
1370  *	@skb: buffer to check
1371  *
1372  *	Returns true if more than one person has a reference to this
1373  *	buffer.
1374  */
1375 static inline int skb_shared(const struct sk_buff *skb)
1376 {
1377 	return atomic_read(&skb->users) != 1;
1378 }
1379 
1380 /**
1381  *	skb_share_check - check if buffer is shared and if so clone it
1382  *	@skb: buffer to check
1383  *	@pri: priority for memory allocation
1384  *
1385  *	If the buffer is shared the buffer is cloned and the old copy
1386  *	drops a reference. A new clone with a single reference is returned.
1387  *	If the buffer is not shared the original buffer is returned. When
1388  *	being called from interrupt status or with spinlocks held pri must
1389  *	be GFP_ATOMIC.
1390  *
1391  *	NULL is returned on a memory allocation failure.
1392  */
1393 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1394 {
1395 	might_sleep_if(gfpflags_allow_blocking(pri));
1396 	if (skb_shared(skb)) {
1397 		struct sk_buff *nskb = skb_clone(skb, pri);
1398 
1399 		if (likely(nskb))
1400 			consume_skb(skb);
1401 		else
1402 			kfree_skb(skb);
1403 		skb = nskb;
1404 	}
1405 	return skb;
1406 }
1407 
1408 /*
1409  *	Copy shared buffers into a new sk_buff. We effectively do COW on
1410  *	packets to handle cases where we have a local reader and forward
1411  *	and a couple of other messy ones. The normal one is tcpdumping
1412  *	a packet thats being forwarded.
1413  */
1414 
1415 /**
1416  *	skb_unshare - make a copy of a shared buffer
1417  *	@skb: buffer to check
1418  *	@pri: priority for memory allocation
1419  *
1420  *	If the socket buffer is a clone then this function creates a new
1421  *	copy of the data, drops a reference count on the old copy and returns
1422  *	the new copy with the reference count at 1. If the buffer is not a clone
1423  *	the original buffer is returned. When called with a spinlock held or
1424  *	from interrupt state @pri must be %GFP_ATOMIC
1425  *
1426  *	%NULL is returned on a memory allocation failure.
1427  */
1428 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1429 					  gfp_t pri)
1430 {
1431 	might_sleep_if(gfpflags_allow_blocking(pri));
1432 	if (skb_cloned(skb)) {
1433 		struct sk_buff *nskb = skb_copy(skb, pri);
1434 
1435 		/* Free our shared copy */
1436 		if (likely(nskb))
1437 			consume_skb(skb);
1438 		else
1439 			kfree_skb(skb);
1440 		skb = nskb;
1441 	}
1442 	return skb;
1443 }
1444 
1445 /**
1446  *	skb_peek - peek at the head of an &sk_buff_head
1447  *	@list_: list to peek at
1448  *
1449  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1450  *	be careful with this one. A peek leaves the buffer on the
1451  *	list and someone else may run off with it. You must hold
1452  *	the appropriate locks or have a private queue to do this.
1453  *
1454  *	Returns %NULL for an empty list or a pointer to the head element.
1455  *	The reference count is not incremented and the reference is therefore
1456  *	volatile. Use with caution.
1457  */
1458 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1459 {
1460 	struct sk_buff *skb = list_->next;
1461 
1462 	if (skb == (struct sk_buff *)list_)
1463 		skb = NULL;
1464 	return skb;
1465 }
1466 
1467 /**
1468  *	skb_peek_next - peek skb following the given one from a queue
1469  *	@skb: skb to start from
1470  *	@list_: list to peek at
1471  *
1472  *	Returns %NULL when the end of the list is met or a pointer to the
1473  *	next element. The reference count is not incremented and the
1474  *	reference is therefore volatile. Use with caution.
1475  */
1476 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1477 		const struct sk_buff_head *list_)
1478 {
1479 	struct sk_buff *next = skb->next;
1480 
1481 	if (next == (struct sk_buff *)list_)
1482 		next = NULL;
1483 	return next;
1484 }
1485 
1486 /**
1487  *	skb_peek_tail - peek at the tail of an &sk_buff_head
1488  *	@list_: list to peek at
1489  *
1490  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1491  *	be careful with this one. A peek leaves the buffer on the
1492  *	list and someone else may run off with it. You must hold
1493  *	the appropriate locks or have a private queue to do this.
1494  *
1495  *	Returns %NULL for an empty list or a pointer to the tail element.
1496  *	The reference count is not incremented and the reference is therefore
1497  *	volatile. Use with caution.
1498  */
1499 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1500 {
1501 	struct sk_buff *skb = list_->prev;
1502 
1503 	if (skb == (struct sk_buff *)list_)
1504 		skb = NULL;
1505 	return skb;
1506 
1507 }
1508 
1509 /**
1510  *	skb_queue_len	- get queue length
1511  *	@list_: list to measure
1512  *
1513  *	Return the length of an &sk_buff queue.
1514  */
1515 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1516 {
1517 	return list_->qlen;
1518 }
1519 
1520 /**
1521  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1522  *	@list: queue to initialize
1523  *
1524  *	This initializes only the list and queue length aspects of
1525  *	an sk_buff_head object.  This allows to initialize the list
1526  *	aspects of an sk_buff_head without reinitializing things like
1527  *	the spinlock.  It can also be used for on-stack sk_buff_head
1528  *	objects where the spinlock is known to not be used.
1529  */
1530 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1531 {
1532 	list->prev = list->next = (struct sk_buff *)list;
1533 	list->qlen = 0;
1534 }
1535 
1536 /*
1537  * This function creates a split out lock class for each invocation;
1538  * this is needed for now since a whole lot of users of the skb-queue
1539  * infrastructure in drivers have different locking usage (in hardirq)
1540  * than the networking core (in softirq only). In the long run either the
1541  * network layer or drivers should need annotation to consolidate the
1542  * main types of usage into 3 classes.
1543  */
1544 static inline void skb_queue_head_init(struct sk_buff_head *list)
1545 {
1546 	spin_lock_init(&list->lock);
1547 	__skb_queue_head_init(list);
1548 }
1549 
1550 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1551 		struct lock_class_key *class)
1552 {
1553 	skb_queue_head_init(list);
1554 	lockdep_set_class(&list->lock, class);
1555 }
1556 
1557 /*
1558  *	Insert an sk_buff on a list.
1559  *
1560  *	The "__skb_xxxx()" functions are the non-atomic ones that
1561  *	can only be called with interrupts disabled.
1562  */
1563 void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1564 		struct sk_buff_head *list);
1565 static inline void __skb_insert(struct sk_buff *newsk,
1566 				struct sk_buff *prev, struct sk_buff *next,
1567 				struct sk_buff_head *list)
1568 {
1569 	newsk->next = next;
1570 	newsk->prev = prev;
1571 	next->prev  = prev->next = newsk;
1572 	list->qlen++;
1573 }
1574 
1575 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1576 				      struct sk_buff *prev,
1577 				      struct sk_buff *next)
1578 {
1579 	struct sk_buff *first = list->next;
1580 	struct sk_buff *last = list->prev;
1581 
1582 	first->prev = prev;
1583 	prev->next = first;
1584 
1585 	last->next = next;
1586 	next->prev = last;
1587 }
1588 
1589 /**
1590  *	skb_queue_splice - join two skb lists, this is designed for stacks
1591  *	@list: the new list to add
1592  *	@head: the place to add it in the first list
1593  */
1594 static inline void skb_queue_splice(const struct sk_buff_head *list,
1595 				    struct sk_buff_head *head)
1596 {
1597 	if (!skb_queue_empty(list)) {
1598 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1599 		head->qlen += list->qlen;
1600 	}
1601 }
1602 
1603 /**
1604  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1605  *	@list: the new list to add
1606  *	@head: the place to add it in the first list
1607  *
1608  *	The list at @list is reinitialised
1609  */
1610 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1611 					 struct sk_buff_head *head)
1612 {
1613 	if (!skb_queue_empty(list)) {
1614 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1615 		head->qlen += list->qlen;
1616 		__skb_queue_head_init(list);
1617 	}
1618 }
1619 
1620 /**
1621  *	skb_queue_splice_tail - join two skb lists, each list being a queue
1622  *	@list: the new list to add
1623  *	@head: the place to add it in the first list
1624  */
1625 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1626 					 struct sk_buff_head *head)
1627 {
1628 	if (!skb_queue_empty(list)) {
1629 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1630 		head->qlen += list->qlen;
1631 	}
1632 }
1633 
1634 /**
1635  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1636  *	@list: the new list to add
1637  *	@head: the place to add it in the first list
1638  *
1639  *	Each of the lists is a queue.
1640  *	The list at @list is reinitialised
1641  */
1642 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1643 					      struct sk_buff_head *head)
1644 {
1645 	if (!skb_queue_empty(list)) {
1646 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1647 		head->qlen += list->qlen;
1648 		__skb_queue_head_init(list);
1649 	}
1650 }
1651 
1652 /**
1653  *	__skb_queue_after - queue a buffer at the list head
1654  *	@list: list to use
1655  *	@prev: place after this buffer
1656  *	@newsk: buffer to queue
1657  *
1658  *	Queue a buffer int the middle of a list. This function takes no locks
1659  *	and you must therefore hold required locks before calling it.
1660  *
1661  *	A buffer cannot be placed on two lists at the same time.
1662  */
1663 static inline void __skb_queue_after(struct sk_buff_head *list,
1664 				     struct sk_buff *prev,
1665 				     struct sk_buff *newsk)
1666 {
1667 	__skb_insert(newsk, prev, prev->next, list);
1668 }
1669 
1670 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1671 		struct sk_buff_head *list);
1672 
1673 static inline void __skb_queue_before(struct sk_buff_head *list,
1674 				      struct sk_buff *next,
1675 				      struct sk_buff *newsk)
1676 {
1677 	__skb_insert(newsk, next->prev, next, list);
1678 }
1679 
1680 /**
1681  *	__skb_queue_head - queue a buffer at the list head
1682  *	@list: list to use
1683  *	@newsk: buffer to queue
1684  *
1685  *	Queue a buffer at the start of a list. This function takes no locks
1686  *	and you must therefore hold required locks before calling it.
1687  *
1688  *	A buffer cannot be placed on two lists at the same time.
1689  */
1690 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1691 static inline void __skb_queue_head(struct sk_buff_head *list,
1692 				    struct sk_buff *newsk)
1693 {
1694 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
1695 }
1696 
1697 /**
1698  *	__skb_queue_tail - queue a buffer at the list tail
1699  *	@list: list to use
1700  *	@newsk: buffer to queue
1701  *
1702  *	Queue a buffer at the end of a list. This function takes no locks
1703  *	and you must therefore hold required locks before calling it.
1704  *
1705  *	A buffer cannot be placed on two lists at the same time.
1706  */
1707 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1708 static inline void __skb_queue_tail(struct sk_buff_head *list,
1709 				   struct sk_buff *newsk)
1710 {
1711 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
1712 }
1713 
1714 /*
1715  * remove sk_buff from list. _Must_ be called atomically, and with
1716  * the list known..
1717  */
1718 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1719 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1720 {
1721 	struct sk_buff *next, *prev;
1722 
1723 	list->qlen--;
1724 	next	   = skb->next;
1725 	prev	   = skb->prev;
1726 	skb->next  = skb->prev = NULL;
1727 	next->prev = prev;
1728 	prev->next = next;
1729 }
1730 
1731 /**
1732  *	__skb_dequeue - remove from the head of the queue
1733  *	@list: list to dequeue from
1734  *
1735  *	Remove the head of the list. This function does not take any locks
1736  *	so must be used with appropriate locks held only. The head item is
1737  *	returned or %NULL if the list is empty.
1738  */
1739 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1740 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1741 {
1742 	struct sk_buff *skb = skb_peek(list);
1743 	if (skb)
1744 		__skb_unlink(skb, list);
1745 	return skb;
1746 }
1747 
1748 /**
1749  *	__skb_dequeue_tail - remove from the tail of the queue
1750  *	@list: list to dequeue from
1751  *
1752  *	Remove the tail of the list. This function does not take any locks
1753  *	so must be used with appropriate locks held only. The tail item is
1754  *	returned or %NULL if the list is empty.
1755  */
1756 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1757 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1758 {
1759 	struct sk_buff *skb = skb_peek_tail(list);
1760 	if (skb)
1761 		__skb_unlink(skb, list);
1762 	return skb;
1763 }
1764 
1765 
1766 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1767 {
1768 	return skb->data_len;
1769 }
1770 
1771 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1772 {
1773 	return skb->len - skb->data_len;
1774 }
1775 
1776 static inline int skb_pagelen(const struct sk_buff *skb)
1777 {
1778 	int i, len = 0;
1779 
1780 	for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1781 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1782 	return len + skb_headlen(skb);
1783 }
1784 
1785 /**
1786  * __skb_fill_page_desc - initialise a paged fragment in an skb
1787  * @skb: buffer containing fragment to be initialised
1788  * @i: paged fragment index to initialise
1789  * @page: the page to use for this fragment
1790  * @off: the offset to the data with @page
1791  * @size: the length of the data
1792  *
1793  * Initialises the @i'th fragment of @skb to point to &size bytes at
1794  * offset @off within @page.
1795  *
1796  * Does not take any additional reference on the fragment.
1797  */
1798 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1799 					struct page *page, int off, int size)
1800 {
1801 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1802 
1803 	/*
1804 	 * Propagate page pfmemalloc to the skb if we can. The problem is
1805 	 * that not all callers have unique ownership of the page but rely
1806 	 * on page_is_pfmemalloc doing the right thing(tm).
1807 	 */
1808 	frag->page.p		  = page;
1809 	frag->page_offset	  = off;
1810 	skb_frag_size_set(frag, size);
1811 
1812 	page = compound_head(page);
1813 	if (page_is_pfmemalloc(page))
1814 		skb->pfmemalloc	= true;
1815 }
1816 
1817 /**
1818  * skb_fill_page_desc - initialise a paged fragment in an skb
1819  * @skb: buffer containing fragment to be initialised
1820  * @i: paged fragment index to initialise
1821  * @page: the page to use for this fragment
1822  * @off: the offset to the data with @page
1823  * @size: the length of the data
1824  *
1825  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1826  * @skb to point to @size bytes at offset @off within @page. In
1827  * addition updates @skb such that @i is the last fragment.
1828  *
1829  * Does not take any additional reference on the fragment.
1830  */
1831 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1832 				      struct page *page, int off, int size)
1833 {
1834 	__skb_fill_page_desc(skb, i, page, off, size);
1835 	skb_shinfo(skb)->nr_frags = i + 1;
1836 }
1837 
1838 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
1839 		     int size, unsigned int truesize);
1840 
1841 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
1842 			  unsigned int truesize);
1843 
1844 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
1845 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_has_frag_list(skb))
1846 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
1847 
1848 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1849 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1850 {
1851 	return skb->head + skb->tail;
1852 }
1853 
1854 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1855 {
1856 	skb->tail = skb->data - skb->head;
1857 }
1858 
1859 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1860 {
1861 	skb_reset_tail_pointer(skb);
1862 	skb->tail += offset;
1863 }
1864 
1865 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1866 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1867 {
1868 	return skb->tail;
1869 }
1870 
1871 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1872 {
1873 	skb->tail = skb->data;
1874 }
1875 
1876 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1877 {
1878 	skb->tail = skb->data + offset;
1879 }
1880 
1881 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1882 
1883 /*
1884  *	Add data to an sk_buff
1885  */
1886 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
1887 unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1888 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1889 {
1890 	unsigned char *tmp = skb_tail_pointer(skb);
1891 	SKB_LINEAR_ASSERT(skb);
1892 	skb->tail += len;
1893 	skb->len  += len;
1894 	return tmp;
1895 }
1896 
1897 unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1898 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1899 {
1900 	skb->data -= len;
1901 	skb->len  += len;
1902 	return skb->data;
1903 }
1904 
1905 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1906 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1907 {
1908 	skb->len -= len;
1909 	BUG_ON(skb->len < skb->data_len);
1910 	return skb->data += len;
1911 }
1912 
1913 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1914 {
1915 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1916 }
1917 
1918 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1919 
1920 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1921 {
1922 	if (len > skb_headlen(skb) &&
1923 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1924 		return NULL;
1925 	skb->len -= len;
1926 	return skb->data += len;
1927 }
1928 
1929 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1930 {
1931 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1932 }
1933 
1934 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1935 {
1936 	if (likely(len <= skb_headlen(skb)))
1937 		return 1;
1938 	if (unlikely(len > skb->len))
1939 		return 0;
1940 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1941 }
1942 
1943 /**
1944  *	skb_headroom - bytes at buffer head
1945  *	@skb: buffer to check
1946  *
1947  *	Return the number of bytes of free space at the head of an &sk_buff.
1948  */
1949 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1950 {
1951 	return skb->data - skb->head;
1952 }
1953 
1954 /**
1955  *	skb_tailroom - bytes at buffer end
1956  *	@skb: buffer to check
1957  *
1958  *	Return the number of bytes of free space at the tail of an sk_buff
1959  */
1960 static inline int skb_tailroom(const struct sk_buff *skb)
1961 {
1962 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1963 }
1964 
1965 /**
1966  *	skb_availroom - bytes at buffer end
1967  *	@skb: buffer to check
1968  *
1969  *	Return the number of bytes of free space at the tail of an sk_buff
1970  *	allocated by sk_stream_alloc()
1971  */
1972 static inline int skb_availroom(const struct sk_buff *skb)
1973 {
1974 	if (skb_is_nonlinear(skb))
1975 		return 0;
1976 
1977 	return skb->end - skb->tail - skb->reserved_tailroom;
1978 }
1979 
1980 /**
1981  *	skb_reserve - adjust headroom
1982  *	@skb: buffer to alter
1983  *	@len: bytes to move
1984  *
1985  *	Increase the headroom of an empty &sk_buff by reducing the tail
1986  *	room. This is only allowed for an empty buffer.
1987  */
1988 static inline void skb_reserve(struct sk_buff *skb, int len)
1989 {
1990 	skb->data += len;
1991 	skb->tail += len;
1992 }
1993 
1994 /**
1995  *	skb_tailroom_reserve - adjust reserved_tailroom
1996  *	@skb: buffer to alter
1997  *	@mtu: maximum amount of headlen permitted
1998  *	@needed_tailroom: minimum amount of reserved_tailroom
1999  *
2000  *	Set reserved_tailroom so that headlen can be as large as possible but
2001  *	not larger than mtu and tailroom cannot be smaller than
2002  *	needed_tailroom.
2003  *	The required headroom should already have been reserved before using
2004  *	this function.
2005  */
2006 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2007 					unsigned int needed_tailroom)
2008 {
2009 	SKB_LINEAR_ASSERT(skb);
2010 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2011 		/* use at most mtu */
2012 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2013 	else
2014 		/* use up to all available space */
2015 		skb->reserved_tailroom = needed_tailroom;
2016 }
2017 
2018 #define ENCAP_TYPE_ETHER	0
2019 #define ENCAP_TYPE_IPPROTO	1
2020 
2021 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2022 					  __be16 protocol)
2023 {
2024 	skb->inner_protocol = protocol;
2025 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2026 }
2027 
2028 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2029 					 __u8 ipproto)
2030 {
2031 	skb->inner_ipproto = ipproto;
2032 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2033 }
2034 
2035 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2036 {
2037 	skb->inner_mac_header = skb->mac_header;
2038 	skb->inner_network_header = skb->network_header;
2039 	skb->inner_transport_header = skb->transport_header;
2040 }
2041 
2042 static inline void skb_reset_mac_len(struct sk_buff *skb)
2043 {
2044 	skb->mac_len = skb->network_header - skb->mac_header;
2045 }
2046 
2047 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2048 							*skb)
2049 {
2050 	return skb->head + skb->inner_transport_header;
2051 }
2052 
2053 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2054 {
2055 	return skb_inner_transport_header(skb) - skb->data;
2056 }
2057 
2058 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2059 {
2060 	skb->inner_transport_header = skb->data - skb->head;
2061 }
2062 
2063 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2064 						   const int offset)
2065 {
2066 	skb_reset_inner_transport_header(skb);
2067 	skb->inner_transport_header += offset;
2068 }
2069 
2070 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2071 {
2072 	return skb->head + skb->inner_network_header;
2073 }
2074 
2075 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2076 {
2077 	skb->inner_network_header = skb->data - skb->head;
2078 }
2079 
2080 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2081 						const int offset)
2082 {
2083 	skb_reset_inner_network_header(skb);
2084 	skb->inner_network_header += offset;
2085 }
2086 
2087 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2088 {
2089 	return skb->head + skb->inner_mac_header;
2090 }
2091 
2092 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2093 {
2094 	skb->inner_mac_header = skb->data - skb->head;
2095 }
2096 
2097 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2098 					    const int offset)
2099 {
2100 	skb_reset_inner_mac_header(skb);
2101 	skb->inner_mac_header += offset;
2102 }
2103 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2104 {
2105 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2106 }
2107 
2108 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2109 {
2110 	return skb->head + skb->transport_header;
2111 }
2112 
2113 static inline void skb_reset_transport_header(struct sk_buff *skb)
2114 {
2115 	skb->transport_header = skb->data - skb->head;
2116 }
2117 
2118 static inline void skb_set_transport_header(struct sk_buff *skb,
2119 					    const int offset)
2120 {
2121 	skb_reset_transport_header(skb);
2122 	skb->transport_header += offset;
2123 }
2124 
2125 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2126 {
2127 	return skb->head + skb->network_header;
2128 }
2129 
2130 static inline void skb_reset_network_header(struct sk_buff *skb)
2131 {
2132 	skb->network_header = skb->data - skb->head;
2133 }
2134 
2135 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2136 {
2137 	skb_reset_network_header(skb);
2138 	skb->network_header += offset;
2139 }
2140 
2141 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2142 {
2143 	return skb->head + skb->mac_header;
2144 }
2145 
2146 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2147 {
2148 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2149 }
2150 
2151 static inline void skb_reset_mac_header(struct sk_buff *skb)
2152 {
2153 	skb->mac_header = skb->data - skb->head;
2154 }
2155 
2156 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2157 {
2158 	skb_reset_mac_header(skb);
2159 	skb->mac_header += offset;
2160 }
2161 
2162 static inline void skb_pop_mac_header(struct sk_buff *skb)
2163 {
2164 	skb->mac_header = skb->network_header;
2165 }
2166 
2167 static inline void skb_probe_transport_header(struct sk_buff *skb,
2168 					      const int offset_hint)
2169 {
2170 	struct flow_keys keys;
2171 
2172 	if (skb_transport_header_was_set(skb))
2173 		return;
2174 	else if (skb_flow_dissect_flow_keys(skb, &keys, 0))
2175 		skb_set_transport_header(skb, keys.control.thoff);
2176 	else
2177 		skb_set_transport_header(skb, offset_hint);
2178 }
2179 
2180 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2181 {
2182 	if (skb_mac_header_was_set(skb)) {
2183 		const unsigned char *old_mac = skb_mac_header(skb);
2184 
2185 		skb_set_mac_header(skb, -skb->mac_len);
2186 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2187 	}
2188 }
2189 
2190 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2191 {
2192 	return skb->csum_start - skb_headroom(skb);
2193 }
2194 
2195 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2196 {
2197 	return skb->head + skb->csum_start;
2198 }
2199 
2200 static inline int skb_transport_offset(const struct sk_buff *skb)
2201 {
2202 	return skb_transport_header(skb) - skb->data;
2203 }
2204 
2205 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2206 {
2207 	return skb->transport_header - skb->network_header;
2208 }
2209 
2210 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2211 {
2212 	return skb->inner_transport_header - skb->inner_network_header;
2213 }
2214 
2215 static inline int skb_network_offset(const struct sk_buff *skb)
2216 {
2217 	return skb_network_header(skb) - skb->data;
2218 }
2219 
2220 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2221 {
2222 	return skb_inner_network_header(skb) - skb->data;
2223 }
2224 
2225 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2226 {
2227 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
2228 }
2229 
2230 /*
2231  * CPUs often take a performance hit when accessing unaligned memory
2232  * locations. The actual performance hit varies, it can be small if the
2233  * hardware handles it or large if we have to take an exception and fix it
2234  * in software.
2235  *
2236  * Since an ethernet header is 14 bytes network drivers often end up with
2237  * the IP header at an unaligned offset. The IP header can be aligned by
2238  * shifting the start of the packet by 2 bytes. Drivers should do this
2239  * with:
2240  *
2241  * skb_reserve(skb, NET_IP_ALIGN);
2242  *
2243  * The downside to this alignment of the IP header is that the DMA is now
2244  * unaligned. On some architectures the cost of an unaligned DMA is high
2245  * and this cost outweighs the gains made by aligning the IP header.
2246  *
2247  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2248  * to be overridden.
2249  */
2250 #ifndef NET_IP_ALIGN
2251 #define NET_IP_ALIGN	2
2252 #endif
2253 
2254 /*
2255  * The networking layer reserves some headroom in skb data (via
2256  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2257  * the header has to grow. In the default case, if the header has to grow
2258  * 32 bytes or less we avoid the reallocation.
2259  *
2260  * Unfortunately this headroom changes the DMA alignment of the resulting
2261  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2262  * on some architectures. An architecture can override this value,
2263  * perhaps setting it to a cacheline in size (since that will maintain
2264  * cacheline alignment of the DMA). It must be a power of 2.
2265  *
2266  * Various parts of the networking layer expect at least 32 bytes of
2267  * headroom, you should not reduce this.
2268  *
2269  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2270  * to reduce average number of cache lines per packet.
2271  * get_rps_cpus() for example only access one 64 bytes aligned block :
2272  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2273  */
2274 #ifndef NET_SKB_PAD
2275 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2276 #endif
2277 
2278 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2279 
2280 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2281 {
2282 	if (unlikely(skb_is_nonlinear(skb))) {
2283 		WARN_ON(1);
2284 		return;
2285 	}
2286 	skb->len = len;
2287 	skb_set_tail_pointer(skb, len);
2288 }
2289 
2290 void skb_trim(struct sk_buff *skb, unsigned int len);
2291 
2292 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2293 {
2294 	if (skb->data_len)
2295 		return ___pskb_trim(skb, len);
2296 	__skb_trim(skb, len);
2297 	return 0;
2298 }
2299 
2300 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2301 {
2302 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2303 }
2304 
2305 /**
2306  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2307  *	@skb: buffer to alter
2308  *	@len: new length
2309  *
2310  *	This is identical to pskb_trim except that the caller knows that
2311  *	the skb is not cloned so we should never get an error due to out-
2312  *	of-memory.
2313  */
2314 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2315 {
2316 	int err = pskb_trim(skb, len);
2317 	BUG_ON(err);
2318 }
2319 
2320 /**
2321  *	skb_orphan - orphan a buffer
2322  *	@skb: buffer to orphan
2323  *
2324  *	If a buffer currently has an owner then we call the owner's
2325  *	destructor function and make the @skb unowned. The buffer continues
2326  *	to exist but is no longer charged to its former owner.
2327  */
2328 static inline void skb_orphan(struct sk_buff *skb)
2329 {
2330 	if (skb->destructor) {
2331 		skb->destructor(skb);
2332 		skb->destructor = NULL;
2333 		skb->sk		= NULL;
2334 	} else {
2335 		BUG_ON(skb->sk);
2336 	}
2337 }
2338 
2339 /**
2340  *	skb_orphan_frags - orphan the frags contained in a buffer
2341  *	@skb: buffer to orphan frags from
2342  *	@gfp_mask: allocation mask for replacement pages
2343  *
2344  *	For each frag in the SKB which needs a destructor (i.e. has an
2345  *	owner) create a copy of that frag and release the original
2346  *	page by calling the destructor.
2347  */
2348 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2349 {
2350 	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
2351 		return 0;
2352 	return skb_copy_ubufs(skb, gfp_mask);
2353 }
2354 
2355 /**
2356  *	__skb_queue_purge - empty a list
2357  *	@list: list to empty
2358  *
2359  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2360  *	the list and one reference dropped. This function does not take the
2361  *	list lock and the caller must hold the relevant locks to use it.
2362  */
2363 void skb_queue_purge(struct sk_buff_head *list);
2364 static inline void __skb_queue_purge(struct sk_buff_head *list)
2365 {
2366 	struct sk_buff *skb;
2367 	while ((skb = __skb_dequeue(list)) != NULL)
2368 		kfree_skb(skb);
2369 }
2370 
2371 void *netdev_alloc_frag(unsigned int fragsz);
2372 
2373 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2374 				   gfp_t gfp_mask);
2375 
2376 /**
2377  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
2378  *	@dev: network device to receive on
2379  *	@length: length to allocate
2380  *
2381  *	Allocate a new &sk_buff and assign it a usage count of one. The
2382  *	buffer has unspecified headroom built in. Users should allocate
2383  *	the headroom they think they need without accounting for the
2384  *	built in space. The built in space is used for optimisations.
2385  *
2386  *	%NULL is returned if there is no free memory. Although this function
2387  *	allocates memory it can be called from an interrupt.
2388  */
2389 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2390 					       unsigned int length)
2391 {
2392 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2393 }
2394 
2395 /* legacy helper around __netdev_alloc_skb() */
2396 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2397 					      gfp_t gfp_mask)
2398 {
2399 	return __netdev_alloc_skb(NULL, length, gfp_mask);
2400 }
2401 
2402 /* legacy helper around netdev_alloc_skb() */
2403 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2404 {
2405 	return netdev_alloc_skb(NULL, length);
2406 }
2407 
2408 
2409 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2410 		unsigned int length, gfp_t gfp)
2411 {
2412 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2413 
2414 	if (NET_IP_ALIGN && skb)
2415 		skb_reserve(skb, NET_IP_ALIGN);
2416 	return skb;
2417 }
2418 
2419 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2420 		unsigned int length)
2421 {
2422 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2423 }
2424 
2425 static inline void skb_free_frag(void *addr)
2426 {
2427 	__free_page_frag(addr);
2428 }
2429 
2430 void *napi_alloc_frag(unsigned int fragsz);
2431 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2432 				 unsigned int length, gfp_t gfp_mask);
2433 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2434 					     unsigned int length)
2435 {
2436 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2437 }
2438 void napi_consume_skb(struct sk_buff *skb, int budget);
2439 
2440 void __kfree_skb_flush(void);
2441 void __kfree_skb_defer(struct sk_buff *skb);
2442 
2443 /**
2444  * __dev_alloc_pages - allocate page for network Rx
2445  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2446  * @order: size of the allocation
2447  *
2448  * Allocate a new page.
2449  *
2450  * %NULL is returned if there is no free memory.
2451 */
2452 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2453 					     unsigned int order)
2454 {
2455 	/* This piece of code contains several assumptions.
2456 	 * 1.  This is for device Rx, therefor a cold page is preferred.
2457 	 * 2.  The expectation is the user wants a compound page.
2458 	 * 3.  If requesting a order 0 page it will not be compound
2459 	 *     due to the check to see if order has a value in prep_new_page
2460 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2461 	 *     code in gfp_to_alloc_flags that should be enforcing this.
2462 	 */
2463 	gfp_mask |= __GFP_COLD | __GFP_COMP | __GFP_MEMALLOC;
2464 
2465 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2466 }
2467 
2468 static inline struct page *dev_alloc_pages(unsigned int order)
2469 {
2470 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2471 }
2472 
2473 /**
2474  * __dev_alloc_page - allocate a page for network Rx
2475  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2476  *
2477  * Allocate a new page.
2478  *
2479  * %NULL is returned if there is no free memory.
2480  */
2481 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2482 {
2483 	return __dev_alloc_pages(gfp_mask, 0);
2484 }
2485 
2486 static inline struct page *dev_alloc_page(void)
2487 {
2488 	return dev_alloc_pages(0);
2489 }
2490 
2491 /**
2492  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2493  *	@page: The page that was allocated from skb_alloc_page
2494  *	@skb: The skb that may need pfmemalloc set
2495  */
2496 static inline void skb_propagate_pfmemalloc(struct page *page,
2497 					     struct sk_buff *skb)
2498 {
2499 	if (page_is_pfmemalloc(page))
2500 		skb->pfmemalloc = true;
2501 }
2502 
2503 /**
2504  * skb_frag_page - retrieve the page referred to by a paged fragment
2505  * @frag: the paged fragment
2506  *
2507  * Returns the &struct page associated with @frag.
2508  */
2509 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2510 {
2511 	return frag->page.p;
2512 }
2513 
2514 /**
2515  * __skb_frag_ref - take an addition reference on a paged fragment.
2516  * @frag: the paged fragment
2517  *
2518  * Takes an additional reference on the paged fragment @frag.
2519  */
2520 static inline void __skb_frag_ref(skb_frag_t *frag)
2521 {
2522 	get_page(skb_frag_page(frag));
2523 }
2524 
2525 /**
2526  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2527  * @skb: the buffer
2528  * @f: the fragment offset.
2529  *
2530  * Takes an additional reference on the @f'th paged fragment of @skb.
2531  */
2532 static inline void skb_frag_ref(struct sk_buff *skb, int f)
2533 {
2534 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2535 }
2536 
2537 /**
2538  * __skb_frag_unref - release a reference on a paged fragment.
2539  * @frag: the paged fragment
2540  *
2541  * Releases a reference on the paged fragment @frag.
2542  */
2543 static inline void __skb_frag_unref(skb_frag_t *frag)
2544 {
2545 	put_page(skb_frag_page(frag));
2546 }
2547 
2548 /**
2549  * skb_frag_unref - release a reference on a paged fragment of an skb.
2550  * @skb: the buffer
2551  * @f: the fragment offset
2552  *
2553  * Releases a reference on the @f'th paged fragment of @skb.
2554  */
2555 static inline void skb_frag_unref(struct sk_buff *skb, int f)
2556 {
2557 	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2558 }
2559 
2560 /**
2561  * skb_frag_address - gets the address of the data contained in a paged fragment
2562  * @frag: the paged fragment buffer
2563  *
2564  * Returns the address of the data within @frag. The page must already
2565  * be mapped.
2566  */
2567 static inline void *skb_frag_address(const skb_frag_t *frag)
2568 {
2569 	return page_address(skb_frag_page(frag)) + frag->page_offset;
2570 }
2571 
2572 /**
2573  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2574  * @frag: the paged fragment buffer
2575  *
2576  * Returns the address of the data within @frag. Checks that the page
2577  * is mapped and returns %NULL otherwise.
2578  */
2579 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2580 {
2581 	void *ptr = page_address(skb_frag_page(frag));
2582 	if (unlikely(!ptr))
2583 		return NULL;
2584 
2585 	return ptr + frag->page_offset;
2586 }
2587 
2588 /**
2589  * __skb_frag_set_page - sets the page contained in a paged fragment
2590  * @frag: the paged fragment
2591  * @page: the page to set
2592  *
2593  * Sets the fragment @frag to contain @page.
2594  */
2595 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2596 {
2597 	frag->page.p = page;
2598 }
2599 
2600 /**
2601  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2602  * @skb: the buffer
2603  * @f: the fragment offset
2604  * @page: the page to set
2605  *
2606  * Sets the @f'th fragment of @skb to contain @page.
2607  */
2608 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2609 				     struct page *page)
2610 {
2611 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2612 }
2613 
2614 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2615 
2616 /**
2617  * skb_frag_dma_map - maps a paged fragment via the DMA API
2618  * @dev: the device to map the fragment to
2619  * @frag: the paged fragment to map
2620  * @offset: the offset within the fragment (starting at the
2621  *          fragment's own offset)
2622  * @size: the number of bytes to map
2623  * @dir: the direction of the mapping (%PCI_DMA_*)
2624  *
2625  * Maps the page associated with @frag to @device.
2626  */
2627 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2628 					  const skb_frag_t *frag,
2629 					  size_t offset, size_t size,
2630 					  enum dma_data_direction dir)
2631 {
2632 	return dma_map_page(dev, skb_frag_page(frag),
2633 			    frag->page_offset + offset, size, dir);
2634 }
2635 
2636 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2637 					gfp_t gfp_mask)
2638 {
2639 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2640 }
2641 
2642 
2643 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2644 						  gfp_t gfp_mask)
2645 {
2646 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2647 }
2648 
2649 
2650 /**
2651  *	skb_clone_writable - is the header of a clone writable
2652  *	@skb: buffer to check
2653  *	@len: length up to which to write
2654  *
2655  *	Returns true if modifying the header part of the cloned buffer
2656  *	does not requires the data to be copied.
2657  */
2658 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2659 {
2660 	return !skb_header_cloned(skb) &&
2661 	       skb_headroom(skb) + len <= skb->hdr_len;
2662 }
2663 
2664 static inline int skb_try_make_writable(struct sk_buff *skb,
2665 					unsigned int write_len)
2666 {
2667 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
2668 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2669 }
2670 
2671 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2672 			    int cloned)
2673 {
2674 	int delta = 0;
2675 
2676 	if (headroom > skb_headroom(skb))
2677 		delta = headroom - skb_headroom(skb);
2678 
2679 	if (delta || cloned)
2680 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2681 					GFP_ATOMIC);
2682 	return 0;
2683 }
2684 
2685 /**
2686  *	skb_cow - copy header of skb when it is required
2687  *	@skb: buffer to cow
2688  *	@headroom: needed headroom
2689  *
2690  *	If the skb passed lacks sufficient headroom or its data part
2691  *	is shared, data is reallocated. If reallocation fails, an error
2692  *	is returned and original skb is not changed.
2693  *
2694  *	The result is skb with writable area skb->head...skb->tail
2695  *	and at least @headroom of space at head.
2696  */
2697 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2698 {
2699 	return __skb_cow(skb, headroom, skb_cloned(skb));
2700 }
2701 
2702 /**
2703  *	skb_cow_head - skb_cow but only making the head writable
2704  *	@skb: buffer to cow
2705  *	@headroom: needed headroom
2706  *
2707  *	This function is identical to skb_cow except that we replace the
2708  *	skb_cloned check by skb_header_cloned.  It should be used when
2709  *	you only need to push on some header and do not need to modify
2710  *	the data.
2711  */
2712 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2713 {
2714 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
2715 }
2716 
2717 /**
2718  *	skb_padto	- pad an skbuff up to a minimal size
2719  *	@skb: buffer to pad
2720  *	@len: minimal length
2721  *
2722  *	Pads up a buffer to ensure the trailing bytes exist and are
2723  *	blanked. If the buffer already contains sufficient data it
2724  *	is untouched. Otherwise it is extended. Returns zero on
2725  *	success. The skb is freed on error.
2726  */
2727 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
2728 {
2729 	unsigned int size = skb->len;
2730 	if (likely(size >= len))
2731 		return 0;
2732 	return skb_pad(skb, len - size);
2733 }
2734 
2735 /**
2736  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
2737  *	@skb: buffer to pad
2738  *	@len: minimal length
2739  *
2740  *	Pads up a buffer to ensure the trailing bytes exist and are
2741  *	blanked. If the buffer already contains sufficient data it
2742  *	is untouched. Otherwise it is extended. Returns zero on
2743  *	success. The skb is freed on error.
2744  */
2745 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
2746 {
2747 	unsigned int size = skb->len;
2748 
2749 	if (unlikely(size < len)) {
2750 		len -= size;
2751 		if (skb_pad(skb, len))
2752 			return -ENOMEM;
2753 		__skb_put(skb, len);
2754 	}
2755 	return 0;
2756 }
2757 
2758 static inline int skb_add_data(struct sk_buff *skb,
2759 			       struct iov_iter *from, int copy)
2760 {
2761 	const int off = skb->len;
2762 
2763 	if (skb->ip_summed == CHECKSUM_NONE) {
2764 		__wsum csum = 0;
2765 		if (csum_and_copy_from_iter(skb_put(skb, copy), copy,
2766 					    &csum, from) == copy) {
2767 			skb->csum = csum_block_add(skb->csum, csum, off);
2768 			return 0;
2769 		}
2770 	} else if (copy_from_iter(skb_put(skb, copy), copy, from) == copy)
2771 		return 0;
2772 
2773 	__skb_trim(skb, off);
2774 	return -EFAULT;
2775 }
2776 
2777 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
2778 				    const struct page *page, int off)
2779 {
2780 	if (i) {
2781 		const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
2782 
2783 		return page == skb_frag_page(frag) &&
2784 		       off == frag->page_offset + skb_frag_size(frag);
2785 	}
2786 	return false;
2787 }
2788 
2789 static inline int __skb_linearize(struct sk_buff *skb)
2790 {
2791 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
2792 }
2793 
2794 /**
2795  *	skb_linearize - convert paged skb to linear one
2796  *	@skb: buffer to linarize
2797  *
2798  *	If there is no free memory -ENOMEM is returned, otherwise zero
2799  *	is returned and the old skb data released.
2800  */
2801 static inline int skb_linearize(struct sk_buff *skb)
2802 {
2803 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
2804 }
2805 
2806 /**
2807  * skb_has_shared_frag - can any frag be overwritten
2808  * @skb: buffer to test
2809  *
2810  * Return true if the skb has at least one frag that might be modified
2811  * by an external entity (as in vmsplice()/sendfile())
2812  */
2813 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
2814 {
2815 	return skb_is_nonlinear(skb) &&
2816 	       skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2817 }
2818 
2819 /**
2820  *	skb_linearize_cow - make sure skb is linear and writable
2821  *	@skb: buffer to process
2822  *
2823  *	If there is no free memory -ENOMEM is returned, otherwise zero
2824  *	is returned and the old skb data released.
2825  */
2826 static inline int skb_linearize_cow(struct sk_buff *skb)
2827 {
2828 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
2829 	       __skb_linearize(skb) : 0;
2830 }
2831 
2832 /**
2833  *	skb_postpull_rcsum - update checksum for received skb after pull
2834  *	@skb: buffer to update
2835  *	@start: start of data before pull
2836  *	@len: length of data pulled
2837  *
2838  *	After doing a pull on a received packet, you need to call this to
2839  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
2840  *	CHECKSUM_NONE so that it can be recomputed from scratch.
2841  */
2842 
2843 static inline void skb_postpull_rcsum(struct sk_buff *skb,
2844 				      const void *start, unsigned int len)
2845 {
2846 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2847 		skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
2848 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
2849 		 skb_checksum_start_offset(skb) < 0)
2850 		skb->ip_summed = CHECKSUM_NONE;
2851 }
2852 
2853 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
2854 
2855 static inline void skb_postpush_rcsum(struct sk_buff *skb,
2856 				      const void *start, unsigned int len)
2857 {
2858 	/* For performing the reverse operation to skb_postpull_rcsum(),
2859 	 * we can instead of ...
2860 	 *
2861 	 *   skb->csum = csum_add(skb->csum, csum_partial(start, len, 0));
2862 	 *
2863 	 * ... just use this equivalent version here to save a few
2864 	 * instructions. Feeding csum of 0 in csum_partial() and later
2865 	 * on adding skb->csum is equivalent to feed skb->csum in the
2866 	 * first place.
2867 	 */
2868 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2869 		skb->csum = csum_partial(start, len, skb->csum);
2870 }
2871 
2872 /**
2873  *	pskb_trim_rcsum - trim received skb and update checksum
2874  *	@skb: buffer to trim
2875  *	@len: new length
2876  *
2877  *	This is exactly the same as pskb_trim except that it ensures the
2878  *	checksum of received packets are still valid after the operation.
2879  */
2880 
2881 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2882 {
2883 	if (likely(len >= skb->len))
2884 		return 0;
2885 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2886 		skb->ip_summed = CHECKSUM_NONE;
2887 	return __pskb_trim(skb, len);
2888 }
2889 
2890 #define skb_queue_walk(queue, skb) \
2891 		for (skb = (queue)->next;					\
2892 		     skb != (struct sk_buff *)(queue);				\
2893 		     skb = skb->next)
2894 
2895 #define skb_queue_walk_safe(queue, skb, tmp)					\
2896 		for (skb = (queue)->next, tmp = skb->next;			\
2897 		     skb != (struct sk_buff *)(queue);				\
2898 		     skb = tmp, tmp = skb->next)
2899 
2900 #define skb_queue_walk_from(queue, skb)						\
2901 		for (; skb != (struct sk_buff *)(queue);			\
2902 		     skb = skb->next)
2903 
2904 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
2905 		for (tmp = skb->next;						\
2906 		     skb != (struct sk_buff *)(queue);				\
2907 		     skb = tmp, tmp = skb->next)
2908 
2909 #define skb_queue_reverse_walk(queue, skb) \
2910 		for (skb = (queue)->prev;					\
2911 		     skb != (struct sk_buff *)(queue);				\
2912 		     skb = skb->prev)
2913 
2914 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
2915 		for (skb = (queue)->prev, tmp = skb->prev;			\
2916 		     skb != (struct sk_buff *)(queue);				\
2917 		     skb = tmp, tmp = skb->prev)
2918 
2919 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
2920 		for (tmp = skb->prev;						\
2921 		     skb != (struct sk_buff *)(queue);				\
2922 		     skb = tmp, tmp = skb->prev)
2923 
2924 static inline bool skb_has_frag_list(const struct sk_buff *skb)
2925 {
2926 	return skb_shinfo(skb)->frag_list != NULL;
2927 }
2928 
2929 static inline void skb_frag_list_init(struct sk_buff *skb)
2930 {
2931 	skb_shinfo(skb)->frag_list = NULL;
2932 }
2933 
2934 #define skb_walk_frags(skb, iter)	\
2935 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
2936 
2937 
2938 int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
2939 				const struct sk_buff *skb);
2940 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
2941 					int *peeked, int *off, int *err,
2942 					struct sk_buff **last);
2943 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
2944 				    int *peeked, int *off, int *err);
2945 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
2946 				  int *err);
2947 unsigned int datagram_poll(struct file *file, struct socket *sock,
2948 			   struct poll_table_struct *wait);
2949 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
2950 			   struct iov_iter *to, int size);
2951 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
2952 					struct msghdr *msg, int size)
2953 {
2954 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
2955 }
2956 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
2957 				   struct msghdr *msg);
2958 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
2959 				 struct iov_iter *from, int len);
2960 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
2961 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
2962 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
2963 static inline void skb_free_datagram_locked(struct sock *sk,
2964 					    struct sk_buff *skb)
2965 {
2966 	__skb_free_datagram_locked(sk, skb, 0);
2967 }
2968 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
2969 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
2970 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
2971 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
2972 			      int len, __wsum csum);
2973 ssize_t skb_socket_splice(struct sock *sk,
2974 			  struct pipe_inode_info *pipe,
2975 			  struct splice_pipe_desc *spd);
2976 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2977 		    struct pipe_inode_info *pipe, unsigned int len,
2978 		    unsigned int flags,
2979 		    ssize_t (*splice_cb)(struct sock *,
2980 					 struct pipe_inode_info *,
2981 					 struct splice_pipe_desc *));
2982 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
2983 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
2984 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
2985 		 int len, int hlen);
2986 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
2987 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
2988 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
2989 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
2990 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
2991 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
2992 int skb_ensure_writable(struct sk_buff *skb, int write_len);
2993 int skb_vlan_pop(struct sk_buff *skb);
2994 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
2995 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
2996 			     gfp_t gfp);
2997 
2998 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
2999 {
3000 	return copy_from_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3001 }
3002 
3003 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3004 {
3005 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3006 }
3007 
3008 struct skb_checksum_ops {
3009 	__wsum (*update)(const void *mem, int len, __wsum wsum);
3010 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3011 };
3012 
3013 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3014 		      __wsum csum, const struct skb_checksum_ops *ops);
3015 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3016 		    __wsum csum);
3017 
3018 static inline void * __must_check
3019 __skb_header_pointer(const struct sk_buff *skb, int offset,
3020 		     int len, void *data, int hlen, void *buffer)
3021 {
3022 	if (hlen - offset >= len)
3023 		return data + offset;
3024 
3025 	if (!skb ||
3026 	    skb_copy_bits(skb, offset, buffer, len) < 0)
3027 		return NULL;
3028 
3029 	return buffer;
3030 }
3031 
3032 static inline void * __must_check
3033 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3034 {
3035 	return __skb_header_pointer(skb, offset, len, skb->data,
3036 				    skb_headlen(skb), buffer);
3037 }
3038 
3039 /**
3040  *	skb_needs_linearize - check if we need to linearize a given skb
3041  *			      depending on the given device features.
3042  *	@skb: socket buffer to check
3043  *	@features: net device features
3044  *
3045  *	Returns true if either:
3046  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
3047  *	2. skb is fragmented and the device does not support SG.
3048  */
3049 static inline bool skb_needs_linearize(struct sk_buff *skb,
3050 				       netdev_features_t features)
3051 {
3052 	return skb_is_nonlinear(skb) &&
3053 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3054 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3055 }
3056 
3057 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3058 					     void *to,
3059 					     const unsigned int len)
3060 {
3061 	memcpy(to, skb->data, len);
3062 }
3063 
3064 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3065 						    const int offset, void *to,
3066 						    const unsigned int len)
3067 {
3068 	memcpy(to, skb->data + offset, len);
3069 }
3070 
3071 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3072 					   const void *from,
3073 					   const unsigned int len)
3074 {
3075 	memcpy(skb->data, from, len);
3076 }
3077 
3078 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3079 						  const int offset,
3080 						  const void *from,
3081 						  const unsigned int len)
3082 {
3083 	memcpy(skb->data + offset, from, len);
3084 }
3085 
3086 void skb_init(void);
3087 
3088 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3089 {
3090 	return skb->tstamp;
3091 }
3092 
3093 /**
3094  *	skb_get_timestamp - get timestamp from a skb
3095  *	@skb: skb to get stamp from
3096  *	@stamp: pointer to struct timeval to store stamp in
3097  *
3098  *	Timestamps are stored in the skb as offsets to a base timestamp.
3099  *	This function converts the offset back to a struct timeval and stores
3100  *	it in stamp.
3101  */
3102 static inline void skb_get_timestamp(const struct sk_buff *skb,
3103 				     struct timeval *stamp)
3104 {
3105 	*stamp = ktime_to_timeval(skb->tstamp);
3106 }
3107 
3108 static inline void skb_get_timestampns(const struct sk_buff *skb,
3109 				       struct timespec *stamp)
3110 {
3111 	*stamp = ktime_to_timespec(skb->tstamp);
3112 }
3113 
3114 static inline void __net_timestamp(struct sk_buff *skb)
3115 {
3116 	skb->tstamp = ktime_get_real();
3117 }
3118 
3119 static inline ktime_t net_timedelta(ktime_t t)
3120 {
3121 	return ktime_sub(ktime_get_real(), t);
3122 }
3123 
3124 static inline ktime_t net_invalid_timestamp(void)
3125 {
3126 	return ktime_set(0, 0);
3127 }
3128 
3129 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3130 
3131 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3132 
3133 void skb_clone_tx_timestamp(struct sk_buff *skb);
3134 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3135 
3136 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3137 
3138 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3139 {
3140 }
3141 
3142 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3143 {
3144 	return false;
3145 }
3146 
3147 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3148 
3149 /**
3150  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3151  *
3152  * PHY drivers may accept clones of transmitted packets for
3153  * timestamping via their phy_driver.txtstamp method. These drivers
3154  * must call this function to return the skb back to the stack with a
3155  * timestamp.
3156  *
3157  * @skb: clone of the the original outgoing packet
3158  * @hwtstamps: hardware time stamps
3159  *
3160  */
3161 void skb_complete_tx_timestamp(struct sk_buff *skb,
3162 			       struct skb_shared_hwtstamps *hwtstamps);
3163 
3164 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3165 		     struct skb_shared_hwtstamps *hwtstamps,
3166 		     struct sock *sk, int tstype);
3167 
3168 /**
3169  * skb_tstamp_tx - queue clone of skb with send time stamps
3170  * @orig_skb:	the original outgoing packet
3171  * @hwtstamps:	hardware time stamps, may be NULL if not available
3172  *
3173  * If the skb has a socket associated, then this function clones the
3174  * skb (thus sharing the actual data and optional structures), stores
3175  * the optional hardware time stamping information (if non NULL) or
3176  * generates a software time stamp (otherwise), then queues the clone
3177  * to the error queue of the socket.  Errors are silently ignored.
3178  */
3179 void skb_tstamp_tx(struct sk_buff *orig_skb,
3180 		   struct skb_shared_hwtstamps *hwtstamps);
3181 
3182 static inline void sw_tx_timestamp(struct sk_buff *skb)
3183 {
3184 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
3185 	    !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
3186 		skb_tstamp_tx(skb, NULL);
3187 }
3188 
3189 /**
3190  * skb_tx_timestamp() - Driver hook for transmit timestamping
3191  *
3192  * Ethernet MAC Drivers should call this function in their hard_xmit()
3193  * function immediately before giving the sk_buff to the MAC hardware.
3194  *
3195  * Specifically, one should make absolutely sure that this function is
3196  * called before TX completion of this packet can trigger.  Otherwise
3197  * the packet could potentially already be freed.
3198  *
3199  * @skb: A socket buffer.
3200  */
3201 static inline void skb_tx_timestamp(struct sk_buff *skb)
3202 {
3203 	skb_clone_tx_timestamp(skb);
3204 	sw_tx_timestamp(skb);
3205 }
3206 
3207 /**
3208  * skb_complete_wifi_ack - deliver skb with wifi status
3209  *
3210  * @skb: the original outgoing packet
3211  * @acked: ack status
3212  *
3213  */
3214 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3215 
3216 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3217 __sum16 __skb_checksum_complete(struct sk_buff *skb);
3218 
3219 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3220 {
3221 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3222 		skb->csum_valid ||
3223 		(skb->ip_summed == CHECKSUM_PARTIAL &&
3224 		 skb_checksum_start_offset(skb) >= 0));
3225 }
3226 
3227 /**
3228  *	skb_checksum_complete - Calculate checksum of an entire packet
3229  *	@skb: packet to process
3230  *
3231  *	This function calculates the checksum over the entire packet plus
3232  *	the value of skb->csum.  The latter can be used to supply the
3233  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
3234  *	checksum.
3235  *
3236  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
3237  *	this function can be used to verify that checksum on received
3238  *	packets.  In that case the function should return zero if the
3239  *	checksum is correct.  In particular, this function will return zero
3240  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3241  *	hardware has already verified the correctness of the checksum.
3242  */
3243 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3244 {
3245 	return skb_csum_unnecessary(skb) ?
3246 	       0 : __skb_checksum_complete(skb);
3247 }
3248 
3249 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3250 {
3251 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3252 		if (skb->csum_level == 0)
3253 			skb->ip_summed = CHECKSUM_NONE;
3254 		else
3255 			skb->csum_level--;
3256 	}
3257 }
3258 
3259 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3260 {
3261 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3262 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3263 			skb->csum_level++;
3264 	} else if (skb->ip_summed == CHECKSUM_NONE) {
3265 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3266 		skb->csum_level = 0;
3267 	}
3268 }
3269 
3270 static inline void __skb_mark_checksum_bad(struct sk_buff *skb)
3271 {
3272 	/* Mark current checksum as bad (typically called from GRO
3273 	 * path). In the case that ip_summed is CHECKSUM_NONE
3274 	 * this must be the first checksum encountered in the packet.
3275 	 * When ip_summed is CHECKSUM_UNNECESSARY, this is the first
3276 	 * checksum after the last one validated. For UDP, a zero
3277 	 * checksum can not be marked as bad.
3278 	 */
3279 
3280 	if (skb->ip_summed == CHECKSUM_NONE ||
3281 	    skb->ip_summed == CHECKSUM_UNNECESSARY)
3282 		skb->csum_bad = 1;
3283 }
3284 
3285 /* Check if we need to perform checksum complete validation.
3286  *
3287  * Returns true if checksum complete is needed, false otherwise
3288  * (either checksum is unnecessary or zero checksum is allowed).
3289  */
3290 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3291 						  bool zero_okay,
3292 						  __sum16 check)
3293 {
3294 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3295 		skb->csum_valid = 1;
3296 		__skb_decr_checksum_unnecessary(skb);
3297 		return false;
3298 	}
3299 
3300 	return true;
3301 }
3302 
3303 /* For small packets <= CHECKSUM_BREAK peform checksum complete directly
3304  * in checksum_init.
3305  */
3306 #define CHECKSUM_BREAK 76
3307 
3308 /* Unset checksum-complete
3309  *
3310  * Unset checksum complete can be done when packet is being modified
3311  * (uncompressed for instance) and checksum-complete value is
3312  * invalidated.
3313  */
3314 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3315 {
3316 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3317 		skb->ip_summed = CHECKSUM_NONE;
3318 }
3319 
3320 /* Validate (init) checksum based on checksum complete.
3321  *
3322  * Return values:
3323  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
3324  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3325  *	checksum is stored in skb->csum for use in __skb_checksum_complete
3326  *   non-zero: value of invalid checksum
3327  *
3328  */
3329 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3330 						       bool complete,
3331 						       __wsum psum)
3332 {
3333 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
3334 		if (!csum_fold(csum_add(psum, skb->csum))) {
3335 			skb->csum_valid = 1;
3336 			return 0;
3337 		}
3338 	} else if (skb->csum_bad) {
3339 		/* ip_summed == CHECKSUM_NONE in this case */
3340 		return (__force __sum16)1;
3341 	}
3342 
3343 	skb->csum = psum;
3344 
3345 	if (complete || skb->len <= CHECKSUM_BREAK) {
3346 		__sum16 csum;
3347 
3348 		csum = __skb_checksum_complete(skb);
3349 		skb->csum_valid = !csum;
3350 		return csum;
3351 	}
3352 
3353 	return 0;
3354 }
3355 
3356 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3357 {
3358 	return 0;
3359 }
3360 
3361 /* Perform checksum validate (init). Note that this is a macro since we only
3362  * want to calculate the pseudo header which is an input function if necessary.
3363  * First we try to validate without any computation (checksum unnecessary) and
3364  * then calculate based on checksum complete calling the function to compute
3365  * pseudo header.
3366  *
3367  * Return values:
3368  *   0: checksum is validated or try to in skb_checksum_complete
3369  *   non-zero: value of invalid checksum
3370  */
3371 #define __skb_checksum_validate(skb, proto, complete,			\
3372 				zero_okay, check, compute_pseudo)	\
3373 ({									\
3374 	__sum16 __ret = 0;						\
3375 	skb->csum_valid = 0;						\
3376 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
3377 		__ret = __skb_checksum_validate_complete(skb,		\
3378 				complete, compute_pseudo(skb, proto));	\
3379 	__ret;								\
3380 })
3381 
3382 #define skb_checksum_init(skb, proto, compute_pseudo)			\
3383 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3384 
3385 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
3386 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3387 
3388 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
3389 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3390 
3391 #define skb_checksum_validate_zero_check(skb, proto, check,		\
3392 					 compute_pseudo)		\
3393 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
3394 
3395 #define skb_checksum_simple_validate(skb)				\
3396 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3397 
3398 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3399 {
3400 	return (skb->ip_summed == CHECKSUM_NONE &&
3401 		skb->csum_valid && !skb->csum_bad);
3402 }
3403 
3404 static inline void __skb_checksum_convert(struct sk_buff *skb,
3405 					  __sum16 check, __wsum pseudo)
3406 {
3407 	skb->csum = ~pseudo;
3408 	skb->ip_summed = CHECKSUM_COMPLETE;
3409 }
3410 
3411 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo)	\
3412 do {									\
3413 	if (__skb_checksum_convert_check(skb))				\
3414 		__skb_checksum_convert(skb, check,			\
3415 				       compute_pseudo(skb, proto));	\
3416 } while (0)
3417 
3418 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3419 					      u16 start, u16 offset)
3420 {
3421 	skb->ip_summed = CHECKSUM_PARTIAL;
3422 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3423 	skb->csum_offset = offset - start;
3424 }
3425 
3426 /* Update skbuf and packet to reflect the remote checksum offload operation.
3427  * When called, ptr indicates the starting point for skb->csum when
3428  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3429  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3430  */
3431 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
3432 				       int start, int offset, bool nopartial)
3433 {
3434 	__wsum delta;
3435 
3436 	if (!nopartial) {
3437 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
3438 		return;
3439 	}
3440 
3441 	 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3442 		__skb_checksum_complete(skb);
3443 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3444 	}
3445 
3446 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
3447 
3448 	/* Adjust skb->csum since we changed the packet */
3449 	skb->csum = csum_add(skb->csum, delta);
3450 }
3451 
3452 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3453 void nf_conntrack_destroy(struct nf_conntrack *nfct);
3454 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3455 {
3456 	if (nfct && atomic_dec_and_test(&nfct->use))
3457 		nf_conntrack_destroy(nfct);
3458 }
3459 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3460 {
3461 	if (nfct)
3462 		atomic_inc(&nfct->use);
3463 }
3464 #endif
3465 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3466 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
3467 {
3468 	if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
3469 		kfree(nf_bridge);
3470 }
3471 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
3472 {
3473 	if (nf_bridge)
3474 		atomic_inc(&nf_bridge->use);
3475 }
3476 #endif /* CONFIG_BRIDGE_NETFILTER */
3477 static inline void nf_reset(struct sk_buff *skb)
3478 {
3479 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3480 	nf_conntrack_put(skb->nfct);
3481 	skb->nfct = NULL;
3482 #endif
3483 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3484 	nf_bridge_put(skb->nf_bridge);
3485 	skb->nf_bridge = NULL;
3486 #endif
3487 }
3488 
3489 static inline void nf_reset_trace(struct sk_buff *skb)
3490 {
3491 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3492 	skb->nf_trace = 0;
3493 #endif
3494 }
3495 
3496 /* Note: This doesn't put any conntrack and bridge info in dst. */
3497 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
3498 			     bool copy)
3499 {
3500 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3501 	dst->nfct = src->nfct;
3502 	nf_conntrack_get(src->nfct);
3503 	if (copy)
3504 		dst->nfctinfo = src->nfctinfo;
3505 #endif
3506 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3507 	dst->nf_bridge  = src->nf_bridge;
3508 	nf_bridge_get(src->nf_bridge);
3509 #endif
3510 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3511 	if (copy)
3512 		dst->nf_trace = src->nf_trace;
3513 #endif
3514 }
3515 
3516 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
3517 {
3518 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3519 	nf_conntrack_put(dst->nfct);
3520 #endif
3521 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3522 	nf_bridge_put(dst->nf_bridge);
3523 #endif
3524 	__nf_copy(dst, src, true);
3525 }
3526 
3527 #ifdef CONFIG_NETWORK_SECMARK
3528 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3529 {
3530 	to->secmark = from->secmark;
3531 }
3532 
3533 static inline void skb_init_secmark(struct sk_buff *skb)
3534 {
3535 	skb->secmark = 0;
3536 }
3537 #else
3538 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3539 { }
3540 
3541 static inline void skb_init_secmark(struct sk_buff *skb)
3542 { }
3543 #endif
3544 
3545 static inline bool skb_irq_freeable(const struct sk_buff *skb)
3546 {
3547 	return !skb->destructor &&
3548 #if IS_ENABLED(CONFIG_XFRM)
3549 		!skb->sp &&
3550 #endif
3551 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
3552 		!skb->nfct &&
3553 #endif
3554 		!skb->_skb_refdst &&
3555 		!skb_has_frag_list(skb);
3556 }
3557 
3558 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
3559 {
3560 	skb->queue_mapping = queue_mapping;
3561 }
3562 
3563 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
3564 {
3565 	return skb->queue_mapping;
3566 }
3567 
3568 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
3569 {
3570 	to->queue_mapping = from->queue_mapping;
3571 }
3572 
3573 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
3574 {
3575 	skb->queue_mapping = rx_queue + 1;
3576 }
3577 
3578 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
3579 {
3580 	return skb->queue_mapping - 1;
3581 }
3582 
3583 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
3584 {
3585 	return skb->queue_mapping != 0;
3586 }
3587 
3588 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
3589 {
3590 #ifdef CONFIG_XFRM
3591 	return skb->sp;
3592 #else
3593 	return NULL;
3594 #endif
3595 }
3596 
3597 /* Keeps track of mac header offset relative to skb->head.
3598  * It is useful for TSO of Tunneling protocol. e.g. GRE.
3599  * For non-tunnel skb it points to skb_mac_header() and for
3600  * tunnel skb it points to outer mac header.
3601  * Keeps track of level of encapsulation of network headers.
3602  */
3603 struct skb_gso_cb {
3604 	union {
3605 		int	mac_offset;
3606 		int	data_offset;
3607 	};
3608 	int	encap_level;
3609 	__wsum	csum;
3610 	__u16	csum_start;
3611 };
3612 #define SKB_SGO_CB_OFFSET	32
3613 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
3614 
3615 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
3616 {
3617 	return (skb_mac_header(inner_skb) - inner_skb->head) -
3618 		SKB_GSO_CB(inner_skb)->mac_offset;
3619 }
3620 
3621 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
3622 {
3623 	int new_headroom, headroom;
3624 	int ret;
3625 
3626 	headroom = skb_headroom(skb);
3627 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
3628 	if (ret)
3629 		return ret;
3630 
3631 	new_headroom = skb_headroom(skb);
3632 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
3633 	return 0;
3634 }
3635 
3636 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
3637 {
3638 	/* Do not update partial checksums if remote checksum is enabled. */
3639 	if (skb->remcsum_offload)
3640 		return;
3641 
3642 	SKB_GSO_CB(skb)->csum = res;
3643 	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
3644 }
3645 
3646 /* Compute the checksum for a gso segment. First compute the checksum value
3647  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
3648  * then add in skb->csum (checksum from csum_start to end of packet).
3649  * skb->csum and csum_start are then updated to reflect the checksum of the
3650  * resultant packet starting from the transport header-- the resultant checksum
3651  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
3652  * header.
3653  */
3654 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
3655 {
3656 	unsigned char *csum_start = skb_transport_header(skb);
3657 	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
3658 	__wsum partial = SKB_GSO_CB(skb)->csum;
3659 
3660 	SKB_GSO_CB(skb)->csum = res;
3661 	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
3662 
3663 	return csum_fold(csum_partial(csum_start, plen, partial));
3664 }
3665 
3666 static inline bool skb_is_gso(const struct sk_buff *skb)
3667 {
3668 	return skb_shinfo(skb)->gso_size;
3669 }
3670 
3671 /* Note: Should be called only if skb_is_gso(skb) is true */
3672 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
3673 {
3674 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
3675 }
3676 
3677 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
3678 
3679 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
3680 {
3681 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
3682 	 * wanted then gso_type will be set. */
3683 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3684 
3685 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
3686 	    unlikely(shinfo->gso_type == 0)) {
3687 		__skb_warn_lro_forwarding(skb);
3688 		return true;
3689 	}
3690 	return false;
3691 }
3692 
3693 static inline void skb_forward_csum(struct sk_buff *skb)
3694 {
3695 	/* Unfortunately we don't support this one.  Any brave souls? */
3696 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3697 		skb->ip_summed = CHECKSUM_NONE;
3698 }
3699 
3700 /**
3701  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
3702  * @skb: skb to check
3703  *
3704  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
3705  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
3706  * use this helper, to document places where we make this assertion.
3707  */
3708 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
3709 {
3710 #ifdef DEBUG
3711 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
3712 #endif
3713 }
3714 
3715 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
3716 
3717 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
3718 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
3719 				     unsigned int transport_len,
3720 				     __sum16(*skb_chkf)(struct sk_buff *skb));
3721 
3722 /**
3723  * skb_head_is_locked - Determine if the skb->head is locked down
3724  * @skb: skb to check
3725  *
3726  * The head on skbs build around a head frag can be removed if they are
3727  * not cloned.  This function returns true if the skb head is locked down
3728  * due to either being allocated via kmalloc, or by being a clone with
3729  * multiple references to the head.
3730  */
3731 static inline bool skb_head_is_locked(const struct sk_buff *skb)
3732 {
3733 	return !skb->head_frag || skb_cloned(skb);
3734 }
3735 
3736 /**
3737  * skb_gso_network_seglen - Return length of individual segments of a gso packet
3738  *
3739  * @skb: GSO skb
3740  *
3741  * skb_gso_network_seglen is used to determine the real size of the
3742  * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
3743  *
3744  * The MAC/L2 header is not accounted for.
3745  */
3746 static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
3747 {
3748 	unsigned int hdr_len = skb_transport_header(skb) -
3749 			       skb_network_header(skb);
3750 	return hdr_len + skb_gso_transport_seglen(skb);
3751 }
3752 
3753 /* Local Checksum Offload.
3754  * Compute outer checksum based on the assumption that the
3755  * inner checksum will be offloaded later.
3756  * See Documentation/networking/checksum-offloads.txt for
3757  * explanation of how this works.
3758  * Fill in outer checksum adjustment (e.g. with sum of outer
3759  * pseudo-header) before calling.
3760  * Also ensure that inner checksum is in linear data area.
3761  */
3762 static inline __wsum lco_csum(struct sk_buff *skb)
3763 {
3764 	unsigned char *csum_start = skb_checksum_start(skb);
3765 	unsigned char *l4_hdr = skb_transport_header(skb);
3766 	__wsum partial;
3767 
3768 	/* Start with complement of inner checksum adjustment */
3769 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
3770 						    skb->csum_offset));
3771 
3772 	/* Add in checksum of our headers (incl. outer checksum
3773 	 * adjustment filled in by caller) and return result.
3774 	 */
3775 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
3776 }
3777 
3778 #endif	/* __KERNEL__ */
3779 #endif	/* _LINUX_SKBUFF_H */
3780