xref: /linux-6.15/include/linux/skbuff.h (revision bb5b94f5)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  *	Definitions for the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:
6  *		Alan Cox, <[email protected]>
7  *		Florian La Roche, <[email protected]>
8  */
9 
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12 
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
22 
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/hrtimer.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/netdev_features.h>
33 #include <linux/sched.h>
34 #include <linux/sched/clock.h>
35 #include <net/flow_dissector.h>
36 #include <linux/splice.h>
37 #include <linux/in6.h>
38 #include <linux/if_packet.h>
39 #include <net/flow.h>
40 #include <net/page_pool.h>
41 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
42 #include <linux/netfilter/nf_conntrack_common.h>
43 #endif
44 
45 /* The interface for checksum offload between the stack and networking drivers
46  * is as follows...
47  *
48  * A. IP checksum related features
49  *
50  * Drivers advertise checksum offload capabilities in the features of a device.
51  * From the stack's point of view these are capabilities offered by the driver.
52  * A driver typically only advertises features that it is capable of offloading
53  * to its device.
54  *
55  * The checksum related features are:
56  *
57  *	NETIF_F_HW_CSUM	- The driver (or its device) is able to compute one
58  *			  IP (one's complement) checksum for any combination
59  *			  of protocols or protocol layering. The checksum is
60  *			  computed and set in a packet per the CHECKSUM_PARTIAL
61  *			  interface (see below).
62  *
63  *	NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
64  *			  TCP or UDP packets over IPv4. These are specifically
65  *			  unencapsulated packets of the form IPv4|TCP or
66  *			  IPv4|UDP where the Protocol field in the IPv4 header
67  *			  is TCP or UDP. The IPv4 header may contain IP options.
68  *			  This feature cannot be set in features for a device
69  *			  with NETIF_F_HW_CSUM also set. This feature is being
70  *			  DEPRECATED (see below).
71  *
72  *	NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
73  *			  TCP or UDP packets over IPv6. These are specifically
74  *			  unencapsulated packets of the form IPv6|TCP or
75  *			  IPv6|UDP where the Next Header field in the IPv6
76  *			  header is either TCP or UDP. IPv6 extension headers
77  *			  are not supported with this feature. This feature
78  *			  cannot be set in features for a device with
79  *			  NETIF_F_HW_CSUM also set. This feature is being
80  *			  DEPRECATED (see below).
81  *
82  *	NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
83  *			 This flag is only used to disable the RX checksum
84  *			 feature for a device. The stack will accept receive
85  *			 checksum indication in packets received on a device
86  *			 regardless of whether NETIF_F_RXCSUM is set.
87  *
88  * B. Checksumming of received packets by device. Indication of checksum
89  *    verification is set in skb->ip_summed. Possible values are:
90  *
91  * CHECKSUM_NONE:
92  *
93  *   Device did not checksum this packet e.g. due to lack of capabilities.
94  *   The packet contains full (though not verified) checksum in packet but
95  *   not in skb->csum. Thus, skb->csum is undefined in this case.
96  *
97  * CHECKSUM_UNNECESSARY:
98  *
99  *   The hardware you're dealing with doesn't calculate the full checksum
100  *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
101  *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
102  *   if their checksums are okay. skb->csum is still undefined in this case
103  *   though. A driver or device must never modify the checksum field in the
104  *   packet even if checksum is verified.
105  *
106  *   CHECKSUM_UNNECESSARY is applicable to following protocols:
107  *     TCP: IPv6 and IPv4.
108  *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
109  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
110  *       may perform further validation in this case.
111  *     GRE: only if the checksum is present in the header.
112  *     SCTP: indicates the CRC in SCTP header has been validated.
113  *     FCOE: indicates the CRC in FC frame has been validated.
114  *
115  *   skb->csum_level indicates the number of consecutive checksums found in
116  *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
117  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
118  *   and a device is able to verify the checksums for UDP (possibly zero),
119  *   GRE (checksum flag is set) and TCP, skb->csum_level would be set to
120  *   two. If the device were only able to verify the UDP checksum and not
121  *   GRE, either because it doesn't support GRE checksum or because GRE
122  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
123  *   not considered in this case).
124  *
125  * CHECKSUM_COMPLETE:
126  *
127  *   This is the most generic way. The device supplied checksum of the _whole_
128  *   packet as seen by netif_rx() and fills in skb->csum. This means the
129  *   hardware doesn't need to parse L3/L4 headers to implement this.
130  *
131  *   Notes:
132  *   - Even if device supports only some protocols, but is able to produce
133  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
134  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
135  *
136  * CHECKSUM_PARTIAL:
137  *
138  *   A checksum is set up to be offloaded to a device as described in the
139  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
140  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
141  *   on the same host, or it may be set in the input path in GRO or remote
142  *   checksum offload. For the purposes of checksum verification, the checksum
143  *   referred to by skb->csum_start + skb->csum_offset and any preceding
144  *   checksums in the packet are considered verified. Any checksums in the
145  *   packet that are after the checksum being offloaded are not considered to
146  *   be verified.
147  *
148  * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
149  *    in the skb->ip_summed for a packet. Values are:
150  *
151  * CHECKSUM_PARTIAL:
152  *
153  *   The driver is required to checksum the packet as seen by hard_start_xmit()
154  *   from skb->csum_start up to the end, and to record/write the checksum at
155  *   offset skb->csum_start + skb->csum_offset. A driver may verify that the
156  *   csum_start and csum_offset values are valid values given the length and
157  *   offset of the packet, but it should not attempt to validate that the
158  *   checksum refers to a legitimate transport layer checksum -- it is the
159  *   purview of the stack to validate that csum_start and csum_offset are set
160  *   correctly.
161  *
162  *   When the stack requests checksum offload for a packet, the driver MUST
163  *   ensure that the checksum is set correctly. A driver can either offload the
164  *   checksum calculation to the device, or call skb_checksum_help (in the case
165  *   that the device does not support offload for a particular checksum).
166  *
167  *   NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
168  *   NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
169  *   checksum offload capability.
170  *   skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
171  *   on network device checksumming capabilities: if a packet does not match
172  *   them, skb_checksum_help or skb_crc32c_help (depending on the value of
173  *   csum_not_inet, see item D.) is called to resolve the checksum.
174  *
175  * CHECKSUM_NONE:
176  *
177  *   The skb was already checksummed by the protocol, or a checksum is not
178  *   required.
179  *
180  * CHECKSUM_UNNECESSARY:
181  *
182  *   This has the same meaning as CHECKSUM_NONE for checksum offload on
183  *   output.
184  *
185  * CHECKSUM_COMPLETE:
186  *   Not used in checksum output. If a driver observes a packet with this value
187  *   set in skbuff, it should treat the packet as if CHECKSUM_NONE were set.
188  *
189  * D. Non-IP checksum (CRC) offloads
190  *
191  *   NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
192  *     offloading the SCTP CRC in a packet. To perform this offload the stack
193  *     will set csum_start and csum_offset accordingly, set ip_summed to
194  *     CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
195  *     the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
196  *     A driver that supports both IP checksum offload and SCTP CRC32c offload
197  *     must verify which offload is configured for a packet by testing the
198  *     value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
199  *     CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
200  *
201  *   NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
202  *     offloading the FCOE CRC in a packet. To perform this offload the stack
203  *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
204  *     accordingly. Note that there is no indication in the skbuff that the
205  *     CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
206  *     both IP checksum offload and FCOE CRC offload must verify which offload
207  *     is configured for a packet, presumably by inspecting packet headers.
208  *
209  * E. Checksumming on output with GSO.
210  *
211  * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
212  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
213  * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
214  * part of the GSO operation is implied. If a checksum is being offloaded
215  * with GSO then ip_summed is CHECKSUM_PARTIAL, and both csum_start and
216  * csum_offset are set to refer to the outermost checksum being offloaded
217  * (two offloaded checksums are possible with UDP encapsulation).
218  */
219 
220 /* Don't change this without changing skb_csum_unnecessary! */
221 #define CHECKSUM_NONE		0
222 #define CHECKSUM_UNNECESSARY	1
223 #define CHECKSUM_COMPLETE	2
224 #define CHECKSUM_PARTIAL	3
225 
226 /* Maximum value in skb->csum_level */
227 #define SKB_MAX_CSUM_LEVEL	3
228 
229 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
230 #define SKB_WITH_OVERHEAD(X)	\
231 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
232 #define SKB_MAX_ORDER(X, ORDER) \
233 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
234 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
235 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
236 
237 /* return minimum truesize of one skb containing X bytes of data */
238 #define SKB_TRUESIZE(X) ((X) +						\
239 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
240 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
241 
242 struct ahash_request;
243 struct net_device;
244 struct scatterlist;
245 struct pipe_inode_info;
246 struct iov_iter;
247 struct napi_struct;
248 struct bpf_prog;
249 union bpf_attr;
250 struct skb_ext;
251 
252 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
253 struct nf_bridge_info {
254 	enum {
255 		BRNF_PROTO_UNCHANGED,
256 		BRNF_PROTO_8021Q,
257 		BRNF_PROTO_PPPOE
258 	} orig_proto:8;
259 	u8			pkt_otherhost:1;
260 	u8			in_prerouting:1;
261 	u8			bridged_dnat:1;
262 	__u16			frag_max_size;
263 	struct net_device	*physindev;
264 
265 	/* always valid & non-NULL from FORWARD on, for physdev match */
266 	struct net_device	*physoutdev;
267 	union {
268 		/* prerouting: detect dnat in orig/reply direction */
269 		__be32          ipv4_daddr;
270 		struct in6_addr ipv6_daddr;
271 
272 		/* after prerouting + nat detected: store original source
273 		 * mac since neigh resolution overwrites it, only used while
274 		 * skb is out in neigh layer.
275 		 */
276 		char neigh_header[8];
277 	};
278 };
279 #endif
280 
281 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
282 /* Chain in tc_skb_ext will be used to share the tc chain with
283  * ovs recirc_id. It will be set to the current chain by tc
284  * and read by ovs to recirc_id.
285  */
286 struct tc_skb_ext {
287 	__u32 chain;
288 	__u16 mru;
289 	bool post_ct;
290 };
291 #endif
292 
293 struct sk_buff_head {
294 	/* These two members must be first. */
295 	struct sk_buff	*next;
296 	struct sk_buff	*prev;
297 
298 	__u32		qlen;
299 	spinlock_t	lock;
300 };
301 
302 struct sk_buff;
303 
304 /* To allow 64K frame to be packed as single skb without frag_list we
305  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
306  * buffers which do not start on a page boundary.
307  *
308  * Since GRO uses frags we allocate at least 16 regardless of page
309  * size.
310  */
311 #if (65536/PAGE_SIZE + 1) < 16
312 #define MAX_SKB_FRAGS 16UL
313 #else
314 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
315 #endif
316 extern int sysctl_max_skb_frags;
317 
318 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
319  * segment using its current segmentation instead.
320  */
321 #define GSO_BY_FRAGS	0xFFFF
322 
323 typedef struct bio_vec skb_frag_t;
324 
325 /**
326  * skb_frag_size() - Returns the size of a skb fragment
327  * @frag: skb fragment
328  */
329 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
330 {
331 	return frag->bv_len;
332 }
333 
334 /**
335  * skb_frag_size_set() - Sets the size of a skb fragment
336  * @frag: skb fragment
337  * @size: size of fragment
338  */
339 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
340 {
341 	frag->bv_len = size;
342 }
343 
344 /**
345  * skb_frag_size_add() - Increments the size of a skb fragment by @delta
346  * @frag: skb fragment
347  * @delta: value to add
348  */
349 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
350 {
351 	frag->bv_len += delta;
352 }
353 
354 /**
355  * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
356  * @frag: skb fragment
357  * @delta: value to subtract
358  */
359 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
360 {
361 	frag->bv_len -= delta;
362 }
363 
364 /**
365  * skb_frag_must_loop - Test if %p is a high memory page
366  * @p: fragment's page
367  */
368 static inline bool skb_frag_must_loop(struct page *p)
369 {
370 #if defined(CONFIG_HIGHMEM)
371 	if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p))
372 		return true;
373 #endif
374 	return false;
375 }
376 
377 /**
378  *	skb_frag_foreach_page - loop over pages in a fragment
379  *
380  *	@f:		skb frag to operate on
381  *	@f_off:		offset from start of f->bv_page
382  *	@f_len:		length from f_off to loop over
383  *	@p:		(temp var) current page
384  *	@p_off:		(temp var) offset from start of current page,
385  *	                           non-zero only on first page.
386  *	@p_len:		(temp var) length in current page,
387  *				   < PAGE_SIZE only on first and last page.
388  *	@copied:	(temp var) length so far, excluding current p_len.
389  *
390  *	A fragment can hold a compound page, in which case per-page
391  *	operations, notably kmap_atomic, must be called for each
392  *	regular page.
393  */
394 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
395 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
396 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
397 	     p_len = skb_frag_must_loop(p) ?				\
398 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
399 	     copied = 0;						\
400 	     copied < f_len;						\
401 	     copied += p_len, p++, p_off = 0,				\
402 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
403 
404 #define HAVE_HW_TIME_STAMP
405 
406 /**
407  * struct skb_shared_hwtstamps - hardware time stamps
408  * @hwtstamp:	hardware time stamp transformed into duration
409  *		since arbitrary point in time
410  *
411  * Software time stamps generated by ktime_get_real() are stored in
412  * skb->tstamp.
413  *
414  * hwtstamps can only be compared against other hwtstamps from
415  * the same device.
416  *
417  * This structure is attached to packets as part of the
418  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
419  */
420 struct skb_shared_hwtstamps {
421 	ktime_t	hwtstamp;
422 };
423 
424 /* Definitions for tx_flags in struct skb_shared_info */
425 enum {
426 	/* generate hardware time stamp */
427 	SKBTX_HW_TSTAMP = 1 << 0,
428 
429 	/* generate software time stamp when queueing packet to NIC */
430 	SKBTX_SW_TSTAMP = 1 << 1,
431 
432 	/* device driver is going to provide hardware time stamp */
433 	SKBTX_IN_PROGRESS = 1 << 2,
434 
435 	/* generate wifi status information (where possible) */
436 	SKBTX_WIFI_STATUS = 1 << 4,
437 
438 	/* generate software time stamp when entering packet scheduling */
439 	SKBTX_SCHED_TSTAMP = 1 << 6,
440 };
441 
442 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
443 				 SKBTX_SCHED_TSTAMP)
444 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
445 
446 /* Definitions for flags in struct skb_shared_info */
447 enum {
448 	/* use zcopy routines */
449 	SKBFL_ZEROCOPY_ENABLE = BIT(0),
450 
451 	/* This indicates at least one fragment might be overwritten
452 	 * (as in vmsplice(), sendfile() ...)
453 	 * If we need to compute a TX checksum, we'll need to copy
454 	 * all frags to avoid possible bad checksum
455 	 */
456 	SKBFL_SHARED_FRAG = BIT(1),
457 };
458 
459 #define SKBFL_ZEROCOPY_FRAG	(SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG)
460 
461 /*
462  * The callback notifies userspace to release buffers when skb DMA is done in
463  * lower device, the skb last reference should be 0 when calling this.
464  * The zerocopy_success argument is true if zero copy transmit occurred,
465  * false on data copy or out of memory error caused by data copy attempt.
466  * The ctx field is used to track device context.
467  * The desc field is used to track userspace buffer index.
468  */
469 struct ubuf_info {
470 	void (*callback)(struct sk_buff *, struct ubuf_info *,
471 			 bool zerocopy_success);
472 	union {
473 		struct {
474 			unsigned long desc;
475 			void *ctx;
476 		};
477 		struct {
478 			u32 id;
479 			u16 len;
480 			u16 zerocopy:1;
481 			u32 bytelen;
482 		};
483 	};
484 	refcount_t refcnt;
485 	u8 flags;
486 
487 	struct mmpin {
488 		struct user_struct *user;
489 		unsigned int num_pg;
490 	} mmp;
491 };
492 
493 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
494 
495 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
496 void mm_unaccount_pinned_pages(struct mmpin *mmp);
497 
498 struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size);
499 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
500 				       struct ubuf_info *uarg);
501 
502 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
503 
504 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
505 			   bool success);
506 
507 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len);
508 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
509 			     struct msghdr *msg, int len,
510 			     struct ubuf_info *uarg);
511 
512 /* This data is invariant across clones and lives at
513  * the end of the header data, ie. at skb->end.
514  */
515 struct skb_shared_info {
516 	__u8		flags;
517 	__u8		meta_len;
518 	__u8		nr_frags;
519 	__u8		tx_flags;
520 	unsigned short	gso_size;
521 	/* Warning: this field is not always filled in (UFO)! */
522 	unsigned short	gso_segs;
523 	struct sk_buff	*frag_list;
524 	struct skb_shared_hwtstamps hwtstamps;
525 	unsigned int	gso_type;
526 	u32		tskey;
527 
528 	/*
529 	 * Warning : all fields before dataref are cleared in __alloc_skb()
530 	 */
531 	atomic_t	dataref;
532 
533 	/* Intermediate layers must ensure that destructor_arg
534 	 * remains valid until skb destructor */
535 	void *		destructor_arg;
536 
537 	/* must be last field, see pskb_expand_head() */
538 	skb_frag_t	frags[MAX_SKB_FRAGS];
539 };
540 
541 /* We divide dataref into two halves.  The higher 16 bits hold references
542  * to the payload part of skb->data.  The lower 16 bits hold references to
543  * the entire skb->data.  A clone of a headerless skb holds the length of
544  * the header in skb->hdr_len.
545  *
546  * All users must obey the rule that the skb->data reference count must be
547  * greater than or equal to the payload reference count.
548  *
549  * Holding a reference to the payload part means that the user does not
550  * care about modifications to the header part of skb->data.
551  */
552 #define SKB_DATAREF_SHIFT 16
553 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
554 
555 
556 enum {
557 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
558 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
559 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
560 };
561 
562 enum {
563 	SKB_GSO_TCPV4 = 1 << 0,
564 
565 	/* This indicates the skb is from an untrusted source. */
566 	SKB_GSO_DODGY = 1 << 1,
567 
568 	/* This indicates the tcp segment has CWR set. */
569 	SKB_GSO_TCP_ECN = 1 << 2,
570 
571 	SKB_GSO_TCP_FIXEDID = 1 << 3,
572 
573 	SKB_GSO_TCPV6 = 1 << 4,
574 
575 	SKB_GSO_FCOE = 1 << 5,
576 
577 	SKB_GSO_GRE = 1 << 6,
578 
579 	SKB_GSO_GRE_CSUM = 1 << 7,
580 
581 	SKB_GSO_IPXIP4 = 1 << 8,
582 
583 	SKB_GSO_IPXIP6 = 1 << 9,
584 
585 	SKB_GSO_UDP_TUNNEL = 1 << 10,
586 
587 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
588 
589 	SKB_GSO_PARTIAL = 1 << 12,
590 
591 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
592 
593 	SKB_GSO_SCTP = 1 << 14,
594 
595 	SKB_GSO_ESP = 1 << 15,
596 
597 	SKB_GSO_UDP = 1 << 16,
598 
599 	SKB_GSO_UDP_L4 = 1 << 17,
600 
601 	SKB_GSO_FRAGLIST = 1 << 18,
602 };
603 
604 #if BITS_PER_LONG > 32
605 #define NET_SKBUFF_DATA_USES_OFFSET 1
606 #endif
607 
608 #ifdef NET_SKBUFF_DATA_USES_OFFSET
609 typedef unsigned int sk_buff_data_t;
610 #else
611 typedef unsigned char *sk_buff_data_t;
612 #endif
613 
614 /**
615  *	struct sk_buff - socket buffer
616  *	@next: Next buffer in list
617  *	@prev: Previous buffer in list
618  *	@tstamp: Time we arrived/left
619  *	@skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
620  *		for retransmit timer
621  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
622  *	@list: queue head
623  *	@sk: Socket we are owned by
624  *	@ip_defrag_offset: (aka @sk) alternate use of @sk, used in
625  *		fragmentation management
626  *	@dev: Device we arrived on/are leaving by
627  *	@dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
628  *	@cb: Control buffer. Free for use by every layer. Put private vars here
629  *	@_skb_refdst: destination entry (with norefcount bit)
630  *	@sp: the security path, used for xfrm
631  *	@len: Length of actual data
632  *	@data_len: Data length
633  *	@mac_len: Length of link layer header
634  *	@hdr_len: writable header length of cloned skb
635  *	@csum: Checksum (must include start/offset pair)
636  *	@csum_start: Offset from skb->head where checksumming should start
637  *	@csum_offset: Offset from csum_start where checksum should be stored
638  *	@priority: Packet queueing priority
639  *	@ignore_df: allow local fragmentation
640  *	@cloned: Head may be cloned (check refcnt to be sure)
641  *	@ip_summed: Driver fed us an IP checksum
642  *	@nohdr: Payload reference only, must not modify header
643  *	@pkt_type: Packet class
644  *	@fclone: skbuff clone status
645  *	@ipvs_property: skbuff is owned by ipvs
646  *	@inner_protocol_type: whether the inner protocol is
647  *		ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
648  *	@remcsum_offload: remote checksum offload is enabled
649  *	@offload_fwd_mark: Packet was L2-forwarded in hardware
650  *	@offload_l3_fwd_mark: Packet was L3-forwarded in hardware
651  *	@tc_skip_classify: do not classify packet. set by IFB device
652  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
653  *	@redirected: packet was redirected by packet classifier
654  *	@from_ingress: packet was redirected from the ingress path
655  *	@peeked: this packet has been seen already, so stats have been
656  *		done for it, don't do them again
657  *	@nf_trace: netfilter packet trace flag
658  *	@protocol: Packet protocol from driver
659  *	@destructor: Destruct function
660  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
661  *	@_sk_redir: socket redirection information for skmsg
662  *	@_nfct: Associated connection, if any (with nfctinfo bits)
663  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
664  *	@skb_iif: ifindex of device we arrived on
665  *	@tc_index: Traffic control index
666  *	@hash: the packet hash
667  *	@queue_mapping: Queue mapping for multiqueue devices
668  *	@head_frag: skb was allocated from page fragments,
669  *		not allocated by kmalloc() or vmalloc().
670  *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
671  *	@pp_recycle: mark the packet for recycling instead of freeing (implies
672  *		page_pool support on driver)
673  *	@active_extensions: active extensions (skb_ext_id types)
674  *	@ndisc_nodetype: router type (from link layer)
675  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
676  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
677  *		ports.
678  *	@sw_hash: indicates hash was computed in software stack
679  *	@wifi_acked_valid: wifi_acked was set
680  *	@wifi_acked: whether frame was acked on wifi or not
681  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
682  *	@encapsulation: indicates the inner headers in the skbuff are valid
683  *	@encap_hdr_csum: software checksum is needed
684  *	@csum_valid: checksum is already valid
685  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
686  *	@csum_complete_sw: checksum was completed by software
687  *	@csum_level: indicates the number of consecutive checksums found in
688  *		the packet minus one that have been verified as
689  *		CHECKSUM_UNNECESSARY (max 3)
690  *	@dst_pending_confirm: need to confirm neighbour
691  *	@decrypted: Decrypted SKB
692  *	@napi_id: id of the NAPI struct this skb came from
693  *	@sender_cpu: (aka @napi_id) source CPU in XPS
694  *	@secmark: security marking
695  *	@mark: Generic packet mark
696  *	@reserved_tailroom: (aka @mark) number of bytes of free space available
697  *		at the tail of an sk_buff
698  *	@vlan_present: VLAN tag is present
699  *	@vlan_proto: vlan encapsulation protocol
700  *	@vlan_tci: vlan tag control information
701  *	@inner_protocol: Protocol (encapsulation)
702  *	@inner_ipproto: (aka @inner_protocol) stores ipproto when
703  *		skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
704  *	@inner_transport_header: Inner transport layer header (encapsulation)
705  *	@inner_network_header: Network layer header (encapsulation)
706  *	@inner_mac_header: Link layer header (encapsulation)
707  *	@transport_header: Transport layer header
708  *	@network_header: Network layer header
709  *	@mac_header: Link layer header
710  *	@kcov_handle: KCOV remote handle for remote coverage collection
711  *	@tail: Tail pointer
712  *	@end: End pointer
713  *	@head: Head of buffer
714  *	@data: Data head pointer
715  *	@truesize: Buffer size
716  *	@users: User count - see {datagram,tcp}.c
717  *	@extensions: allocated extensions, valid if active_extensions is nonzero
718  */
719 
720 struct sk_buff {
721 	union {
722 		struct {
723 			/* These two members must be first. */
724 			struct sk_buff		*next;
725 			struct sk_buff		*prev;
726 
727 			union {
728 				struct net_device	*dev;
729 				/* Some protocols might use this space to store information,
730 				 * while device pointer would be NULL.
731 				 * UDP receive path is one user.
732 				 */
733 				unsigned long		dev_scratch;
734 			};
735 		};
736 		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
737 		struct list_head	list;
738 	};
739 
740 	union {
741 		struct sock		*sk;
742 		int			ip_defrag_offset;
743 	};
744 
745 	union {
746 		ktime_t		tstamp;
747 		u64		skb_mstamp_ns; /* earliest departure time */
748 	};
749 	/*
750 	 * This is the control buffer. It is free to use for every
751 	 * layer. Please put your private variables there. If you
752 	 * want to keep them across layers you have to do a skb_clone()
753 	 * first. This is owned by whoever has the skb queued ATM.
754 	 */
755 	char			cb[48] __aligned(8);
756 
757 	union {
758 		struct {
759 			unsigned long	_skb_refdst;
760 			void		(*destructor)(struct sk_buff *skb);
761 		};
762 		struct list_head	tcp_tsorted_anchor;
763 #ifdef CONFIG_NET_SOCK_MSG
764 		unsigned long		_sk_redir;
765 #endif
766 	};
767 
768 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
769 	unsigned long		 _nfct;
770 #endif
771 	unsigned int		len,
772 				data_len;
773 	__u16			mac_len,
774 				hdr_len;
775 
776 	/* Following fields are _not_ copied in __copy_skb_header()
777 	 * Note that queue_mapping is here mostly to fill a hole.
778 	 */
779 	__u16			queue_mapping;
780 
781 /* if you move cloned around you also must adapt those constants */
782 #ifdef __BIG_ENDIAN_BITFIELD
783 #define CLONED_MASK	(1 << 7)
784 #else
785 #define CLONED_MASK	1
786 #endif
787 #define CLONED_OFFSET()		offsetof(struct sk_buff, __cloned_offset)
788 
789 	/* private: */
790 	__u8			__cloned_offset[0];
791 	/* public: */
792 	__u8			cloned:1,
793 				nohdr:1,
794 				fclone:2,
795 				peeked:1,
796 				head_frag:1,
797 				pfmemalloc:1,
798 				pp_recycle:1; /* page_pool recycle indicator */
799 #ifdef CONFIG_SKB_EXTENSIONS
800 	__u8			active_extensions;
801 #endif
802 
803 	/* fields enclosed in headers_start/headers_end are copied
804 	 * using a single memcpy() in __copy_skb_header()
805 	 */
806 	/* private: */
807 	__u32			headers_start[0];
808 	/* public: */
809 
810 /* if you move pkt_type around you also must adapt those constants */
811 #ifdef __BIG_ENDIAN_BITFIELD
812 #define PKT_TYPE_MAX	(7 << 5)
813 #else
814 #define PKT_TYPE_MAX	7
815 #endif
816 #define PKT_TYPE_OFFSET()	offsetof(struct sk_buff, __pkt_type_offset)
817 
818 	/* private: */
819 	__u8			__pkt_type_offset[0];
820 	/* public: */
821 	__u8			pkt_type:3;
822 	__u8			ignore_df:1;
823 	__u8			nf_trace:1;
824 	__u8			ip_summed:2;
825 	__u8			ooo_okay:1;
826 
827 	__u8			l4_hash:1;
828 	__u8			sw_hash:1;
829 	__u8			wifi_acked_valid:1;
830 	__u8			wifi_acked:1;
831 	__u8			no_fcs:1;
832 	/* Indicates the inner headers are valid in the skbuff. */
833 	__u8			encapsulation:1;
834 	__u8			encap_hdr_csum:1;
835 	__u8			csum_valid:1;
836 
837 #ifdef __BIG_ENDIAN_BITFIELD
838 #define PKT_VLAN_PRESENT_BIT	7
839 #else
840 #define PKT_VLAN_PRESENT_BIT	0
841 #endif
842 #define PKT_VLAN_PRESENT_OFFSET()	offsetof(struct sk_buff, __pkt_vlan_present_offset)
843 	/* private: */
844 	__u8			__pkt_vlan_present_offset[0];
845 	/* public: */
846 	__u8			vlan_present:1;
847 	__u8			csum_complete_sw:1;
848 	__u8			csum_level:2;
849 	__u8			csum_not_inet:1;
850 	__u8			dst_pending_confirm:1;
851 #ifdef CONFIG_IPV6_NDISC_NODETYPE
852 	__u8			ndisc_nodetype:2;
853 #endif
854 
855 	__u8			ipvs_property:1;
856 	__u8			inner_protocol_type:1;
857 	__u8			remcsum_offload:1;
858 #ifdef CONFIG_NET_SWITCHDEV
859 	__u8			offload_fwd_mark:1;
860 	__u8			offload_l3_fwd_mark:1;
861 #endif
862 #ifdef CONFIG_NET_CLS_ACT
863 	__u8			tc_skip_classify:1;
864 	__u8			tc_at_ingress:1;
865 #endif
866 #ifdef CONFIG_NET_REDIRECT
867 	__u8			redirected:1;
868 	__u8			from_ingress:1;
869 #endif
870 #ifdef CONFIG_TLS_DEVICE
871 	__u8			decrypted:1;
872 #endif
873 
874 #ifdef CONFIG_NET_SCHED
875 	__u16			tc_index;	/* traffic control index */
876 #endif
877 
878 	union {
879 		__wsum		csum;
880 		struct {
881 			__u16	csum_start;
882 			__u16	csum_offset;
883 		};
884 	};
885 	__u32			priority;
886 	int			skb_iif;
887 	__u32			hash;
888 	__be16			vlan_proto;
889 	__u16			vlan_tci;
890 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
891 	union {
892 		unsigned int	napi_id;
893 		unsigned int	sender_cpu;
894 	};
895 #endif
896 #ifdef CONFIG_NETWORK_SECMARK
897 	__u32		secmark;
898 #endif
899 
900 	union {
901 		__u32		mark;
902 		__u32		reserved_tailroom;
903 	};
904 
905 	union {
906 		__be16		inner_protocol;
907 		__u8		inner_ipproto;
908 	};
909 
910 	__u16			inner_transport_header;
911 	__u16			inner_network_header;
912 	__u16			inner_mac_header;
913 
914 	__be16			protocol;
915 	__u16			transport_header;
916 	__u16			network_header;
917 	__u16			mac_header;
918 
919 #ifdef CONFIG_KCOV
920 	u64			kcov_handle;
921 #endif
922 
923 	/* private: */
924 	__u32			headers_end[0];
925 	/* public: */
926 
927 	/* These elements must be at the end, see alloc_skb() for details.  */
928 	sk_buff_data_t		tail;
929 	sk_buff_data_t		end;
930 	unsigned char		*head,
931 				*data;
932 	unsigned int		truesize;
933 	refcount_t		users;
934 
935 #ifdef CONFIG_SKB_EXTENSIONS
936 	/* only useable after checking ->active_extensions != 0 */
937 	struct skb_ext		*extensions;
938 #endif
939 };
940 
941 #ifdef __KERNEL__
942 /*
943  *	Handling routines are only of interest to the kernel
944  */
945 
946 #define SKB_ALLOC_FCLONE	0x01
947 #define SKB_ALLOC_RX		0x02
948 #define SKB_ALLOC_NAPI		0x04
949 
950 /**
951  * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
952  * @skb: buffer
953  */
954 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
955 {
956 	return unlikely(skb->pfmemalloc);
957 }
958 
959 /*
960  * skb might have a dst pointer attached, refcounted or not.
961  * _skb_refdst low order bit is set if refcount was _not_ taken
962  */
963 #define SKB_DST_NOREF	1UL
964 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
965 
966 /**
967  * skb_dst - returns skb dst_entry
968  * @skb: buffer
969  *
970  * Returns skb dst_entry, regardless of reference taken or not.
971  */
972 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
973 {
974 	/* If refdst was not refcounted, check we still are in a
975 	 * rcu_read_lock section
976 	 */
977 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
978 		!rcu_read_lock_held() &&
979 		!rcu_read_lock_bh_held());
980 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
981 }
982 
983 /**
984  * skb_dst_set - sets skb dst
985  * @skb: buffer
986  * @dst: dst entry
987  *
988  * Sets skb dst, assuming a reference was taken on dst and should
989  * be released by skb_dst_drop()
990  */
991 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
992 {
993 	skb->_skb_refdst = (unsigned long)dst;
994 }
995 
996 /**
997  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
998  * @skb: buffer
999  * @dst: dst entry
1000  *
1001  * Sets skb dst, assuming a reference was not taken on dst.
1002  * If dst entry is cached, we do not take reference and dst_release
1003  * will be avoided by refdst_drop. If dst entry is not cached, we take
1004  * reference, so that last dst_release can destroy the dst immediately.
1005  */
1006 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
1007 {
1008 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
1009 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
1010 }
1011 
1012 /**
1013  * skb_dst_is_noref - Test if skb dst isn't refcounted
1014  * @skb: buffer
1015  */
1016 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1017 {
1018 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1019 }
1020 
1021 /**
1022  * skb_rtable - Returns the skb &rtable
1023  * @skb: buffer
1024  */
1025 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
1026 {
1027 	return (struct rtable *)skb_dst(skb);
1028 }
1029 
1030 /* For mangling skb->pkt_type from user space side from applications
1031  * such as nft, tc, etc, we only allow a conservative subset of
1032  * possible pkt_types to be set.
1033 */
1034 static inline bool skb_pkt_type_ok(u32 ptype)
1035 {
1036 	return ptype <= PACKET_OTHERHOST;
1037 }
1038 
1039 /**
1040  * skb_napi_id - Returns the skb's NAPI id
1041  * @skb: buffer
1042  */
1043 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1044 {
1045 #ifdef CONFIG_NET_RX_BUSY_POLL
1046 	return skb->napi_id;
1047 #else
1048 	return 0;
1049 #endif
1050 }
1051 
1052 /**
1053  * skb_unref - decrement the skb's reference count
1054  * @skb: buffer
1055  *
1056  * Returns true if we can free the skb.
1057  */
1058 static inline bool skb_unref(struct sk_buff *skb)
1059 {
1060 	if (unlikely(!skb))
1061 		return false;
1062 	if (likely(refcount_read(&skb->users) == 1))
1063 		smp_rmb();
1064 	else if (likely(!refcount_dec_and_test(&skb->users)))
1065 		return false;
1066 
1067 	return true;
1068 }
1069 
1070 void skb_release_head_state(struct sk_buff *skb);
1071 void kfree_skb(struct sk_buff *skb);
1072 void kfree_skb_list(struct sk_buff *segs);
1073 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1074 void skb_tx_error(struct sk_buff *skb);
1075 
1076 #ifdef CONFIG_TRACEPOINTS
1077 void consume_skb(struct sk_buff *skb);
1078 #else
1079 static inline void consume_skb(struct sk_buff *skb)
1080 {
1081 	return kfree_skb(skb);
1082 }
1083 #endif
1084 
1085 void __consume_stateless_skb(struct sk_buff *skb);
1086 void  __kfree_skb(struct sk_buff *skb);
1087 extern struct kmem_cache *skbuff_head_cache;
1088 
1089 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1090 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1091 		      bool *fragstolen, int *delta_truesize);
1092 
1093 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1094 			    int node);
1095 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1096 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1097 struct sk_buff *build_skb_around(struct sk_buff *skb,
1098 				 void *data, unsigned int frag_size);
1099 
1100 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size);
1101 
1102 /**
1103  * alloc_skb - allocate a network buffer
1104  * @size: size to allocate
1105  * @priority: allocation mask
1106  *
1107  * This function is a convenient wrapper around __alloc_skb().
1108  */
1109 static inline struct sk_buff *alloc_skb(unsigned int size,
1110 					gfp_t priority)
1111 {
1112 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1113 }
1114 
1115 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1116 				     unsigned long data_len,
1117 				     int max_page_order,
1118 				     int *errcode,
1119 				     gfp_t gfp_mask);
1120 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1121 
1122 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1123 struct sk_buff_fclones {
1124 	struct sk_buff	skb1;
1125 
1126 	struct sk_buff	skb2;
1127 
1128 	refcount_t	fclone_ref;
1129 };
1130 
1131 /**
1132  *	skb_fclone_busy - check if fclone is busy
1133  *	@sk: socket
1134  *	@skb: buffer
1135  *
1136  * Returns true if skb is a fast clone, and its clone is not freed.
1137  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1138  * so we also check that this didnt happen.
1139  */
1140 static inline bool skb_fclone_busy(const struct sock *sk,
1141 				   const struct sk_buff *skb)
1142 {
1143 	const struct sk_buff_fclones *fclones;
1144 
1145 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1146 
1147 	return skb->fclone == SKB_FCLONE_ORIG &&
1148 	       refcount_read(&fclones->fclone_ref) > 1 &&
1149 	       READ_ONCE(fclones->skb2.sk) == sk;
1150 }
1151 
1152 /**
1153  * alloc_skb_fclone - allocate a network buffer from fclone cache
1154  * @size: size to allocate
1155  * @priority: allocation mask
1156  *
1157  * This function is a convenient wrapper around __alloc_skb().
1158  */
1159 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1160 					       gfp_t priority)
1161 {
1162 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1163 }
1164 
1165 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1166 void skb_headers_offset_update(struct sk_buff *skb, int off);
1167 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1168 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1169 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1170 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1171 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1172 				   gfp_t gfp_mask, bool fclone);
1173 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1174 					  gfp_t gfp_mask)
1175 {
1176 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1177 }
1178 
1179 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1180 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1181 				     unsigned int headroom);
1182 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1183 				int newtailroom, gfp_t priority);
1184 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1185 				     int offset, int len);
1186 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1187 			      int offset, int len);
1188 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1189 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1190 
1191 /**
1192  *	skb_pad			-	zero pad the tail of an skb
1193  *	@skb: buffer to pad
1194  *	@pad: space to pad
1195  *
1196  *	Ensure that a buffer is followed by a padding area that is zero
1197  *	filled. Used by network drivers which may DMA or transfer data
1198  *	beyond the buffer end onto the wire.
1199  *
1200  *	May return error in out of memory cases. The skb is freed on error.
1201  */
1202 static inline int skb_pad(struct sk_buff *skb, int pad)
1203 {
1204 	return __skb_pad(skb, pad, true);
1205 }
1206 #define dev_kfree_skb(a)	consume_skb(a)
1207 
1208 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1209 			 int offset, size_t size);
1210 
1211 struct skb_seq_state {
1212 	__u32		lower_offset;
1213 	__u32		upper_offset;
1214 	__u32		frag_idx;
1215 	__u32		stepped_offset;
1216 	struct sk_buff	*root_skb;
1217 	struct sk_buff	*cur_skb;
1218 	__u8		*frag_data;
1219 	__u32		frag_off;
1220 };
1221 
1222 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1223 			  unsigned int to, struct skb_seq_state *st);
1224 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1225 			  struct skb_seq_state *st);
1226 void skb_abort_seq_read(struct skb_seq_state *st);
1227 
1228 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1229 			   unsigned int to, struct ts_config *config);
1230 
1231 /*
1232  * Packet hash types specify the type of hash in skb_set_hash.
1233  *
1234  * Hash types refer to the protocol layer addresses which are used to
1235  * construct a packet's hash. The hashes are used to differentiate or identify
1236  * flows of the protocol layer for the hash type. Hash types are either
1237  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1238  *
1239  * Properties of hashes:
1240  *
1241  * 1) Two packets in different flows have different hash values
1242  * 2) Two packets in the same flow should have the same hash value
1243  *
1244  * A hash at a higher layer is considered to be more specific. A driver should
1245  * set the most specific hash possible.
1246  *
1247  * A driver cannot indicate a more specific hash than the layer at which a hash
1248  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1249  *
1250  * A driver may indicate a hash level which is less specific than the
1251  * actual layer the hash was computed on. For instance, a hash computed
1252  * at L4 may be considered an L3 hash. This should only be done if the
1253  * driver can't unambiguously determine that the HW computed the hash at
1254  * the higher layer. Note that the "should" in the second property above
1255  * permits this.
1256  */
1257 enum pkt_hash_types {
1258 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1259 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1260 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1261 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1262 };
1263 
1264 static inline void skb_clear_hash(struct sk_buff *skb)
1265 {
1266 	skb->hash = 0;
1267 	skb->sw_hash = 0;
1268 	skb->l4_hash = 0;
1269 }
1270 
1271 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1272 {
1273 	if (!skb->l4_hash)
1274 		skb_clear_hash(skb);
1275 }
1276 
1277 static inline void
1278 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1279 {
1280 	skb->l4_hash = is_l4;
1281 	skb->sw_hash = is_sw;
1282 	skb->hash = hash;
1283 }
1284 
1285 static inline void
1286 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1287 {
1288 	/* Used by drivers to set hash from HW */
1289 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1290 }
1291 
1292 static inline void
1293 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1294 {
1295 	__skb_set_hash(skb, hash, true, is_l4);
1296 }
1297 
1298 void __skb_get_hash(struct sk_buff *skb);
1299 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1300 u32 skb_get_poff(const struct sk_buff *skb);
1301 u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
1302 		   const struct flow_keys_basic *keys, int hlen);
1303 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1304 			    const void *data, int hlen_proto);
1305 
1306 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1307 					int thoff, u8 ip_proto)
1308 {
1309 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1310 }
1311 
1312 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1313 			     const struct flow_dissector_key *key,
1314 			     unsigned int key_count);
1315 
1316 struct bpf_flow_dissector;
1317 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1318 		      __be16 proto, int nhoff, int hlen, unsigned int flags);
1319 
1320 bool __skb_flow_dissect(const struct net *net,
1321 			const struct sk_buff *skb,
1322 			struct flow_dissector *flow_dissector,
1323 			void *target_container, const void *data,
1324 			__be16 proto, int nhoff, int hlen, unsigned int flags);
1325 
1326 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1327 				    struct flow_dissector *flow_dissector,
1328 				    void *target_container, unsigned int flags)
1329 {
1330 	return __skb_flow_dissect(NULL, skb, flow_dissector,
1331 				  target_container, NULL, 0, 0, 0, flags);
1332 }
1333 
1334 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1335 					      struct flow_keys *flow,
1336 					      unsigned int flags)
1337 {
1338 	memset(flow, 0, sizeof(*flow));
1339 	return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1340 				  flow, NULL, 0, 0, 0, flags);
1341 }
1342 
1343 static inline bool
1344 skb_flow_dissect_flow_keys_basic(const struct net *net,
1345 				 const struct sk_buff *skb,
1346 				 struct flow_keys_basic *flow,
1347 				 const void *data, __be16 proto,
1348 				 int nhoff, int hlen, unsigned int flags)
1349 {
1350 	memset(flow, 0, sizeof(*flow));
1351 	return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1352 				  data, proto, nhoff, hlen, flags);
1353 }
1354 
1355 void skb_flow_dissect_meta(const struct sk_buff *skb,
1356 			   struct flow_dissector *flow_dissector,
1357 			   void *target_container);
1358 
1359 /* Gets a skb connection tracking info, ctinfo map should be a
1360  * map of mapsize to translate enum ip_conntrack_info states
1361  * to user states.
1362  */
1363 void
1364 skb_flow_dissect_ct(const struct sk_buff *skb,
1365 		    struct flow_dissector *flow_dissector,
1366 		    void *target_container,
1367 		    u16 *ctinfo_map, size_t mapsize,
1368 		    bool post_ct);
1369 void
1370 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1371 			     struct flow_dissector *flow_dissector,
1372 			     void *target_container);
1373 
1374 void skb_flow_dissect_hash(const struct sk_buff *skb,
1375 			   struct flow_dissector *flow_dissector,
1376 			   void *target_container);
1377 
1378 static inline __u32 skb_get_hash(struct sk_buff *skb)
1379 {
1380 	if (!skb->l4_hash && !skb->sw_hash)
1381 		__skb_get_hash(skb);
1382 
1383 	return skb->hash;
1384 }
1385 
1386 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1387 {
1388 	if (!skb->l4_hash && !skb->sw_hash) {
1389 		struct flow_keys keys;
1390 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1391 
1392 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1393 	}
1394 
1395 	return skb->hash;
1396 }
1397 
1398 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1399 			   const siphash_key_t *perturb);
1400 
1401 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1402 {
1403 	return skb->hash;
1404 }
1405 
1406 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1407 {
1408 	to->hash = from->hash;
1409 	to->sw_hash = from->sw_hash;
1410 	to->l4_hash = from->l4_hash;
1411 };
1412 
1413 static inline void skb_copy_decrypted(struct sk_buff *to,
1414 				      const struct sk_buff *from)
1415 {
1416 #ifdef CONFIG_TLS_DEVICE
1417 	to->decrypted = from->decrypted;
1418 #endif
1419 }
1420 
1421 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1422 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1423 {
1424 	return skb->head + skb->end;
1425 }
1426 
1427 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1428 {
1429 	return skb->end;
1430 }
1431 #else
1432 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1433 {
1434 	return skb->end;
1435 }
1436 
1437 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1438 {
1439 	return skb->end - skb->head;
1440 }
1441 #endif
1442 
1443 /* Internal */
1444 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1445 
1446 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1447 {
1448 	return &skb_shinfo(skb)->hwtstamps;
1449 }
1450 
1451 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1452 {
1453 	bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE;
1454 
1455 	return is_zcopy ? skb_uarg(skb) : NULL;
1456 }
1457 
1458 static inline void net_zcopy_get(struct ubuf_info *uarg)
1459 {
1460 	refcount_inc(&uarg->refcnt);
1461 }
1462 
1463 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg)
1464 {
1465 	skb_shinfo(skb)->destructor_arg = uarg;
1466 	skb_shinfo(skb)->flags |= uarg->flags;
1467 }
1468 
1469 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1470 				 bool *have_ref)
1471 {
1472 	if (skb && uarg && !skb_zcopy(skb)) {
1473 		if (unlikely(have_ref && *have_ref))
1474 			*have_ref = false;
1475 		else
1476 			net_zcopy_get(uarg);
1477 		skb_zcopy_init(skb, uarg);
1478 	}
1479 }
1480 
1481 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1482 {
1483 	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1484 	skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG;
1485 }
1486 
1487 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1488 {
1489 	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1490 }
1491 
1492 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1493 {
1494 	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1495 }
1496 
1497 static inline void net_zcopy_put(struct ubuf_info *uarg)
1498 {
1499 	if (uarg)
1500 		uarg->callback(NULL, uarg, true);
1501 }
1502 
1503 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1504 {
1505 	if (uarg) {
1506 		if (uarg->callback == msg_zerocopy_callback)
1507 			msg_zerocopy_put_abort(uarg, have_uref);
1508 		else if (have_uref)
1509 			net_zcopy_put(uarg);
1510 	}
1511 }
1512 
1513 /* Release a reference on a zerocopy structure */
1514 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success)
1515 {
1516 	struct ubuf_info *uarg = skb_zcopy(skb);
1517 
1518 	if (uarg) {
1519 		if (!skb_zcopy_is_nouarg(skb))
1520 			uarg->callback(skb, uarg, zerocopy_success);
1521 
1522 		skb_shinfo(skb)->flags &= ~SKBFL_ZEROCOPY_FRAG;
1523 	}
1524 }
1525 
1526 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1527 {
1528 	skb->next = NULL;
1529 }
1530 
1531 /* Iterate through singly-linked GSO fragments of an skb. */
1532 #define skb_list_walk_safe(first, skb, next_skb)                               \
1533 	for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb);  \
1534 	     (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1535 
1536 static inline void skb_list_del_init(struct sk_buff *skb)
1537 {
1538 	__list_del_entry(&skb->list);
1539 	skb_mark_not_on_list(skb);
1540 }
1541 
1542 /**
1543  *	skb_queue_empty - check if a queue is empty
1544  *	@list: queue head
1545  *
1546  *	Returns true if the queue is empty, false otherwise.
1547  */
1548 static inline int skb_queue_empty(const struct sk_buff_head *list)
1549 {
1550 	return list->next == (const struct sk_buff *) list;
1551 }
1552 
1553 /**
1554  *	skb_queue_empty_lockless - check if a queue is empty
1555  *	@list: queue head
1556  *
1557  *	Returns true if the queue is empty, false otherwise.
1558  *	This variant can be used in lockless contexts.
1559  */
1560 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1561 {
1562 	return READ_ONCE(list->next) == (const struct sk_buff *) list;
1563 }
1564 
1565 
1566 /**
1567  *	skb_queue_is_last - check if skb is the last entry in the queue
1568  *	@list: queue head
1569  *	@skb: buffer
1570  *
1571  *	Returns true if @skb is the last buffer on the list.
1572  */
1573 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1574 				     const struct sk_buff *skb)
1575 {
1576 	return skb->next == (const struct sk_buff *) list;
1577 }
1578 
1579 /**
1580  *	skb_queue_is_first - check if skb is the first entry in the queue
1581  *	@list: queue head
1582  *	@skb: buffer
1583  *
1584  *	Returns true if @skb is the first buffer on the list.
1585  */
1586 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1587 				      const struct sk_buff *skb)
1588 {
1589 	return skb->prev == (const struct sk_buff *) list;
1590 }
1591 
1592 /**
1593  *	skb_queue_next - return the next packet in the queue
1594  *	@list: queue head
1595  *	@skb: current buffer
1596  *
1597  *	Return the next packet in @list after @skb.  It is only valid to
1598  *	call this if skb_queue_is_last() evaluates to false.
1599  */
1600 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1601 					     const struct sk_buff *skb)
1602 {
1603 	/* This BUG_ON may seem severe, but if we just return then we
1604 	 * are going to dereference garbage.
1605 	 */
1606 	BUG_ON(skb_queue_is_last(list, skb));
1607 	return skb->next;
1608 }
1609 
1610 /**
1611  *	skb_queue_prev - return the prev packet in the queue
1612  *	@list: queue head
1613  *	@skb: current buffer
1614  *
1615  *	Return the prev packet in @list before @skb.  It is only valid to
1616  *	call this if skb_queue_is_first() evaluates to false.
1617  */
1618 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1619 					     const struct sk_buff *skb)
1620 {
1621 	/* This BUG_ON may seem severe, but if we just return then we
1622 	 * are going to dereference garbage.
1623 	 */
1624 	BUG_ON(skb_queue_is_first(list, skb));
1625 	return skb->prev;
1626 }
1627 
1628 /**
1629  *	skb_get - reference buffer
1630  *	@skb: buffer to reference
1631  *
1632  *	Makes another reference to a socket buffer and returns a pointer
1633  *	to the buffer.
1634  */
1635 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1636 {
1637 	refcount_inc(&skb->users);
1638 	return skb;
1639 }
1640 
1641 /*
1642  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1643  */
1644 
1645 /**
1646  *	skb_cloned - is the buffer a clone
1647  *	@skb: buffer to check
1648  *
1649  *	Returns true if the buffer was generated with skb_clone() and is
1650  *	one of multiple shared copies of the buffer. Cloned buffers are
1651  *	shared data so must not be written to under normal circumstances.
1652  */
1653 static inline int skb_cloned(const struct sk_buff *skb)
1654 {
1655 	return skb->cloned &&
1656 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1657 }
1658 
1659 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1660 {
1661 	might_sleep_if(gfpflags_allow_blocking(pri));
1662 
1663 	if (skb_cloned(skb))
1664 		return pskb_expand_head(skb, 0, 0, pri);
1665 
1666 	return 0;
1667 }
1668 
1669 /**
1670  *	skb_header_cloned - is the header a clone
1671  *	@skb: buffer to check
1672  *
1673  *	Returns true if modifying the header part of the buffer requires
1674  *	the data to be copied.
1675  */
1676 static inline int skb_header_cloned(const struct sk_buff *skb)
1677 {
1678 	int dataref;
1679 
1680 	if (!skb->cloned)
1681 		return 0;
1682 
1683 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1684 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1685 	return dataref != 1;
1686 }
1687 
1688 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1689 {
1690 	might_sleep_if(gfpflags_allow_blocking(pri));
1691 
1692 	if (skb_header_cloned(skb))
1693 		return pskb_expand_head(skb, 0, 0, pri);
1694 
1695 	return 0;
1696 }
1697 
1698 /**
1699  *	__skb_header_release - release reference to header
1700  *	@skb: buffer to operate on
1701  */
1702 static inline void __skb_header_release(struct sk_buff *skb)
1703 {
1704 	skb->nohdr = 1;
1705 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1706 }
1707 
1708 
1709 /**
1710  *	skb_shared - is the buffer shared
1711  *	@skb: buffer to check
1712  *
1713  *	Returns true if more than one person has a reference to this
1714  *	buffer.
1715  */
1716 static inline int skb_shared(const struct sk_buff *skb)
1717 {
1718 	return refcount_read(&skb->users) != 1;
1719 }
1720 
1721 /**
1722  *	skb_share_check - check if buffer is shared and if so clone it
1723  *	@skb: buffer to check
1724  *	@pri: priority for memory allocation
1725  *
1726  *	If the buffer is shared the buffer is cloned and the old copy
1727  *	drops a reference. A new clone with a single reference is returned.
1728  *	If the buffer is not shared the original buffer is returned. When
1729  *	being called from interrupt status or with spinlocks held pri must
1730  *	be GFP_ATOMIC.
1731  *
1732  *	NULL is returned on a memory allocation failure.
1733  */
1734 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1735 {
1736 	might_sleep_if(gfpflags_allow_blocking(pri));
1737 	if (skb_shared(skb)) {
1738 		struct sk_buff *nskb = skb_clone(skb, pri);
1739 
1740 		if (likely(nskb))
1741 			consume_skb(skb);
1742 		else
1743 			kfree_skb(skb);
1744 		skb = nskb;
1745 	}
1746 	return skb;
1747 }
1748 
1749 /*
1750  *	Copy shared buffers into a new sk_buff. We effectively do COW on
1751  *	packets to handle cases where we have a local reader and forward
1752  *	and a couple of other messy ones. The normal one is tcpdumping
1753  *	a packet thats being forwarded.
1754  */
1755 
1756 /**
1757  *	skb_unshare - make a copy of a shared buffer
1758  *	@skb: buffer to check
1759  *	@pri: priority for memory allocation
1760  *
1761  *	If the socket buffer is a clone then this function creates a new
1762  *	copy of the data, drops a reference count on the old copy and returns
1763  *	the new copy with the reference count at 1. If the buffer is not a clone
1764  *	the original buffer is returned. When called with a spinlock held or
1765  *	from interrupt state @pri must be %GFP_ATOMIC
1766  *
1767  *	%NULL is returned on a memory allocation failure.
1768  */
1769 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1770 					  gfp_t pri)
1771 {
1772 	might_sleep_if(gfpflags_allow_blocking(pri));
1773 	if (skb_cloned(skb)) {
1774 		struct sk_buff *nskb = skb_copy(skb, pri);
1775 
1776 		/* Free our shared copy */
1777 		if (likely(nskb))
1778 			consume_skb(skb);
1779 		else
1780 			kfree_skb(skb);
1781 		skb = nskb;
1782 	}
1783 	return skb;
1784 }
1785 
1786 /**
1787  *	skb_peek - peek at the head of an &sk_buff_head
1788  *	@list_: list to peek at
1789  *
1790  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1791  *	be careful with this one. A peek leaves the buffer on the
1792  *	list and someone else may run off with it. You must hold
1793  *	the appropriate locks or have a private queue to do this.
1794  *
1795  *	Returns %NULL for an empty list or a pointer to the head element.
1796  *	The reference count is not incremented and the reference is therefore
1797  *	volatile. Use with caution.
1798  */
1799 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1800 {
1801 	struct sk_buff *skb = list_->next;
1802 
1803 	if (skb == (struct sk_buff *)list_)
1804 		skb = NULL;
1805 	return skb;
1806 }
1807 
1808 /**
1809  *	__skb_peek - peek at the head of a non-empty &sk_buff_head
1810  *	@list_: list to peek at
1811  *
1812  *	Like skb_peek(), but the caller knows that the list is not empty.
1813  */
1814 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
1815 {
1816 	return list_->next;
1817 }
1818 
1819 /**
1820  *	skb_peek_next - peek skb following the given one from a queue
1821  *	@skb: skb to start from
1822  *	@list_: list to peek at
1823  *
1824  *	Returns %NULL when the end of the list is met or a pointer to the
1825  *	next element. The reference count is not incremented and the
1826  *	reference is therefore volatile. Use with caution.
1827  */
1828 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1829 		const struct sk_buff_head *list_)
1830 {
1831 	struct sk_buff *next = skb->next;
1832 
1833 	if (next == (struct sk_buff *)list_)
1834 		next = NULL;
1835 	return next;
1836 }
1837 
1838 /**
1839  *	skb_peek_tail - peek at the tail of an &sk_buff_head
1840  *	@list_: list to peek at
1841  *
1842  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1843  *	be careful with this one. A peek leaves the buffer on the
1844  *	list and someone else may run off with it. You must hold
1845  *	the appropriate locks or have a private queue to do this.
1846  *
1847  *	Returns %NULL for an empty list or a pointer to the tail element.
1848  *	The reference count is not incremented and the reference is therefore
1849  *	volatile. Use with caution.
1850  */
1851 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1852 {
1853 	struct sk_buff *skb = READ_ONCE(list_->prev);
1854 
1855 	if (skb == (struct sk_buff *)list_)
1856 		skb = NULL;
1857 	return skb;
1858 
1859 }
1860 
1861 /**
1862  *	skb_queue_len	- get queue length
1863  *	@list_: list to measure
1864  *
1865  *	Return the length of an &sk_buff queue.
1866  */
1867 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1868 {
1869 	return list_->qlen;
1870 }
1871 
1872 /**
1873  *	skb_queue_len_lockless	- get queue length
1874  *	@list_: list to measure
1875  *
1876  *	Return the length of an &sk_buff queue.
1877  *	This variant can be used in lockless contexts.
1878  */
1879 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
1880 {
1881 	return READ_ONCE(list_->qlen);
1882 }
1883 
1884 /**
1885  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1886  *	@list: queue to initialize
1887  *
1888  *	This initializes only the list and queue length aspects of
1889  *	an sk_buff_head object.  This allows to initialize the list
1890  *	aspects of an sk_buff_head without reinitializing things like
1891  *	the spinlock.  It can also be used for on-stack sk_buff_head
1892  *	objects where the spinlock is known to not be used.
1893  */
1894 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1895 {
1896 	list->prev = list->next = (struct sk_buff *)list;
1897 	list->qlen = 0;
1898 }
1899 
1900 /*
1901  * This function creates a split out lock class for each invocation;
1902  * this is needed for now since a whole lot of users of the skb-queue
1903  * infrastructure in drivers have different locking usage (in hardirq)
1904  * than the networking core (in softirq only). In the long run either the
1905  * network layer or drivers should need annotation to consolidate the
1906  * main types of usage into 3 classes.
1907  */
1908 static inline void skb_queue_head_init(struct sk_buff_head *list)
1909 {
1910 	spin_lock_init(&list->lock);
1911 	__skb_queue_head_init(list);
1912 }
1913 
1914 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1915 		struct lock_class_key *class)
1916 {
1917 	skb_queue_head_init(list);
1918 	lockdep_set_class(&list->lock, class);
1919 }
1920 
1921 /*
1922  *	Insert an sk_buff on a list.
1923  *
1924  *	The "__skb_xxxx()" functions are the non-atomic ones that
1925  *	can only be called with interrupts disabled.
1926  */
1927 static inline void __skb_insert(struct sk_buff *newsk,
1928 				struct sk_buff *prev, struct sk_buff *next,
1929 				struct sk_buff_head *list)
1930 {
1931 	/* See skb_queue_empty_lockless() and skb_peek_tail()
1932 	 * for the opposite READ_ONCE()
1933 	 */
1934 	WRITE_ONCE(newsk->next, next);
1935 	WRITE_ONCE(newsk->prev, prev);
1936 	WRITE_ONCE(next->prev, newsk);
1937 	WRITE_ONCE(prev->next, newsk);
1938 	list->qlen++;
1939 }
1940 
1941 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1942 				      struct sk_buff *prev,
1943 				      struct sk_buff *next)
1944 {
1945 	struct sk_buff *first = list->next;
1946 	struct sk_buff *last = list->prev;
1947 
1948 	WRITE_ONCE(first->prev, prev);
1949 	WRITE_ONCE(prev->next, first);
1950 
1951 	WRITE_ONCE(last->next, next);
1952 	WRITE_ONCE(next->prev, last);
1953 }
1954 
1955 /**
1956  *	skb_queue_splice - join two skb lists, this is designed for stacks
1957  *	@list: the new list to add
1958  *	@head: the place to add it in the first list
1959  */
1960 static inline void skb_queue_splice(const struct sk_buff_head *list,
1961 				    struct sk_buff_head *head)
1962 {
1963 	if (!skb_queue_empty(list)) {
1964 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1965 		head->qlen += list->qlen;
1966 	}
1967 }
1968 
1969 /**
1970  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1971  *	@list: the new list to add
1972  *	@head: the place to add it in the first list
1973  *
1974  *	The list at @list is reinitialised
1975  */
1976 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1977 					 struct sk_buff_head *head)
1978 {
1979 	if (!skb_queue_empty(list)) {
1980 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1981 		head->qlen += list->qlen;
1982 		__skb_queue_head_init(list);
1983 	}
1984 }
1985 
1986 /**
1987  *	skb_queue_splice_tail - join two skb lists, each list being a queue
1988  *	@list: the new list to add
1989  *	@head: the place to add it in the first list
1990  */
1991 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1992 					 struct sk_buff_head *head)
1993 {
1994 	if (!skb_queue_empty(list)) {
1995 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1996 		head->qlen += list->qlen;
1997 	}
1998 }
1999 
2000 /**
2001  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
2002  *	@list: the new list to add
2003  *	@head: the place to add it in the first list
2004  *
2005  *	Each of the lists is a queue.
2006  *	The list at @list is reinitialised
2007  */
2008 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
2009 					      struct sk_buff_head *head)
2010 {
2011 	if (!skb_queue_empty(list)) {
2012 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2013 		head->qlen += list->qlen;
2014 		__skb_queue_head_init(list);
2015 	}
2016 }
2017 
2018 /**
2019  *	__skb_queue_after - queue a buffer at the list head
2020  *	@list: list to use
2021  *	@prev: place after this buffer
2022  *	@newsk: buffer to queue
2023  *
2024  *	Queue a buffer int the middle of a list. This function takes no locks
2025  *	and you must therefore hold required locks before calling it.
2026  *
2027  *	A buffer cannot be placed on two lists at the same time.
2028  */
2029 static inline void __skb_queue_after(struct sk_buff_head *list,
2030 				     struct sk_buff *prev,
2031 				     struct sk_buff *newsk)
2032 {
2033 	__skb_insert(newsk, prev, prev->next, list);
2034 }
2035 
2036 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2037 		struct sk_buff_head *list);
2038 
2039 static inline void __skb_queue_before(struct sk_buff_head *list,
2040 				      struct sk_buff *next,
2041 				      struct sk_buff *newsk)
2042 {
2043 	__skb_insert(newsk, next->prev, next, list);
2044 }
2045 
2046 /**
2047  *	__skb_queue_head - queue a buffer at the list head
2048  *	@list: list to use
2049  *	@newsk: buffer to queue
2050  *
2051  *	Queue a buffer at the start of a list. This function takes no locks
2052  *	and you must therefore hold required locks before calling it.
2053  *
2054  *	A buffer cannot be placed on two lists at the same time.
2055  */
2056 static inline void __skb_queue_head(struct sk_buff_head *list,
2057 				    struct sk_buff *newsk)
2058 {
2059 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
2060 }
2061 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2062 
2063 /**
2064  *	__skb_queue_tail - queue a buffer at the list tail
2065  *	@list: list to use
2066  *	@newsk: buffer to queue
2067  *
2068  *	Queue a buffer at the end of a list. This function takes no locks
2069  *	and you must therefore hold required locks before calling it.
2070  *
2071  *	A buffer cannot be placed on two lists at the same time.
2072  */
2073 static inline void __skb_queue_tail(struct sk_buff_head *list,
2074 				   struct sk_buff *newsk)
2075 {
2076 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
2077 }
2078 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2079 
2080 /*
2081  * remove sk_buff from list. _Must_ be called atomically, and with
2082  * the list known..
2083  */
2084 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
2085 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2086 {
2087 	struct sk_buff *next, *prev;
2088 
2089 	WRITE_ONCE(list->qlen, list->qlen - 1);
2090 	next	   = skb->next;
2091 	prev	   = skb->prev;
2092 	skb->next  = skb->prev = NULL;
2093 	WRITE_ONCE(next->prev, prev);
2094 	WRITE_ONCE(prev->next, next);
2095 }
2096 
2097 /**
2098  *	__skb_dequeue - remove from the head of the queue
2099  *	@list: list to dequeue from
2100  *
2101  *	Remove the head of the list. This function does not take any locks
2102  *	so must be used with appropriate locks held only. The head item is
2103  *	returned or %NULL if the list is empty.
2104  */
2105 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2106 {
2107 	struct sk_buff *skb = skb_peek(list);
2108 	if (skb)
2109 		__skb_unlink(skb, list);
2110 	return skb;
2111 }
2112 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2113 
2114 /**
2115  *	__skb_dequeue_tail - remove from the tail of the queue
2116  *	@list: list to dequeue from
2117  *
2118  *	Remove the tail of the list. This function does not take any locks
2119  *	so must be used with appropriate locks held only. The tail item is
2120  *	returned or %NULL if the list is empty.
2121  */
2122 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2123 {
2124 	struct sk_buff *skb = skb_peek_tail(list);
2125 	if (skb)
2126 		__skb_unlink(skb, list);
2127 	return skb;
2128 }
2129 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2130 
2131 
2132 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2133 {
2134 	return skb->data_len;
2135 }
2136 
2137 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2138 {
2139 	return skb->len - skb->data_len;
2140 }
2141 
2142 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2143 {
2144 	unsigned int i, len = 0;
2145 
2146 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2147 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2148 	return len;
2149 }
2150 
2151 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2152 {
2153 	return skb_headlen(skb) + __skb_pagelen(skb);
2154 }
2155 
2156 /**
2157  * __skb_fill_page_desc - initialise a paged fragment in an skb
2158  * @skb: buffer containing fragment to be initialised
2159  * @i: paged fragment index to initialise
2160  * @page: the page to use for this fragment
2161  * @off: the offset to the data with @page
2162  * @size: the length of the data
2163  *
2164  * Initialises the @i'th fragment of @skb to point to &size bytes at
2165  * offset @off within @page.
2166  *
2167  * Does not take any additional reference on the fragment.
2168  */
2169 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2170 					struct page *page, int off, int size)
2171 {
2172 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2173 
2174 	/*
2175 	 * Propagate page pfmemalloc to the skb if we can. The problem is
2176 	 * that not all callers have unique ownership of the page but rely
2177 	 * on page_is_pfmemalloc doing the right thing(tm).
2178 	 */
2179 	frag->bv_page		  = page;
2180 	frag->bv_offset		  = off;
2181 	skb_frag_size_set(frag, size);
2182 
2183 	page = compound_head(page);
2184 	if (page_is_pfmemalloc(page))
2185 		skb->pfmemalloc	= true;
2186 }
2187 
2188 /**
2189  * skb_fill_page_desc - initialise a paged fragment in an skb
2190  * @skb: buffer containing fragment to be initialised
2191  * @i: paged fragment index to initialise
2192  * @page: the page to use for this fragment
2193  * @off: the offset to the data with @page
2194  * @size: the length of the data
2195  *
2196  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2197  * @skb to point to @size bytes at offset @off within @page. In
2198  * addition updates @skb such that @i is the last fragment.
2199  *
2200  * Does not take any additional reference on the fragment.
2201  */
2202 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2203 				      struct page *page, int off, int size)
2204 {
2205 	__skb_fill_page_desc(skb, i, page, off, size);
2206 	skb_shinfo(skb)->nr_frags = i + 1;
2207 }
2208 
2209 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2210 		     int size, unsigned int truesize);
2211 
2212 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2213 			  unsigned int truesize);
2214 
2215 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2216 
2217 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2218 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2219 {
2220 	return skb->head + skb->tail;
2221 }
2222 
2223 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2224 {
2225 	skb->tail = skb->data - skb->head;
2226 }
2227 
2228 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2229 {
2230 	skb_reset_tail_pointer(skb);
2231 	skb->tail += offset;
2232 }
2233 
2234 #else /* NET_SKBUFF_DATA_USES_OFFSET */
2235 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2236 {
2237 	return skb->tail;
2238 }
2239 
2240 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2241 {
2242 	skb->tail = skb->data;
2243 }
2244 
2245 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2246 {
2247 	skb->tail = skb->data + offset;
2248 }
2249 
2250 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2251 
2252 /*
2253  *	Add data to an sk_buff
2254  */
2255 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2256 void *skb_put(struct sk_buff *skb, unsigned int len);
2257 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2258 {
2259 	void *tmp = skb_tail_pointer(skb);
2260 	SKB_LINEAR_ASSERT(skb);
2261 	skb->tail += len;
2262 	skb->len  += len;
2263 	return tmp;
2264 }
2265 
2266 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2267 {
2268 	void *tmp = __skb_put(skb, len);
2269 
2270 	memset(tmp, 0, len);
2271 	return tmp;
2272 }
2273 
2274 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2275 				   unsigned int len)
2276 {
2277 	void *tmp = __skb_put(skb, len);
2278 
2279 	memcpy(tmp, data, len);
2280 	return tmp;
2281 }
2282 
2283 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2284 {
2285 	*(u8 *)__skb_put(skb, 1) = val;
2286 }
2287 
2288 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2289 {
2290 	void *tmp = skb_put(skb, len);
2291 
2292 	memset(tmp, 0, len);
2293 
2294 	return tmp;
2295 }
2296 
2297 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2298 				 unsigned int len)
2299 {
2300 	void *tmp = skb_put(skb, len);
2301 
2302 	memcpy(tmp, data, len);
2303 
2304 	return tmp;
2305 }
2306 
2307 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2308 {
2309 	*(u8 *)skb_put(skb, 1) = val;
2310 }
2311 
2312 void *skb_push(struct sk_buff *skb, unsigned int len);
2313 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2314 {
2315 	skb->data -= len;
2316 	skb->len  += len;
2317 	return skb->data;
2318 }
2319 
2320 void *skb_pull(struct sk_buff *skb, unsigned int len);
2321 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2322 {
2323 	skb->len -= len;
2324 	BUG_ON(skb->len < skb->data_len);
2325 	return skb->data += len;
2326 }
2327 
2328 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2329 {
2330 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2331 }
2332 
2333 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2334 
2335 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2336 {
2337 	if (len > skb_headlen(skb) &&
2338 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2339 		return NULL;
2340 	skb->len -= len;
2341 	return skb->data += len;
2342 }
2343 
2344 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2345 {
2346 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2347 }
2348 
2349 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2350 {
2351 	if (likely(len <= skb_headlen(skb)))
2352 		return true;
2353 	if (unlikely(len > skb->len))
2354 		return false;
2355 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2356 }
2357 
2358 void skb_condense(struct sk_buff *skb);
2359 
2360 /**
2361  *	skb_headroom - bytes at buffer head
2362  *	@skb: buffer to check
2363  *
2364  *	Return the number of bytes of free space at the head of an &sk_buff.
2365  */
2366 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2367 {
2368 	return skb->data - skb->head;
2369 }
2370 
2371 /**
2372  *	skb_tailroom - bytes at buffer end
2373  *	@skb: buffer to check
2374  *
2375  *	Return the number of bytes of free space at the tail of an sk_buff
2376  */
2377 static inline int skb_tailroom(const struct sk_buff *skb)
2378 {
2379 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2380 }
2381 
2382 /**
2383  *	skb_availroom - bytes at buffer end
2384  *	@skb: buffer to check
2385  *
2386  *	Return the number of bytes of free space at the tail of an sk_buff
2387  *	allocated by sk_stream_alloc()
2388  */
2389 static inline int skb_availroom(const struct sk_buff *skb)
2390 {
2391 	if (skb_is_nonlinear(skb))
2392 		return 0;
2393 
2394 	return skb->end - skb->tail - skb->reserved_tailroom;
2395 }
2396 
2397 /**
2398  *	skb_reserve - adjust headroom
2399  *	@skb: buffer to alter
2400  *	@len: bytes to move
2401  *
2402  *	Increase the headroom of an empty &sk_buff by reducing the tail
2403  *	room. This is only allowed for an empty buffer.
2404  */
2405 static inline void skb_reserve(struct sk_buff *skb, int len)
2406 {
2407 	skb->data += len;
2408 	skb->tail += len;
2409 }
2410 
2411 /**
2412  *	skb_tailroom_reserve - adjust reserved_tailroom
2413  *	@skb: buffer to alter
2414  *	@mtu: maximum amount of headlen permitted
2415  *	@needed_tailroom: minimum amount of reserved_tailroom
2416  *
2417  *	Set reserved_tailroom so that headlen can be as large as possible but
2418  *	not larger than mtu and tailroom cannot be smaller than
2419  *	needed_tailroom.
2420  *	The required headroom should already have been reserved before using
2421  *	this function.
2422  */
2423 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2424 					unsigned int needed_tailroom)
2425 {
2426 	SKB_LINEAR_ASSERT(skb);
2427 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2428 		/* use at most mtu */
2429 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2430 	else
2431 		/* use up to all available space */
2432 		skb->reserved_tailroom = needed_tailroom;
2433 }
2434 
2435 #define ENCAP_TYPE_ETHER	0
2436 #define ENCAP_TYPE_IPPROTO	1
2437 
2438 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2439 					  __be16 protocol)
2440 {
2441 	skb->inner_protocol = protocol;
2442 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2443 }
2444 
2445 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2446 					 __u8 ipproto)
2447 {
2448 	skb->inner_ipproto = ipproto;
2449 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2450 }
2451 
2452 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2453 {
2454 	skb->inner_mac_header = skb->mac_header;
2455 	skb->inner_network_header = skb->network_header;
2456 	skb->inner_transport_header = skb->transport_header;
2457 }
2458 
2459 static inline void skb_reset_mac_len(struct sk_buff *skb)
2460 {
2461 	skb->mac_len = skb->network_header - skb->mac_header;
2462 }
2463 
2464 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2465 							*skb)
2466 {
2467 	return skb->head + skb->inner_transport_header;
2468 }
2469 
2470 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2471 {
2472 	return skb_inner_transport_header(skb) - skb->data;
2473 }
2474 
2475 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2476 {
2477 	skb->inner_transport_header = skb->data - skb->head;
2478 }
2479 
2480 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2481 						   const int offset)
2482 {
2483 	skb_reset_inner_transport_header(skb);
2484 	skb->inner_transport_header += offset;
2485 }
2486 
2487 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2488 {
2489 	return skb->head + skb->inner_network_header;
2490 }
2491 
2492 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2493 {
2494 	skb->inner_network_header = skb->data - skb->head;
2495 }
2496 
2497 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2498 						const int offset)
2499 {
2500 	skb_reset_inner_network_header(skb);
2501 	skb->inner_network_header += offset;
2502 }
2503 
2504 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2505 {
2506 	return skb->head + skb->inner_mac_header;
2507 }
2508 
2509 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2510 {
2511 	skb->inner_mac_header = skb->data - skb->head;
2512 }
2513 
2514 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2515 					    const int offset)
2516 {
2517 	skb_reset_inner_mac_header(skb);
2518 	skb->inner_mac_header += offset;
2519 }
2520 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2521 {
2522 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2523 }
2524 
2525 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2526 {
2527 	return skb->head + skb->transport_header;
2528 }
2529 
2530 static inline void skb_reset_transport_header(struct sk_buff *skb)
2531 {
2532 	skb->transport_header = skb->data - skb->head;
2533 }
2534 
2535 static inline void skb_set_transport_header(struct sk_buff *skb,
2536 					    const int offset)
2537 {
2538 	skb_reset_transport_header(skb);
2539 	skb->transport_header += offset;
2540 }
2541 
2542 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2543 {
2544 	return skb->head + skb->network_header;
2545 }
2546 
2547 static inline void skb_reset_network_header(struct sk_buff *skb)
2548 {
2549 	skb->network_header = skb->data - skb->head;
2550 }
2551 
2552 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2553 {
2554 	skb_reset_network_header(skb);
2555 	skb->network_header += offset;
2556 }
2557 
2558 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2559 {
2560 	return skb->head + skb->mac_header;
2561 }
2562 
2563 static inline int skb_mac_offset(const struct sk_buff *skb)
2564 {
2565 	return skb_mac_header(skb) - skb->data;
2566 }
2567 
2568 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2569 {
2570 	return skb->network_header - skb->mac_header;
2571 }
2572 
2573 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2574 {
2575 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2576 }
2577 
2578 static inline void skb_unset_mac_header(struct sk_buff *skb)
2579 {
2580 	skb->mac_header = (typeof(skb->mac_header))~0U;
2581 }
2582 
2583 static inline void skb_reset_mac_header(struct sk_buff *skb)
2584 {
2585 	skb->mac_header = skb->data - skb->head;
2586 }
2587 
2588 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2589 {
2590 	skb_reset_mac_header(skb);
2591 	skb->mac_header += offset;
2592 }
2593 
2594 static inline void skb_pop_mac_header(struct sk_buff *skb)
2595 {
2596 	skb->mac_header = skb->network_header;
2597 }
2598 
2599 static inline void skb_probe_transport_header(struct sk_buff *skb)
2600 {
2601 	struct flow_keys_basic keys;
2602 
2603 	if (skb_transport_header_was_set(skb))
2604 		return;
2605 
2606 	if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2607 					     NULL, 0, 0, 0, 0))
2608 		skb_set_transport_header(skb, keys.control.thoff);
2609 }
2610 
2611 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2612 {
2613 	if (skb_mac_header_was_set(skb)) {
2614 		const unsigned char *old_mac = skb_mac_header(skb);
2615 
2616 		skb_set_mac_header(skb, -skb->mac_len);
2617 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2618 	}
2619 }
2620 
2621 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2622 {
2623 	return skb->csum_start - skb_headroom(skb);
2624 }
2625 
2626 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2627 {
2628 	return skb->head + skb->csum_start;
2629 }
2630 
2631 static inline int skb_transport_offset(const struct sk_buff *skb)
2632 {
2633 	return skb_transport_header(skb) - skb->data;
2634 }
2635 
2636 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2637 {
2638 	return skb->transport_header - skb->network_header;
2639 }
2640 
2641 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2642 {
2643 	return skb->inner_transport_header - skb->inner_network_header;
2644 }
2645 
2646 static inline int skb_network_offset(const struct sk_buff *skb)
2647 {
2648 	return skb_network_header(skb) - skb->data;
2649 }
2650 
2651 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2652 {
2653 	return skb_inner_network_header(skb) - skb->data;
2654 }
2655 
2656 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2657 {
2658 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
2659 }
2660 
2661 /*
2662  * CPUs often take a performance hit when accessing unaligned memory
2663  * locations. The actual performance hit varies, it can be small if the
2664  * hardware handles it or large if we have to take an exception and fix it
2665  * in software.
2666  *
2667  * Since an ethernet header is 14 bytes network drivers often end up with
2668  * the IP header at an unaligned offset. The IP header can be aligned by
2669  * shifting the start of the packet by 2 bytes. Drivers should do this
2670  * with:
2671  *
2672  * skb_reserve(skb, NET_IP_ALIGN);
2673  *
2674  * The downside to this alignment of the IP header is that the DMA is now
2675  * unaligned. On some architectures the cost of an unaligned DMA is high
2676  * and this cost outweighs the gains made by aligning the IP header.
2677  *
2678  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2679  * to be overridden.
2680  */
2681 #ifndef NET_IP_ALIGN
2682 #define NET_IP_ALIGN	2
2683 #endif
2684 
2685 /*
2686  * The networking layer reserves some headroom in skb data (via
2687  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2688  * the header has to grow. In the default case, if the header has to grow
2689  * 32 bytes or less we avoid the reallocation.
2690  *
2691  * Unfortunately this headroom changes the DMA alignment of the resulting
2692  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2693  * on some architectures. An architecture can override this value,
2694  * perhaps setting it to a cacheline in size (since that will maintain
2695  * cacheline alignment of the DMA). It must be a power of 2.
2696  *
2697  * Various parts of the networking layer expect at least 32 bytes of
2698  * headroom, you should not reduce this.
2699  *
2700  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2701  * to reduce average number of cache lines per packet.
2702  * get_rps_cpu() for example only access one 64 bytes aligned block :
2703  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2704  */
2705 #ifndef NET_SKB_PAD
2706 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2707 #endif
2708 
2709 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2710 
2711 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2712 {
2713 	if (WARN_ON(skb_is_nonlinear(skb)))
2714 		return;
2715 	skb->len = len;
2716 	skb_set_tail_pointer(skb, len);
2717 }
2718 
2719 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2720 {
2721 	__skb_set_length(skb, len);
2722 }
2723 
2724 void skb_trim(struct sk_buff *skb, unsigned int len);
2725 
2726 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2727 {
2728 	if (skb->data_len)
2729 		return ___pskb_trim(skb, len);
2730 	__skb_trim(skb, len);
2731 	return 0;
2732 }
2733 
2734 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2735 {
2736 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2737 }
2738 
2739 /**
2740  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2741  *	@skb: buffer to alter
2742  *	@len: new length
2743  *
2744  *	This is identical to pskb_trim except that the caller knows that
2745  *	the skb is not cloned so we should never get an error due to out-
2746  *	of-memory.
2747  */
2748 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2749 {
2750 	int err = pskb_trim(skb, len);
2751 	BUG_ON(err);
2752 }
2753 
2754 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2755 {
2756 	unsigned int diff = len - skb->len;
2757 
2758 	if (skb_tailroom(skb) < diff) {
2759 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2760 					   GFP_ATOMIC);
2761 		if (ret)
2762 			return ret;
2763 	}
2764 	__skb_set_length(skb, len);
2765 	return 0;
2766 }
2767 
2768 /**
2769  *	skb_orphan - orphan a buffer
2770  *	@skb: buffer to orphan
2771  *
2772  *	If a buffer currently has an owner then we call the owner's
2773  *	destructor function and make the @skb unowned. The buffer continues
2774  *	to exist but is no longer charged to its former owner.
2775  */
2776 static inline void skb_orphan(struct sk_buff *skb)
2777 {
2778 	if (skb->destructor) {
2779 		skb->destructor(skb);
2780 		skb->destructor = NULL;
2781 		skb->sk		= NULL;
2782 	} else {
2783 		BUG_ON(skb->sk);
2784 	}
2785 }
2786 
2787 /**
2788  *	skb_orphan_frags - orphan the frags contained in a buffer
2789  *	@skb: buffer to orphan frags from
2790  *	@gfp_mask: allocation mask for replacement pages
2791  *
2792  *	For each frag in the SKB which needs a destructor (i.e. has an
2793  *	owner) create a copy of that frag and release the original
2794  *	page by calling the destructor.
2795  */
2796 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2797 {
2798 	if (likely(!skb_zcopy(skb)))
2799 		return 0;
2800 	if (!skb_zcopy_is_nouarg(skb) &&
2801 	    skb_uarg(skb)->callback == msg_zerocopy_callback)
2802 		return 0;
2803 	return skb_copy_ubufs(skb, gfp_mask);
2804 }
2805 
2806 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
2807 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2808 {
2809 	if (likely(!skb_zcopy(skb)))
2810 		return 0;
2811 	return skb_copy_ubufs(skb, gfp_mask);
2812 }
2813 
2814 /**
2815  *	__skb_queue_purge - empty a list
2816  *	@list: list to empty
2817  *
2818  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2819  *	the list and one reference dropped. This function does not take the
2820  *	list lock and the caller must hold the relevant locks to use it.
2821  */
2822 static inline void __skb_queue_purge(struct sk_buff_head *list)
2823 {
2824 	struct sk_buff *skb;
2825 	while ((skb = __skb_dequeue(list)) != NULL)
2826 		kfree_skb(skb);
2827 }
2828 void skb_queue_purge(struct sk_buff_head *list);
2829 
2830 unsigned int skb_rbtree_purge(struct rb_root *root);
2831 
2832 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
2833 
2834 /**
2835  * netdev_alloc_frag - allocate a page fragment
2836  * @fragsz: fragment size
2837  *
2838  * Allocates a frag from a page for receive buffer.
2839  * Uses GFP_ATOMIC allocations.
2840  */
2841 static inline void *netdev_alloc_frag(unsigned int fragsz)
2842 {
2843 	return __netdev_alloc_frag_align(fragsz, ~0u);
2844 }
2845 
2846 static inline void *netdev_alloc_frag_align(unsigned int fragsz,
2847 					    unsigned int align)
2848 {
2849 	WARN_ON_ONCE(!is_power_of_2(align));
2850 	return __netdev_alloc_frag_align(fragsz, -align);
2851 }
2852 
2853 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2854 				   gfp_t gfp_mask);
2855 
2856 /**
2857  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
2858  *	@dev: network device to receive on
2859  *	@length: length to allocate
2860  *
2861  *	Allocate a new &sk_buff and assign it a usage count of one. The
2862  *	buffer has unspecified headroom built in. Users should allocate
2863  *	the headroom they think they need without accounting for the
2864  *	built in space. The built in space is used for optimisations.
2865  *
2866  *	%NULL is returned if there is no free memory. Although this function
2867  *	allocates memory it can be called from an interrupt.
2868  */
2869 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2870 					       unsigned int length)
2871 {
2872 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2873 }
2874 
2875 /* legacy helper around __netdev_alloc_skb() */
2876 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2877 					      gfp_t gfp_mask)
2878 {
2879 	return __netdev_alloc_skb(NULL, length, gfp_mask);
2880 }
2881 
2882 /* legacy helper around netdev_alloc_skb() */
2883 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2884 {
2885 	return netdev_alloc_skb(NULL, length);
2886 }
2887 
2888 
2889 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2890 		unsigned int length, gfp_t gfp)
2891 {
2892 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2893 
2894 	if (NET_IP_ALIGN && skb)
2895 		skb_reserve(skb, NET_IP_ALIGN);
2896 	return skb;
2897 }
2898 
2899 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2900 		unsigned int length)
2901 {
2902 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2903 }
2904 
2905 static inline void skb_free_frag(void *addr)
2906 {
2907 	page_frag_free(addr);
2908 }
2909 
2910 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
2911 
2912 static inline void *napi_alloc_frag(unsigned int fragsz)
2913 {
2914 	return __napi_alloc_frag_align(fragsz, ~0u);
2915 }
2916 
2917 static inline void *napi_alloc_frag_align(unsigned int fragsz,
2918 					  unsigned int align)
2919 {
2920 	WARN_ON_ONCE(!is_power_of_2(align));
2921 	return __napi_alloc_frag_align(fragsz, -align);
2922 }
2923 
2924 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2925 				 unsigned int length, gfp_t gfp_mask);
2926 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2927 					     unsigned int length)
2928 {
2929 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2930 }
2931 void napi_consume_skb(struct sk_buff *skb, int budget);
2932 
2933 void napi_skb_free_stolen_head(struct sk_buff *skb);
2934 void __kfree_skb_defer(struct sk_buff *skb);
2935 
2936 /**
2937  * __dev_alloc_pages - allocate page for network Rx
2938  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2939  * @order: size of the allocation
2940  *
2941  * Allocate a new page.
2942  *
2943  * %NULL is returned if there is no free memory.
2944 */
2945 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2946 					     unsigned int order)
2947 {
2948 	/* This piece of code contains several assumptions.
2949 	 * 1.  This is for device Rx, therefor a cold page is preferred.
2950 	 * 2.  The expectation is the user wants a compound page.
2951 	 * 3.  If requesting a order 0 page it will not be compound
2952 	 *     due to the check to see if order has a value in prep_new_page
2953 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2954 	 *     code in gfp_to_alloc_flags that should be enforcing this.
2955 	 */
2956 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
2957 
2958 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2959 }
2960 
2961 static inline struct page *dev_alloc_pages(unsigned int order)
2962 {
2963 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2964 }
2965 
2966 /**
2967  * __dev_alloc_page - allocate a page for network Rx
2968  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2969  *
2970  * Allocate a new page.
2971  *
2972  * %NULL is returned if there is no free memory.
2973  */
2974 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2975 {
2976 	return __dev_alloc_pages(gfp_mask, 0);
2977 }
2978 
2979 static inline struct page *dev_alloc_page(void)
2980 {
2981 	return dev_alloc_pages(0);
2982 }
2983 
2984 /**
2985  * dev_page_is_reusable - check whether a page can be reused for network Rx
2986  * @page: the page to test
2987  *
2988  * A page shouldn't be considered for reusing/recycling if it was allocated
2989  * under memory pressure or at a distant memory node.
2990  *
2991  * Returns false if this page should be returned to page allocator, true
2992  * otherwise.
2993  */
2994 static inline bool dev_page_is_reusable(const struct page *page)
2995 {
2996 	return likely(page_to_nid(page) == numa_mem_id() &&
2997 		      !page_is_pfmemalloc(page));
2998 }
2999 
3000 /**
3001  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
3002  *	@page: The page that was allocated from skb_alloc_page
3003  *	@skb: The skb that may need pfmemalloc set
3004  */
3005 static inline void skb_propagate_pfmemalloc(const struct page *page,
3006 					    struct sk_buff *skb)
3007 {
3008 	if (page_is_pfmemalloc(page))
3009 		skb->pfmemalloc = true;
3010 }
3011 
3012 /**
3013  * skb_frag_off() - Returns the offset of a skb fragment
3014  * @frag: the paged fragment
3015  */
3016 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
3017 {
3018 	return frag->bv_offset;
3019 }
3020 
3021 /**
3022  * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
3023  * @frag: skb fragment
3024  * @delta: value to add
3025  */
3026 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
3027 {
3028 	frag->bv_offset += delta;
3029 }
3030 
3031 /**
3032  * skb_frag_off_set() - Sets the offset of a skb fragment
3033  * @frag: skb fragment
3034  * @offset: offset of fragment
3035  */
3036 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
3037 {
3038 	frag->bv_offset = offset;
3039 }
3040 
3041 /**
3042  * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
3043  * @fragto: skb fragment where offset is set
3044  * @fragfrom: skb fragment offset is copied from
3045  */
3046 static inline void skb_frag_off_copy(skb_frag_t *fragto,
3047 				     const skb_frag_t *fragfrom)
3048 {
3049 	fragto->bv_offset = fragfrom->bv_offset;
3050 }
3051 
3052 /**
3053  * skb_frag_page - retrieve the page referred to by a paged fragment
3054  * @frag: the paged fragment
3055  *
3056  * Returns the &struct page associated with @frag.
3057  */
3058 static inline struct page *skb_frag_page(const skb_frag_t *frag)
3059 {
3060 	return frag->bv_page;
3061 }
3062 
3063 /**
3064  * __skb_frag_ref - take an addition reference on a paged fragment.
3065  * @frag: the paged fragment
3066  *
3067  * Takes an additional reference on the paged fragment @frag.
3068  */
3069 static inline void __skb_frag_ref(skb_frag_t *frag)
3070 {
3071 	get_page(skb_frag_page(frag));
3072 }
3073 
3074 /**
3075  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
3076  * @skb: the buffer
3077  * @f: the fragment offset.
3078  *
3079  * Takes an additional reference on the @f'th paged fragment of @skb.
3080  */
3081 static inline void skb_frag_ref(struct sk_buff *skb, int f)
3082 {
3083 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
3084 }
3085 
3086 /**
3087  * __skb_frag_unref - release a reference on a paged fragment.
3088  * @frag: the paged fragment
3089  * @recycle: recycle the page if allocated via page_pool
3090  *
3091  * Releases a reference on the paged fragment @frag
3092  * or recycles the page via the page_pool API.
3093  */
3094 static inline void __skb_frag_unref(skb_frag_t *frag, bool recycle)
3095 {
3096 	struct page *page = skb_frag_page(frag);
3097 
3098 #ifdef CONFIG_PAGE_POOL
3099 	if (recycle && page_pool_return_skb_page(page))
3100 		return;
3101 #endif
3102 	put_page(page);
3103 }
3104 
3105 /**
3106  * skb_frag_unref - release a reference on a paged fragment of an skb.
3107  * @skb: the buffer
3108  * @f: the fragment offset
3109  *
3110  * Releases a reference on the @f'th paged fragment of @skb.
3111  */
3112 static inline void skb_frag_unref(struct sk_buff *skb, int f)
3113 {
3114 	__skb_frag_unref(&skb_shinfo(skb)->frags[f], skb->pp_recycle);
3115 }
3116 
3117 /**
3118  * skb_frag_address - gets the address of the data contained in a paged fragment
3119  * @frag: the paged fragment buffer
3120  *
3121  * Returns the address of the data within @frag. The page must already
3122  * be mapped.
3123  */
3124 static inline void *skb_frag_address(const skb_frag_t *frag)
3125 {
3126 	return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3127 }
3128 
3129 /**
3130  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3131  * @frag: the paged fragment buffer
3132  *
3133  * Returns the address of the data within @frag. Checks that the page
3134  * is mapped and returns %NULL otherwise.
3135  */
3136 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3137 {
3138 	void *ptr = page_address(skb_frag_page(frag));
3139 	if (unlikely(!ptr))
3140 		return NULL;
3141 
3142 	return ptr + skb_frag_off(frag);
3143 }
3144 
3145 /**
3146  * skb_frag_page_copy() - sets the page in a fragment from another fragment
3147  * @fragto: skb fragment where page is set
3148  * @fragfrom: skb fragment page is copied from
3149  */
3150 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3151 				      const skb_frag_t *fragfrom)
3152 {
3153 	fragto->bv_page = fragfrom->bv_page;
3154 }
3155 
3156 /**
3157  * __skb_frag_set_page - sets the page contained in a paged fragment
3158  * @frag: the paged fragment
3159  * @page: the page to set
3160  *
3161  * Sets the fragment @frag to contain @page.
3162  */
3163 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
3164 {
3165 	frag->bv_page = page;
3166 }
3167 
3168 /**
3169  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
3170  * @skb: the buffer
3171  * @f: the fragment offset
3172  * @page: the page to set
3173  *
3174  * Sets the @f'th fragment of @skb to contain @page.
3175  */
3176 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
3177 				     struct page *page)
3178 {
3179 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
3180 }
3181 
3182 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3183 
3184 /**
3185  * skb_frag_dma_map - maps a paged fragment via the DMA API
3186  * @dev: the device to map the fragment to
3187  * @frag: the paged fragment to map
3188  * @offset: the offset within the fragment (starting at the
3189  *          fragment's own offset)
3190  * @size: the number of bytes to map
3191  * @dir: the direction of the mapping (``PCI_DMA_*``)
3192  *
3193  * Maps the page associated with @frag to @device.
3194  */
3195 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3196 					  const skb_frag_t *frag,
3197 					  size_t offset, size_t size,
3198 					  enum dma_data_direction dir)
3199 {
3200 	return dma_map_page(dev, skb_frag_page(frag),
3201 			    skb_frag_off(frag) + offset, size, dir);
3202 }
3203 
3204 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3205 					gfp_t gfp_mask)
3206 {
3207 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3208 }
3209 
3210 
3211 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3212 						  gfp_t gfp_mask)
3213 {
3214 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3215 }
3216 
3217 
3218 /**
3219  *	skb_clone_writable - is the header of a clone writable
3220  *	@skb: buffer to check
3221  *	@len: length up to which to write
3222  *
3223  *	Returns true if modifying the header part of the cloned buffer
3224  *	does not requires the data to be copied.
3225  */
3226 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3227 {
3228 	return !skb_header_cloned(skb) &&
3229 	       skb_headroom(skb) + len <= skb->hdr_len;
3230 }
3231 
3232 static inline int skb_try_make_writable(struct sk_buff *skb,
3233 					unsigned int write_len)
3234 {
3235 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3236 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3237 }
3238 
3239 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3240 			    int cloned)
3241 {
3242 	int delta = 0;
3243 
3244 	if (headroom > skb_headroom(skb))
3245 		delta = headroom - skb_headroom(skb);
3246 
3247 	if (delta || cloned)
3248 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3249 					GFP_ATOMIC);
3250 	return 0;
3251 }
3252 
3253 /**
3254  *	skb_cow - copy header of skb when it is required
3255  *	@skb: buffer to cow
3256  *	@headroom: needed headroom
3257  *
3258  *	If the skb passed lacks sufficient headroom or its data part
3259  *	is shared, data is reallocated. If reallocation fails, an error
3260  *	is returned and original skb is not changed.
3261  *
3262  *	The result is skb with writable area skb->head...skb->tail
3263  *	and at least @headroom of space at head.
3264  */
3265 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3266 {
3267 	return __skb_cow(skb, headroom, skb_cloned(skb));
3268 }
3269 
3270 /**
3271  *	skb_cow_head - skb_cow but only making the head writable
3272  *	@skb: buffer to cow
3273  *	@headroom: needed headroom
3274  *
3275  *	This function is identical to skb_cow except that we replace the
3276  *	skb_cloned check by skb_header_cloned.  It should be used when
3277  *	you only need to push on some header and do not need to modify
3278  *	the data.
3279  */
3280 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3281 {
3282 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
3283 }
3284 
3285 /**
3286  *	skb_padto	- pad an skbuff up to a minimal size
3287  *	@skb: buffer to pad
3288  *	@len: minimal length
3289  *
3290  *	Pads up a buffer to ensure the trailing bytes exist and are
3291  *	blanked. If the buffer already contains sufficient data it
3292  *	is untouched. Otherwise it is extended. Returns zero on
3293  *	success. The skb is freed on error.
3294  */
3295 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3296 {
3297 	unsigned int size = skb->len;
3298 	if (likely(size >= len))
3299 		return 0;
3300 	return skb_pad(skb, len - size);
3301 }
3302 
3303 /**
3304  *	__skb_put_padto - increase size and pad an skbuff up to a minimal size
3305  *	@skb: buffer to pad
3306  *	@len: minimal length
3307  *	@free_on_error: free buffer on error
3308  *
3309  *	Pads up a buffer to ensure the trailing bytes exist and are
3310  *	blanked. If the buffer already contains sufficient data it
3311  *	is untouched. Otherwise it is extended. Returns zero on
3312  *	success. The skb is freed on error if @free_on_error is true.
3313  */
3314 static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3315 					       unsigned int len,
3316 					       bool free_on_error)
3317 {
3318 	unsigned int size = skb->len;
3319 
3320 	if (unlikely(size < len)) {
3321 		len -= size;
3322 		if (__skb_pad(skb, len, free_on_error))
3323 			return -ENOMEM;
3324 		__skb_put(skb, len);
3325 	}
3326 	return 0;
3327 }
3328 
3329 /**
3330  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3331  *	@skb: buffer to pad
3332  *	@len: minimal length
3333  *
3334  *	Pads up a buffer to ensure the trailing bytes exist and are
3335  *	blanked. If the buffer already contains sufficient data it
3336  *	is untouched. Otherwise it is extended. Returns zero on
3337  *	success. The skb is freed on error.
3338  */
3339 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3340 {
3341 	return __skb_put_padto(skb, len, true);
3342 }
3343 
3344 static inline int skb_add_data(struct sk_buff *skb,
3345 			       struct iov_iter *from, int copy)
3346 {
3347 	const int off = skb->len;
3348 
3349 	if (skb->ip_summed == CHECKSUM_NONE) {
3350 		__wsum csum = 0;
3351 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3352 					         &csum, from)) {
3353 			skb->csum = csum_block_add(skb->csum, csum, off);
3354 			return 0;
3355 		}
3356 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3357 		return 0;
3358 
3359 	__skb_trim(skb, off);
3360 	return -EFAULT;
3361 }
3362 
3363 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3364 				    const struct page *page, int off)
3365 {
3366 	if (skb_zcopy(skb))
3367 		return false;
3368 	if (i) {
3369 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3370 
3371 		return page == skb_frag_page(frag) &&
3372 		       off == skb_frag_off(frag) + skb_frag_size(frag);
3373 	}
3374 	return false;
3375 }
3376 
3377 static inline int __skb_linearize(struct sk_buff *skb)
3378 {
3379 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3380 }
3381 
3382 /**
3383  *	skb_linearize - convert paged skb to linear one
3384  *	@skb: buffer to linarize
3385  *
3386  *	If there is no free memory -ENOMEM is returned, otherwise zero
3387  *	is returned and the old skb data released.
3388  */
3389 static inline int skb_linearize(struct sk_buff *skb)
3390 {
3391 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3392 }
3393 
3394 /**
3395  * skb_has_shared_frag - can any frag be overwritten
3396  * @skb: buffer to test
3397  *
3398  * Return true if the skb has at least one frag that might be modified
3399  * by an external entity (as in vmsplice()/sendfile())
3400  */
3401 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3402 {
3403 	return skb_is_nonlinear(skb) &&
3404 	       skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3405 }
3406 
3407 /**
3408  *	skb_linearize_cow - make sure skb is linear and writable
3409  *	@skb: buffer to process
3410  *
3411  *	If there is no free memory -ENOMEM is returned, otherwise zero
3412  *	is returned and the old skb data released.
3413  */
3414 static inline int skb_linearize_cow(struct sk_buff *skb)
3415 {
3416 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3417 	       __skb_linearize(skb) : 0;
3418 }
3419 
3420 static __always_inline void
3421 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3422 		     unsigned int off)
3423 {
3424 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3425 		skb->csum = csum_block_sub(skb->csum,
3426 					   csum_partial(start, len, 0), off);
3427 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3428 		 skb_checksum_start_offset(skb) < 0)
3429 		skb->ip_summed = CHECKSUM_NONE;
3430 }
3431 
3432 /**
3433  *	skb_postpull_rcsum - update checksum for received skb after pull
3434  *	@skb: buffer to update
3435  *	@start: start of data before pull
3436  *	@len: length of data pulled
3437  *
3438  *	After doing a pull on a received packet, you need to call this to
3439  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3440  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3441  */
3442 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3443 				      const void *start, unsigned int len)
3444 {
3445 	__skb_postpull_rcsum(skb, start, len, 0);
3446 }
3447 
3448 static __always_inline void
3449 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3450 		     unsigned int off)
3451 {
3452 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3453 		skb->csum = csum_block_add(skb->csum,
3454 					   csum_partial(start, len, 0), off);
3455 }
3456 
3457 /**
3458  *	skb_postpush_rcsum - update checksum for received skb after push
3459  *	@skb: buffer to update
3460  *	@start: start of data after push
3461  *	@len: length of data pushed
3462  *
3463  *	After doing a push on a received packet, you need to call this to
3464  *	update the CHECKSUM_COMPLETE checksum.
3465  */
3466 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3467 				      const void *start, unsigned int len)
3468 {
3469 	__skb_postpush_rcsum(skb, start, len, 0);
3470 }
3471 
3472 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3473 
3474 /**
3475  *	skb_push_rcsum - push skb and update receive checksum
3476  *	@skb: buffer to update
3477  *	@len: length of data pulled
3478  *
3479  *	This function performs an skb_push on the packet and updates
3480  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3481  *	receive path processing instead of skb_push unless you know
3482  *	that the checksum difference is zero (e.g., a valid IP header)
3483  *	or you are setting ip_summed to CHECKSUM_NONE.
3484  */
3485 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3486 {
3487 	skb_push(skb, len);
3488 	skb_postpush_rcsum(skb, skb->data, len);
3489 	return skb->data;
3490 }
3491 
3492 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3493 /**
3494  *	pskb_trim_rcsum - trim received skb and update checksum
3495  *	@skb: buffer to trim
3496  *	@len: new length
3497  *
3498  *	This is exactly the same as pskb_trim except that it ensures the
3499  *	checksum of received packets are still valid after the operation.
3500  *	It can change skb pointers.
3501  */
3502 
3503 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3504 {
3505 	if (likely(len >= skb->len))
3506 		return 0;
3507 	return pskb_trim_rcsum_slow(skb, len);
3508 }
3509 
3510 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3511 {
3512 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3513 		skb->ip_summed = CHECKSUM_NONE;
3514 	__skb_trim(skb, len);
3515 	return 0;
3516 }
3517 
3518 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3519 {
3520 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3521 		skb->ip_summed = CHECKSUM_NONE;
3522 	return __skb_grow(skb, len);
3523 }
3524 
3525 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3526 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3527 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3528 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3529 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3530 
3531 #define skb_queue_walk(queue, skb) \
3532 		for (skb = (queue)->next;					\
3533 		     skb != (struct sk_buff *)(queue);				\
3534 		     skb = skb->next)
3535 
3536 #define skb_queue_walk_safe(queue, skb, tmp)					\
3537 		for (skb = (queue)->next, tmp = skb->next;			\
3538 		     skb != (struct sk_buff *)(queue);				\
3539 		     skb = tmp, tmp = skb->next)
3540 
3541 #define skb_queue_walk_from(queue, skb)						\
3542 		for (; skb != (struct sk_buff *)(queue);			\
3543 		     skb = skb->next)
3544 
3545 #define skb_rbtree_walk(skb, root)						\
3546 		for (skb = skb_rb_first(root); skb != NULL;			\
3547 		     skb = skb_rb_next(skb))
3548 
3549 #define skb_rbtree_walk_from(skb)						\
3550 		for (; skb != NULL;						\
3551 		     skb = skb_rb_next(skb))
3552 
3553 #define skb_rbtree_walk_from_safe(skb, tmp)					\
3554 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
3555 		     skb = tmp)
3556 
3557 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3558 		for (tmp = skb->next;						\
3559 		     skb != (struct sk_buff *)(queue);				\
3560 		     skb = tmp, tmp = skb->next)
3561 
3562 #define skb_queue_reverse_walk(queue, skb) \
3563 		for (skb = (queue)->prev;					\
3564 		     skb != (struct sk_buff *)(queue);				\
3565 		     skb = skb->prev)
3566 
3567 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3568 		for (skb = (queue)->prev, tmp = skb->prev;			\
3569 		     skb != (struct sk_buff *)(queue);				\
3570 		     skb = tmp, tmp = skb->prev)
3571 
3572 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3573 		for (tmp = skb->prev;						\
3574 		     skb != (struct sk_buff *)(queue);				\
3575 		     skb = tmp, tmp = skb->prev)
3576 
3577 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3578 {
3579 	return skb_shinfo(skb)->frag_list != NULL;
3580 }
3581 
3582 static inline void skb_frag_list_init(struct sk_buff *skb)
3583 {
3584 	skb_shinfo(skb)->frag_list = NULL;
3585 }
3586 
3587 #define skb_walk_frags(skb, iter)	\
3588 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3589 
3590 
3591 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3592 				int *err, long *timeo_p,
3593 				const struct sk_buff *skb);
3594 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3595 					  struct sk_buff_head *queue,
3596 					  unsigned int flags,
3597 					  int *off, int *err,
3598 					  struct sk_buff **last);
3599 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
3600 					struct sk_buff_head *queue,
3601 					unsigned int flags, int *off, int *err,
3602 					struct sk_buff **last);
3603 struct sk_buff *__skb_recv_datagram(struct sock *sk,
3604 				    struct sk_buff_head *sk_queue,
3605 				    unsigned int flags, int *off, int *err);
3606 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3607 				  int *err);
3608 __poll_t datagram_poll(struct file *file, struct socket *sock,
3609 			   struct poll_table_struct *wait);
3610 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3611 			   struct iov_iter *to, int size);
3612 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3613 					struct msghdr *msg, int size)
3614 {
3615 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3616 }
3617 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3618 				   struct msghdr *msg);
3619 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3620 			   struct iov_iter *to, int len,
3621 			   struct ahash_request *hash);
3622 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3623 				 struct iov_iter *from, int len);
3624 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3625 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3626 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3627 static inline void skb_free_datagram_locked(struct sock *sk,
3628 					    struct sk_buff *skb)
3629 {
3630 	__skb_free_datagram_locked(sk, skb, 0);
3631 }
3632 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3633 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3634 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3635 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3636 			      int len);
3637 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3638 		    struct pipe_inode_info *pipe, unsigned int len,
3639 		    unsigned int flags);
3640 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3641 			 int len);
3642 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
3643 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3644 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3645 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3646 		 int len, int hlen);
3647 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3648 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3649 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3650 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3651 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3652 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3653 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
3654 				 unsigned int offset);
3655 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3656 int skb_ensure_writable(struct sk_buff *skb, int write_len);
3657 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3658 int skb_vlan_pop(struct sk_buff *skb);
3659 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3660 int skb_eth_pop(struct sk_buff *skb);
3661 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
3662 		 const unsigned char *src);
3663 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
3664 		  int mac_len, bool ethernet);
3665 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
3666 		 bool ethernet);
3667 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
3668 int skb_mpls_dec_ttl(struct sk_buff *skb);
3669 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3670 			     gfp_t gfp);
3671 
3672 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3673 {
3674 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3675 }
3676 
3677 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3678 {
3679 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3680 }
3681 
3682 struct skb_checksum_ops {
3683 	__wsum (*update)(const void *mem, int len, __wsum wsum);
3684 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3685 };
3686 
3687 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3688 
3689 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3690 		      __wsum csum, const struct skb_checksum_ops *ops);
3691 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3692 		    __wsum csum);
3693 
3694 static inline void * __must_check
3695 __skb_header_pointer(const struct sk_buff *skb, int offset, int len,
3696 		     const void *data, int hlen, void *buffer)
3697 {
3698 	if (likely(hlen - offset >= len))
3699 		return (void *)data + offset;
3700 
3701 	if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0))
3702 		return NULL;
3703 
3704 	return buffer;
3705 }
3706 
3707 static inline void * __must_check
3708 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3709 {
3710 	return __skb_header_pointer(skb, offset, len, skb->data,
3711 				    skb_headlen(skb), buffer);
3712 }
3713 
3714 /**
3715  *	skb_needs_linearize - check if we need to linearize a given skb
3716  *			      depending on the given device features.
3717  *	@skb: socket buffer to check
3718  *	@features: net device features
3719  *
3720  *	Returns true if either:
3721  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
3722  *	2. skb is fragmented and the device does not support SG.
3723  */
3724 static inline bool skb_needs_linearize(struct sk_buff *skb,
3725 				       netdev_features_t features)
3726 {
3727 	return skb_is_nonlinear(skb) &&
3728 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3729 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3730 }
3731 
3732 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3733 					     void *to,
3734 					     const unsigned int len)
3735 {
3736 	memcpy(to, skb->data, len);
3737 }
3738 
3739 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3740 						    const int offset, void *to,
3741 						    const unsigned int len)
3742 {
3743 	memcpy(to, skb->data + offset, len);
3744 }
3745 
3746 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3747 					   const void *from,
3748 					   const unsigned int len)
3749 {
3750 	memcpy(skb->data, from, len);
3751 }
3752 
3753 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3754 						  const int offset,
3755 						  const void *from,
3756 						  const unsigned int len)
3757 {
3758 	memcpy(skb->data + offset, from, len);
3759 }
3760 
3761 void skb_init(void);
3762 
3763 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3764 {
3765 	return skb->tstamp;
3766 }
3767 
3768 /**
3769  *	skb_get_timestamp - get timestamp from a skb
3770  *	@skb: skb to get stamp from
3771  *	@stamp: pointer to struct __kernel_old_timeval to store stamp in
3772  *
3773  *	Timestamps are stored in the skb as offsets to a base timestamp.
3774  *	This function converts the offset back to a struct timeval and stores
3775  *	it in stamp.
3776  */
3777 static inline void skb_get_timestamp(const struct sk_buff *skb,
3778 				     struct __kernel_old_timeval *stamp)
3779 {
3780 	*stamp = ns_to_kernel_old_timeval(skb->tstamp);
3781 }
3782 
3783 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
3784 					 struct __kernel_sock_timeval *stamp)
3785 {
3786 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3787 
3788 	stamp->tv_sec = ts.tv_sec;
3789 	stamp->tv_usec = ts.tv_nsec / 1000;
3790 }
3791 
3792 static inline void skb_get_timestampns(const struct sk_buff *skb,
3793 				       struct __kernel_old_timespec *stamp)
3794 {
3795 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3796 
3797 	stamp->tv_sec = ts.tv_sec;
3798 	stamp->tv_nsec = ts.tv_nsec;
3799 }
3800 
3801 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
3802 					   struct __kernel_timespec *stamp)
3803 {
3804 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3805 
3806 	stamp->tv_sec = ts.tv_sec;
3807 	stamp->tv_nsec = ts.tv_nsec;
3808 }
3809 
3810 static inline void __net_timestamp(struct sk_buff *skb)
3811 {
3812 	skb->tstamp = ktime_get_real();
3813 }
3814 
3815 static inline ktime_t net_timedelta(ktime_t t)
3816 {
3817 	return ktime_sub(ktime_get_real(), t);
3818 }
3819 
3820 static inline ktime_t net_invalid_timestamp(void)
3821 {
3822 	return 0;
3823 }
3824 
3825 static inline u8 skb_metadata_len(const struct sk_buff *skb)
3826 {
3827 	return skb_shinfo(skb)->meta_len;
3828 }
3829 
3830 static inline void *skb_metadata_end(const struct sk_buff *skb)
3831 {
3832 	return skb_mac_header(skb);
3833 }
3834 
3835 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3836 					  const struct sk_buff *skb_b,
3837 					  u8 meta_len)
3838 {
3839 	const void *a = skb_metadata_end(skb_a);
3840 	const void *b = skb_metadata_end(skb_b);
3841 	/* Using more efficient varaiant than plain call to memcmp(). */
3842 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3843 	u64 diffs = 0;
3844 
3845 	switch (meta_len) {
3846 #define __it(x, op) (x -= sizeof(u##op))
3847 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3848 	case 32: diffs |= __it_diff(a, b, 64);
3849 		fallthrough;
3850 	case 24: diffs |= __it_diff(a, b, 64);
3851 		fallthrough;
3852 	case 16: diffs |= __it_diff(a, b, 64);
3853 		fallthrough;
3854 	case  8: diffs |= __it_diff(a, b, 64);
3855 		break;
3856 	case 28: diffs |= __it_diff(a, b, 64);
3857 		fallthrough;
3858 	case 20: diffs |= __it_diff(a, b, 64);
3859 		fallthrough;
3860 	case 12: diffs |= __it_diff(a, b, 64);
3861 		fallthrough;
3862 	case  4: diffs |= __it_diff(a, b, 32);
3863 		break;
3864 	}
3865 	return diffs;
3866 #else
3867 	return memcmp(a - meta_len, b - meta_len, meta_len);
3868 #endif
3869 }
3870 
3871 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3872 					const struct sk_buff *skb_b)
3873 {
3874 	u8 len_a = skb_metadata_len(skb_a);
3875 	u8 len_b = skb_metadata_len(skb_b);
3876 
3877 	if (!(len_a | len_b))
3878 		return false;
3879 
3880 	return len_a != len_b ?
3881 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
3882 }
3883 
3884 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3885 {
3886 	skb_shinfo(skb)->meta_len = meta_len;
3887 }
3888 
3889 static inline void skb_metadata_clear(struct sk_buff *skb)
3890 {
3891 	skb_metadata_set(skb, 0);
3892 }
3893 
3894 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3895 
3896 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3897 
3898 void skb_clone_tx_timestamp(struct sk_buff *skb);
3899 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3900 
3901 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3902 
3903 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3904 {
3905 }
3906 
3907 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3908 {
3909 	return false;
3910 }
3911 
3912 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3913 
3914 /**
3915  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3916  *
3917  * PHY drivers may accept clones of transmitted packets for
3918  * timestamping via their phy_driver.txtstamp method. These drivers
3919  * must call this function to return the skb back to the stack with a
3920  * timestamp.
3921  *
3922  * @skb: clone of the original outgoing packet
3923  * @hwtstamps: hardware time stamps
3924  *
3925  */
3926 void skb_complete_tx_timestamp(struct sk_buff *skb,
3927 			       struct skb_shared_hwtstamps *hwtstamps);
3928 
3929 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb,
3930 		     struct skb_shared_hwtstamps *hwtstamps,
3931 		     struct sock *sk, int tstype);
3932 
3933 /**
3934  * skb_tstamp_tx - queue clone of skb with send time stamps
3935  * @orig_skb:	the original outgoing packet
3936  * @hwtstamps:	hardware time stamps, may be NULL if not available
3937  *
3938  * If the skb has a socket associated, then this function clones the
3939  * skb (thus sharing the actual data and optional structures), stores
3940  * the optional hardware time stamping information (if non NULL) or
3941  * generates a software time stamp (otherwise), then queues the clone
3942  * to the error queue of the socket.  Errors are silently ignored.
3943  */
3944 void skb_tstamp_tx(struct sk_buff *orig_skb,
3945 		   struct skb_shared_hwtstamps *hwtstamps);
3946 
3947 /**
3948  * skb_tx_timestamp() - Driver hook for transmit timestamping
3949  *
3950  * Ethernet MAC Drivers should call this function in their hard_xmit()
3951  * function immediately before giving the sk_buff to the MAC hardware.
3952  *
3953  * Specifically, one should make absolutely sure that this function is
3954  * called before TX completion of this packet can trigger.  Otherwise
3955  * the packet could potentially already be freed.
3956  *
3957  * @skb: A socket buffer.
3958  */
3959 static inline void skb_tx_timestamp(struct sk_buff *skb)
3960 {
3961 	skb_clone_tx_timestamp(skb);
3962 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3963 		skb_tstamp_tx(skb, NULL);
3964 }
3965 
3966 /**
3967  * skb_complete_wifi_ack - deliver skb with wifi status
3968  *
3969  * @skb: the original outgoing packet
3970  * @acked: ack status
3971  *
3972  */
3973 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3974 
3975 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3976 __sum16 __skb_checksum_complete(struct sk_buff *skb);
3977 
3978 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3979 {
3980 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3981 		skb->csum_valid ||
3982 		(skb->ip_summed == CHECKSUM_PARTIAL &&
3983 		 skb_checksum_start_offset(skb) >= 0));
3984 }
3985 
3986 /**
3987  *	skb_checksum_complete - Calculate checksum of an entire packet
3988  *	@skb: packet to process
3989  *
3990  *	This function calculates the checksum over the entire packet plus
3991  *	the value of skb->csum.  The latter can be used to supply the
3992  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
3993  *	checksum.
3994  *
3995  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
3996  *	this function can be used to verify that checksum on received
3997  *	packets.  In that case the function should return zero if the
3998  *	checksum is correct.  In particular, this function will return zero
3999  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
4000  *	hardware has already verified the correctness of the checksum.
4001  */
4002 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
4003 {
4004 	return skb_csum_unnecessary(skb) ?
4005 	       0 : __skb_checksum_complete(skb);
4006 }
4007 
4008 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
4009 {
4010 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4011 		if (skb->csum_level == 0)
4012 			skb->ip_summed = CHECKSUM_NONE;
4013 		else
4014 			skb->csum_level--;
4015 	}
4016 }
4017 
4018 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
4019 {
4020 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4021 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
4022 			skb->csum_level++;
4023 	} else if (skb->ip_summed == CHECKSUM_NONE) {
4024 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4025 		skb->csum_level = 0;
4026 	}
4027 }
4028 
4029 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
4030 {
4031 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4032 		skb->ip_summed = CHECKSUM_NONE;
4033 		skb->csum_level = 0;
4034 	}
4035 }
4036 
4037 /* Check if we need to perform checksum complete validation.
4038  *
4039  * Returns true if checksum complete is needed, false otherwise
4040  * (either checksum is unnecessary or zero checksum is allowed).
4041  */
4042 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
4043 						  bool zero_okay,
4044 						  __sum16 check)
4045 {
4046 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
4047 		skb->csum_valid = 1;
4048 		__skb_decr_checksum_unnecessary(skb);
4049 		return false;
4050 	}
4051 
4052 	return true;
4053 }
4054 
4055 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
4056  * in checksum_init.
4057  */
4058 #define CHECKSUM_BREAK 76
4059 
4060 /* Unset checksum-complete
4061  *
4062  * Unset checksum complete can be done when packet is being modified
4063  * (uncompressed for instance) and checksum-complete value is
4064  * invalidated.
4065  */
4066 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
4067 {
4068 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4069 		skb->ip_summed = CHECKSUM_NONE;
4070 }
4071 
4072 /* Validate (init) checksum based on checksum complete.
4073  *
4074  * Return values:
4075  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
4076  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4077  *	checksum is stored in skb->csum for use in __skb_checksum_complete
4078  *   non-zero: value of invalid checksum
4079  *
4080  */
4081 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4082 						       bool complete,
4083 						       __wsum psum)
4084 {
4085 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
4086 		if (!csum_fold(csum_add(psum, skb->csum))) {
4087 			skb->csum_valid = 1;
4088 			return 0;
4089 		}
4090 	}
4091 
4092 	skb->csum = psum;
4093 
4094 	if (complete || skb->len <= CHECKSUM_BREAK) {
4095 		__sum16 csum;
4096 
4097 		csum = __skb_checksum_complete(skb);
4098 		skb->csum_valid = !csum;
4099 		return csum;
4100 	}
4101 
4102 	return 0;
4103 }
4104 
4105 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4106 {
4107 	return 0;
4108 }
4109 
4110 /* Perform checksum validate (init). Note that this is a macro since we only
4111  * want to calculate the pseudo header which is an input function if necessary.
4112  * First we try to validate without any computation (checksum unnecessary) and
4113  * then calculate based on checksum complete calling the function to compute
4114  * pseudo header.
4115  *
4116  * Return values:
4117  *   0: checksum is validated or try to in skb_checksum_complete
4118  *   non-zero: value of invalid checksum
4119  */
4120 #define __skb_checksum_validate(skb, proto, complete,			\
4121 				zero_okay, check, compute_pseudo)	\
4122 ({									\
4123 	__sum16 __ret = 0;						\
4124 	skb->csum_valid = 0;						\
4125 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
4126 		__ret = __skb_checksum_validate_complete(skb,		\
4127 				complete, compute_pseudo(skb, proto));	\
4128 	__ret;								\
4129 })
4130 
4131 #define skb_checksum_init(skb, proto, compute_pseudo)			\
4132 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4133 
4134 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
4135 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4136 
4137 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
4138 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4139 
4140 #define skb_checksum_validate_zero_check(skb, proto, check,		\
4141 					 compute_pseudo)		\
4142 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4143 
4144 #define skb_checksum_simple_validate(skb)				\
4145 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4146 
4147 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4148 {
4149 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4150 }
4151 
4152 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4153 {
4154 	skb->csum = ~pseudo;
4155 	skb->ip_summed = CHECKSUM_COMPLETE;
4156 }
4157 
4158 #define skb_checksum_try_convert(skb, proto, compute_pseudo)	\
4159 do {									\
4160 	if (__skb_checksum_convert_check(skb))				\
4161 		__skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4162 } while (0)
4163 
4164 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4165 					      u16 start, u16 offset)
4166 {
4167 	skb->ip_summed = CHECKSUM_PARTIAL;
4168 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4169 	skb->csum_offset = offset - start;
4170 }
4171 
4172 /* Update skbuf and packet to reflect the remote checksum offload operation.
4173  * When called, ptr indicates the starting point for skb->csum when
4174  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4175  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4176  */
4177 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4178 				       int start, int offset, bool nopartial)
4179 {
4180 	__wsum delta;
4181 
4182 	if (!nopartial) {
4183 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
4184 		return;
4185 	}
4186 
4187 	 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4188 		__skb_checksum_complete(skb);
4189 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4190 	}
4191 
4192 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
4193 
4194 	/* Adjust skb->csum since we changed the packet */
4195 	skb->csum = csum_add(skb->csum, delta);
4196 }
4197 
4198 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4199 {
4200 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4201 	return (void *)(skb->_nfct & NFCT_PTRMASK);
4202 #else
4203 	return NULL;
4204 #endif
4205 }
4206 
4207 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4208 {
4209 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4210 	return skb->_nfct;
4211 #else
4212 	return 0UL;
4213 #endif
4214 }
4215 
4216 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4217 {
4218 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4219 	skb->_nfct = nfct;
4220 #endif
4221 }
4222 
4223 #ifdef CONFIG_SKB_EXTENSIONS
4224 enum skb_ext_id {
4225 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4226 	SKB_EXT_BRIDGE_NF,
4227 #endif
4228 #ifdef CONFIG_XFRM
4229 	SKB_EXT_SEC_PATH,
4230 #endif
4231 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4232 	TC_SKB_EXT,
4233 #endif
4234 #if IS_ENABLED(CONFIG_MPTCP)
4235 	SKB_EXT_MPTCP,
4236 #endif
4237 	SKB_EXT_NUM, /* must be last */
4238 };
4239 
4240 /**
4241  *	struct skb_ext - sk_buff extensions
4242  *	@refcnt: 1 on allocation, deallocated on 0
4243  *	@offset: offset to add to @data to obtain extension address
4244  *	@chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4245  *	@data: start of extension data, variable sized
4246  *
4247  *	Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4248  *	to use 'u8' types while allowing up to 2kb worth of extension data.
4249  */
4250 struct skb_ext {
4251 	refcount_t refcnt;
4252 	u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4253 	u8 chunks;		/* same */
4254 	char data[] __aligned(8);
4255 };
4256 
4257 struct skb_ext *__skb_ext_alloc(gfp_t flags);
4258 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4259 		    struct skb_ext *ext);
4260 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4261 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4262 void __skb_ext_put(struct skb_ext *ext);
4263 
4264 static inline void skb_ext_put(struct sk_buff *skb)
4265 {
4266 	if (skb->active_extensions)
4267 		__skb_ext_put(skb->extensions);
4268 }
4269 
4270 static inline void __skb_ext_copy(struct sk_buff *dst,
4271 				  const struct sk_buff *src)
4272 {
4273 	dst->active_extensions = src->active_extensions;
4274 
4275 	if (src->active_extensions) {
4276 		struct skb_ext *ext = src->extensions;
4277 
4278 		refcount_inc(&ext->refcnt);
4279 		dst->extensions = ext;
4280 	}
4281 }
4282 
4283 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4284 {
4285 	skb_ext_put(dst);
4286 	__skb_ext_copy(dst, src);
4287 }
4288 
4289 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4290 {
4291 	return !!ext->offset[i];
4292 }
4293 
4294 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4295 {
4296 	return skb->active_extensions & (1 << id);
4297 }
4298 
4299 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4300 {
4301 	if (skb_ext_exist(skb, id))
4302 		__skb_ext_del(skb, id);
4303 }
4304 
4305 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4306 {
4307 	if (skb_ext_exist(skb, id)) {
4308 		struct skb_ext *ext = skb->extensions;
4309 
4310 		return (void *)ext + (ext->offset[id] << 3);
4311 	}
4312 
4313 	return NULL;
4314 }
4315 
4316 static inline void skb_ext_reset(struct sk_buff *skb)
4317 {
4318 	if (unlikely(skb->active_extensions)) {
4319 		__skb_ext_put(skb->extensions);
4320 		skb->active_extensions = 0;
4321 	}
4322 }
4323 
4324 static inline bool skb_has_extensions(struct sk_buff *skb)
4325 {
4326 	return unlikely(skb->active_extensions);
4327 }
4328 #else
4329 static inline void skb_ext_put(struct sk_buff *skb) {}
4330 static inline void skb_ext_reset(struct sk_buff *skb) {}
4331 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4332 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4333 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4334 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4335 #endif /* CONFIG_SKB_EXTENSIONS */
4336 
4337 static inline void nf_reset_ct(struct sk_buff *skb)
4338 {
4339 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4340 	nf_conntrack_put(skb_nfct(skb));
4341 	skb->_nfct = 0;
4342 #endif
4343 }
4344 
4345 static inline void nf_reset_trace(struct sk_buff *skb)
4346 {
4347 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4348 	skb->nf_trace = 0;
4349 #endif
4350 }
4351 
4352 static inline void ipvs_reset(struct sk_buff *skb)
4353 {
4354 #if IS_ENABLED(CONFIG_IP_VS)
4355 	skb->ipvs_property = 0;
4356 #endif
4357 }
4358 
4359 /* Note: This doesn't put any conntrack info in dst. */
4360 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4361 			     bool copy)
4362 {
4363 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4364 	dst->_nfct = src->_nfct;
4365 	nf_conntrack_get(skb_nfct(src));
4366 #endif
4367 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4368 	if (copy)
4369 		dst->nf_trace = src->nf_trace;
4370 #endif
4371 }
4372 
4373 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4374 {
4375 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4376 	nf_conntrack_put(skb_nfct(dst));
4377 #endif
4378 	__nf_copy(dst, src, true);
4379 }
4380 
4381 #ifdef CONFIG_NETWORK_SECMARK
4382 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4383 {
4384 	to->secmark = from->secmark;
4385 }
4386 
4387 static inline void skb_init_secmark(struct sk_buff *skb)
4388 {
4389 	skb->secmark = 0;
4390 }
4391 #else
4392 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4393 { }
4394 
4395 static inline void skb_init_secmark(struct sk_buff *skb)
4396 { }
4397 #endif
4398 
4399 static inline int secpath_exists(const struct sk_buff *skb)
4400 {
4401 #ifdef CONFIG_XFRM
4402 	return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4403 #else
4404 	return 0;
4405 #endif
4406 }
4407 
4408 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4409 {
4410 	return !skb->destructor &&
4411 		!secpath_exists(skb) &&
4412 		!skb_nfct(skb) &&
4413 		!skb->_skb_refdst &&
4414 		!skb_has_frag_list(skb);
4415 }
4416 
4417 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4418 {
4419 	skb->queue_mapping = queue_mapping;
4420 }
4421 
4422 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4423 {
4424 	return skb->queue_mapping;
4425 }
4426 
4427 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4428 {
4429 	to->queue_mapping = from->queue_mapping;
4430 }
4431 
4432 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4433 {
4434 	skb->queue_mapping = rx_queue + 1;
4435 }
4436 
4437 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4438 {
4439 	return skb->queue_mapping - 1;
4440 }
4441 
4442 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4443 {
4444 	return skb->queue_mapping != 0;
4445 }
4446 
4447 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4448 {
4449 	skb->dst_pending_confirm = val;
4450 }
4451 
4452 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4453 {
4454 	return skb->dst_pending_confirm != 0;
4455 }
4456 
4457 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4458 {
4459 #ifdef CONFIG_XFRM
4460 	return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4461 #else
4462 	return NULL;
4463 #endif
4464 }
4465 
4466 /* Keeps track of mac header offset relative to skb->head.
4467  * It is useful for TSO of Tunneling protocol. e.g. GRE.
4468  * For non-tunnel skb it points to skb_mac_header() and for
4469  * tunnel skb it points to outer mac header.
4470  * Keeps track of level of encapsulation of network headers.
4471  */
4472 struct skb_gso_cb {
4473 	union {
4474 		int	mac_offset;
4475 		int	data_offset;
4476 	};
4477 	int	encap_level;
4478 	__wsum	csum;
4479 	__u16	csum_start;
4480 };
4481 #define SKB_GSO_CB_OFFSET	32
4482 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET))
4483 
4484 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4485 {
4486 	return (skb_mac_header(inner_skb) - inner_skb->head) -
4487 		SKB_GSO_CB(inner_skb)->mac_offset;
4488 }
4489 
4490 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4491 {
4492 	int new_headroom, headroom;
4493 	int ret;
4494 
4495 	headroom = skb_headroom(skb);
4496 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4497 	if (ret)
4498 		return ret;
4499 
4500 	new_headroom = skb_headroom(skb);
4501 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4502 	return 0;
4503 }
4504 
4505 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4506 {
4507 	/* Do not update partial checksums if remote checksum is enabled. */
4508 	if (skb->remcsum_offload)
4509 		return;
4510 
4511 	SKB_GSO_CB(skb)->csum = res;
4512 	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4513 }
4514 
4515 /* Compute the checksum for a gso segment. First compute the checksum value
4516  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4517  * then add in skb->csum (checksum from csum_start to end of packet).
4518  * skb->csum and csum_start are then updated to reflect the checksum of the
4519  * resultant packet starting from the transport header-- the resultant checksum
4520  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4521  * header.
4522  */
4523 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4524 {
4525 	unsigned char *csum_start = skb_transport_header(skb);
4526 	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4527 	__wsum partial = SKB_GSO_CB(skb)->csum;
4528 
4529 	SKB_GSO_CB(skb)->csum = res;
4530 	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4531 
4532 	return csum_fold(csum_partial(csum_start, plen, partial));
4533 }
4534 
4535 static inline bool skb_is_gso(const struct sk_buff *skb)
4536 {
4537 	return skb_shinfo(skb)->gso_size;
4538 }
4539 
4540 /* Note: Should be called only if skb_is_gso(skb) is true */
4541 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4542 {
4543 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4544 }
4545 
4546 /* Note: Should be called only if skb_is_gso(skb) is true */
4547 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4548 {
4549 	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4550 }
4551 
4552 /* Note: Should be called only if skb_is_gso(skb) is true */
4553 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4554 {
4555 	return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4556 }
4557 
4558 static inline void skb_gso_reset(struct sk_buff *skb)
4559 {
4560 	skb_shinfo(skb)->gso_size = 0;
4561 	skb_shinfo(skb)->gso_segs = 0;
4562 	skb_shinfo(skb)->gso_type = 0;
4563 }
4564 
4565 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4566 					 u16 increment)
4567 {
4568 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4569 		return;
4570 	shinfo->gso_size += increment;
4571 }
4572 
4573 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4574 					 u16 decrement)
4575 {
4576 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4577 		return;
4578 	shinfo->gso_size -= decrement;
4579 }
4580 
4581 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4582 
4583 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4584 {
4585 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
4586 	 * wanted then gso_type will be set. */
4587 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4588 
4589 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4590 	    unlikely(shinfo->gso_type == 0)) {
4591 		__skb_warn_lro_forwarding(skb);
4592 		return true;
4593 	}
4594 	return false;
4595 }
4596 
4597 static inline void skb_forward_csum(struct sk_buff *skb)
4598 {
4599 	/* Unfortunately we don't support this one.  Any brave souls? */
4600 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4601 		skb->ip_summed = CHECKSUM_NONE;
4602 }
4603 
4604 /**
4605  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4606  * @skb: skb to check
4607  *
4608  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4609  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4610  * use this helper, to document places where we make this assertion.
4611  */
4612 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4613 {
4614 #ifdef DEBUG
4615 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4616 #endif
4617 }
4618 
4619 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4620 
4621 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4622 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4623 				     unsigned int transport_len,
4624 				     __sum16(*skb_chkf)(struct sk_buff *skb));
4625 
4626 /**
4627  * skb_head_is_locked - Determine if the skb->head is locked down
4628  * @skb: skb to check
4629  *
4630  * The head on skbs build around a head frag can be removed if they are
4631  * not cloned.  This function returns true if the skb head is locked down
4632  * due to either being allocated via kmalloc, or by being a clone with
4633  * multiple references to the head.
4634  */
4635 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4636 {
4637 	return !skb->head_frag || skb_cloned(skb);
4638 }
4639 
4640 /* Local Checksum Offload.
4641  * Compute outer checksum based on the assumption that the
4642  * inner checksum will be offloaded later.
4643  * See Documentation/networking/checksum-offloads.rst for
4644  * explanation of how this works.
4645  * Fill in outer checksum adjustment (e.g. with sum of outer
4646  * pseudo-header) before calling.
4647  * Also ensure that inner checksum is in linear data area.
4648  */
4649 static inline __wsum lco_csum(struct sk_buff *skb)
4650 {
4651 	unsigned char *csum_start = skb_checksum_start(skb);
4652 	unsigned char *l4_hdr = skb_transport_header(skb);
4653 	__wsum partial;
4654 
4655 	/* Start with complement of inner checksum adjustment */
4656 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4657 						    skb->csum_offset));
4658 
4659 	/* Add in checksum of our headers (incl. outer checksum
4660 	 * adjustment filled in by caller) and return result.
4661 	 */
4662 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4663 }
4664 
4665 static inline bool skb_is_redirected(const struct sk_buff *skb)
4666 {
4667 #ifdef CONFIG_NET_REDIRECT
4668 	return skb->redirected;
4669 #else
4670 	return false;
4671 #endif
4672 }
4673 
4674 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
4675 {
4676 #ifdef CONFIG_NET_REDIRECT
4677 	skb->redirected = 1;
4678 	skb->from_ingress = from_ingress;
4679 	if (skb->from_ingress)
4680 		skb->tstamp = 0;
4681 #endif
4682 }
4683 
4684 static inline void skb_reset_redirect(struct sk_buff *skb)
4685 {
4686 #ifdef CONFIG_NET_REDIRECT
4687 	skb->redirected = 0;
4688 #endif
4689 }
4690 
4691 static inline bool skb_csum_is_sctp(struct sk_buff *skb)
4692 {
4693 	return skb->csum_not_inet;
4694 }
4695 
4696 static inline void skb_set_kcov_handle(struct sk_buff *skb,
4697 				       const u64 kcov_handle)
4698 {
4699 #ifdef CONFIG_KCOV
4700 	skb->kcov_handle = kcov_handle;
4701 #endif
4702 }
4703 
4704 static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
4705 {
4706 #ifdef CONFIG_KCOV
4707 	return skb->kcov_handle;
4708 #else
4709 	return 0;
4710 #endif
4711 }
4712 
4713 #ifdef CONFIG_PAGE_POOL
4714 static inline void skb_mark_for_recycle(struct sk_buff *skb, struct page *page,
4715 					struct page_pool *pp)
4716 {
4717 	skb->pp_recycle = 1;
4718 	page_pool_store_mem_info(page, pp);
4719 }
4720 #endif
4721 
4722 static inline bool skb_pp_recycle(struct sk_buff *skb, void *data)
4723 {
4724 	if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
4725 		return false;
4726 	return page_pool_return_skb_page(virt_to_page(data));
4727 }
4728 
4729 #endif	/* __KERNEL__ */
4730 #endif	/* _LINUX_SKBUFF_H */
4731