xref: /linux-6.15/include/linux/skbuff.h (revision bb4e9af0)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  *	Definitions for the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:
6  *		Alan Cox, <[email protected]>
7  *		Florian La Roche, <[email protected]>
8  */
9 
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12 
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/cache.h>
18 #include <linux/rbtree.h>
19 #include <linux/socket.h>
20 #include <linux/refcount.h>
21 
22 #include <linux/atomic.h>
23 #include <asm/types.h>
24 #include <linux/spinlock.h>
25 #include <linux/net.h>
26 #include <linux/textsearch.h>
27 #include <net/checksum.h>
28 #include <linux/rcupdate.h>
29 #include <linux/hrtimer.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/netdev_features.h>
32 #include <linux/sched.h>
33 #include <linux/sched/clock.h>
34 #include <net/flow_dissector.h>
35 #include <linux/splice.h>
36 #include <linux/in6.h>
37 #include <linux/if_packet.h>
38 #include <net/flow.h>
39 
40 /* The interface for checksum offload between the stack and networking drivers
41  * is as follows...
42  *
43  * A. IP checksum related features
44  *
45  * Drivers advertise checksum offload capabilities in the features of a device.
46  * From the stack's point of view these are capabilities offered by the driver,
47  * a driver typically only advertises features that it is capable of offloading
48  * to its device.
49  *
50  * The checksum related features are:
51  *
52  *	NETIF_F_HW_CSUM	- The driver (or its device) is able to compute one
53  *			  IP (one's complement) checksum for any combination
54  *			  of protocols or protocol layering. The checksum is
55  *			  computed and set in a packet per the CHECKSUM_PARTIAL
56  *			  interface (see below).
57  *
58  *	NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
59  *			  TCP or UDP packets over IPv4. These are specifically
60  *			  unencapsulated packets of the form IPv4|TCP or
61  *			  IPv4|UDP where the Protocol field in the IPv4 header
62  *			  is TCP or UDP. The IPv4 header may contain IP options
63  *			  This feature cannot be set in features for a device
64  *			  with NETIF_F_HW_CSUM also set. This feature is being
65  *			  DEPRECATED (see below).
66  *
67  *	NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
68  *			  TCP or UDP packets over IPv6. These are specifically
69  *			  unencapsulated packets of the form IPv6|TCP or
70  *			  IPv4|UDP where the Next Header field in the IPv6
71  *			  header is either TCP or UDP. IPv6 extension headers
72  *			  are not supported with this feature. This feature
73  *			  cannot be set in features for a device with
74  *			  NETIF_F_HW_CSUM also set. This feature is being
75  *			  DEPRECATED (see below).
76  *
77  *	NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
78  *			 This flag is used only used to disable the RX checksum
79  *			 feature for a device. The stack will accept receive
80  *			 checksum indication in packets received on a device
81  *			 regardless of whether NETIF_F_RXCSUM is set.
82  *
83  * B. Checksumming of received packets by device. Indication of checksum
84  *    verification is in set skb->ip_summed. Possible values are:
85  *
86  * CHECKSUM_NONE:
87  *
88  *   Device did not checksum this packet e.g. due to lack of capabilities.
89  *   The packet contains full (though not verified) checksum in packet but
90  *   not in skb->csum. Thus, skb->csum is undefined in this case.
91  *
92  * CHECKSUM_UNNECESSARY:
93  *
94  *   The hardware you're dealing with doesn't calculate the full checksum
95  *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
96  *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
97  *   if their checksums are okay. skb->csum is still undefined in this case
98  *   though. A driver or device must never modify the checksum field in the
99  *   packet even if checksum is verified.
100  *
101  *   CHECKSUM_UNNECESSARY is applicable to following protocols:
102  *     TCP: IPv6 and IPv4.
103  *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
104  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
105  *       may perform further validation in this case.
106  *     GRE: only if the checksum is present in the header.
107  *     SCTP: indicates the CRC in SCTP header has been validated.
108  *     FCOE: indicates the CRC in FC frame has been validated.
109  *
110  *   skb->csum_level indicates the number of consecutive checksums found in
111  *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
112  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
113  *   and a device is able to verify the checksums for UDP (possibly zero),
114  *   GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
115  *   two. If the device were only able to verify the UDP checksum and not
116  *   GRE, either because it doesn't support GRE checksum of because GRE
117  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
118  *   not considered in this case).
119  *
120  * CHECKSUM_COMPLETE:
121  *
122  *   This is the most generic way. The device supplied checksum of the _whole_
123  *   packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
124  *   hardware doesn't need to parse L3/L4 headers to implement this.
125  *
126  *   Notes:
127  *   - Even if device supports only some protocols, but is able to produce
128  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
129  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
130  *
131  * CHECKSUM_PARTIAL:
132  *
133  *   A checksum is set up to be offloaded to a device as described in the
134  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
135  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
136  *   on the same host, or it may be set in the input path in GRO or remote
137  *   checksum offload. For the purposes of checksum verification, the checksum
138  *   referred to by skb->csum_start + skb->csum_offset and any preceding
139  *   checksums in the packet are considered verified. Any checksums in the
140  *   packet that are after the checksum being offloaded are not considered to
141  *   be verified.
142  *
143  * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
144  *    in the skb->ip_summed for a packet. Values are:
145  *
146  * CHECKSUM_PARTIAL:
147  *
148  *   The driver is required to checksum the packet as seen by hard_start_xmit()
149  *   from skb->csum_start up to the end, and to record/write the checksum at
150  *   offset skb->csum_start + skb->csum_offset. A driver may verify that the
151  *   csum_start and csum_offset values are valid values given the length and
152  *   offset of the packet, however they should not attempt to validate that the
153  *   checksum refers to a legitimate transport layer checksum-- it is the
154  *   purview of the stack to validate that csum_start and csum_offset are set
155  *   correctly.
156  *
157  *   When the stack requests checksum offload for a packet, the driver MUST
158  *   ensure that the checksum is set correctly. A driver can either offload the
159  *   checksum calculation to the device, or call skb_checksum_help (in the case
160  *   that the device does not support offload for a particular checksum).
161  *
162  *   NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
163  *   NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
164  *   checksum offload capability.
165  *   skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
166  *   on network device checksumming capabilities: if a packet does not match
167  *   them, skb_checksum_help or skb_crc32c_help (depending on the value of
168  *   csum_not_inet, see item D.) is called to resolve the checksum.
169  *
170  * CHECKSUM_NONE:
171  *
172  *   The skb was already checksummed by the protocol, or a checksum is not
173  *   required.
174  *
175  * CHECKSUM_UNNECESSARY:
176  *
177  *   This has the same meaning on as CHECKSUM_NONE for checksum offload on
178  *   output.
179  *
180  * CHECKSUM_COMPLETE:
181  *   Not used in checksum output. If a driver observes a packet with this value
182  *   set in skbuff, if should treat as CHECKSUM_NONE being set.
183  *
184  * D. Non-IP checksum (CRC) offloads
185  *
186  *   NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
187  *     offloading the SCTP CRC in a packet. To perform this offload the stack
188  *     will set set csum_start and csum_offset accordingly, set ip_summed to
189  *     CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
190  *     the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
191  *     A driver that supports both IP checksum offload and SCTP CRC32c offload
192  *     must verify which offload is configured for a packet by testing the
193  *     value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
194  *     CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
195  *
196  *   NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
197  *     offloading the FCOE CRC in a packet. To perform this offload the stack
198  *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
199  *     accordingly. Note the there is no indication in the skbuff that the
200  *     CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
201  *     both IP checksum offload and FCOE CRC offload must verify which offload
202  *     is configured for a packet presumably by inspecting packet headers.
203  *
204  * E. Checksumming on output with GSO.
205  *
206  * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
207  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
208  * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
209  * part of the GSO operation is implied. If a checksum is being offloaded
210  * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
211  * are set to refer to the outermost checksum being offload (two offloaded
212  * checksums are possible with UDP encapsulation).
213  */
214 
215 /* Don't change this without changing skb_csum_unnecessary! */
216 #define CHECKSUM_NONE		0
217 #define CHECKSUM_UNNECESSARY	1
218 #define CHECKSUM_COMPLETE	2
219 #define CHECKSUM_PARTIAL	3
220 
221 /* Maximum value in skb->csum_level */
222 #define SKB_MAX_CSUM_LEVEL	3
223 
224 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
225 #define SKB_WITH_OVERHEAD(X)	\
226 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
227 #define SKB_MAX_ORDER(X, ORDER) \
228 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
229 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
230 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
231 
232 /* return minimum truesize of one skb containing X bytes of data */
233 #define SKB_TRUESIZE(X) ((X) +						\
234 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
235 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
236 
237 struct net_device;
238 struct scatterlist;
239 struct pipe_inode_info;
240 struct iov_iter;
241 struct napi_struct;
242 struct bpf_prog;
243 union bpf_attr;
244 struct skb_ext;
245 
246 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
247 struct nf_conntrack {
248 	atomic_t use;
249 };
250 #endif
251 
252 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
253 struct nf_bridge_info {
254 	enum {
255 		BRNF_PROTO_UNCHANGED,
256 		BRNF_PROTO_8021Q,
257 		BRNF_PROTO_PPPOE
258 	} orig_proto:8;
259 	u8			pkt_otherhost:1;
260 	u8			in_prerouting:1;
261 	u8			bridged_dnat:1;
262 	__u16			frag_max_size;
263 	struct net_device	*physindev;
264 
265 	/* always valid & non-NULL from FORWARD on, for physdev match */
266 	struct net_device	*physoutdev;
267 	union {
268 		/* prerouting: detect dnat in orig/reply direction */
269 		__be32          ipv4_daddr;
270 		struct in6_addr ipv6_daddr;
271 
272 		/* after prerouting + nat detected: store original source
273 		 * mac since neigh resolution overwrites it, only used while
274 		 * skb is out in neigh layer.
275 		 */
276 		char neigh_header[8];
277 	};
278 };
279 #endif
280 
281 struct sk_buff_head {
282 	/* These two members must be first. */
283 	struct sk_buff	*next;
284 	struct sk_buff	*prev;
285 
286 	__u32		qlen;
287 	spinlock_t	lock;
288 };
289 
290 struct sk_buff;
291 
292 /* To allow 64K frame to be packed as single skb without frag_list we
293  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
294  * buffers which do not start on a page boundary.
295  *
296  * Since GRO uses frags we allocate at least 16 regardless of page
297  * size.
298  */
299 #if (65536/PAGE_SIZE + 1) < 16
300 #define MAX_SKB_FRAGS 16UL
301 #else
302 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
303 #endif
304 extern int sysctl_max_skb_frags;
305 
306 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
307  * segment using its current segmentation instead.
308  */
309 #define GSO_BY_FRAGS	0xFFFF
310 
311 typedef struct skb_frag_struct skb_frag_t;
312 
313 struct skb_frag_struct {
314 	struct {
315 		struct page *p;
316 	} page;
317 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
318 	__u32 page_offset;
319 	__u32 size;
320 #else
321 	__u16 page_offset;
322 	__u16 size;
323 #endif
324 };
325 
326 /**
327  * skb_frag_size - Returns the size of a skb fragment
328  * @frag: skb fragment
329  */
330 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
331 {
332 	return frag->size;
333 }
334 
335 /**
336  * skb_frag_size_set - Sets the size of a skb fragment
337  * @frag: skb fragment
338  * @size: size of fragment
339  */
340 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
341 {
342 	frag->size = size;
343 }
344 
345 /**
346  * skb_frag_size_add - Incrementes the size of a skb fragment by %delta
347  * @frag: skb fragment
348  * @delta: value to add
349  */
350 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
351 {
352 	frag->size += delta;
353 }
354 
355 /**
356  * skb_frag_size_sub - Decrements the size of a skb fragment by %delta
357  * @frag: skb fragment
358  * @delta: value to subtract
359  */
360 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
361 {
362 	frag->size -= delta;
363 }
364 
365 /**
366  * skb_frag_must_loop - Test if %p is a high memory page
367  * @p: fragment's page
368  */
369 static inline bool skb_frag_must_loop(struct page *p)
370 {
371 #if defined(CONFIG_HIGHMEM)
372 	if (PageHighMem(p))
373 		return true;
374 #endif
375 	return false;
376 }
377 
378 /**
379  *	skb_frag_foreach_page - loop over pages in a fragment
380  *
381  *	@f:		skb frag to operate on
382  *	@f_off:		offset from start of f->page.p
383  *	@f_len:		length from f_off to loop over
384  *	@p:		(temp var) current page
385  *	@p_off:		(temp var) offset from start of current page,
386  *	                           non-zero only on first page.
387  *	@p_len:		(temp var) length in current page,
388  *				   < PAGE_SIZE only on first and last page.
389  *	@copied:	(temp var) length so far, excluding current p_len.
390  *
391  *	A fragment can hold a compound page, in which case per-page
392  *	operations, notably kmap_atomic, must be called for each
393  *	regular page.
394  */
395 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
396 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
397 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
398 	     p_len = skb_frag_must_loop(p) ?				\
399 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
400 	     copied = 0;						\
401 	     copied < f_len;						\
402 	     copied += p_len, p++, p_off = 0,				\
403 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
404 
405 #define HAVE_HW_TIME_STAMP
406 
407 /**
408  * struct skb_shared_hwtstamps - hardware time stamps
409  * @hwtstamp:	hardware time stamp transformed into duration
410  *		since arbitrary point in time
411  *
412  * Software time stamps generated by ktime_get_real() are stored in
413  * skb->tstamp.
414  *
415  * hwtstamps can only be compared against other hwtstamps from
416  * the same device.
417  *
418  * This structure is attached to packets as part of the
419  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
420  */
421 struct skb_shared_hwtstamps {
422 	ktime_t	hwtstamp;
423 };
424 
425 /* Definitions for tx_flags in struct skb_shared_info */
426 enum {
427 	/* generate hardware time stamp */
428 	SKBTX_HW_TSTAMP = 1 << 0,
429 
430 	/* generate software time stamp when queueing packet to NIC */
431 	SKBTX_SW_TSTAMP = 1 << 1,
432 
433 	/* device driver is going to provide hardware time stamp */
434 	SKBTX_IN_PROGRESS = 1 << 2,
435 
436 	/* device driver supports TX zero-copy buffers */
437 	SKBTX_DEV_ZEROCOPY = 1 << 3,
438 
439 	/* generate wifi status information (where possible) */
440 	SKBTX_WIFI_STATUS = 1 << 4,
441 
442 	/* This indicates at least one fragment might be overwritten
443 	 * (as in vmsplice(), sendfile() ...)
444 	 * If we need to compute a TX checksum, we'll need to copy
445 	 * all frags to avoid possible bad checksum
446 	 */
447 	SKBTX_SHARED_FRAG = 1 << 5,
448 
449 	/* generate software time stamp when entering packet scheduling */
450 	SKBTX_SCHED_TSTAMP = 1 << 6,
451 };
452 
453 #define SKBTX_ZEROCOPY_FRAG	(SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG)
454 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
455 				 SKBTX_SCHED_TSTAMP)
456 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
457 
458 /*
459  * The callback notifies userspace to release buffers when skb DMA is done in
460  * lower device, the skb last reference should be 0 when calling this.
461  * The zerocopy_success argument is true if zero copy transmit occurred,
462  * false on data copy or out of memory error caused by data copy attempt.
463  * The ctx field is used to track device context.
464  * The desc field is used to track userspace buffer index.
465  */
466 struct ubuf_info {
467 	void (*callback)(struct ubuf_info *, bool zerocopy_success);
468 	union {
469 		struct {
470 			unsigned long desc;
471 			void *ctx;
472 		};
473 		struct {
474 			u32 id;
475 			u16 len;
476 			u16 zerocopy:1;
477 			u32 bytelen;
478 		};
479 	};
480 	refcount_t refcnt;
481 
482 	struct mmpin {
483 		struct user_struct *user;
484 		unsigned int num_pg;
485 	} mmp;
486 };
487 
488 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
489 
490 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
491 void mm_unaccount_pinned_pages(struct mmpin *mmp);
492 
493 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size);
494 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
495 					struct ubuf_info *uarg);
496 
497 static inline void sock_zerocopy_get(struct ubuf_info *uarg)
498 {
499 	refcount_inc(&uarg->refcnt);
500 }
501 
502 void sock_zerocopy_put(struct ubuf_info *uarg);
503 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
504 
505 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success);
506 
507 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len);
508 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
509 			     struct msghdr *msg, int len,
510 			     struct ubuf_info *uarg);
511 
512 /* This data is invariant across clones and lives at
513  * the end of the header data, ie. at skb->end.
514  */
515 struct skb_shared_info {
516 	__u8		__unused;
517 	__u8		meta_len;
518 	__u8		nr_frags;
519 	__u8		tx_flags;
520 	unsigned short	gso_size;
521 	/* Warning: this field is not always filled in (UFO)! */
522 	unsigned short	gso_segs;
523 	struct sk_buff	*frag_list;
524 	struct skb_shared_hwtstamps hwtstamps;
525 	unsigned int	gso_type;
526 	u32		tskey;
527 
528 	/*
529 	 * Warning : all fields before dataref are cleared in __alloc_skb()
530 	 */
531 	atomic_t	dataref;
532 
533 	/* Intermediate layers must ensure that destructor_arg
534 	 * remains valid until skb destructor */
535 	void *		destructor_arg;
536 
537 	/* must be last field, see pskb_expand_head() */
538 	skb_frag_t	frags[MAX_SKB_FRAGS];
539 };
540 
541 /* We divide dataref into two halves.  The higher 16 bits hold references
542  * to the payload part of skb->data.  The lower 16 bits hold references to
543  * the entire skb->data.  A clone of a headerless skb holds the length of
544  * the header in skb->hdr_len.
545  *
546  * All users must obey the rule that the skb->data reference count must be
547  * greater than or equal to the payload reference count.
548  *
549  * Holding a reference to the payload part means that the user does not
550  * care about modifications to the header part of skb->data.
551  */
552 #define SKB_DATAREF_SHIFT 16
553 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
554 
555 
556 enum {
557 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
558 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
559 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
560 };
561 
562 enum {
563 	SKB_GSO_TCPV4 = 1 << 0,
564 
565 	/* This indicates the skb is from an untrusted source. */
566 	SKB_GSO_DODGY = 1 << 1,
567 
568 	/* This indicates the tcp segment has CWR set. */
569 	SKB_GSO_TCP_ECN = 1 << 2,
570 
571 	SKB_GSO_TCP_FIXEDID = 1 << 3,
572 
573 	SKB_GSO_TCPV6 = 1 << 4,
574 
575 	SKB_GSO_FCOE = 1 << 5,
576 
577 	SKB_GSO_GRE = 1 << 6,
578 
579 	SKB_GSO_GRE_CSUM = 1 << 7,
580 
581 	SKB_GSO_IPXIP4 = 1 << 8,
582 
583 	SKB_GSO_IPXIP6 = 1 << 9,
584 
585 	SKB_GSO_UDP_TUNNEL = 1 << 10,
586 
587 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
588 
589 	SKB_GSO_PARTIAL = 1 << 12,
590 
591 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
592 
593 	SKB_GSO_SCTP = 1 << 14,
594 
595 	SKB_GSO_ESP = 1 << 15,
596 
597 	SKB_GSO_UDP = 1 << 16,
598 
599 	SKB_GSO_UDP_L4 = 1 << 17,
600 };
601 
602 #if BITS_PER_LONG > 32
603 #define NET_SKBUFF_DATA_USES_OFFSET 1
604 #endif
605 
606 #ifdef NET_SKBUFF_DATA_USES_OFFSET
607 typedef unsigned int sk_buff_data_t;
608 #else
609 typedef unsigned char *sk_buff_data_t;
610 #endif
611 
612 /**
613  *	struct sk_buff - socket buffer
614  *	@next: Next buffer in list
615  *	@prev: Previous buffer in list
616  *	@tstamp: Time we arrived/left
617  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
618  *	@sk: Socket we are owned by
619  *	@dev: Device we arrived on/are leaving by
620  *	@cb: Control buffer. Free for use by every layer. Put private vars here
621  *	@_skb_refdst: destination entry (with norefcount bit)
622  *	@sp: the security path, used for xfrm
623  *	@len: Length of actual data
624  *	@data_len: Data length
625  *	@mac_len: Length of link layer header
626  *	@hdr_len: writable header length of cloned skb
627  *	@csum: Checksum (must include start/offset pair)
628  *	@csum_start: Offset from skb->head where checksumming should start
629  *	@csum_offset: Offset from csum_start where checksum should be stored
630  *	@priority: Packet queueing priority
631  *	@ignore_df: allow local fragmentation
632  *	@cloned: Head may be cloned (check refcnt to be sure)
633  *	@ip_summed: Driver fed us an IP checksum
634  *	@nohdr: Payload reference only, must not modify header
635  *	@pkt_type: Packet class
636  *	@fclone: skbuff clone status
637  *	@ipvs_property: skbuff is owned by ipvs
638  *	@offload_fwd_mark: Packet was L2-forwarded in hardware
639  *	@offload_l3_fwd_mark: Packet was L3-forwarded in hardware
640  *	@tc_skip_classify: do not classify packet. set by IFB device
641  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
642  *	@tc_redirected: packet was redirected by a tc action
643  *	@tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect
644  *	@peeked: this packet has been seen already, so stats have been
645  *		done for it, don't do them again
646  *	@nf_trace: netfilter packet trace flag
647  *	@protocol: Packet protocol from driver
648  *	@destructor: Destruct function
649  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
650  *	@_nfct: Associated connection, if any (with nfctinfo bits)
651  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
652  *	@skb_iif: ifindex of device we arrived on
653  *	@tc_index: Traffic control index
654  *	@hash: the packet hash
655  *	@queue_mapping: Queue mapping for multiqueue devices
656  *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
657  *	@active_extensions: active extensions (skb_ext_id types)
658  *	@ndisc_nodetype: router type (from link layer)
659  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
660  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
661  *		ports.
662  *	@sw_hash: indicates hash was computed in software stack
663  *	@wifi_acked_valid: wifi_acked was set
664  *	@wifi_acked: whether frame was acked on wifi or not
665  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
666  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
667  *	@dst_pending_confirm: need to confirm neighbour
668  *	@decrypted: Decrypted SKB
669  *	@napi_id: id of the NAPI struct this skb came from
670  *	@secmark: security marking
671  *	@mark: Generic packet mark
672  *	@vlan_proto: vlan encapsulation protocol
673  *	@vlan_tci: vlan tag control information
674  *	@inner_protocol: Protocol (encapsulation)
675  *	@inner_transport_header: Inner transport layer header (encapsulation)
676  *	@inner_network_header: Network layer header (encapsulation)
677  *	@inner_mac_header: Link layer header (encapsulation)
678  *	@transport_header: Transport layer header
679  *	@network_header: Network layer header
680  *	@mac_header: Link layer header
681  *	@tail: Tail pointer
682  *	@end: End pointer
683  *	@head: Head of buffer
684  *	@data: Data head pointer
685  *	@truesize: Buffer size
686  *	@users: User count - see {datagram,tcp}.c
687  *	@extensions: allocated extensions, valid if active_extensions is nonzero
688  */
689 
690 struct sk_buff {
691 	union {
692 		struct {
693 			/* These two members must be first. */
694 			struct sk_buff		*next;
695 			struct sk_buff		*prev;
696 
697 			union {
698 				struct net_device	*dev;
699 				/* Some protocols might use this space to store information,
700 				 * while device pointer would be NULL.
701 				 * UDP receive path is one user.
702 				 */
703 				unsigned long		dev_scratch;
704 			};
705 		};
706 		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
707 		struct list_head	list;
708 	};
709 
710 	union {
711 		struct sock		*sk;
712 		int			ip_defrag_offset;
713 	};
714 
715 	union {
716 		ktime_t		tstamp;
717 		u64		skb_mstamp_ns; /* earliest departure time */
718 	};
719 	/*
720 	 * This is the control buffer. It is free to use for every
721 	 * layer. Please put your private variables there. If you
722 	 * want to keep them across layers you have to do a skb_clone()
723 	 * first. This is owned by whoever has the skb queued ATM.
724 	 */
725 	char			cb[48] __aligned(8);
726 
727 	union {
728 		struct {
729 			unsigned long	_skb_refdst;
730 			void		(*destructor)(struct sk_buff *skb);
731 		};
732 		struct list_head	tcp_tsorted_anchor;
733 	};
734 
735 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
736 	unsigned long		 _nfct;
737 #endif
738 	unsigned int		len,
739 				data_len;
740 	__u16			mac_len,
741 				hdr_len;
742 
743 	/* Following fields are _not_ copied in __copy_skb_header()
744 	 * Note that queue_mapping is here mostly to fill a hole.
745 	 */
746 	__u16			queue_mapping;
747 
748 /* if you move cloned around you also must adapt those constants */
749 #ifdef __BIG_ENDIAN_BITFIELD
750 #define CLONED_MASK	(1 << 7)
751 #else
752 #define CLONED_MASK	1
753 #endif
754 #define CLONED_OFFSET()		offsetof(struct sk_buff, __cloned_offset)
755 
756 	__u8			__cloned_offset[0];
757 	__u8			cloned:1,
758 				nohdr:1,
759 				fclone:2,
760 				peeked:1,
761 				head_frag:1,
762 				pfmemalloc:1;
763 #ifdef CONFIG_SKB_EXTENSIONS
764 	__u8			active_extensions;
765 #endif
766 	/* fields enclosed in headers_start/headers_end are copied
767 	 * using a single memcpy() in __copy_skb_header()
768 	 */
769 	/* private: */
770 	__u32			headers_start[0];
771 	/* public: */
772 
773 /* if you move pkt_type around you also must adapt those constants */
774 #ifdef __BIG_ENDIAN_BITFIELD
775 #define PKT_TYPE_MAX	(7 << 5)
776 #else
777 #define PKT_TYPE_MAX	7
778 #endif
779 #define PKT_TYPE_OFFSET()	offsetof(struct sk_buff, __pkt_type_offset)
780 
781 	__u8			__pkt_type_offset[0];
782 	__u8			pkt_type:3;
783 	__u8			ignore_df:1;
784 	__u8			nf_trace:1;
785 	__u8			ip_summed:2;
786 	__u8			ooo_okay:1;
787 
788 	__u8			l4_hash:1;
789 	__u8			sw_hash:1;
790 	__u8			wifi_acked_valid:1;
791 	__u8			wifi_acked:1;
792 	__u8			no_fcs:1;
793 	/* Indicates the inner headers are valid in the skbuff. */
794 	__u8			encapsulation:1;
795 	__u8			encap_hdr_csum:1;
796 	__u8			csum_valid:1;
797 
798 #ifdef __BIG_ENDIAN_BITFIELD
799 #define PKT_VLAN_PRESENT_BIT	7
800 #else
801 #define PKT_VLAN_PRESENT_BIT	0
802 #endif
803 #define PKT_VLAN_PRESENT_OFFSET()	offsetof(struct sk_buff, __pkt_vlan_present_offset)
804 	__u8			__pkt_vlan_present_offset[0];
805 	__u8			vlan_present:1;
806 	__u8			csum_complete_sw:1;
807 	__u8			csum_level:2;
808 	__u8			csum_not_inet:1;
809 	__u8			dst_pending_confirm:1;
810 #ifdef CONFIG_IPV6_NDISC_NODETYPE
811 	__u8			ndisc_nodetype:2;
812 #endif
813 
814 	__u8			ipvs_property:1;
815 	__u8			inner_protocol_type:1;
816 	__u8			remcsum_offload:1;
817 #ifdef CONFIG_NET_SWITCHDEV
818 	__u8			offload_fwd_mark:1;
819 	__u8			offload_l3_fwd_mark:1;
820 #endif
821 #ifdef CONFIG_NET_CLS_ACT
822 	__u8			tc_skip_classify:1;
823 	__u8			tc_at_ingress:1;
824 	__u8			tc_redirected:1;
825 	__u8			tc_from_ingress:1;
826 #endif
827 #ifdef CONFIG_TLS_DEVICE
828 	__u8			decrypted:1;
829 #endif
830 
831 #ifdef CONFIG_NET_SCHED
832 	__u16			tc_index;	/* traffic control index */
833 #endif
834 
835 	union {
836 		__wsum		csum;
837 		struct {
838 			__u16	csum_start;
839 			__u16	csum_offset;
840 		};
841 	};
842 	__u32			priority;
843 	int			skb_iif;
844 	__u32			hash;
845 	__be16			vlan_proto;
846 	__u16			vlan_tci;
847 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
848 	union {
849 		unsigned int	napi_id;
850 		unsigned int	sender_cpu;
851 	};
852 #endif
853 #ifdef CONFIG_NETWORK_SECMARK
854 	__u32		secmark;
855 #endif
856 
857 	union {
858 		__u32		mark;
859 		__u32		reserved_tailroom;
860 	};
861 
862 	union {
863 		__be16		inner_protocol;
864 		__u8		inner_ipproto;
865 	};
866 
867 	__u16			inner_transport_header;
868 	__u16			inner_network_header;
869 	__u16			inner_mac_header;
870 
871 	__be16			protocol;
872 	__u16			transport_header;
873 	__u16			network_header;
874 	__u16			mac_header;
875 
876 	/* private: */
877 	__u32			headers_end[0];
878 	/* public: */
879 
880 	/* These elements must be at the end, see alloc_skb() for details.  */
881 	sk_buff_data_t		tail;
882 	sk_buff_data_t		end;
883 	unsigned char		*head,
884 				*data;
885 	unsigned int		truesize;
886 	refcount_t		users;
887 
888 #ifdef CONFIG_SKB_EXTENSIONS
889 	/* only useable after checking ->active_extensions != 0 */
890 	struct skb_ext		*extensions;
891 #endif
892 };
893 
894 #ifdef __KERNEL__
895 /*
896  *	Handling routines are only of interest to the kernel
897  */
898 
899 #define SKB_ALLOC_FCLONE	0x01
900 #define SKB_ALLOC_RX		0x02
901 #define SKB_ALLOC_NAPI		0x04
902 
903 /**
904  * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
905  * @skb: buffer
906  */
907 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
908 {
909 	return unlikely(skb->pfmemalloc);
910 }
911 
912 /*
913  * skb might have a dst pointer attached, refcounted or not.
914  * _skb_refdst low order bit is set if refcount was _not_ taken
915  */
916 #define SKB_DST_NOREF	1UL
917 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
918 
919 #define SKB_NFCT_PTRMASK	~(7UL)
920 /**
921  * skb_dst - returns skb dst_entry
922  * @skb: buffer
923  *
924  * Returns skb dst_entry, regardless of reference taken or not.
925  */
926 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
927 {
928 	/* If refdst was not refcounted, check we still are in a
929 	 * rcu_read_lock section
930 	 */
931 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
932 		!rcu_read_lock_held() &&
933 		!rcu_read_lock_bh_held());
934 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
935 }
936 
937 /**
938  * skb_dst_set - sets skb dst
939  * @skb: buffer
940  * @dst: dst entry
941  *
942  * Sets skb dst, assuming a reference was taken on dst and should
943  * be released by skb_dst_drop()
944  */
945 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
946 {
947 	skb->_skb_refdst = (unsigned long)dst;
948 }
949 
950 /**
951  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
952  * @skb: buffer
953  * @dst: dst entry
954  *
955  * Sets skb dst, assuming a reference was not taken on dst.
956  * If dst entry is cached, we do not take reference and dst_release
957  * will be avoided by refdst_drop. If dst entry is not cached, we take
958  * reference, so that last dst_release can destroy the dst immediately.
959  */
960 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
961 {
962 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
963 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
964 }
965 
966 /**
967  * skb_dst_is_noref - Test if skb dst isn't refcounted
968  * @skb: buffer
969  */
970 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
971 {
972 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
973 }
974 
975 /**
976  * skb_rtable - Returns the skb &rtable
977  * @skb: buffer
978  */
979 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
980 {
981 	return (struct rtable *)skb_dst(skb);
982 }
983 
984 /* For mangling skb->pkt_type from user space side from applications
985  * such as nft, tc, etc, we only allow a conservative subset of
986  * possible pkt_types to be set.
987 */
988 static inline bool skb_pkt_type_ok(u32 ptype)
989 {
990 	return ptype <= PACKET_OTHERHOST;
991 }
992 
993 /**
994  * skb_napi_id - Returns the skb's NAPI id
995  * @skb: buffer
996  */
997 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
998 {
999 #ifdef CONFIG_NET_RX_BUSY_POLL
1000 	return skb->napi_id;
1001 #else
1002 	return 0;
1003 #endif
1004 }
1005 
1006 /**
1007  * skb_unref - decrement the skb's reference count
1008  * @skb: buffer
1009  *
1010  * Returns true if we can free the skb.
1011  */
1012 static inline bool skb_unref(struct sk_buff *skb)
1013 {
1014 	if (unlikely(!skb))
1015 		return false;
1016 	if (likely(refcount_read(&skb->users) == 1))
1017 		smp_rmb();
1018 	else if (likely(!refcount_dec_and_test(&skb->users)))
1019 		return false;
1020 
1021 	return true;
1022 }
1023 
1024 void skb_release_head_state(struct sk_buff *skb);
1025 void kfree_skb(struct sk_buff *skb);
1026 void kfree_skb_list(struct sk_buff *segs);
1027 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1028 void skb_tx_error(struct sk_buff *skb);
1029 void consume_skb(struct sk_buff *skb);
1030 void __consume_stateless_skb(struct sk_buff *skb);
1031 void  __kfree_skb(struct sk_buff *skb);
1032 extern struct kmem_cache *skbuff_head_cache;
1033 
1034 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1035 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1036 		      bool *fragstolen, int *delta_truesize);
1037 
1038 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1039 			    int node);
1040 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1041 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1042 struct sk_buff *build_skb_around(struct sk_buff *skb,
1043 				 void *data, unsigned int frag_size);
1044 
1045 /**
1046  * alloc_skb - allocate a network buffer
1047  * @size: size to allocate
1048  * @priority: allocation mask
1049  *
1050  * This function is a convenient wrapper around __alloc_skb().
1051  */
1052 static inline struct sk_buff *alloc_skb(unsigned int size,
1053 					gfp_t priority)
1054 {
1055 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1056 }
1057 
1058 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1059 				     unsigned long data_len,
1060 				     int max_page_order,
1061 				     int *errcode,
1062 				     gfp_t gfp_mask);
1063 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1064 
1065 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1066 struct sk_buff_fclones {
1067 	struct sk_buff	skb1;
1068 
1069 	struct sk_buff	skb2;
1070 
1071 	refcount_t	fclone_ref;
1072 };
1073 
1074 /**
1075  *	skb_fclone_busy - check if fclone is busy
1076  *	@sk: socket
1077  *	@skb: buffer
1078  *
1079  * Returns true if skb is a fast clone, and its clone is not freed.
1080  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1081  * so we also check that this didnt happen.
1082  */
1083 static inline bool skb_fclone_busy(const struct sock *sk,
1084 				   const struct sk_buff *skb)
1085 {
1086 	const struct sk_buff_fclones *fclones;
1087 
1088 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1089 
1090 	return skb->fclone == SKB_FCLONE_ORIG &&
1091 	       refcount_read(&fclones->fclone_ref) > 1 &&
1092 	       fclones->skb2.sk == sk;
1093 }
1094 
1095 /**
1096  * alloc_skb_fclone - allocate a network buffer from fclone cache
1097  * @size: size to allocate
1098  * @priority: allocation mask
1099  *
1100  * This function is a convenient wrapper around __alloc_skb().
1101  */
1102 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1103 					       gfp_t priority)
1104 {
1105 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1106 }
1107 
1108 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1109 void skb_headers_offset_update(struct sk_buff *skb, int off);
1110 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1111 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1112 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1113 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1114 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1115 				   gfp_t gfp_mask, bool fclone);
1116 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1117 					  gfp_t gfp_mask)
1118 {
1119 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1120 }
1121 
1122 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1123 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1124 				     unsigned int headroom);
1125 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1126 				int newtailroom, gfp_t priority);
1127 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1128 				     int offset, int len);
1129 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1130 			      int offset, int len);
1131 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1132 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1133 
1134 /**
1135  *	skb_pad			-	zero pad the tail of an skb
1136  *	@skb: buffer to pad
1137  *	@pad: space to pad
1138  *
1139  *	Ensure that a buffer is followed by a padding area that is zero
1140  *	filled. Used by network drivers which may DMA or transfer data
1141  *	beyond the buffer end onto the wire.
1142  *
1143  *	May return error in out of memory cases. The skb is freed on error.
1144  */
1145 static inline int skb_pad(struct sk_buff *skb, int pad)
1146 {
1147 	return __skb_pad(skb, pad, true);
1148 }
1149 #define dev_kfree_skb(a)	consume_skb(a)
1150 
1151 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1152 			 int offset, size_t size);
1153 
1154 struct skb_seq_state {
1155 	__u32		lower_offset;
1156 	__u32		upper_offset;
1157 	__u32		frag_idx;
1158 	__u32		stepped_offset;
1159 	struct sk_buff	*root_skb;
1160 	struct sk_buff	*cur_skb;
1161 	__u8		*frag_data;
1162 };
1163 
1164 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1165 			  unsigned int to, struct skb_seq_state *st);
1166 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1167 			  struct skb_seq_state *st);
1168 void skb_abort_seq_read(struct skb_seq_state *st);
1169 
1170 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1171 			   unsigned int to, struct ts_config *config);
1172 
1173 /*
1174  * Packet hash types specify the type of hash in skb_set_hash.
1175  *
1176  * Hash types refer to the protocol layer addresses which are used to
1177  * construct a packet's hash. The hashes are used to differentiate or identify
1178  * flows of the protocol layer for the hash type. Hash types are either
1179  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1180  *
1181  * Properties of hashes:
1182  *
1183  * 1) Two packets in different flows have different hash values
1184  * 2) Two packets in the same flow should have the same hash value
1185  *
1186  * A hash at a higher layer is considered to be more specific. A driver should
1187  * set the most specific hash possible.
1188  *
1189  * A driver cannot indicate a more specific hash than the layer at which a hash
1190  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1191  *
1192  * A driver may indicate a hash level which is less specific than the
1193  * actual layer the hash was computed on. For instance, a hash computed
1194  * at L4 may be considered an L3 hash. This should only be done if the
1195  * driver can't unambiguously determine that the HW computed the hash at
1196  * the higher layer. Note that the "should" in the second property above
1197  * permits this.
1198  */
1199 enum pkt_hash_types {
1200 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1201 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1202 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1203 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1204 };
1205 
1206 static inline void skb_clear_hash(struct sk_buff *skb)
1207 {
1208 	skb->hash = 0;
1209 	skb->sw_hash = 0;
1210 	skb->l4_hash = 0;
1211 }
1212 
1213 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1214 {
1215 	if (!skb->l4_hash)
1216 		skb_clear_hash(skb);
1217 }
1218 
1219 static inline void
1220 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1221 {
1222 	skb->l4_hash = is_l4;
1223 	skb->sw_hash = is_sw;
1224 	skb->hash = hash;
1225 }
1226 
1227 static inline void
1228 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1229 {
1230 	/* Used by drivers to set hash from HW */
1231 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1232 }
1233 
1234 static inline void
1235 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1236 {
1237 	__skb_set_hash(skb, hash, true, is_l4);
1238 }
1239 
1240 void __skb_get_hash(struct sk_buff *skb);
1241 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1242 u32 skb_get_poff(const struct sk_buff *skb);
1243 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1244 		   const struct flow_keys_basic *keys, int hlen);
1245 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1246 			    void *data, int hlen_proto);
1247 
1248 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1249 					int thoff, u8 ip_proto)
1250 {
1251 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1252 }
1253 
1254 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1255 			     const struct flow_dissector_key *key,
1256 			     unsigned int key_count);
1257 
1258 #ifdef CONFIG_NET
1259 int skb_flow_dissector_prog_query(const union bpf_attr *attr,
1260 				  union bpf_attr __user *uattr);
1261 int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr,
1262 				       struct bpf_prog *prog);
1263 
1264 int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr);
1265 #else
1266 static inline int skb_flow_dissector_prog_query(const union bpf_attr *attr,
1267 						union bpf_attr __user *uattr)
1268 {
1269 	return -EOPNOTSUPP;
1270 }
1271 
1272 static inline int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr,
1273 						     struct bpf_prog *prog)
1274 {
1275 	return -EOPNOTSUPP;
1276 }
1277 
1278 static inline int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr)
1279 {
1280 	return -EOPNOTSUPP;
1281 }
1282 #endif
1283 
1284 struct bpf_flow_dissector;
1285 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1286 		      __be16 proto, int nhoff, int hlen);
1287 
1288 bool __skb_flow_dissect(const struct net *net,
1289 			const struct sk_buff *skb,
1290 			struct flow_dissector *flow_dissector,
1291 			void *target_container,
1292 			void *data, __be16 proto, int nhoff, int hlen,
1293 			unsigned int flags);
1294 
1295 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1296 				    struct flow_dissector *flow_dissector,
1297 				    void *target_container, unsigned int flags)
1298 {
1299 	return __skb_flow_dissect(NULL, skb, flow_dissector,
1300 				  target_container, NULL, 0, 0, 0, flags);
1301 }
1302 
1303 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1304 					      struct flow_keys *flow,
1305 					      unsigned int flags)
1306 {
1307 	memset(flow, 0, sizeof(*flow));
1308 	return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1309 				  flow, NULL, 0, 0, 0, flags);
1310 }
1311 
1312 static inline bool
1313 skb_flow_dissect_flow_keys_basic(const struct net *net,
1314 				 const struct sk_buff *skb,
1315 				 struct flow_keys_basic *flow, void *data,
1316 				 __be16 proto, int nhoff, int hlen,
1317 				 unsigned int flags)
1318 {
1319 	memset(flow, 0, sizeof(*flow));
1320 	return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1321 				  data, proto, nhoff, hlen, flags);
1322 }
1323 
1324 void skb_flow_dissect_meta(const struct sk_buff *skb,
1325 			   struct flow_dissector *flow_dissector,
1326 			   void *target_container);
1327 
1328 /* Gets a skb connection tracking info, ctinfo map should be a
1329  * a map of mapsize to translate enum ip_conntrack_info states
1330  * to user states.
1331  */
1332 void
1333 skb_flow_dissect_ct(const struct sk_buff *skb,
1334 		    struct flow_dissector *flow_dissector,
1335 		    void *target_container,
1336 		    u16 *ctinfo_map,
1337 		    size_t mapsize);
1338 void
1339 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1340 			     struct flow_dissector *flow_dissector,
1341 			     void *target_container);
1342 
1343 static inline __u32 skb_get_hash(struct sk_buff *skb)
1344 {
1345 	if (!skb->l4_hash && !skb->sw_hash)
1346 		__skb_get_hash(skb);
1347 
1348 	return skb->hash;
1349 }
1350 
1351 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1352 {
1353 	if (!skb->l4_hash && !skb->sw_hash) {
1354 		struct flow_keys keys;
1355 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1356 
1357 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1358 	}
1359 
1360 	return skb->hash;
1361 }
1362 
1363 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);
1364 
1365 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1366 {
1367 	return skb->hash;
1368 }
1369 
1370 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1371 {
1372 	to->hash = from->hash;
1373 	to->sw_hash = from->sw_hash;
1374 	to->l4_hash = from->l4_hash;
1375 };
1376 
1377 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1378 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1379 {
1380 	return skb->head + skb->end;
1381 }
1382 
1383 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1384 {
1385 	return skb->end;
1386 }
1387 #else
1388 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1389 {
1390 	return skb->end;
1391 }
1392 
1393 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1394 {
1395 	return skb->end - skb->head;
1396 }
1397 #endif
1398 
1399 /* Internal */
1400 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1401 
1402 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1403 {
1404 	return &skb_shinfo(skb)->hwtstamps;
1405 }
1406 
1407 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1408 {
1409 	bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY;
1410 
1411 	return is_zcopy ? skb_uarg(skb) : NULL;
1412 }
1413 
1414 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1415 				 bool *have_ref)
1416 {
1417 	if (skb && uarg && !skb_zcopy(skb)) {
1418 		if (unlikely(have_ref && *have_ref))
1419 			*have_ref = false;
1420 		else
1421 			sock_zerocopy_get(uarg);
1422 		skb_shinfo(skb)->destructor_arg = uarg;
1423 		skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1424 	}
1425 }
1426 
1427 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1428 {
1429 	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1430 	skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1431 }
1432 
1433 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1434 {
1435 	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1436 }
1437 
1438 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1439 {
1440 	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1441 }
1442 
1443 /* Release a reference on a zerocopy structure */
1444 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy)
1445 {
1446 	struct ubuf_info *uarg = skb_zcopy(skb);
1447 
1448 	if (uarg) {
1449 		if (skb_zcopy_is_nouarg(skb)) {
1450 			/* no notification callback */
1451 		} else if (uarg->callback == sock_zerocopy_callback) {
1452 			uarg->zerocopy = uarg->zerocopy && zerocopy;
1453 			sock_zerocopy_put(uarg);
1454 		} else {
1455 			uarg->callback(uarg, zerocopy);
1456 		}
1457 
1458 		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1459 	}
1460 }
1461 
1462 /* Abort a zerocopy operation and revert zckey on error in send syscall */
1463 static inline void skb_zcopy_abort(struct sk_buff *skb)
1464 {
1465 	struct ubuf_info *uarg = skb_zcopy(skb);
1466 
1467 	if (uarg) {
1468 		sock_zerocopy_put_abort(uarg, false);
1469 		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1470 	}
1471 }
1472 
1473 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1474 {
1475 	skb->next = NULL;
1476 }
1477 
1478 static inline void skb_list_del_init(struct sk_buff *skb)
1479 {
1480 	__list_del_entry(&skb->list);
1481 	skb_mark_not_on_list(skb);
1482 }
1483 
1484 /**
1485  *	skb_queue_empty - check if a queue is empty
1486  *	@list: queue head
1487  *
1488  *	Returns true if the queue is empty, false otherwise.
1489  */
1490 static inline int skb_queue_empty(const struct sk_buff_head *list)
1491 {
1492 	return list->next == (const struct sk_buff *) list;
1493 }
1494 
1495 /**
1496  *	skb_queue_is_last - check if skb is the last entry in the queue
1497  *	@list: queue head
1498  *	@skb: buffer
1499  *
1500  *	Returns true if @skb is the last buffer on the list.
1501  */
1502 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1503 				     const struct sk_buff *skb)
1504 {
1505 	return skb->next == (const struct sk_buff *) list;
1506 }
1507 
1508 /**
1509  *	skb_queue_is_first - check if skb is the first entry in the queue
1510  *	@list: queue head
1511  *	@skb: buffer
1512  *
1513  *	Returns true if @skb is the first buffer on the list.
1514  */
1515 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1516 				      const struct sk_buff *skb)
1517 {
1518 	return skb->prev == (const struct sk_buff *) list;
1519 }
1520 
1521 /**
1522  *	skb_queue_next - return the next packet in the queue
1523  *	@list: queue head
1524  *	@skb: current buffer
1525  *
1526  *	Return the next packet in @list after @skb.  It is only valid to
1527  *	call this if skb_queue_is_last() evaluates to false.
1528  */
1529 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1530 					     const struct sk_buff *skb)
1531 {
1532 	/* This BUG_ON may seem severe, but if we just return then we
1533 	 * are going to dereference garbage.
1534 	 */
1535 	BUG_ON(skb_queue_is_last(list, skb));
1536 	return skb->next;
1537 }
1538 
1539 /**
1540  *	skb_queue_prev - return the prev packet in the queue
1541  *	@list: queue head
1542  *	@skb: current buffer
1543  *
1544  *	Return the prev packet in @list before @skb.  It is only valid to
1545  *	call this if skb_queue_is_first() evaluates to false.
1546  */
1547 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1548 					     const struct sk_buff *skb)
1549 {
1550 	/* This BUG_ON may seem severe, but if we just return then we
1551 	 * are going to dereference garbage.
1552 	 */
1553 	BUG_ON(skb_queue_is_first(list, skb));
1554 	return skb->prev;
1555 }
1556 
1557 /**
1558  *	skb_get - reference buffer
1559  *	@skb: buffer to reference
1560  *
1561  *	Makes another reference to a socket buffer and returns a pointer
1562  *	to the buffer.
1563  */
1564 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1565 {
1566 	refcount_inc(&skb->users);
1567 	return skb;
1568 }
1569 
1570 /*
1571  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1572  */
1573 
1574 /**
1575  *	skb_cloned - is the buffer a clone
1576  *	@skb: buffer to check
1577  *
1578  *	Returns true if the buffer was generated with skb_clone() and is
1579  *	one of multiple shared copies of the buffer. Cloned buffers are
1580  *	shared data so must not be written to under normal circumstances.
1581  */
1582 static inline int skb_cloned(const struct sk_buff *skb)
1583 {
1584 	return skb->cloned &&
1585 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1586 }
1587 
1588 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1589 {
1590 	might_sleep_if(gfpflags_allow_blocking(pri));
1591 
1592 	if (skb_cloned(skb))
1593 		return pskb_expand_head(skb, 0, 0, pri);
1594 
1595 	return 0;
1596 }
1597 
1598 /**
1599  *	skb_header_cloned - is the header a clone
1600  *	@skb: buffer to check
1601  *
1602  *	Returns true if modifying the header part of the buffer requires
1603  *	the data to be copied.
1604  */
1605 static inline int skb_header_cloned(const struct sk_buff *skb)
1606 {
1607 	int dataref;
1608 
1609 	if (!skb->cloned)
1610 		return 0;
1611 
1612 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1613 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1614 	return dataref != 1;
1615 }
1616 
1617 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1618 {
1619 	might_sleep_if(gfpflags_allow_blocking(pri));
1620 
1621 	if (skb_header_cloned(skb))
1622 		return pskb_expand_head(skb, 0, 0, pri);
1623 
1624 	return 0;
1625 }
1626 
1627 /**
1628  *	__skb_header_release - release reference to header
1629  *	@skb: buffer to operate on
1630  */
1631 static inline void __skb_header_release(struct sk_buff *skb)
1632 {
1633 	skb->nohdr = 1;
1634 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1635 }
1636 
1637 
1638 /**
1639  *	skb_shared - is the buffer shared
1640  *	@skb: buffer to check
1641  *
1642  *	Returns true if more than one person has a reference to this
1643  *	buffer.
1644  */
1645 static inline int skb_shared(const struct sk_buff *skb)
1646 {
1647 	return refcount_read(&skb->users) != 1;
1648 }
1649 
1650 /**
1651  *	skb_share_check - check if buffer is shared and if so clone it
1652  *	@skb: buffer to check
1653  *	@pri: priority for memory allocation
1654  *
1655  *	If the buffer is shared the buffer is cloned and the old copy
1656  *	drops a reference. A new clone with a single reference is returned.
1657  *	If the buffer is not shared the original buffer is returned. When
1658  *	being called from interrupt status or with spinlocks held pri must
1659  *	be GFP_ATOMIC.
1660  *
1661  *	NULL is returned on a memory allocation failure.
1662  */
1663 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1664 {
1665 	might_sleep_if(gfpflags_allow_blocking(pri));
1666 	if (skb_shared(skb)) {
1667 		struct sk_buff *nskb = skb_clone(skb, pri);
1668 
1669 		if (likely(nskb))
1670 			consume_skb(skb);
1671 		else
1672 			kfree_skb(skb);
1673 		skb = nskb;
1674 	}
1675 	return skb;
1676 }
1677 
1678 /*
1679  *	Copy shared buffers into a new sk_buff. We effectively do COW on
1680  *	packets to handle cases where we have a local reader and forward
1681  *	and a couple of other messy ones. The normal one is tcpdumping
1682  *	a packet thats being forwarded.
1683  */
1684 
1685 /**
1686  *	skb_unshare - make a copy of a shared buffer
1687  *	@skb: buffer to check
1688  *	@pri: priority for memory allocation
1689  *
1690  *	If the socket buffer is a clone then this function creates a new
1691  *	copy of the data, drops a reference count on the old copy and returns
1692  *	the new copy with the reference count at 1. If the buffer is not a clone
1693  *	the original buffer is returned. When called with a spinlock held or
1694  *	from interrupt state @pri must be %GFP_ATOMIC
1695  *
1696  *	%NULL is returned on a memory allocation failure.
1697  */
1698 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1699 					  gfp_t pri)
1700 {
1701 	might_sleep_if(gfpflags_allow_blocking(pri));
1702 	if (skb_cloned(skb)) {
1703 		struct sk_buff *nskb = skb_copy(skb, pri);
1704 
1705 		/* Free our shared copy */
1706 		if (likely(nskb))
1707 			consume_skb(skb);
1708 		else
1709 			kfree_skb(skb);
1710 		skb = nskb;
1711 	}
1712 	return skb;
1713 }
1714 
1715 /**
1716  *	skb_peek - peek at the head of an &sk_buff_head
1717  *	@list_: list to peek at
1718  *
1719  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1720  *	be careful with this one. A peek leaves the buffer on the
1721  *	list and someone else may run off with it. You must hold
1722  *	the appropriate locks or have a private queue to do this.
1723  *
1724  *	Returns %NULL for an empty list or a pointer to the head element.
1725  *	The reference count is not incremented and the reference is therefore
1726  *	volatile. Use with caution.
1727  */
1728 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1729 {
1730 	struct sk_buff *skb = list_->next;
1731 
1732 	if (skb == (struct sk_buff *)list_)
1733 		skb = NULL;
1734 	return skb;
1735 }
1736 
1737 /**
1738  *	__skb_peek - peek at the head of a non-empty &sk_buff_head
1739  *	@list_: list to peek at
1740  *
1741  *	Like skb_peek(), but the caller knows that the list is not empty.
1742  */
1743 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
1744 {
1745 	return list_->next;
1746 }
1747 
1748 /**
1749  *	skb_peek_next - peek skb following the given one from a queue
1750  *	@skb: skb to start from
1751  *	@list_: list to peek at
1752  *
1753  *	Returns %NULL when the end of the list is met or a pointer to the
1754  *	next element. The reference count is not incremented and the
1755  *	reference is therefore volatile. Use with caution.
1756  */
1757 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1758 		const struct sk_buff_head *list_)
1759 {
1760 	struct sk_buff *next = skb->next;
1761 
1762 	if (next == (struct sk_buff *)list_)
1763 		next = NULL;
1764 	return next;
1765 }
1766 
1767 /**
1768  *	skb_peek_tail - peek at the tail of an &sk_buff_head
1769  *	@list_: list to peek at
1770  *
1771  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1772  *	be careful with this one. A peek leaves the buffer on the
1773  *	list and someone else may run off with it. You must hold
1774  *	the appropriate locks or have a private queue to do this.
1775  *
1776  *	Returns %NULL for an empty list or a pointer to the tail element.
1777  *	The reference count is not incremented and the reference is therefore
1778  *	volatile. Use with caution.
1779  */
1780 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1781 {
1782 	struct sk_buff *skb = list_->prev;
1783 
1784 	if (skb == (struct sk_buff *)list_)
1785 		skb = NULL;
1786 	return skb;
1787 
1788 }
1789 
1790 /**
1791  *	skb_queue_len	- get queue length
1792  *	@list_: list to measure
1793  *
1794  *	Return the length of an &sk_buff queue.
1795  */
1796 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1797 {
1798 	return list_->qlen;
1799 }
1800 
1801 /**
1802  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1803  *	@list: queue to initialize
1804  *
1805  *	This initializes only the list and queue length aspects of
1806  *	an sk_buff_head object.  This allows to initialize the list
1807  *	aspects of an sk_buff_head without reinitializing things like
1808  *	the spinlock.  It can also be used for on-stack sk_buff_head
1809  *	objects where the spinlock is known to not be used.
1810  */
1811 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1812 {
1813 	list->prev = list->next = (struct sk_buff *)list;
1814 	list->qlen = 0;
1815 }
1816 
1817 /*
1818  * This function creates a split out lock class for each invocation;
1819  * this is needed for now since a whole lot of users of the skb-queue
1820  * infrastructure in drivers have different locking usage (in hardirq)
1821  * than the networking core (in softirq only). In the long run either the
1822  * network layer or drivers should need annotation to consolidate the
1823  * main types of usage into 3 classes.
1824  */
1825 static inline void skb_queue_head_init(struct sk_buff_head *list)
1826 {
1827 	spin_lock_init(&list->lock);
1828 	__skb_queue_head_init(list);
1829 }
1830 
1831 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1832 		struct lock_class_key *class)
1833 {
1834 	skb_queue_head_init(list);
1835 	lockdep_set_class(&list->lock, class);
1836 }
1837 
1838 /*
1839  *	Insert an sk_buff on a list.
1840  *
1841  *	The "__skb_xxxx()" functions are the non-atomic ones that
1842  *	can only be called with interrupts disabled.
1843  */
1844 static inline void __skb_insert(struct sk_buff *newsk,
1845 				struct sk_buff *prev, struct sk_buff *next,
1846 				struct sk_buff_head *list)
1847 {
1848 	newsk->next = next;
1849 	newsk->prev = prev;
1850 	next->prev  = prev->next = newsk;
1851 	list->qlen++;
1852 }
1853 
1854 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1855 				      struct sk_buff *prev,
1856 				      struct sk_buff *next)
1857 {
1858 	struct sk_buff *first = list->next;
1859 	struct sk_buff *last = list->prev;
1860 
1861 	first->prev = prev;
1862 	prev->next = first;
1863 
1864 	last->next = next;
1865 	next->prev = last;
1866 }
1867 
1868 /**
1869  *	skb_queue_splice - join two skb lists, this is designed for stacks
1870  *	@list: the new list to add
1871  *	@head: the place to add it in the first list
1872  */
1873 static inline void skb_queue_splice(const struct sk_buff_head *list,
1874 				    struct sk_buff_head *head)
1875 {
1876 	if (!skb_queue_empty(list)) {
1877 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1878 		head->qlen += list->qlen;
1879 	}
1880 }
1881 
1882 /**
1883  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1884  *	@list: the new list to add
1885  *	@head: the place to add it in the first list
1886  *
1887  *	The list at @list is reinitialised
1888  */
1889 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1890 					 struct sk_buff_head *head)
1891 {
1892 	if (!skb_queue_empty(list)) {
1893 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1894 		head->qlen += list->qlen;
1895 		__skb_queue_head_init(list);
1896 	}
1897 }
1898 
1899 /**
1900  *	skb_queue_splice_tail - join two skb lists, each list being a queue
1901  *	@list: the new list to add
1902  *	@head: the place to add it in the first list
1903  */
1904 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1905 					 struct sk_buff_head *head)
1906 {
1907 	if (!skb_queue_empty(list)) {
1908 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1909 		head->qlen += list->qlen;
1910 	}
1911 }
1912 
1913 /**
1914  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1915  *	@list: the new list to add
1916  *	@head: the place to add it in the first list
1917  *
1918  *	Each of the lists is a queue.
1919  *	The list at @list is reinitialised
1920  */
1921 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1922 					      struct sk_buff_head *head)
1923 {
1924 	if (!skb_queue_empty(list)) {
1925 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1926 		head->qlen += list->qlen;
1927 		__skb_queue_head_init(list);
1928 	}
1929 }
1930 
1931 /**
1932  *	__skb_queue_after - queue a buffer at the list head
1933  *	@list: list to use
1934  *	@prev: place after this buffer
1935  *	@newsk: buffer to queue
1936  *
1937  *	Queue a buffer int the middle of a list. This function takes no locks
1938  *	and you must therefore hold required locks before calling it.
1939  *
1940  *	A buffer cannot be placed on two lists at the same time.
1941  */
1942 static inline void __skb_queue_after(struct sk_buff_head *list,
1943 				     struct sk_buff *prev,
1944 				     struct sk_buff *newsk)
1945 {
1946 	__skb_insert(newsk, prev, prev->next, list);
1947 }
1948 
1949 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1950 		struct sk_buff_head *list);
1951 
1952 static inline void __skb_queue_before(struct sk_buff_head *list,
1953 				      struct sk_buff *next,
1954 				      struct sk_buff *newsk)
1955 {
1956 	__skb_insert(newsk, next->prev, next, list);
1957 }
1958 
1959 /**
1960  *	__skb_queue_head - queue a buffer at the list head
1961  *	@list: list to use
1962  *	@newsk: buffer to queue
1963  *
1964  *	Queue a buffer at the start of a list. This function takes no locks
1965  *	and you must therefore hold required locks before calling it.
1966  *
1967  *	A buffer cannot be placed on two lists at the same time.
1968  */
1969 static inline void __skb_queue_head(struct sk_buff_head *list,
1970 				    struct sk_buff *newsk)
1971 {
1972 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
1973 }
1974 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1975 
1976 /**
1977  *	__skb_queue_tail - queue a buffer at the list tail
1978  *	@list: list to use
1979  *	@newsk: buffer to queue
1980  *
1981  *	Queue a buffer at the end of a list. This function takes no locks
1982  *	and you must therefore hold required locks before calling it.
1983  *
1984  *	A buffer cannot be placed on two lists at the same time.
1985  */
1986 static inline void __skb_queue_tail(struct sk_buff_head *list,
1987 				   struct sk_buff *newsk)
1988 {
1989 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
1990 }
1991 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1992 
1993 /*
1994  * remove sk_buff from list. _Must_ be called atomically, and with
1995  * the list known..
1996  */
1997 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1998 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1999 {
2000 	struct sk_buff *next, *prev;
2001 
2002 	list->qlen--;
2003 	next	   = skb->next;
2004 	prev	   = skb->prev;
2005 	skb->next  = skb->prev = NULL;
2006 	next->prev = prev;
2007 	prev->next = next;
2008 }
2009 
2010 /**
2011  *	__skb_dequeue - remove from the head of the queue
2012  *	@list: list to dequeue from
2013  *
2014  *	Remove the head of the list. This function does not take any locks
2015  *	so must be used with appropriate locks held only. The head item is
2016  *	returned or %NULL if the list is empty.
2017  */
2018 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2019 {
2020 	struct sk_buff *skb = skb_peek(list);
2021 	if (skb)
2022 		__skb_unlink(skb, list);
2023 	return skb;
2024 }
2025 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2026 
2027 /**
2028  *	__skb_dequeue_tail - remove from the tail of the queue
2029  *	@list: list to dequeue from
2030  *
2031  *	Remove the tail of the list. This function does not take any locks
2032  *	so must be used with appropriate locks held only. The tail item is
2033  *	returned or %NULL if the list is empty.
2034  */
2035 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2036 {
2037 	struct sk_buff *skb = skb_peek_tail(list);
2038 	if (skb)
2039 		__skb_unlink(skb, list);
2040 	return skb;
2041 }
2042 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2043 
2044 
2045 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2046 {
2047 	return skb->data_len;
2048 }
2049 
2050 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2051 {
2052 	return skb->len - skb->data_len;
2053 }
2054 
2055 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2056 {
2057 	unsigned int i, len = 0;
2058 
2059 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2060 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2061 	return len;
2062 }
2063 
2064 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2065 {
2066 	return skb_headlen(skb) + __skb_pagelen(skb);
2067 }
2068 
2069 /**
2070  * __skb_fill_page_desc - initialise a paged fragment in an skb
2071  * @skb: buffer containing fragment to be initialised
2072  * @i: paged fragment index to initialise
2073  * @page: the page to use for this fragment
2074  * @off: the offset to the data with @page
2075  * @size: the length of the data
2076  *
2077  * Initialises the @i'th fragment of @skb to point to &size bytes at
2078  * offset @off within @page.
2079  *
2080  * Does not take any additional reference on the fragment.
2081  */
2082 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2083 					struct page *page, int off, int size)
2084 {
2085 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2086 
2087 	/*
2088 	 * Propagate page pfmemalloc to the skb if we can. The problem is
2089 	 * that not all callers have unique ownership of the page but rely
2090 	 * on page_is_pfmemalloc doing the right thing(tm).
2091 	 */
2092 	frag->page.p		  = page;
2093 	frag->page_offset	  = off;
2094 	skb_frag_size_set(frag, size);
2095 
2096 	page = compound_head(page);
2097 	if (page_is_pfmemalloc(page))
2098 		skb->pfmemalloc	= true;
2099 }
2100 
2101 /**
2102  * skb_fill_page_desc - initialise a paged fragment in an skb
2103  * @skb: buffer containing fragment to be initialised
2104  * @i: paged fragment index to initialise
2105  * @page: the page to use for this fragment
2106  * @off: the offset to the data with @page
2107  * @size: the length of the data
2108  *
2109  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2110  * @skb to point to @size bytes at offset @off within @page. In
2111  * addition updates @skb such that @i is the last fragment.
2112  *
2113  * Does not take any additional reference on the fragment.
2114  */
2115 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2116 				      struct page *page, int off, int size)
2117 {
2118 	__skb_fill_page_desc(skb, i, page, off, size);
2119 	skb_shinfo(skb)->nr_frags = i + 1;
2120 }
2121 
2122 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2123 		     int size, unsigned int truesize);
2124 
2125 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2126 			  unsigned int truesize);
2127 
2128 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2129 
2130 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2131 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2132 {
2133 	return skb->head + skb->tail;
2134 }
2135 
2136 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2137 {
2138 	skb->tail = skb->data - skb->head;
2139 }
2140 
2141 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2142 {
2143 	skb_reset_tail_pointer(skb);
2144 	skb->tail += offset;
2145 }
2146 
2147 #else /* NET_SKBUFF_DATA_USES_OFFSET */
2148 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2149 {
2150 	return skb->tail;
2151 }
2152 
2153 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2154 {
2155 	skb->tail = skb->data;
2156 }
2157 
2158 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2159 {
2160 	skb->tail = skb->data + offset;
2161 }
2162 
2163 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2164 
2165 /*
2166  *	Add data to an sk_buff
2167  */
2168 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2169 void *skb_put(struct sk_buff *skb, unsigned int len);
2170 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2171 {
2172 	void *tmp = skb_tail_pointer(skb);
2173 	SKB_LINEAR_ASSERT(skb);
2174 	skb->tail += len;
2175 	skb->len  += len;
2176 	return tmp;
2177 }
2178 
2179 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2180 {
2181 	void *tmp = __skb_put(skb, len);
2182 
2183 	memset(tmp, 0, len);
2184 	return tmp;
2185 }
2186 
2187 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2188 				   unsigned int len)
2189 {
2190 	void *tmp = __skb_put(skb, len);
2191 
2192 	memcpy(tmp, data, len);
2193 	return tmp;
2194 }
2195 
2196 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2197 {
2198 	*(u8 *)__skb_put(skb, 1) = val;
2199 }
2200 
2201 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2202 {
2203 	void *tmp = skb_put(skb, len);
2204 
2205 	memset(tmp, 0, len);
2206 
2207 	return tmp;
2208 }
2209 
2210 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2211 				 unsigned int len)
2212 {
2213 	void *tmp = skb_put(skb, len);
2214 
2215 	memcpy(tmp, data, len);
2216 
2217 	return tmp;
2218 }
2219 
2220 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2221 {
2222 	*(u8 *)skb_put(skb, 1) = val;
2223 }
2224 
2225 void *skb_push(struct sk_buff *skb, unsigned int len);
2226 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2227 {
2228 	skb->data -= len;
2229 	skb->len  += len;
2230 	return skb->data;
2231 }
2232 
2233 void *skb_pull(struct sk_buff *skb, unsigned int len);
2234 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2235 {
2236 	skb->len -= len;
2237 	BUG_ON(skb->len < skb->data_len);
2238 	return skb->data += len;
2239 }
2240 
2241 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2242 {
2243 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2244 }
2245 
2246 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2247 
2248 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2249 {
2250 	if (len > skb_headlen(skb) &&
2251 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2252 		return NULL;
2253 	skb->len -= len;
2254 	return skb->data += len;
2255 }
2256 
2257 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2258 {
2259 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2260 }
2261 
2262 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
2263 {
2264 	if (likely(len <= skb_headlen(skb)))
2265 		return 1;
2266 	if (unlikely(len > skb->len))
2267 		return 0;
2268 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2269 }
2270 
2271 void skb_condense(struct sk_buff *skb);
2272 
2273 /**
2274  *	skb_headroom - bytes at buffer head
2275  *	@skb: buffer to check
2276  *
2277  *	Return the number of bytes of free space at the head of an &sk_buff.
2278  */
2279 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2280 {
2281 	return skb->data - skb->head;
2282 }
2283 
2284 /**
2285  *	skb_tailroom - bytes at buffer end
2286  *	@skb: buffer to check
2287  *
2288  *	Return the number of bytes of free space at the tail of an sk_buff
2289  */
2290 static inline int skb_tailroom(const struct sk_buff *skb)
2291 {
2292 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2293 }
2294 
2295 /**
2296  *	skb_availroom - bytes at buffer end
2297  *	@skb: buffer to check
2298  *
2299  *	Return the number of bytes of free space at the tail of an sk_buff
2300  *	allocated by sk_stream_alloc()
2301  */
2302 static inline int skb_availroom(const struct sk_buff *skb)
2303 {
2304 	if (skb_is_nonlinear(skb))
2305 		return 0;
2306 
2307 	return skb->end - skb->tail - skb->reserved_tailroom;
2308 }
2309 
2310 /**
2311  *	skb_reserve - adjust headroom
2312  *	@skb: buffer to alter
2313  *	@len: bytes to move
2314  *
2315  *	Increase the headroom of an empty &sk_buff by reducing the tail
2316  *	room. This is only allowed for an empty buffer.
2317  */
2318 static inline void skb_reserve(struct sk_buff *skb, int len)
2319 {
2320 	skb->data += len;
2321 	skb->tail += len;
2322 }
2323 
2324 /**
2325  *	skb_tailroom_reserve - adjust reserved_tailroom
2326  *	@skb: buffer to alter
2327  *	@mtu: maximum amount of headlen permitted
2328  *	@needed_tailroom: minimum amount of reserved_tailroom
2329  *
2330  *	Set reserved_tailroom so that headlen can be as large as possible but
2331  *	not larger than mtu and tailroom cannot be smaller than
2332  *	needed_tailroom.
2333  *	The required headroom should already have been reserved before using
2334  *	this function.
2335  */
2336 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2337 					unsigned int needed_tailroom)
2338 {
2339 	SKB_LINEAR_ASSERT(skb);
2340 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2341 		/* use at most mtu */
2342 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2343 	else
2344 		/* use up to all available space */
2345 		skb->reserved_tailroom = needed_tailroom;
2346 }
2347 
2348 #define ENCAP_TYPE_ETHER	0
2349 #define ENCAP_TYPE_IPPROTO	1
2350 
2351 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2352 					  __be16 protocol)
2353 {
2354 	skb->inner_protocol = protocol;
2355 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2356 }
2357 
2358 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2359 					 __u8 ipproto)
2360 {
2361 	skb->inner_ipproto = ipproto;
2362 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2363 }
2364 
2365 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2366 {
2367 	skb->inner_mac_header = skb->mac_header;
2368 	skb->inner_network_header = skb->network_header;
2369 	skb->inner_transport_header = skb->transport_header;
2370 }
2371 
2372 static inline void skb_reset_mac_len(struct sk_buff *skb)
2373 {
2374 	skb->mac_len = skb->network_header - skb->mac_header;
2375 }
2376 
2377 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2378 							*skb)
2379 {
2380 	return skb->head + skb->inner_transport_header;
2381 }
2382 
2383 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2384 {
2385 	return skb_inner_transport_header(skb) - skb->data;
2386 }
2387 
2388 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2389 {
2390 	skb->inner_transport_header = skb->data - skb->head;
2391 }
2392 
2393 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2394 						   const int offset)
2395 {
2396 	skb_reset_inner_transport_header(skb);
2397 	skb->inner_transport_header += offset;
2398 }
2399 
2400 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2401 {
2402 	return skb->head + skb->inner_network_header;
2403 }
2404 
2405 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2406 {
2407 	skb->inner_network_header = skb->data - skb->head;
2408 }
2409 
2410 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2411 						const int offset)
2412 {
2413 	skb_reset_inner_network_header(skb);
2414 	skb->inner_network_header += offset;
2415 }
2416 
2417 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2418 {
2419 	return skb->head + skb->inner_mac_header;
2420 }
2421 
2422 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2423 {
2424 	skb->inner_mac_header = skb->data - skb->head;
2425 }
2426 
2427 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2428 					    const int offset)
2429 {
2430 	skb_reset_inner_mac_header(skb);
2431 	skb->inner_mac_header += offset;
2432 }
2433 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2434 {
2435 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2436 }
2437 
2438 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2439 {
2440 	return skb->head + skb->transport_header;
2441 }
2442 
2443 static inline void skb_reset_transport_header(struct sk_buff *skb)
2444 {
2445 	skb->transport_header = skb->data - skb->head;
2446 }
2447 
2448 static inline void skb_set_transport_header(struct sk_buff *skb,
2449 					    const int offset)
2450 {
2451 	skb_reset_transport_header(skb);
2452 	skb->transport_header += offset;
2453 }
2454 
2455 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2456 {
2457 	return skb->head + skb->network_header;
2458 }
2459 
2460 static inline void skb_reset_network_header(struct sk_buff *skb)
2461 {
2462 	skb->network_header = skb->data - skb->head;
2463 }
2464 
2465 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2466 {
2467 	skb_reset_network_header(skb);
2468 	skb->network_header += offset;
2469 }
2470 
2471 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2472 {
2473 	return skb->head + skb->mac_header;
2474 }
2475 
2476 static inline int skb_mac_offset(const struct sk_buff *skb)
2477 {
2478 	return skb_mac_header(skb) - skb->data;
2479 }
2480 
2481 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2482 {
2483 	return skb->network_header - skb->mac_header;
2484 }
2485 
2486 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2487 {
2488 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2489 }
2490 
2491 static inline void skb_reset_mac_header(struct sk_buff *skb)
2492 {
2493 	skb->mac_header = skb->data - skb->head;
2494 }
2495 
2496 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2497 {
2498 	skb_reset_mac_header(skb);
2499 	skb->mac_header += offset;
2500 }
2501 
2502 static inline void skb_pop_mac_header(struct sk_buff *skb)
2503 {
2504 	skb->mac_header = skb->network_header;
2505 }
2506 
2507 static inline void skb_probe_transport_header(struct sk_buff *skb)
2508 {
2509 	struct flow_keys_basic keys;
2510 
2511 	if (skb_transport_header_was_set(skb))
2512 		return;
2513 
2514 	if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2515 					     NULL, 0, 0, 0, 0))
2516 		skb_set_transport_header(skb, keys.control.thoff);
2517 }
2518 
2519 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2520 {
2521 	if (skb_mac_header_was_set(skb)) {
2522 		const unsigned char *old_mac = skb_mac_header(skb);
2523 
2524 		skb_set_mac_header(skb, -skb->mac_len);
2525 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2526 	}
2527 }
2528 
2529 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2530 {
2531 	return skb->csum_start - skb_headroom(skb);
2532 }
2533 
2534 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2535 {
2536 	return skb->head + skb->csum_start;
2537 }
2538 
2539 static inline int skb_transport_offset(const struct sk_buff *skb)
2540 {
2541 	return skb_transport_header(skb) - skb->data;
2542 }
2543 
2544 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2545 {
2546 	return skb->transport_header - skb->network_header;
2547 }
2548 
2549 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2550 {
2551 	return skb->inner_transport_header - skb->inner_network_header;
2552 }
2553 
2554 static inline int skb_network_offset(const struct sk_buff *skb)
2555 {
2556 	return skb_network_header(skb) - skb->data;
2557 }
2558 
2559 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2560 {
2561 	return skb_inner_network_header(skb) - skb->data;
2562 }
2563 
2564 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2565 {
2566 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
2567 }
2568 
2569 /*
2570  * CPUs often take a performance hit when accessing unaligned memory
2571  * locations. The actual performance hit varies, it can be small if the
2572  * hardware handles it or large if we have to take an exception and fix it
2573  * in software.
2574  *
2575  * Since an ethernet header is 14 bytes network drivers often end up with
2576  * the IP header at an unaligned offset. The IP header can be aligned by
2577  * shifting the start of the packet by 2 bytes. Drivers should do this
2578  * with:
2579  *
2580  * skb_reserve(skb, NET_IP_ALIGN);
2581  *
2582  * The downside to this alignment of the IP header is that the DMA is now
2583  * unaligned. On some architectures the cost of an unaligned DMA is high
2584  * and this cost outweighs the gains made by aligning the IP header.
2585  *
2586  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2587  * to be overridden.
2588  */
2589 #ifndef NET_IP_ALIGN
2590 #define NET_IP_ALIGN	2
2591 #endif
2592 
2593 /*
2594  * The networking layer reserves some headroom in skb data (via
2595  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2596  * the header has to grow. In the default case, if the header has to grow
2597  * 32 bytes or less we avoid the reallocation.
2598  *
2599  * Unfortunately this headroom changes the DMA alignment of the resulting
2600  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2601  * on some architectures. An architecture can override this value,
2602  * perhaps setting it to a cacheline in size (since that will maintain
2603  * cacheline alignment of the DMA). It must be a power of 2.
2604  *
2605  * Various parts of the networking layer expect at least 32 bytes of
2606  * headroom, you should not reduce this.
2607  *
2608  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2609  * to reduce average number of cache lines per packet.
2610  * get_rps_cpus() for example only access one 64 bytes aligned block :
2611  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2612  */
2613 #ifndef NET_SKB_PAD
2614 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2615 #endif
2616 
2617 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2618 
2619 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2620 {
2621 	if (WARN_ON(skb_is_nonlinear(skb)))
2622 		return;
2623 	skb->len = len;
2624 	skb_set_tail_pointer(skb, len);
2625 }
2626 
2627 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2628 {
2629 	__skb_set_length(skb, len);
2630 }
2631 
2632 void skb_trim(struct sk_buff *skb, unsigned int len);
2633 
2634 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2635 {
2636 	if (skb->data_len)
2637 		return ___pskb_trim(skb, len);
2638 	__skb_trim(skb, len);
2639 	return 0;
2640 }
2641 
2642 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2643 {
2644 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2645 }
2646 
2647 /**
2648  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2649  *	@skb: buffer to alter
2650  *	@len: new length
2651  *
2652  *	This is identical to pskb_trim except that the caller knows that
2653  *	the skb is not cloned so we should never get an error due to out-
2654  *	of-memory.
2655  */
2656 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2657 {
2658 	int err = pskb_trim(skb, len);
2659 	BUG_ON(err);
2660 }
2661 
2662 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2663 {
2664 	unsigned int diff = len - skb->len;
2665 
2666 	if (skb_tailroom(skb) < diff) {
2667 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2668 					   GFP_ATOMIC);
2669 		if (ret)
2670 			return ret;
2671 	}
2672 	__skb_set_length(skb, len);
2673 	return 0;
2674 }
2675 
2676 /**
2677  *	skb_orphan - orphan a buffer
2678  *	@skb: buffer to orphan
2679  *
2680  *	If a buffer currently has an owner then we call the owner's
2681  *	destructor function and make the @skb unowned. The buffer continues
2682  *	to exist but is no longer charged to its former owner.
2683  */
2684 static inline void skb_orphan(struct sk_buff *skb)
2685 {
2686 	if (skb->destructor) {
2687 		skb->destructor(skb);
2688 		skb->destructor = NULL;
2689 		skb->sk		= NULL;
2690 	} else {
2691 		BUG_ON(skb->sk);
2692 	}
2693 }
2694 
2695 /**
2696  *	skb_orphan_frags - orphan the frags contained in a buffer
2697  *	@skb: buffer to orphan frags from
2698  *	@gfp_mask: allocation mask for replacement pages
2699  *
2700  *	For each frag in the SKB which needs a destructor (i.e. has an
2701  *	owner) create a copy of that frag and release the original
2702  *	page by calling the destructor.
2703  */
2704 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2705 {
2706 	if (likely(!skb_zcopy(skb)))
2707 		return 0;
2708 	if (!skb_zcopy_is_nouarg(skb) &&
2709 	    skb_uarg(skb)->callback == sock_zerocopy_callback)
2710 		return 0;
2711 	return skb_copy_ubufs(skb, gfp_mask);
2712 }
2713 
2714 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
2715 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2716 {
2717 	if (likely(!skb_zcopy(skb)))
2718 		return 0;
2719 	return skb_copy_ubufs(skb, gfp_mask);
2720 }
2721 
2722 /**
2723  *	__skb_queue_purge - empty a list
2724  *	@list: list to empty
2725  *
2726  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2727  *	the list and one reference dropped. This function does not take the
2728  *	list lock and the caller must hold the relevant locks to use it.
2729  */
2730 static inline void __skb_queue_purge(struct sk_buff_head *list)
2731 {
2732 	struct sk_buff *skb;
2733 	while ((skb = __skb_dequeue(list)) != NULL)
2734 		kfree_skb(skb);
2735 }
2736 void skb_queue_purge(struct sk_buff_head *list);
2737 
2738 unsigned int skb_rbtree_purge(struct rb_root *root);
2739 
2740 void *netdev_alloc_frag(unsigned int fragsz);
2741 
2742 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2743 				   gfp_t gfp_mask);
2744 
2745 /**
2746  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
2747  *	@dev: network device to receive on
2748  *	@length: length to allocate
2749  *
2750  *	Allocate a new &sk_buff and assign it a usage count of one. The
2751  *	buffer has unspecified headroom built in. Users should allocate
2752  *	the headroom they think they need without accounting for the
2753  *	built in space. The built in space is used for optimisations.
2754  *
2755  *	%NULL is returned if there is no free memory. Although this function
2756  *	allocates memory it can be called from an interrupt.
2757  */
2758 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2759 					       unsigned int length)
2760 {
2761 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2762 }
2763 
2764 /* legacy helper around __netdev_alloc_skb() */
2765 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2766 					      gfp_t gfp_mask)
2767 {
2768 	return __netdev_alloc_skb(NULL, length, gfp_mask);
2769 }
2770 
2771 /* legacy helper around netdev_alloc_skb() */
2772 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2773 {
2774 	return netdev_alloc_skb(NULL, length);
2775 }
2776 
2777 
2778 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2779 		unsigned int length, gfp_t gfp)
2780 {
2781 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2782 
2783 	if (NET_IP_ALIGN && skb)
2784 		skb_reserve(skb, NET_IP_ALIGN);
2785 	return skb;
2786 }
2787 
2788 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2789 		unsigned int length)
2790 {
2791 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2792 }
2793 
2794 static inline void skb_free_frag(void *addr)
2795 {
2796 	page_frag_free(addr);
2797 }
2798 
2799 void *napi_alloc_frag(unsigned int fragsz);
2800 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2801 				 unsigned int length, gfp_t gfp_mask);
2802 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2803 					     unsigned int length)
2804 {
2805 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2806 }
2807 void napi_consume_skb(struct sk_buff *skb, int budget);
2808 
2809 void __kfree_skb_flush(void);
2810 void __kfree_skb_defer(struct sk_buff *skb);
2811 
2812 /**
2813  * __dev_alloc_pages - allocate page for network Rx
2814  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2815  * @order: size of the allocation
2816  *
2817  * Allocate a new page.
2818  *
2819  * %NULL is returned if there is no free memory.
2820 */
2821 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2822 					     unsigned int order)
2823 {
2824 	/* This piece of code contains several assumptions.
2825 	 * 1.  This is for device Rx, therefor a cold page is preferred.
2826 	 * 2.  The expectation is the user wants a compound page.
2827 	 * 3.  If requesting a order 0 page it will not be compound
2828 	 *     due to the check to see if order has a value in prep_new_page
2829 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2830 	 *     code in gfp_to_alloc_flags that should be enforcing this.
2831 	 */
2832 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
2833 
2834 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2835 }
2836 
2837 static inline struct page *dev_alloc_pages(unsigned int order)
2838 {
2839 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2840 }
2841 
2842 /**
2843  * __dev_alloc_page - allocate a page for network Rx
2844  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2845  *
2846  * Allocate a new page.
2847  *
2848  * %NULL is returned if there is no free memory.
2849  */
2850 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2851 {
2852 	return __dev_alloc_pages(gfp_mask, 0);
2853 }
2854 
2855 static inline struct page *dev_alloc_page(void)
2856 {
2857 	return dev_alloc_pages(0);
2858 }
2859 
2860 /**
2861  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2862  *	@page: The page that was allocated from skb_alloc_page
2863  *	@skb: The skb that may need pfmemalloc set
2864  */
2865 static inline void skb_propagate_pfmemalloc(struct page *page,
2866 					     struct sk_buff *skb)
2867 {
2868 	if (page_is_pfmemalloc(page))
2869 		skb->pfmemalloc = true;
2870 }
2871 
2872 /**
2873  * skb_frag_page - retrieve the page referred to by a paged fragment
2874  * @frag: the paged fragment
2875  *
2876  * Returns the &struct page associated with @frag.
2877  */
2878 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2879 {
2880 	return frag->page.p;
2881 }
2882 
2883 /**
2884  * __skb_frag_ref - take an addition reference on a paged fragment.
2885  * @frag: the paged fragment
2886  *
2887  * Takes an additional reference on the paged fragment @frag.
2888  */
2889 static inline void __skb_frag_ref(skb_frag_t *frag)
2890 {
2891 	get_page(skb_frag_page(frag));
2892 }
2893 
2894 /**
2895  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2896  * @skb: the buffer
2897  * @f: the fragment offset.
2898  *
2899  * Takes an additional reference on the @f'th paged fragment of @skb.
2900  */
2901 static inline void skb_frag_ref(struct sk_buff *skb, int f)
2902 {
2903 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2904 }
2905 
2906 /**
2907  * __skb_frag_unref - release a reference on a paged fragment.
2908  * @frag: the paged fragment
2909  *
2910  * Releases a reference on the paged fragment @frag.
2911  */
2912 static inline void __skb_frag_unref(skb_frag_t *frag)
2913 {
2914 	put_page(skb_frag_page(frag));
2915 }
2916 
2917 /**
2918  * skb_frag_unref - release a reference on a paged fragment of an skb.
2919  * @skb: the buffer
2920  * @f: the fragment offset
2921  *
2922  * Releases a reference on the @f'th paged fragment of @skb.
2923  */
2924 static inline void skb_frag_unref(struct sk_buff *skb, int f)
2925 {
2926 	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2927 }
2928 
2929 /**
2930  * skb_frag_address - gets the address of the data contained in a paged fragment
2931  * @frag: the paged fragment buffer
2932  *
2933  * Returns the address of the data within @frag. The page must already
2934  * be mapped.
2935  */
2936 static inline void *skb_frag_address(const skb_frag_t *frag)
2937 {
2938 	return page_address(skb_frag_page(frag)) + frag->page_offset;
2939 }
2940 
2941 /**
2942  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2943  * @frag: the paged fragment buffer
2944  *
2945  * Returns the address of the data within @frag. Checks that the page
2946  * is mapped and returns %NULL otherwise.
2947  */
2948 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2949 {
2950 	void *ptr = page_address(skb_frag_page(frag));
2951 	if (unlikely(!ptr))
2952 		return NULL;
2953 
2954 	return ptr + frag->page_offset;
2955 }
2956 
2957 /**
2958  * __skb_frag_set_page - sets the page contained in a paged fragment
2959  * @frag: the paged fragment
2960  * @page: the page to set
2961  *
2962  * Sets the fragment @frag to contain @page.
2963  */
2964 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2965 {
2966 	frag->page.p = page;
2967 }
2968 
2969 /**
2970  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2971  * @skb: the buffer
2972  * @f: the fragment offset
2973  * @page: the page to set
2974  *
2975  * Sets the @f'th fragment of @skb to contain @page.
2976  */
2977 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2978 				     struct page *page)
2979 {
2980 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2981 }
2982 
2983 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2984 
2985 /**
2986  * skb_frag_dma_map - maps a paged fragment via the DMA API
2987  * @dev: the device to map the fragment to
2988  * @frag: the paged fragment to map
2989  * @offset: the offset within the fragment (starting at the
2990  *          fragment's own offset)
2991  * @size: the number of bytes to map
2992  * @dir: the direction of the mapping (``PCI_DMA_*``)
2993  *
2994  * Maps the page associated with @frag to @device.
2995  */
2996 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2997 					  const skb_frag_t *frag,
2998 					  size_t offset, size_t size,
2999 					  enum dma_data_direction dir)
3000 {
3001 	return dma_map_page(dev, skb_frag_page(frag),
3002 			    frag->page_offset + offset, size, dir);
3003 }
3004 
3005 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3006 					gfp_t gfp_mask)
3007 {
3008 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3009 }
3010 
3011 
3012 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3013 						  gfp_t gfp_mask)
3014 {
3015 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3016 }
3017 
3018 
3019 /**
3020  *	skb_clone_writable - is the header of a clone writable
3021  *	@skb: buffer to check
3022  *	@len: length up to which to write
3023  *
3024  *	Returns true if modifying the header part of the cloned buffer
3025  *	does not requires the data to be copied.
3026  */
3027 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3028 {
3029 	return !skb_header_cloned(skb) &&
3030 	       skb_headroom(skb) + len <= skb->hdr_len;
3031 }
3032 
3033 static inline int skb_try_make_writable(struct sk_buff *skb,
3034 					unsigned int write_len)
3035 {
3036 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3037 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3038 }
3039 
3040 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3041 			    int cloned)
3042 {
3043 	int delta = 0;
3044 
3045 	if (headroom > skb_headroom(skb))
3046 		delta = headroom - skb_headroom(skb);
3047 
3048 	if (delta || cloned)
3049 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3050 					GFP_ATOMIC);
3051 	return 0;
3052 }
3053 
3054 /**
3055  *	skb_cow - copy header of skb when it is required
3056  *	@skb: buffer to cow
3057  *	@headroom: needed headroom
3058  *
3059  *	If the skb passed lacks sufficient headroom or its data part
3060  *	is shared, data is reallocated. If reallocation fails, an error
3061  *	is returned and original skb is not changed.
3062  *
3063  *	The result is skb with writable area skb->head...skb->tail
3064  *	and at least @headroom of space at head.
3065  */
3066 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3067 {
3068 	return __skb_cow(skb, headroom, skb_cloned(skb));
3069 }
3070 
3071 /**
3072  *	skb_cow_head - skb_cow but only making the head writable
3073  *	@skb: buffer to cow
3074  *	@headroom: needed headroom
3075  *
3076  *	This function is identical to skb_cow except that we replace the
3077  *	skb_cloned check by skb_header_cloned.  It should be used when
3078  *	you only need to push on some header and do not need to modify
3079  *	the data.
3080  */
3081 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3082 {
3083 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
3084 }
3085 
3086 /**
3087  *	skb_padto	- pad an skbuff up to a minimal size
3088  *	@skb: buffer to pad
3089  *	@len: minimal length
3090  *
3091  *	Pads up a buffer to ensure the trailing bytes exist and are
3092  *	blanked. If the buffer already contains sufficient data it
3093  *	is untouched. Otherwise it is extended. Returns zero on
3094  *	success. The skb is freed on error.
3095  */
3096 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3097 {
3098 	unsigned int size = skb->len;
3099 	if (likely(size >= len))
3100 		return 0;
3101 	return skb_pad(skb, len - size);
3102 }
3103 
3104 /**
3105  *	__skb_put_padto - increase size and pad an skbuff up to a minimal size
3106  *	@skb: buffer to pad
3107  *	@len: minimal length
3108  *	@free_on_error: free buffer on error
3109  *
3110  *	Pads up a buffer to ensure the trailing bytes exist and are
3111  *	blanked. If the buffer already contains sufficient data it
3112  *	is untouched. Otherwise it is extended. Returns zero on
3113  *	success. The skb is freed on error if @free_on_error is true.
3114  */
3115 static inline int __skb_put_padto(struct sk_buff *skb, unsigned int len,
3116 				  bool free_on_error)
3117 {
3118 	unsigned int size = skb->len;
3119 
3120 	if (unlikely(size < len)) {
3121 		len -= size;
3122 		if (__skb_pad(skb, len, free_on_error))
3123 			return -ENOMEM;
3124 		__skb_put(skb, len);
3125 	}
3126 	return 0;
3127 }
3128 
3129 /**
3130  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3131  *	@skb: buffer to pad
3132  *	@len: minimal length
3133  *
3134  *	Pads up a buffer to ensure the trailing bytes exist and are
3135  *	blanked. If the buffer already contains sufficient data it
3136  *	is untouched. Otherwise it is extended. Returns zero on
3137  *	success. The skb is freed on error.
3138  */
3139 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
3140 {
3141 	return __skb_put_padto(skb, len, true);
3142 }
3143 
3144 static inline int skb_add_data(struct sk_buff *skb,
3145 			       struct iov_iter *from, int copy)
3146 {
3147 	const int off = skb->len;
3148 
3149 	if (skb->ip_summed == CHECKSUM_NONE) {
3150 		__wsum csum = 0;
3151 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3152 					         &csum, from)) {
3153 			skb->csum = csum_block_add(skb->csum, csum, off);
3154 			return 0;
3155 		}
3156 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3157 		return 0;
3158 
3159 	__skb_trim(skb, off);
3160 	return -EFAULT;
3161 }
3162 
3163 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3164 				    const struct page *page, int off)
3165 {
3166 	if (skb_zcopy(skb))
3167 		return false;
3168 	if (i) {
3169 		const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
3170 
3171 		return page == skb_frag_page(frag) &&
3172 		       off == frag->page_offset + skb_frag_size(frag);
3173 	}
3174 	return false;
3175 }
3176 
3177 static inline int __skb_linearize(struct sk_buff *skb)
3178 {
3179 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3180 }
3181 
3182 /**
3183  *	skb_linearize - convert paged skb to linear one
3184  *	@skb: buffer to linarize
3185  *
3186  *	If there is no free memory -ENOMEM is returned, otherwise zero
3187  *	is returned and the old skb data released.
3188  */
3189 static inline int skb_linearize(struct sk_buff *skb)
3190 {
3191 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3192 }
3193 
3194 /**
3195  * skb_has_shared_frag - can any frag be overwritten
3196  * @skb: buffer to test
3197  *
3198  * Return true if the skb has at least one frag that might be modified
3199  * by an external entity (as in vmsplice()/sendfile())
3200  */
3201 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3202 {
3203 	return skb_is_nonlinear(skb) &&
3204 	       skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
3205 }
3206 
3207 /**
3208  *	skb_linearize_cow - make sure skb is linear and writable
3209  *	@skb: buffer to process
3210  *
3211  *	If there is no free memory -ENOMEM is returned, otherwise zero
3212  *	is returned and the old skb data released.
3213  */
3214 static inline int skb_linearize_cow(struct sk_buff *skb)
3215 {
3216 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3217 	       __skb_linearize(skb) : 0;
3218 }
3219 
3220 static __always_inline void
3221 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3222 		     unsigned int off)
3223 {
3224 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3225 		skb->csum = csum_block_sub(skb->csum,
3226 					   csum_partial(start, len, 0), off);
3227 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3228 		 skb_checksum_start_offset(skb) < 0)
3229 		skb->ip_summed = CHECKSUM_NONE;
3230 }
3231 
3232 /**
3233  *	skb_postpull_rcsum - update checksum for received skb after pull
3234  *	@skb: buffer to update
3235  *	@start: start of data before pull
3236  *	@len: length of data pulled
3237  *
3238  *	After doing a pull on a received packet, you need to call this to
3239  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3240  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3241  */
3242 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3243 				      const void *start, unsigned int len)
3244 {
3245 	__skb_postpull_rcsum(skb, start, len, 0);
3246 }
3247 
3248 static __always_inline void
3249 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3250 		     unsigned int off)
3251 {
3252 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3253 		skb->csum = csum_block_add(skb->csum,
3254 					   csum_partial(start, len, 0), off);
3255 }
3256 
3257 /**
3258  *	skb_postpush_rcsum - update checksum for received skb after push
3259  *	@skb: buffer to update
3260  *	@start: start of data after push
3261  *	@len: length of data pushed
3262  *
3263  *	After doing a push on a received packet, you need to call this to
3264  *	update the CHECKSUM_COMPLETE checksum.
3265  */
3266 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3267 				      const void *start, unsigned int len)
3268 {
3269 	__skb_postpush_rcsum(skb, start, len, 0);
3270 }
3271 
3272 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3273 
3274 /**
3275  *	skb_push_rcsum - push skb and update receive checksum
3276  *	@skb: buffer to update
3277  *	@len: length of data pulled
3278  *
3279  *	This function performs an skb_push on the packet and updates
3280  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3281  *	receive path processing instead of skb_push unless you know
3282  *	that the checksum difference is zero (e.g., a valid IP header)
3283  *	or you are setting ip_summed to CHECKSUM_NONE.
3284  */
3285 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3286 {
3287 	skb_push(skb, len);
3288 	skb_postpush_rcsum(skb, skb->data, len);
3289 	return skb->data;
3290 }
3291 
3292 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3293 /**
3294  *	pskb_trim_rcsum - trim received skb and update checksum
3295  *	@skb: buffer to trim
3296  *	@len: new length
3297  *
3298  *	This is exactly the same as pskb_trim except that it ensures the
3299  *	checksum of received packets are still valid after the operation.
3300  *	It can change skb pointers.
3301  */
3302 
3303 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3304 {
3305 	if (likely(len >= skb->len))
3306 		return 0;
3307 	return pskb_trim_rcsum_slow(skb, len);
3308 }
3309 
3310 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3311 {
3312 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3313 		skb->ip_summed = CHECKSUM_NONE;
3314 	__skb_trim(skb, len);
3315 	return 0;
3316 }
3317 
3318 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3319 {
3320 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3321 		skb->ip_summed = CHECKSUM_NONE;
3322 	return __skb_grow(skb, len);
3323 }
3324 
3325 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3326 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3327 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3328 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3329 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3330 
3331 #define skb_queue_walk(queue, skb) \
3332 		for (skb = (queue)->next;					\
3333 		     skb != (struct sk_buff *)(queue);				\
3334 		     skb = skb->next)
3335 
3336 #define skb_queue_walk_safe(queue, skb, tmp)					\
3337 		for (skb = (queue)->next, tmp = skb->next;			\
3338 		     skb != (struct sk_buff *)(queue);				\
3339 		     skb = tmp, tmp = skb->next)
3340 
3341 #define skb_queue_walk_from(queue, skb)						\
3342 		for (; skb != (struct sk_buff *)(queue);			\
3343 		     skb = skb->next)
3344 
3345 #define skb_rbtree_walk(skb, root)						\
3346 		for (skb = skb_rb_first(root); skb != NULL;			\
3347 		     skb = skb_rb_next(skb))
3348 
3349 #define skb_rbtree_walk_from(skb)						\
3350 		for (; skb != NULL;						\
3351 		     skb = skb_rb_next(skb))
3352 
3353 #define skb_rbtree_walk_from_safe(skb, tmp)					\
3354 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
3355 		     skb = tmp)
3356 
3357 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3358 		for (tmp = skb->next;						\
3359 		     skb != (struct sk_buff *)(queue);				\
3360 		     skb = tmp, tmp = skb->next)
3361 
3362 #define skb_queue_reverse_walk(queue, skb) \
3363 		for (skb = (queue)->prev;					\
3364 		     skb != (struct sk_buff *)(queue);				\
3365 		     skb = skb->prev)
3366 
3367 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3368 		for (skb = (queue)->prev, tmp = skb->prev;			\
3369 		     skb != (struct sk_buff *)(queue);				\
3370 		     skb = tmp, tmp = skb->prev)
3371 
3372 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3373 		for (tmp = skb->prev;						\
3374 		     skb != (struct sk_buff *)(queue);				\
3375 		     skb = tmp, tmp = skb->prev)
3376 
3377 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3378 {
3379 	return skb_shinfo(skb)->frag_list != NULL;
3380 }
3381 
3382 static inline void skb_frag_list_init(struct sk_buff *skb)
3383 {
3384 	skb_shinfo(skb)->frag_list = NULL;
3385 }
3386 
3387 #define skb_walk_frags(skb, iter)	\
3388 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3389 
3390 
3391 int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
3392 				const struct sk_buff *skb);
3393 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3394 					  struct sk_buff_head *queue,
3395 					  unsigned int flags,
3396 					  void (*destructor)(struct sock *sk,
3397 							   struct sk_buff *skb),
3398 					  int *off, int *err,
3399 					  struct sk_buff **last);
3400 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
3401 					void (*destructor)(struct sock *sk,
3402 							   struct sk_buff *skb),
3403 					int *off, int *err,
3404 					struct sk_buff **last);
3405 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
3406 				    void (*destructor)(struct sock *sk,
3407 						       struct sk_buff *skb),
3408 				    int *off, int *err);
3409 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3410 				  int *err);
3411 __poll_t datagram_poll(struct file *file, struct socket *sock,
3412 			   struct poll_table_struct *wait);
3413 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3414 			   struct iov_iter *to, int size);
3415 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3416 					struct msghdr *msg, int size)
3417 {
3418 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3419 }
3420 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3421 				   struct msghdr *msg);
3422 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3423 			   struct iov_iter *to, int len,
3424 			   struct ahash_request *hash);
3425 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3426 				 struct iov_iter *from, int len);
3427 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3428 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3429 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3430 static inline void skb_free_datagram_locked(struct sock *sk,
3431 					    struct sk_buff *skb)
3432 {
3433 	__skb_free_datagram_locked(sk, skb, 0);
3434 }
3435 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3436 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3437 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3438 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3439 			      int len, __wsum csum);
3440 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3441 		    struct pipe_inode_info *pipe, unsigned int len,
3442 		    unsigned int flags);
3443 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3444 			 int len);
3445 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3446 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3447 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3448 		 int len, int hlen);
3449 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3450 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3451 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3452 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3453 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3454 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3455 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3456 int skb_ensure_writable(struct sk_buff *skb, int write_len);
3457 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3458 int skb_vlan_pop(struct sk_buff *skb);
3459 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3460 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto);
3461 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto);
3462 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
3463 int skb_mpls_dec_ttl(struct sk_buff *skb);
3464 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3465 			     gfp_t gfp);
3466 
3467 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3468 {
3469 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3470 }
3471 
3472 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3473 {
3474 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3475 }
3476 
3477 struct skb_checksum_ops {
3478 	__wsum (*update)(const void *mem, int len, __wsum wsum);
3479 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3480 };
3481 
3482 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3483 
3484 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3485 		      __wsum csum, const struct skb_checksum_ops *ops);
3486 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3487 		    __wsum csum);
3488 
3489 static inline void * __must_check
3490 __skb_header_pointer(const struct sk_buff *skb, int offset,
3491 		     int len, void *data, int hlen, void *buffer)
3492 {
3493 	if (hlen - offset >= len)
3494 		return data + offset;
3495 
3496 	if (!skb ||
3497 	    skb_copy_bits(skb, offset, buffer, len) < 0)
3498 		return NULL;
3499 
3500 	return buffer;
3501 }
3502 
3503 static inline void * __must_check
3504 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3505 {
3506 	return __skb_header_pointer(skb, offset, len, skb->data,
3507 				    skb_headlen(skb), buffer);
3508 }
3509 
3510 /**
3511  *	skb_needs_linearize - check if we need to linearize a given skb
3512  *			      depending on the given device features.
3513  *	@skb: socket buffer to check
3514  *	@features: net device features
3515  *
3516  *	Returns true if either:
3517  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
3518  *	2. skb is fragmented and the device does not support SG.
3519  */
3520 static inline bool skb_needs_linearize(struct sk_buff *skb,
3521 				       netdev_features_t features)
3522 {
3523 	return skb_is_nonlinear(skb) &&
3524 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3525 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3526 }
3527 
3528 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3529 					     void *to,
3530 					     const unsigned int len)
3531 {
3532 	memcpy(to, skb->data, len);
3533 }
3534 
3535 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3536 						    const int offset, void *to,
3537 						    const unsigned int len)
3538 {
3539 	memcpy(to, skb->data + offset, len);
3540 }
3541 
3542 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3543 					   const void *from,
3544 					   const unsigned int len)
3545 {
3546 	memcpy(skb->data, from, len);
3547 }
3548 
3549 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3550 						  const int offset,
3551 						  const void *from,
3552 						  const unsigned int len)
3553 {
3554 	memcpy(skb->data + offset, from, len);
3555 }
3556 
3557 void skb_init(void);
3558 
3559 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3560 {
3561 	return skb->tstamp;
3562 }
3563 
3564 /**
3565  *	skb_get_timestamp - get timestamp from a skb
3566  *	@skb: skb to get stamp from
3567  *	@stamp: pointer to struct __kernel_old_timeval to store stamp in
3568  *
3569  *	Timestamps are stored in the skb as offsets to a base timestamp.
3570  *	This function converts the offset back to a struct timeval and stores
3571  *	it in stamp.
3572  */
3573 static inline void skb_get_timestamp(const struct sk_buff *skb,
3574 				     struct __kernel_old_timeval *stamp)
3575 {
3576 	*stamp = ns_to_kernel_old_timeval(skb->tstamp);
3577 }
3578 
3579 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
3580 					 struct __kernel_sock_timeval *stamp)
3581 {
3582 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3583 
3584 	stamp->tv_sec = ts.tv_sec;
3585 	stamp->tv_usec = ts.tv_nsec / 1000;
3586 }
3587 
3588 static inline void skb_get_timestampns(const struct sk_buff *skb,
3589 				       struct timespec *stamp)
3590 {
3591 	*stamp = ktime_to_timespec(skb->tstamp);
3592 }
3593 
3594 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
3595 					   struct __kernel_timespec *stamp)
3596 {
3597 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3598 
3599 	stamp->tv_sec = ts.tv_sec;
3600 	stamp->tv_nsec = ts.tv_nsec;
3601 }
3602 
3603 static inline void __net_timestamp(struct sk_buff *skb)
3604 {
3605 	skb->tstamp = ktime_get_real();
3606 }
3607 
3608 static inline ktime_t net_timedelta(ktime_t t)
3609 {
3610 	return ktime_sub(ktime_get_real(), t);
3611 }
3612 
3613 static inline ktime_t net_invalid_timestamp(void)
3614 {
3615 	return 0;
3616 }
3617 
3618 static inline u8 skb_metadata_len(const struct sk_buff *skb)
3619 {
3620 	return skb_shinfo(skb)->meta_len;
3621 }
3622 
3623 static inline void *skb_metadata_end(const struct sk_buff *skb)
3624 {
3625 	return skb_mac_header(skb);
3626 }
3627 
3628 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3629 					  const struct sk_buff *skb_b,
3630 					  u8 meta_len)
3631 {
3632 	const void *a = skb_metadata_end(skb_a);
3633 	const void *b = skb_metadata_end(skb_b);
3634 	/* Using more efficient varaiant than plain call to memcmp(). */
3635 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3636 	u64 diffs = 0;
3637 
3638 	switch (meta_len) {
3639 #define __it(x, op) (x -= sizeof(u##op))
3640 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3641 	case 32: diffs |= __it_diff(a, b, 64);
3642 		 /* fall through */
3643 	case 24: diffs |= __it_diff(a, b, 64);
3644 		 /* fall through */
3645 	case 16: diffs |= __it_diff(a, b, 64);
3646 		 /* fall through */
3647 	case  8: diffs |= __it_diff(a, b, 64);
3648 		break;
3649 	case 28: diffs |= __it_diff(a, b, 64);
3650 		 /* fall through */
3651 	case 20: diffs |= __it_diff(a, b, 64);
3652 		 /* fall through */
3653 	case 12: diffs |= __it_diff(a, b, 64);
3654 		 /* fall through */
3655 	case  4: diffs |= __it_diff(a, b, 32);
3656 		break;
3657 	}
3658 	return diffs;
3659 #else
3660 	return memcmp(a - meta_len, b - meta_len, meta_len);
3661 #endif
3662 }
3663 
3664 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3665 					const struct sk_buff *skb_b)
3666 {
3667 	u8 len_a = skb_metadata_len(skb_a);
3668 	u8 len_b = skb_metadata_len(skb_b);
3669 
3670 	if (!(len_a | len_b))
3671 		return false;
3672 
3673 	return len_a != len_b ?
3674 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
3675 }
3676 
3677 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3678 {
3679 	skb_shinfo(skb)->meta_len = meta_len;
3680 }
3681 
3682 static inline void skb_metadata_clear(struct sk_buff *skb)
3683 {
3684 	skb_metadata_set(skb, 0);
3685 }
3686 
3687 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3688 
3689 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3690 
3691 void skb_clone_tx_timestamp(struct sk_buff *skb);
3692 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3693 
3694 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3695 
3696 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3697 {
3698 }
3699 
3700 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3701 {
3702 	return false;
3703 }
3704 
3705 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3706 
3707 /**
3708  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3709  *
3710  * PHY drivers may accept clones of transmitted packets for
3711  * timestamping via their phy_driver.txtstamp method. These drivers
3712  * must call this function to return the skb back to the stack with a
3713  * timestamp.
3714  *
3715  * @skb: clone of the the original outgoing packet
3716  * @hwtstamps: hardware time stamps
3717  *
3718  */
3719 void skb_complete_tx_timestamp(struct sk_buff *skb,
3720 			       struct skb_shared_hwtstamps *hwtstamps);
3721 
3722 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3723 		     struct skb_shared_hwtstamps *hwtstamps,
3724 		     struct sock *sk, int tstype);
3725 
3726 /**
3727  * skb_tstamp_tx - queue clone of skb with send time stamps
3728  * @orig_skb:	the original outgoing packet
3729  * @hwtstamps:	hardware time stamps, may be NULL if not available
3730  *
3731  * If the skb has a socket associated, then this function clones the
3732  * skb (thus sharing the actual data and optional structures), stores
3733  * the optional hardware time stamping information (if non NULL) or
3734  * generates a software time stamp (otherwise), then queues the clone
3735  * to the error queue of the socket.  Errors are silently ignored.
3736  */
3737 void skb_tstamp_tx(struct sk_buff *orig_skb,
3738 		   struct skb_shared_hwtstamps *hwtstamps);
3739 
3740 /**
3741  * skb_tx_timestamp() - Driver hook for transmit timestamping
3742  *
3743  * Ethernet MAC Drivers should call this function in their hard_xmit()
3744  * function immediately before giving the sk_buff to the MAC hardware.
3745  *
3746  * Specifically, one should make absolutely sure that this function is
3747  * called before TX completion of this packet can trigger.  Otherwise
3748  * the packet could potentially already be freed.
3749  *
3750  * @skb: A socket buffer.
3751  */
3752 static inline void skb_tx_timestamp(struct sk_buff *skb)
3753 {
3754 	skb_clone_tx_timestamp(skb);
3755 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3756 		skb_tstamp_tx(skb, NULL);
3757 }
3758 
3759 /**
3760  * skb_complete_wifi_ack - deliver skb with wifi status
3761  *
3762  * @skb: the original outgoing packet
3763  * @acked: ack status
3764  *
3765  */
3766 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3767 
3768 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3769 __sum16 __skb_checksum_complete(struct sk_buff *skb);
3770 
3771 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3772 {
3773 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3774 		skb->csum_valid ||
3775 		(skb->ip_summed == CHECKSUM_PARTIAL &&
3776 		 skb_checksum_start_offset(skb) >= 0));
3777 }
3778 
3779 /**
3780  *	skb_checksum_complete - Calculate checksum of an entire packet
3781  *	@skb: packet to process
3782  *
3783  *	This function calculates the checksum over the entire packet plus
3784  *	the value of skb->csum.  The latter can be used to supply the
3785  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
3786  *	checksum.
3787  *
3788  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
3789  *	this function can be used to verify that checksum on received
3790  *	packets.  In that case the function should return zero if the
3791  *	checksum is correct.  In particular, this function will return zero
3792  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3793  *	hardware has already verified the correctness of the checksum.
3794  */
3795 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3796 {
3797 	return skb_csum_unnecessary(skb) ?
3798 	       0 : __skb_checksum_complete(skb);
3799 }
3800 
3801 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3802 {
3803 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3804 		if (skb->csum_level == 0)
3805 			skb->ip_summed = CHECKSUM_NONE;
3806 		else
3807 			skb->csum_level--;
3808 	}
3809 }
3810 
3811 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3812 {
3813 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3814 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3815 			skb->csum_level++;
3816 	} else if (skb->ip_summed == CHECKSUM_NONE) {
3817 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3818 		skb->csum_level = 0;
3819 	}
3820 }
3821 
3822 /* Check if we need to perform checksum complete validation.
3823  *
3824  * Returns true if checksum complete is needed, false otherwise
3825  * (either checksum is unnecessary or zero checksum is allowed).
3826  */
3827 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3828 						  bool zero_okay,
3829 						  __sum16 check)
3830 {
3831 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3832 		skb->csum_valid = 1;
3833 		__skb_decr_checksum_unnecessary(skb);
3834 		return false;
3835 	}
3836 
3837 	return true;
3838 }
3839 
3840 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
3841  * in checksum_init.
3842  */
3843 #define CHECKSUM_BREAK 76
3844 
3845 /* Unset checksum-complete
3846  *
3847  * Unset checksum complete can be done when packet is being modified
3848  * (uncompressed for instance) and checksum-complete value is
3849  * invalidated.
3850  */
3851 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3852 {
3853 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3854 		skb->ip_summed = CHECKSUM_NONE;
3855 }
3856 
3857 /* Validate (init) checksum based on checksum complete.
3858  *
3859  * Return values:
3860  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
3861  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3862  *	checksum is stored in skb->csum for use in __skb_checksum_complete
3863  *   non-zero: value of invalid checksum
3864  *
3865  */
3866 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3867 						       bool complete,
3868 						       __wsum psum)
3869 {
3870 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
3871 		if (!csum_fold(csum_add(psum, skb->csum))) {
3872 			skb->csum_valid = 1;
3873 			return 0;
3874 		}
3875 	}
3876 
3877 	skb->csum = psum;
3878 
3879 	if (complete || skb->len <= CHECKSUM_BREAK) {
3880 		__sum16 csum;
3881 
3882 		csum = __skb_checksum_complete(skb);
3883 		skb->csum_valid = !csum;
3884 		return csum;
3885 	}
3886 
3887 	return 0;
3888 }
3889 
3890 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3891 {
3892 	return 0;
3893 }
3894 
3895 /* Perform checksum validate (init). Note that this is a macro since we only
3896  * want to calculate the pseudo header which is an input function if necessary.
3897  * First we try to validate without any computation (checksum unnecessary) and
3898  * then calculate based on checksum complete calling the function to compute
3899  * pseudo header.
3900  *
3901  * Return values:
3902  *   0: checksum is validated or try to in skb_checksum_complete
3903  *   non-zero: value of invalid checksum
3904  */
3905 #define __skb_checksum_validate(skb, proto, complete,			\
3906 				zero_okay, check, compute_pseudo)	\
3907 ({									\
3908 	__sum16 __ret = 0;						\
3909 	skb->csum_valid = 0;						\
3910 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
3911 		__ret = __skb_checksum_validate_complete(skb,		\
3912 				complete, compute_pseudo(skb, proto));	\
3913 	__ret;								\
3914 })
3915 
3916 #define skb_checksum_init(skb, proto, compute_pseudo)			\
3917 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3918 
3919 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
3920 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3921 
3922 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
3923 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3924 
3925 #define skb_checksum_validate_zero_check(skb, proto, check,		\
3926 					 compute_pseudo)		\
3927 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
3928 
3929 #define skb_checksum_simple_validate(skb)				\
3930 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3931 
3932 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3933 {
3934 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
3935 }
3936 
3937 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
3938 {
3939 	skb->csum = ~pseudo;
3940 	skb->ip_summed = CHECKSUM_COMPLETE;
3941 }
3942 
3943 #define skb_checksum_try_convert(skb, proto, compute_pseudo)	\
3944 do {									\
3945 	if (__skb_checksum_convert_check(skb))				\
3946 		__skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
3947 } while (0)
3948 
3949 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3950 					      u16 start, u16 offset)
3951 {
3952 	skb->ip_summed = CHECKSUM_PARTIAL;
3953 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3954 	skb->csum_offset = offset - start;
3955 }
3956 
3957 /* Update skbuf and packet to reflect the remote checksum offload operation.
3958  * When called, ptr indicates the starting point for skb->csum when
3959  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3960  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3961  */
3962 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
3963 				       int start, int offset, bool nopartial)
3964 {
3965 	__wsum delta;
3966 
3967 	if (!nopartial) {
3968 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
3969 		return;
3970 	}
3971 
3972 	 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3973 		__skb_checksum_complete(skb);
3974 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3975 	}
3976 
3977 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
3978 
3979 	/* Adjust skb->csum since we changed the packet */
3980 	skb->csum = csum_add(skb->csum, delta);
3981 }
3982 
3983 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
3984 {
3985 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
3986 	return (void *)(skb->_nfct & SKB_NFCT_PTRMASK);
3987 #else
3988 	return NULL;
3989 #endif
3990 }
3991 
3992 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3993 void nf_conntrack_destroy(struct nf_conntrack *nfct);
3994 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3995 {
3996 	if (nfct && atomic_dec_and_test(&nfct->use))
3997 		nf_conntrack_destroy(nfct);
3998 }
3999 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
4000 {
4001 	if (nfct)
4002 		atomic_inc(&nfct->use);
4003 }
4004 #endif
4005 
4006 #ifdef CONFIG_SKB_EXTENSIONS
4007 enum skb_ext_id {
4008 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4009 	SKB_EXT_BRIDGE_NF,
4010 #endif
4011 #ifdef CONFIG_XFRM
4012 	SKB_EXT_SEC_PATH,
4013 #endif
4014 	SKB_EXT_NUM, /* must be last */
4015 };
4016 
4017 /**
4018  *	struct skb_ext - sk_buff extensions
4019  *	@refcnt: 1 on allocation, deallocated on 0
4020  *	@offset: offset to add to @data to obtain extension address
4021  *	@chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4022  *	@data: start of extension data, variable sized
4023  *
4024  *	Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4025  *	to use 'u8' types while allowing up to 2kb worth of extension data.
4026  */
4027 struct skb_ext {
4028 	refcount_t refcnt;
4029 	u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4030 	u8 chunks;		/* same */
4031 	char data[0] __aligned(8);
4032 };
4033 
4034 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4035 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4036 void __skb_ext_put(struct skb_ext *ext);
4037 
4038 static inline void skb_ext_put(struct sk_buff *skb)
4039 {
4040 	if (skb->active_extensions)
4041 		__skb_ext_put(skb->extensions);
4042 }
4043 
4044 static inline void __skb_ext_copy(struct sk_buff *dst,
4045 				  const struct sk_buff *src)
4046 {
4047 	dst->active_extensions = src->active_extensions;
4048 
4049 	if (src->active_extensions) {
4050 		struct skb_ext *ext = src->extensions;
4051 
4052 		refcount_inc(&ext->refcnt);
4053 		dst->extensions = ext;
4054 	}
4055 }
4056 
4057 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4058 {
4059 	skb_ext_put(dst);
4060 	__skb_ext_copy(dst, src);
4061 }
4062 
4063 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4064 {
4065 	return !!ext->offset[i];
4066 }
4067 
4068 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4069 {
4070 	return skb->active_extensions & (1 << id);
4071 }
4072 
4073 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4074 {
4075 	if (skb_ext_exist(skb, id))
4076 		__skb_ext_del(skb, id);
4077 }
4078 
4079 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4080 {
4081 	if (skb_ext_exist(skb, id)) {
4082 		struct skb_ext *ext = skb->extensions;
4083 
4084 		return (void *)ext + (ext->offset[id] << 3);
4085 	}
4086 
4087 	return NULL;
4088 }
4089 #else
4090 static inline void skb_ext_put(struct sk_buff *skb) {}
4091 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4092 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4093 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4094 #endif /* CONFIG_SKB_EXTENSIONS */
4095 
4096 static inline void nf_reset(struct sk_buff *skb)
4097 {
4098 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4099 	nf_conntrack_put(skb_nfct(skb));
4100 	skb->_nfct = 0;
4101 #endif
4102 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4103 	skb_ext_del(skb, SKB_EXT_BRIDGE_NF);
4104 #endif
4105 }
4106 
4107 static inline void nf_reset_trace(struct sk_buff *skb)
4108 {
4109 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4110 	skb->nf_trace = 0;
4111 #endif
4112 }
4113 
4114 static inline void ipvs_reset(struct sk_buff *skb)
4115 {
4116 #if IS_ENABLED(CONFIG_IP_VS)
4117 	skb->ipvs_property = 0;
4118 #endif
4119 }
4120 
4121 /* Note: This doesn't put any conntrack info in dst. */
4122 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4123 			     bool copy)
4124 {
4125 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4126 	dst->_nfct = src->_nfct;
4127 	nf_conntrack_get(skb_nfct(src));
4128 #endif
4129 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4130 	if (copy)
4131 		dst->nf_trace = src->nf_trace;
4132 #endif
4133 }
4134 
4135 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4136 {
4137 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4138 	nf_conntrack_put(skb_nfct(dst));
4139 #endif
4140 	__nf_copy(dst, src, true);
4141 }
4142 
4143 #ifdef CONFIG_NETWORK_SECMARK
4144 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4145 {
4146 	to->secmark = from->secmark;
4147 }
4148 
4149 static inline void skb_init_secmark(struct sk_buff *skb)
4150 {
4151 	skb->secmark = 0;
4152 }
4153 #else
4154 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4155 { }
4156 
4157 static inline void skb_init_secmark(struct sk_buff *skb)
4158 { }
4159 #endif
4160 
4161 static inline int secpath_exists(const struct sk_buff *skb)
4162 {
4163 #ifdef CONFIG_XFRM
4164 	return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4165 #else
4166 	return 0;
4167 #endif
4168 }
4169 
4170 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4171 {
4172 	return !skb->destructor &&
4173 		!secpath_exists(skb) &&
4174 		!skb_nfct(skb) &&
4175 		!skb->_skb_refdst &&
4176 		!skb_has_frag_list(skb);
4177 }
4178 
4179 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4180 {
4181 	skb->queue_mapping = queue_mapping;
4182 }
4183 
4184 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4185 {
4186 	return skb->queue_mapping;
4187 }
4188 
4189 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4190 {
4191 	to->queue_mapping = from->queue_mapping;
4192 }
4193 
4194 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4195 {
4196 	skb->queue_mapping = rx_queue + 1;
4197 }
4198 
4199 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4200 {
4201 	return skb->queue_mapping - 1;
4202 }
4203 
4204 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4205 {
4206 	return skb->queue_mapping != 0;
4207 }
4208 
4209 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4210 {
4211 	skb->dst_pending_confirm = val;
4212 }
4213 
4214 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4215 {
4216 	return skb->dst_pending_confirm != 0;
4217 }
4218 
4219 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4220 {
4221 #ifdef CONFIG_XFRM
4222 	return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4223 #else
4224 	return NULL;
4225 #endif
4226 }
4227 
4228 /* Keeps track of mac header offset relative to skb->head.
4229  * It is useful for TSO of Tunneling protocol. e.g. GRE.
4230  * For non-tunnel skb it points to skb_mac_header() and for
4231  * tunnel skb it points to outer mac header.
4232  * Keeps track of level of encapsulation of network headers.
4233  */
4234 struct skb_gso_cb {
4235 	union {
4236 		int	mac_offset;
4237 		int	data_offset;
4238 	};
4239 	int	encap_level;
4240 	__wsum	csum;
4241 	__u16	csum_start;
4242 };
4243 #define SKB_SGO_CB_OFFSET	32
4244 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
4245 
4246 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4247 {
4248 	return (skb_mac_header(inner_skb) - inner_skb->head) -
4249 		SKB_GSO_CB(inner_skb)->mac_offset;
4250 }
4251 
4252 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4253 {
4254 	int new_headroom, headroom;
4255 	int ret;
4256 
4257 	headroom = skb_headroom(skb);
4258 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4259 	if (ret)
4260 		return ret;
4261 
4262 	new_headroom = skb_headroom(skb);
4263 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4264 	return 0;
4265 }
4266 
4267 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4268 {
4269 	/* Do not update partial checksums if remote checksum is enabled. */
4270 	if (skb->remcsum_offload)
4271 		return;
4272 
4273 	SKB_GSO_CB(skb)->csum = res;
4274 	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4275 }
4276 
4277 /* Compute the checksum for a gso segment. First compute the checksum value
4278  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4279  * then add in skb->csum (checksum from csum_start to end of packet).
4280  * skb->csum and csum_start are then updated to reflect the checksum of the
4281  * resultant packet starting from the transport header-- the resultant checksum
4282  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4283  * header.
4284  */
4285 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4286 {
4287 	unsigned char *csum_start = skb_transport_header(skb);
4288 	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4289 	__wsum partial = SKB_GSO_CB(skb)->csum;
4290 
4291 	SKB_GSO_CB(skb)->csum = res;
4292 	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4293 
4294 	return csum_fold(csum_partial(csum_start, plen, partial));
4295 }
4296 
4297 static inline bool skb_is_gso(const struct sk_buff *skb)
4298 {
4299 	return skb_shinfo(skb)->gso_size;
4300 }
4301 
4302 /* Note: Should be called only if skb_is_gso(skb) is true */
4303 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4304 {
4305 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4306 }
4307 
4308 /* Note: Should be called only if skb_is_gso(skb) is true */
4309 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4310 {
4311 	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4312 }
4313 
4314 /* Note: Should be called only if skb_is_gso(skb) is true */
4315 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4316 {
4317 	return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4318 }
4319 
4320 static inline void skb_gso_reset(struct sk_buff *skb)
4321 {
4322 	skb_shinfo(skb)->gso_size = 0;
4323 	skb_shinfo(skb)->gso_segs = 0;
4324 	skb_shinfo(skb)->gso_type = 0;
4325 }
4326 
4327 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4328 					 u16 increment)
4329 {
4330 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4331 		return;
4332 	shinfo->gso_size += increment;
4333 }
4334 
4335 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4336 					 u16 decrement)
4337 {
4338 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4339 		return;
4340 	shinfo->gso_size -= decrement;
4341 }
4342 
4343 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4344 
4345 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4346 {
4347 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
4348 	 * wanted then gso_type will be set. */
4349 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4350 
4351 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4352 	    unlikely(shinfo->gso_type == 0)) {
4353 		__skb_warn_lro_forwarding(skb);
4354 		return true;
4355 	}
4356 	return false;
4357 }
4358 
4359 static inline void skb_forward_csum(struct sk_buff *skb)
4360 {
4361 	/* Unfortunately we don't support this one.  Any brave souls? */
4362 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4363 		skb->ip_summed = CHECKSUM_NONE;
4364 }
4365 
4366 /**
4367  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4368  * @skb: skb to check
4369  *
4370  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4371  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4372  * use this helper, to document places where we make this assertion.
4373  */
4374 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4375 {
4376 #ifdef DEBUG
4377 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4378 #endif
4379 }
4380 
4381 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4382 
4383 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4384 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4385 				     unsigned int transport_len,
4386 				     __sum16(*skb_chkf)(struct sk_buff *skb));
4387 
4388 /**
4389  * skb_head_is_locked - Determine if the skb->head is locked down
4390  * @skb: skb to check
4391  *
4392  * The head on skbs build around a head frag can be removed if they are
4393  * not cloned.  This function returns true if the skb head is locked down
4394  * due to either being allocated via kmalloc, or by being a clone with
4395  * multiple references to the head.
4396  */
4397 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4398 {
4399 	return !skb->head_frag || skb_cloned(skb);
4400 }
4401 
4402 /* Local Checksum Offload.
4403  * Compute outer checksum based on the assumption that the
4404  * inner checksum will be offloaded later.
4405  * See Documentation/networking/checksum-offloads.rst for
4406  * explanation of how this works.
4407  * Fill in outer checksum adjustment (e.g. with sum of outer
4408  * pseudo-header) before calling.
4409  * Also ensure that inner checksum is in linear data area.
4410  */
4411 static inline __wsum lco_csum(struct sk_buff *skb)
4412 {
4413 	unsigned char *csum_start = skb_checksum_start(skb);
4414 	unsigned char *l4_hdr = skb_transport_header(skb);
4415 	__wsum partial;
4416 
4417 	/* Start with complement of inner checksum adjustment */
4418 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4419 						    skb->csum_offset));
4420 
4421 	/* Add in checksum of our headers (incl. outer checksum
4422 	 * adjustment filled in by caller) and return result.
4423 	 */
4424 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4425 }
4426 
4427 #endif	/* __KERNEL__ */
4428 #endif	/* _LINUX_SKBUFF_H */
4429