1 /* 2 * Definitions for the 'struct sk_buff' memory handlers. 3 * 4 * Authors: 5 * Alan Cox, <[email protected]> 6 * Florian La Roche, <[email protected]> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14 #ifndef _LINUX_SKBUFF_H 15 #define _LINUX_SKBUFF_H 16 17 #include <linux/kernel.h> 18 #include <linux/compiler.h> 19 #include <linux/time.h> 20 #include <linux/cache.h> 21 22 #include <asm/atomic.h> 23 #include <asm/types.h> 24 #include <linux/spinlock.h> 25 #include <linux/net.h> 26 #include <linux/textsearch.h> 27 #include <net/checksum.h> 28 #include <linux/rcupdate.h> 29 #include <linux/dmaengine.h> 30 31 #define HAVE_ALLOC_SKB /* For the drivers to know */ 32 #define HAVE_ALIGNABLE_SKB /* Ditto 8) */ 33 34 #define CHECKSUM_NONE 0 35 #define CHECKSUM_PARTIAL 1 36 #define CHECKSUM_UNNECESSARY 2 37 #define CHECKSUM_COMPLETE 3 38 39 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \ 40 ~(SMP_CACHE_BYTES - 1)) 41 #define SKB_MAX_ORDER(X, ORDER) (((PAGE_SIZE << (ORDER)) - (X) - \ 42 sizeof(struct skb_shared_info)) & \ 43 ~(SMP_CACHE_BYTES - 1)) 44 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 45 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 46 47 /* A. Checksumming of received packets by device. 48 * 49 * NONE: device failed to checksum this packet. 50 * skb->csum is undefined. 51 * 52 * UNNECESSARY: device parsed packet and wouldbe verified checksum. 53 * skb->csum is undefined. 54 * It is bad option, but, unfortunately, many of vendors do this. 55 * Apparently with secret goal to sell you new device, when you 56 * will add new protocol to your host. F.e. IPv6. 8) 57 * 58 * COMPLETE: the most generic way. Device supplied checksum of _all_ 59 * the packet as seen by netif_rx in skb->csum. 60 * NOTE: Even if device supports only some protocols, but 61 * is able to produce some skb->csum, it MUST use COMPLETE, 62 * not UNNECESSARY. 63 * 64 * B. Checksumming on output. 65 * 66 * NONE: skb is checksummed by protocol or csum is not required. 67 * 68 * PARTIAL: device is required to csum packet as seen by hard_start_xmit 69 * from skb->h.raw to the end and to record the checksum 70 * at skb->h.raw+skb->csum. 71 * 72 * Device must show its capabilities in dev->features, set 73 * at device setup time. 74 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum 75 * everything. 76 * NETIF_F_NO_CSUM - loopback or reliable single hop media. 77 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only 78 * TCP/UDP over IPv4. Sigh. Vendors like this 79 * way by an unknown reason. Though, see comment above 80 * about CHECKSUM_UNNECESSARY. 8) 81 * 82 * Any questions? No questions, good. --ANK 83 */ 84 85 struct net_device; 86 87 #ifdef CONFIG_NETFILTER 88 struct nf_conntrack { 89 atomic_t use; 90 void (*destroy)(struct nf_conntrack *); 91 }; 92 93 #ifdef CONFIG_BRIDGE_NETFILTER 94 struct nf_bridge_info { 95 atomic_t use; 96 struct net_device *physindev; 97 struct net_device *physoutdev; 98 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE) 99 struct net_device *netoutdev; 100 #endif 101 unsigned int mask; 102 unsigned long data[32 / sizeof(unsigned long)]; 103 }; 104 #endif 105 106 #endif 107 108 struct sk_buff_head { 109 /* These two members must be first. */ 110 struct sk_buff *next; 111 struct sk_buff *prev; 112 113 __u32 qlen; 114 spinlock_t lock; 115 }; 116 117 struct sk_buff; 118 119 /* To allow 64K frame to be packed as single skb without frag_list */ 120 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2) 121 122 typedef struct skb_frag_struct skb_frag_t; 123 124 struct skb_frag_struct { 125 struct page *page; 126 __u16 page_offset; 127 __u16 size; 128 }; 129 130 /* This data is invariant across clones and lives at 131 * the end of the header data, ie. at skb->end. 132 */ 133 struct skb_shared_info { 134 atomic_t dataref; 135 unsigned short nr_frags; 136 unsigned short gso_size; 137 /* Warning: this field is not always filled in (UFO)! */ 138 unsigned short gso_segs; 139 unsigned short gso_type; 140 __be32 ip6_frag_id; 141 struct sk_buff *frag_list; 142 skb_frag_t frags[MAX_SKB_FRAGS]; 143 }; 144 145 /* We divide dataref into two halves. The higher 16 bits hold references 146 * to the payload part of skb->data. The lower 16 bits hold references to 147 * the entire skb->data. It is up to the users of the skb to agree on 148 * where the payload starts. 149 * 150 * All users must obey the rule that the skb->data reference count must be 151 * greater than or equal to the payload reference count. 152 * 153 * Holding a reference to the payload part means that the user does not 154 * care about modifications to the header part of skb->data. 155 */ 156 #define SKB_DATAREF_SHIFT 16 157 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 158 159 struct skb_timeval { 160 u32 off_sec; 161 u32 off_usec; 162 }; 163 164 165 enum { 166 SKB_FCLONE_UNAVAILABLE, 167 SKB_FCLONE_ORIG, 168 SKB_FCLONE_CLONE, 169 }; 170 171 enum { 172 SKB_GSO_TCPV4 = 1 << 0, 173 SKB_GSO_UDP = 1 << 1, 174 175 /* This indicates the skb is from an untrusted source. */ 176 SKB_GSO_DODGY = 1 << 2, 177 178 /* This indicates the tcp segment has CWR set. */ 179 SKB_GSO_TCP_ECN = 1 << 3, 180 181 SKB_GSO_TCPV6 = 1 << 4, 182 }; 183 184 /** 185 * struct sk_buff - socket buffer 186 * @next: Next buffer in list 187 * @prev: Previous buffer in list 188 * @sk: Socket we are owned by 189 * @tstamp: Time we arrived 190 * @dev: Device we arrived on/are leaving by 191 * @iif: ifindex of device we arrived on 192 * @h: Transport layer header 193 * @nh: Network layer header 194 * @mac: Link layer header 195 * @dst: destination entry 196 * @sp: the security path, used for xfrm 197 * @cb: Control buffer. Free for use by every layer. Put private vars here 198 * @len: Length of actual data 199 * @data_len: Data length 200 * @mac_len: Length of link layer header 201 * @csum: Checksum 202 * @local_df: allow local fragmentation 203 * @cloned: Head may be cloned (check refcnt to be sure) 204 * @nohdr: Payload reference only, must not modify header 205 * @pkt_type: Packet class 206 * @fclone: skbuff clone status 207 * @ip_summed: Driver fed us an IP checksum 208 * @priority: Packet queueing priority 209 * @users: User count - see {datagram,tcp}.c 210 * @protocol: Packet protocol from driver 211 * @truesize: Buffer size 212 * @head: Head of buffer 213 * @data: Data head pointer 214 * @tail: Tail pointer 215 * @end: End pointer 216 * @destructor: Destruct function 217 * @mark: Generic packet mark 218 * @nfct: Associated connection, if any 219 * @ipvs_property: skbuff is owned by ipvs 220 * @nfctinfo: Relationship of this skb to the connection 221 * @nfct_reasm: netfilter conntrack re-assembly pointer 222 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 223 * @tc_index: Traffic control index 224 * @tc_verd: traffic control verdict 225 * @dma_cookie: a cookie to one of several possible DMA operations 226 * done by skb DMA functions 227 * @secmark: security marking 228 */ 229 230 struct sk_buff { 231 /* These two members must be first. */ 232 struct sk_buff *next; 233 struct sk_buff *prev; 234 235 struct sock *sk; 236 struct skb_timeval tstamp; 237 struct net_device *dev; 238 int iif; 239 /* 4 byte hole on 64 bit*/ 240 241 union { 242 struct tcphdr *th; 243 struct udphdr *uh; 244 struct icmphdr *icmph; 245 struct igmphdr *igmph; 246 struct iphdr *ipiph; 247 struct ipv6hdr *ipv6h; 248 unsigned char *raw; 249 } h; 250 251 union { 252 struct iphdr *iph; 253 struct ipv6hdr *ipv6h; 254 struct arphdr *arph; 255 unsigned char *raw; 256 } nh; 257 258 union { 259 unsigned char *raw; 260 } mac; 261 262 struct dst_entry *dst; 263 struct sec_path *sp; 264 265 /* 266 * This is the control buffer. It is free to use for every 267 * layer. Please put your private variables there. If you 268 * want to keep them across layers you have to do a skb_clone() 269 * first. This is owned by whoever has the skb queued ATM. 270 */ 271 char cb[48]; 272 273 unsigned int len, 274 data_len, 275 mac_len; 276 union { 277 __wsum csum; 278 __u32 csum_offset; 279 }; 280 __u32 priority; 281 __u8 local_df:1, 282 cloned:1, 283 ip_summed:2, 284 nohdr:1, 285 nfctinfo:3; 286 __u8 pkt_type:3, 287 fclone:2, 288 ipvs_property:1; 289 __be16 protocol; 290 291 void (*destructor)(struct sk_buff *skb); 292 #ifdef CONFIG_NETFILTER 293 struct nf_conntrack *nfct; 294 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 295 struct sk_buff *nfct_reasm; 296 #endif 297 #ifdef CONFIG_BRIDGE_NETFILTER 298 struct nf_bridge_info *nf_bridge; 299 #endif 300 #endif /* CONFIG_NETFILTER */ 301 #ifdef CONFIG_NET_SCHED 302 __u16 tc_index; /* traffic control index */ 303 #ifdef CONFIG_NET_CLS_ACT 304 __u16 tc_verd; /* traffic control verdict */ 305 #endif 306 #endif 307 #ifdef CONFIG_NET_DMA 308 dma_cookie_t dma_cookie; 309 #endif 310 #ifdef CONFIG_NETWORK_SECMARK 311 __u32 secmark; 312 #endif 313 314 __u32 mark; 315 316 /* These elements must be at the end, see alloc_skb() for details. */ 317 unsigned int truesize; 318 atomic_t users; 319 unsigned char *head, 320 *data, 321 *tail, 322 *end; 323 }; 324 325 #ifdef __KERNEL__ 326 /* 327 * Handling routines are only of interest to the kernel 328 */ 329 #include <linux/slab.h> 330 331 #include <asm/system.h> 332 333 extern void kfree_skb(struct sk_buff *skb); 334 extern void __kfree_skb(struct sk_buff *skb); 335 extern struct sk_buff *__alloc_skb(unsigned int size, 336 gfp_t priority, int fclone, int node); 337 static inline struct sk_buff *alloc_skb(unsigned int size, 338 gfp_t priority) 339 { 340 return __alloc_skb(size, priority, 0, -1); 341 } 342 343 static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 344 gfp_t priority) 345 { 346 return __alloc_skb(size, priority, 1, -1); 347 } 348 349 extern struct sk_buff *alloc_skb_from_cache(struct kmem_cache *cp, 350 unsigned int size, 351 gfp_t priority); 352 extern void kfree_skbmem(struct sk_buff *skb); 353 extern struct sk_buff *skb_clone(struct sk_buff *skb, 354 gfp_t priority); 355 extern struct sk_buff *skb_copy(const struct sk_buff *skb, 356 gfp_t priority); 357 extern struct sk_buff *pskb_copy(struct sk_buff *skb, 358 gfp_t gfp_mask); 359 extern int pskb_expand_head(struct sk_buff *skb, 360 int nhead, int ntail, 361 gfp_t gfp_mask); 362 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 363 unsigned int headroom); 364 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 365 int newheadroom, int newtailroom, 366 gfp_t priority); 367 extern int skb_pad(struct sk_buff *skb, int pad); 368 #define dev_kfree_skb(a) kfree_skb(a) 369 extern void skb_over_panic(struct sk_buff *skb, int len, 370 void *here); 371 extern void skb_under_panic(struct sk_buff *skb, int len, 372 void *here); 373 extern void skb_truesize_bug(struct sk_buff *skb); 374 375 static inline void skb_truesize_check(struct sk_buff *skb) 376 { 377 if (unlikely((int)skb->truesize < sizeof(struct sk_buff) + skb->len)) 378 skb_truesize_bug(skb); 379 } 380 381 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 382 int getfrag(void *from, char *to, int offset, 383 int len,int odd, struct sk_buff *skb), 384 void *from, int length); 385 386 struct skb_seq_state 387 { 388 __u32 lower_offset; 389 __u32 upper_offset; 390 __u32 frag_idx; 391 __u32 stepped_offset; 392 struct sk_buff *root_skb; 393 struct sk_buff *cur_skb; 394 __u8 *frag_data; 395 }; 396 397 extern void skb_prepare_seq_read(struct sk_buff *skb, 398 unsigned int from, unsigned int to, 399 struct skb_seq_state *st); 400 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 401 struct skb_seq_state *st); 402 extern void skb_abort_seq_read(struct skb_seq_state *st); 403 404 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 405 unsigned int to, struct ts_config *config, 406 struct ts_state *state); 407 408 /* Internal */ 409 #define skb_shinfo(SKB) ((struct skb_shared_info *)((SKB)->end)) 410 411 /** 412 * skb_queue_empty - check if a queue is empty 413 * @list: queue head 414 * 415 * Returns true if the queue is empty, false otherwise. 416 */ 417 static inline int skb_queue_empty(const struct sk_buff_head *list) 418 { 419 return list->next == (struct sk_buff *)list; 420 } 421 422 /** 423 * skb_get - reference buffer 424 * @skb: buffer to reference 425 * 426 * Makes another reference to a socket buffer and returns a pointer 427 * to the buffer. 428 */ 429 static inline struct sk_buff *skb_get(struct sk_buff *skb) 430 { 431 atomic_inc(&skb->users); 432 return skb; 433 } 434 435 /* 436 * If users == 1, we are the only owner and are can avoid redundant 437 * atomic change. 438 */ 439 440 /** 441 * skb_cloned - is the buffer a clone 442 * @skb: buffer to check 443 * 444 * Returns true if the buffer was generated with skb_clone() and is 445 * one of multiple shared copies of the buffer. Cloned buffers are 446 * shared data so must not be written to under normal circumstances. 447 */ 448 static inline int skb_cloned(const struct sk_buff *skb) 449 { 450 return skb->cloned && 451 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 452 } 453 454 /** 455 * skb_header_cloned - is the header a clone 456 * @skb: buffer to check 457 * 458 * Returns true if modifying the header part of the buffer requires 459 * the data to be copied. 460 */ 461 static inline int skb_header_cloned(const struct sk_buff *skb) 462 { 463 int dataref; 464 465 if (!skb->cloned) 466 return 0; 467 468 dataref = atomic_read(&skb_shinfo(skb)->dataref); 469 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 470 return dataref != 1; 471 } 472 473 /** 474 * skb_header_release - release reference to header 475 * @skb: buffer to operate on 476 * 477 * Drop a reference to the header part of the buffer. This is done 478 * by acquiring a payload reference. You must not read from the header 479 * part of skb->data after this. 480 */ 481 static inline void skb_header_release(struct sk_buff *skb) 482 { 483 BUG_ON(skb->nohdr); 484 skb->nohdr = 1; 485 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref); 486 } 487 488 /** 489 * skb_shared - is the buffer shared 490 * @skb: buffer to check 491 * 492 * Returns true if more than one person has a reference to this 493 * buffer. 494 */ 495 static inline int skb_shared(const struct sk_buff *skb) 496 { 497 return atomic_read(&skb->users) != 1; 498 } 499 500 /** 501 * skb_share_check - check if buffer is shared and if so clone it 502 * @skb: buffer to check 503 * @pri: priority for memory allocation 504 * 505 * If the buffer is shared the buffer is cloned and the old copy 506 * drops a reference. A new clone with a single reference is returned. 507 * If the buffer is not shared the original buffer is returned. When 508 * being called from interrupt status or with spinlocks held pri must 509 * be GFP_ATOMIC. 510 * 511 * NULL is returned on a memory allocation failure. 512 */ 513 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, 514 gfp_t pri) 515 { 516 might_sleep_if(pri & __GFP_WAIT); 517 if (skb_shared(skb)) { 518 struct sk_buff *nskb = skb_clone(skb, pri); 519 kfree_skb(skb); 520 skb = nskb; 521 } 522 return skb; 523 } 524 525 /* 526 * Copy shared buffers into a new sk_buff. We effectively do COW on 527 * packets to handle cases where we have a local reader and forward 528 * and a couple of other messy ones. The normal one is tcpdumping 529 * a packet thats being forwarded. 530 */ 531 532 /** 533 * skb_unshare - make a copy of a shared buffer 534 * @skb: buffer to check 535 * @pri: priority for memory allocation 536 * 537 * If the socket buffer is a clone then this function creates a new 538 * copy of the data, drops a reference count on the old copy and returns 539 * the new copy with the reference count at 1. If the buffer is not a clone 540 * the original buffer is returned. When called with a spinlock held or 541 * from interrupt state @pri must be %GFP_ATOMIC 542 * 543 * %NULL is returned on a memory allocation failure. 544 */ 545 static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 546 gfp_t pri) 547 { 548 might_sleep_if(pri & __GFP_WAIT); 549 if (skb_cloned(skb)) { 550 struct sk_buff *nskb = skb_copy(skb, pri); 551 kfree_skb(skb); /* Free our shared copy */ 552 skb = nskb; 553 } 554 return skb; 555 } 556 557 /** 558 * skb_peek 559 * @list_: list to peek at 560 * 561 * Peek an &sk_buff. Unlike most other operations you _MUST_ 562 * be careful with this one. A peek leaves the buffer on the 563 * list and someone else may run off with it. You must hold 564 * the appropriate locks or have a private queue to do this. 565 * 566 * Returns %NULL for an empty list or a pointer to the head element. 567 * The reference count is not incremented and the reference is therefore 568 * volatile. Use with caution. 569 */ 570 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_) 571 { 572 struct sk_buff *list = ((struct sk_buff *)list_)->next; 573 if (list == (struct sk_buff *)list_) 574 list = NULL; 575 return list; 576 } 577 578 /** 579 * skb_peek_tail 580 * @list_: list to peek at 581 * 582 * Peek an &sk_buff. Unlike most other operations you _MUST_ 583 * be careful with this one. A peek leaves the buffer on the 584 * list and someone else may run off with it. You must hold 585 * the appropriate locks or have a private queue to do this. 586 * 587 * Returns %NULL for an empty list or a pointer to the tail element. 588 * The reference count is not incremented and the reference is therefore 589 * volatile. Use with caution. 590 */ 591 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_) 592 { 593 struct sk_buff *list = ((struct sk_buff *)list_)->prev; 594 if (list == (struct sk_buff *)list_) 595 list = NULL; 596 return list; 597 } 598 599 /** 600 * skb_queue_len - get queue length 601 * @list_: list to measure 602 * 603 * Return the length of an &sk_buff queue. 604 */ 605 static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 606 { 607 return list_->qlen; 608 } 609 610 /* 611 * This function creates a split out lock class for each invocation; 612 * this is needed for now since a whole lot of users of the skb-queue 613 * infrastructure in drivers have different locking usage (in hardirq) 614 * than the networking core (in softirq only). In the long run either the 615 * network layer or drivers should need annotation to consolidate the 616 * main types of usage into 3 classes. 617 */ 618 static inline void skb_queue_head_init(struct sk_buff_head *list) 619 { 620 spin_lock_init(&list->lock); 621 list->prev = list->next = (struct sk_buff *)list; 622 list->qlen = 0; 623 } 624 625 /* 626 * Insert an sk_buff at the start of a list. 627 * 628 * The "__skb_xxxx()" functions are the non-atomic ones that 629 * can only be called with interrupts disabled. 630 */ 631 632 /** 633 * __skb_queue_after - queue a buffer at the list head 634 * @list: list to use 635 * @prev: place after this buffer 636 * @newsk: buffer to queue 637 * 638 * Queue a buffer int the middle of a list. This function takes no locks 639 * and you must therefore hold required locks before calling it. 640 * 641 * A buffer cannot be placed on two lists at the same time. 642 */ 643 static inline void __skb_queue_after(struct sk_buff_head *list, 644 struct sk_buff *prev, 645 struct sk_buff *newsk) 646 { 647 struct sk_buff *next; 648 list->qlen++; 649 650 next = prev->next; 651 newsk->next = next; 652 newsk->prev = prev; 653 next->prev = prev->next = newsk; 654 } 655 656 /** 657 * __skb_queue_head - queue a buffer at the list head 658 * @list: list to use 659 * @newsk: buffer to queue 660 * 661 * Queue a buffer at the start of a list. This function takes no locks 662 * and you must therefore hold required locks before calling it. 663 * 664 * A buffer cannot be placed on two lists at the same time. 665 */ 666 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 667 static inline void __skb_queue_head(struct sk_buff_head *list, 668 struct sk_buff *newsk) 669 { 670 __skb_queue_after(list, (struct sk_buff *)list, newsk); 671 } 672 673 /** 674 * __skb_queue_tail - queue a buffer at the list tail 675 * @list: list to use 676 * @newsk: buffer to queue 677 * 678 * Queue a buffer at the end of a list. This function takes no locks 679 * and you must therefore hold required locks before calling it. 680 * 681 * A buffer cannot be placed on two lists at the same time. 682 */ 683 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 684 static inline void __skb_queue_tail(struct sk_buff_head *list, 685 struct sk_buff *newsk) 686 { 687 struct sk_buff *prev, *next; 688 689 list->qlen++; 690 next = (struct sk_buff *)list; 691 prev = next->prev; 692 newsk->next = next; 693 newsk->prev = prev; 694 next->prev = prev->next = newsk; 695 } 696 697 698 /** 699 * __skb_dequeue - remove from the head of the queue 700 * @list: list to dequeue from 701 * 702 * Remove the head of the list. This function does not take any locks 703 * so must be used with appropriate locks held only. The head item is 704 * returned or %NULL if the list is empty. 705 */ 706 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list); 707 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 708 { 709 struct sk_buff *next, *prev, *result; 710 711 prev = (struct sk_buff *) list; 712 next = prev->next; 713 result = NULL; 714 if (next != prev) { 715 result = next; 716 next = next->next; 717 list->qlen--; 718 next->prev = prev; 719 prev->next = next; 720 result->next = result->prev = NULL; 721 } 722 return result; 723 } 724 725 726 /* 727 * Insert a packet on a list. 728 */ 729 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list); 730 static inline void __skb_insert(struct sk_buff *newsk, 731 struct sk_buff *prev, struct sk_buff *next, 732 struct sk_buff_head *list) 733 { 734 newsk->next = next; 735 newsk->prev = prev; 736 next->prev = prev->next = newsk; 737 list->qlen++; 738 } 739 740 /* 741 * Place a packet after a given packet in a list. 742 */ 743 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list); 744 static inline void __skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 745 { 746 __skb_insert(newsk, old, old->next, list); 747 } 748 749 /* 750 * remove sk_buff from list. _Must_ be called atomically, and with 751 * the list known.. 752 */ 753 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 754 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 755 { 756 struct sk_buff *next, *prev; 757 758 list->qlen--; 759 next = skb->next; 760 prev = skb->prev; 761 skb->next = skb->prev = NULL; 762 next->prev = prev; 763 prev->next = next; 764 } 765 766 767 /* XXX: more streamlined implementation */ 768 769 /** 770 * __skb_dequeue_tail - remove from the tail of the queue 771 * @list: list to dequeue from 772 * 773 * Remove the tail of the list. This function does not take any locks 774 * so must be used with appropriate locks held only. The tail item is 775 * returned or %NULL if the list is empty. 776 */ 777 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 778 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 779 { 780 struct sk_buff *skb = skb_peek_tail(list); 781 if (skb) 782 __skb_unlink(skb, list); 783 return skb; 784 } 785 786 787 static inline int skb_is_nonlinear(const struct sk_buff *skb) 788 { 789 return skb->data_len; 790 } 791 792 static inline unsigned int skb_headlen(const struct sk_buff *skb) 793 { 794 return skb->len - skb->data_len; 795 } 796 797 static inline int skb_pagelen(const struct sk_buff *skb) 798 { 799 int i, len = 0; 800 801 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--) 802 len += skb_shinfo(skb)->frags[i].size; 803 return len + skb_headlen(skb); 804 } 805 806 static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 807 struct page *page, int off, int size) 808 { 809 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 810 811 frag->page = page; 812 frag->page_offset = off; 813 frag->size = size; 814 skb_shinfo(skb)->nr_frags = i + 1; 815 } 816 817 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags) 818 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list) 819 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 820 821 /* 822 * Add data to an sk_buff 823 */ 824 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len) 825 { 826 unsigned char *tmp = skb->tail; 827 SKB_LINEAR_ASSERT(skb); 828 skb->tail += len; 829 skb->len += len; 830 return tmp; 831 } 832 833 /** 834 * skb_put - add data to a buffer 835 * @skb: buffer to use 836 * @len: amount of data to add 837 * 838 * This function extends the used data area of the buffer. If this would 839 * exceed the total buffer size the kernel will panic. A pointer to the 840 * first byte of the extra data is returned. 841 */ 842 static inline unsigned char *skb_put(struct sk_buff *skb, unsigned int len) 843 { 844 unsigned char *tmp = skb->tail; 845 SKB_LINEAR_ASSERT(skb); 846 skb->tail += len; 847 skb->len += len; 848 if (unlikely(skb->tail>skb->end)) 849 skb_over_panic(skb, len, current_text_addr()); 850 return tmp; 851 } 852 853 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len) 854 { 855 skb->data -= len; 856 skb->len += len; 857 return skb->data; 858 } 859 860 /** 861 * skb_push - add data to the start of a buffer 862 * @skb: buffer to use 863 * @len: amount of data to add 864 * 865 * This function extends the used data area of the buffer at the buffer 866 * start. If this would exceed the total buffer headroom the kernel will 867 * panic. A pointer to the first byte of the extra data is returned. 868 */ 869 static inline unsigned char *skb_push(struct sk_buff *skb, unsigned int len) 870 { 871 skb->data -= len; 872 skb->len += len; 873 if (unlikely(skb->data<skb->head)) 874 skb_under_panic(skb, len, current_text_addr()); 875 return skb->data; 876 } 877 878 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len) 879 { 880 skb->len -= len; 881 BUG_ON(skb->len < skb->data_len); 882 return skb->data += len; 883 } 884 885 /** 886 * skb_pull - remove data from the start of a buffer 887 * @skb: buffer to use 888 * @len: amount of data to remove 889 * 890 * This function removes data from the start of a buffer, returning 891 * the memory to the headroom. A pointer to the next data in the buffer 892 * is returned. Once the data has been pulled future pushes will overwrite 893 * the old data. 894 */ 895 static inline unsigned char *skb_pull(struct sk_buff *skb, unsigned int len) 896 { 897 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 898 } 899 900 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta); 901 902 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len) 903 { 904 if (len > skb_headlen(skb) && 905 !__pskb_pull_tail(skb, len-skb_headlen(skb))) 906 return NULL; 907 skb->len -= len; 908 return skb->data += len; 909 } 910 911 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len) 912 { 913 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 914 } 915 916 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) 917 { 918 if (likely(len <= skb_headlen(skb))) 919 return 1; 920 if (unlikely(len > skb->len)) 921 return 0; 922 return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL; 923 } 924 925 /** 926 * skb_headroom - bytes at buffer head 927 * @skb: buffer to check 928 * 929 * Return the number of bytes of free space at the head of an &sk_buff. 930 */ 931 static inline int skb_headroom(const struct sk_buff *skb) 932 { 933 return skb->data - skb->head; 934 } 935 936 /** 937 * skb_tailroom - bytes at buffer end 938 * @skb: buffer to check 939 * 940 * Return the number of bytes of free space at the tail of an sk_buff 941 */ 942 static inline int skb_tailroom(const struct sk_buff *skb) 943 { 944 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 945 } 946 947 /** 948 * skb_reserve - adjust headroom 949 * @skb: buffer to alter 950 * @len: bytes to move 951 * 952 * Increase the headroom of an empty &sk_buff by reducing the tail 953 * room. This is only allowed for an empty buffer. 954 */ 955 static inline void skb_reserve(struct sk_buff *skb, int len) 956 { 957 skb->data += len; 958 skb->tail += len; 959 } 960 961 /* 962 * CPUs often take a performance hit when accessing unaligned memory 963 * locations. The actual performance hit varies, it can be small if the 964 * hardware handles it or large if we have to take an exception and fix it 965 * in software. 966 * 967 * Since an ethernet header is 14 bytes network drivers often end up with 968 * the IP header at an unaligned offset. The IP header can be aligned by 969 * shifting the start of the packet by 2 bytes. Drivers should do this 970 * with: 971 * 972 * skb_reserve(NET_IP_ALIGN); 973 * 974 * The downside to this alignment of the IP header is that the DMA is now 975 * unaligned. On some architectures the cost of an unaligned DMA is high 976 * and this cost outweighs the gains made by aligning the IP header. 977 * 978 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 979 * to be overridden. 980 */ 981 #ifndef NET_IP_ALIGN 982 #define NET_IP_ALIGN 2 983 #endif 984 985 /* 986 * The networking layer reserves some headroom in skb data (via 987 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 988 * the header has to grow. In the default case, if the header has to grow 989 * 16 bytes or less we avoid the reallocation. 990 * 991 * Unfortunately this headroom changes the DMA alignment of the resulting 992 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 993 * on some architectures. An architecture can override this value, 994 * perhaps setting it to a cacheline in size (since that will maintain 995 * cacheline alignment of the DMA). It must be a power of 2. 996 * 997 * Various parts of the networking layer expect at least 16 bytes of 998 * headroom, you should not reduce this. 999 */ 1000 #ifndef NET_SKB_PAD 1001 #define NET_SKB_PAD 16 1002 #endif 1003 1004 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len); 1005 1006 static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 1007 { 1008 if (unlikely(skb->data_len)) { 1009 WARN_ON(1); 1010 return; 1011 } 1012 skb->len = len; 1013 skb->tail = skb->data + len; 1014 } 1015 1016 /** 1017 * skb_trim - remove end from a buffer 1018 * @skb: buffer to alter 1019 * @len: new length 1020 * 1021 * Cut the length of a buffer down by removing data from the tail. If 1022 * the buffer is already under the length specified it is not modified. 1023 * The skb must be linear. 1024 */ 1025 static inline void skb_trim(struct sk_buff *skb, unsigned int len) 1026 { 1027 if (skb->len > len) 1028 __skb_trim(skb, len); 1029 } 1030 1031 1032 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 1033 { 1034 if (skb->data_len) 1035 return ___pskb_trim(skb, len); 1036 __skb_trim(skb, len); 1037 return 0; 1038 } 1039 1040 static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 1041 { 1042 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 1043 } 1044 1045 /** 1046 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 1047 * @skb: buffer to alter 1048 * @len: new length 1049 * 1050 * This is identical to pskb_trim except that the caller knows that 1051 * the skb is not cloned so we should never get an error due to out- 1052 * of-memory. 1053 */ 1054 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 1055 { 1056 int err = pskb_trim(skb, len); 1057 BUG_ON(err); 1058 } 1059 1060 /** 1061 * skb_orphan - orphan a buffer 1062 * @skb: buffer to orphan 1063 * 1064 * If a buffer currently has an owner then we call the owner's 1065 * destructor function and make the @skb unowned. The buffer continues 1066 * to exist but is no longer charged to its former owner. 1067 */ 1068 static inline void skb_orphan(struct sk_buff *skb) 1069 { 1070 if (skb->destructor) 1071 skb->destructor(skb); 1072 skb->destructor = NULL; 1073 skb->sk = NULL; 1074 } 1075 1076 /** 1077 * __skb_queue_purge - empty a list 1078 * @list: list to empty 1079 * 1080 * Delete all buffers on an &sk_buff list. Each buffer is removed from 1081 * the list and one reference dropped. This function does not take the 1082 * list lock and the caller must hold the relevant locks to use it. 1083 */ 1084 extern void skb_queue_purge(struct sk_buff_head *list); 1085 static inline void __skb_queue_purge(struct sk_buff_head *list) 1086 { 1087 struct sk_buff *skb; 1088 while ((skb = __skb_dequeue(list)) != NULL) 1089 kfree_skb(skb); 1090 } 1091 1092 /** 1093 * __dev_alloc_skb - allocate an skbuff for receiving 1094 * @length: length to allocate 1095 * @gfp_mask: get_free_pages mask, passed to alloc_skb 1096 * 1097 * Allocate a new &sk_buff and assign it a usage count of one. The 1098 * buffer has unspecified headroom built in. Users should allocate 1099 * the headroom they think they need without accounting for the 1100 * built in space. The built in space is used for optimisations. 1101 * 1102 * %NULL is returned if there is no free memory. 1103 */ 1104 static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 1105 gfp_t gfp_mask) 1106 { 1107 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask); 1108 if (likely(skb)) 1109 skb_reserve(skb, NET_SKB_PAD); 1110 return skb; 1111 } 1112 1113 /** 1114 * dev_alloc_skb - allocate an skbuff for receiving 1115 * @length: length to allocate 1116 * 1117 * Allocate a new &sk_buff and assign it a usage count of one. The 1118 * buffer has unspecified headroom built in. Users should allocate 1119 * the headroom they think they need without accounting for the 1120 * built in space. The built in space is used for optimisations. 1121 * 1122 * %NULL is returned if there is no free memory. Although this function 1123 * allocates memory it can be called from an interrupt. 1124 */ 1125 static inline struct sk_buff *dev_alloc_skb(unsigned int length) 1126 { 1127 return __dev_alloc_skb(length, GFP_ATOMIC); 1128 } 1129 1130 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev, 1131 unsigned int length, gfp_t gfp_mask); 1132 1133 /** 1134 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 1135 * @dev: network device to receive on 1136 * @length: length to allocate 1137 * 1138 * Allocate a new &sk_buff and assign it a usage count of one. The 1139 * buffer has unspecified headroom built in. Users should allocate 1140 * the headroom they think they need without accounting for the 1141 * built in space. The built in space is used for optimisations. 1142 * 1143 * %NULL is returned if there is no free memory. Although this function 1144 * allocates memory it can be called from an interrupt. 1145 */ 1146 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 1147 unsigned int length) 1148 { 1149 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 1150 } 1151 1152 /** 1153 * skb_cow - copy header of skb when it is required 1154 * @skb: buffer to cow 1155 * @headroom: needed headroom 1156 * 1157 * If the skb passed lacks sufficient headroom or its data part 1158 * is shared, data is reallocated. If reallocation fails, an error 1159 * is returned and original skb is not changed. 1160 * 1161 * The result is skb with writable area skb->head...skb->tail 1162 * and at least @headroom of space at head. 1163 */ 1164 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 1165 { 1166 int delta = (headroom > NET_SKB_PAD ? headroom : NET_SKB_PAD) - 1167 skb_headroom(skb); 1168 1169 if (delta < 0) 1170 delta = 0; 1171 1172 if (delta || skb_cloned(skb)) 1173 return pskb_expand_head(skb, (delta + (NET_SKB_PAD-1)) & 1174 ~(NET_SKB_PAD-1), 0, GFP_ATOMIC); 1175 return 0; 1176 } 1177 1178 /** 1179 * skb_padto - pad an skbuff up to a minimal size 1180 * @skb: buffer to pad 1181 * @len: minimal length 1182 * 1183 * Pads up a buffer to ensure the trailing bytes exist and are 1184 * blanked. If the buffer already contains sufficient data it 1185 * is untouched. Otherwise it is extended. Returns zero on 1186 * success. The skb is freed on error. 1187 */ 1188 1189 static inline int skb_padto(struct sk_buff *skb, unsigned int len) 1190 { 1191 unsigned int size = skb->len; 1192 if (likely(size >= len)) 1193 return 0; 1194 return skb_pad(skb, len-size); 1195 } 1196 1197 static inline int skb_add_data(struct sk_buff *skb, 1198 char __user *from, int copy) 1199 { 1200 const int off = skb->len; 1201 1202 if (skb->ip_summed == CHECKSUM_NONE) { 1203 int err = 0; 1204 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy), 1205 copy, 0, &err); 1206 if (!err) { 1207 skb->csum = csum_block_add(skb->csum, csum, off); 1208 return 0; 1209 } 1210 } else if (!copy_from_user(skb_put(skb, copy), from, copy)) 1211 return 0; 1212 1213 __skb_trim(skb, off); 1214 return -EFAULT; 1215 } 1216 1217 static inline int skb_can_coalesce(struct sk_buff *skb, int i, 1218 struct page *page, int off) 1219 { 1220 if (i) { 1221 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 1222 1223 return page == frag->page && 1224 off == frag->page_offset + frag->size; 1225 } 1226 return 0; 1227 } 1228 1229 static inline int __skb_linearize(struct sk_buff *skb) 1230 { 1231 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 1232 } 1233 1234 /** 1235 * skb_linearize - convert paged skb to linear one 1236 * @skb: buffer to linarize 1237 * 1238 * If there is no free memory -ENOMEM is returned, otherwise zero 1239 * is returned and the old skb data released. 1240 */ 1241 static inline int skb_linearize(struct sk_buff *skb) 1242 { 1243 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 1244 } 1245 1246 /** 1247 * skb_linearize_cow - make sure skb is linear and writable 1248 * @skb: buffer to process 1249 * 1250 * If there is no free memory -ENOMEM is returned, otherwise zero 1251 * is returned and the old skb data released. 1252 */ 1253 static inline int skb_linearize_cow(struct sk_buff *skb) 1254 { 1255 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 1256 __skb_linearize(skb) : 0; 1257 } 1258 1259 /** 1260 * skb_postpull_rcsum - update checksum for received skb after pull 1261 * @skb: buffer to update 1262 * @start: start of data before pull 1263 * @len: length of data pulled 1264 * 1265 * After doing a pull on a received packet, you need to call this to 1266 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 1267 * CHECKSUM_NONE so that it can be recomputed from scratch. 1268 */ 1269 1270 static inline void skb_postpull_rcsum(struct sk_buff *skb, 1271 const void *start, unsigned int len) 1272 { 1273 if (skb->ip_summed == CHECKSUM_COMPLETE) 1274 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0)); 1275 } 1276 1277 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 1278 1279 /** 1280 * pskb_trim_rcsum - trim received skb and update checksum 1281 * @skb: buffer to trim 1282 * @len: new length 1283 * 1284 * This is exactly the same as pskb_trim except that it ensures the 1285 * checksum of received packets are still valid after the operation. 1286 */ 1287 1288 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 1289 { 1290 if (likely(len >= skb->len)) 1291 return 0; 1292 if (skb->ip_summed == CHECKSUM_COMPLETE) 1293 skb->ip_summed = CHECKSUM_NONE; 1294 return __pskb_trim(skb, len); 1295 } 1296 1297 #define skb_queue_walk(queue, skb) \ 1298 for (skb = (queue)->next; \ 1299 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \ 1300 skb = skb->next) 1301 1302 #define skb_queue_reverse_walk(queue, skb) \ 1303 for (skb = (queue)->prev; \ 1304 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \ 1305 skb = skb->prev) 1306 1307 1308 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, 1309 int noblock, int *err); 1310 extern unsigned int datagram_poll(struct file *file, struct socket *sock, 1311 struct poll_table_struct *wait); 1312 extern int skb_copy_datagram_iovec(const struct sk_buff *from, 1313 int offset, struct iovec *to, 1314 int size); 1315 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb, 1316 int hlen, 1317 struct iovec *iov); 1318 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 1319 extern void skb_kill_datagram(struct sock *sk, struct sk_buff *skb, 1320 unsigned int flags); 1321 extern __wsum skb_checksum(const struct sk_buff *skb, int offset, 1322 int len, __wsum csum); 1323 extern int skb_copy_bits(const struct sk_buff *skb, int offset, 1324 void *to, int len); 1325 extern int skb_store_bits(const struct sk_buff *skb, int offset, 1326 void *from, int len); 1327 extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, 1328 int offset, u8 *to, int len, 1329 __wsum csum); 1330 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 1331 extern void skb_split(struct sk_buff *skb, 1332 struct sk_buff *skb1, const u32 len); 1333 1334 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features); 1335 1336 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset, 1337 int len, void *buffer) 1338 { 1339 int hlen = skb_headlen(skb); 1340 1341 if (hlen - offset >= len) 1342 return skb->data + offset; 1343 1344 if (skb_copy_bits(skb, offset, buffer, len) < 0) 1345 return NULL; 1346 1347 return buffer; 1348 } 1349 1350 extern void skb_init(void); 1351 extern void skb_add_mtu(int mtu); 1352 1353 /** 1354 * skb_get_timestamp - get timestamp from a skb 1355 * @skb: skb to get stamp from 1356 * @stamp: pointer to struct timeval to store stamp in 1357 * 1358 * Timestamps are stored in the skb as offsets to a base timestamp. 1359 * This function converts the offset back to a struct timeval and stores 1360 * it in stamp. 1361 */ 1362 static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp) 1363 { 1364 stamp->tv_sec = skb->tstamp.off_sec; 1365 stamp->tv_usec = skb->tstamp.off_usec; 1366 } 1367 1368 /** 1369 * skb_set_timestamp - set timestamp of a skb 1370 * @skb: skb to set stamp of 1371 * @stamp: pointer to struct timeval to get stamp from 1372 * 1373 * Timestamps are stored in the skb as offsets to a base timestamp. 1374 * This function converts a struct timeval to an offset and stores 1375 * it in the skb. 1376 */ 1377 static inline void skb_set_timestamp(struct sk_buff *skb, const struct timeval *stamp) 1378 { 1379 skb->tstamp.off_sec = stamp->tv_sec; 1380 skb->tstamp.off_usec = stamp->tv_usec; 1381 } 1382 1383 extern void __net_timestamp(struct sk_buff *skb); 1384 1385 extern __sum16 __skb_checksum_complete(struct sk_buff *skb); 1386 1387 /** 1388 * skb_checksum_complete - Calculate checksum of an entire packet 1389 * @skb: packet to process 1390 * 1391 * This function calculates the checksum over the entire packet plus 1392 * the value of skb->csum. The latter can be used to supply the 1393 * checksum of a pseudo header as used by TCP/UDP. It returns the 1394 * checksum. 1395 * 1396 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 1397 * this function can be used to verify that checksum on received 1398 * packets. In that case the function should return zero if the 1399 * checksum is correct. In particular, this function will return zero 1400 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 1401 * hardware has already verified the correctness of the checksum. 1402 */ 1403 static inline unsigned int skb_checksum_complete(struct sk_buff *skb) 1404 { 1405 return skb->ip_summed != CHECKSUM_UNNECESSARY && 1406 __skb_checksum_complete(skb); 1407 } 1408 1409 #ifdef CONFIG_NETFILTER 1410 static inline void nf_conntrack_put(struct nf_conntrack *nfct) 1411 { 1412 if (nfct && atomic_dec_and_test(&nfct->use)) 1413 nfct->destroy(nfct); 1414 } 1415 static inline void nf_conntrack_get(struct nf_conntrack *nfct) 1416 { 1417 if (nfct) 1418 atomic_inc(&nfct->use); 1419 } 1420 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 1421 static inline void nf_conntrack_get_reasm(struct sk_buff *skb) 1422 { 1423 if (skb) 1424 atomic_inc(&skb->users); 1425 } 1426 static inline void nf_conntrack_put_reasm(struct sk_buff *skb) 1427 { 1428 if (skb) 1429 kfree_skb(skb); 1430 } 1431 #endif 1432 #ifdef CONFIG_BRIDGE_NETFILTER 1433 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge) 1434 { 1435 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use)) 1436 kfree(nf_bridge); 1437 } 1438 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge) 1439 { 1440 if (nf_bridge) 1441 atomic_inc(&nf_bridge->use); 1442 } 1443 #endif /* CONFIG_BRIDGE_NETFILTER */ 1444 static inline void nf_reset(struct sk_buff *skb) 1445 { 1446 nf_conntrack_put(skb->nfct); 1447 skb->nfct = NULL; 1448 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 1449 nf_conntrack_put_reasm(skb->nfct_reasm); 1450 skb->nfct_reasm = NULL; 1451 #endif 1452 #ifdef CONFIG_BRIDGE_NETFILTER 1453 nf_bridge_put(skb->nf_bridge); 1454 skb->nf_bridge = NULL; 1455 #endif 1456 } 1457 1458 #else /* CONFIG_NETFILTER */ 1459 static inline void nf_reset(struct sk_buff *skb) {} 1460 #endif /* CONFIG_NETFILTER */ 1461 1462 #ifdef CONFIG_NETWORK_SECMARK 1463 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 1464 { 1465 to->secmark = from->secmark; 1466 } 1467 1468 static inline void skb_init_secmark(struct sk_buff *skb) 1469 { 1470 skb->secmark = 0; 1471 } 1472 #else 1473 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 1474 { } 1475 1476 static inline void skb_init_secmark(struct sk_buff *skb) 1477 { } 1478 #endif 1479 1480 static inline int skb_is_gso(const struct sk_buff *skb) 1481 { 1482 return skb_shinfo(skb)->gso_size; 1483 } 1484 1485 #endif /* __KERNEL__ */ 1486 #endif /* _LINUX_SKBUFF_H */ 1487