1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * Definitions for the 'struct sk_buff' memory handlers. 4 * 5 * Authors: 6 * Alan Cox, <[email protected]> 7 * Florian La Roche, <[email protected]> 8 */ 9 10 #ifndef _LINUX_SKBUFF_H 11 #define _LINUX_SKBUFF_H 12 13 #include <linux/kernel.h> 14 #include <linux/compiler.h> 15 #include <linux/time.h> 16 #include <linux/bug.h> 17 #include <linux/bvec.h> 18 #include <linux/cache.h> 19 #include <linux/rbtree.h> 20 #include <linux/socket.h> 21 #include <linux/refcount.h> 22 23 #include <linux/atomic.h> 24 #include <asm/types.h> 25 #include <linux/spinlock.h> 26 #include <linux/net.h> 27 #include <linux/textsearch.h> 28 #include <net/checksum.h> 29 #include <linux/rcupdate.h> 30 #include <linux/hrtimer.h> 31 #include <linux/dma-mapping.h> 32 #include <linux/netdev_features.h> 33 #include <linux/sched.h> 34 #include <linux/sched/clock.h> 35 #include <net/flow_dissector.h> 36 #include <linux/splice.h> 37 #include <linux/in6.h> 38 #include <linux/if_packet.h> 39 #include <linux/llist.h> 40 #include <net/flow.h> 41 #include <net/page_pool.h> 42 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 43 #include <linux/netfilter/nf_conntrack_common.h> 44 #endif 45 46 /* The interface for checksum offload between the stack and networking drivers 47 * is as follows... 48 * 49 * A. IP checksum related features 50 * 51 * Drivers advertise checksum offload capabilities in the features of a device. 52 * From the stack's point of view these are capabilities offered by the driver. 53 * A driver typically only advertises features that it is capable of offloading 54 * to its device. 55 * 56 * The checksum related features are: 57 * 58 * NETIF_F_HW_CSUM - The driver (or its device) is able to compute one 59 * IP (one's complement) checksum for any combination 60 * of protocols or protocol layering. The checksum is 61 * computed and set in a packet per the CHECKSUM_PARTIAL 62 * interface (see below). 63 * 64 * NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain 65 * TCP or UDP packets over IPv4. These are specifically 66 * unencapsulated packets of the form IPv4|TCP or 67 * IPv4|UDP where the Protocol field in the IPv4 header 68 * is TCP or UDP. The IPv4 header may contain IP options. 69 * This feature cannot be set in features for a device 70 * with NETIF_F_HW_CSUM also set. This feature is being 71 * DEPRECATED (see below). 72 * 73 * NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain 74 * TCP or UDP packets over IPv6. These are specifically 75 * unencapsulated packets of the form IPv6|TCP or 76 * IPv6|UDP where the Next Header field in the IPv6 77 * header is either TCP or UDP. IPv6 extension headers 78 * are not supported with this feature. This feature 79 * cannot be set in features for a device with 80 * NETIF_F_HW_CSUM also set. This feature is being 81 * DEPRECATED (see below). 82 * 83 * NETIF_F_RXCSUM - Driver (device) performs receive checksum offload. 84 * This flag is only used to disable the RX checksum 85 * feature for a device. The stack will accept receive 86 * checksum indication in packets received on a device 87 * regardless of whether NETIF_F_RXCSUM is set. 88 * 89 * B. Checksumming of received packets by device. Indication of checksum 90 * verification is set in skb->ip_summed. Possible values are: 91 * 92 * CHECKSUM_NONE: 93 * 94 * Device did not checksum this packet e.g. due to lack of capabilities. 95 * The packet contains full (though not verified) checksum in packet but 96 * not in skb->csum. Thus, skb->csum is undefined in this case. 97 * 98 * CHECKSUM_UNNECESSARY: 99 * 100 * The hardware you're dealing with doesn't calculate the full checksum 101 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums 102 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY 103 * if their checksums are okay. skb->csum is still undefined in this case 104 * though. A driver or device must never modify the checksum field in the 105 * packet even if checksum is verified. 106 * 107 * CHECKSUM_UNNECESSARY is applicable to following protocols: 108 * TCP: IPv6 and IPv4. 109 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a 110 * zero UDP checksum for either IPv4 or IPv6, the networking stack 111 * may perform further validation in this case. 112 * GRE: only if the checksum is present in the header. 113 * SCTP: indicates the CRC in SCTP header has been validated. 114 * FCOE: indicates the CRC in FC frame has been validated. 115 * 116 * skb->csum_level indicates the number of consecutive checksums found in 117 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY. 118 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet 119 * and a device is able to verify the checksums for UDP (possibly zero), 120 * GRE (checksum flag is set) and TCP, skb->csum_level would be set to 121 * two. If the device were only able to verify the UDP checksum and not 122 * GRE, either because it doesn't support GRE checksum or because GRE 123 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is 124 * not considered in this case). 125 * 126 * CHECKSUM_COMPLETE: 127 * 128 * This is the most generic way. The device supplied checksum of the _whole_ 129 * packet as seen by netif_rx() and fills in skb->csum. This means the 130 * hardware doesn't need to parse L3/L4 headers to implement this. 131 * 132 * Notes: 133 * - Even if device supports only some protocols, but is able to produce 134 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY. 135 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols. 136 * 137 * CHECKSUM_PARTIAL: 138 * 139 * A checksum is set up to be offloaded to a device as described in the 140 * output description for CHECKSUM_PARTIAL. This may occur on a packet 141 * received directly from another Linux OS, e.g., a virtualized Linux kernel 142 * on the same host, or it may be set in the input path in GRO or remote 143 * checksum offload. For the purposes of checksum verification, the checksum 144 * referred to by skb->csum_start + skb->csum_offset and any preceding 145 * checksums in the packet are considered verified. Any checksums in the 146 * packet that are after the checksum being offloaded are not considered to 147 * be verified. 148 * 149 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload 150 * in the skb->ip_summed for a packet. Values are: 151 * 152 * CHECKSUM_PARTIAL: 153 * 154 * The driver is required to checksum the packet as seen by hard_start_xmit() 155 * from skb->csum_start up to the end, and to record/write the checksum at 156 * offset skb->csum_start + skb->csum_offset. A driver may verify that the 157 * csum_start and csum_offset values are valid values given the length and 158 * offset of the packet, but it should not attempt to validate that the 159 * checksum refers to a legitimate transport layer checksum -- it is the 160 * purview of the stack to validate that csum_start and csum_offset are set 161 * correctly. 162 * 163 * When the stack requests checksum offload for a packet, the driver MUST 164 * ensure that the checksum is set correctly. A driver can either offload the 165 * checksum calculation to the device, or call skb_checksum_help (in the case 166 * that the device does not support offload for a particular checksum). 167 * 168 * NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of 169 * NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate 170 * checksum offload capability. 171 * skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based 172 * on network device checksumming capabilities: if a packet does not match 173 * them, skb_checksum_help or skb_crc32c_help (depending on the value of 174 * csum_not_inet, see item D.) is called to resolve the checksum. 175 * 176 * CHECKSUM_NONE: 177 * 178 * The skb was already checksummed by the protocol, or a checksum is not 179 * required. 180 * 181 * CHECKSUM_UNNECESSARY: 182 * 183 * This has the same meaning as CHECKSUM_NONE for checksum offload on 184 * output. 185 * 186 * CHECKSUM_COMPLETE: 187 * Not used in checksum output. If a driver observes a packet with this value 188 * set in skbuff, it should treat the packet as if CHECKSUM_NONE were set. 189 * 190 * D. Non-IP checksum (CRC) offloads 191 * 192 * NETIF_F_SCTP_CRC - This feature indicates that a device is capable of 193 * offloading the SCTP CRC in a packet. To perform this offload the stack 194 * will set csum_start and csum_offset accordingly, set ip_summed to 195 * CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in 196 * the skbuff that the CHECKSUM_PARTIAL refers to CRC32c. 197 * A driver that supports both IP checksum offload and SCTP CRC32c offload 198 * must verify which offload is configured for a packet by testing the 199 * value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve 200 * CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1. 201 * 202 * NETIF_F_FCOE_CRC - This feature indicates that a device is capable of 203 * offloading the FCOE CRC in a packet. To perform this offload the stack 204 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset 205 * accordingly. Note that there is no indication in the skbuff that the 206 * CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports 207 * both IP checksum offload and FCOE CRC offload must verify which offload 208 * is configured for a packet, presumably by inspecting packet headers. 209 * 210 * E. Checksumming on output with GSO. 211 * 212 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload 213 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the 214 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as 215 * part of the GSO operation is implied. If a checksum is being offloaded 216 * with GSO then ip_summed is CHECKSUM_PARTIAL, and both csum_start and 217 * csum_offset are set to refer to the outermost checksum being offloaded 218 * (two offloaded checksums are possible with UDP encapsulation). 219 */ 220 221 /* Don't change this without changing skb_csum_unnecessary! */ 222 #define CHECKSUM_NONE 0 223 #define CHECKSUM_UNNECESSARY 1 224 #define CHECKSUM_COMPLETE 2 225 #define CHECKSUM_PARTIAL 3 226 227 /* Maximum value in skb->csum_level */ 228 #define SKB_MAX_CSUM_LEVEL 3 229 230 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES) 231 #define SKB_WITH_OVERHEAD(X) \ 232 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 233 #define SKB_MAX_ORDER(X, ORDER) \ 234 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 235 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 236 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 237 238 /* return minimum truesize of one skb containing X bytes of data */ 239 #define SKB_TRUESIZE(X) ((X) + \ 240 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ 241 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 242 243 struct ahash_request; 244 struct net_device; 245 struct scatterlist; 246 struct pipe_inode_info; 247 struct iov_iter; 248 struct napi_struct; 249 struct bpf_prog; 250 union bpf_attr; 251 struct skb_ext; 252 253 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 254 struct nf_bridge_info { 255 enum { 256 BRNF_PROTO_UNCHANGED, 257 BRNF_PROTO_8021Q, 258 BRNF_PROTO_PPPOE 259 } orig_proto:8; 260 u8 pkt_otherhost:1; 261 u8 in_prerouting:1; 262 u8 bridged_dnat:1; 263 __u16 frag_max_size; 264 struct net_device *physindev; 265 266 /* always valid & non-NULL from FORWARD on, for physdev match */ 267 struct net_device *physoutdev; 268 union { 269 /* prerouting: detect dnat in orig/reply direction */ 270 __be32 ipv4_daddr; 271 struct in6_addr ipv6_daddr; 272 273 /* after prerouting + nat detected: store original source 274 * mac since neigh resolution overwrites it, only used while 275 * skb is out in neigh layer. 276 */ 277 char neigh_header[8]; 278 }; 279 }; 280 #endif 281 282 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 283 /* Chain in tc_skb_ext will be used to share the tc chain with 284 * ovs recirc_id. It will be set to the current chain by tc 285 * and read by ovs to recirc_id. 286 */ 287 struct tc_skb_ext { 288 __u32 chain; 289 __u16 mru; 290 __u16 zone; 291 u8 post_ct:1; 292 u8 post_ct_snat:1; 293 u8 post_ct_dnat:1; 294 }; 295 #endif 296 297 struct sk_buff_head { 298 /* These two members must be first to match sk_buff. */ 299 struct_group_tagged(sk_buff_list, list, 300 struct sk_buff *next; 301 struct sk_buff *prev; 302 ); 303 304 __u32 qlen; 305 spinlock_t lock; 306 }; 307 308 struct sk_buff; 309 310 /* The reason of skb drop, which is used in kfree_skb_reason(). 311 * en...maybe they should be splited by group? 312 * 313 * Each item here should also be in 'TRACE_SKB_DROP_REASON', which is 314 * used to translate the reason to string. 315 */ 316 enum skb_drop_reason { 317 SKB_DROP_REASON_NOT_SPECIFIED, /* drop reason is not specified */ 318 SKB_DROP_REASON_NO_SOCKET, /* socket not found */ 319 SKB_DROP_REASON_PKT_TOO_SMALL, /* packet size is too small */ 320 SKB_DROP_REASON_TCP_CSUM, /* TCP checksum error */ 321 SKB_DROP_REASON_SOCKET_FILTER, /* dropped by socket filter */ 322 SKB_DROP_REASON_UDP_CSUM, /* UDP checksum error */ 323 SKB_DROP_REASON_NETFILTER_DROP, /* dropped by netfilter */ 324 SKB_DROP_REASON_OTHERHOST, /* packet don't belong to current 325 * host (interface is in promisc 326 * mode) 327 */ 328 SKB_DROP_REASON_IP_CSUM, /* IP checksum error */ 329 SKB_DROP_REASON_IP_INHDR, /* there is something wrong with 330 * IP header (see 331 * IPSTATS_MIB_INHDRERRORS) 332 */ 333 SKB_DROP_REASON_IP_RPFILTER, /* IP rpfilter validate failed. 334 * see the document for rp_filter 335 * in ip-sysctl.rst for more 336 * information 337 */ 338 SKB_DROP_REASON_UNICAST_IN_L2_MULTICAST, /* destination address of L2 339 * is multicast, but L3 is 340 * unicast. 341 */ 342 SKB_DROP_REASON_XFRM_POLICY, /* xfrm policy check failed */ 343 SKB_DROP_REASON_IP_NOPROTO, /* no support for IP protocol */ 344 SKB_DROP_REASON_SOCKET_RCVBUFF, /* socket receive buff is full */ 345 SKB_DROP_REASON_PROTO_MEM, /* proto memory limition, such as 346 * udp packet drop out of 347 * udp_memory_allocated. 348 */ 349 SKB_DROP_REASON_TCP_MD5NOTFOUND, /* no MD5 hash and one 350 * expected, corresponding 351 * to LINUX_MIB_TCPMD5NOTFOUND 352 */ 353 SKB_DROP_REASON_TCP_MD5UNEXPECTED, /* MD5 hash and we're not 354 * expecting one, corresponding 355 * to LINUX_MIB_TCPMD5UNEXPECTED 356 */ 357 SKB_DROP_REASON_TCP_MD5FAILURE, /* MD5 hash and its wrong, 358 * corresponding to 359 * LINUX_MIB_TCPMD5FAILURE 360 */ 361 SKB_DROP_REASON_SOCKET_BACKLOG, /* failed to add skb to socket 362 * backlog (see 363 * LINUX_MIB_TCPBACKLOGDROP) 364 */ 365 SKB_DROP_REASON_TCP_FLAGS, /* TCP flags invalid */ 366 SKB_DROP_REASON_TCP_ZEROWINDOW, /* TCP receive window size is zero, 367 * see LINUX_MIB_TCPZEROWINDOWDROP 368 */ 369 SKB_DROP_REASON_TCP_OLD_DATA, /* the TCP data reveived is already 370 * received before (spurious retrans 371 * may happened), see 372 * LINUX_MIB_DELAYEDACKLOST 373 */ 374 SKB_DROP_REASON_TCP_OVERWINDOW, /* the TCP data is out of window, 375 * the seq of the first byte exceed 376 * the right edges of receive 377 * window 378 */ 379 SKB_DROP_REASON_TCP_OFOMERGE, /* the data of skb is already in 380 * the ofo queue, corresponding to 381 * LINUX_MIB_TCPOFOMERGE 382 */ 383 SKB_DROP_REASON_IP_OUTNOROUTES, /* route lookup failed */ 384 SKB_DROP_REASON_BPF_CGROUP_EGRESS, /* dropped by 385 * BPF_PROG_TYPE_CGROUP_SKB 386 * eBPF program 387 */ 388 SKB_DROP_REASON_IPV6DISABLED, /* IPv6 is disabled on the device */ 389 SKB_DROP_REASON_NEIGH_CREATEFAIL, /* failed to create neigh 390 * entry 391 */ 392 SKB_DROP_REASON_NEIGH_FAILED, /* neigh entry in failed state */ 393 SKB_DROP_REASON_NEIGH_QUEUEFULL, /* arp_queue for neigh 394 * entry is full 395 */ 396 SKB_DROP_REASON_NEIGH_DEAD, /* neigh entry is dead */ 397 SKB_DROP_REASON_MAX, 398 }; 399 400 /* To allow 64K frame to be packed as single skb without frag_list we 401 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for 402 * buffers which do not start on a page boundary. 403 * 404 * Since GRO uses frags we allocate at least 16 regardless of page 405 * size. 406 */ 407 #if (65536/PAGE_SIZE + 1) < 16 408 #define MAX_SKB_FRAGS 16UL 409 #else 410 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1) 411 #endif 412 extern int sysctl_max_skb_frags; 413 414 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to 415 * segment using its current segmentation instead. 416 */ 417 #define GSO_BY_FRAGS 0xFFFF 418 419 typedef struct bio_vec skb_frag_t; 420 421 /** 422 * skb_frag_size() - Returns the size of a skb fragment 423 * @frag: skb fragment 424 */ 425 static inline unsigned int skb_frag_size(const skb_frag_t *frag) 426 { 427 return frag->bv_len; 428 } 429 430 /** 431 * skb_frag_size_set() - Sets the size of a skb fragment 432 * @frag: skb fragment 433 * @size: size of fragment 434 */ 435 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) 436 { 437 frag->bv_len = size; 438 } 439 440 /** 441 * skb_frag_size_add() - Increments the size of a skb fragment by @delta 442 * @frag: skb fragment 443 * @delta: value to add 444 */ 445 static inline void skb_frag_size_add(skb_frag_t *frag, int delta) 446 { 447 frag->bv_len += delta; 448 } 449 450 /** 451 * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta 452 * @frag: skb fragment 453 * @delta: value to subtract 454 */ 455 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) 456 { 457 frag->bv_len -= delta; 458 } 459 460 /** 461 * skb_frag_must_loop - Test if %p is a high memory page 462 * @p: fragment's page 463 */ 464 static inline bool skb_frag_must_loop(struct page *p) 465 { 466 #if defined(CONFIG_HIGHMEM) 467 if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p)) 468 return true; 469 #endif 470 return false; 471 } 472 473 /** 474 * skb_frag_foreach_page - loop over pages in a fragment 475 * 476 * @f: skb frag to operate on 477 * @f_off: offset from start of f->bv_page 478 * @f_len: length from f_off to loop over 479 * @p: (temp var) current page 480 * @p_off: (temp var) offset from start of current page, 481 * non-zero only on first page. 482 * @p_len: (temp var) length in current page, 483 * < PAGE_SIZE only on first and last page. 484 * @copied: (temp var) length so far, excluding current p_len. 485 * 486 * A fragment can hold a compound page, in which case per-page 487 * operations, notably kmap_atomic, must be called for each 488 * regular page. 489 */ 490 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \ 491 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \ 492 p_off = (f_off) & (PAGE_SIZE - 1), \ 493 p_len = skb_frag_must_loop(p) ? \ 494 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \ 495 copied = 0; \ 496 copied < f_len; \ 497 copied += p_len, p++, p_off = 0, \ 498 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \ 499 500 #define HAVE_HW_TIME_STAMP 501 502 /** 503 * struct skb_shared_hwtstamps - hardware time stamps 504 * @hwtstamp: hardware time stamp transformed into duration 505 * since arbitrary point in time 506 * 507 * Software time stamps generated by ktime_get_real() are stored in 508 * skb->tstamp. 509 * 510 * hwtstamps can only be compared against other hwtstamps from 511 * the same device. 512 * 513 * This structure is attached to packets as part of the 514 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 515 */ 516 struct skb_shared_hwtstamps { 517 ktime_t hwtstamp; 518 }; 519 520 /* Definitions for tx_flags in struct skb_shared_info */ 521 enum { 522 /* generate hardware time stamp */ 523 SKBTX_HW_TSTAMP = 1 << 0, 524 525 /* generate software time stamp when queueing packet to NIC */ 526 SKBTX_SW_TSTAMP = 1 << 1, 527 528 /* device driver is going to provide hardware time stamp */ 529 SKBTX_IN_PROGRESS = 1 << 2, 530 531 /* generate wifi status information (where possible) */ 532 SKBTX_WIFI_STATUS = 1 << 4, 533 534 /* generate software time stamp when entering packet scheduling */ 535 SKBTX_SCHED_TSTAMP = 1 << 6, 536 }; 537 538 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \ 539 SKBTX_SCHED_TSTAMP) 540 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP) 541 542 /* Definitions for flags in struct skb_shared_info */ 543 enum { 544 /* use zcopy routines */ 545 SKBFL_ZEROCOPY_ENABLE = BIT(0), 546 547 /* This indicates at least one fragment might be overwritten 548 * (as in vmsplice(), sendfile() ...) 549 * If we need to compute a TX checksum, we'll need to copy 550 * all frags to avoid possible bad checksum 551 */ 552 SKBFL_SHARED_FRAG = BIT(1), 553 554 /* segment contains only zerocopy data and should not be 555 * charged to the kernel memory. 556 */ 557 SKBFL_PURE_ZEROCOPY = BIT(2), 558 }; 559 560 #define SKBFL_ZEROCOPY_FRAG (SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG) 561 #define SKBFL_ALL_ZEROCOPY (SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY) 562 563 /* 564 * The callback notifies userspace to release buffers when skb DMA is done in 565 * lower device, the skb last reference should be 0 when calling this. 566 * The zerocopy_success argument is true if zero copy transmit occurred, 567 * false on data copy or out of memory error caused by data copy attempt. 568 * The ctx field is used to track device context. 569 * The desc field is used to track userspace buffer index. 570 */ 571 struct ubuf_info { 572 void (*callback)(struct sk_buff *, struct ubuf_info *, 573 bool zerocopy_success); 574 union { 575 struct { 576 unsigned long desc; 577 void *ctx; 578 }; 579 struct { 580 u32 id; 581 u16 len; 582 u16 zerocopy:1; 583 u32 bytelen; 584 }; 585 }; 586 refcount_t refcnt; 587 u8 flags; 588 589 struct mmpin { 590 struct user_struct *user; 591 unsigned int num_pg; 592 } mmp; 593 }; 594 595 #define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg)) 596 597 int mm_account_pinned_pages(struct mmpin *mmp, size_t size); 598 void mm_unaccount_pinned_pages(struct mmpin *mmp); 599 600 struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size); 601 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, 602 struct ubuf_info *uarg); 603 604 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref); 605 606 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg, 607 bool success); 608 609 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len); 610 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 611 struct msghdr *msg, int len, 612 struct ubuf_info *uarg); 613 614 /* This data is invariant across clones and lives at 615 * the end of the header data, ie. at skb->end. 616 */ 617 struct skb_shared_info { 618 __u8 flags; 619 __u8 meta_len; 620 __u8 nr_frags; 621 __u8 tx_flags; 622 unsigned short gso_size; 623 /* Warning: this field is not always filled in (UFO)! */ 624 unsigned short gso_segs; 625 struct sk_buff *frag_list; 626 struct skb_shared_hwtstamps hwtstamps; 627 unsigned int gso_type; 628 u32 tskey; 629 630 /* 631 * Warning : all fields before dataref are cleared in __alloc_skb() 632 */ 633 atomic_t dataref; 634 unsigned int xdp_frags_size; 635 636 /* Intermediate layers must ensure that destructor_arg 637 * remains valid until skb destructor */ 638 void * destructor_arg; 639 640 /* must be last field, see pskb_expand_head() */ 641 skb_frag_t frags[MAX_SKB_FRAGS]; 642 }; 643 644 /* We divide dataref into two halves. The higher 16 bits hold references 645 * to the payload part of skb->data. The lower 16 bits hold references to 646 * the entire skb->data. A clone of a headerless skb holds the length of 647 * the header in skb->hdr_len. 648 * 649 * All users must obey the rule that the skb->data reference count must be 650 * greater than or equal to the payload reference count. 651 * 652 * Holding a reference to the payload part means that the user does not 653 * care about modifications to the header part of skb->data. 654 */ 655 #define SKB_DATAREF_SHIFT 16 656 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 657 658 659 enum { 660 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */ 661 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */ 662 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */ 663 }; 664 665 enum { 666 SKB_GSO_TCPV4 = 1 << 0, 667 668 /* This indicates the skb is from an untrusted source. */ 669 SKB_GSO_DODGY = 1 << 1, 670 671 /* This indicates the tcp segment has CWR set. */ 672 SKB_GSO_TCP_ECN = 1 << 2, 673 674 SKB_GSO_TCP_FIXEDID = 1 << 3, 675 676 SKB_GSO_TCPV6 = 1 << 4, 677 678 SKB_GSO_FCOE = 1 << 5, 679 680 SKB_GSO_GRE = 1 << 6, 681 682 SKB_GSO_GRE_CSUM = 1 << 7, 683 684 SKB_GSO_IPXIP4 = 1 << 8, 685 686 SKB_GSO_IPXIP6 = 1 << 9, 687 688 SKB_GSO_UDP_TUNNEL = 1 << 10, 689 690 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11, 691 692 SKB_GSO_PARTIAL = 1 << 12, 693 694 SKB_GSO_TUNNEL_REMCSUM = 1 << 13, 695 696 SKB_GSO_SCTP = 1 << 14, 697 698 SKB_GSO_ESP = 1 << 15, 699 700 SKB_GSO_UDP = 1 << 16, 701 702 SKB_GSO_UDP_L4 = 1 << 17, 703 704 SKB_GSO_FRAGLIST = 1 << 18, 705 }; 706 707 #if BITS_PER_LONG > 32 708 #define NET_SKBUFF_DATA_USES_OFFSET 1 709 #endif 710 711 #ifdef NET_SKBUFF_DATA_USES_OFFSET 712 typedef unsigned int sk_buff_data_t; 713 #else 714 typedef unsigned char *sk_buff_data_t; 715 #endif 716 717 /** 718 * struct sk_buff - socket buffer 719 * @next: Next buffer in list 720 * @prev: Previous buffer in list 721 * @tstamp: Time we arrived/left 722 * @skb_mstamp_ns: (aka @tstamp) earliest departure time; start point 723 * for retransmit timer 724 * @rbnode: RB tree node, alternative to next/prev for netem/tcp 725 * @list: queue head 726 * @ll_node: anchor in an llist (eg socket defer_list) 727 * @sk: Socket we are owned by 728 * @ip_defrag_offset: (aka @sk) alternate use of @sk, used in 729 * fragmentation management 730 * @dev: Device we arrived on/are leaving by 731 * @dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL 732 * @cb: Control buffer. Free for use by every layer. Put private vars here 733 * @_skb_refdst: destination entry (with norefcount bit) 734 * @sp: the security path, used for xfrm 735 * @len: Length of actual data 736 * @data_len: Data length 737 * @mac_len: Length of link layer header 738 * @hdr_len: writable header length of cloned skb 739 * @csum: Checksum (must include start/offset pair) 740 * @csum_start: Offset from skb->head where checksumming should start 741 * @csum_offset: Offset from csum_start where checksum should be stored 742 * @priority: Packet queueing priority 743 * @ignore_df: allow local fragmentation 744 * @cloned: Head may be cloned (check refcnt to be sure) 745 * @ip_summed: Driver fed us an IP checksum 746 * @nohdr: Payload reference only, must not modify header 747 * @pkt_type: Packet class 748 * @fclone: skbuff clone status 749 * @ipvs_property: skbuff is owned by ipvs 750 * @inner_protocol_type: whether the inner protocol is 751 * ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO 752 * @remcsum_offload: remote checksum offload is enabled 753 * @offload_fwd_mark: Packet was L2-forwarded in hardware 754 * @offload_l3_fwd_mark: Packet was L3-forwarded in hardware 755 * @tc_skip_classify: do not classify packet. set by IFB device 756 * @tc_at_ingress: used within tc_classify to distinguish in/egress 757 * @redirected: packet was redirected by packet classifier 758 * @from_ingress: packet was redirected from the ingress path 759 * @nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h 760 * @peeked: this packet has been seen already, so stats have been 761 * done for it, don't do them again 762 * @nf_trace: netfilter packet trace flag 763 * @protocol: Packet protocol from driver 764 * @destructor: Destruct function 765 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue) 766 * @_sk_redir: socket redirection information for skmsg 767 * @_nfct: Associated connection, if any (with nfctinfo bits) 768 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 769 * @skb_iif: ifindex of device we arrived on 770 * @tc_index: Traffic control index 771 * @hash: the packet hash 772 * @queue_mapping: Queue mapping for multiqueue devices 773 * @head_frag: skb was allocated from page fragments, 774 * not allocated by kmalloc() or vmalloc(). 775 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves 776 * @pp_recycle: mark the packet for recycling instead of freeing (implies 777 * page_pool support on driver) 778 * @active_extensions: active extensions (skb_ext_id types) 779 * @ndisc_nodetype: router type (from link layer) 780 * @ooo_okay: allow the mapping of a socket to a queue to be changed 781 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport 782 * ports. 783 * @sw_hash: indicates hash was computed in software stack 784 * @wifi_acked_valid: wifi_acked was set 785 * @wifi_acked: whether frame was acked on wifi or not 786 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS 787 * @encapsulation: indicates the inner headers in the skbuff are valid 788 * @encap_hdr_csum: software checksum is needed 789 * @csum_valid: checksum is already valid 790 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL 791 * @csum_complete_sw: checksum was completed by software 792 * @csum_level: indicates the number of consecutive checksums found in 793 * the packet minus one that have been verified as 794 * CHECKSUM_UNNECESSARY (max 3) 795 * @dst_pending_confirm: need to confirm neighbour 796 * @decrypted: Decrypted SKB 797 * @slow_gro: state present at GRO time, slower prepare step required 798 * @napi_id: id of the NAPI struct this skb came from 799 * @sender_cpu: (aka @napi_id) source CPU in XPS 800 * @secmark: security marking 801 * @mark: Generic packet mark 802 * @reserved_tailroom: (aka @mark) number of bytes of free space available 803 * at the tail of an sk_buff 804 * @vlan_present: VLAN tag is present 805 * @vlan_proto: vlan encapsulation protocol 806 * @vlan_tci: vlan tag control information 807 * @inner_protocol: Protocol (encapsulation) 808 * @inner_ipproto: (aka @inner_protocol) stores ipproto when 809 * skb->inner_protocol_type == ENCAP_TYPE_IPPROTO; 810 * @inner_transport_header: Inner transport layer header (encapsulation) 811 * @inner_network_header: Network layer header (encapsulation) 812 * @inner_mac_header: Link layer header (encapsulation) 813 * @transport_header: Transport layer header 814 * @network_header: Network layer header 815 * @mac_header: Link layer header 816 * @kcov_handle: KCOV remote handle for remote coverage collection 817 * @tail: Tail pointer 818 * @end: End pointer 819 * @head: Head of buffer 820 * @data: Data head pointer 821 * @truesize: Buffer size 822 * @users: User count - see {datagram,tcp}.c 823 * @extensions: allocated extensions, valid if active_extensions is nonzero 824 */ 825 826 struct sk_buff { 827 union { 828 struct { 829 /* These two members must be first to match sk_buff_head. */ 830 struct sk_buff *next; 831 struct sk_buff *prev; 832 833 union { 834 struct net_device *dev; 835 /* Some protocols might use this space to store information, 836 * while device pointer would be NULL. 837 * UDP receive path is one user. 838 */ 839 unsigned long dev_scratch; 840 }; 841 }; 842 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */ 843 struct list_head list; 844 struct llist_node ll_node; 845 }; 846 847 union { 848 struct sock *sk; 849 int ip_defrag_offset; 850 }; 851 852 union { 853 ktime_t tstamp; 854 u64 skb_mstamp_ns; /* earliest departure time */ 855 }; 856 /* 857 * This is the control buffer. It is free to use for every 858 * layer. Please put your private variables there. If you 859 * want to keep them across layers you have to do a skb_clone() 860 * first. This is owned by whoever has the skb queued ATM. 861 */ 862 char cb[48] __aligned(8); 863 864 union { 865 struct { 866 unsigned long _skb_refdst; 867 void (*destructor)(struct sk_buff *skb); 868 }; 869 struct list_head tcp_tsorted_anchor; 870 #ifdef CONFIG_NET_SOCK_MSG 871 unsigned long _sk_redir; 872 #endif 873 }; 874 875 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 876 unsigned long _nfct; 877 #endif 878 unsigned int len, 879 data_len; 880 __u16 mac_len, 881 hdr_len; 882 883 /* Following fields are _not_ copied in __copy_skb_header() 884 * Note that queue_mapping is here mostly to fill a hole. 885 */ 886 __u16 queue_mapping; 887 888 /* if you move cloned around you also must adapt those constants */ 889 #ifdef __BIG_ENDIAN_BITFIELD 890 #define CLONED_MASK (1 << 7) 891 #else 892 #define CLONED_MASK 1 893 #endif 894 #define CLONED_OFFSET offsetof(struct sk_buff, __cloned_offset) 895 896 /* private: */ 897 __u8 __cloned_offset[0]; 898 /* public: */ 899 __u8 cloned:1, 900 nohdr:1, 901 fclone:2, 902 peeked:1, 903 head_frag:1, 904 pfmemalloc:1, 905 pp_recycle:1; /* page_pool recycle indicator */ 906 #ifdef CONFIG_SKB_EXTENSIONS 907 __u8 active_extensions; 908 #endif 909 910 /* Fields enclosed in headers group are copied 911 * using a single memcpy() in __copy_skb_header() 912 */ 913 struct_group(headers, 914 915 /* private: */ 916 __u8 __pkt_type_offset[0]; 917 /* public: */ 918 __u8 pkt_type:3; /* see PKT_TYPE_MAX */ 919 __u8 ignore_df:1; 920 __u8 nf_trace:1; 921 __u8 ip_summed:2; 922 __u8 ooo_okay:1; 923 924 __u8 l4_hash:1; 925 __u8 sw_hash:1; 926 __u8 wifi_acked_valid:1; 927 __u8 wifi_acked:1; 928 __u8 no_fcs:1; 929 /* Indicates the inner headers are valid in the skbuff. */ 930 __u8 encapsulation:1; 931 __u8 encap_hdr_csum:1; 932 __u8 csum_valid:1; 933 934 /* private: */ 935 __u8 __pkt_vlan_present_offset[0]; 936 /* public: */ 937 __u8 vlan_present:1; /* See PKT_VLAN_PRESENT_BIT */ 938 __u8 csum_complete_sw:1; 939 __u8 csum_level:2; 940 __u8 csum_not_inet:1; 941 __u8 dst_pending_confirm:1; 942 #ifdef CONFIG_IPV6_NDISC_NODETYPE 943 __u8 ndisc_nodetype:2; 944 #endif 945 946 __u8 ipvs_property:1; 947 __u8 inner_protocol_type:1; 948 __u8 remcsum_offload:1; 949 #ifdef CONFIG_NET_SWITCHDEV 950 __u8 offload_fwd_mark:1; 951 __u8 offload_l3_fwd_mark:1; 952 #endif 953 #ifdef CONFIG_NET_CLS_ACT 954 __u8 tc_skip_classify:1; 955 __u8 tc_at_ingress:1; 956 #endif 957 __u8 redirected:1; 958 #ifdef CONFIG_NET_REDIRECT 959 __u8 from_ingress:1; 960 #endif 961 #ifdef CONFIG_NETFILTER_SKIP_EGRESS 962 __u8 nf_skip_egress:1; 963 #endif 964 #ifdef CONFIG_TLS_DEVICE 965 __u8 decrypted:1; 966 #endif 967 __u8 slow_gro:1; 968 969 #ifdef CONFIG_NET_SCHED 970 __u16 tc_index; /* traffic control index */ 971 #endif 972 973 union { 974 __wsum csum; 975 struct { 976 __u16 csum_start; 977 __u16 csum_offset; 978 }; 979 }; 980 __u32 priority; 981 int skb_iif; 982 __u32 hash; 983 __be16 vlan_proto; 984 __u16 vlan_tci; 985 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS) 986 union { 987 unsigned int napi_id; 988 unsigned int sender_cpu; 989 }; 990 #endif 991 #ifdef CONFIG_NETWORK_SECMARK 992 __u32 secmark; 993 #endif 994 995 union { 996 __u32 mark; 997 __u32 reserved_tailroom; 998 }; 999 1000 union { 1001 __be16 inner_protocol; 1002 __u8 inner_ipproto; 1003 }; 1004 1005 __u16 inner_transport_header; 1006 __u16 inner_network_header; 1007 __u16 inner_mac_header; 1008 1009 __be16 protocol; 1010 __u16 transport_header; 1011 __u16 network_header; 1012 __u16 mac_header; 1013 1014 #ifdef CONFIG_KCOV 1015 u64 kcov_handle; 1016 #endif 1017 1018 ); /* end headers group */ 1019 1020 /* These elements must be at the end, see alloc_skb() for details. */ 1021 sk_buff_data_t tail; 1022 sk_buff_data_t end; 1023 unsigned char *head, 1024 *data; 1025 unsigned int truesize; 1026 refcount_t users; 1027 1028 #ifdef CONFIG_SKB_EXTENSIONS 1029 /* only useable after checking ->active_extensions != 0 */ 1030 struct skb_ext *extensions; 1031 #endif 1032 }; 1033 1034 /* if you move pkt_type around you also must adapt those constants */ 1035 #ifdef __BIG_ENDIAN_BITFIELD 1036 #define PKT_TYPE_MAX (7 << 5) 1037 #else 1038 #define PKT_TYPE_MAX 7 1039 #endif 1040 #define PKT_TYPE_OFFSET offsetof(struct sk_buff, __pkt_type_offset) 1041 1042 /* if you move pkt_vlan_present around you also must adapt these constants */ 1043 #ifdef __BIG_ENDIAN_BITFIELD 1044 #define PKT_VLAN_PRESENT_BIT 7 1045 #else 1046 #define PKT_VLAN_PRESENT_BIT 0 1047 #endif 1048 #define PKT_VLAN_PRESENT_OFFSET offsetof(struct sk_buff, __pkt_vlan_present_offset) 1049 1050 #ifdef __KERNEL__ 1051 /* 1052 * Handling routines are only of interest to the kernel 1053 */ 1054 1055 #define SKB_ALLOC_FCLONE 0x01 1056 #define SKB_ALLOC_RX 0x02 1057 #define SKB_ALLOC_NAPI 0x04 1058 1059 /** 1060 * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves 1061 * @skb: buffer 1062 */ 1063 static inline bool skb_pfmemalloc(const struct sk_buff *skb) 1064 { 1065 return unlikely(skb->pfmemalloc); 1066 } 1067 1068 /* 1069 * skb might have a dst pointer attached, refcounted or not. 1070 * _skb_refdst low order bit is set if refcount was _not_ taken 1071 */ 1072 #define SKB_DST_NOREF 1UL 1073 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 1074 1075 /** 1076 * skb_dst - returns skb dst_entry 1077 * @skb: buffer 1078 * 1079 * Returns skb dst_entry, regardless of reference taken or not. 1080 */ 1081 static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 1082 { 1083 /* If refdst was not refcounted, check we still are in a 1084 * rcu_read_lock section 1085 */ 1086 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 1087 !rcu_read_lock_held() && 1088 !rcu_read_lock_bh_held()); 1089 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 1090 } 1091 1092 /** 1093 * skb_dst_set - sets skb dst 1094 * @skb: buffer 1095 * @dst: dst entry 1096 * 1097 * Sets skb dst, assuming a reference was taken on dst and should 1098 * be released by skb_dst_drop() 1099 */ 1100 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 1101 { 1102 skb->slow_gro |= !!dst; 1103 skb->_skb_refdst = (unsigned long)dst; 1104 } 1105 1106 /** 1107 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference 1108 * @skb: buffer 1109 * @dst: dst entry 1110 * 1111 * Sets skb dst, assuming a reference was not taken on dst. 1112 * If dst entry is cached, we do not take reference and dst_release 1113 * will be avoided by refdst_drop. If dst entry is not cached, we take 1114 * reference, so that last dst_release can destroy the dst immediately. 1115 */ 1116 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) 1117 { 1118 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 1119 skb->slow_gro |= !!dst; 1120 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF; 1121 } 1122 1123 /** 1124 * skb_dst_is_noref - Test if skb dst isn't refcounted 1125 * @skb: buffer 1126 */ 1127 static inline bool skb_dst_is_noref(const struct sk_buff *skb) 1128 { 1129 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 1130 } 1131 1132 /** 1133 * skb_rtable - Returns the skb &rtable 1134 * @skb: buffer 1135 */ 1136 static inline struct rtable *skb_rtable(const struct sk_buff *skb) 1137 { 1138 return (struct rtable *)skb_dst(skb); 1139 } 1140 1141 /* For mangling skb->pkt_type from user space side from applications 1142 * such as nft, tc, etc, we only allow a conservative subset of 1143 * possible pkt_types to be set. 1144 */ 1145 static inline bool skb_pkt_type_ok(u32 ptype) 1146 { 1147 return ptype <= PACKET_OTHERHOST; 1148 } 1149 1150 /** 1151 * skb_napi_id - Returns the skb's NAPI id 1152 * @skb: buffer 1153 */ 1154 static inline unsigned int skb_napi_id(const struct sk_buff *skb) 1155 { 1156 #ifdef CONFIG_NET_RX_BUSY_POLL 1157 return skb->napi_id; 1158 #else 1159 return 0; 1160 #endif 1161 } 1162 1163 /** 1164 * skb_unref - decrement the skb's reference count 1165 * @skb: buffer 1166 * 1167 * Returns true if we can free the skb. 1168 */ 1169 static inline bool skb_unref(struct sk_buff *skb) 1170 { 1171 if (unlikely(!skb)) 1172 return false; 1173 if (likely(refcount_read(&skb->users) == 1)) 1174 smp_rmb(); 1175 else if (likely(!refcount_dec_and_test(&skb->users))) 1176 return false; 1177 1178 return true; 1179 } 1180 1181 void kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason); 1182 1183 /** 1184 * kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason 1185 * @skb: buffer to free 1186 */ 1187 static inline void kfree_skb(struct sk_buff *skb) 1188 { 1189 kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 1190 } 1191 1192 void skb_release_head_state(struct sk_buff *skb); 1193 void kfree_skb_list(struct sk_buff *segs); 1194 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt); 1195 void skb_tx_error(struct sk_buff *skb); 1196 1197 #ifdef CONFIG_TRACEPOINTS 1198 void consume_skb(struct sk_buff *skb); 1199 #else 1200 static inline void consume_skb(struct sk_buff *skb) 1201 { 1202 return kfree_skb(skb); 1203 } 1204 #endif 1205 1206 void __consume_stateless_skb(struct sk_buff *skb); 1207 void __kfree_skb(struct sk_buff *skb); 1208 extern struct kmem_cache *skbuff_head_cache; 1209 1210 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); 1211 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 1212 bool *fragstolen, int *delta_truesize); 1213 1214 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags, 1215 int node); 1216 struct sk_buff *__build_skb(void *data, unsigned int frag_size); 1217 struct sk_buff *build_skb(void *data, unsigned int frag_size); 1218 struct sk_buff *build_skb_around(struct sk_buff *skb, 1219 void *data, unsigned int frag_size); 1220 1221 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size); 1222 1223 /** 1224 * alloc_skb - allocate a network buffer 1225 * @size: size to allocate 1226 * @priority: allocation mask 1227 * 1228 * This function is a convenient wrapper around __alloc_skb(). 1229 */ 1230 static inline struct sk_buff *alloc_skb(unsigned int size, 1231 gfp_t priority) 1232 { 1233 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 1234 } 1235 1236 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 1237 unsigned long data_len, 1238 int max_page_order, 1239 int *errcode, 1240 gfp_t gfp_mask); 1241 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first); 1242 1243 /* Layout of fast clones : [skb1][skb2][fclone_ref] */ 1244 struct sk_buff_fclones { 1245 struct sk_buff skb1; 1246 1247 struct sk_buff skb2; 1248 1249 refcount_t fclone_ref; 1250 }; 1251 1252 /** 1253 * skb_fclone_busy - check if fclone is busy 1254 * @sk: socket 1255 * @skb: buffer 1256 * 1257 * Returns true if skb is a fast clone, and its clone is not freed. 1258 * Some drivers call skb_orphan() in their ndo_start_xmit(), 1259 * so we also check that this didnt happen. 1260 */ 1261 static inline bool skb_fclone_busy(const struct sock *sk, 1262 const struct sk_buff *skb) 1263 { 1264 const struct sk_buff_fclones *fclones; 1265 1266 fclones = container_of(skb, struct sk_buff_fclones, skb1); 1267 1268 return skb->fclone == SKB_FCLONE_ORIG && 1269 refcount_read(&fclones->fclone_ref) > 1 && 1270 READ_ONCE(fclones->skb2.sk) == sk; 1271 } 1272 1273 /** 1274 * alloc_skb_fclone - allocate a network buffer from fclone cache 1275 * @size: size to allocate 1276 * @priority: allocation mask 1277 * 1278 * This function is a convenient wrapper around __alloc_skb(). 1279 */ 1280 static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 1281 gfp_t priority) 1282 { 1283 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); 1284 } 1285 1286 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 1287 void skb_headers_offset_update(struct sk_buff *skb, int off); 1288 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); 1289 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority); 1290 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old); 1291 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority); 1292 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1293 gfp_t gfp_mask, bool fclone); 1294 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, 1295 gfp_t gfp_mask) 1296 { 1297 return __pskb_copy_fclone(skb, headroom, gfp_mask, false); 1298 } 1299 1300 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask); 1301 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 1302 unsigned int headroom); 1303 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom); 1304 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, 1305 int newtailroom, gfp_t priority); 1306 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 1307 int offset, int len); 1308 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, 1309 int offset, int len); 1310 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer); 1311 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error); 1312 1313 /** 1314 * skb_pad - zero pad the tail of an skb 1315 * @skb: buffer to pad 1316 * @pad: space to pad 1317 * 1318 * Ensure that a buffer is followed by a padding area that is zero 1319 * filled. Used by network drivers which may DMA or transfer data 1320 * beyond the buffer end onto the wire. 1321 * 1322 * May return error in out of memory cases. The skb is freed on error. 1323 */ 1324 static inline int skb_pad(struct sk_buff *skb, int pad) 1325 { 1326 return __skb_pad(skb, pad, true); 1327 } 1328 #define dev_kfree_skb(a) consume_skb(a) 1329 1330 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 1331 int offset, size_t size); 1332 1333 struct skb_seq_state { 1334 __u32 lower_offset; 1335 __u32 upper_offset; 1336 __u32 frag_idx; 1337 __u32 stepped_offset; 1338 struct sk_buff *root_skb; 1339 struct sk_buff *cur_skb; 1340 __u8 *frag_data; 1341 __u32 frag_off; 1342 }; 1343 1344 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 1345 unsigned int to, struct skb_seq_state *st); 1346 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 1347 struct skb_seq_state *st); 1348 void skb_abort_seq_read(struct skb_seq_state *st); 1349 1350 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 1351 unsigned int to, struct ts_config *config); 1352 1353 /* 1354 * Packet hash types specify the type of hash in skb_set_hash. 1355 * 1356 * Hash types refer to the protocol layer addresses which are used to 1357 * construct a packet's hash. The hashes are used to differentiate or identify 1358 * flows of the protocol layer for the hash type. Hash types are either 1359 * layer-2 (L2), layer-3 (L3), or layer-4 (L4). 1360 * 1361 * Properties of hashes: 1362 * 1363 * 1) Two packets in different flows have different hash values 1364 * 2) Two packets in the same flow should have the same hash value 1365 * 1366 * A hash at a higher layer is considered to be more specific. A driver should 1367 * set the most specific hash possible. 1368 * 1369 * A driver cannot indicate a more specific hash than the layer at which a hash 1370 * was computed. For instance an L3 hash cannot be set as an L4 hash. 1371 * 1372 * A driver may indicate a hash level which is less specific than the 1373 * actual layer the hash was computed on. For instance, a hash computed 1374 * at L4 may be considered an L3 hash. This should only be done if the 1375 * driver can't unambiguously determine that the HW computed the hash at 1376 * the higher layer. Note that the "should" in the second property above 1377 * permits this. 1378 */ 1379 enum pkt_hash_types { 1380 PKT_HASH_TYPE_NONE, /* Undefined type */ 1381 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */ 1382 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */ 1383 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */ 1384 }; 1385 1386 static inline void skb_clear_hash(struct sk_buff *skb) 1387 { 1388 skb->hash = 0; 1389 skb->sw_hash = 0; 1390 skb->l4_hash = 0; 1391 } 1392 1393 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb) 1394 { 1395 if (!skb->l4_hash) 1396 skb_clear_hash(skb); 1397 } 1398 1399 static inline void 1400 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4) 1401 { 1402 skb->l4_hash = is_l4; 1403 skb->sw_hash = is_sw; 1404 skb->hash = hash; 1405 } 1406 1407 static inline void 1408 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type) 1409 { 1410 /* Used by drivers to set hash from HW */ 1411 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4); 1412 } 1413 1414 static inline void 1415 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4) 1416 { 1417 __skb_set_hash(skb, hash, true, is_l4); 1418 } 1419 1420 void __skb_get_hash(struct sk_buff *skb); 1421 u32 __skb_get_hash_symmetric(const struct sk_buff *skb); 1422 u32 skb_get_poff(const struct sk_buff *skb); 1423 u32 __skb_get_poff(const struct sk_buff *skb, const void *data, 1424 const struct flow_keys_basic *keys, int hlen); 1425 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto, 1426 const void *data, int hlen_proto); 1427 1428 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb, 1429 int thoff, u8 ip_proto) 1430 { 1431 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0); 1432 } 1433 1434 void skb_flow_dissector_init(struct flow_dissector *flow_dissector, 1435 const struct flow_dissector_key *key, 1436 unsigned int key_count); 1437 1438 struct bpf_flow_dissector; 1439 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx, 1440 __be16 proto, int nhoff, int hlen, unsigned int flags); 1441 1442 bool __skb_flow_dissect(const struct net *net, 1443 const struct sk_buff *skb, 1444 struct flow_dissector *flow_dissector, 1445 void *target_container, const void *data, 1446 __be16 proto, int nhoff, int hlen, unsigned int flags); 1447 1448 static inline bool skb_flow_dissect(const struct sk_buff *skb, 1449 struct flow_dissector *flow_dissector, 1450 void *target_container, unsigned int flags) 1451 { 1452 return __skb_flow_dissect(NULL, skb, flow_dissector, 1453 target_container, NULL, 0, 0, 0, flags); 1454 } 1455 1456 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb, 1457 struct flow_keys *flow, 1458 unsigned int flags) 1459 { 1460 memset(flow, 0, sizeof(*flow)); 1461 return __skb_flow_dissect(NULL, skb, &flow_keys_dissector, 1462 flow, NULL, 0, 0, 0, flags); 1463 } 1464 1465 static inline bool 1466 skb_flow_dissect_flow_keys_basic(const struct net *net, 1467 const struct sk_buff *skb, 1468 struct flow_keys_basic *flow, 1469 const void *data, __be16 proto, 1470 int nhoff, int hlen, unsigned int flags) 1471 { 1472 memset(flow, 0, sizeof(*flow)); 1473 return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow, 1474 data, proto, nhoff, hlen, flags); 1475 } 1476 1477 void skb_flow_dissect_meta(const struct sk_buff *skb, 1478 struct flow_dissector *flow_dissector, 1479 void *target_container); 1480 1481 /* Gets a skb connection tracking info, ctinfo map should be a 1482 * map of mapsize to translate enum ip_conntrack_info states 1483 * to user states. 1484 */ 1485 void 1486 skb_flow_dissect_ct(const struct sk_buff *skb, 1487 struct flow_dissector *flow_dissector, 1488 void *target_container, 1489 u16 *ctinfo_map, size_t mapsize, 1490 bool post_ct, u16 zone); 1491 void 1492 skb_flow_dissect_tunnel_info(const struct sk_buff *skb, 1493 struct flow_dissector *flow_dissector, 1494 void *target_container); 1495 1496 void skb_flow_dissect_hash(const struct sk_buff *skb, 1497 struct flow_dissector *flow_dissector, 1498 void *target_container); 1499 1500 static inline __u32 skb_get_hash(struct sk_buff *skb) 1501 { 1502 if (!skb->l4_hash && !skb->sw_hash) 1503 __skb_get_hash(skb); 1504 1505 return skb->hash; 1506 } 1507 1508 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6) 1509 { 1510 if (!skb->l4_hash && !skb->sw_hash) { 1511 struct flow_keys keys; 1512 __u32 hash = __get_hash_from_flowi6(fl6, &keys); 1513 1514 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys)); 1515 } 1516 1517 return skb->hash; 1518 } 1519 1520 __u32 skb_get_hash_perturb(const struct sk_buff *skb, 1521 const siphash_key_t *perturb); 1522 1523 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb) 1524 { 1525 return skb->hash; 1526 } 1527 1528 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from) 1529 { 1530 to->hash = from->hash; 1531 to->sw_hash = from->sw_hash; 1532 to->l4_hash = from->l4_hash; 1533 }; 1534 1535 static inline void skb_copy_decrypted(struct sk_buff *to, 1536 const struct sk_buff *from) 1537 { 1538 #ifdef CONFIG_TLS_DEVICE 1539 to->decrypted = from->decrypted; 1540 #endif 1541 } 1542 1543 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1544 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1545 { 1546 return skb->head + skb->end; 1547 } 1548 1549 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1550 { 1551 return skb->end; 1552 } 1553 1554 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset) 1555 { 1556 skb->end = offset; 1557 } 1558 #else 1559 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1560 { 1561 return skb->end; 1562 } 1563 1564 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1565 { 1566 return skb->end - skb->head; 1567 } 1568 1569 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset) 1570 { 1571 skb->end = skb->head + offset; 1572 } 1573 #endif 1574 1575 /* Internal */ 1576 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 1577 1578 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 1579 { 1580 return &skb_shinfo(skb)->hwtstamps; 1581 } 1582 1583 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb) 1584 { 1585 bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE; 1586 1587 return is_zcopy ? skb_uarg(skb) : NULL; 1588 } 1589 1590 static inline bool skb_zcopy_pure(const struct sk_buff *skb) 1591 { 1592 return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY; 1593 } 1594 1595 static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1, 1596 const struct sk_buff *skb2) 1597 { 1598 return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2); 1599 } 1600 1601 static inline void net_zcopy_get(struct ubuf_info *uarg) 1602 { 1603 refcount_inc(&uarg->refcnt); 1604 } 1605 1606 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg) 1607 { 1608 skb_shinfo(skb)->destructor_arg = uarg; 1609 skb_shinfo(skb)->flags |= uarg->flags; 1610 } 1611 1612 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg, 1613 bool *have_ref) 1614 { 1615 if (skb && uarg && !skb_zcopy(skb)) { 1616 if (unlikely(have_ref && *have_ref)) 1617 *have_ref = false; 1618 else 1619 net_zcopy_get(uarg); 1620 skb_zcopy_init(skb, uarg); 1621 } 1622 } 1623 1624 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val) 1625 { 1626 skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL); 1627 skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG; 1628 } 1629 1630 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb) 1631 { 1632 return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL; 1633 } 1634 1635 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb) 1636 { 1637 return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL); 1638 } 1639 1640 static inline void net_zcopy_put(struct ubuf_info *uarg) 1641 { 1642 if (uarg) 1643 uarg->callback(NULL, uarg, true); 1644 } 1645 1646 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1647 { 1648 if (uarg) { 1649 if (uarg->callback == msg_zerocopy_callback) 1650 msg_zerocopy_put_abort(uarg, have_uref); 1651 else if (have_uref) 1652 net_zcopy_put(uarg); 1653 } 1654 } 1655 1656 /* Release a reference on a zerocopy structure */ 1657 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success) 1658 { 1659 struct ubuf_info *uarg = skb_zcopy(skb); 1660 1661 if (uarg) { 1662 if (!skb_zcopy_is_nouarg(skb)) 1663 uarg->callback(skb, uarg, zerocopy_success); 1664 1665 skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY; 1666 } 1667 } 1668 1669 static inline void skb_mark_not_on_list(struct sk_buff *skb) 1670 { 1671 skb->next = NULL; 1672 } 1673 1674 /* Iterate through singly-linked GSO fragments of an skb. */ 1675 #define skb_list_walk_safe(first, skb, next_skb) \ 1676 for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb); \ 1677 (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL) 1678 1679 static inline void skb_list_del_init(struct sk_buff *skb) 1680 { 1681 __list_del_entry(&skb->list); 1682 skb_mark_not_on_list(skb); 1683 } 1684 1685 /** 1686 * skb_queue_empty - check if a queue is empty 1687 * @list: queue head 1688 * 1689 * Returns true if the queue is empty, false otherwise. 1690 */ 1691 static inline int skb_queue_empty(const struct sk_buff_head *list) 1692 { 1693 return list->next == (const struct sk_buff *) list; 1694 } 1695 1696 /** 1697 * skb_queue_empty_lockless - check if a queue is empty 1698 * @list: queue head 1699 * 1700 * Returns true if the queue is empty, false otherwise. 1701 * This variant can be used in lockless contexts. 1702 */ 1703 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list) 1704 { 1705 return READ_ONCE(list->next) == (const struct sk_buff *) list; 1706 } 1707 1708 1709 /** 1710 * skb_queue_is_last - check if skb is the last entry in the queue 1711 * @list: queue head 1712 * @skb: buffer 1713 * 1714 * Returns true if @skb is the last buffer on the list. 1715 */ 1716 static inline bool skb_queue_is_last(const struct sk_buff_head *list, 1717 const struct sk_buff *skb) 1718 { 1719 return skb->next == (const struct sk_buff *) list; 1720 } 1721 1722 /** 1723 * skb_queue_is_first - check if skb is the first entry in the queue 1724 * @list: queue head 1725 * @skb: buffer 1726 * 1727 * Returns true if @skb is the first buffer on the list. 1728 */ 1729 static inline bool skb_queue_is_first(const struct sk_buff_head *list, 1730 const struct sk_buff *skb) 1731 { 1732 return skb->prev == (const struct sk_buff *) list; 1733 } 1734 1735 /** 1736 * skb_queue_next - return the next packet in the queue 1737 * @list: queue head 1738 * @skb: current buffer 1739 * 1740 * Return the next packet in @list after @skb. It is only valid to 1741 * call this if skb_queue_is_last() evaluates to false. 1742 */ 1743 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 1744 const struct sk_buff *skb) 1745 { 1746 /* This BUG_ON may seem severe, but if we just return then we 1747 * are going to dereference garbage. 1748 */ 1749 BUG_ON(skb_queue_is_last(list, skb)); 1750 return skb->next; 1751 } 1752 1753 /** 1754 * skb_queue_prev - return the prev packet in the queue 1755 * @list: queue head 1756 * @skb: current buffer 1757 * 1758 * Return the prev packet in @list before @skb. It is only valid to 1759 * call this if skb_queue_is_first() evaluates to false. 1760 */ 1761 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 1762 const struct sk_buff *skb) 1763 { 1764 /* This BUG_ON may seem severe, but if we just return then we 1765 * are going to dereference garbage. 1766 */ 1767 BUG_ON(skb_queue_is_first(list, skb)); 1768 return skb->prev; 1769 } 1770 1771 /** 1772 * skb_get - reference buffer 1773 * @skb: buffer to reference 1774 * 1775 * Makes another reference to a socket buffer and returns a pointer 1776 * to the buffer. 1777 */ 1778 static inline struct sk_buff *skb_get(struct sk_buff *skb) 1779 { 1780 refcount_inc(&skb->users); 1781 return skb; 1782 } 1783 1784 /* 1785 * If users == 1, we are the only owner and can avoid redundant atomic changes. 1786 */ 1787 1788 /** 1789 * skb_cloned - is the buffer a clone 1790 * @skb: buffer to check 1791 * 1792 * Returns true if the buffer was generated with skb_clone() and is 1793 * one of multiple shared copies of the buffer. Cloned buffers are 1794 * shared data so must not be written to under normal circumstances. 1795 */ 1796 static inline int skb_cloned(const struct sk_buff *skb) 1797 { 1798 return skb->cloned && 1799 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 1800 } 1801 1802 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) 1803 { 1804 might_sleep_if(gfpflags_allow_blocking(pri)); 1805 1806 if (skb_cloned(skb)) 1807 return pskb_expand_head(skb, 0, 0, pri); 1808 1809 return 0; 1810 } 1811 1812 /* This variant of skb_unclone() makes sure skb->truesize 1813 * and skb_end_offset() are not changed, whenever a new skb->head is needed. 1814 * 1815 * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X)) 1816 * when various debugging features are in place. 1817 */ 1818 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri); 1819 static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri) 1820 { 1821 might_sleep_if(gfpflags_allow_blocking(pri)); 1822 1823 if (skb_cloned(skb)) 1824 return __skb_unclone_keeptruesize(skb, pri); 1825 return 0; 1826 } 1827 1828 /** 1829 * skb_header_cloned - is the header a clone 1830 * @skb: buffer to check 1831 * 1832 * Returns true if modifying the header part of the buffer requires 1833 * the data to be copied. 1834 */ 1835 static inline int skb_header_cloned(const struct sk_buff *skb) 1836 { 1837 int dataref; 1838 1839 if (!skb->cloned) 1840 return 0; 1841 1842 dataref = atomic_read(&skb_shinfo(skb)->dataref); 1843 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 1844 return dataref != 1; 1845 } 1846 1847 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri) 1848 { 1849 might_sleep_if(gfpflags_allow_blocking(pri)); 1850 1851 if (skb_header_cloned(skb)) 1852 return pskb_expand_head(skb, 0, 0, pri); 1853 1854 return 0; 1855 } 1856 1857 /** 1858 * __skb_header_release - release reference to header 1859 * @skb: buffer to operate on 1860 */ 1861 static inline void __skb_header_release(struct sk_buff *skb) 1862 { 1863 skb->nohdr = 1; 1864 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT)); 1865 } 1866 1867 1868 /** 1869 * skb_shared - is the buffer shared 1870 * @skb: buffer to check 1871 * 1872 * Returns true if more than one person has a reference to this 1873 * buffer. 1874 */ 1875 static inline int skb_shared(const struct sk_buff *skb) 1876 { 1877 return refcount_read(&skb->users) != 1; 1878 } 1879 1880 /** 1881 * skb_share_check - check if buffer is shared and if so clone it 1882 * @skb: buffer to check 1883 * @pri: priority for memory allocation 1884 * 1885 * If the buffer is shared the buffer is cloned and the old copy 1886 * drops a reference. A new clone with a single reference is returned. 1887 * If the buffer is not shared the original buffer is returned. When 1888 * being called from interrupt status or with spinlocks held pri must 1889 * be GFP_ATOMIC. 1890 * 1891 * NULL is returned on a memory allocation failure. 1892 */ 1893 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) 1894 { 1895 might_sleep_if(gfpflags_allow_blocking(pri)); 1896 if (skb_shared(skb)) { 1897 struct sk_buff *nskb = skb_clone(skb, pri); 1898 1899 if (likely(nskb)) 1900 consume_skb(skb); 1901 else 1902 kfree_skb(skb); 1903 skb = nskb; 1904 } 1905 return skb; 1906 } 1907 1908 /* 1909 * Copy shared buffers into a new sk_buff. We effectively do COW on 1910 * packets to handle cases where we have a local reader and forward 1911 * and a couple of other messy ones. The normal one is tcpdumping 1912 * a packet thats being forwarded. 1913 */ 1914 1915 /** 1916 * skb_unshare - make a copy of a shared buffer 1917 * @skb: buffer to check 1918 * @pri: priority for memory allocation 1919 * 1920 * If the socket buffer is a clone then this function creates a new 1921 * copy of the data, drops a reference count on the old copy and returns 1922 * the new copy with the reference count at 1. If the buffer is not a clone 1923 * the original buffer is returned. When called with a spinlock held or 1924 * from interrupt state @pri must be %GFP_ATOMIC 1925 * 1926 * %NULL is returned on a memory allocation failure. 1927 */ 1928 static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 1929 gfp_t pri) 1930 { 1931 might_sleep_if(gfpflags_allow_blocking(pri)); 1932 if (skb_cloned(skb)) { 1933 struct sk_buff *nskb = skb_copy(skb, pri); 1934 1935 /* Free our shared copy */ 1936 if (likely(nskb)) 1937 consume_skb(skb); 1938 else 1939 kfree_skb(skb); 1940 skb = nskb; 1941 } 1942 return skb; 1943 } 1944 1945 /** 1946 * skb_peek - peek at the head of an &sk_buff_head 1947 * @list_: list to peek at 1948 * 1949 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1950 * be careful with this one. A peek leaves the buffer on the 1951 * list and someone else may run off with it. You must hold 1952 * the appropriate locks or have a private queue to do this. 1953 * 1954 * Returns %NULL for an empty list or a pointer to the head element. 1955 * The reference count is not incremented and the reference is therefore 1956 * volatile. Use with caution. 1957 */ 1958 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) 1959 { 1960 struct sk_buff *skb = list_->next; 1961 1962 if (skb == (struct sk_buff *)list_) 1963 skb = NULL; 1964 return skb; 1965 } 1966 1967 /** 1968 * __skb_peek - peek at the head of a non-empty &sk_buff_head 1969 * @list_: list to peek at 1970 * 1971 * Like skb_peek(), but the caller knows that the list is not empty. 1972 */ 1973 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_) 1974 { 1975 return list_->next; 1976 } 1977 1978 /** 1979 * skb_peek_next - peek skb following the given one from a queue 1980 * @skb: skb to start from 1981 * @list_: list to peek at 1982 * 1983 * Returns %NULL when the end of the list is met or a pointer to the 1984 * next element. The reference count is not incremented and the 1985 * reference is therefore volatile. Use with caution. 1986 */ 1987 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, 1988 const struct sk_buff_head *list_) 1989 { 1990 struct sk_buff *next = skb->next; 1991 1992 if (next == (struct sk_buff *)list_) 1993 next = NULL; 1994 return next; 1995 } 1996 1997 /** 1998 * skb_peek_tail - peek at the tail of an &sk_buff_head 1999 * @list_: list to peek at 2000 * 2001 * Peek an &sk_buff. Unlike most other operations you _MUST_ 2002 * be careful with this one. A peek leaves the buffer on the 2003 * list and someone else may run off with it. You must hold 2004 * the appropriate locks or have a private queue to do this. 2005 * 2006 * Returns %NULL for an empty list or a pointer to the tail element. 2007 * The reference count is not incremented and the reference is therefore 2008 * volatile. Use with caution. 2009 */ 2010 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) 2011 { 2012 struct sk_buff *skb = READ_ONCE(list_->prev); 2013 2014 if (skb == (struct sk_buff *)list_) 2015 skb = NULL; 2016 return skb; 2017 2018 } 2019 2020 /** 2021 * skb_queue_len - get queue length 2022 * @list_: list to measure 2023 * 2024 * Return the length of an &sk_buff queue. 2025 */ 2026 static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 2027 { 2028 return list_->qlen; 2029 } 2030 2031 /** 2032 * skb_queue_len_lockless - get queue length 2033 * @list_: list to measure 2034 * 2035 * Return the length of an &sk_buff queue. 2036 * This variant can be used in lockless contexts. 2037 */ 2038 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_) 2039 { 2040 return READ_ONCE(list_->qlen); 2041 } 2042 2043 /** 2044 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 2045 * @list: queue to initialize 2046 * 2047 * This initializes only the list and queue length aspects of 2048 * an sk_buff_head object. This allows to initialize the list 2049 * aspects of an sk_buff_head without reinitializing things like 2050 * the spinlock. It can also be used for on-stack sk_buff_head 2051 * objects where the spinlock is known to not be used. 2052 */ 2053 static inline void __skb_queue_head_init(struct sk_buff_head *list) 2054 { 2055 list->prev = list->next = (struct sk_buff *)list; 2056 list->qlen = 0; 2057 } 2058 2059 /* 2060 * This function creates a split out lock class for each invocation; 2061 * this is needed for now since a whole lot of users of the skb-queue 2062 * infrastructure in drivers have different locking usage (in hardirq) 2063 * than the networking core (in softirq only). In the long run either the 2064 * network layer or drivers should need annotation to consolidate the 2065 * main types of usage into 3 classes. 2066 */ 2067 static inline void skb_queue_head_init(struct sk_buff_head *list) 2068 { 2069 spin_lock_init(&list->lock); 2070 __skb_queue_head_init(list); 2071 } 2072 2073 static inline void skb_queue_head_init_class(struct sk_buff_head *list, 2074 struct lock_class_key *class) 2075 { 2076 skb_queue_head_init(list); 2077 lockdep_set_class(&list->lock, class); 2078 } 2079 2080 /* 2081 * Insert an sk_buff on a list. 2082 * 2083 * The "__skb_xxxx()" functions are the non-atomic ones that 2084 * can only be called with interrupts disabled. 2085 */ 2086 static inline void __skb_insert(struct sk_buff *newsk, 2087 struct sk_buff *prev, struct sk_buff *next, 2088 struct sk_buff_head *list) 2089 { 2090 /* See skb_queue_empty_lockless() and skb_peek_tail() 2091 * for the opposite READ_ONCE() 2092 */ 2093 WRITE_ONCE(newsk->next, next); 2094 WRITE_ONCE(newsk->prev, prev); 2095 WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk); 2096 WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk); 2097 WRITE_ONCE(list->qlen, list->qlen + 1); 2098 } 2099 2100 static inline void __skb_queue_splice(const struct sk_buff_head *list, 2101 struct sk_buff *prev, 2102 struct sk_buff *next) 2103 { 2104 struct sk_buff *first = list->next; 2105 struct sk_buff *last = list->prev; 2106 2107 WRITE_ONCE(first->prev, prev); 2108 WRITE_ONCE(prev->next, first); 2109 2110 WRITE_ONCE(last->next, next); 2111 WRITE_ONCE(next->prev, last); 2112 } 2113 2114 /** 2115 * skb_queue_splice - join two skb lists, this is designed for stacks 2116 * @list: the new list to add 2117 * @head: the place to add it in the first list 2118 */ 2119 static inline void skb_queue_splice(const struct sk_buff_head *list, 2120 struct sk_buff_head *head) 2121 { 2122 if (!skb_queue_empty(list)) { 2123 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 2124 head->qlen += list->qlen; 2125 } 2126 } 2127 2128 /** 2129 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list 2130 * @list: the new list to add 2131 * @head: the place to add it in the first list 2132 * 2133 * The list at @list is reinitialised 2134 */ 2135 static inline void skb_queue_splice_init(struct sk_buff_head *list, 2136 struct sk_buff_head *head) 2137 { 2138 if (!skb_queue_empty(list)) { 2139 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 2140 head->qlen += list->qlen; 2141 __skb_queue_head_init(list); 2142 } 2143 } 2144 2145 /** 2146 * skb_queue_splice_tail - join two skb lists, each list being a queue 2147 * @list: the new list to add 2148 * @head: the place to add it in the first list 2149 */ 2150 static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 2151 struct sk_buff_head *head) 2152 { 2153 if (!skb_queue_empty(list)) { 2154 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 2155 head->qlen += list->qlen; 2156 } 2157 } 2158 2159 /** 2160 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list 2161 * @list: the new list to add 2162 * @head: the place to add it in the first list 2163 * 2164 * Each of the lists is a queue. 2165 * The list at @list is reinitialised 2166 */ 2167 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 2168 struct sk_buff_head *head) 2169 { 2170 if (!skb_queue_empty(list)) { 2171 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 2172 head->qlen += list->qlen; 2173 __skb_queue_head_init(list); 2174 } 2175 } 2176 2177 /** 2178 * __skb_queue_after - queue a buffer at the list head 2179 * @list: list to use 2180 * @prev: place after this buffer 2181 * @newsk: buffer to queue 2182 * 2183 * Queue a buffer int the middle of a list. This function takes no locks 2184 * and you must therefore hold required locks before calling it. 2185 * 2186 * A buffer cannot be placed on two lists at the same time. 2187 */ 2188 static inline void __skb_queue_after(struct sk_buff_head *list, 2189 struct sk_buff *prev, 2190 struct sk_buff *newsk) 2191 { 2192 __skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list); 2193 } 2194 2195 void skb_append(struct sk_buff *old, struct sk_buff *newsk, 2196 struct sk_buff_head *list); 2197 2198 static inline void __skb_queue_before(struct sk_buff_head *list, 2199 struct sk_buff *next, 2200 struct sk_buff *newsk) 2201 { 2202 __skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list); 2203 } 2204 2205 /** 2206 * __skb_queue_head - queue a buffer at the list head 2207 * @list: list to use 2208 * @newsk: buffer to queue 2209 * 2210 * Queue a buffer at the start of a list. This function takes no locks 2211 * and you must therefore hold required locks before calling it. 2212 * 2213 * A buffer cannot be placed on two lists at the same time. 2214 */ 2215 static inline void __skb_queue_head(struct sk_buff_head *list, 2216 struct sk_buff *newsk) 2217 { 2218 __skb_queue_after(list, (struct sk_buff *)list, newsk); 2219 } 2220 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 2221 2222 /** 2223 * __skb_queue_tail - queue a buffer at the list tail 2224 * @list: list to use 2225 * @newsk: buffer to queue 2226 * 2227 * Queue a buffer at the end of a list. This function takes no locks 2228 * and you must therefore hold required locks before calling it. 2229 * 2230 * A buffer cannot be placed on two lists at the same time. 2231 */ 2232 static inline void __skb_queue_tail(struct sk_buff_head *list, 2233 struct sk_buff *newsk) 2234 { 2235 __skb_queue_before(list, (struct sk_buff *)list, newsk); 2236 } 2237 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 2238 2239 /* 2240 * remove sk_buff from list. _Must_ be called atomically, and with 2241 * the list known.. 2242 */ 2243 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 2244 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 2245 { 2246 struct sk_buff *next, *prev; 2247 2248 WRITE_ONCE(list->qlen, list->qlen - 1); 2249 next = skb->next; 2250 prev = skb->prev; 2251 skb->next = skb->prev = NULL; 2252 WRITE_ONCE(next->prev, prev); 2253 WRITE_ONCE(prev->next, next); 2254 } 2255 2256 /** 2257 * __skb_dequeue - remove from the head of the queue 2258 * @list: list to dequeue from 2259 * 2260 * Remove the head of the list. This function does not take any locks 2261 * so must be used with appropriate locks held only. The head item is 2262 * returned or %NULL if the list is empty. 2263 */ 2264 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 2265 { 2266 struct sk_buff *skb = skb_peek(list); 2267 if (skb) 2268 __skb_unlink(skb, list); 2269 return skb; 2270 } 2271 struct sk_buff *skb_dequeue(struct sk_buff_head *list); 2272 2273 /** 2274 * __skb_dequeue_tail - remove from the tail of the queue 2275 * @list: list to dequeue from 2276 * 2277 * Remove the tail of the list. This function does not take any locks 2278 * so must be used with appropriate locks held only. The tail item is 2279 * returned or %NULL if the list is empty. 2280 */ 2281 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 2282 { 2283 struct sk_buff *skb = skb_peek_tail(list); 2284 if (skb) 2285 __skb_unlink(skb, list); 2286 return skb; 2287 } 2288 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 2289 2290 2291 static inline bool skb_is_nonlinear(const struct sk_buff *skb) 2292 { 2293 return skb->data_len; 2294 } 2295 2296 static inline unsigned int skb_headlen(const struct sk_buff *skb) 2297 { 2298 return skb->len - skb->data_len; 2299 } 2300 2301 static inline unsigned int __skb_pagelen(const struct sk_buff *skb) 2302 { 2303 unsigned int i, len = 0; 2304 2305 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--) 2306 len += skb_frag_size(&skb_shinfo(skb)->frags[i]); 2307 return len; 2308 } 2309 2310 static inline unsigned int skb_pagelen(const struct sk_buff *skb) 2311 { 2312 return skb_headlen(skb) + __skb_pagelen(skb); 2313 } 2314 2315 /** 2316 * __skb_fill_page_desc - initialise a paged fragment in an skb 2317 * @skb: buffer containing fragment to be initialised 2318 * @i: paged fragment index to initialise 2319 * @page: the page to use for this fragment 2320 * @off: the offset to the data with @page 2321 * @size: the length of the data 2322 * 2323 * Initialises the @i'th fragment of @skb to point to &size bytes at 2324 * offset @off within @page. 2325 * 2326 * Does not take any additional reference on the fragment. 2327 */ 2328 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, 2329 struct page *page, int off, int size) 2330 { 2331 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2332 2333 /* 2334 * Propagate page pfmemalloc to the skb if we can. The problem is 2335 * that not all callers have unique ownership of the page but rely 2336 * on page_is_pfmemalloc doing the right thing(tm). 2337 */ 2338 frag->bv_page = page; 2339 frag->bv_offset = off; 2340 skb_frag_size_set(frag, size); 2341 2342 page = compound_head(page); 2343 if (page_is_pfmemalloc(page)) 2344 skb->pfmemalloc = true; 2345 } 2346 2347 /** 2348 * skb_fill_page_desc - initialise a paged fragment in an skb 2349 * @skb: buffer containing fragment to be initialised 2350 * @i: paged fragment index to initialise 2351 * @page: the page to use for this fragment 2352 * @off: the offset to the data with @page 2353 * @size: the length of the data 2354 * 2355 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of 2356 * @skb to point to @size bytes at offset @off within @page. In 2357 * addition updates @skb such that @i is the last fragment. 2358 * 2359 * Does not take any additional reference on the fragment. 2360 */ 2361 static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 2362 struct page *page, int off, int size) 2363 { 2364 __skb_fill_page_desc(skb, i, page, off, size); 2365 skb_shinfo(skb)->nr_frags = i + 1; 2366 } 2367 2368 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 2369 int size, unsigned int truesize); 2370 2371 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 2372 unsigned int truesize); 2373 2374 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 2375 2376 #ifdef NET_SKBUFF_DATA_USES_OFFSET 2377 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 2378 { 2379 return skb->head + skb->tail; 2380 } 2381 2382 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2383 { 2384 skb->tail = skb->data - skb->head; 2385 } 2386 2387 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2388 { 2389 skb_reset_tail_pointer(skb); 2390 skb->tail += offset; 2391 } 2392 2393 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 2394 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 2395 { 2396 return skb->tail; 2397 } 2398 2399 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2400 { 2401 skb->tail = skb->data; 2402 } 2403 2404 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2405 { 2406 skb->tail = skb->data + offset; 2407 } 2408 2409 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 2410 2411 /* 2412 * Add data to an sk_buff 2413 */ 2414 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len); 2415 void *skb_put(struct sk_buff *skb, unsigned int len); 2416 static inline void *__skb_put(struct sk_buff *skb, unsigned int len) 2417 { 2418 void *tmp = skb_tail_pointer(skb); 2419 SKB_LINEAR_ASSERT(skb); 2420 skb->tail += len; 2421 skb->len += len; 2422 return tmp; 2423 } 2424 2425 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len) 2426 { 2427 void *tmp = __skb_put(skb, len); 2428 2429 memset(tmp, 0, len); 2430 return tmp; 2431 } 2432 2433 static inline void *__skb_put_data(struct sk_buff *skb, const void *data, 2434 unsigned int len) 2435 { 2436 void *tmp = __skb_put(skb, len); 2437 2438 memcpy(tmp, data, len); 2439 return tmp; 2440 } 2441 2442 static inline void __skb_put_u8(struct sk_buff *skb, u8 val) 2443 { 2444 *(u8 *)__skb_put(skb, 1) = val; 2445 } 2446 2447 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len) 2448 { 2449 void *tmp = skb_put(skb, len); 2450 2451 memset(tmp, 0, len); 2452 2453 return tmp; 2454 } 2455 2456 static inline void *skb_put_data(struct sk_buff *skb, const void *data, 2457 unsigned int len) 2458 { 2459 void *tmp = skb_put(skb, len); 2460 2461 memcpy(tmp, data, len); 2462 2463 return tmp; 2464 } 2465 2466 static inline void skb_put_u8(struct sk_buff *skb, u8 val) 2467 { 2468 *(u8 *)skb_put(skb, 1) = val; 2469 } 2470 2471 void *skb_push(struct sk_buff *skb, unsigned int len); 2472 static inline void *__skb_push(struct sk_buff *skb, unsigned int len) 2473 { 2474 skb->data -= len; 2475 skb->len += len; 2476 return skb->data; 2477 } 2478 2479 void *skb_pull(struct sk_buff *skb, unsigned int len); 2480 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len) 2481 { 2482 skb->len -= len; 2483 BUG_ON(skb->len < skb->data_len); 2484 return skb->data += len; 2485 } 2486 2487 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len) 2488 { 2489 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 2490 } 2491 2492 void *skb_pull_data(struct sk_buff *skb, size_t len); 2493 2494 void *__pskb_pull_tail(struct sk_buff *skb, int delta); 2495 2496 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len) 2497 { 2498 if (len > skb_headlen(skb) && 2499 !__pskb_pull_tail(skb, len - skb_headlen(skb))) 2500 return NULL; 2501 skb->len -= len; 2502 return skb->data += len; 2503 } 2504 2505 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len) 2506 { 2507 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 2508 } 2509 2510 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len) 2511 { 2512 if (likely(len <= skb_headlen(skb))) 2513 return true; 2514 if (unlikely(len > skb->len)) 2515 return false; 2516 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; 2517 } 2518 2519 void skb_condense(struct sk_buff *skb); 2520 2521 /** 2522 * skb_headroom - bytes at buffer head 2523 * @skb: buffer to check 2524 * 2525 * Return the number of bytes of free space at the head of an &sk_buff. 2526 */ 2527 static inline unsigned int skb_headroom(const struct sk_buff *skb) 2528 { 2529 return skb->data - skb->head; 2530 } 2531 2532 /** 2533 * skb_tailroom - bytes at buffer end 2534 * @skb: buffer to check 2535 * 2536 * Return the number of bytes of free space at the tail of an sk_buff 2537 */ 2538 static inline int skb_tailroom(const struct sk_buff *skb) 2539 { 2540 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 2541 } 2542 2543 /** 2544 * skb_availroom - bytes at buffer end 2545 * @skb: buffer to check 2546 * 2547 * Return the number of bytes of free space at the tail of an sk_buff 2548 * allocated by sk_stream_alloc() 2549 */ 2550 static inline int skb_availroom(const struct sk_buff *skb) 2551 { 2552 if (skb_is_nonlinear(skb)) 2553 return 0; 2554 2555 return skb->end - skb->tail - skb->reserved_tailroom; 2556 } 2557 2558 /** 2559 * skb_reserve - adjust headroom 2560 * @skb: buffer to alter 2561 * @len: bytes to move 2562 * 2563 * Increase the headroom of an empty &sk_buff by reducing the tail 2564 * room. This is only allowed for an empty buffer. 2565 */ 2566 static inline void skb_reserve(struct sk_buff *skb, int len) 2567 { 2568 skb->data += len; 2569 skb->tail += len; 2570 } 2571 2572 /** 2573 * skb_tailroom_reserve - adjust reserved_tailroom 2574 * @skb: buffer to alter 2575 * @mtu: maximum amount of headlen permitted 2576 * @needed_tailroom: minimum amount of reserved_tailroom 2577 * 2578 * Set reserved_tailroom so that headlen can be as large as possible but 2579 * not larger than mtu and tailroom cannot be smaller than 2580 * needed_tailroom. 2581 * The required headroom should already have been reserved before using 2582 * this function. 2583 */ 2584 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu, 2585 unsigned int needed_tailroom) 2586 { 2587 SKB_LINEAR_ASSERT(skb); 2588 if (mtu < skb_tailroom(skb) - needed_tailroom) 2589 /* use at most mtu */ 2590 skb->reserved_tailroom = skb_tailroom(skb) - mtu; 2591 else 2592 /* use up to all available space */ 2593 skb->reserved_tailroom = needed_tailroom; 2594 } 2595 2596 #define ENCAP_TYPE_ETHER 0 2597 #define ENCAP_TYPE_IPPROTO 1 2598 2599 static inline void skb_set_inner_protocol(struct sk_buff *skb, 2600 __be16 protocol) 2601 { 2602 skb->inner_protocol = protocol; 2603 skb->inner_protocol_type = ENCAP_TYPE_ETHER; 2604 } 2605 2606 static inline void skb_set_inner_ipproto(struct sk_buff *skb, 2607 __u8 ipproto) 2608 { 2609 skb->inner_ipproto = ipproto; 2610 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO; 2611 } 2612 2613 static inline void skb_reset_inner_headers(struct sk_buff *skb) 2614 { 2615 skb->inner_mac_header = skb->mac_header; 2616 skb->inner_network_header = skb->network_header; 2617 skb->inner_transport_header = skb->transport_header; 2618 } 2619 2620 static inline void skb_reset_mac_len(struct sk_buff *skb) 2621 { 2622 skb->mac_len = skb->network_header - skb->mac_header; 2623 } 2624 2625 static inline unsigned char *skb_inner_transport_header(const struct sk_buff 2626 *skb) 2627 { 2628 return skb->head + skb->inner_transport_header; 2629 } 2630 2631 static inline int skb_inner_transport_offset(const struct sk_buff *skb) 2632 { 2633 return skb_inner_transport_header(skb) - skb->data; 2634 } 2635 2636 static inline void skb_reset_inner_transport_header(struct sk_buff *skb) 2637 { 2638 skb->inner_transport_header = skb->data - skb->head; 2639 } 2640 2641 static inline void skb_set_inner_transport_header(struct sk_buff *skb, 2642 const int offset) 2643 { 2644 skb_reset_inner_transport_header(skb); 2645 skb->inner_transport_header += offset; 2646 } 2647 2648 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) 2649 { 2650 return skb->head + skb->inner_network_header; 2651 } 2652 2653 static inline void skb_reset_inner_network_header(struct sk_buff *skb) 2654 { 2655 skb->inner_network_header = skb->data - skb->head; 2656 } 2657 2658 static inline void skb_set_inner_network_header(struct sk_buff *skb, 2659 const int offset) 2660 { 2661 skb_reset_inner_network_header(skb); 2662 skb->inner_network_header += offset; 2663 } 2664 2665 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) 2666 { 2667 return skb->head + skb->inner_mac_header; 2668 } 2669 2670 static inline void skb_reset_inner_mac_header(struct sk_buff *skb) 2671 { 2672 skb->inner_mac_header = skb->data - skb->head; 2673 } 2674 2675 static inline void skb_set_inner_mac_header(struct sk_buff *skb, 2676 const int offset) 2677 { 2678 skb_reset_inner_mac_header(skb); 2679 skb->inner_mac_header += offset; 2680 } 2681 static inline bool skb_transport_header_was_set(const struct sk_buff *skb) 2682 { 2683 return skb->transport_header != (typeof(skb->transport_header))~0U; 2684 } 2685 2686 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 2687 { 2688 return skb->head + skb->transport_header; 2689 } 2690 2691 static inline void skb_reset_transport_header(struct sk_buff *skb) 2692 { 2693 skb->transport_header = skb->data - skb->head; 2694 } 2695 2696 static inline void skb_set_transport_header(struct sk_buff *skb, 2697 const int offset) 2698 { 2699 skb_reset_transport_header(skb); 2700 skb->transport_header += offset; 2701 } 2702 2703 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 2704 { 2705 return skb->head + skb->network_header; 2706 } 2707 2708 static inline void skb_reset_network_header(struct sk_buff *skb) 2709 { 2710 skb->network_header = skb->data - skb->head; 2711 } 2712 2713 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 2714 { 2715 skb_reset_network_header(skb); 2716 skb->network_header += offset; 2717 } 2718 2719 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 2720 { 2721 return skb->head + skb->mac_header; 2722 } 2723 2724 static inline int skb_mac_offset(const struct sk_buff *skb) 2725 { 2726 return skb_mac_header(skb) - skb->data; 2727 } 2728 2729 static inline u32 skb_mac_header_len(const struct sk_buff *skb) 2730 { 2731 return skb->network_header - skb->mac_header; 2732 } 2733 2734 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 2735 { 2736 return skb->mac_header != (typeof(skb->mac_header))~0U; 2737 } 2738 2739 static inline void skb_unset_mac_header(struct sk_buff *skb) 2740 { 2741 skb->mac_header = (typeof(skb->mac_header))~0U; 2742 } 2743 2744 static inline void skb_reset_mac_header(struct sk_buff *skb) 2745 { 2746 skb->mac_header = skb->data - skb->head; 2747 } 2748 2749 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 2750 { 2751 skb_reset_mac_header(skb); 2752 skb->mac_header += offset; 2753 } 2754 2755 static inline void skb_pop_mac_header(struct sk_buff *skb) 2756 { 2757 skb->mac_header = skb->network_header; 2758 } 2759 2760 static inline void skb_probe_transport_header(struct sk_buff *skb) 2761 { 2762 struct flow_keys_basic keys; 2763 2764 if (skb_transport_header_was_set(skb)) 2765 return; 2766 2767 if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys, 2768 NULL, 0, 0, 0, 0)) 2769 skb_set_transport_header(skb, keys.control.thoff); 2770 } 2771 2772 static inline void skb_mac_header_rebuild(struct sk_buff *skb) 2773 { 2774 if (skb_mac_header_was_set(skb)) { 2775 const unsigned char *old_mac = skb_mac_header(skb); 2776 2777 skb_set_mac_header(skb, -skb->mac_len); 2778 memmove(skb_mac_header(skb), old_mac, skb->mac_len); 2779 } 2780 } 2781 2782 static inline int skb_checksum_start_offset(const struct sk_buff *skb) 2783 { 2784 return skb->csum_start - skb_headroom(skb); 2785 } 2786 2787 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb) 2788 { 2789 return skb->head + skb->csum_start; 2790 } 2791 2792 static inline int skb_transport_offset(const struct sk_buff *skb) 2793 { 2794 return skb_transport_header(skb) - skb->data; 2795 } 2796 2797 static inline u32 skb_network_header_len(const struct sk_buff *skb) 2798 { 2799 return skb->transport_header - skb->network_header; 2800 } 2801 2802 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) 2803 { 2804 return skb->inner_transport_header - skb->inner_network_header; 2805 } 2806 2807 static inline int skb_network_offset(const struct sk_buff *skb) 2808 { 2809 return skb_network_header(skb) - skb->data; 2810 } 2811 2812 static inline int skb_inner_network_offset(const struct sk_buff *skb) 2813 { 2814 return skb_inner_network_header(skb) - skb->data; 2815 } 2816 2817 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 2818 { 2819 return pskb_may_pull(skb, skb_network_offset(skb) + len); 2820 } 2821 2822 /* 2823 * CPUs often take a performance hit when accessing unaligned memory 2824 * locations. The actual performance hit varies, it can be small if the 2825 * hardware handles it or large if we have to take an exception and fix it 2826 * in software. 2827 * 2828 * Since an ethernet header is 14 bytes network drivers often end up with 2829 * the IP header at an unaligned offset. The IP header can be aligned by 2830 * shifting the start of the packet by 2 bytes. Drivers should do this 2831 * with: 2832 * 2833 * skb_reserve(skb, NET_IP_ALIGN); 2834 * 2835 * The downside to this alignment of the IP header is that the DMA is now 2836 * unaligned. On some architectures the cost of an unaligned DMA is high 2837 * and this cost outweighs the gains made by aligning the IP header. 2838 * 2839 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 2840 * to be overridden. 2841 */ 2842 #ifndef NET_IP_ALIGN 2843 #define NET_IP_ALIGN 2 2844 #endif 2845 2846 /* 2847 * The networking layer reserves some headroom in skb data (via 2848 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 2849 * the header has to grow. In the default case, if the header has to grow 2850 * 32 bytes or less we avoid the reallocation. 2851 * 2852 * Unfortunately this headroom changes the DMA alignment of the resulting 2853 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 2854 * on some architectures. An architecture can override this value, 2855 * perhaps setting it to a cacheline in size (since that will maintain 2856 * cacheline alignment of the DMA). It must be a power of 2. 2857 * 2858 * Various parts of the networking layer expect at least 32 bytes of 2859 * headroom, you should not reduce this. 2860 * 2861 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 2862 * to reduce average number of cache lines per packet. 2863 * get_rps_cpu() for example only access one 64 bytes aligned block : 2864 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 2865 */ 2866 #ifndef NET_SKB_PAD 2867 #define NET_SKB_PAD max(32, L1_CACHE_BYTES) 2868 #endif 2869 2870 int ___pskb_trim(struct sk_buff *skb, unsigned int len); 2871 2872 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len) 2873 { 2874 if (WARN_ON(skb_is_nonlinear(skb))) 2875 return; 2876 skb->len = len; 2877 skb_set_tail_pointer(skb, len); 2878 } 2879 2880 static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 2881 { 2882 __skb_set_length(skb, len); 2883 } 2884 2885 void skb_trim(struct sk_buff *skb, unsigned int len); 2886 2887 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 2888 { 2889 if (skb->data_len) 2890 return ___pskb_trim(skb, len); 2891 __skb_trim(skb, len); 2892 return 0; 2893 } 2894 2895 static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 2896 { 2897 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 2898 } 2899 2900 /** 2901 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 2902 * @skb: buffer to alter 2903 * @len: new length 2904 * 2905 * This is identical to pskb_trim except that the caller knows that 2906 * the skb is not cloned so we should never get an error due to out- 2907 * of-memory. 2908 */ 2909 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 2910 { 2911 int err = pskb_trim(skb, len); 2912 BUG_ON(err); 2913 } 2914 2915 static inline int __skb_grow(struct sk_buff *skb, unsigned int len) 2916 { 2917 unsigned int diff = len - skb->len; 2918 2919 if (skb_tailroom(skb) < diff) { 2920 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb), 2921 GFP_ATOMIC); 2922 if (ret) 2923 return ret; 2924 } 2925 __skb_set_length(skb, len); 2926 return 0; 2927 } 2928 2929 /** 2930 * skb_orphan - orphan a buffer 2931 * @skb: buffer to orphan 2932 * 2933 * If a buffer currently has an owner then we call the owner's 2934 * destructor function and make the @skb unowned. The buffer continues 2935 * to exist but is no longer charged to its former owner. 2936 */ 2937 static inline void skb_orphan(struct sk_buff *skb) 2938 { 2939 if (skb->destructor) { 2940 skb->destructor(skb); 2941 skb->destructor = NULL; 2942 skb->sk = NULL; 2943 } else { 2944 BUG_ON(skb->sk); 2945 } 2946 } 2947 2948 /** 2949 * skb_orphan_frags - orphan the frags contained in a buffer 2950 * @skb: buffer to orphan frags from 2951 * @gfp_mask: allocation mask for replacement pages 2952 * 2953 * For each frag in the SKB which needs a destructor (i.e. has an 2954 * owner) create a copy of that frag and release the original 2955 * page by calling the destructor. 2956 */ 2957 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) 2958 { 2959 if (likely(!skb_zcopy(skb))) 2960 return 0; 2961 if (!skb_zcopy_is_nouarg(skb) && 2962 skb_uarg(skb)->callback == msg_zerocopy_callback) 2963 return 0; 2964 return skb_copy_ubufs(skb, gfp_mask); 2965 } 2966 2967 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */ 2968 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask) 2969 { 2970 if (likely(!skb_zcopy(skb))) 2971 return 0; 2972 return skb_copy_ubufs(skb, gfp_mask); 2973 } 2974 2975 /** 2976 * __skb_queue_purge - empty a list 2977 * @list: list to empty 2978 * 2979 * Delete all buffers on an &sk_buff list. Each buffer is removed from 2980 * the list and one reference dropped. This function does not take the 2981 * list lock and the caller must hold the relevant locks to use it. 2982 */ 2983 static inline void __skb_queue_purge(struct sk_buff_head *list) 2984 { 2985 struct sk_buff *skb; 2986 while ((skb = __skb_dequeue(list)) != NULL) 2987 kfree_skb(skb); 2988 } 2989 void skb_queue_purge(struct sk_buff_head *list); 2990 2991 unsigned int skb_rbtree_purge(struct rb_root *root); 2992 2993 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask); 2994 2995 /** 2996 * netdev_alloc_frag - allocate a page fragment 2997 * @fragsz: fragment size 2998 * 2999 * Allocates a frag from a page for receive buffer. 3000 * Uses GFP_ATOMIC allocations. 3001 */ 3002 static inline void *netdev_alloc_frag(unsigned int fragsz) 3003 { 3004 return __netdev_alloc_frag_align(fragsz, ~0u); 3005 } 3006 3007 static inline void *netdev_alloc_frag_align(unsigned int fragsz, 3008 unsigned int align) 3009 { 3010 WARN_ON_ONCE(!is_power_of_2(align)); 3011 return __netdev_alloc_frag_align(fragsz, -align); 3012 } 3013 3014 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length, 3015 gfp_t gfp_mask); 3016 3017 /** 3018 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 3019 * @dev: network device to receive on 3020 * @length: length to allocate 3021 * 3022 * Allocate a new &sk_buff and assign it a usage count of one. The 3023 * buffer has unspecified headroom built in. Users should allocate 3024 * the headroom they think they need without accounting for the 3025 * built in space. The built in space is used for optimisations. 3026 * 3027 * %NULL is returned if there is no free memory. Although this function 3028 * allocates memory it can be called from an interrupt. 3029 */ 3030 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 3031 unsigned int length) 3032 { 3033 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 3034 } 3035 3036 /* legacy helper around __netdev_alloc_skb() */ 3037 static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 3038 gfp_t gfp_mask) 3039 { 3040 return __netdev_alloc_skb(NULL, length, gfp_mask); 3041 } 3042 3043 /* legacy helper around netdev_alloc_skb() */ 3044 static inline struct sk_buff *dev_alloc_skb(unsigned int length) 3045 { 3046 return netdev_alloc_skb(NULL, length); 3047 } 3048 3049 3050 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, 3051 unsigned int length, gfp_t gfp) 3052 { 3053 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); 3054 3055 if (NET_IP_ALIGN && skb) 3056 skb_reserve(skb, NET_IP_ALIGN); 3057 return skb; 3058 } 3059 3060 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 3061 unsigned int length) 3062 { 3063 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); 3064 } 3065 3066 static inline void skb_free_frag(void *addr) 3067 { 3068 page_frag_free(addr); 3069 } 3070 3071 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask); 3072 3073 static inline void *napi_alloc_frag(unsigned int fragsz) 3074 { 3075 return __napi_alloc_frag_align(fragsz, ~0u); 3076 } 3077 3078 static inline void *napi_alloc_frag_align(unsigned int fragsz, 3079 unsigned int align) 3080 { 3081 WARN_ON_ONCE(!is_power_of_2(align)); 3082 return __napi_alloc_frag_align(fragsz, -align); 3083 } 3084 3085 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, 3086 unsigned int length, gfp_t gfp_mask); 3087 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi, 3088 unsigned int length) 3089 { 3090 return __napi_alloc_skb(napi, length, GFP_ATOMIC); 3091 } 3092 void napi_consume_skb(struct sk_buff *skb, int budget); 3093 3094 void napi_skb_free_stolen_head(struct sk_buff *skb); 3095 void __kfree_skb_defer(struct sk_buff *skb); 3096 3097 /** 3098 * __dev_alloc_pages - allocate page for network Rx 3099 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 3100 * @order: size of the allocation 3101 * 3102 * Allocate a new page. 3103 * 3104 * %NULL is returned if there is no free memory. 3105 */ 3106 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask, 3107 unsigned int order) 3108 { 3109 /* This piece of code contains several assumptions. 3110 * 1. This is for device Rx, therefor a cold page is preferred. 3111 * 2. The expectation is the user wants a compound page. 3112 * 3. If requesting a order 0 page it will not be compound 3113 * due to the check to see if order has a value in prep_new_page 3114 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to 3115 * code in gfp_to_alloc_flags that should be enforcing this. 3116 */ 3117 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC; 3118 3119 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order); 3120 } 3121 3122 static inline struct page *dev_alloc_pages(unsigned int order) 3123 { 3124 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order); 3125 } 3126 3127 /** 3128 * __dev_alloc_page - allocate a page for network Rx 3129 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 3130 * 3131 * Allocate a new page. 3132 * 3133 * %NULL is returned if there is no free memory. 3134 */ 3135 static inline struct page *__dev_alloc_page(gfp_t gfp_mask) 3136 { 3137 return __dev_alloc_pages(gfp_mask, 0); 3138 } 3139 3140 static inline struct page *dev_alloc_page(void) 3141 { 3142 return dev_alloc_pages(0); 3143 } 3144 3145 /** 3146 * dev_page_is_reusable - check whether a page can be reused for network Rx 3147 * @page: the page to test 3148 * 3149 * A page shouldn't be considered for reusing/recycling if it was allocated 3150 * under memory pressure or at a distant memory node. 3151 * 3152 * Returns false if this page should be returned to page allocator, true 3153 * otherwise. 3154 */ 3155 static inline bool dev_page_is_reusable(const struct page *page) 3156 { 3157 return likely(page_to_nid(page) == numa_mem_id() && 3158 !page_is_pfmemalloc(page)); 3159 } 3160 3161 /** 3162 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page 3163 * @page: The page that was allocated from skb_alloc_page 3164 * @skb: The skb that may need pfmemalloc set 3165 */ 3166 static inline void skb_propagate_pfmemalloc(const struct page *page, 3167 struct sk_buff *skb) 3168 { 3169 if (page_is_pfmemalloc(page)) 3170 skb->pfmemalloc = true; 3171 } 3172 3173 /** 3174 * skb_frag_off() - Returns the offset of a skb fragment 3175 * @frag: the paged fragment 3176 */ 3177 static inline unsigned int skb_frag_off(const skb_frag_t *frag) 3178 { 3179 return frag->bv_offset; 3180 } 3181 3182 /** 3183 * skb_frag_off_add() - Increments the offset of a skb fragment by @delta 3184 * @frag: skb fragment 3185 * @delta: value to add 3186 */ 3187 static inline void skb_frag_off_add(skb_frag_t *frag, int delta) 3188 { 3189 frag->bv_offset += delta; 3190 } 3191 3192 /** 3193 * skb_frag_off_set() - Sets the offset of a skb fragment 3194 * @frag: skb fragment 3195 * @offset: offset of fragment 3196 */ 3197 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset) 3198 { 3199 frag->bv_offset = offset; 3200 } 3201 3202 /** 3203 * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment 3204 * @fragto: skb fragment where offset is set 3205 * @fragfrom: skb fragment offset is copied from 3206 */ 3207 static inline void skb_frag_off_copy(skb_frag_t *fragto, 3208 const skb_frag_t *fragfrom) 3209 { 3210 fragto->bv_offset = fragfrom->bv_offset; 3211 } 3212 3213 /** 3214 * skb_frag_page - retrieve the page referred to by a paged fragment 3215 * @frag: the paged fragment 3216 * 3217 * Returns the &struct page associated with @frag. 3218 */ 3219 static inline struct page *skb_frag_page(const skb_frag_t *frag) 3220 { 3221 return frag->bv_page; 3222 } 3223 3224 /** 3225 * __skb_frag_ref - take an addition reference on a paged fragment. 3226 * @frag: the paged fragment 3227 * 3228 * Takes an additional reference on the paged fragment @frag. 3229 */ 3230 static inline void __skb_frag_ref(skb_frag_t *frag) 3231 { 3232 get_page(skb_frag_page(frag)); 3233 } 3234 3235 /** 3236 * skb_frag_ref - take an addition reference on a paged fragment of an skb. 3237 * @skb: the buffer 3238 * @f: the fragment offset. 3239 * 3240 * Takes an additional reference on the @f'th paged fragment of @skb. 3241 */ 3242 static inline void skb_frag_ref(struct sk_buff *skb, int f) 3243 { 3244 __skb_frag_ref(&skb_shinfo(skb)->frags[f]); 3245 } 3246 3247 /** 3248 * __skb_frag_unref - release a reference on a paged fragment. 3249 * @frag: the paged fragment 3250 * @recycle: recycle the page if allocated via page_pool 3251 * 3252 * Releases a reference on the paged fragment @frag 3253 * or recycles the page via the page_pool API. 3254 */ 3255 static inline void __skb_frag_unref(skb_frag_t *frag, bool recycle) 3256 { 3257 struct page *page = skb_frag_page(frag); 3258 3259 #ifdef CONFIG_PAGE_POOL 3260 if (recycle && page_pool_return_skb_page(page)) 3261 return; 3262 #endif 3263 put_page(page); 3264 } 3265 3266 /** 3267 * skb_frag_unref - release a reference on a paged fragment of an skb. 3268 * @skb: the buffer 3269 * @f: the fragment offset 3270 * 3271 * Releases a reference on the @f'th paged fragment of @skb. 3272 */ 3273 static inline void skb_frag_unref(struct sk_buff *skb, int f) 3274 { 3275 __skb_frag_unref(&skb_shinfo(skb)->frags[f], skb->pp_recycle); 3276 } 3277 3278 /** 3279 * skb_frag_address - gets the address of the data contained in a paged fragment 3280 * @frag: the paged fragment buffer 3281 * 3282 * Returns the address of the data within @frag. The page must already 3283 * be mapped. 3284 */ 3285 static inline void *skb_frag_address(const skb_frag_t *frag) 3286 { 3287 return page_address(skb_frag_page(frag)) + skb_frag_off(frag); 3288 } 3289 3290 /** 3291 * skb_frag_address_safe - gets the address of the data contained in a paged fragment 3292 * @frag: the paged fragment buffer 3293 * 3294 * Returns the address of the data within @frag. Checks that the page 3295 * is mapped and returns %NULL otherwise. 3296 */ 3297 static inline void *skb_frag_address_safe(const skb_frag_t *frag) 3298 { 3299 void *ptr = page_address(skb_frag_page(frag)); 3300 if (unlikely(!ptr)) 3301 return NULL; 3302 3303 return ptr + skb_frag_off(frag); 3304 } 3305 3306 /** 3307 * skb_frag_page_copy() - sets the page in a fragment from another fragment 3308 * @fragto: skb fragment where page is set 3309 * @fragfrom: skb fragment page is copied from 3310 */ 3311 static inline void skb_frag_page_copy(skb_frag_t *fragto, 3312 const skb_frag_t *fragfrom) 3313 { 3314 fragto->bv_page = fragfrom->bv_page; 3315 } 3316 3317 /** 3318 * __skb_frag_set_page - sets the page contained in a paged fragment 3319 * @frag: the paged fragment 3320 * @page: the page to set 3321 * 3322 * Sets the fragment @frag to contain @page. 3323 */ 3324 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page) 3325 { 3326 frag->bv_page = page; 3327 } 3328 3329 /** 3330 * skb_frag_set_page - sets the page contained in a paged fragment of an skb 3331 * @skb: the buffer 3332 * @f: the fragment offset 3333 * @page: the page to set 3334 * 3335 * Sets the @f'th fragment of @skb to contain @page. 3336 */ 3337 static inline void skb_frag_set_page(struct sk_buff *skb, int f, 3338 struct page *page) 3339 { 3340 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page); 3341 } 3342 3343 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio); 3344 3345 /** 3346 * skb_frag_dma_map - maps a paged fragment via the DMA API 3347 * @dev: the device to map the fragment to 3348 * @frag: the paged fragment to map 3349 * @offset: the offset within the fragment (starting at the 3350 * fragment's own offset) 3351 * @size: the number of bytes to map 3352 * @dir: the direction of the mapping (``PCI_DMA_*``) 3353 * 3354 * Maps the page associated with @frag to @device. 3355 */ 3356 static inline dma_addr_t skb_frag_dma_map(struct device *dev, 3357 const skb_frag_t *frag, 3358 size_t offset, size_t size, 3359 enum dma_data_direction dir) 3360 { 3361 return dma_map_page(dev, skb_frag_page(frag), 3362 skb_frag_off(frag) + offset, size, dir); 3363 } 3364 3365 static inline struct sk_buff *pskb_copy(struct sk_buff *skb, 3366 gfp_t gfp_mask) 3367 { 3368 return __pskb_copy(skb, skb_headroom(skb), gfp_mask); 3369 } 3370 3371 3372 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb, 3373 gfp_t gfp_mask) 3374 { 3375 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true); 3376 } 3377 3378 3379 /** 3380 * skb_clone_writable - is the header of a clone writable 3381 * @skb: buffer to check 3382 * @len: length up to which to write 3383 * 3384 * Returns true if modifying the header part of the cloned buffer 3385 * does not requires the data to be copied. 3386 */ 3387 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) 3388 { 3389 return !skb_header_cloned(skb) && 3390 skb_headroom(skb) + len <= skb->hdr_len; 3391 } 3392 3393 static inline int skb_try_make_writable(struct sk_buff *skb, 3394 unsigned int write_len) 3395 { 3396 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) && 3397 pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 3398 } 3399 3400 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 3401 int cloned) 3402 { 3403 int delta = 0; 3404 3405 if (headroom > skb_headroom(skb)) 3406 delta = headroom - skb_headroom(skb); 3407 3408 if (delta || cloned) 3409 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 3410 GFP_ATOMIC); 3411 return 0; 3412 } 3413 3414 /** 3415 * skb_cow - copy header of skb when it is required 3416 * @skb: buffer to cow 3417 * @headroom: needed headroom 3418 * 3419 * If the skb passed lacks sufficient headroom or its data part 3420 * is shared, data is reallocated. If reallocation fails, an error 3421 * is returned and original skb is not changed. 3422 * 3423 * The result is skb with writable area skb->head...skb->tail 3424 * and at least @headroom of space at head. 3425 */ 3426 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 3427 { 3428 return __skb_cow(skb, headroom, skb_cloned(skb)); 3429 } 3430 3431 /** 3432 * skb_cow_head - skb_cow but only making the head writable 3433 * @skb: buffer to cow 3434 * @headroom: needed headroom 3435 * 3436 * This function is identical to skb_cow except that we replace the 3437 * skb_cloned check by skb_header_cloned. It should be used when 3438 * you only need to push on some header and do not need to modify 3439 * the data. 3440 */ 3441 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 3442 { 3443 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 3444 } 3445 3446 /** 3447 * skb_padto - pad an skbuff up to a minimal size 3448 * @skb: buffer to pad 3449 * @len: minimal length 3450 * 3451 * Pads up a buffer to ensure the trailing bytes exist and are 3452 * blanked. If the buffer already contains sufficient data it 3453 * is untouched. Otherwise it is extended. Returns zero on 3454 * success. The skb is freed on error. 3455 */ 3456 static inline int skb_padto(struct sk_buff *skb, unsigned int len) 3457 { 3458 unsigned int size = skb->len; 3459 if (likely(size >= len)) 3460 return 0; 3461 return skb_pad(skb, len - size); 3462 } 3463 3464 /** 3465 * __skb_put_padto - increase size and pad an skbuff up to a minimal size 3466 * @skb: buffer to pad 3467 * @len: minimal length 3468 * @free_on_error: free buffer on error 3469 * 3470 * Pads up a buffer to ensure the trailing bytes exist and are 3471 * blanked. If the buffer already contains sufficient data it 3472 * is untouched. Otherwise it is extended. Returns zero on 3473 * success. The skb is freed on error if @free_on_error is true. 3474 */ 3475 static inline int __must_check __skb_put_padto(struct sk_buff *skb, 3476 unsigned int len, 3477 bool free_on_error) 3478 { 3479 unsigned int size = skb->len; 3480 3481 if (unlikely(size < len)) { 3482 len -= size; 3483 if (__skb_pad(skb, len, free_on_error)) 3484 return -ENOMEM; 3485 __skb_put(skb, len); 3486 } 3487 return 0; 3488 } 3489 3490 /** 3491 * skb_put_padto - increase size and pad an skbuff up to a minimal size 3492 * @skb: buffer to pad 3493 * @len: minimal length 3494 * 3495 * Pads up a buffer to ensure the trailing bytes exist and are 3496 * blanked. If the buffer already contains sufficient data it 3497 * is untouched. Otherwise it is extended. Returns zero on 3498 * success. The skb is freed on error. 3499 */ 3500 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len) 3501 { 3502 return __skb_put_padto(skb, len, true); 3503 } 3504 3505 static inline int skb_add_data(struct sk_buff *skb, 3506 struct iov_iter *from, int copy) 3507 { 3508 const int off = skb->len; 3509 3510 if (skb->ip_summed == CHECKSUM_NONE) { 3511 __wsum csum = 0; 3512 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy, 3513 &csum, from)) { 3514 skb->csum = csum_block_add(skb->csum, csum, off); 3515 return 0; 3516 } 3517 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from)) 3518 return 0; 3519 3520 __skb_trim(skb, off); 3521 return -EFAULT; 3522 } 3523 3524 static inline bool skb_can_coalesce(struct sk_buff *skb, int i, 3525 const struct page *page, int off) 3526 { 3527 if (skb_zcopy(skb)) 3528 return false; 3529 if (i) { 3530 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1]; 3531 3532 return page == skb_frag_page(frag) && 3533 off == skb_frag_off(frag) + skb_frag_size(frag); 3534 } 3535 return false; 3536 } 3537 3538 static inline int __skb_linearize(struct sk_buff *skb) 3539 { 3540 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 3541 } 3542 3543 /** 3544 * skb_linearize - convert paged skb to linear one 3545 * @skb: buffer to linarize 3546 * 3547 * If there is no free memory -ENOMEM is returned, otherwise zero 3548 * is returned and the old skb data released. 3549 */ 3550 static inline int skb_linearize(struct sk_buff *skb) 3551 { 3552 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 3553 } 3554 3555 /** 3556 * skb_has_shared_frag - can any frag be overwritten 3557 * @skb: buffer to test 3558 * 3559 * Return true if the skb has at least one frag that might be modified 3560 * by an external entity (as in vmsplice()/sendfile()) 3561 */ 3562 static inline bool skb_has_shared_frag(const struct sk_buff *skb) 3563 { 3564 return skb_is_nonlinear(skb) && 3565 skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG; 3566 } 3567 3568 /** 3569 * skb_linearize_cow - make sure skb is linear and writable 3570 * @skb: buffer to process 3571 * 3572 * If there is no free memory -ENOMEM is returned, otherwise zero 3573 * is returned and the old skb data released. 3574 */ 3575 static inline int skb_linearize_cow(struct sk_buff *skb) 3576 { 3577 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 3578 __skb_linearize(skb) : 0; 3579 } 3580 3581 static __always_inline void 3582 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3583 unsigned int off) 3584 { 3585 if (skb->ip_summed == CHECKSUM_COMPLETE) 3586 skb->csum = csum_block_sub(skb->csum, 3587 csum_partial(start, len, 0), off); 3588 else if (skb->ip_summed == CHECKSUM_PARTIAL && 3589 skb_checksum_start_offset(skb) < 0) 3590 skb->ip_summed = CHECKSUM_NONE; 3591 } 3592 3593 /** 3594 * skb_postpull_rcsum - update checksum for received skb after pull 3595 * @skb: buffer to update 3596 * @start: start of data before pull 3597 * @len: length of data pulled 3598 * 3599 * After doing a pull on a received packet, you need to call this to 3600 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 3601 * CHECKSUM_NONE so that it can be recomputed from scratch. 3602 */ 3603 static inline void skb_postpull_rcsum(struct sk_buff *skb, 3604 const void *start, unsigned int len) 3605 { 3606 if (skb->ip_summed == CHECKSUM_COMPLETE) 3607 skb->csum = wsum_negate(csum_partial(start, len, 3608 wsum_negate(skb->csum))); 3609 else if (skb->ip_summed == CHECKSUM_PARTIAL && 3610 skb_checksum_start_offset(skb) < 0) 3611 skb->ip_summed = CHECKSUM_NONE; 3612 } 3613 3614 static __always_inline void 3615 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3616 unsigned int off) 3617 { 3618 if (skb->ip_summed == CHECKSUM_COMPLETE) 3619 skb->csum = csum_block_add(skb->csum, 3620 csum_partial(start, len, 0), off); 3621 } 3622 3623 /** 3624 * skb_postpush_rcsum - update checksum for received skb after push 3625 * @skb: buffer to update 3626 * @start: start of data after push 3627 * @len: length of data pushed 3628 * 3629 * After doing a push on a received packet, you need to call this to 3630 * update the CHECKSUM_COMPLETE checksum. 3631 */ 3632 static inline void skb_postpush_rcsum(struct sk_buff *skb, 3633 const void *start, unsigned int len) 3634 { 3635 __skb_postpush_rcsum(skb, start, len, 0); 3636 } 3637 3638 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 3639 3640 /** 3641 * skb_push_rcsum - push skb and update receive checksum 3642 * @skb: buffer to update 3643 * @len: length of data pulled 3644 * 3645 * This function performs an skb_push on the packet and updates 3646 * the CHECKSUM_COMPLETE checksum. It should be used on 3647 * receive path processing instead of skb_push unless you know 3648 * that the checksum difference is zero (e.g., a valid IP header) 3649 * or you are setting ip_summed to CHECKSUM_NONE. 3650 */ 3651 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len) 3652 { 3653 skb_push(skb, len); 3654 skb_postpush_rcsum(skb, skb->data, len); 3655 return skb->data; 3656 } 3657 3658 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len); 3659 /** 3660 * pskb_trim_rcsum - trim received skb and update checksum 3661 * @skb: buffer to trim 3662 * @len: new length 3663 * 3664 * This is exactly the same as pskb_trim except that it ensures the 3665 * checksum of received packets are still valid after the operation. 3666 * It can change skb pointers. 3667 */ 3668 3669 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3670 { 3671 if (likely(len >= skb->len)) 3672 return 0; 3673 return pskb_trim_rcsum_slow(skb, len); 3674 } 3675 3676 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3677 { 3678 if (skb->ip_summed == CHECKSUM_COMPLETE) 3679 skb->ip_summed = CHECKSUM_NONE; 3680 __skb_trim(skb, len); 3681 return 0; 3682 } 3683 3684 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len) 3685 { 3686 if (skb->ip_summed == CHECKSUM_COMPLETE) 3687 skb->ip_summed = CHECKSUM_NONE; 3688 return __skb_grow(skb, len); 3689 } 3690 3691 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode) 3692 #define skb_rb_first(root) rb_to_skb(rb_first(root)) 3693 #define skb_rb_last(root) rb_to_skb(rb_last(root)) 3694 #define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode)) 3695 #define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode)) 3696 3697 #define skb_queue_walk(queue, skb) \ 3698 for (skb = (queue)->next; \ 3699 skb != (struct sk_buff *)(queue); \ 3700 skb = skb->next) 3701 3702 #define skb_queue_walk_safe(queue, skb, tmp) \ 3703 for (skb = (queue)->next, tmp = skb->next; \ 3704 skb != (struct sk_buff *)(queue); \ 3705 skb = tmp, tmp = skb->next) 3706 3707 #define skb_queue_walk_from(queue, skb) \ 3708 for (; skb != (struct sk_buff *)(queue); \ 3709 skb = skb->next) 3710 3711 #define skb_rbtree_walk(skb, root) \ 3712 for (skb = skb_rb_first(root); skb != NULL; \ 3713 skb = skb_rb_next(skb)) 3714 3715 #define skb_rbtree_walk_from(skb) \ 3716 for (; skb != NULL; \ 3717 skb = skb_rb_next(skb)) 3718 3719 #define skb_rbtree_walk_from_safe(skb, tmp) \ 3720 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \ 3721 skb = tmp) 3722 3723 #define skb_queue_walk_from_safe(queue, skb, tmp) \ 3724 for (tmp = skb->next; \ 3725 skb != (struct sk_buff *)(queue); \ 3726 skb = tmp, tmp = skb->next) 3727 3728 #define skb_queue_reverse_walk(queue, skb) \ 3729 for (skb = (queue)->prev; \ 3730 skb != (struct sk_buff *)(queue); \ 3731 skb = skb->prev) 3732 3733 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \ 3734 for (skb = (queue)->prev, tmp = skb->prev; \ 3735 skb != (struct sk_buff *)(queue); \ 3736 skb = tmp, tmp = skb->prev) 3737 3738 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ 3739 for (tmp = skb->prev; \ 3740 skb != (struct sk_buff *)(queue); \ 3741 skb = tmp, tmp = skb->prev) 3742 3743 static inline bool skb_has_frag_list(const struct sk_buff *skb) 3744 { 3745 return skb_shinfo(skb)->frag_list != NULL; 3746 } 3747 3748 static inline void skb_frag_list_init(struct sk_buff *skb) 3749 { 3750 skb_shinfo(skb)->frag_list = NULL; 3751 } 3752 3753 #define skb_walk_frags(skb, iter) \ 3754 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 3755 3756 3757 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue, 3758 int *err, long *timeo_p, 3759 const struct sk_buff *skb); 3760 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk, 3761 struct sk_buff_head *queue, 3762 unsigned int flags, 3763 int *off, int *err, 3764 struct sk_buff **last); 3765 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, 3766 struct sk_buff_head *queue, 3767 unsigned int flags, int *off, int *err, 3768 struct sk_buff **last); 3769 struct sk_buff *__skb_recv_datagram(struct sock *sk, 3770 struct sk_buff_head *sk_queue, 3771 unsigned int flags, int *off, int *err); 3772 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock, 3773 int *err); 3774 __poll_t datagram_poll(struct file *file, struct socket *sock, 3775 struct poll_table_struct *wait); 3776 int skb_copy_datagram_iter(const struct sk_buff *from, int offset, 3777 struct iov_iter *to, int size); 3778 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset, 3779 struct msghdr *msg, int size) 3780 { 3781 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size); 3782 } 3783 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen, 3784 struct msghdr *msg); 3785 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset, 3786 struct iov_iter *to, int len, 3787 struct ahash_request *hash); 3788 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset, 3789 struct iov_iter *from, int len); 3790 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm); 3791 void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 3792 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len); 3793 static inline void skb_free_datagram_locked(struct sock *sk, 3794 struct sk_buff *skb) 3795 { 3796 __skb_free_datagram_locked(sk, skb, 0); 3797 } 3798 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags); 3799 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len); 3800 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len); 3801 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, 3802 int len); 3803 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 3804 struct pipe_inode_info *pipe, unsigned int len, 3805 unsigned int flags); 3806 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 3807 int len); 3808 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len); 3809 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 3810 unsigned int skb_zerocopy_headlen(const struct sk_buff *from); 3811 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from, 3812 int len, int hlen); 3813 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len); 3814 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen); 3815 void skb_scrub_packet(struct sk_buff *skb, bool xnet); 3816 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu); 3817 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len); 3818 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features); 3819 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features, 3820 unsigned int offset); 3821 struct sk_buff *skb_vlan_untag(struct sk_buff *skb); 3822 int skb_ensure_writable(struct sk_buff *skb, int write_len); 3823 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci); 3824 int skb_vlan_pop(struct sk_buff *skb); 3825 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci); 3826 int skb_eth_pop(struct sk_buff *skb); 3827 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 3828 const unsigned char *src); 3829 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 3830 int mac_len, bool ethernet); 3831 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 3832 bool ethernet); 3833 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse); 3834 int skb_mpls_dec_ttl(struct sk_buff *skb); 3835 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy, 3836 gfp_t gfp); 3837 3838 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len) 3839 { 3840 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT; 3841 } 3842 3843 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len) 3844 { 3845 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT; 3846 } 3847 3848 struct skb_checksum_ops { 3849 __wsum (*update)(const void *mem, int len, __wsum wsum); 3850 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len); 3851 }; 3852 3853 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly; 3854 3855 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 3856 __wsum csum, const struct skb_checksum_ops *ops); 3857 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len, 3858 __wsum csum); 3859 3860 static inline void * __must_check 3861 __skb_header_pointer(const struct sk_buff *skb, int offset, int len, 3862 const void *data, int hlen, void *buffer) 3863 { 3864 if (likely(hlen - offset >= len)) 3865 return (void *)data + offset; 3866 3867 if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0)) 3868 return NULL; 3869 3870 return buffer; 3871 } 3872 3873 static inline void * __must_check 3874 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer) 3875 { 3876 return __skb_header_pointer(skb, offset, len, skb->data, 3877 skb_headlen(skb), buffer); 3878 } 3879 3880 /** 3881 * skb_needs_linearize - check if we need to linearize a given skb 3882 * depending on the given device features. 3883 * @skb: socket buffer to check 3884 * @features: net device features 3885 * 3886 * Returns true if either: 3887 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 3888 * 2. skb is fragmented and the device does not support SG. 3889 */ 3890 static inline bool skb_needs_linearize(struct sk_buff *skb, 3891 netdev_features_t features) 3892 { 3893 return skb_is_nonlinear(skb) && 3894 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) || 3895 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG))); 3896 } 3897 3898 static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 3899 void *to, 3900 const unsigned int len) 3901 { 3902 memcpy(to, skb->data, len); 3903 } 3904 3905 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 3906 const int offset, void *to, 3907 const unsigned int len) 3908 { 3909 memcpy(to, skb->data + offset, len); 3910 } 3911 3912 static inline void skb_copy_to_linear_data(struct sk_buff *skb, 3913 const void *from, 3914 const unsigned int len) 3915 { 3916 memcpy(skb->data, from, len); 3917 } 3918 3919 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 3920 const int offset, 3921 const void *from, 3922 const unsigned int len) 3923 { 3924 memcpy(skb->data + offset, from, len); 3925 } 3926 3927 void skb_init(void); 3928 3929 static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 3930 { 3931 return skb->tstamp; 3932 } 3933 3934 /** 3935 * skb_get_timestamp - get timestamp from a skb 3936 * @skb: skb to get stamp from 3937 * @stamp: pointer to struct __kernel_old_timeval to store stamp in 3938 * 3939 * Timestamps are stored in the skb as offsets to a base timestamp. 3940 * This function converts the offset back to a struct timeval and stores 3941 * it in stamp. 3942 */ 3943 static inline void skb_get_timestamp(const struct sk_buff *skb, 3944 struct __kernel_old_timeval *stamp) 3945 { 3946 *stamp = ns_to_kernel_old_timeval(skb->tstamp); 3947 } 3948 3949 static inline void skb_get_new_timestamp(const struct sk_buff *skb, 3950 struct __kernel_sock_timeval *stamp) 3951 { 3952 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 3953 3954 stamp->tv_sec = ts.tv_sec; 3955 stamp->tv_usec = ts.tv_nsec / 1000; 3956 } 3957 3958 static inline void skb_get_timestampns(const struct sk_buff *skb, 3959 struct __kernel_old_timespec *stamp) 3960 { 3961 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 3962 3963 stamp->tv_sec = ts.tv_sec; 3964 stamp->tv_nsec = ts.tv_nsec; 3965 } 3966 3967 static inline void skb_get_new_timestampns(const struct sk_buff *skb, 3968 struct __kernel_timespec *stamp) 3969 { 3970 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 3971 3972 stamp->tv_sec = ts.tv_sec; 3973 stamp->tv_nsec = ts.tv_nsec; 3974 } 3975 3976 static inline void __net_timestamp(struct sk_buff *skb) 3977 { 3978 skb->tstamp = ktime_get_real(); 3979 } 3980 3981 static inline ktime_t net_timedelta(ktime_t t) 3982 { 3983 return ktime_sub(ktime_get_real(), t); 3984 } 3985 3986 static inline u8 skb_metadata_len(const struct sk_buff *skb) 3987 { 3988 return skb_shinfo(skb)->meta_len; 3989 } 3990 3991 static inline void *skb_metadata_end(const struct sk_buff *skb) 3992 { 3993 return skb_mac_header(skb); 3994 } 3995 3996 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a, 3997 const struct sk_buff *skb_b, 3998 u8 meta_len) 3999 { 4000 const void *a = skb_metadata_end(skb_a); 4001 const void *b = skb_metadata_end(skb_b); 4002 /* Using more efficient varaiant than plain call to memcmp(). */ 4003 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 4004 u64 diffs = 0; 4005 4006 switch (meta_len) { 4007 #define __it(x, op) (x -= sizeof(u##op)) 4008 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op)) 4009 case 32: diffs |= __it_diff(a, b, 64); 4010 fallthrough; 4011 case 24: diffs |= __it_diff(a, b, 64); 4012 fallthrough; 4013 case 16: diffs |= __it_diff(a, b, 64); 4014 fallthrough; 4015 case 8: diffs |= __it_diff(a, b, 64); 4016 break; 4017 case 28: diffs |= __it_diff(a, b, 64); 4018 fallthrough; 4019 case 20: diffs |= __it_diff(a, b, 64); 4020 fallthrough; 4021 case 12: diffs |= __it_diff(a, b, 64); 4022 fallthrough; 4023 case 4: diffs |= __it_diff(a, b, 32); 4024 break; 4025 } 4026 return diffs; 4027 #else 4028 return memcmp(a - meta_len, b - meta_len, meta_len); 4029 #endif 4030 } 4031 4032 static inline bool skb_metadata_differs(const struct sk_buff *skb_a, 4033 const struct sk_buff *skb_b) 4034 { 4035 u8 len_a = skb_metadata_len(skb_a); 4036 u8 len_b = skb_metadata_len(skb_b); 4037 4038 if (!(len_a | len_b)) 4039 return false; 4040 4041 return len_a != len_b ? 4042 true : __skb_metadata_differs(skb_a, skb_b, len_a); 4043 } 4044 4045 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len) 4046 { 4047 skb_shinfo(skb)->meta_len = meta_len; 4048 } 4049 4050 static inline void skb_metadata_clear(struct sk_buff *skb) 4051 { 4052 skb_metadata_set(skb, 0); 4053 } 4054 4055 struct sk_buff *skb_clone_sk(struct sk_buff *skb); 4056 4057 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 4058 4059 void skb_clone_tx_timestamp(struct sk_buff *skb); 4060 bool skb_defer_rx_timestamp(struct sk_buff *skb); 4061 4062 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 4063 4064 static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 4065 { 4066 } 4067 4068 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 4069 { 4070 return false; 4071 } 4072 4073 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 4074 4075 /** 4076 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 4077 * 4078 * PHY drivers may accept clones of transmitted packets for 4079 * timestamping via their phy_driver.txtstamp method. These drivers 4080 * must call this function to return the skb back to the stack with a 4081 * timestamp. 4082 * 4083 * @skb: clone of the original outgoing packet 4084 * @hwtstamps: hardware time stamps 4085 * 4086 */ 4087 void skb_complete_tx_timestamp(struct sk_buff *skb, 4088 struct skb_shared_hwtstamps *hwtstamps); 4089 4090 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb, 4091 struct skb_shared_hwtstamps *hwtstamps, 4092 struct sock *sk, int tstype); 4093 4094 /** 4095 * skb_tstamp_tx - queue clone of skb with send time stamps 4096 * @orig_skb: the original outgoing packet 4097 * @hwtstamps: hardware time stamps, may be NULL if not available 4098 * 4099 * If the skb has a socket associated, then this function clones the 4100 * skb (thus sharing the actual data and optional structures), stores 4101 * the optional hardware time stamping information (if non NULL) or 4102 * generates a software time stamp (otherwise), then queues the clone 4103 * to the error queue of the socket. Errors are silently ignored. 4104 */ 4105 void skb_tstamp_tx(struct sk_buff *orig_skb, 4106 struct skb_shared_hwtstamps *hwtstamps); 4107 4108 /** 4109 * skb_tx_timestamp() - Driver hook for transmit timestamping 4110 * 4111 * Ethernet MAC Drivers should call this function in their hard_xmit() 4112 * function immediately before giving the sk_buff to the MAC hardware. 4113 * 4114 * Specifically, one should make absolutely sure that this function is 4115 * called before TX completion of this packet can trigger. Otherwise 4116 * the packet could potentially already be freed. 4117 * 4118 * @skb: A socket buffer. 4119 */ 4120 static inline void skb_tx_timestamp(struct sk_buff *skb) 4121 { 4122 skb_clone_tx_timestamp(skb); 4123 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP) 4124 skb_tstamp_tx(skb, NULL); 4125 } 4126 4127 /** 4128 * skb_complete_wifi_ack - deliver skb with wifi status 4129 * 4130 * @skb: the original outgoing packet 4131 * @acked: ack status 4132 * 4133 */ 4134 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); 4135 4136 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 4137 __sum16 __skb_checksum_complete(struct sk_buff *skb); 4138 4139 static inline int skb_csum_unnecessary(const struct sk_buff *skb) 4140 { 4141 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) || 4142 skb->csum_valid || 4143 (skb->ip_summed == CHECKSUM_PARTIAL && 4144 skb_checksum_start_offset(skb) >= 0)); 4145 } 4146 4147 /** 4148 * skb_checksum_complete - Calculate checksum of an entire packet 4149 * @skb: packet to process 4150 * 4151 * This function calculates the checksum over the entire packet plus 4152 * the value of skb->csum. The latter can be used to supply the 4153 * checksum of a pseudo header as used by TCP/UDP. It returns the 4154 * checksum. 4155 * 4156 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 4157 * this function can be used to verify that checksum on received 4158 * packets. In that case the function should return zero if the 4159 * checksum is correct. In particular, this function will return zero 4160 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 4161 * hardware has already verified the correctness of the checksum. 4162 */ 4163 static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 4164 { 4165 return skb_csum_unnecessary(skb) ? 4166 0 : __skb_checksum_complete(skb); 4167 } 4168 4169 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb) 4170 { 4171 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4172 if (skb->csum_level == 0) 4173 skb->ip_summed = CHECKSUM_NONE; 4174 else 4175 skb->csum_level--; 4176 } 4177 } 4178 4179 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb) 4180 { 4181 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4182 if (skb->csum_level < SKB_MAX_CSUM_LEVEL) 4183 skb->csum_level++; 4184 } else if (skb->ip_summed == CHECKSUM_NONE) { 4185 skb->ip_summed = CHECKSUM_UNNECESSARY; 4186 skb->csum_level = 0; 4187 } 4188 } 4189 4190 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb) 4191 { 4192 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4193 skb->ip_summed = CHECKSUM_NONE; 4194 skb->csum_level = 0; 4195 } 4196 } 4197 4198 /* Check if we need to perform checksum complete validation. 4199 * 4200 * Returns true if checksum complete is needed, false otherwise 4201 * (either checksum is unnecessary or zero checksum is allowed). 4202 */ 4203 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb, 4204 bool zero_okay, 4205 __sum16 check) 4206 { 4207 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) { 4208 skb->csum_valid = 1; 4209 __skb_decr_checksum_unnecessary(skb); 4210 return false; 4211 } 4212 4213 return true; 4214 } 4215 4216 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly 4217 * in checksum_init. 4218 */ 4219 #define CHECKSUM_BREAK 76 4220 4221 /* Unset checksum-complete 4222 * 4223 * Unset checksum complete can be done when packet is being modified 4224 * (uncompressed for instance) and checksum-complete value is 4225 * invalidated. 4226 */ 4227 static inline void skb_checksum_complete_unset(struct sk_buff *skb) 4228 { 4229 if (skb->ip_summed == CHECKSUM_COMPLETE) 4230 skb->ip_summed = CHECKSUM_NONE; 4231 } 4232 4233 /* Validate (init) checksum based on checksum complete. 4234 * 4235 * Return values: 4236 * 0: checksum is validated or try to in skb_checksum_complete. In the latter 4237 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo 4238 * checksum is stored in skb->csum for use in __skb_checksum_complete 4239 * non-zero: value of invalid checksum 4240 * 4241 */ 4242 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb, 4243 bool complete, 4244 __wsum psum) 4245 { 4246 if (skb->ip_summed == CHECKSUM_COMPLETE) { 4247 if (!csum_fold(csum_add(psum, skb->csum))) { 4248 skb->csum_valid = 1; 4249 return 0; 4250 } 4251 } 4252 4253 skb->csum = psum; 4254 4255 if (complete || skb->len <= CHECKSUM_BREAK) { 4256 __sum16 csum; 4257 4258 csum = __skb_checksum_complete(skb); 4259 skb->csum_valid = !csum; 4260 return csum; 4261 } 4262 4263 return 0; 4264 } 4265 4266 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto) 4267 { 4268 return 0; 4269 } 4270 4271 /* Perform checksum validate (init). Note that this is a macro since we only 4272 * want to calculate the pseudo header which is an input function if necessary. 4273 * First we try to validate without any computation (checksum unnecessary) and 4274 * then calculate based on checksum complete calling the function to compute 4275 * pseudo header. 4276 * 4277 * Return values: 4278 * 0: checksum is validated or try to in skb_checksum_complete 4279 * non-zero: value of invalid checksum 4280 */ 4281 #define __skb_checksum_validate(skb, proto, complete, \ 4282 zero_okay, check, compute_pseudo) \ 4283 ({ \ 4284 __sum16 __ret = 0; \ 4285 skb->csum_valid = 0; \ 4286 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \ 4287 __ret = __skb_checksum_validate_complete(skb, \ 4288 complete, compute_pseudo(skb, proto)); \ 4289 __ret; \ 4290 }) 4291 4292 #define skb_checksum_init(skb, proto, compute_pseudo) \ 4293 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo) 4294 4295 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \ 4296 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo) 4297 4298 #define skb_checksum_validate(skb, proto, compute_pseudo) \ 4299 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo) 4300 4301 #define skb_checksum_validate_zero_check(skb, proto, check, \ 4302 compute_pseudo) \ 4303 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo) 4304 4305 #define skb_checksum_simple_validate(skb) \ 4306 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo) 4307 4308 static inline bool __skb_checksum_convert_check(struct sk_buff *skb) 4309 { 4310 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid); 4311 } 4312 4313 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo) 4314 { 4315 skb->csum = ~pseudo; 4316 skb->ip_summed = CHECKSUM_COMPLETE; 4317 } 4318 4319 #define skb_checksum_try_convert(skb, proto, compute_pseudo) \ 4320 do { \ 4321 if (__skb_checksum_convert_check(skb)) \ 4322 __skb_checksum_convert(skb, compute_pseudo(skb, proto)); \ 4323 } while (0) 4324 4325 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr, 4326 u16 start, u16 offset) 4327 { 4328 skb->ip_summed = CHECKSUM_PARTIAL; 4329 skb->csum_start = ((unsigned char *)ptr + start) - skb->head; 4330 skb->csum_offset = offset - start; 4331 } 4332 4333 /* Update skbuf and packet to reflect the remote checksum offload operation. 4334 * When called, ptr indicates the starting point for skb->csum when 4335 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete 4336 * here, skb_postpull_rcsum is done so skb->csum start is ptr. 4337 */ 4338 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr, 4339 int start, int offset, bool nopartial) 4340 { 4341 __wsum delta; 4342 4343 if (!nopartial) { 4344 skb_remcsum_adjust_partial(skb, ptr, start, offset); 4345 return; 4346 } 4347 4348 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) { 4349 __skb_checksum_complete(skb); 4350 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data); 4351 } 4352 4353 delta = remcsum_adjust(ptr, skb->csum, start, offset); 4354 4355 /* Adjust skb->csum since we changed the packet */ 4356 skb->csum = csum_add(skb->csum, delta); 4357 } 4358 4359 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb) 4360 { 4361 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 4362 return (void *)(skb->_nfct & NFCT_PTRMASK); 4363 #else 4364 return NULL; 4365 #endif 4366 } 4367 4368 static inline unsigned long skb_get_nfct(const struct sk_buff *skb) 4369 { 4370 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 4371 return skb->_nfct; 4372 #else 4373 return 0UL; 4374 #endif 4375 } 4376 4377 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct) 4378 { 4379 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 4380 skb->slow_gro |= !!nfct; 4381 skb->_nfct = nfct; 4382 #endif 4383 } 4384 4385 #ifdef CONFIG_SKB_EXTENSIONS 4386 enum skb_ext_id { 4387 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4388 SKB_EXT_BRIDGE_NF, 4389 #endif 4390 #ifdef CONFIG_XFRM 4391 SKB_EXT_SEC_PATH, 4392 #endif 4393 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4394 TC_SKB_EXT, 4395 #endif 4396 #if IS_ENABLED(CONFIG_MPTCP) 4397 SKB_EXT_MPTCP, 4398 #endif 4399 #if IS_ENABLED(CONFIG_MCTP_FLOWS) 4400 SKB_EXT_MCTP, 4401 #endif 4402 SKB_EXT_NUM, /* must be last */ 4403 }; 4404 4405 /** 4406 * struct skb_ext - sk_buff extensions 4407 * @refcnt: 1 on allocation, deallocated on 0 4408 * @offset: offset to add to @data to obtain extension address 4409 * @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units 4410 * @data: start of extension data, variable sized 4411 * 4412 * Note: offsets/lengths are stored in chunks of 8 bytes, this allows 4413 * to use 'u8' types while allowing up to 2kb worth of extension data. 4414 */ 4415 struct skb_ext { 4416 refcount_t refcnt; 4417 u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */ 4418 u8 chunks; /* same */ 4419 char data[] __aligned(8); 4420 }; 4421 4422 struct skb_ext *__skb_ext_alloc(gfp_t flags); 4423 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 4424 struct skb_ext *ext); 4425 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id); 4426 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id); 4427 void __skb_ext_put(struct skb_ext *ext); 4428 4429 static inline void skb_ext_put(struct sk_buff *skb) 4430 { 4431 if (skb->active_extensions) 4432 __skb_ext_put(skb->extensions); 4433 } 4434 4435 static inline void __skb_ext_copy(struct sk_buff *dst, 4436 const struct sk_buff *src) 4437 { 4438 dst->active_extensions = src->active_extensions; 4439 4440 if (src->active_extensions) { 4441 struct skb_ext *ext = src->extensions; 4442 4443 refcount_inc(&ext->refcnt); 4444 dst->extensions = ext; 4445 } 4446 } 4447 4448 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src) 4449 { 4450 skb_ext_put(dst); 4451 __skb_ext_copy(dst, src); 4452 } 4453 4454 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i) 4455 { 4456 return !!ext->offset[i]; 4457 } 4458 4459 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id) 4460 { 4461 return skb->active_extensions & (1 << id); 4462 } 4463 4464 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 4465 { 4466 if (skb_ext_exist(skb, id)) 4467 __skb_ext_del(skb, id); 4468 } 4469 4470 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id) 4471 { 4472 if (skb_ext_exist(skb, id)) { 4473 struct skb_ext *ext = skb->extensions; 4474 4475 return (void *)ext + (ext->offset[id] << 3); 4476 } 4477 4478 return NULL; 4479 } 4480 4481 static inline void skb_ext_reset(struct sk_buff *skb) 4482 { 4483 if (unlikely(skb->active_extensions)) { 4484 __skb_ext_put(skb->extensions); 4485 skb->active_extensions = 0; 4486 } 4487 } 4488 4489 static inline bool skb_has_extensions(struct sk_buff *skb) 4490 { 4491 return unlikely(skb->active_extensions); 4492 } 4493 #else 4494 static inline void skb_ext_put(struct sk_buff *skb) {} 4495 static inline void skb_ext_reset(struct sk_buff *skb) {} 4496 static inline void skb_ext_del(struct sk_buff *skb, int unused) {} 4497 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {} 4498 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {} 4499 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; } 4500 #endif /* CONFIG_SKB_EXTENSIONS */ 4501 4502 static inline void nf_reset_ct(struct sk_buff *skb) 4503 { 4504 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4505 nf_conntrack_put(skb_nfct(skb)); 4506 skb->_nfct = 0; 4507 #endif 4508 } 4509 4510 static inline void nf_reset_trace(struct sk_buff *skb) 4511 { 4512 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 4513 skb->nf_trace = 0; 4514 #endif 4515 } 4516 4517 static inline void ipvs_reset(struct sk_buff *skb) 4518 { 4519 #if IS_ENABLED(CONFIG_IP_VS) 4520 skb->ipvs_property = 0; 4521 #endif 4522 } 4523 4524 /* Note: This doesn't put any conntrack info in dst. */ 4525 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src, 4526 bool copy) 4527 { 4528 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4529 dst->_nfct = src->_nfct; 4530 nf_conntrack_get(skb_nfct(src)); 4531 #endif 4532 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 4533 if (copy) 4534 dst->nf_trace = src->nf_trace; 4535 #endif 4536 } 4537 4538 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 4539 { 4540 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4541 nf_conntrack_put(skb_nfct(dst)); 4542 #endif 4543 dst->slow_gro = src->slow_gro; 4544 __nf_copy(dst, src, true); 4545 } 4546 4547 #ifdef CONFIG_NETWORK_SECMARK 4548 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 4549 { 4550 to->secmark = from->secmark; 4551 } 4552 4553 static inline void skb_init_secmark(struct sk_buff *skb) 4554 { 4555 skb->secmark = 0; 4556 } 4557 #else 4558 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 4559 { } 4560 4561 static inline void skb_init_secmark(struct sk_buff *skb) 4562 { } 4563 #endif 4564 4565 static inline int secpath_exists(const struct sk_buff *skb) 4566 { 4567 #ifdef CONFIG_XFRM 4568 return skb_ext_exist(skb, SKB_EXT_SEC_PATH); 4569 #else 4570 return 0; 4571 #endif 4572 } 4573 4574 static inline bool skb_irq_freeable(const struct sk_buff *skb) 4575 { 4576 return !skb->destructor && 4577 !secpath_exists(skb) && 4578 !skb_nfct(skb) && 4579 !skb->_skb_refdst && 4580 !skb_has_frag_list(skb); 4581 } 4582 4583 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 4584 { 4585 skb->queue_mapping = queue_mapping; 4586 } 4587 4588 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 4589 { 4590 return skb->queue_mapping; 4591 } 4592 4593 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 4594 { 4595 to->queue_mapping = from->queue_mapping; 4596 } 4597 4598 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 4599 { 4600 skb->queue_mapping = rx_queue + 1; 4601 } 4602 4603 static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 4604 { 4605 return skb->queue_mapping - 1; 4606 } 4607 4608 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 4609 { 4610 return skb->queue_mapping != 0; 4611 } 4612 4613 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val) 4614 { 4615 skb->dst_pending_confirm = val; 4616 } 4617 4618 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb) 4619 { 4620 return skb->dst_pending_confirm != 0; 4621 } 4622 4623 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb) 4624 { 4625 #ifdef CONFIG_XFRM 4626 return skb_ext_find(skb, SKB_EXT_SEC_PATH); 4627 #else 4628 return NULL; 4629 #endif 4630 } 4631 4632 /* Keeps track of mac header offset relative to skb->head. 4633 * It is useful for TSO of Tunneling protocol. e.g. GRE. 4634 * For non-tunnel skb it points to skb_mac_header() and for 4635 * tunnel skb it points to outer mac header. 4636 * Keeps track of level of encapsulation of network headers. 4637 */ 4638 struct skb_gso_cb { 4639 union { 4640 int mac_offset; 4641 int data_offset; 4642 }; 4643 int encap_level; 4644 __wsum csum; 4645 __u16 csum_start; 4646 }; 4647 #define SKB_GSO_CB_OFFSET 32 4648 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET)) 4649 4650 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb) 4651 { 4652 return (skb_mac_header(inner_skb) - inner_skb->head) - 4653 SKB_GSO_CB(inner_skb)->mac_offset; 4654 } 4655 4656 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra) 4657 { 4658 int new_headroom, headroom; 4659 int ret; 4660 4661 headroom = skb_headroom(skb); 4662 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC); 4663 if (ret) 4664 return ret; 4665 4666 new_headroom = skb_headroom(skb); 4667 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom); 4668 return 0; 4669 } 4670 4671 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res) 4672 { 4673 /* Do not update partial checksums if remote checksum is enabled. */ 4674 if (skb->remcsum_offload) 4675 return; 4676 4677 SKB_GSO_CB(skb)->csum = res; 4678 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head; 4679 } 4680 4681 /* Compute the checksum for a gso segment. First compute the checksum value 4682 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and 4683 * then add in skb->csum (checksum from csum_start to end of packet). 4684 * skb->csum and csum_start are then updated to reflect the checksum of the 4685 * resultant packet starting from the transport header-- the resultant checksum 4686 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo 4687 * header. 4688 */ 4689 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res) 4690 { 4691 unsigned char *csum_start = skb_transport_header(skb); 4692 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start; 4693 __wsum partial = SKB_GSO_CB(skb)->csum; 4694 4695 SKB_GSO_CB(skb)->csum = res; 4696 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head; 4697 4698 return csum_fold(csum_partial(csum_start, plen, partial)); 4699 } 4700 4701 static inline bool skb_is_gso(const struct sk_buff *skb) 4702 { 4703 return skb_shinfo(skb)->gso_size; 4704 } 4705 4706 /* Note: Should be called only if skb_is_gso(skb) is true */ 4707 static inline bool skb_is_gso_v6(const struct sk_buff *skb) 4708 { 4709 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 4710 } 4711 4712 /* Note: Should be called only if skb_is_gso(skb) is true */ 4713 static inline bool skb_is_gso_sctp(const struct sk_buff *skb) 4714 { 4715 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP; 4716 } 4717 4718 /* Note: Should be called only if skb_is_gso(skb) is true */ 4719 static inline bool skb_is_gso_tcp(const struct sk_buff *skb) 4720 { 4721 return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6); 4722 } 4723 4724 static inline void skb_gso_reset(struct sk_buff *skb) 4725 { 4726 skb_shinfo(skb)->gso_size = 0; 4727 skb_shinfo(skb)->gso_segs = 0; 4728 skb_shinfo(skb)->gso_type = 0; 4729 } 4730 4731 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo, 4732 u16 increment) 4733 { 4734 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 4735 return; 4736 shinfo->gso_size += increment; 4737 } 4738 4739 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo, 4740 u16 decrement) 4741 { 4742 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 4743 return; 4744 shinfo->gso_size -= decrement; 4745 } 4746 4747 void __skb_warn_lro_forwarding(const struct sk_buff *skb); 4748 4749 static inline bool skb_warn_if_lro(const struct sk_buff *skb) 4750 { 4751 /* LRO sets gso_size but not gso_type, whereas if GSO is really 4752 * wanted then gso_type will be set. */ 4753 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4754 4755 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 4756 unlikely(shinfo->gso_type == 0)) { 4757 __skb_warn_lro_forwarding(skb); 4758 return true; 4759 } 4760 return false; 4761 } 4762 4763 static inline void skb_forward_csum(struct sk_buff *skb) 4764 { 4765 /* Unfortunately we don't support this one. Any brave souls? */ 4766 if (skb->ip_summed == CHECKSUM_COMPLETE) 4767 skb->ip_summed = CHECKSUM_NONE; 4768 } 4769 4770 /** 4771 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 4772 * @skb: skb to check 4773 * 4774 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 4775 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 4776 * use this helper, to document places where we make this assertion. 4777 */ 4778 static inline void skb_checksum_none_assert(const struct sk_buff *skb) 4779 { 4780 #ifdef DEBUG 4781 BUG_ON(skb->ip_summed != CHECKSUM_NONE); 4782 #endif 4783 } 4784 4785 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 4786 4787 int skb_checksum_setup(struct sk_buff *skb, bool recalculate); 4788 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 4789 unsigned int transport_len, 4790 __sum16(*skb_chkf)(struct sk_buff *skb)); 4791 4792 /** 4793 * skb_head_is_locked - Determine if the skb->head is locked down 4794 * @skb: skb to check 4795 * 4796 * The head on skbs build around a head frag can be removed if they are 4797 * not cloned. This function returns true if the skb head is locked down 4798 * due to either being allocated via kmalloc, or by being a clone with 4799 * multiple references to the head. 4800 */ 4801 static inline bool skb_head_is_locked(const struct sk_buff *skb) 4802 { 4803 return !skb->head_frag || skb_cloned(skb); 4804 } 4805 4806 /* Local Checksum Offload. 4807 * Compute outer checksum based on the assumption that the 4808 * inner checksum will be offloaded later. 4809 * See Documentation/networking/checksum-offloads.rst for 4810 * explanation of how this works. 4811 * Fill in outer checksum adjustment (e.g. with sum of outer 4812 * pseudo-header) before calling. 4813 * Also ensure that inner checksum is in linear data area. 4814 */ 4815 static inline __wsum lco_csum(struct sk_buff *skb) 4816 { 4817 unsigned char *csum_start = skb_checksum_start(skb); 4818 unsigned char *l4_hdr = skb_transport_header(skb); 4819 __wsum partial; 4820 4821 /* Start with complement of inner checksum adjustment */ 4822 partial = ~csum_unfold(*(__force __sum16 *)(csum_start + 4823 skb->csum_offset)); 4824 4825 /* Add in checksum of our headers (incl. outer checksum 4826 * adjustment filled in by caller) and return result. 4827 */ 4828 return csum_partial(l4_hdr, csum_start - l4_hdr, partial); 4829 } 4830 4831 static inline bool skb_is_redirected(const struct sk_buff *skb) 4832 { 4833 return skb->redirected; 4834 } 4835 4836 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress) 4837 { 4838 skb->redirected = 1; 4839 #ifdef CONFIG_NET_REDIRECT 4840 skb->from_ingress = from_ingress; 4841 if (skb->from_ingress) 4842 skb->tstamp = 0; 4843 #endif 4844 } 4845 4846 static inline void skb_reset_redirect(struct sk_buff *skb) 4847 { 4848 skb->redirected = 0; 4849 } 4850 4851 static inline bool skb_csum_is_sctp(struct sk_buff *skb) 4852 { 4853 return skb->csum_not_inet; 4854 } 4855 4856 static inline void skb_set_kcov_handle(struct sk_buff *skb, 4857 const u64 kcov_handle) 4858 { 4859 #ifdef CONFIG_KCOV 4860 skb->kcov_handle = kcov_handle; 4861 #endif 4862 } 4863 4864 static inline u64 skb_get_kcov_handle(struct sk_buff *skb) 4865 { 4866 #ifdef CONFIG_KCOV 4867 return skb->kcov_handle; 4868 #else 4869 return 0; 4870 #endif 4871 } 4872 4873 #ifdef CONFIG_PAGE_POOL 4874 static inline void skb_mark_for_recycle(struct sk_buff *skb) 4875 { 4876 skb->pp_recycle = 1; 4877 } 4878 #endif 4879 4880 static inline bool skb_pp_recycle(struct sk_buff *skb, void *data) 4881 { 4882 if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle) 4883 return false; 4884 return page_pool_return_skb_page(virt_to_page(data)); 4885 } 4886 4887 #endif /* __KERNEL__ */ 4888 #endif /* _LINUX_SKBUFF_H */ 4889