xref: /linux-6.15/include/linux/skbuff.h (revision b8cd5831)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  *	Definitions for the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:
6  *		Alan Cox, <[email protected]>
7  *		Florian La Roche, <[email protected]>
8  */
9 
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12 
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
22 
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/hrtimer.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/netdev_features.h>
33 #include <linux/sched.h>
34 #include <linux/sched/clock.h>
35 #include <net/flow_dissector.h>
36 #include <linux/splice.h>
37 #include <linux/in6.h>
38 #include <linux/if_packet.h>
39 #include <linux/llist.h>
40 #include <net/flow.h>
41 #include <net/page_pool.h>
42 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
43 #include <linux/netfilter/nf_conntrack_common.h>
44 #endif
45 
46 /* The interface for checksum offload between the stack and networking drivers
47  * is as follows...
48  *
49  * A. IP checksum related features
50  *
51  * Drivers advertise checksum offload capabilities in the features of a device.
52  * From the stack's point of view these are capabilities offered by the driver.
53  * A driver typically only advertises features that it is capable of offloading
54  * to its device.
55  *
56  * The checksum related features are:
57  *
58  *	NETIF_F_HW_CSUM	- The driver (or its device) is able to compute one
59  *			  IP (one's complement) checksum for any combination
60  *			  of protocols or protocol layering. The checksum is
61  *			  computed and set in a packet per the CHECKSUM_PARTIAL
62  *			  interface (see below).
63  *
64  *	NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
65  *			  TCP or UDP packets over IPv4. These are specifically
66  *			  unencapsulated packets of the form IPv4|TCP or
67  *			  IPv4|UDP where the Protocol field in the IPv4 header
68  *			  is TCP or UDP. The IPv4 header may contain IP options.
69  *			  This feature cannot be set in features for a device
70  *			  with NETIF_F_HW_CSUM also set. This feature is being
71  *			  DEPRECATED (see below).
72  *
73  *	NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
74  *			  TCP or UDP packets over IPv6. These are specifically
75  *			  unencapsulated packets of the form IPv6|TCP or
76  *			  IPv6|UDP where the Next Header field in the IPv6
77  *			  header is either TCP or UDP. IPv6 extension headers
78  *			  are not supported with this feature. This feature
79  *			  cannot be set in features for a device with
80  *			  NETIF_F_HW_CSUM also set. This feature is being
81  *			  DEPRECATED (see below).
82  *
83  *	NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
84  *			 This flag is only used to disable the RX checksum
85  *			 feature for a device. The stack will accept receive
86  *			 checksum indication in packets received on a device
87  *			 regardless of whether NETIF_F_RXCSUM is set.
88  *
89  * B. Checksumming of received packets by device. Indication of checksum
90  *    verification is set in skb->ip_summed. Possible values are:
91  *
92  * CHECKSUM_NONE:
93  *
94  *   Device did not checksum this packet e.g. due to lack of capabilities.
95  *   The packet contains full (though not verified) checksum in packet but
96  *   not in skb->csum. Thus, skb->csum is undefined in this case.
97  *
98  * CHECKSUM_UNNECESSARY:
99  *
100  *   The hardware you're dealing with doesn't calculate the full checksum
101  *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
102  *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
103  *   if their checksums are okay. skb->csum is still undefined in this case
104  *   though. A driver or device must never modify the checksum field in the
105  *   packet even if checksum is verified.
106  *
107  *   CHECKSUM_UNNECESSARY is applicable to following protocols:
108  *     TCP: IPv6 and IPv4.
109  *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
110  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
111  *       may perform further validation in this case.
112  *     GRE: only if the checksum is present in the header.
113  *     SCTP: indicates the CRC in SCTP header has been validated.
114  *     FCOE: indicates the CRC in FC frame has been validated.
115  *
116  *   skb->csum_level indicates the number of consecutive checksums found in
117  *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
118  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
119  *   and a device is able to verify the checksums for UDP (possibly zero),
120  *   GRE (checksum flag is set) and TCP, skb->csum_level would be set to
121  *   two. If the device were only able to verify the UDP checksum and not
122  *   GRE, either because it doesn't support GRE checksum or because GRE
123  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
124  *   not considered in this case).
125  *
126  * CHECKSUM_COMPLETE:
127  *
128  *   This is the most generic way. The device supplied checksum of the _whole_
129  *   packet as seen by netif_rx() and fills in skb->csum. This means the
130  *   hardware doesn't need to parse L3/L4 headers to implement this.
131  *
132  *   Notes:
133  *   - Even if device supports only some protocols, but is able to produce
134  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
135  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
136  *
137  * CHECKSUM_PARTIAL:
138  *
139  *   A checksum is set up to be offloaded to a device as described in the
140  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
141  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
142  *   on the same host, or it may be set in the input path in GRO or remote
143  *   checksum offload. For the purposes of checksum verification, the checksum
144  *   referred to by skb->csum_start + skb->csum_offset and any preceding
145  *   checksums in the packet are considered verified. Any checksums in the
146  *   packet that are after the checksum being offloaded are not considered to
147  *   be verified.
148  *
149  * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
150  *    in the skb->ip_summed for a packet. Values are:
151  *
152  * CHECKSUM_PARTIAL:
153  *
154  *   The driver is required to checksum the packet as seen by hard_start_xmit()
155  *   from skb->csum_start up to the end, and to record/write the checksum at
156  *   offset skb->csum_start + skb->csum_offset. A driver may verify that the
157  *   csum_start and csum_offset values are valid values given the length and
158  *   offset of the packet, but it should not attempt to validate that the
159  *   checksum refers to a legitimate transport layer checksum -- it is the
160  *   purview of the stack to validate that csum_start and csum_offset are set
161  *   correctly.
162  *
163  *   When the stack requests checksum offload for a packet, the driver MUST
164  *   ensure that the checksum is set correctly. A driver can either offload the
165  *   checksum calculation to the device, or call skb_checksum_help (in the case
166  *   that the device does not support offload for a particular checksum).
167  *
168  *   NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
169  *   NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
170  *   checksum offload capability.
171  *   skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
172  *   on network device checksumming capabilities: if a packet does not match
173  *   them, skb_checksum_help or skb_crc32c_help (depending on the value of
174  *   csum_not_inet, see item D.) is called to resolve the checksum.
175  *
176  * CHECKSUM_NONE:
177  *
178  *   The skb was already checksummed by the protocol, or a checksum is not
179  *   required.
180  *
181  * CHECKSUM_UNNECESSARY:
182  *
183  *   This has the same meaning as CHECKSUM_NONE for checksum offload on
184  *   output.
185  *
186  * CHECKSUM_COMPLETE:
187  *   Not used in checksum output. If a driver observes a packet with this value
188  *   set in skbuff, it should treat the packet as if CHECKSUM_NONE were set.
189  *
190  * D. Non-IP checksum (CRC) offloads
191  *
192  *   NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
193  *     offloading the SCTP CRC in a packet. To perform this offload the stack
194  *     will set csum_start and csum_offset accordingly, set ip_summed to
195  *     CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
196  *     the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
197  *     A driver that supports both IP checksum offload and SCTP CRC32c offload
198  *     must verify which offload is configured for a packet by testing the
199  *     value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
200  *     CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
201  *
202  *   NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
203  *     offloading the FCOE CRC in a packet. To perform this offload the stack
204  *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
205  *     accordingly. Note that there is no indication in the skbuff that the
206  *     CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
207  *     both IP checksum offload and FCOE CRC offload must verify which offload
208  *     is configured for a packet, presumably by inspecting packet headers.
209  *
210  * E. Checksumming on output with GSO.
211  *
212  * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
213  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
214  * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
215  * part of the GSO operation is implied. If a checksum is being offloaded
216  * with GSO then ip_summed is CHECKSUM_PARTIAL, and both csum_start and
217  * csum_offset are set to refer to the outermost checksum being offloaded
218  * (two offloaded checksums are possible with UDP encapsulation).
219  */
220 
221 /* Don't change this without changing skb_csum_unnecessary! */
222 #define CHECKSUM_NONE		0
223 #define CHECKSUM_UNNECESSARY	1
224 #define CHECKSUM_COMPLETE	2
225 #define CHECKSUM_PARTIAL	3
226 
227 /* Maximum value in skb->csum_level */
228 #define SKB_MAX_CSUM_LEVEL	3
229 
230 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
231 #define SKB_WITH_OVERHEAD(X)	\
232 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
233 #define SKB_MAX_ORDER(X, ORDER) \
234 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
235 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
236 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
237 
238 /* return minimum truesize of one skb containing X bytes of data */
239 #define SKB_TRUESIZE(X) ((X) +						\
240 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
241 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
242 
243 struct ahash_request;
244 struct net_device;
245 struct scatterlist;
246 struct pipe_inode_info;
247 struct iov_iter;
248 struct napi_struct;
249 struct bpf_prog;
250 union bpf_attr;
251 struct skb_ext;
252 
253 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
254 struct nf_bridge_info {
255 	enum {
256 		BRNF_PROTO_UNCHANGED,
257 		BRNF_PROTO_8021Q,
258 		BRNF_PROTO_PPPOE
259 	} orig_proto:8;
260 	u8			pkt_otherhost:1;
261 	u8			in_prerouting:1;
262 	u8			bridged_dnat:1;
263 	__u16			frag_max_size;
264 	struct net_device	*physindev;
265 
266 	/* always valid & non-NULL from FORWARD on, for physdev match */
267 	struct net_device	*physoutdev;
268 	union {
269 		/* prerouting: detect dnat in orig/reply direction */
270 		__be32          ipv4_daddr;
271 		struct in6_addr ipv6_daddr;
272 
273 		/* after prerouting + nat detected: store original source
274 		 * mac since neigh resolution overwrites it, only used while
275 		 * skb is out in neigh layer.
276 		 */
277 		char neigh_header[8];
278 	};
279 };
280 #endif
281 
282 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
283 /* Chain in tc_skb_ext will be used to share the tc chain with
284  * ovs recirc_id. It will be set to the current chain by tc
285  * and read by ovs to recirc_id.
286  */
287 struct tc_skb_ext {
288 	__u32 chain;
289 	__u16 mru;
290 	__u16 zone;
291 	u8 post_ct:1;
292 	u8 post_ct_snat:1;
293 	u8 post_ct_dnat:1;
294 };
295 #endif
296 
297 struct sk_buff_head {
298 	/* These two members must be first to match sk_buff. */
299 	struct_group_tagged(sk_buff_list, list,
300 		struct sk_buff	*next;
301 		struct sk_buff	*prev;
302 	);
303 
304 	__u32		qlen;
305 	spinlock_t	lock;
306 };
307 
308 struct sk_buff;
309 
310 /* The reason of skb drop, which is used in kfree_skb_reason().
311  * en...maybe they should be splited by group?
312  *
313  * Each item here should also be in 'TRACE_SKB_DROP_REASON', which is
314  * used to translate the reason to string.
315  */
316 enum skb_drop_reason {
317 	SKB_DROP_REASON_NOT_SPECIFIED,	/* drop reason is not specified */
318 	SKB_DROP_REASON_NO_SOCKET,	/* socket not found */
319 	SKB_DROP_REASON_PKT_TOO_SMALL,	/* packet size is too small */
320 	SKB_DROP_REASON_TCP_CSUM,	/* TCP checksum error */
321 	SKB_DROP_REASON_SOCKET_FILTER,	/* dropped by socket filter */
322 	SKB_DROP_REASON_UDP_CSUM,	/* UDP checksum error */
323 	SKB_DROP_REASON_NETFILTER_DROP,	/* dropped by netfilter */
324 	SKB_DROP_REASON_OTHERHOST,	/* packet don't belong to current
325 					 * host (interface is in promisc
326 					 * mode)
327 					 */
328 	SKB_DROP_REASON_IP_CSUM,	/* IP checksum error */
329 	SKB_DROP_REASON_IP_INHDR,	/* there is something wrong with
330 					 * IP header (see
331 					 * IPSTATS_MIB_INHDRERRORS)
332 					 */
333 	SKB_DROP_REASON_IP_RPFILTER,	/* IP rpfilter validate failed.
334 					 * see the document for rp_filter
335 					 * in ip-sysctl.rst for more
336 					 * information
337 					 */
338 	SKB_DROP_REASON_UNICAST_IN_L2_MULTICAST, /* destination address of L2
339 						  * is multicast, but L3 is
340 						  * unicast.
341 						  */
342 	SKB_DROP_REASON_XFRM_POLICY,	/* xfrm policy check failed */
343 	SKB_DROP_REASON_IP_NOPROTO,	/* no support for IP protocol */
344 	SKB_DROP_REASON_SOCKET_RCVBUFF,	/* socket receive buff is full */
345 	SKB_DROP_REASON_PROTO_MEM,	/* proto memory limition, such as
346 					 * udp packet drop out of
347 					 * udp_memory_allocated.
348 					 */
349 	SKB_DROP_REASON_TCP_MD5NOTFOUND,	/* no MD5 hash and one
350 						 * expected, corresponding
351 						 * to LINUX_MIB_TCPMD5NOTFOUND
352 						 */
353 	SKB_DROP_REASON_TCP_MD5UNEXPECTED,	/* MD5 hash and we're not
354 						 * expecting one, corresponding
355 						 * to LINUX_MIB_TCPMD5UNEXPECTED
356 						 */
357 	SKB_DROP_REASON_TCP_MD5FAILURE,	/* MD5 hash and its wrong,
358 					 * corresponding to
359 					 * LINUX_MIB_TCPMD5FAILURE
360 					 */
361 	SKB_DROP_REASON_SOCKET_BACKLOG,	/* failed to add skb to socket
362 					 * backlog (see
363 					 * LINUX_MIB_TCPBACKLOGDROP)
364 					 */
365 	SKB_DROP_REASON_TCP_FLAGS,	/* TCP flags invalid */
366 	SKB_DROP_REASON_TCP_ZEROWINDOW,	/* TCP receive window size is zero,
367 					 * see LINUX_MIB_TCPZEROWINDOWDROP
368 					 */
369 	SKB_DROP_REASON_TCP_OLD_DATA,	/* the TCP data reveived is already
370 					 * received before (spurious retrans
371 					 * may happened), see
372 					 * LINUX_MIB_DELAYEDACKLOST
373 					 */
374 	SKB_DROP_REASON_TCP_OVERWINDOW,	/* the TCP data is out of window,
375 					 * the seq of the first byte exceed
376 					 * the right edges of receive
377 					 * window
378 					 */
379 	SKB_DROP_REASON_TCP_OFOMERGE,	/* the data of skb is already in
380 					 * the ofo queue, corresponding to
381 					 * LINUX_MIB_TCPOFOMERGE
382 					 */
383 	SKB_DROP_REASON_IP_OUTNOROUTES,	/* route lookup failed */
384 	SKB_DROP_REASON_BPF_CGROUP_EGRESS,	/* dropped by
385 						 * BPF_PROG_TYPE_CGROUP_SKB
386 						 * eBPF program
387 						 */
388 	SKB_DROP_REASON_IPV6DISABLED,	/* IPv6 is disabled on the device */
389 	SKB_DROP_REASON_NEIGH_CREATEFAIL,	/* failed to create neigh
390 						 * entry
391 						 */
392 	SKB_DROP_REASON_NEIGH_FAILED,	/* neigh entry in failed state */
393 	SKB_DROP_REASON_NEIGH_QUEUEFULL,	/* arp_queue for neigh
394 						 * entry is full
395 						 */
396 	SKB_DROP_REASON_NEIGH_DEAD,	/* neigh entry is dead */
397 	SKB_DROP_REASON_MAX,
398 };
399 
400 /* To allow 64K frame to be packed as single skb without frag_list we
401  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
402  * buffers which do not start on a page boundary.
403  *
404  * Since GRO uses frags we allocate at least 16 regardless of page
405  * size.
406  */
407 #if (65536/PAGE_SIZE + 1) < 16
408 #define MAX_SKB_FRAGS 16UL
409 #else
410 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
411 #endif
412 extern int sysctl_max_skb_frags;
413 
414 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
415  * segment using its current segmentation instead.
416  */
417 #define GSO_BY_FRAGS	0xFFFF
418 
419 typedef struct bio_vec skb_frag_t;
420 
421 /**
422  * skb_frag_size() - Returns the size of a skb fragment
423  * @frag: skb fragment
424  */
425 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
426 {
427 	return frag->bv_len;
428 }
429 
430 /**
431  * skb_frag_size_set() - Sets the size of a skb fragment
432  * @frag: skb fragment
433  * @size: size of fragment
434  */
435 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
436 {
437 	frag->bv_len = size;
438 }
439 
440 /**
441  * skb_frag_size_add() - Increments the size of a skb fragment by @delta
442  * @frag: skb fragment
443  * @delta: value to add
444  */
445 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
446 {
447 	frag->bv_len += delta;
448 }
449 
450 /**
451  * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
452  * @frag: skb fragment
453  * @delta: value to subtract
454  */
455 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
456 {
457 	frag->bv_len -= delta;
458 }
459 
460 /**
461  * skb_frag_must_loop - Test if %p is a high memory page
462  * @p: fragment's page
463  */
464 static inline bool skb_frag_must_loop(struct page *p)
465 {
466 #if defined(CONFIG_HIGHMEM)
467 	if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p))
468 		return true;
469 #endif
470 	return false;
471 }
472 
473 /**
474  *	skb_frag_foreach_page - loop over pages in a fragment
475  *
476  *	@f:		skb frag to operate on
477  *	@f_off:		offset from start of f->bv_page
478  *	@f_len:		length from f_off to loop over
479  *	@p:		(temp var) current page
480  *	@p_off:		(temp var) offset from start of current page,
481  *	                           non-zero only on first page.
482  *	@p_len:		(temp var) length in current page,
483  *				   < PAGE_SIZE only on first and last page.
484  *	@copied:	(temp var) length so far, excluding current p_len.
485  *
486  *	A fragment can hold a compound page, in which case per-page
487  *	operations, notably kmap_atomic, must be called for each
488  *	regular page.
489  */
490 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
491 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
492 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
493 	     p_len = skb_frag_must_loop(p) ?				\
494 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
495 	     copied = 0;						\
496 	     copied < f_len;						\
497 	     copied += p_len, p++, p_off = 0,				\
498 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
499 
500 #define HAVE_HW_TIME_STAMP
501 
502 /**
503  * struct skb_shared_hwtstamps - hardware time stamps
504  * @hwtstamp:	hardware time stamp transformed into duration
505  *		since arbitrary point in time
506  *
507  * Software time stamps generated by ktime_get_real() are stored in
508  * skb->tstamp.
509  *
510  * hwtstamps can only be compared against other hwtstamps from
511  * the same device.
512  *
513  * This structure is attached to packets as part of the
514  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
515  */
516 struct skb_shared_hwtstamps {
517 	ktime_t	hwtstamp;
518 };
519 
520 /* Definitions for tx_flags in struct skb_shared_info */
521 enum {
522 	/* generate hardware time stamp */
523 	SKBTX_HW_TSTAMP = 1 << 0,
524 
525 	/* generate software time stamp when queueing packet to NIC */
526 	SKBTX_SW_TSTAMP = 1 << 1,
527 
528 	/* device driver is going to provide hardware time stamp */
529 	SKBTX_IN_PROGRESS = 1 << 2,
530 
531 	/* generate wifi status information (where possible) */
532 	SKBTX_WIFI_STATUS = 1 << 4,
533 
534 	/* generate software time stamp when entering packet scheduling */
535 	SKBTX_SCHED_TSTAMP = 1 << 6,
536 };
537 
538 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
539 				 SKBTX_SCHED_TSTAMP)
540 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
541 
542 /* Definitions for flags in struct skb_shared_info */
543 enum {
544 	/* use zcopy routines */
545 	SKBFL_ZEROCOPY_ENABLE = BIT(0),
546 
547 	/* This indicates at least one fragment might be overwritten
548 	 * (as in vmsplice(), sendfile() ...)
549 	 * If we need to compute a TX checksum, we'll need to copy
550 	 * all frags to avoid possible bad checksum
551 	 */
552 	SKBFL_SHARED_FRAG = BIT(1),
553 
554 	/* segment contains only zerocopy data and should not be
555 	 * charged to the kernel memory.
556 	 */
557 	SKBFL_PURE_ZEROCOPY = BIT(2),
558 };
559 
560 #define SKBFL_ZEROCOPY_FRAG	(SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG)
561 #define SKBFL_ALL_ZEROCOPY	(SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY)
562 
563 /*
564  * The callback notifies userspace to release buffers when skb DMA is done in
565  * lower device, the skb last reference should be 0 when calling this.
566  * The zerocopy_success argument is true if zero copy transmit occurred,
567  * false on data copy or out of memory error caused by data copy attempt.
568  * The ctx field is used to track device context.
569  * The desc field is used to track userspace buffer index.
570  */
571 struct ubuf_info {
572 	void (*callback)(struct sk_buff *, struct ubuf_info *,
573 			 bool zerocopy_success);
574 	union {
575 		struct {
576 			unsigned long desc;
577 			void *ctx;
578 		};
579 		struct {
580 			u32 id;
581 			u16 len;
582 			u16 zerocopy:1;
583 			u32 bytelen;
584 		};
585 	};
586 	refcount_t refcnt;
587 	u8 flags;
588 
589 	struct mmpin {
590 		struct user_struct *user;
591 		unsigned int num_pg;
592 	} mmp;
593 };
594 
595 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
596 
597 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
598 void mm_unaccount_pinned_pages(struct mmpin *mmp);
599 
600 struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size);
601 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
602 				       struct ubuf_info *uarg);
603 
604 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
605 
606 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
607 			   bool success);
608 
609 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len);
610 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
611 			     struct msghdr *msg, int len,
612 			     struct ubuf_info *uarg);
613 
614 /* This data is invariant across clones and lives at
615  * the end of the header data, ie. at skb->end.
616  */
617 struct skb_shared_info {
618 	__u8		flags;
619 	__u8		meta_len;
620 	__u8		nr_frags;
621 	__u8		tx_flags;
622 	unsigned short	gso_size;
623 	/* Warning: this field is not always filled in (UFO)! */
624 	unsigned short	gso_segs;
625 	struct sk_buff	*frag_list;
626 	struct skb_shared_hwtstamps hwtstamps;
627 	unsigned int	gso_type;
628 	u32		tskey;
629 
630 	/*
631 	 * Warning : all fields before dataref are cleared in __alloc_skb()
632 	 */
633 	atomic_t	dataref;
634 	unsigned int	xdp_frags_size;
635 
636 	/* Intermediate layers must ensure that destructor_arg
637 	 * remains valid until skb destructor */
638 	void *		destructor_arg;
639 
640 	/* must be last field, see pskb_expand_head() */
641 	skb_frag_t	frags[MAX_SKB_FRAGS];
642 };
643 
644 /* We divide dataref into two halves.  The higher 16 bits hold references
645  * to the payload part of skb->data.  The lower 16 bits hold references to
646  * the entire skb->data.  A clone of a headerless skb holds the length of
647  * the header in skb->hdr_len.
648  *
649  * All users must obey the rule that the skb->data reference count must be
650  * greater than or equal to the payload reference count.
651  *
652  * Holding a reference to the payload part means that the user does not
653  * care about modifications to the header part of skb->data.
654  */
655 #define SKB_DATAREF_SHIFT 16
656 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
657 
658 
659 enum {
660 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
661 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
662 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
663 };
664 
665 enum {
666 	SKB_GSO_TCPV4 = 1 << 0,
667 
668 	/* This indicates the skb is from an untrusted source. */
669 	SKB_GSO_DODGY = 1 << 1,
670 
671 	/* This indicates the tcp segment has CWR set. */
672 	SKB_GSO_TCP_ECN = 1 << 2,
673 
674 	SKB_GSO_TCP_FIXEDID = 1 << 3,
675 
676 	SKB_GSO_TCPV6 = 1 << 4,
677 
678 	SKB_GSO_FCOE = 1 << 5,
679 
680 	SKB_GSO_GRE = 1 << 6,
681 
682 	SKB_GSO_GRE_CSUM = 1 << 7,
683 
684 	SKB_GSO_IPXIP4 = 1 << 8,
685 
686 	SKB_GSO_IPXIP6 = 1 << 9,
687 
688 	SKB_GSO_UDP_TUNNEL = 1 << 10,
689 
690 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
691 
692 	SKB_GSO_PARTIAL = 1 << 12,
693 
694 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
695 
696 	SKB_GSO_SCTP = 1 << 14,
697 
698 	SKB_GSO_ESP = 1 << 15,
699 
700 	SKB_GSO_UDP = 1 << 16,
701 
702 	SKB_GSO_UDP_L4 = 1 << 17,
703 
704 	SKB_GSO_FRAGLIST = 1 << 18,
705 };
706 
707 #if BITS_PER_LONG > 32
708 #define NET_SKBUFF_DATA_USES_OFFSET 1
709 #endif
710 
711 #ifdef NET_SKBUFF_DATA_USES_OFFSET
712 typedef unsigned int sk_buff_data_t;
713 #else
714 typedef unsigned char *sk_buff_data_t;
715 #endif
716 
717 /**
718  *	struct sk_buff - socket buffer
719  *	@next: Next buffer in list
720  *	@prev: Previous buffer in list
721  *	@tstamp: Time we arrived/left
722  *	@skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
723  *		for retransmit timer
724  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
725  *	@list: queue head
726  *	@ll_node: anchor in an llist (eg socket defer_list)
727  *	@sk: Socket we are owned by
728  *	@ip_defrag_offset: (aka @sk) alternate use of @sk, used in
729  *		fragmentation management
730  *	@dev: Device we arrived on/are leaving by
731  *	@dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
732  *	@cb: Control buffer. Free for use by every layer. Put private vars here
733  *	@_skb_refdst: destination entry (with norefcount bit)
734  *	@sp: the security path, used for xfrm
735  *	@len: Length of actual data
736  *	@data_len: Data length
737  *	@mac_len: Length of link layer header
738  *	@hdr_len: writable header length of cloned skb
739  *	@csum: Checksum (must include start/offset pair)
740  *	@csum_start: Offset from skb->head where checksumming should start
741  *	@csum_offset: Offset from csum_start where checksum should be stored
742  *	@priority: Packet queueing priority
743  *	@ignore_df: allow local fragmentation
744  *	@cloned: Head may be cloned (check refcnt to be sure)
745  *	@ip_summed: Driver fed us an IP checksum
746  *	@nohdr: Payload reference only, must not modify header
747  *	@pkt_type: Packet class
748  *	@fclone: skbuff clone status
749  *	@ipvs_property: skbuff is owned by ipvs
750  *	@inner_protocol_type: whether the inner protocol is
751  *		ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
752  *	@remcsum_offload: remote checksum offload is enabled
753  *	@offload_fwd_mark: Packet was L2-forwarded in hardware
754  *	@offload_l3_fwd_mark: Packet was L3-forwarded in hardware
755  *	@tc_skip_classify: do not classify packet. set by IFB device
756  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
757  *	@redirected: packet was redirected by packet classifier
758  *	@from_ingress: packet was redirected from the ingress path
759  *	@nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h
760  *	@peeked: this packet has been seen already, so stats have been
761  *		done for it, don't do them again
762  *	@nf_trace: netfilter packet trace flag
763  *	@protocol: Packet protocol from driver
764  *	@destructor: Destruct function
765  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
766  *	@_sk_redir: socket redirection information for skmsg
767  *	@_nfct: Associated connection, if any (with nfctinfo bits)
768  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
769  *	@skb_iif: ifindex of device we arrived on
770  *	@tc_index: Traffic control index
771  *	@hash: the packet hash
772  *	@queue_mapping: Queue mapping for multiqueue devices
773  *	@head_frag: skb was allocated from page fragments,
774  *		not allocated by kmalloc() or vmalloc().
775  *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
776  *	@pp_recycle: mark the packet for recycling instead of freeing (implies
777  *		page_pool support on driver)
778  *	@active_extensions: active extensions (skb_ext_id types)
779  *	@ndisc_nodetype: router type (from link layer)
780  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
781  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
782  *		ports.
783  *	@sw_hash: indicates hash was computed in software stack
784  *	@wifi_acked_valid: wifi_acked was set
785  *	@wifi_acked: whether frame was acked on wifi or not
786  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
787  *	@encapsulation: indicates the inner headers in the skbuff are valid
788  *	@encap_hdr_csum: software checksum is needed
789  *	@csum_valid: checksum is already valid
790  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
791  *	@csum_complete_sw: checksum was completed by software
792  *	@csum_level: indicates the number of consecutive checksums found in
793  *		the packet minus one that have been verified as
794  *		CHECKSUM_UNNECESSARY (max 3)
795  *	@dst_pending_confirm: need to confirm neighbour
796  *	@decrypted: Decrypted SKB
797  *	@slow_gro: state present at GRO time, slower prepare step required
798  *	@napi_id: id of the NAPI struct this skb came from
799  *	@sender_cpu: (aka @napi_id) source CPU in XPS
800  *	@secmark: security marking
801  *	@mark: Generic packet mark
802  *	@reserved_tailroom: (aka @mark) number of bytes of free space available
803  *		at the tail of an sk_buff
804  *	@vlan_present: VLAN tag is present
805  *	@vlan_proto: vlan encapsulation protocol
806  *	@vlan_tci: vlan tag control information
807  *	@inner_protocol: Protocol (encapsulation)
808  *	@inner_ipproto: (aka @inner_protocol) stores ipproto when
809  *		skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
810  *	@inner_transport_header: Inner transport layer header (encapsulation)
811  *	@inner_network_header: Network layer header (encapsulation)
812  *	@inner_mac_header: Link layer header (encapsulation)
813  *	@transport_header: Transport layer header
814  *	@network_header: Network layer header
815  *	@mac_header: Link layer header
816  *	@kcov_handle: KCOV remote handle for remote coverage collection
817  *	@tail: Tail pointer
818  *	@end: End pointer
819  *	@head: Head of buffer
820  *	@data: Data head pointer
821  *	@truesize: Buffer size
822  *	@users: User count - see {datagram,tcp}.c
823  *	@extensions: allocated extensions, valid if active_extensions is nonzero
824  */
825 
826 struct sk_buff {
827 	union {
828 		struct {
829 			/* These two members must be first to match sk_buff_head. */
830 			struct sk_buff		*next;
831 			struct sk_buff		*prev;
832 
833 			union {
834 				struct net_device	*dev;
835 				/* Some protocols might use this space to store information,
836 				 * while device pointer would be NULL.
837 				 * UDP receive path is one user.
838 				 */
839 				unsigned long		dev_scratch;
840 			};
841 		};
842 		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
843 		struct list_head	list;
844 		struct llist_node	ll_node;
845 	};
846 
847 	union {
848 		struct sock		*sk;
849 		int			ip_defrag_offset;
850 	};
851 
852 	union {
853 		ktime_t		tstamp;
854 		u64		skb_mstamp_ns; /* earliest departure time */
855 	};
856 	/*
857 	 * This is the control buffer. It is free to use for every
858 	 * layer. Please put your private variables there. If you
859 	 * want to keep them across layers you have to do a skb_clone()
860 	 * first. This is owned by whoever has the skb queued ATM.
861 	 */
862 	char			cb[48] __aligned(8);
863 
864 	union {
865 		struct {
866 			unsigned long	_skb_refdst;
867 			void		(*destructor)(struct sk_buff *skb);
868 		};
869 		struct list_head	tcp_tsorted_anchor;
870 #ifdef CONFIG_NET_SOCK_MSG
871 		unsigned long		_sk_redir;
872 #endif
873 	};
874 
875 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
876 	unsigned long		 _nfct;
877 #endif
878 	unsigned int		len,
879 				data_len;
880 	__u16			mac_len,
881 				hdr_len;
882 
883 	/* Following fields are _not_ copied in __copy_skb_header()
884 	 * Note that queue_mapping is here mostly to fill a hole.
885 	 */
886 	__u16			queue_mapping;
887 
888 /* if you move cloned around you also must adapt those constants */
889 #ifdef __BIG_ENDIAN_BITFIELD
890 #define CLONED_MASK	(1 << 7)
891 #else
892 #define CLONED_MASK	1
893 #endif
894 #define CLONED_OFFSET		offsetof(struct sk_buff, __cloned_offset)
895 
896 	/* private: */
897 	__u8			__cloned_offset[0];
898 	/* public: */
899 	__u8			cloned:1,
900 				nohdr:1,
901 				fclone:2,
902 				peeked:1,
903 				head_frag:1,
904 				pfmemalloc:1,
905 				pp_recycle:1; /* page_pool recycle indicator */
906 #ifdef CONFIG_SKB_EXTENSIONS
907 	__u8			active_extensions;
908 #endif
909 
910 	/* Fields enclosed in headers group are copied
911 	 * using a single memcpy() in __copy_skb_header()
912 	 */
913 	struct_group(headers,
914 
915 	/* private: */
916 	__u8			__pkt_type_offset[0];
917 	/* public: */
918 	__u8			pkt_type:3; /* see PKT_TYPE_MAX */
919 	__u8			ignore_df:1;
920 	__u8			nf_trace:1;
921 	__u8			ip_summed:2;
922 	__u8			ooo_okay:1;
923 
924 	__u8			l4_hash:1;
925 	__u8			sw_hash:1;
926 	__u8			wifi_acked_valid:1;
927 	__u8			wifi_acked:1;
928 	__u8			no_fcs:1;
929 	/* Indicates the inner headers are valid in the skbuff. */
930 	__u8			encapsulation:1;
931 	__u8			encap_hdr_csum:1;
932 	__u8			csum_valid:1;
933 
934 	/* private: */
935 	__u8			__pkt_vlan_present_offset[0];
936 	/* public: */
937 	__u8			vlan_present:1;	/* See PKT_VLAN_PRESENT_BIT */
938 	__u8			csum_complete_sw:1;
939 	__u8			csum_level:2;
940 	__u8			csum_not_inet:1;
941 	__u8			dst_pending_confirm:1;
942 #ifdef CONFIG_IPV6_NDISC_NODETYPE
943 	__u8			ndisc_nodetype:2;
944 #endif
945 
946 	__u8			ipvs_property:1;
947 	__u8			inner_protocol_type:1;
948 	__u8			remcsum_offload:1;
949 #ifdef CONFIG_NET_SWITCHDEV
950 	__u8			offload_fwd_mark:1;
951 	__u8			offload_l3_fwd_mark:1;
952 #endif
953 #ifdef CONFIG_NET_CLS_ACT
954 	__u8			tc_skip_classify:1;
955 	__u8			tc_at_ingress:1;
956 #endif
957 	__u8			redirected:1;
958 #ifdef CONFIG_NET_REDIRECT
959 	__u8			from_ingress:1;
960 #endif
961 #ifdef CONFIG_NETFILTER_SKIP_EGRESS
962 	__u8			nf_skip_egress:1;
963 #endif
964 #ifdef CONFIG_TLS_DEVICE
965 	__u8			decrypted:1;
966 #endif
967 	__u8			slow_gro:1;
968 
969 #ifdef CONFIG_NET_SCHED
970 	__u16			tc_index;	/* traffic control index */
971 #endif
972 
973 	union {
974 		__wsum		csum;
975 		struct {
976 			__u16	csum_start;
977 			__u16	csum_offset;
978 		};
979 	};
980 	__u32			priority;
981 	int			skb_iif;
982 	__u32			hash;
983 	__be16			vlan_proto;
984 	__u16			vlan_tci;
985 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
986 	union {
987 		unsigned int	napi_id;
988 		unsigned int	sender_cpu;
989 	};
990 #endif
991 #ifdef CONFIG_NETWORK_SECMARK
992 	__u32		secmark;
993 #endif
994 
995 	union {
996 		__u32		mark;
997 		__u32		reserved_tailroom;
998 	};
999 
1000 	union {
1001 		__be16		inner_protocol;
1002 		__u8		inner_ipproto;
1003 	};
1004 
1005 	__u16			inner_transport_header;
1006 	__u16			inner_network_header;
1007 	__u16			inner_mac_header;
1008 
1009 	__be16			protocol;
1010 	__u16			transport_header;
1011 	__u16			network_header;
1012 	__u16			mac_header;
1013 
1014 #ifdef CONFIG_KCOV
1015 	u64			kcov_handle;
1016 #endif
1017 
1018 	); /* end headers group */
1019 
1020 	/* These elements must be at the end, see alloc_skb() for details.  */
1021 	sk_buff_data_t		tail;
1022 	sk_buff_data_t		end;
1023 	unsigned char		*head,
1024 				*data;
1025 	unsigned int		truesize;
1026 	refcount_t		users;
1027 
1028 #ifdef CONFIG_SKB_EXTENSIONS
1029 	/* only useable after checking ->active_extensions != 0 */
1030 	struct skb_ext		*extensions;
1031 #endif
1032 };
1033 
1034 /* if you move pkt_type around you also must adapt those constants */
1035 #ifdef __BIG_ENDIAN_BITFIELD
1036 #define PKT_TYPE_MAX	(7 << 5)
1037 #else
1038 #define PKT_TYPE_MAX	7
1039 #endif
1040 #define PKT_TYPE_OFFSET		offsetof(struct sk_buff, __pkt_type_offset)
1041 
1042 /* if you move pkt_vlan_present around you also must adapt these constants */
1043 #ifdef __BIG_ENDIAN_BITFIELD
1044 #define PKT_VLAN_PRESENT_BIT	7
1045 #else
1046 #define PKT_VLAN_PRESENT_BIT	0
1047 #endif
1048 #define PKT_VLAN_PRESENT_OFFSET	offsetof(struct sk_buff, __pkt_vlan_present_offset)
1049 
1050 #ifdef __KERNEL__
1051 /*
1052  *	Handling routines are only of interest to the kernel
1053  */
1054 
1055 #define SKB_ALLOC_FCLONE	0x01
1056 #define SKB_ALLOC_RX		0x02
1057 #define SKB_ALLOC_NAPI		0x04
1058 
1059 /**
1060  * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
1061  * @skb: buffer
1062  */
1063 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
1064 {
1065 	return unlikely(skb->pfmemalloc);
1066 }
1067 
1068 /*
1069  * skb might have a dst pointer attached, refcounted or not.
1070  * _skb_refdst low order bit is set if refcount was _not_ taken
1071  */
1072 #define SKB_DST_NOREF	1UL
1073 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
1074 
1075 /**
1076  * skb_dst - returns skb dst_entry
1077  * @skb: buffer
1078  *
1079  * Returns skb dst_entry, regardless of reference taken or not.
1080  */
1081 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
1082 {
1083 	/* If refdst was not refcounted, check we still are in a
1084 	 * rcu_read_lock section
1085 	 */
1086 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
1087 		!rcu_read_lock_held() &&
1088 		!rcu_read_lock_bh_held());
1089 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
1090 }
1091 
1092 /**
1093  * skb_dst_set - sets skb dst
1094  * @skb: buffer
1095  * @dst: dst entry
1096  *
1097  * Sets skb dst, assuming a reference was taken on dst and should
1098  * be released by skb_dst_drop()
1099  */
1100 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
1101 {
1102 	skb->slow_gro |= !!dst;
1103 	skb->_skb_refdst = (unsigned long)dst;
1104 }
1105 
1106 /**
1107  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
1108  * @skb: buffer
1109  * @dst: dst entry
1110  *
1111  * Sets skb dst, assuming a reference was not taken on dst.
1112  * If dst entry is cached, we do not take reference and dst_release
1113  * will be avoided by refdst_drop. If dst entry is not cached, we take
1114  * reference, so that last dst_release can destroy the dst immediately.
1115  */
1116 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
1117 {
1118 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
1119 	skb->slow_gro |= !!dst;
1120 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
1121 }
1122 
1123 /**
1124  * skb_dst_is_noref - Test if skb dst isn't refcounted
1125  * @skb: buffer
1126  */
1127 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1128 {
1129 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1130 }
1131 
1132 /**
1133  * skb_rtable - Returns the skb &rtable
1134  * @skb: buffer
1135  */
1136 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
1137 {
1138 	return (struct rtable *)skb_dst(skb);
1139 }
1140 
1141 /* For mangling skb->pkt_type from user space side from applications
1142  * such as nft, tc, etc, we only allow a conservative subset of
1143  * possible pkt_types to be set.
1144 */
1145 static inline bool skb_pkt_type_ok(u32 ptype)
1146 {
1147 	return ptype <= PACKET_OTHERHOST;
1148 }
1149 
1150 /**
1151  * skb_napi_id - Returns the skb's NAPI id
1152  * @skb: buffer
1153  */
1154 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1155 {
1156 #ifdef CONFIG_NET_RX_BUSY_POLL
1157 	return skb->napi_id;
1158 #else
1159 	return 0;
1160 #endif
1161 }
1162 
1163 /**
1164  * skb_unref - decrement the skb's reference count
1165  * @skb: buffer
1166  *
1167  * Returns true if we can free the skb.
1168  */
1169 static inline bool skb_unref(struct sk_buff *skb)
1170 {
1171 	if (unlikely(!skb))
1172 		return false;
1173 	if (likely(refcount_read(&skb->users) == 1))
1174 		smp_rmb();
1175 	else if (likely(!refcount_dec_and_test(&skb->users)))
1176 		return false;
1177 
1178 	return true;
1179 }
1180 
1181 void kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason);
1182 
1183 /**
1184  *	kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason
1185  *	@skb: buffer to free
1186  */
1187 static inline void kfree_skb(struct sk_buff *skb)
1188 {
1189 	kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1190 }
1191 
1192 void skb_release_head_state(struct sk_buff *skb);
1193 void kfree_skb_list(struct sk_buff *segs);
1194 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1195 void skb_tx_error(struct sk_buff *skb);
1196 
1197 #ifdef CONFIG_TRACEPOINTS
1198 void consume_skb(struct sk_buff *skb);
1199 #else
1200 static inline void consume_skb(struct sk_buff *skb)
1201 {
1202 	return kfree_skb(skb);
1203 }
1204 #endif
1205 
1206 void __consume_stateless_skb(struct sk_buff *skb);
1207 void  __kfree_skb(struct sk_buff *skb);
1208 extern struct kmem_cache *skbuff_head_cache;
1209 
1210 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1211 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1212 		      bool *fragstolen, int *delta_truesize);
1213 
1214 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1215 			    int node);
1216 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1217 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1218 struct sk_buff *build_skb_around(struct sk_buff *skb,
1219 				 void *data, unsigned int frag_size);
1220 
1221 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size);
1222 
1223 /**
1224  * alloc_skb - allocate a network buffer
1225  * @size: size to allocate
1226  * @priority: allocation mask
1227  *
1228  * This function is a convenient wrapper around __alloc_skb().
1229  */
1230 static inline struct sk_buff *alloc_skb(unsigned int size,
1231 					gfp_t priority)
1232 {
1233 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1234 }
1235 
1236 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1237 				     unsigned long data_len,
1238 				     int max_page_order,
1239 				     int *errcode,
1240 				     gfp_t gfp_mask);
1241 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1242 
1243 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1244 struct sk_buff_fclones {
1245 	struct sk_buff	skb1;
1246 
1247 	struct sk_buff	skb2;
1248 
1249 	refcount_t	fclone_ref;
1250 };
1251 
1252 /**
1253  *	skb_fclone_busy - check if fclone is busy
1254  *	@sk: socket
1255  *	@skb: buffer
1256  *
1257  * Returns true if skb is a fast clone, and its clone is not freed.
1258  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1259  * so we also check that this didnt happen.
1260  */
1261 static inline bool skb_fclone_busy(const struct sock *sk,
1262 				   const struct sk_buff *skb)
1263 {
1264 	const struct sk_buff_fclones *fclones;
1265 
1266 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1267 
1268 	return skb->fclone == SKB_FCLONE_ORIG &&
1269 	       refcount_read(&fclones->fclone_ref) > 1 &&
1270 	       READ_ONCE(fclones->skb2.sk) == sk;
1271 }
1272 
1273 /**
1274  * alloc_skb_fclone - allocate a network buffer from fclone cache
1275  * @size: size to allocate
1276  * @priority: allocation mask
1277  *
1278  * This function is a convenient wrapper around __alloc_skb().
1279  */
1280 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1281 					       gfp_t priority)
1282 {
1283 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1284 }
1285 
1286 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1287 void skb_headers_offset_update(struct sk_buff *skb, int off);
1288 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1289 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1290 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1291 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1292 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1293 				   gfp_t gfp_mask, bool fclone);
1294 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1295 					  gfp_t gfp_mask)
1296 {
1297 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1298 }
1299 
1300 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1301 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1302 				     unsigned int headroom);
1303 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom);
1304 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1305 				int newtailroom, gfp_t priority);
1306 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1307 				     int offset, int len);
1308 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1309 			      int offset, int len);
1310 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1311 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1312 
1313 /**
1314  *	skb_pad			-	zero pad the tail of an skb
1315  *	@skb: buffer to pad
1316  *	@pad: space to pad
1317  *
1318  *	Ensure that a buffer is followed by a padding area that is zero
1319  *	filled. Used by network drivers which may DMA or transfer data
1320  *	beyond the buffer end onto the wire.
1321  *
1322  *	May return error in out of memory cases. The skb is freed on error.
1323  */
1324 static inline int skb_pad(struct sk_buff *skb, int pad)
1325 {
1326 	return __skb_pad(skb, pad, true);
1327 }
1328 #define dev_kfree_skb(a)	consume_skb(a)
1329 
1330 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1331 			 int offset, size_t size);
1332 
1333 struct skb_seq_state {
1334 	__u32		lower_offset;
1335 	__u32		upper_offset;
1336 	__u32		frag_idx;
1337 	__u32		stepped_offset;
1338 	struct sk_buff	*root_skb;
1339 	struct sk_buff	*cur_skb;
1340 	__u8		*frag_data;
1341 	__u32		frag_off;
1342 };
1343 
1344 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1345 			  unsigned int to, struct skb_seq_state *st);
1346 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1347 			  struct skb_seq_state *st);
1348 void skb_abort_seq_read(struct skb_seq_state *st);
1349 
1350 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1351 			   unsigned int to, struct ts_config *config);
1352 
1353 /*
1354  * Packet hash types specify the type of hash in skb_set_hash.
1355  *
1356  * Hash types refer to the protocol layer addresses which are used to
1357  * construct a packet's hash. The hashes are used to differentiate or identify
1358  * flows of the protocol layer for the hash type. Hash types are either
1359  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1360  *
1361  * Properties of hashes:
1362  *
1363  * 1) Two packets in different flows have different hash values
1364  * 2) Two packets in the same flow should have the same hash value
1365  *
1366  * A hash at a higher layer is considered to be more specific. A driver should
1367  * set the most specific hash possible.
1368  *
1369  * A driver cannot indicate a more specific hash than the layer at which a hash
1370  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1371  *
1372  * A driver may indicate a hash level which is less specific than the
1373  * actual layer the hash was computed on. For instance, a hash computed
1374  * at L4 may be considered an L3 hash. This should only be done if the
1375  * driver can't unambiguously determine that the HW computed the hash at
1376  * the higher layer. Note that the "should" in the second property above
1377  * permits this.
1378  */
1379 enum pkt_hash_types {
1380 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1381 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1382 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1383 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1384 };
1385 
1386 static inline void skb_clear_hash(struct sk_buff *skb)
1387 {
1388 	skb->hash = 0;
1389 	skb->sw_hash = 0;
1390 	skb->l4_hash = 0;
1391 }
1392 
1393 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1394 {
1395 	if (!skb->l4_hash)
1396 		skb_clear_hash(skb);
1397 }
1398 
1399 static inline void
1400 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1401 {
1402 	skb->l4_hash = is_l4;
1403 	skb->sw_hash = is_sw;
1404 	skb->hash = hash;
1405 }
1406 
1407 static inline void
1408 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1409 {
1410 	/* Used by drivers to set hash from HW */
1411 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1412 }
1413 
1414 static inline void
1415 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1416 {
1417 	__skb_set_hash(skb, hash, true, is_l4);
1418 }
1419 
1420 void __skb_get_hash(struct sk_buff *skb);
1421 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1422 u32 skb_get_poff(const struct sk_buff *skb);
1423 u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
1424 		   const struct flow_keys_basic *keys, int hlen);
1425 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1426 			    const void *data, int hlen_proto);
1427 
1428 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1429 					int thoff, u8 ip_proto)
1430 {
1431 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1432 }
1433 
1434 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1435 			     const struct flow_dissector_key *key,
1436 			     unsigned int key_count);
1437 
1438 struct bpf_flow_dissector;
1439 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1440 		      __be16 proto, int nhoff, int hlen, unsigned int flags);
1441 
1442 bool __skb_flow_dissect(const struct net *net,
1443 			const struct sk_buff *skb,
1444 			struct flow_dissector *flow_dissector,
1445 			void *target_container, const void *data,
1446 			__be16 proto, int nhoff, int hlen, unsigned int flags);
1447 
1448 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1449 				    struct flow_dissector *flow_dissector,
1450 				    void *target_container, unsigned int flags)
1451 {
1452 	return __skb_flow_dissect(NULL, skb, flow_dissector,
1453 				  target_container, NULL, 0, 0, 0, flags);
1454 }
1455 
1456 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1457 					      struct flow_keys *flow,
1458 					      unsigned int flags)
1459 {
1460 	memset(flow, 0, sizeof(*flow));
1461 	return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1462 				  flow, NULL, 0, 0, 0, flags);
1463 }
1464 
1465 static inline bool
1466 skb_flow_dissect_flow_keys_basic(const struct net *net,
1467 				 const struct sk_buff *skb,
1468 				 struct flow_keys_basic *flow,
1469 				 const void *data, __be16 proto,
1470 				 int nhoff, int hlen, unsigned int flags)
1471 {
1472 	memset(flow, 0, sizeof(*flow));
1473 	return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1474 				  data, proto, nhoff, hlen, flags);
1475 }
1476 
1477 void skb_flow_dissect_meta(const struct sk_buff *skb,
1478 			   struct flow_dissector *flow_dissector,
1479 			   void *target_container);
1480 
1481 /* Gets a skb connection tracking info, ctinfo map should be a
1482  * map of mapsize to translate enum ip_conntrack_info states
1483  * to user states.
1484  */
1485 void
1486 skb_flow_dissect_ct(const struct sk_buff *skb,
1487 		    struct flow_dissector *flow_dissector,
1488 		    void *target_container,
1489 		    u16 *ctinfo_map, size_t mapsize,
1490 		    bool post_ct, u16 zone);
1491 void
1492 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1493 			     struct flow_dissector *flow_dissector,
1494 			     void *target_container);
1495 
1496 void skb_flow_dissect_hash(const struct sk_buff *skb,
1497 			   struct flow_dissector *flow_dissector,
1498 			   void *target_container);
1499 
1500 static inline __u32 skb_get_hash(struct sk_buff *skb)
1501 {
1502 	if (!skb->l4_hash && !skb->sw_hash)
1503 		__skb_get_hash(skb);
1504 
1505 	return skb->hash;
1506 }
1507 
1508 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1509 {
1510 	if (!skb->l4_hash && !skb->sw_hash) {
1511 		struct flow_keys keys;
1512 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1513 
1514 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1515 	}
1516 
1517 	return skb->hash;
1518 }
1519 
1520 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1521 			   const siphash_key_t *perturb);
1522 
1523 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1524 {
1525 	return skb->hash;
1526 }
1527 
1528 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1529 {
1530 	to->hash = from->hash;
1531 	to->sw_hash = from->sw_hash;
1532 	to->l4_hash = from->l4_hash;
1533 };
1534 
1535 static inline void skb_copy_decrypted(struct sk_buff *to,
1536 				      const struct sk_buff *from)
1537 {
1538 #ifdef CONFIG_TLS_DEVICE
1539 	to->decrypted = from->decrypted;
1540 #endif
1541 }
1542 
1543 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1544 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1545 {
1546 	return skb->head + skb->end;
1547 }
1548 
1549 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1550 {
1551 	return skb->end;
1552 }
1553 
1554 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1555 {
1556 	skb->end = offset;
1557 }
1558 #else
1559 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1560 {
1561 	return skb->end;
1562 }
1563 
1564 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1565 {
1566 	return skb->end - skb->head;
1567 }
1568 
1569 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1570 {
1571 	skb->end = skb->head + offset;
1572 }
1573 #endif
1574 
1575 /* Internal */
1576 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1577 
1578 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1579 {
1580 	return &skb_shinfo(skb)->hwtstamps;
1581 }
1582 
1583 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1584 {
1585 	bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE;
1586 
1587 	return is_zcopy ? skb_uarg(skb) : NULL;
1588 }
1589 
1590 static inline bool skb_zcopy_pure(const struct sk_buff *skb)
1591 {
1592 	return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY;
1593 }
1594 
1595 static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1,
1596 				       const struct sk_buff *skb2)
1597 {
1598 	return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2);
1599 }
1600 
1601 static inline void net_zcopy_get(struct ubuf_info *uarg)
1602 {
1603 	refcount_inc(&uarg->refcnt);
1604 }
1605 
1606 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg)
1607 {
1608 	skb_shinfo(skb)->destructor_arg = uarg;
1609 	skb_shinfo(skb)->flags |= uarg->flags;
1610 }
1611 
1612 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1613 				 bool *have_ref)
1614 {
1615 	if (skb && uarg && !skb_zcopy(skb)) {
1616 		if (unlikely(have_ref && *have_ref))
1617 			*have_ref = false;
1618 		else
1619 			net_zcopy_get(uarg);
1620 		skb_zcopy_init(skb, uarg);
1621 	}
1622 }
1623 
1624 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1625 {
1626 	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1627 	skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG;
1628 }
1629 
1630 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1631 {
1632 	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1633 }
1634 
1635 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1636 {
1637 	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1638 }
1639 
1640 static inline void net_zcopy_put(struct ubuf_info *uarg)
1641 {
1642 	if (uarg)
1643 		uarg->callback(NULL, uarg, true);
1644 }
1645 
1646 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1647 {
1648 	if (uarg) {
1649 		if (uarg->callback == msg_zerocopy_callback)
1650 			msg_zerocopy_put_abort(uarg, have_uref);
1651 		else if (have_uref)
1652 			net_zcopy_put(uarg);
1653 	}
1654 }
1655 
1656 /* Release a reference on a zerocopy structure */
1657 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success)
1658 {
1659 	struct ubuf_info *uarg = skb_zcopy(skb);
1660 
1661 	if (uarg) {
1662 		if (!skb_zcopy_is_nouarg(skb))
1663 			uarg->callback(skb, uarg, zerocopy_success);
1664 
1665 		skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY;
1666 	}
1667 }
1668 
1669 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1670 {
1671 	skb->next = NULL;
1672 }
1673 
1674 /* Iterate through singly-linked GSO fragments of an skb. */
1675 #define skb_list_walk_safe(first, skb, next_skb)                               \
1676 	for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb);  \
1677 	     (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1678 
1679 static inline void skb_list_del_init(struct sk_buff *skb)
1680 {
1681 	__list_del_entry(&skb->list);
1682 	skb_mark_not_on_list(skb);
1683 }
1684 
1685 /**
1686  *	skb_queue_empty - check if a queue is empty
1687  *	@list: queue head
1688  *
1689  *	Returns true if the queue is empty, false otherwise.
1690  */
1691 static inline int skb_queue_empty(const struct sk_buff_head *list)
1692 {
1693 	return list->next == (const struct sk_buff *) list;
1694 }
1695 
1696 /**
1697  *	skb_queue_empty_lockless - check if a queue is empty
1698  *	@list: queue head
1699  *
1700  *	Returns true if the queue is empty, false otherwise.
1701  *	This variant can be used in lockless contexts.
1702  */
1703 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1704 {
1705 	return READ_ONCE(list->next) == (const struct sk_buff *) list;
1706 }
1707 
1708 
1709 /**
1710  *	skb_queue_is_last - check if skb is the last entry in the queue
1711  *	@list: queue head
1712  *	@skb: buffer
1713  *
1714  *	Returns true if @skb is the last buffer on the list.
1715  */
1716 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1717 				     const struct sk_buff *skb)
1718 {
1719 	return skb->next == (const struct sk_buff *) list;
1720 }
1721 
1722 /**
1723  *	skb_queue_is_first - check if skb is the first entry in the queue
1724  *	@list: queue head
1725  *	@skb: buffer
1726  *
1727  *	Returns true if @skb is the first buffer on the list.
1728  */
1729 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1730 				      const struct sk_buff *skb)
1731 {
1732 	return skb->prev == (const struct sk_buff *) list;
1733 }
1734 
1735 /**
1736  *	skb_queue_next - return the next packet in the queue
1737  *	@list: queue head
1738  *	@skb: current buffer
1739  *
1740  *	Return the next packet in @list after @skb.  It is only valid to
1741  *	call this if skb_queue_is_last() evaluates to false.
1742  */
1743 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1744 					     const struct sk_buff *skb)
1745 {
1746 	/* This BUG_ON may seem severe, but if we just return then we
1747 	 * are going to dereference garbage.
1748 	 */
1749 	BUG_ON(skb_queue_is_last(list, skb));
1750 	return skb->next;
1751 }
1752 
1753 /**
1754  *	skb_queue_prev - return the prev packet in the queue
1755  *	@list: queue head
1756  *	@skb: current buffer
1757  *
1758  *	Return the prev packet in @list before @skb.  It is only valid to
1759  *	call this if skb_queue_is_first() evaluates to false.
1760  */
1761 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1762 					     const struct sk_buff *skb)
1763 {
1764 	/* This BUG_ON may seem severe, but if we just return then we
1765 	 * are going to dereference garbage.
1766 	 */
1767 	BUG_ON(skb_queue_is_first(list, skb));
1768 	return skb->prev;
1769 }
1770 
1771 /**
1772  *	skb_get - reference buffer
1773  *	@skb: buffer to reference
1774  *
1775  *	Makes another reference to a socket buffer and returns a pointer
1776  *	to the buffer.
1777  */
1778 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1779 {
1780 	refcount_inc(&skb->users);
1781 	return skb;
1782 }
1783 
1784 /*
1785  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1786  */
1787 
1788 /**
1789  *	skb_cloned - is the buffer a clone
1790  *	@skb: buffer to check
1791  *
1792  *	Returns true if the buffer was generated with skb_clone() and is
1793  *	one of multiple shared copies of the buffer. Cloned buffers are
1794  *	shared data so must not be written to under normal circumstances.
1795  */
1796 static inline int skb_cloned(const struct sk_buff *skb)
1797 {
1798 	return skb->cloned &&
1799 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1800 }
1801 
1802 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1803 {
1804 	might_sleep_if(gfpflags_allow_blocking(pri));
1805 
1806 	if (skb_cloned(skb))
1807 		return pskb_expand_head(skb, 0, 0, pri);
1808 
1809 	return 0;
1810 }
1811 
1812 /* This variant of skb_unclone() makes sure skb->truesize
1813  * and skb_end_offset() are not changed, whenever a new skb->head is needed.
1814  *
1815  * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X))
1816  * when various debugging features are in place.
1817  */
1818 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri);
1819 static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1820 {
1821 	might_sleep_if(gfpflags_allow_blocking(pri));
1822 
1823 	if (skb_cloned(skb))
1824 		return __skb_unclone_keeptruesize(skb, pri);
1825 	return 0;
1826 }
1827 
1828 /**
1829  *	skb_header_cloned - is the header a clone
1830  *	@skb: buffer to check
1831  *
1832  *	Returns true if modifying the header part of the buffer requires
1833  *	the data to be copied.
1834  */
1835 static inline int skb_header_cloned(const struct sk_buff *skb)
1836 {
1837 	int dataref;
1838 
1839 	if (!skb->cloned)
1840 		return 0;
1841 
1842 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1843 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1844 	return dataref != 1;
1845 }
1846 
1847 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1848 {
1849 	might_sleep_if(gfpflags_allow_blocking(pri));
1850 
1851 	if (skb_header_cloned(skb))
1852 		return pskb_expand_head(skb, 0, 0, pri);
1853 
1854 	return 0;
1855 }
1856 
1857 /**
1858  *	__skb_header_release - release reference to header
1859  *	@skb: buffer to operate on
1860  */
1861 static inline void __skb_header_release(struct sk_buff *skb)
1862 {
1863 	skb->nohdr = 1;
1864 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1865 }
1866 
1867 
1868 /**
1869  *	skb_shared - is the buffer shared
1870  *	@skb: buffer to check
1871  *
1872  *	Returns true if more than one person has a reference to this
1873  *	buffer.
1874  */
1875 static inline int skb_shared(const struct sk_buff *skb)
1876 {
1877 	return refcount_read(&skb->users) != 1;
1878 }
1879 
1880 /**
1881  *	skb_share_check - check if buffer is shared and if so clone it
1882  *	@skb: buffer to check
1883  *	@pri: priority for memory allocation
1884  *
1885  *	If the buffer is shared the buffer is cloned and the old copy
1886  *	drops a reference. A new clone with a single reference is returned.
1887  *	If the buffer is not shared the original buffer is returned. When
1888  *	being called from interrupt status or with spinlocks held pri must
1889  *	be GFP_ATOMIC.
1890  *
1891  *	NULL is returned on a memory allocation failure.
1892  */
1893 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1894 {
1895 	might_sleep_if(gfpflags_allow_blocking(pri));
1896 	if (skb_shared(skb)) {
1897 		struct sk_buff *nskb = skb_clone(skb, pri);
1898 
1899 		if (likely(nskb))
1900 			consume_skb(skb);
1901 		else
1902 			kfree_skb(skb);
1903 		skb = nskb;
1904 	}
1905 	return skb;
1906 }
1907 
1908 /*
1909  *	Copy shared buffers into a new sk_buff. We effectively do COW on
1910  *	packets to handle cases where we have a local reader and forward
1911  *	and a couple of other messy ones. The normal one is tcpdumping
1912  *	a packet thats being forwarded.
1913  */
1914 
1915 /**
1916  *	skb_unshare - make a copy of a shared buffer
1917  *	@skb: buffer to check
1918  *	@pri: priority for memory allocation
1919  *
1920  *	If the socket buffer is a clone then this function creates a new
1921  *	copy of the data, drops a reference count on the old copy and returns
1922  *	the new copy with the reference count at 1. If the buffer is not a clone
1923  *	the original buffer is returned. When called with a spinlock held or
1924  *	from interrupt state @pri must be %GFP_ATOMIC
1925  *
1926  *	%NULL is returned on a memory allocation failure.
1927  */
1928 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1929 					  gfp_t pri)
1930 {
1931 	might_sleep_if(gfpflags_allow_blocking(pri));
1932 	if (skb_cloned(skb)) {
1933 		struct sk_buff *nskb = skb_copy(skb, pri);
1934 
1935 		/* Free our shared copy */
1936 		if (likely(nskb))
1937 			consume_skb(skb);
1938 		else
1939 			kfree_skb(skb);
1940 		skb = nskb;
1941 	}
1942 	return skb;
1943 }
1944 
1945 /**
1946  *	skb_peek - peek at the head of an &sk_buff_head
1947  *	@list_: list to peek at
1948  *
1949  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1950  *	be careful with this one. A peek leaves the buffer on the
1951  *	list and someone else may run off with it. You must hold
1952  *	the appropriate locks or have a private queue to do this.
1953  *
1954  *	Returns %NULL for an empty list or a pointer to the head element.
1955  *	The reference count is not incremented and the reference is therefore
1956  *	volatile. Use with caution.
1957  */
1958 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1959 {
1960 	struct sk_buff *skb = list_->next;
1961 
1962 	if (skb == (struct sk_buff *)list_)
1963 		skb = NULL;
1964 	return skb;
1965 }
1966 
1967 /**
1968  *	__skb_peek - peek at the head of a non-empty &sk_buff_head
1969  *	@list_: list to peek at
1970  *
1971  *	Like skb_peek(), but the caller knows that the list is not empty.
1972  */
1973 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
1974 {
1975 	return list_->next;
1976 }
1977 
1978 /**
1979  *	skb_peek_next - peek skb following the given one from a queue
1980  *	@skb: skb to start from
1981  *	@list_: list to peek at
1982  *
1983  *	Returns %NULL when the end of the list is met or a pointer to the
1984  *	next element. The reference count is not incremented and the
1985  *	reference is therefore volatile. Use with caution.
1986  */
1987 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1988 		const struct sk_buff_head *list_)
1989 {
1990 	struct sk_buff *next = skb->next;
1991 
1992 	if (next == (struct sk_buff *)list_)
1993 		next = NULL;
1994 	return next;
1995 }
1996 
1997 /**
1998  *	skb_peek_tail - peek at the tail of an &sk_buff_head
1999  *	@list_: list to peek at
2000  *
2001  *	Peek an &sk_buff. Unlike most other operations you _MUST_
2002  *	be careful with this one. A peek leaves the buffer on the
2003  *	list and someone else may run off with it. You must hold
2004  *	the appropriate locks or have a private queue to do this.
2005  *
2006  *	Returns %NULL for an empty list or a pointer to the tail element.
2007  *	The reference count is not incremented and the reference is therefore
2008  *	volatile. Use with caution.
2009  */
2010 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
2011 {
2012 	struct sk_buff *skb = READ_ONCE(list_->prev);
2013 
2014 	if (skb == (struct sk_buff *)list_)
2015 		skb = NULL;
2016 	return skb;
2017 
2018 }
2019 
2020 /**
2021  *	skb_queue_len	- get queue length
2022  *	@list_: list to measure
2023  *
2024  *	Return the length of an &sk_buff queue.
2025  */
2026 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
2027 {
2028 	return list_->qlen;
2029 }
2030 
2031 /**
2032  *	skb_queue_len_lockless	- get queue length
2033  *	@list_: list to measure
2034  *
2035  *	Return the length of an &sk_buff queue.
2036  *	This variant can be used in lockless contexts.
2037  */
2038 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
2039 {
2040 	return READ_ONCE(list_->qlen);
2041 }
2042 
2043 /**
2044  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
2045  *	@list: queue to initialize
2046  *
2047  *	This initializes only the list and queue length aspects of
2048  *	an sk_buff_head object.  This allows to initialize the list
2049  *	aspects of an sk_buff_head without reinitializing things like
2050  *	the spinlock.  It can also be used for on-stack sk_buff_head
2051  *	objects where the spinlock is known to not be used.
2052  */
2053 static inline void __skb_queue_head_init(struct sk_buff_head *list)
2054 {
2055 	list->prev = list->next = (struct sk_buff *)list;
2056 	list->qlen = 0;
2057 }
2058 
2059 /*
2060  * This function creates a split out lock class for each invocation;
2061  * this is needed for now since a whole lot of users of the skb-queue
2062  * infrastructure in drivers have different locking usage (in hardirq)
2063  * than the networking core (in softirq only). In the long run either the
2064  * network layer or drivers should need annotation to consolidate the
2065  * main types of usage into 3 classes.
2066  */
2067 static inline void skb_queue_head_init(struct sk_buff_head *list)
2068 {
2069 	spin_lock_init(&list->lock);
2070 	__skb_queue_head_init(list);
2071 }
2072 
2073 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
2074 		struct lock_class_key *class)
2075 {
2076 	skb_queue_head_init(list);
2077 	lockdep_set_class(&list->lock, class);
2078 }
2079 
2080 /*
2081  *	Insert an sk_buff on a list.
2082  *
2083  *	The "__skb_xxxx()" functions are the non-atomic ones that
2084  *	can only be called with interrupts disabled.
2085  */
2086 static inline void __skb_insert(struct sk_buff *newsk,
2087 				struct sk_buff *prev, struct sk_buff *next,
2088 				struct sk_buff_head *list)
2089 {
2090 	/* See skb_queue_empty_lockless() and skb_peek_tail()
2091 	 * for the opposite READ_ONCE()
2092 	 */
2093 	WRITE_ONCE(newsk->next, next);
2094 	WRITE_ONCE(newsk->prev, prev);
2095 	WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk);
2096 	WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk);
2097 	WRITE_ONCE(list->qlen, list->qlen + 1);
2098 }
2099 
2100 static inline void __skb_queue_splice(const struct sk_buff_head *list,
2101 				      struct sk_buff *prev,
2102 				      struct sk_buff *next)
2103 {
2104 	struct sk_buff *first = list->next;
2105 	struct sk_buff *last = list->prev;
2106 
2107 	WRITE_ONCE(first->prev, prev);
2108 	WRITE_ONCE(prev->next, first);
2109 
2110 	WRITE_ONCE(last->next, next);
2111 	WRITE_ONCE(next->prev, last);
2112 }
2113 
2114 /**
2115  *	skb_queue_splice - join two skb lists, this is designed for stacks
2116  *	@list: the new list to add
2117  *	@head: the place to add it in the first list
2118  */
2119 static inline void skb_queue_splice(const struct sk_buff_head *list,
2120 				    struct sk_buff_head *head)
2121 {
2122 	if (!skb_queue_empty(list)) {
2123 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2124 		head->qlen += list->qlen;
2125 	}
2126 }
2127 
2128 /**
2129  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
2130  *	@list: the new list to add
2131  *	@head: the place to add it in the first list
2132  *
2133  *	The list at @list is reinitialised
2134  */
2135 static inline void skb_queue_splice_init(struct sk_buff_head *list,
2136 					 struct sk_buff_head *head)
2137 {
2138 	if (!skb_queue_empty(list)) {
2139 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2140 		head->qlen += list->qlen;
2141 		__skb_queue_head_init(list);
2142 	}
2143 }
2144 
2145 /**
2146  *	skb_queue_splice_tail - join two skb lists, each list being a queue
2147  *	@list: the new list to add
2148  *	@head: the place to add it in the first list
2149  */
2150 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
2151 					 struct sk_buff_head *head)
2152 {
2153 	if (!skb_queue_empty(list)) {
2154 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2155 		head->qlen += list->qlen;
2156 	}
2157 }
2158 
2159 /**
2160  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
2161  *	@list: the new list to add
2162  *	@head: the place to add it in the first list
2163  *
2164  *	Each of the lists is a queue.
2165  *	The list at @list is reinitialised
2166  */
2167 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
2168 					      struct sk_buff_head *head)
2169 {
2170 	if (!skb_queue_empty(list)) {
2171 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2172 		head->qlen += list->qlen;
2173 		__skb_queue_head_init(list);
2174 	}
2175 }
2176 
2177 /**
2178  *	__skb_queue_after - queue a buffer at the list head
2179  *	@list: list to use
2180  *	@prev: place after this buffer
2181  *	@newsk: buffer to queue
2182  *
2183  *	Queue a buffer int the middle of a list. This function takes no locks
2184  *	and you must therefore hold required locks before calling it.
2185  *
2186  *	A buffer cannot be placed on two lists at the same time.
2187  */
2188 static inline void __skb_queue_after(struct sk_buff_head *list,
2189 				     struct sk_buff *prev,
2190 				     struct sk_buff *newsk)
2191 {
2192 	__skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list);
2193 }
2194 
2195 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2196 		struct sk_buff_head *list);
2197 
2198 static inline void __skb_queue_before(struct sk_buff_head *list,
2199 				      struct sk_buff *next,
2200 				      struct sk_buff *newsk)
2201 {
2202 	__skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list);
2203 }
2204 
2205 /**
2206  *	__skb_queue_head - queue a buffer at the list head
2207  *	@list: list to use
2208  *	@newsk: buffer to queue
2209  *
2210  *	Queue a buffer at the start of a list. This function takes no locks
2211  *	and you must therefore hold required locks before calling it.
2212  *
2213  *	A buffer cannot be placed on two lists at the same time.
2214  */
2215 static inline void __skb_queue_head(struct sk_buff_head *list,
2216 				    struct sk_buff *newsk)
2217 {
2218 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
2219 }
2220 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2221 
2222 /**
2223  *	__skb_queue_tail - queue a buffer at the list tail
2224  *	@list: list to use
2225  *	@newsk: buffer to queue
2226  *
2227  *	Queue a buffer at the end of a list. This function takes no locks
2228  *	and you must therefore hold required locks before calling it.
2229  *
2230  *	A buffer cannot be placed on two lists at the same time.
2231  */
2232 static inline void __skb_queue_tail(struct sk_buff_head *list,
2233 				   struct sk_buff *newsk)
2234 {
2235 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
2236 }
2237 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2238 
2239 /*
2240  * remove sk_buff from list. _Must_ be called atomically, and with
2241  * the list known..
2242  */
2243 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
2244 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2245 {
2246 	struct sk_buff *next, *prev;
2247 
2248 	WRITE_ONCE(list->qlen, list->qlen - 1);
2249 	next	   = skb->next;
2250 	prev	   = skb->prev;
2251 	skb->next  = skb->prev = NULL;
2252 	WRITE_ONCE(next->prev, prev);
2253 	WRITE_ONCE(prev->next, next);
2254 }
2255 
2256 /**
2257  *	__skb_dequeue - remove from the head of the queue
2258  *	@list: list to dequeue from
2259  *
2260  *	Remove the head of the list. This function does not take any locks
2261  *	so must be used with appropriate locks held only. The head item is
2262  *	returned or %NULL if the list is empty.
2263  */
2264 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2265 {
2266 	struct sk_buff *skb = skb_peek(list);
2267 	if (skb)
2268 		__skb_unlink(skb, list);
2269 	return skb;
2270 }
2271 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2272 
2273 /**
2274  *	__skb_dequeue_tail - remove from the tail of the queue
2275  *	@list: list to dequeue from
2276  *
2277  *	Remove the tail of the list. This function does not take any locks
2278  *	so must be used with appropriate locks held only. The tail item is
2279  *	returned or %NULL if the list is empty.
2280  */
2281 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2282 {
2283 	struct sk_buff *skb = skb_peek_tail(list);
2284 	if (skb)
2285 		__skb_unlink(skb, list);
2286 	return skb;
2287 }
2288 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2289 
2290 
2291 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2292 {
2293 	return skb->data_len;
2294 }
2295 
2296 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2297 {
2298 	return skb->len - skb->data_len;
2299 }
2300 
2301 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2302 {
2303 	unsigned int i, len = 0;
2304 
2305 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2306 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2307 	return len;
2308 }
2309 
2310 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2311 {
2312 	return skb_headlen(skb) + __skb_pagelen(skb);
2313 }
2314 
2315 /**
2316  * __skb_fill_page_desc - initialise a paged fragment in an skb
2317  * @skb: buffer containing fragment to be initialised
2318  * @i: paged fragment index to initialise
2319  * @page: the page to use for this fragment
2320  * @off: the offset to the data with @page
2321  * @size: the length of the data
2322  *
2323  * Initialises the @i'th fragment of @skb to point to &size bytes at
2324  * offset @off within @page.
2325  *
2326  * Does not take any additional reference on the fragment.
2327  */
2328 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2329 					struct page *page, int off, int size)
2330 {
2331 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2332 
2333 	/*
2334 	 * Propagate page pfmemalloc to the skb if we can. The problem is
2335 	 * that not all callers have unique ownership of the page but rely
2336 	 * on page_is_pfmemalloc doing the right thing(tm).
2337 	 */
2338 	frag->bv_page		  = page;
2339 	frag->bv_offset		  = off;
2340 	skb_frag_size_set(frag, size);
2341 
2342 	page = compound_head(page);
2343 	if (page_is_pfmemalloc(page))
2344 		skb->pfmemalloc	= true;
2345 }
2346 
2347 /**
2348  * skb_fill_page_desc - initialise a paged fragment in an skb
2349  * @skb: buffer containing fragment to be initialised
2350  * @i: paged fragment index to initialise
2351  * @page: the page to use for this fragment
2352  * @off: the offset to the data with @page
2353  * @size: the length of the data
2354  *
2355  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2356  * @skb to point to @size bytes at offset @off within @page. In
2357  * addition updates @skb such that @i is the last fragment.
2358  *
2359  * Does not take any additional reference on the fragment.
2360  */
2361 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2362 				      struct page *page, int off, int size)
2363 {
2364 	__skb_fill_page_desc(skb, i, page, off, size);
2365 	skb_shinfo(skb)->nr_frags = i + 1;
2366 }
2367 
2368 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2369 		     int size, unsigned int truesize);
2370 
2371 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2372 			  unsigned int truesize);
2373 
2374 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2375 
2376 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2377 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2378 {
2379 	return skb->head + skb->tail;
2380 }
2381 
2382 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2383 {
2384 	skb->tail = skb->data - skb->head;
2385 }
2386 
2387 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2388 {
2389 	skb_reset_tail_pointer(skb);
2390 	skb->tail += offset;
2391 }
2392 
2393 #else /* NET_SKBUFF_DATA_USES_OFFSET */
2394 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2395 {
2396 	return skb->tail;
2397 }
2398 
2399 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2400 {
2401 	skb->tail = skb->data;
2402 }
2403 
2404 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2405 {
2406 	skb->tail = skb->data + offset;
2407 }
2408 
2409 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2410 
2411 /*
2412  *	Add data to an sk_buff
2413  */
2414 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2415 void *skb_put(struct sk_buff *skb, unsigned int len);
2416 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2417 {
2418 	void *tmp = skb_tail_pointer(skb);
2419 	SKB_LINEAR_ASSERT(skb);
2420 	skb->tail += len;
2421 	skb->len  += len;
2422 	return tmp;
2423 }
2424 
2425 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2426 {
2427 	void *tmp = __skb_put(skb, len);
2428 
2429 	memset(tmp, 0, len);
2430 	return tmp;
2431 }
2432 
2433 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2434 				   unsigned int len)
2435 {
2436 	void *tmp = __skb_put(skb, len);
2437 
2438 	memcpy(tmp, data, len);
2439 	return tmp;
2440 }
2441 
2442 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2443 {
2444 	*(u8 *)__skb_put(skb, 1) = val;
2445 }
2446 
2447 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2448 {
2449 	void *tmp = skb_put(skb, len);
2450 
2451 	memset(tmp, 0, len);
2452 
2453 	return tmp;
2454 }
2455 
2456 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2457 				 unsigned int len)
2458 {
2459 	void *tmp = skb_put(skb, len);
2460 
2461 	memcpy(tmp, data, len);
2462 
2463 	return tmp;
2464 }
2465 
2466 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2467 {
2468 	*(u8 *)skb_put(skb, 1) = val;
2469 }
2470 
2471 void *skb_push(struct sk_buff *skb, unsigned int len);
2472 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2473 {
2474 	skb->data -= len;
2475 	skb->len  += len;
2476 	return skb->data;
2477 }
2478 
2479 void *skb_pull(struct sk_buff *skb, unsigned int len);
2480 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2481 {
2482 	skb->len -= len;
2483 	BUG_ON(skb->len < skb->data_len);
2484 	return skb->data += len;
2485 }
2486 
2487 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2488 {
2489 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2490 }
2491 
2492 void *skb_pull_data(struct sk_buff *skb, size_t len);
2493 
2494 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2495 
2496 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2497 {
2498 	if (len > skb_headlen(skb) &&
2499 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2500 		return NULL;
2501 	skb->len -= len;
2502 	return skb->data += len;
2503 }
2504 
2505 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2506 {
2507 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2508 }
2509 
2510 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2511 {
2512 	if (likely(len <= skb_headlen(skb)))
2513 		return true;
2514 	if (unlikely(len > skb->len))
2515 		return false;
2516 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2517 }
2518 
2519 void skb_condense(struct sk_buff *skb);
2520 
2521 /**
2522  *	skb_headroom - bytes at buffer head
2523  *	@skb: buffer to check
2524  *
2525  *	Return the number of bytes of free space at the head of an &sk_buff.
2526  */
2527 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2528 {
2529 	return skb->data - skb->head;
2530 }
2531 
2532 /**
2533  *	skb_tailroom - bytes at buffer end
2534  *	@skb: buffer to check
2535  *
2536  *	Return the number of bytes of free space at the tail of an sk_buff
2537  */
2538 static inline int skb_tailroom(const struct sk_buff *skb)
2539 {
2540 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2541 }
2542 
2543 /**
2544  *	skb_availroom - bytes at buffer end
2545  *	@skb: buffer to check
2546  *
2547  *	Return the number of bytes of free space at the tail of an sk_buff
2548  *	allocated by sk_stream_alloc()
2549  */
2550 static inline int skb_availroom(const struct sk_buff *skb)
2551 {
2552 	if (skb_is_nonlinear(skb))
2553 		return 0;
2554 
2555 	return skb->end - skb->tail - skb->reserved_tailroom;
2556 }
2557 
2558 /**
2559  *	skb_reserve - adjust headroom
2560  *	@skb: buffer to alter
2561  *	@len: bytes to move
2562  *
2563  *	Increase the headroom of an empty &sk_buff by reducing the tail
2564  *	room. This is only allowed for an empty buffer.
2565  */
2566 static inline void skb_reserve(struct sk_buff *skb, int len)
2567 {
2568 	skb->data += len;
2569 	skb->tail += len;
2570 }
2571 
2572 /**
2573  *	skb_tailroom_reserve - adjust reserved_tailroom
2574  *	@skb: buffer to alter
2575  *	@mtu: maximum amount of headlen permitted
2576  *	@needed_tailroom: minimum amount of reserved_tailroom
2577  *
2578  *	Set reserved_tailroom so that headlen can be as large as possible but
2579  *	not larger than mtu and tailroom cannot be smaller than
2580  *	needed_tailroom.
2581  *	The required headroom should already have been reserved before using
2582  *	this function.
2583  */
2584 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2585 					unsigned int needed_tailroom)
2586 {
2587 	SKB_LINEAR_ASSERT(skb);
2588 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2589 		/* use at most mtu */
2590 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2591 	else
2592 		/* use up to all available space */
2593 		skb->reserved_tailroom = needed_tailroom;
2594 }
2595 
2596 #define ENCAP_TYPE_ETHER	0
2597 #define ENCAP_TYPE_IPPROTO	1
2598 
2599 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2600 					  __be16 protocol)
2601 {
2602 	skb->inner_protocol = protocol;
2603 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2604 }
2605 
2606 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2607 					 __u8 ipproto)
2608 {
2609 	skb->inner_ipproto = ipproto;
2610 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2611 }
2612 
2613 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2614 {
2615 	skb->inner_mac_header = skb->mac_header;
2616 	skb->inner_network_header = skb->network_header;
2617 	skb->inner_transport_header = skb->transport_header;
2618 }
2619 
2620 static inline void skb_reset_mac_len(struct sk_buff *skb)
2621 {
2622 	skb->mac_len = skb->network_header - skb->mac_header;
2623 }
2624 
2625 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2626 							*skb)
2627 {
2628 	return skb->head + skb->inner_transport_header;
2629 }
2630 
2631 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2632 {
2633 	return skb_inner_transport_header(skb) - skb->data;
2634 }
2635 
2636 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2637 {
2638 	skb->inner_transport_header = skb->data - skb->head;
2639 }
2640 
2641 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2642 						   const int offset)
2643 {
2644 	skb_reset_inner_transport_header(skb);
2645 	skb->inner_transport_header += offset;
2646 }
2647 
2648 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2649 {
2650 	return skb->head + skb->inner_network_header;
2651 }
2652 
2653 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2654 {
2655 	skb->inner_network_header = skb->data - skb->head;
2656 }
2657 
2658 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2659 						const int offset)
2660 {
2661 	skb_reset_inner_network_header(skb);
2662 	skb->inner_network_header += offset;
2663 }
2664 
2665 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2666 {
2667 	return skb->head + skb->inner_mac_header;
2668 }
2669 
2670 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2671 {
2672 	skb->inner_mac_header = skb->data - skb->head;
2673 }
2674 
2675 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2676 					    const int offset)
2677 {
2678 	skb_reset_inner_mac_header(skb);
2679 	skb->inner_mac_header += offset;
2680 }
2681 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2682 {
2683 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2684 }
2685 
2686 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2687 {
2688 	return skb->head + skb->transport_header;
2689 }
2690 
2691 static inline void skb_reset_transport_header(struct sk_buff *skb)
2692 {
2693 	skb->transport_header = skb->data - skb->head;
2694 }
2695 
2696 static inline void skb_set_transport_header(struct sk_buff *skb,
2697 					    const int offset)
2698 {
2699 	skb_reset_transport_header(skb);
2700 	skb->transport_header += offset;
2701 }
2702 
2703 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2704 {
2705 	return skb->head + skb->network_header;
2706 }
2707 
2708 static inline void skb_reset_network_header(struct sk_buff *skb)
2709 {
2710 	skb->network_header = skb->data - skb->head;
2711 }
2712 
2713 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2714 {
2715 	skb_reset_network_header(skb);
2716 	skb->network_header += offset;
2717 }
2718 
2719 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2720 {
2721 	return skb->head + skb->mac_header;
2722 }
2723 
2724 static inline int skb_mac_offset(const struct sk_buff *skb)
2725 {
2726 	return skb_mac_header(skb) - skb->data;
2727 }
2728 
2729 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2730 {
2731 	return skb->network_header - skb->mac_header;
2732 }
2733 
2734 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2735 {
2736 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2737 }
2738 
2739 static inline void skb_unset_mac_header(struct sk_buff *skb)
2740 {
2741 	skb->mac_header = (typeof(skb->mac_header))~0U;
2742 }
2743 
2744 static inline void skb_reset_mac_header(struct sk_buff *skb)
2745 {
2746 	skb->mac_header = skb->data - skb->head;
2747 }
2748 
2749 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2750 {
2751 	skb_reset_mac_header(skb);
2752 	skb->mac_header += offset;
2753 }
2754 
2755 static inline void skb_pop_mac_header(struct sk_buff *skb)
2756 {
2757 	skb->mac_header = skb->network_header;
2758 }
2759 
2760 static inline void skb_probe_transport_header(struct sk_buff *skb)
2761 {
2762 	struct flow_keys_basic keys;
2763 
2764 	if (skb_transport_header_was_set(skb))
2765 		return;
2766 
2767 	if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2768 					     NULL, 0, 0, 0, 0))
2769 		skb_set_transport_header(skb, keys.control.thoff);
2770 }
2771 
2772 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2773 {
2774 	if (skb_mac_header_was_set(skb)) {
2775 		const unsigned char *old_mac = skb_mac_header(skb);
2776 
2777 		skb_set_mac_header(skb, -skb->mac_len);
2778 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2779 	}
2780 }
2781 
2782 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2783 {
2784 	return skb->csum_start - skb_headroom(skb);
2785 }
2786 
2787 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2788 {
2789 	return skb->head + skb->csum_start;
2790 }
2791 
2792 static inline int skb_transport_offset(const struct sk_buff *skb)
2793 {
2794 	return skb_transport_header(skb) - skb->data;
2795 }
2796 
2797 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2798 {
2799 	return skb->transport_header - skb->network_header;
2800 }
2801 
2802 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2803 {
2804 	return skb->inner_transport_header - skb->inner_network_header;
2805 }
2806 
2807 static inline int skb_network_offset(const struct sk_buff *skb)
2808 {
2809 	return skb_network_header(skb) - skb->data;
2810 }
2811 
2812 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2813 {
2814 	return skb_inner_network_header(skb) - skb->data;
2815 }
2816 
2817 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2818 {
2819 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
2820 }
2821 
2822 /*
2823  * CPUs often take a performance hit when accessing unaligned memory
2824  * locations. The actual performance hit varies, it can be small if the
2825  * hardware handles it or large if we have to take an exception and fix it
2826  * in software.
2827  *
2828  * Since an ethernet header is 14 bytes network drivers often end up with
2829  * the IP header at an unaligned offset. The IP header can be aligned by
2830  * shifting the start of the packet by 2 bytes. Drivers should do this
2831  * with:
2832  *
2833  * skb_reserve(skb, NET_IP_ALIGN);
2834  *
2835  * The downside to this alignment of the IP header is that the DMA is now
2836  * unaligned. On some architectures the cost of an unaligned DMA is high
2837  * and this cost outweighs the gains made by aligning the IP header.
2838  *
2839  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2840  * to be overridden.
2841  */
2842 #ifndef NET_IP_ALIGN
2843 #define NET_IP_ALIGN	2
2844 #endif
2845 
2846 /*
2847  * The networking layer reserves some headroom in skb data (via
2848  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2849  * the header has to grow. In the default case, if the header has to grow
2850  * 32 bytes or less we avoid the reallocation.
2851  *
2852  * Unfortunately this headroom changes the DMA alignment of the resulting
2853  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2854  * on some architectures. An architecture can override this value,
2855  * perhaps setting it to a cacheline in size (since that will maintain
2856  * cacheline alignment of the DMA). It must be a power of 2.
2857  *
2858  * Various parts of the networking layer expect at least 32 bytes of
2859  * headroom, you should not reduce this.
2860  *
2861  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2862  * to reduce average number of cache lines per packet.
2863  * get_rps_cpu() for example only access one 64 bytes aligned block :
2864  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2865  */
2866 #ifndef NET_SKB_PAD
2867 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2868 #endif
2869 
2870 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2871 
2872 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2873 {
2874 	if (WARN_ON(skb_is_nonlinear(skb)))
2875 		return;
2876 	skb->len = len;
2877 	skb_set_tail_pointer(skb, len);
2878 }
2879 
2880 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2881 {
2882 	__skb_set_length(skb, len);
2883 }
2884 
2885 void skb_trim(struct sk_buff *skb, unsigned int len);
2886 
2887 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2888 {
2889 	if (skb->data_len)
2890 		return ___pskb_trim(skb, len);
2891 	__skb_trim(skb, len);
2892 	return 0;
2893 }
2894 
2895 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2896 {
2897 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2898 }
2899 
2900 /**
2901  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2902  *	@skb: buffer to alter
2903  *	@len: new length
2904  *
2905  *	This is identical to pskb_trim except that the caller knows that
2906  *	the skb is not cloned so we should never get an error due to out-
2907  *	of-memory.
2908  */
2909 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2910 {
2911 	int err = pskb_trim(skb, len);
2912 	BUG_ON(err);
2913 }
2914 
2915 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2916 {
2917 	unsigned int diff = len - skb->len;
2918 
2919 	if (skb_tailroom(skb) < diff) {
2920 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2921 					   GFP_ATOMIC);
2922 		if (ret)
2923 			return ret;
2924 	}
2925 	__skb_set_length(skb, len);
2926 	return 0;
2927 }
2928 
2929 /**
2930  *	skb_orphan - orphan a buffer
2931  *	@skb: buffer to orphan
2932  *
2933  *	If a buffer currently has an owner then we call the owner's
2934  *	destructor function and make the @skb unowned. The buffer continues
2935  *	to exist but is no longer charged to its former owner.
2936  */
2937 static inline void skb_orphan(struct sk_buff *skb)
2938 {
2939 	if (skb->destructor) {
2940 		skb->destructor(skb);
2941 		skb->destructor = NULL;
2942 		skb->sk		= NULL;
2943 	} else {
2944 		BUG_ON(skb->sk);
2945 	}
2946 }
2947 
2948 /**
2949  *	skb_orphan_frags - orphan the frags contained in a buffer
2950  *	@skb: buffer to orphan frags from
2951  *	@gfp_mask: allocation mask for replacement pages
2952  *
2953  *	For each frag in the SKB which needs a destructor (i.e. has an
2954  *	owner) create a copy of that frag and release the original
2955  *	page by calling the destructor.
2956  */
2957 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2958 {
2959 	if (likely(!skb_zcopy(skb)))
2960 		return 0;
2961 	if (!skb_zcopy_is_nouarg(skb) &&
2962 	    skb_uarg(skb)->callback == msg_zerocopy_callback)
2963 		return 0;
2964 	return skb_copy_ubufs(skb, gfp_mask);
2965 }
2966 
2967 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
2968 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2969 {
2970 	if (likely(!skb_zcopy(skb)))
2971 		return 0;
2972 	return skb_copy_ubufs(skb, gfp_mask);
2973 }
2974 
2975 /**
2976  *	__skb_queue_purge - empty a list
2977  *	@list: list to empty
2978  *
2979  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2980  *	the list and one reference dropped. This function does not take the
2981  *	list lock and the caller must hold the relevant locks to use it.
2982  */
2983 static inline void __skb_queue_purge(struct sk_buff_head *list)
2984 {
2985 	struct sk_buff *skb;
2986 	while ((skb = __skb_dequeue(list)) != NULL)
2987 		kfree_skb(skb);
2988 }
2989 void skb_queue_purge(struct sk_buff_head *list);
2990 
2991 unsigned int skb_rbtree_purge(struct rb_root *root);
2992 
2993 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
2994 
2995 /**
2996  * netdev_alloc_frag - allocate a page fragment
2997  * @fragsz: fragment size
2998  *
2999  * Allocates a frag from a page for receive buffer.
3000  * Uses GFP_ATOMIC allocations.
3001  */
3002 static inline void *netdev_alloc_frag(unsigned int fragsz)
3003 {
3004 	return __netdev_alloc_frag_align(fragsz, ~0u);
3005 }
3006 
3007 static inline void *netdev_alloc_frag_align(unsigned int fragsz,
3008 					    unsigned int align)
3009 {
3010 	WARN_ON_ONCE(!is_power_of_2(align));
3011 	return __netdev_alloc_frag_align(fragsz, -align);
3012 }
3013 
3014 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
3015 				   gfp_t gfp_mask);
3016 
3017 /**
3018  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
3019  *	@dev: network device to receive on
3020  *	@length: length to allocate
3021  *
3022  *	Allocate a new &sk_buff and assign it a usage count of one. The
3023  *	buffer has unspecified headroom built in. Users should allocate
3024  *	the headroom they think they need without accounting for the
3025  *	built in space. The built in space is used for optimisations.
3026  *
3027  *	%NULL is returned if there is no free memory. Although this function
3028  *	allocates memory it can be called from an interrupt.
3029  */
3030 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
3031 					       unsigned int length)
3032 {
3033 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
3034 }
3035 
3036 /* legacy helper around __netdev_alloc_skb() */
3037 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
3038 					      gfp_t gfp_mask)
3039 {
3040 	return __netdev_alloc_skb(NULL, length, gfp_mask);
3041 }
3042 
3043 /* legacy helper around netdev_alloc_skb() */
3044 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
3045 {
3046 	return netdev_alloc_skb(NULL, length);
3047 }
3048 
3049 
3050 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
3051 		unsigned int length, gfp_t gfp)
3052 {
3053 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
3054 
3055 	if (NET_IP_ALIGN && skb)
3056 		skb_reserve(skb, NET_IP_ALIGN);
3057 	return skb;
3058 }
3059 
3060 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
3061 		unsigned int length)
3062 {
3063 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
3064 }
3065 
3066 static inline void skb_free_frag(void *addr)
3067 {
3068 	page_frag_free(addr);
3069 }
3070 
3071 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3072 
3073 static inline void *napi_alloc_frag(unsigned int fragsz)
3074 {
3075 	return __napi_alloc_frag_align(fragsz, ~0u);
3076 }
3077 
3078 static inline void *napi_alloc_frag_align(unsigned int fragsz,
3079 					  unsigned int align)
3080 {
3081 	WARN_ON_ONCE(!is_power_of_2(align));
3082 	return __napi_alloc_frag_align(fragsz, -align);
3083 }
3084 
3085 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
3086 				 unsigned int length, gfp_t gfp_mask);
3087 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
3088 					     unsigned int length)
3089 {
3090 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
3091 }
3092 void napi_consume_skb(struct sk_buff *skb, int budget);
3093 
3094 void napi_skb_free_stolen_head(struct sk_buff *skb);
3095 void __kfree_skb_defer(struct sk_buff *skb);
3096 
3097 /**
3098  * __dev_alloc_pages - allocate page for network Rx
3099  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3100  * @order: size of the allocation
3101  *
3102  * Allocate a new page.
3103  *
3104  * %NULL is returned if there is no free memory.
3105 */
3106 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
3107 					     unsigned int order)
3108 {
3109 	/* This piece of code contains several assumptions.
3110 	 * 1.  This is for device Rx, therefor a cold page is preferred.
3111 	 * 2.  The expectation is the user wants a compound page.
3112 	 * 3.  If requesting a order 0 page it will not be compound
3113 	 *     due to the check to see if order has a value in prep_new_page
3114 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
3115 	 *     code in gfp_to_alloc_flags that should be enforcing this.
3116 	 */
3117 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
3118 
3119 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
3120 }
3121 
3122 static inline struct page *dev_alloc_pages(unsigned int order)
3123 {
3124 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
3125 }
3126 
3127 /**
3128  * __dev_alloc_page - allocate a page for network Rx
3129  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3130  *
3131  * Allocate a new page.
3132  *
3133  * %NULL is returned if there is no free memory.
3134  */
3135 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
3136 {
3137 	return __dev_alloc_pages(gfp_mask, 0);
3138 }
3139 
3140 static inline struct page *dev_alloc_page(void)
3141 {
3142 	return dev_alloc_pages(0);
3143 }
3144 
3145 /**
3146  * dev_page_is_reusable - check whether a page can be reused for network Rx
3147  * @page: the page to test
3148  *
3149  * A page shouldn't be considered for reusing/recycling if it was allocated
3150  * under memory pressure or at a distant memory node.
3151  *
3152  * Returns false if this page should be returned to page allocator, true
3153  * otherwise.
3154  */
3155 static inline bool dev_page_is_reusable(const struct page *page)
3156 {
3157 	return likely(page_to_nid(page) == numa_mem_id() &&
3158 		      !page_is_pfmemalloc(page));
3159 }
3160 
3161 /**
3162  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
3163  *	@page: The page that was allocated from skb_alloc_page
3164  *	@skb: The skb that may need pfmemalloc set
3165  */
3166 static inline void skb_propagate_pfmemalloc(const struct page *page,
3167 					    struct sk_buff *skb)
3168 {
3169 	if (page_is_pfmemalloc(page))
3170 		skb->pfmemalloc = true;
3171 }
3172 
3173 /**
3174  * skb_frag_off() - Returns the offset of a skb fragment
3175  * @frag: the paged fragment
3176  */
3177 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
3178 {
3179 	return frag->bv_offset;
3180 }
3181 
3182 /**
3183  * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
3184  * @frag: skb fragment
3185  * @delta: value to add
3186  */
3187 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
3188 {
3189 	frag->bv_offset += delta;
3190 }
3191 
3192 /**
3193  * skb_frag_off_set() - Sets the offset of a skb fragment
3194  * @frag: skb fragment
3195  * @offset: offset of fragment
3196  */
3197 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
3198 {
3199 	frag->bv_offset = offset;
3200 }
3201 
3202 /**
3203  * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
3204  * @fragto: skb fragment where offset is set
3205  * @fragfrom: skb fragment offset is copied from
3206  */
3207 static inline void skb_frag_off_copy(skb_frag_t *fragto,
3208 				     const skb_frag_t *fragfrom)
3209 {
3210 	fragto->bv_offset = fragfrom->bv_offset;
3211 }
3212 
3213 /**
3214  * skb_frag_page - retrieve the page referred to by a paged fragment
3215  * @frag: the paged fragment
3216  *
3217  * Returns the &struct page associated with @frag.
3218  */
3219 static inline struct page *skb_frag_page(const skb_frag_t *frag)
3220 {
3221 	return frag->bv_page;
3222 }
3223 
3224 /**
3225  * __skb_frag_ref - take an addition reference on a paged fragment.
3226  * @frag: the paged fragment
3227  *
3228  * Takes an additional reference on the paged fragment @frag.
3229  */
3230 static inline void __skb_frag_ref(skb_frag_t *frag)
3231 {
3232 	get_page(skb_frag_page(frag));
3233 }
3234 
3235 /**
3236  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
3237  * @skb: the buffer
3238  * @f: the fragment offset.
3239  *
3240  * Takes an additional reference on the @f'th paged fragment of @skb.
3241  */
3242 static inline void skb_frag_ref(struct sk_buff *skb, int f)
3243 {
3244 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
3245 }
3246 
3247 /**
3248  * __skb_frag_unref - release a reference on a paged fragment.
3249  * @frag: the paged fragment
3250  * @recycle: recycle the page if allocated via page_pool
3251  *
3252  * Releases a reference on the paged fragment @frag
3253  * or recycles the page via the page_pool API.
3254  */
3255 static inline void __skb_frag_unref(skb_frag_t *frag, bool recycle)
3256 {
3257 	struct page *page = skb_frag_page(frag);
3258 
3259 #ifdef CONFIG_PAGE_POOL
3260 	if (recycle && page_pool_return_skb_page(page))
3261 		return;
3262 #endif
3263 	put_page(page);
3264 }
3265 
3266 /**
3267  * skb_frag_unref - release a reference on a paged fragment of an skb.
3268  * @skb: the buffer
3269  * @f: the fragment offset
3270  *
3271  * Releases a reference on the @f'th paged fragment of @skb.
3272  */
3273 static inline void skb_frag_unref(struct sk_buff *skb, int f)
3274 {
3275 	__skb_frag_unref(&skb_shinfo(skb)->frags[f], skb->pp_recycle);
3276 }
3277 
3278 /**
3279  * skb_frag_address - gets the address of the data contained in a paged fragment
3280  * @frag: the paged fragment buffer
3281  *
3282  * Returns the address of the data within @frag. The page must already
3283  * be mapped.
3284  */
3285 static inline void *skb_frag_address(const skb_frag_t *frag)
3286 {
3287 	return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3288 }
3289 
3290 /**
3291  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3292  * @frag: the paged fragment buffer
3293  *
3294  * Returns the address of the data within @frag. Checks that the page
3295  * is mapped and returns %NULL otherwise.
3296  */
3297 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3298 {
3299 	void *ptr = page_address(skb_frag_page(frag));
3300 	if (unlikely(!ptr))
3301 		return NULL;
3302 
3303 	return ptr + skb_frag_off(frag);
3304 }
3305 
3306 /**
3307  * skb_frag_page_copy() - sets the page in a fragment from another fragment
3308  * @fragto: skb fragment where page is set
3309  * @fragfrom: skb fragment page is copied from
3310  */
3311 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3312 				      const skb_frag_t *fragfrom)
3313 {
3314 	fragto->bv_page = fragfrom->bv_page;
3315 }
3316 
3317 /**
3318  * __skb_frag_set_page - sets the page contained in a paged fragment
3319  * @frag: the paged fragment
3320  * @page: the page to set
3321  *
3322  * Sets the fragment @frag to contain @page.
3323  */
3324 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
3325 {
3326 	frag->bv_page = page;
3327 }
3328 
3329 /**
3330  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
3331  * @skb: the buffer
3332  * @f: the fragment offset
3333  * @page: the page to set
3334  *
3335  * Sets the @f'th fragment of @skb to contain @page.
3336  */
3337 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
3338 				     struct page *page)
3339 {
3340 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
3341 }
3342 
3343 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3344 
3345 /**
3346  * skb_frag_dma_map - maps a paged fragment via the DMA API
3347  * @dev: the device to map the fragment to
3348  * @frag: the paged fragment to map
3349  * @offset: the offset within the fragment (starting at the
3350  *          fragment's own offset)
3351  * @size: the number of bytes to map
3352  * @dir: the direction of the mapping (``PCI_DMA_*``)
3353  *
3354  * Maps the page associated with @frag to @device.
3355  */
3356 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3357 					  const skb_frag_t *frag,
3358 					  size_t offset, size_t size,
3359 					  enum dma_data_direction dir)
3360 {
3361 	return dma_map_page(dev, skb_frag_page(frag),
3362 			    skb_frag_off(frag) + offset, size, dir);
3363 }
3364 
3365 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3366 					gfp_t gfp_mask)
3367 {
3368 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3369 }
3370 
3371 
3372 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3373 						  gfp_t gfp_mask)
3374 {
3375 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3376 }
3377 
3378 
3379 /**
3380  *	skb_clone_writable - is the header of a clone writable
3381  *	@skb: buffer to check
3382  *	@len: length up to which to write
3383  *
3384  *	Returns true if modifying the header part of the cloned buffer
3385  *	does not requires the data to be copied.
3386  */
3387 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3388 {
3389 	return !skb_header_cloned(skb) &&
3390 	       skb_headroom(skb) + len <= skb->hdr_len;
3391 }
3392 
3393 static inline int skb_try_make_writable(struct sk_buff *skb,
3394 					unsigned int write_len)
3395 {
3396 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3397 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3398 }
3399 
3400 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3401 			    int cloned)
3402 {
3403 	int delta = 0;
3404 
3405 	if (headroom > skb_headroom(skb))
3406 		delta = headroom - skb_headroom(skb);
3407 
3408 	if (delta || cloned)
3409 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3410 					GFP_ATOMIC);
3411 	return 0;
3412 }
3413 
3414 /**
3415  *	skb_cow - copy header of skb when it is required
3416  *	@skb: buffer to cow
3417  *	@headroom: needed headroom
3418  *
3419  *	If the skb passed lacks sufficient headroom or its data part
3420  *	is shared, data is reallocated. If reallocation fails, an error
3421  *	is returned and original skb is not changed.
3422  *
3423  *	The result is skb with writable area skb->head...skb->tail
3424  *	and at least @headroom of space at head.
3425  */
3426 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3427 {
3428 	return __skb_cow(skb, headroom, skb_cloned(skb));
3429 }
3430 
3431 /**
3432  *	skb_cow_head - skb_cow but only making the head writable
3433  *	@skb: buffer to cow
3434  *	@headroom: needed headroom
3435  *
3436  *	This function is identical to skb_cow except that we replace the
3437  *	skb_cloned check by skb_header_cloned.  It should be used when
3438  *	you only need to push on some header and do not need to modify
3439  *	the data.
3440  */
3441 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3442 {
3443 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
3444 }
3445 
3446 /**
3447  *	skb_padto	- pad an skbuff up to a minimal size
3448  *	@skb: buffer to pad
3449  *	@len: minimal length
3450  *
3451  *	Pads up a buffer to ensure the trailing bytes exist and are
3452  *	blanked. If the buffer already contains sufficient data it
3453  *	is untouched. Otherwise it is extended. Returns zero on
3454  *	success. The skb is freed on error.
3455  */
3456 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3457 {
3458 	unsigned int size = skb->len;
3459 	if (likely(size >= len))
3460 		return 0;
3461 	return skb_pad(skb, len - size);
3462 }
3463 
3464 /**
3465  *	__skb_put_padto - increase size and pad an skbuff up to a minimal size
3466  *	@skb: buffer to pad
3467  *	@len: minimal length
3468  *	@free_on_error: free buffer on error
3469  *
3470  *	Pads up a buffer to ensure the trailing bytes exist and are
3471  *	blanked. If the buffer already contains sufficient data it
3472  *	is untouched. Otherwise it is extended. Returns zero on
3473  *	success. The skb is freed on error if @free_on_error is true.
3474  */
3475 static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3476 					       unsigned int len,
3477 					       bool free_on_error)
3478 {
3479 	unsigned int size = skb->len;
3480 
3481 	if (unlikely(size < len)) {
3482 		len -= size;
3483 		if (__skb_pad(skb, len, free_on_error))
3484 			return -ENOMEM;
3485 		__skb_put(skb, len);
3486 	}
3487 	return 0;
3488 }
3489 
3490 /**
3491  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3492  *	@skb: buffer to pad
3493  *	@len: minimal length
3494  *
3495  *	Pads up a buffer to ensure the trailing bytes exist and are
3496  *	blanked. If the buffer already contains sufficient data it
3497  *	is untouched. Otherwise it is extended. Returns zero on
3498  *	success. The skb is freed on error.
3499  */
3500 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3501 {
3502 	return __skb_put_padto(skb, len, true);
3503 }
3504 
3505 static inline int skb_add_data(struct sk_buff *skb,
3506 			       struct iov_iter *from, int copy)
3507 {
3508 	const int off = skb->len;
3509 
3510 	if (skb->ip_summed == CHECKSUM_NONE) {
3511 		__wsum csum = 0;
3512 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3513 					         &csum, from)) {
3514 			skb->csum = csum_block_add(skb->csum, csum, off);
3515 			return 0;
3516 		}
3517 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3518 		return 0;
3519 
3520 	__skb_trim(skb, off);
3521 	return -EFAULT;
3522 }
3523 
3524 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3525 				    const struct page *page, int off)
3526 {
3527 	if (skb_zcopy(skb))
3528 		return false;
3529 	if (i) {
3530 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3531 
3532 		return page == skb_frag_page(frag) &&
3533 		       off == skb_frag_off(frag) + skb_frag_size(frag);
3534 	}
3535 	return false;
3536 }
3537 
3538 static inline int __skb_linearize(struct sk_buff *skb)
3539 {
3540 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3541 }
3542 
3543 /**
3544  *	skb_linearize - convert paged skb to linear one
3545  *	@skb: buffer to linarize
3546  *
3547  *	If there is no free memory -ENOMEM is returned, otherwise zero
3548  *	is returned and the old skb data released.
3549  */
3550 static inline int skb_linearize(struct sk_buff *skb)
3551 {
3552 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3553 }
3554 
3555 /**
3556  * skb_has_shared_frag - can any frag be overwritten
3557  * @skb: buffer to test
3558  *
3559  * Return true if the skb has at least one frag that might be modified
3560  * by an external entity (as in vmsplice()/sendfile())
3561  */
3562 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3563 {
3564 	return skb_is_nonlinear(skb) &&
3565 	       skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3566 }
3567 
3568 /**
3569  *	skb_linearize_cow - make sure skb is linear and writable
3570  *	@skb: buffer to process
3571  *
3572  *	If there is no free memory -ENOMEM is returned, otherwise zero
3573  *	is returned and the old skb data released.
3574  */
3575 static inline int skb_linearize_cow(struct sk_buff *skb)
3576 {
3577 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3578 	       __skb_linearize(skb) : 0;
3579 }
3580 
3581 static __always_inline void
3582 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3583 		     unsigned int off)
3584 {
3585 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3586 		skb->csum = csum_block_sub(skb->csum,
3587 					   csum_partial(start, len, 0), off);
3588 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3589 		 skb_checksum_start_offset(skb) < 0)
3590 		skb->ip_summed = CHECKSUM_NONE;
3591 }
3592 
3593 /**
3594  *	skb_postpull_rcsum - update checksum for received skb after pull
3595  *	@skb: buffer to update
3596  *	@start: start of data before pull
3597  *	@len: length of data pulled
3598  *
3599  *	After doing a pull on a received packet, you need to call this to
3600  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3601  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3602  */
3603 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3604 				      const void *start, unsigned int len)
3605 {
3606 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3607 		skb->csum = wsum_negate(csum_partial(start, len,
3608 						     wsum_negate(skb->csum)));
3609 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3610 		 skb_checksum_start_offset(skb) < 0)
3611 		skb->ip_summed = CHECKSUM_NONE;
3612 }
3613 
3614 static __always_inline void
3615 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3616 		     unsigned int off)
3617 {
3618 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3619 		skb->csum = csum_block_add(skb->csum,
3620 					   csum_partial(start, len, 0), off);
3621 }
3622 
3623 /**
3624  *	skb_postpush_rcsum - update checksum for received skb after push
3625  *	@skb: buffer to update
3626  *	@start: start of data after push
3627  *	@len: length of data pushed
3628  *
3629  *	After doing a push on a received packet, you need to call this to
3630  *	update the CHECKSUM_COMPLETE checksum.
3631  */
3632 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3633 				      const void *start, unsigned int len)
3634 {
3635 	__skb_postpush_rcsum(skb, start, len, 0);
3636 }
3637 
3638 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3639 
3640 /**
3641  *	skb_push_rcsum - push skb and update receive checksum
3642  *	@skb: buffer to update
3643  *	@len: length of data pulled
3644  *
3645  *	This function performs an skb_push on the packet and updates
3646  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3647  *	receive path processing instead of skb_push unless you know
3648  *	that the checksum difference is zero (e.g., a valid IP header)
3649  *	or you are setting ip_summed to CHECKSUM_NONE.
3650  */
3651 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3652 {
3653 	skb_push(skb, len);
3654 	skb_postpush_rcsum(skb, skb->data, len);
3655 	return skb->data;
3656 }
3657 
3658 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3659 /**
3660  *	pskb_trim_rcsum - trim received skb and update checksum
3661  *	@skb: buffer to trim
3662  *	@len: new length
3663  *
3664  *	This is exactly the same as pskb_trim except that it ensures the
3665  *	checksum of received packets are still valid after the operation.
3666  *	It can change skb pointers.
3667  */
3668 
3669 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3670 {
3671 	if (likely(len >= skb->len))
3672 		return 0;
3673 	return pskb_trim_rcsum_slow(skb, len);
3674 }
3675 
3676 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3677 {
3678 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3679 		skb->ip_summed = CHECKSUM_NONE;
3680 	__skb_trim(skb, len);
3681 	return 0;
3682 }
3683 
3684 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3685 {
3686 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3687 		skb->ip_summed = CHECKSUM_NONE;
3688 	return __skb_grow(skb, len);
3689 }
3690 
3691 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3692 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3693 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3694 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3695 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3696 
3697 #define skb_queue_walk(queue, skb) \
3698 		for (skb = (queue)->next;					\
3699 		     skb != (struct sk_buff *)(queue);				\
3700 		     skb = skb->next)
3701 
3702 #define skb_queue_walk_safe(queue, skb, tmp)					\
3703 		for (skb = (queue)->next, tmp = skb->next;			\
3704 		     skb != (struct sk_buff *)(queue);				\
3705 		     skb = tmp, tmp = skb->next)
3706 
3707 #define skb_queue_walk_from(queue, skb)						\
3708 		for (; skb != (struct sk_buff *)(queue);			\
3709 		     skb = skb->next)
3710 
3711 #define skb_rbtree_walk(skb, root)						\
3712 		for (skb = skb_rb_first(root); skb != NULL;			\
3713 		     skb = skb_rb_next(skb))
3714 
3715 #define skb_rbtree_walk_from(skb)						\
3716 		for (; skb != NULL;						\
3717 		     skb = skb_rb_next(skb))
3718 
3719 #define skb_rbtree_walk_from_safe(skb, tmp)					\
3720 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
3721 		     skb = tmp)
3722 
3723 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3724 		for (tmp = skb->next;						\
3725 		     skb != (struct sk_buff *)(queue);				\
3726 		     skb = tmp, tmp = skb->next)
3727 
3728 #define skb_queue_reverse_walk(queue, skb) \
3729 		for (skb = (queue)->prev;					\
3730 		     skb != (struct sk_buff *)(queue);				\
3731 		     skb = skb->prev)
3732 
3733 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3734 		for (skb = (queue)->prev, tmp = skb->prev;			\
3735 		     skb != (struct sk_buff *)(queue);				\
3736 		     skb = tmp, tmp = skb->prev)
3737 
3738 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3739 		for (tmp = skb->prev;						\
3740 		     skb != (struct sk_buff *)(queue);				\
3741 		     skb = tmp, tmp = skb->prev)
3742 
3743 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3744 {
3745 	return skb_shinfo(skb)->frag_list != NULL;
3746 }
3747 
3748 static inline void skb_frag_list_init(struct sk_buff *skb)
3749 {
3750 	skb_shinfo(skb)->frag_list = NULL;
3751 }
3752 
3753 #define skb_walk_frags(skb, iter)	\
3754 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3755 
3756 
3757 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3758 				int *err, long *timeo_p,
3759 				const struct sk_buff *skb);
3760 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3761 					  struct sk_buff_head *queue,
3762 					  unsigned int flags,
3763 					  int *off, int *err,
3764 					  struct sk_buff **last);
3765 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
3766 					struct sk_buff_head *queue,
3767 					unsigned int flags, int *off, int *err,
3768 					struct sk_buff **last);
3769 struct sk_buff *__skb_recv_datagram(struct sock *sk,
3770 				    struct sk_buff_head *sk_queue,
3771 				    unsigned int flags, int *off, int *err);
3772 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3773 				  int *err);
3774 __poll_t datagram_poll(struct file *file, struct socket *sock,
3775 			   struct poll_table_struct *wait);
3776 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3777 			   struct iov_iter *to, int size);
3778 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3779 					struct msghdr *msg, int size)
3780 {
3781 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3782 }
3783 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3784 				   struct msghdr *msg);
3785 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3786 			   struct iov_iter *to, int len,
3787 			   struct ahash_request *hash);
3788 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3789 				 struct iov_iter *from, int len);
3790 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3791 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3792 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3793 static inline void skb_free_datagram_locked(struct sock *sk,
3794 					    struct sk_buff *skb)
3795 {
3796 	__skb_free_datagram_locked(sk, skb, 0);
3797 }
3798 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3799 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3800 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3801 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3802 			      int len);
3803 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3804 		    struct pipe_inode_info *pipe, unsigned int len,
3805 		    unsigned int flags);
3806 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3807 			 int len);
3808 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
3809 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3810 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3811 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3812 		 int len, int hlen);
3813 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3814 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3815 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3816 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3817 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3818 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3819 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
3820 				 unsigned int offset);
3821 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3822 int skb_ensure_writable(struct sk_buff *skb, int write_len);
3823 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3824 int skb_vlan_pop(struct sk_buff *skb);
3825 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3826 int skb_eth_pop(struct sk_buff *skb);
3827 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
3828 		 const unsigned char *src);
3829 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
3830 		  int mac_len, bool ethernet);
3831 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
3832 		 bool ethernet);
3833 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
3834 int skb_mpls_dec_ttl(struct sk_buff *skb);
3835 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3836 			     gfp_t gfp);
3837 
3838 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3839 {
3840 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3841 }
3842 
3843 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3844 {
3845 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3846 }
3847 
3848 struct skb_checksum_ops {
3849 	__wsum (*update)(const void *mem, int len, __wsum wsum);
3850 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3851 };
3852 
3853 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3854 
3855 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3856 		      __wsum csum, const struct skb_checksum_ops *ops);
3857 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3858 		    __wsum csum);
3859 
3860 static inline void * __must_check
3861 __skb_header_pointer(const struct sk_buff *skb, int offset, int len,
3862 		     const void *data, int hlen, void *buffer)
3863 {
3864 	if (likely(hlen - offset >= len))
3865 		return (void *)data + offset;
3866 
3867 	if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0))
3868 		return NULL;
3869 
3870 	return buffer;
3871 }
3872 
3873 static inline void * __must_check
3874 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3875 {
3876 	return __skb_header_pointer(skb, offset, len, skb->data,
3877 				    skb_headlen(skb), buffer);
3878 }
3879 
3880 /**
3881  *	skb_needs_linearize - check if we need to linearize a given skb
3882  *			      depending on the given device features.
3883  *	@skb: socket buffer to check
3884  *	@features: net device features
3885  *
3886  *	Returns true if either:
3887  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
3888  *	2. skb is fragmented and the device does not support SG.
3889  */
3890 static inline bool skb_needs_linearize(struct sk_buff *skb,
3891 				       netdev_features_t features)
3892 {
3893 	return skb_is_nonlinear(skb) &&
3894 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3895 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3896 }
3897 
3898 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3899 					     void *to,
3900 					     const unsigned int len)
3901 {
3902 	memcpy(to, skb->data, len);
3903 }
3904 
3905 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3906 						    const int offset, void *to,
3907 						    const unsigned int len)
3908 {
3909 	memcpy(to, skb->data + offset, len);
3910 }
3911 
3912 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3913 					   const void *from,
3914 					   const unsigned int len)
3915 {
3916 	memcpy(skb->data, from, len);
3917 }
3918 
3919 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3920 						  const int offset,
3921 						  const void *from,
3922 						  const unsigned int len)
3923 {
3924 	memcpy(skb->data + offset, from, len);
3925 }
3926 
3927 void skb_init(void);
3928 
3929 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3930 {
3931 	return skb->tstamp;
3932 }
3933 
3934 /**
3935  *	skb_get_timestamp - get timestamp from a skb
3936  *	@skb: skb to get stamp from
3937  *	@stamp: pointer to struct __kernel_old_timeval to store stamp in
3938  *
3939  *	Timestamps are stored in the skb as offsets to a base timestamp.
3940  *	This function converts the offset back to a struct timeval and stores
3941  *	it in stamp.
3942  */
3943 static inline void skb_get_timestamp(const struct sk_buff *skb,
3944 				     struct __kernel_old_timeval *stamp)
3945 {
3946 	*stamp = ns_to_kernel_old_timeval(skb->tstamp);
3947 }
3948 
3949 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
3950 					 struct __kernel_sock_timeval *stamp)
3951 {
3952 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3953 
3954 	stamp->tv_sec = ts.tv_sec;
3955 	stamp->tv_usec = ts.tv_nsec / 1000;
3956 }
3957 
3958 static inline void skb_get_timestampns(const struct sk_buff *skb,
3959 				       struct __kernel_old_timespec *stamp)
3960 {
3961 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3962 
3963 	stamp->tv_sec = ts.tv_sec;
3964 	stamp->tv_nsec = ts.tv_nsec;
3965 }
3966 
3967 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
3968 					   struct __kernel_timespec *stamp)
3969 {
3970 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3971 
3972 	stamp->tv_sec = ts.tv_sec;
3973 	stamp->tv_nsec = ts.tv_nsec;
3974 }
3975 
3976 static inline void __net_timestamp(struct sk_buff *skb)
3977 {
3978 	skb->tstamp = ktime_get_real();
3979 }
3980 
3981 static inline ktime_t net_timedelta(ktime_t t)
3982 {
3983 	return ktime_sub(ktime_get_real(), t);
3984 }
3985 
3986 static inline u8 skb_metadata_len(const struct sk_buff *skb)
3987 {
3988 	return skb_shinfo(skb)->meta_len;
3989 }
3990 
3991 static inline void *skb_metadata_end(const struct sk_buff *skb)
3992 {
3993 	return skb_mac_header(skb);
3994 }
3995 
3996 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3997 					  const struct sk_buff *skb_b,
3998 					  u8 meta_len)
3999 {
4000 	const void *a = skb_metadata_end(skb_a);
4001 	const void *b = skb_metadata_end(skb_b);
4002 	/* Using more efficient varaiant than plain call to memcmp(). */
4003 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
4004 	u64 diffs = 0;
4005 
4006 	switch (meta_len) {
4007 #define __it(x, op) (x -= sizeof(u##op))
4008 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
4009 	case 32: diffs |= __it_diff(a, b, 64);
4010 		fallthrough;
4011 	case 24: diffs |= __it_diff(a, b, 64);
4012 		fallthrough;
4013 	case 16: diffs |= __it_diff(a, b, 64);
4014 		fallthrough;
4015 	case  8: diffs |= __it_diff(a, b, 64);
4016 		break;
4017 	case 28: diffs |= __it_diff(a, b, 64);
4018 		fallthrough;
4019 	case 20: diffs |= __it_diff(a, b, 64);
4020 		fallthrough;
4021 	case 12: diffs |= __it_diff(a, b, 64);
4022 		fallthrough;
4023 	case  4: diffs |= __it_diff(a, b, 32);
4024 		break;
4025 	}
4026 	return diffs;
4027 #else
4028 	return memcmp(a - meta_len, b - meta_len, meta_len);
4029 #endif
4030 }
4031 
4032 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
4033 					const struct sk_buff *skb_b)
4034 {
4035 	u8 len_a = skb_metadata_len(skb_a);
4036 	u8 len_b = skb_metadata_len(skb_b);
4037 
4038 	if (!(len_a | len_b))
4039 		return false;
4040 
4041 	return len_a != len_b ?
4042 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
4043 }
4044 
4045 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
4046 {
4047 	skb_shinfo(skb)->meta_len = meta_len;
4048 }
4049 
4050 static inline void skb_metadata_clear(struct sk_buff *skb)
4051 {
4052 	skb_metadata_set(skb, 0);
4053 }
4054 
4055 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
4056 
4057 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
4058 
4059 void skb_clone_tx_timestamp(struct sk_buff *skb);
4060 bool skb_defer_rx_timestamp(struct sk_buff *skb);
4061 
4062 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
4063 
4064 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
4065 {
4066 }
4067 
4068 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
4069 {
4070 	return false;
4071 }
4072 
4073 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
4074 
4075 /**
4076  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
4077  *
4078  * PHY drivers may accept clones of transmitted packets for
4079  * timestamping via their phy_driver.txtstamp method. These drivers
4080  * must call this function to return the skb back to the stack with a
4081  * timestamp.
4082  *
4083  * @skb: clone of the original outgoing packet
4084  * @hwtstamps: hardware time stamps
4085  *
4086  */
4087 void skb_complete_tx_timestamp(struct sk_buff *skb,
4088 			       struct skb_shared_hwtstamps *hwtstamps);
4089 
4090 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb,
4091 		     struct skb_shared_hwtstamps *hwtstamps,
4092 		     struct sock *sk, int tstype);
4093 
4094 /**
4095  * skb_tstamp_tx - queue clone of skb with send time stamps
4096  * @orig_skb:	the original outgoing packet
4097  * @hwtstamps:	hardware time stamps, may be NULL if not available
4098  *
4099  * If the skb has a socket associated, then this function clones the
4100  * skb (thus sharing the actual data and optional structures), stores
4101  * the optional hardware time stamping information (if non NULL) or
4102  * generates a software time stamp (otherwise), then queues the clone
4103  * to the error queue of the socket.  Errors are silently ignored.
4104  */
4105 void skb_tstamp_tx(struct sk_buff *orig_skb,
4106 		   struct skb_shared_hwtstamps *hwtstamps);
4107 
4108 /**
4109  * skb_tx_timestamp() - Driver hook for transmit timestamping
4110  *
4111  * Ethernet MAC Drivers should call this function in their hard_xmit()
4112  * function immediately before giving the sk_buff to the MAC hardware.
4113  *
4114  * Specifically, one should make absolutely sure that this function is
4115  * called before TX completion of this packet can trigger.  Otherwise
4116  * the packet could potentially already be freed.
4117  *
4118  * @skb: A socket buffer.
4119  */
4120 static inline void skb_tx_timestamp(struct sk_buff *skb)
4121 {
4122 	skb_clone_tx_timestamp(skb);
4123 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
4124 		skb_tstamp_tx(skb, NULL);
4125 }
4126 
4127 /**
4128  * skb_complete_wifi_ack - deliver skb with wifi status
4129  *
4130  * @skb: the original outgoing packet
4131  * @acked: ack status
4132  *
4133  */
4134 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
4135 
4136 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
4137 __sum16 __skb_checksum_complete(struct sk_buff *skb);
4138 
4139 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
4140 {
4141 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
4142 		skb->csum_valid ||
4143 		(skb->ip_summed == CHECKSUM_PARTIAL &&
4144 		 skb_checksum_start_offset(skb) >= 0));
4145 }
4146 
4147 /**
4148  *	skb_checksum_complete - Calculate checksum of an entire packet
4149  *	@skb: packet to process
4150  *
4151  *	This function calculates the checksum over the entire packet plus
4152  *	the value of skb->csum.  The latter can be used to supply the
4153  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
4154  *	checksum.
4155  *
4156  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
4157  *	this function can be used to verify that checksum on received
4158  *	packets.  In that case the function should return zero if the
4159  *	checksum is correct.  In particular, this function will return zero
4160  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
4161  *	hardware has already verified the correctness of the checksum.
4162  */
4163 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
4164 {
4165 	return skb_csum_unnecessary(skb) ?
4166 	       0 : __skb_checksum_complete(skb);
4167 }
4168 
4169 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
4170 {
4171 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4172 		if (skb->csum_level == 0)
4173 			skb->ip_summed = CHECKSUM_NONE;
4174 		else
4175 			skb->csum_level--;
4176 	}
4177 }
4178 
4179 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
4180 {
4181 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4182 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
4183 			skb->csum_level++;
4184 	} else if (skb->ip_summed == CHECKSUM_NONE) {
4185 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4186 		skb->csum_level = 0;
4187 	}
4188 }
4189 
4190 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
4191 {
4192 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4193 		skb->ip_summed = CHECKSUM_NONE;
4194 		skb->csum_level = 0;
4195 	}
4196 }
4197 
4198 /* Check if we need to perform checksum complete validation.
4199  *
4200  * Returns true if checksum complete is needed, false otherwise
4201  * (either checksum is unnecessary or zero checksum is allowed).
4202  */
4203 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
4204 						  bool zero_okay,
4205 						  __sum16 check)
4206 {
4207 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
4208 		skb->csum_valid = 1;
4209 		__skb_decr_checksum_unnecessary(skb);
4210 		return false;
4211 	}
4212 
4213 	return true;
4214 }
4215 
4216 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
4217  * in checksum_init.
4218  */
4219 #define CHECKSUM_BREAK 76
4220 
4221 /* Unset checksum-complete
4222  *
4223  * Unset checksum complete can be done when packet is being modified
4224  * (uncompressed for instance) and checksum-complete value is
4225  * invalidated.
4226  */
4227 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
4228 {
4229 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4230 		skb->ip_summed = CHECKSUM_NONE;
4231 }
4232 
4233 /* Validate (init) checksum based on checksum complete.
4234  *
4235  * Return values:
4236  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
4237  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4238  *	checksum is stored in skb->csum for use in __skb_checksum_complete
4239  *   non-zero: value of invalid checksum
4240  *
4241  */
4242 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4243 						       bool complete,
4244 						       __wsum psum)
4245 {
4246 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
4247 		if (!csum_fold(csum_add(psum, skb->csum))) {
4248 			skb->csum_valid = 1;
4249 			return 0;
4250 		}
4251 	}
4252 
4253 	skb->csum = psum;
4254 
4255 	if (complete || skb->len <= CHECKSUM_BREAK) {
4256 		__sum16 csum;
4257 
4258 		csum = __skb_checksum_complete(skb);
4259 		skb->csum_valid = !csum;
4260 		return csum;
4261 	}
4262 
4263 	return 0;
4264 }
4265 
4266 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4267 {
4268 	return 0;
4269 }
4270 
4271 /* Perform checksum validate (init). Note that this is a macro since we only
4272  * want to calculate the pseudo header which is an input function if necessary.
4273  * First we try to validate without any computation (checksum unnecessary) and
4274  * then calculate based on checksum complete calling the function to compute
4275  * pseudo header.
4276  *
4277  * Return values:
4278  *   0: checksum is validated or try to in skb_checksum_complete
4279  *   non-zero: value of invalid checksum
4280  */
4281 #define __skb_checksum_validate(skb, proto, complete,			\
4282 				zero_okay, check, compute_pseudo)	\
4283 ({									\
4284 	__sum16 __ret = 0;						\
4285 	skb->csum_valid = 0;						\
4286 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
4287 		__ret = __skb_checksum_validate_complete(skb,		\
4288 				complete, compute_pseudo(skb, proto));	\
4289 	__ret;								\
4290 })
4291 
4292 #define skb_checksum_init(skb, proto, compute_pseudo)			\
4293 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4294 
4295 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
4296 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4297 
4298 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
4299 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4300 
4301 #define skb_checksum_validate_zero_check(skb, proto, check,		\
4302 					 compute_pseudo)		\
4303 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4304 
4305 #define skb_checksum_simple_validate(skb)				\
4306 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4307 
4308 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4309 {
4310 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4311 }
4312 
4313 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4314 {
4315 	skb->csum = ~pseudo;
4316 	skb->ip_summed = CHECKSUM_COMPLETE;
4317 }
4318 
4319 #define skb_checksum_try_convert(skb, proto, compute_pseudo)	\
4320 do {									\
4321 	if (__skb_checksum_convert_check(skb))				\
4322 		__skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4323 } while (0)
4324 
4325 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4326 					      u16 start, u16 offset)
4327 {
4328 	skb->ip_summed = CHECKSUM_PARTIAL;
4329 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4330 	skb->csum_offset = offset - start;
4331 }
4332 
4333 /* Update skbuf and packet to reflect the remote checksum offload operation.
4334  * When called, ptr indicates the starting point for skb->csum when
4335  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4336  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4337  */
4338 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4339 				       int start, int offset, bool nopartial)
4340 {
4341 	__wsum delta;
4342 
4343 	if (!nopartial) {
4344 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
4345 		return;
4346 	}
4347 
4348 	if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4349 		__skb_checksum_complete(skb);
4350 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4351 	}
4352 
4353 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
4354 
4355 	/* Adjust skb->csum since we changed the packet */
4356 	skb->csum = csum_add(skb->csum, delta);
4357 }
4358 
4359 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4360 {
4361 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4362 	return (void *)(skb->_nfct & NFCT_PTRMASK);
4363 #else
4364 	return NULL;
4365 #endif
4366 }
4367 
4368 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4369 {
4370 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4371 	return skb->_nfct;
4372 #else
4373 	return 0UL;
4374 #endif
4375 }
4376 
4377 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4378 {
4379 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4380 	skb->slow_gro |= !!nfct;
4381 	skb->_nfct = nfct;
4382 #endif
4383 }
4384 
4385 #ifdef CONFIG_SKB_EXTENSIONS
4386 enum skb_ext_id {
4387 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4388 	SKB_EXT_BRIDGE_NF,
4389 #endif
4390 #ifdef CONFIG_XFRM
4391 	SKB_EXT_SEC_PATH,
4392 #endif
4393 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4394 	TC_SKB_EXT,
4395 #endif
4396 #if IS_ENABLED(CONFIG_MPTCP)
4397 	SKB_EXT_MPTCP,
4398 #endif
4399 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4400 	SKB_EXT_MCTP,
4401 #endif
4402 	SKB_EXT_NUM, /* must be last */
4403 };
4404 
4405 /**
4406  *	struct skb_ext - sk_buff extensions
4407  *	@refcnt: 1 on allocation, deallocated on 0
4408  *	@offset: offset to add to @data to obtain extension address
4409  *	@chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4410  *	@data: start of extension data, variable sized
4411  *
4412  *	Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4413  *	to use 'u8' types while allowing up to 2kb worth of extension data.
4414  */
4415 struct skb_ext {
4416 	refcount_t refcnt;
4417 	u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4418 	u8 chunks;		/* same */
4419 	char data[] __aligned(8);
4420 };
4421 
4422 struct skb_ext *__skb_ext_alloc(gfp_t flags);
4423 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4424 		    struct skb_ext *ext);
4425 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4426 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4427 void __skb_ext_put(struct skb_ext *ext);
4428 
4429 static inline void skb_ext_put(struct sk_buff *skb)
4430 {
4431 	if (skb->active_extensions)
4432 		__skb_ext_put(skb->extensions);
4433 }
4434 
4435 static inline void __skb_ext_copy(struct sk_buff *dst,
4436 				  const struct sk_buff *src)
4437 {
4438 	dst->active_extensions = src->active_extensions;
4439 
4440 	if (src->active_extensions) {
4441 		struct skb_ext *ext = src->extensions;
4442 
4443 		refcount_inc(&ext->refcnt);
4444 		dst->extensions = ext;
4445 	}
4446 }
4447 
4448 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4449 {
4450 	skb_ext_put(dst);
4451 	__skb_ext_copy(dst, src);
4452 }
4453 
4454 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4455 {
4456 	return !!ext->offset[i];
4457 }
4458 
4459 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4460 {
4461 	return skb->active_extensions & (1 << id);
4462 }
4463 
4464 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4465 {
4466 	if (skb_ext_exist(skb, id))
4467 		__skb_ext_del(skb, id);
4468 }
4469 
4470 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4471 {
4472 	if (skb_ext_exist(skb, id)) {
4473 		struct skb_ext *ext = skb->extensions;
4474 
4475 		return (void *)ext + (ext->offset[id] << 3);
4476 	}
4477 
4478 	return NULL;
4479 }
4480 
4481 static inline void skb_ext_reset(struct sk_buff *skb)
4482 {
4483 	if (unlikely(skb->active_extensions)) {
4484 		__skb_ext_put(skb->extensions);
4485 		skb->active_extensions = 0;
4486 	}
4487 }
4488 
4489 static inline bool skb_has_extensions(struct sk_buff *skb)
4490 {
4491 	return unlikely(skb->active_extensions);
4492 }
4493 #else
4494 static inline void skb_ext_put(struct sk_buff *skb) {}
4495 static inline void skb_ext_reset(struct sk_buff *skb) {}
4496 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4497 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4498 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4499 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4500 #endif /* CONFIG_SKB_EXTENSIONS */
4501 
4502 static inline void nf_reset_ct(struct sk_buff *skb)
4503 {
4504 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4505 	nf_conntrack_put(skb_nfct(skb));
4506 	skb->_nfct = 0;
4507 #endif
4508 }
4509 
4510 static inline void nf_reset_trace(struct sk_buff *skb)
4511 {
4512 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4513 	skb->nf_trace = 0;
4514 #endif
4515 }
4516 
4517 static inline void ipvs_reset(struct sk_buff *skb)
4518 {
4519 #if IS_ENABLED(CONFIG_IP_VS)
4520 	skb->ipvs_property = 0;
4521 #endif
4522 }
4523 
4524 /* Note: This doesn't put any conntrack info in dst. */
4525 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4526 			     bool copy)
4527 {
4528 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4529 	dst->_nfct = src->_nfct;
4530 	nf_conntrack_get(skb_nfct(src));
4531 #endif
4532 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4533 	if (copy)
4534 		dst->nf_trace = src->nf_trace;
4535 #endif
4536 }
4537 
4538 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4539 {
4540 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4541 	nf_conntrack_put(skb_nfct(dst));
4542 #endif
4543 	dst->slow_gro = src->slow_gro;
4544 	__nf_copy(dst, src, true);
4545 }
4546 
4547 #ifdef CONFIG_NETWORK_SECMARK
4548 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4549 {
4550 	to->secmark = from->secmark;
4551 }
4552 
4553 static inline void skb_init_secmark(struct sk_buff *skb)
4554 {
4555 	skb->secmark = 0;
4556 }
4557 #else
4558 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4559 { }
4560 
4561 static inline void skb_init_secmark(struct sk_buff *skb)
4562 { }
4563 #endif
4564 
4565 static inline int secpath_exists(const struct sk_buff *skb)
4566 {
4567 #ifdef CONFIG_XFRM
4568 	return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4569 #else
4570 	return 0;
4571 #endif
4572 }
4573 
4574 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4575 {
4576 	return !skb->destructor &&
4577 		!secpath_exists(skb) &&
4578 		!skb_nfct(skb) &&
4579 		!skb->_skb_refdst &&
4580 		!skb_has_frag_list(skb);
4581 }
4582 
4583 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4584 {
4585 	skb->queue_mapping = queue_mapping;
4586 }
4587 
4588 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4589 {
4590 	return skb->queue_mapping;
4591 }
4592 
4593 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4594 {
4595 	to->queue_mapping = from->queue_mapping;
4596 }
4597 
4598 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4599 {
4600 	skb->queue_mapping = rx_queue + 1;
4601 }
4602 
4603 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4604 {
4605 	return skb->queue_mapping - 1;
4606 }
4607 
4608 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4609 {
4610 	return skb->queue_mapping != 0;
4611 }
4612 
4613 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4614 {
4615 	skb->dst_pending_confirm = val;
4616 }
4617 
4618 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4619 {
4620 	return skb->dst_pending_confirm != 0;
4621 }
4622 
4623 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4624 {
4625 #ifdef CONFIG_XFRM
4626 	return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4627 #else
4628 	return NULL;
4629 #endif
4630 }
4631 
4632 /* Keeps track of mac header offset relative to skb->head.
4633  * It is useful for TSO of Tunneling protocol. e.g. GRE.
4634  * For non-tunnel skb it points to skb_mac_header() and for
4635  * tunnel skb it points to outer mac header.
4636  * Keeps track of level of encapsulation of network headers.
4637  */
4638 struct skb_gso_cb {
4639 	union {
4640 		int	mac_offset;
4641 		int	data_offset;
4642 	};
4643 	int	encap_level;
4644 	__wsum	csum;
4645 	__u16	csum_start;
4646 };
4647 #define SKB_GSO_CB_OFFSET	32
4648 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET))
4649 
4650 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4651 {
4652 	return (skb_mac_header(inner_skb) - inner_skb->head) -
4653 		SKB_GSO_CB(inner_skb)->mac_offset;
4654 }
4655 
4656 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4657 {
4658 	int new_headroom, headroom;
4659 	int ret;
4660 
4661 	headroom = skb_headroom(skb);
4662 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4663 	if (ret)
4664 		return ret;
4665 
4666 	new_headroom = skb_headroom(skb);
4667 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4668 	return 0;
4669 }
4670 
4671 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4672 {
4673 	/* Do not update partial checksums if remote checksum is enabled. */
4674 	if (skb->remcsum_offload)
4675 		return;
4676 
4677 	SKB_GSO_CB(skb)->csum = res;
4678 	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4679 }
4680 
4681 /* Compute the checksum for a gso segment. First compute the checksum value
4682  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4683  * then add in skb->csum (checksum from csum_start to end of packet).
4684  * skb->csum and csum_start are then updated to reflect the checksum of the
4685  * resultant packet starting from the transport header-- the resultant checksum
4686  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4687  * header.
4688  */
4689 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4690 {
4691 	unsigned char *csum_start = skb_transport_header(skb);
4692 	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4693 	__wsum partial = SKB_GSO_CB(skb)->csum;
4694 
4695 	SKB_GSO_CB(skb)->csum = res;
4696 	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4697 
4698 	return csum_fold(csum_partial(csum_start, plen, partial));
4699 }
4700 
4701 static inline bool skb_is_gso(const struct sk_buff *skb)
4702 {
4703 	return skb_shinfo(skb)->gso_size;
4704 }
4705 
4706 /* Note: Should be called only if skb_is_gso(skb) is true */
4707 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4708 {
4709 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4710 }
4711 
4712 /* Note: Should be called only if skb_is_gso(skb) is true */
4713 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4714 {
4715 	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4716 }
4717 
4718 /* Note: Should be called only if skb_is_gso(skb) is true */
4719 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4720 {
4721 	return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4722 }
4723 
4724 static inline void skb_gso_reset(struct sk_buff *skb)
4725 {
4726 	skb_shinfo(skb)->gso_size = 0;
4727 	skb_shinfo(skb)->gso_segs = 0;
4728 	skb_shinfo(skb)->gso_type = 0;
4729 }
4730 
4731 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4732 					 u16 increment)
4733 {
4734 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4735 		return;
4736 	shinfo->gso_size += increment;
4737 }
4738 
4739 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4740 					 u16 decrement)
4741 {
4742 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4743 		return;
4744 	shinfo->gso_size -= decrement;
4745 }
4746 
4747 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4748 
4749 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4750 {
4751 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
4752 	 * wanted then gso_type will be set. */
4753 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4754 
4755 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4756 	    unlikely(shinfo->gso_type == 0)) {
4757 		__skb_warn_lro_forwarding(skb);
4758 		return true;
4759 	}
4760 	return false;
4761 }
4762 
4763 static inline void skb_forward_csum(struct sk_buff *skb)
4764 {
4765 	/* Unfortunately we don't support this one.  Any brave souls? */
4766 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4767 		skb->ip_summed = CHECKSUM_NONE;
4768 }
4769 
4770 /**
4771  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4772  * @skb: skb to check
4773  *
4774  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4775  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4776  * use this helper, to document places where we make this assertion.
4777  */
4778 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4779 {
4780 #ifdef DEBUG
4781 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4782 #endif
4783 }
4784 
4785 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4786 
4787 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4788 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4789 				     unsigned int transport_len,
4790 				     __sum16(*skb_chkf)(struct sk_buff *skb));
4791 
4792 /**
4793  * skb_head_is_locked - Determine if the skb->head is locked down
4794  * @skb: skb to check
4795  *
4796  * The head on skbs build around a head frag can be removed if they are
4797  * not cloned.  This function returns true if the skb head is locked down
4798  * due to either being allocated via kmalloc, or by being a clone with
4799  * multiple references to the head.
4800  */
4801 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4802 {
4803 	return !skb->head_frag || skb_cloned(skb);
4804 }
4805 
4806 /* Local Checksum Offload.
4807  * Compute outer checksum based on the assumption that the
4808  * inner checksum will be offloaded later.
4809  * See Documentation/networking/checksum-offloads.rst for
4810  * explanation of how this works.
4811  * Fill in outer checksum adjustment (e.g. with sum of outer
4812  * pseudo-header) before calling.
4813  * Also ensure that inner checksum is in linear data area.
4814  */
4815 static inline __wsum lco_csum(struct sk_buff *skb)
4816 {
4817 	unsigned char *csum_start = skb_checksum_start(skb);
4818 	unsigned char *l4_hdr = skb_transport_header(skb);
4819 	__wsum partial;
4820 
4821 	/* Start with complement of inner checksum adjustment */
4822 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4823 						    skb->csum_offset));
4824 
4825 	/* Add in checksum of our headers (incl. outer checksum
4826 	 * adjustment filled in by caller) and return result.
4827 	 */
4828 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4829 }
4830 
4831 static inline bool skb_is_redirected(const struct sk_buff *skb)
4832 {
4833 	return skb->redirected;
4834 }
4835 
4836 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
4837 {
4838 	skb->redirected = 1;
4839 #ifdef CONFIG_NET_REDIRECT
4840 	skb->from_ingress = from_ingress;
4841 	if (skb->from_ingress)
4842 		skb->tstamp = 0;
4843 #endif
4844 }
4845 
4846 static inline void skb_reset_redirect(struct sk_buff *skb)
4847 {
4848 	skb->redirected = 0;
4849 }
4850 
4851 static inline bool skb_csum_is_sctp(struct sk_buff *skb)
4852 {
4853 	return skb->csum_not_inet;
4854 }
4855 
4856 static inline void skb_set_kcov_handle(struct sk_buff *skb,
4857 				       const u64 kcov_handle)
4858 {
4859 #ifdef CONFIG_KCOV
4860 	skb->kcov_handle = kcov_handle;
4861 #endif
4862 }
4863 
4864 static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
4865 {
4866 #ifdef CONFIG_KCOV
4867 	return skb->kcov_handle;
4868 #else
4869 	return 0;
4870 #endif
4871 }
4872 
4873 #ifdef CONFIG_PAGE_POOL
4874 static inline void skb_mark_for_recycle(struct sk_buff *skb)
4875 {
4876 	skb->pp_recycle = 1;
4877 }
4878 #endif
4879 
4880 static inline bool skb_pp_recycle(struct sk_buff *skb, void *data)
4881 {
4882 	if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
4883 		return false;
4884 	return page_pool_return_skb_page(virt_to_page(data));
4885 }
4886 
4887 #endif	/* __KERNEL__ */
4888 #endif	/* _LINUX_SKBUFF_H */
4889