xref: /linux-6.15/include/linux/skbuff.h (revision b5962294)
1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <[email protected]>
6  *		Florian La Roche, <[email protected]>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/bug.h>
21 #include <linux/cache.h>
22 #include <linux/rbtree.h>
23 #include <linux/socket.h>
24 #include <linux/refcount.h>
25 
26 #include <linux/atomic.h>
27 #include <asm/types.h>
28 #include <linux/spinlock.h>
29 #include <linux/net.h>
30 #include <linux/textsearch.h>
31 #include <net/checksum.h>
32 #include <linux/rcupdate.h>
33 #include <linux/hrtimer.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/netdev_features.h>
36 #include <linux/sched.h>
37 #include <linux/sched/clock.h>
38 #include <net/flow_dissector.h>
39 #include <linux/splice.h>
40 #include <linux/in6.h>
41 #include <linux/if_packet.h>
42 #include <net/flow.h>
43 
44 /* The interface for checksum offload between the stack and networking drivers
45  * is as follows...
46  *
47  * A. IP checksum related features
48  *
49  * Drivers advertise checksum offload capabilities in the features of a device.
50  * From the stack's point of view these are capabilities offered by the driver,
51  * a driver typically only advertises features that it is capable of offloading
52  * to its device.
53  *
54  * The checksum related features are:
55  *
56  *	NETIF_F_HW_CSUM	- The driver (or its device) is able to compute one
57  *			  IP (one's complement) checksum for any combination
58  *			  of protocols or protocol layering. The checksum is
59  *			  computed and set in a packet per the CHECKSUM_PARTIAL
60  *			  interface (see below).
61  *
62  *	NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
63  *			  TCP or UDP packets over IPv4. These are specifically
64  *			  unencapsulated packets of the form IPv4|TCP or
65  *			  IPv4|UDP where the Protocol field in the IPv4 header
66  *			  is TCP or UDP. The IPv4 header may contain IP options
67  *			  This feature cannot be set in features for a device
68  *			  with NETIF_F_HW_CSUM also set. This feature is being
69  *			  DEPRECATED (see below).
70  *
71  *	NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
72  *			  TCP or UDP packets over IPv6. These are specifically
73  *			  unencapsulated packets of the form IPv6|TCP or
74  *			  IPv4|UDP where the Next Header field in the IPv6
75  *			  header is either TCP or UDP. IPv6 extension headers
76  *			  are not supported with this feature. This feature
77  *			  cannot be set in features for a device with
78  *			  NETIF_F_HW_CSUM also set. This feature is being
79  *			  DEPRECATED (see below).
80  *
81  *	NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
82  *			 This flag is used only used to disable the RX checksum
83  *			 feature for a device. The stack will accept receive
84  *			 checksum indication in packets received on a device
85  *			 regardless of whether NETIF_F_RXCSUM is set.
86  *
87  * B. Checksumming of received packets by device. Indication of checksum
88  *    verification is in set skb->ip_summed. Possible values are:
89  *
90  * CHECKSUM_NONE:
91  *
92  *   Device did not checksum this packet e.g. due to lack of capabilities.
93  *   The packet contains full (though not verified) checksum in packet but
94  *   not in skb->csum. Thus, skb->csum is undefined in this case.
95  *
96  * CHECKSUM_UNNECESSARY:
97  *
98  *   The hardware you're dealing with doesn't calculate the full checksum
99  *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
100  *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
101  *   if their checksums are okay. skb->csum is still undefined in this case
102  *   though. A driver or device must never modify the checksum field in the
103  *   packet even if checksum is verified.
104  *
105  *   CHECKSUM_UNNECESSARY is applicable to following protocols:
106  *     TCP: IPv6 and IPv4.
107  *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
108  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
109  *       may perform further validation in this case.
110  *     GRE: only if the checksum is present in the header.
111  *     SCTP: indicates the CRC in SCTP header has been validated.
112  *     FCOE: indicates the CRC in FC frame has been validated.
113  *
114  *   skb->csum_level indicates the number of consecutive checksums found in
115  *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
116  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
117  *   and a device is able to verify the checksums for UDP (possibly zero),
118  *   GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
119  *   two. If the device were only able to verify the UDP checksum and not
120  *   GRE, either because it doesn't support GRE checksum of because GRE
121  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
122  *   not considered in this case).
123  *
124  * CHECKSUM_COMPLETE:
125  *
126  *   This is the most generic way. The device supplied checksum of the _whole_
127  *   packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
128  *   hardware doesn't need to parse L3/L4 headers to implement this.
129  *
130  *   Notes:
131  *   - Even if device supports only some protocols, but is able to produce
132  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
133  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
134  *
135  * CHECKSUM_PARTIAL:
136  *
137  *   A checksum is set up to be offloaded to a device as described in the
138  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
139  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
140  *   on the same host, or it may be set in the input path in GRO or remote
141  *   checksum offload. For the purposes of checksum verification, the checksum
142  *   referred to by skb->csum_start + skb->csum_offset and any preceding
143  *   checksums in the packet are considered verified. Any checksums in the
144  *   packet that are after the checksum being offloaded are not considered to
145  *   be verified.
146  *
147  * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
148  *    in the skb->ip_summed for a packet. Values are:
149  *
150  * CHECKSUM_PARTIAL:
151  *
152  *   The driver is required to checksum the packet as seen by hard_start_xmit()
153  *   from skb->csum_start up to the end, and to record/write the checksum at
154  *   offset skb->csum_start + skb->csum_offset. A driver may verify that the
155  *   csum_start and csum_offset values are valid values given the length and
156  *   offset of the packet, however they should not attempt to validate that the
157  *   checksum refers to a legitimate transport layer checksum-- it is the
158  *   purview of the stack to validate that csum_start and csum_offset are set
159  *   correctly.
160  *
161  *   When the stack requests checksum offload for a packet, the driver MUST
162  *   ensure that the checksum is set correctly. A driver can either offload the
163  *   checksum calculation to the device, or call skb_checksum_help (in the case
164  *   that the device does not support offload for a particular checksum).
165  *
166  *   NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
167  *   NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
168  *   checksum offload capability.
169  *   skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
170  *   on network device checksumming capabilities: if a packet does not match
171  *   them, skb_checksum_help or skb_crc32c_help (depending on the value of
172  *   csum_not_inet, see item D.) is called to resolve the checksum.
173  *
174  * CHECKSUM_NONE:
175  *
176  *   The skb was already checksummed by the protocol, or a checksum is not
177  *   required.
178  *
179  * CHECKSUM_UNNECESSARY:
180  *
181  *   This has the same meaning on as CHECKSUM_NONE for checksum offload on
182  *   output.
183  *
184  * CHECKSUM_COMPLETE:
185  *   Not used in checksum output. If a driver observes a packet with this value
186  *   set in skbuff, if should treat as CHECKSUM_NONE being set.
187  *
188  * D. Non-IP checksum (CRC) offloads
189  *
190  *   NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
191  *     offloading the SCTP CRC in a packet. To perform this offload the stack
192  *     will set set csum_start and csum_offset accordingly, set ip_summed to
193  *     CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
194  *     the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
195  *     A driver that supports both IP checksum offload and SCTP CRC32c offload
196  *     must verify which offload is configured for a packet by testing the
197  *     value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
198  *     CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
199  *
200  *   NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
201  *     offloading the FCOE CRC in a packet. To perform this offload the stack
202  *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
203  *     accordingly. Note the there is no indication in the skbuff that the
204  *     CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
205  *     both IP checksum offload and FCOE CRC offload must verify which offload
206  *     is configured for a packet presumably by inspecting packet headers.
207  *
208  * E. Checksumming on output with GSO.
209  *
210  * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
211  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
212  * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
213  * part of the GSO operation is implied. If a checksum is being offloaded
214  * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
215  * are set to refer to the outermost checksum being offload (two offloaded
216  * checksums are possible with UDP encapsulation).
217  */
218 
219 /* Don't change this without changing skb_csum_unnecessary! */
220 #define CHECKSUM_NONE		0
221 #define CHECKSUM_UNNECESSARY	1
222 #define CHECKSUM_COMPLETE	2
223 #define CHECKSUM_PARTIAL	3
224 
225 /* Maximum value in skb->csum_level */
226 #define SKB_MAX_CSUM_LEVEL	3
227 
228 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
229 #define SKB_WITH_OVERHEAD(X)	\
230 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
231 #define SKB_MAX_ORDER(X, ORDER) \
232 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
233 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
234 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
235 
236 /* return minimum truesize of one skb containing X bytes of data */
237 #define SKB_TRUESIZE(X) ((X) +						\
238 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
239 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
240 
241 struct net_device;
242 struct scatterlist;
243 struct pipe_inode_info;
244 struct iov_iter;
245 struct napi_struct;
246 struct bpf_prog;
247 union bpf_attr;
248 struct skb_ext;
249 
250 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
251 struct nf_conntrack {
252 	atomic_t use;
253 };
254 #endif
255 
256 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
257 struct nf_bridge_info {
258 	enum {
259 		BRNF_PROTO_UNCHANGED,
260 		BRNF_PROTO_8021Q,
261 		BRNF_PROTO_PPPOE
262 	} orig_proto:8;
263 	u8			pkt_otherhost:1;
264 	u8			in_prerouting:1;
265 	u8			bridged_dnat:1;
266 	__u16			frag_max_size;
267 	struct net_device	*physindev;
268 
269 	/* always valid & non-NULL from FORWARD on, for physdev match */
270 	struct net_device	*physoutdev;
271 	union {
272 		/* prerouting: detect dnat in orig/reply direction */
273 		__be32          ipv4_daddr;
274 		struct in6_addr ipv6_daddr;
275 
276 		/* after prerouting + nat detected: store original source
277 		 * mac since neigh resolution overwrites it, only used while
278 		 * skb is out in neigh layer.
279 		 */
280 		char neigh_header[8];
281 	};
282 };
283 #endif
284 
285 struct sk_buff_head {
286 	/* These two members must be first. */
287 	struct sk_buff	*next;
288 	struct sk_buff	*prev;
289 
290 	__u32		qlen;
291 	spinlock_t	lock;
292 };
293 
294 struct sk_buff;
295 
296 /* To allow 64K frame to be packed as single skb without frag_list we
297  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
298  * buffers which do not start on a page boundary.
299  *
300  * Since GRO uses frags we allocate at least 16 regardless of page
301  * size.
302  */
303 #if (65536/PAGE_SIZE + 1) < 16
304 #define MAX_SKB_FRAGS 16UL
305 #else
306 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
307 #endif
308 extern int sysctl_max_skb_frags;
309 
310 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
311  * segment using its current segmentation instead.
312  */
313 #define GSO_BY_FRAGS	0xFFFF
314 
315 typedef struct skb_frag_struct skb_frag_t;
316 
317 struct skb_frag_struct {
318 	struct {
319 		struct page *p;
320 	} page;
321 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
322 	__u32 page_offset;
323 	__u32 size;
324 #else
325 	__u16 page_offset;
326 	__u16 size;
327 #endif
328 };
329 
330 /**
331  * skb_frag_size - Returns the size of a skb fragment
332  * @frag: skb fragment
333  */
334 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
335 {
336 	return frag->size;
337 }
338 
339 /**
340  * skb_frag_size_set - Sets the size of a skb fragment
341  * @frag: skb fragment
342  * @size: size of fragment
343  */
344 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
345 {
346 	frag->size = size;
347 }
348 
349 /**
350  * skb_frag_size_add - Incrementes the size of a skb fragment by %delta
351  * @frag: skb fragment
352  * @delta: value to add
353  */
354 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
355 {
356 	frag->size += delta;
357 }
358 
359 /**
360  * skb_frag_size_sub - Decrements the size of a skb fragment by %delta
361  * @frag: skb fragment
362  * @delta: value to subtract
363  */
364 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
365 {
366 	frag->size -= delta;
367 }
368 
369 /**
370  * skb_frag_must_loop - Test if %p is a high memory page
371  * @p: fragment's page
372  */
373 static inline bool skb_frag_must_loop(struct page *p)
374 {
375 #if defined(CONFIG_HIGHMEM)
376 	if (PageHighMem(p))
377 		return true;
378 #endif
379 	return false;
380 }
381 
382 /**
383  *	skb_frag_foreach_page - loop over pages in a fragment
384  *
385  *	@f:		skb frag to operate on
386  *	@f_off:		offset from start of f->page.p
387  *	@f_len:		length from f_off to loop over
388  *	@p:		(temp var) current page
389  *	@p_off:		(temp var) offset from start of current page,
390  *	                           non-zero only on first page.
391  *	@p_len:		(temp var) length in current page,
392  *				   < PAGE_SIZE only on first and last page.
393  *	@copied:	(temp var) length so far, excluding current p_len.
394  *
395  *	A fragment can hold a compound page, in which case per-page
396  *	operations, notably kmap_atomic, must be called for each
397  *	regular page.
398  */
399 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
400 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
401 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
402 	     p_len = skb_frag_must_loop(p) ?				\
403 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
404 	     copied = 0;						\
405 	     copied < f_len;						\
406 	     copied += p_len, p++, p_off = 0,				\
407 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
408 
409 #define HAVE_HW_TIME_STAMP
410 
411 /**
412  * struct skb_shared_hwtstamps - hardware time stamps
413  * @hwtstamp:	hardware time stamp transformed into duration
414  *		since arbitrary point in time
415  *
416  * Software time stamps generated by ktime_get_real() are stored in
417  * skb->tstamp.
418  *
419  * hwtstamps can only be compared against other hwtstamps from
420  * the same device.
421  *
422  * This structure is attached to packets as part of the
423  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
424  */
425 struct skb_shared_hwtstamps {
426 	ktime_t	hwtstamp;
427 };
428 
429 /* Definitions for tx_flags in struct skb_shared_info */
430 enum {
431 	/* generate hardware time stamp */
432 	SKBTX_HW_TSTAMP = 1 << 0,
433 
434 	/* generate software time stamp when queueing packet to NIC */
435 	SKBTX_SW_TSTAMP = 1 << 1,
436 
437 	/* device driver is going to provide hardware time stamp */
438 	SKBTX_IN_PROGRESS = 1 << 2,
439 
440 	/* device driver supports TX zero-copy buffers */
441 	SKBTX_DEV_ZEROCOPY = 1 << 3,
442 
443 	/* generate wifi status information (where possible) */
444 	SKBTX_WIFI_STATUS = 1 << 4,
445 
446 	/* This indicates at least one fragment might be overwritten
447 	 * (as in vmsplice(), sendfile() ...)
448 	 * If we need to compute a TX checksum, we'll need to copy
449 	 * all frags to avoid possible bad checksum
450 	 */
451 	SKBTX_SHARED_FRAG = 1 << 5,
452 
453 	/* generate software time stamp when entering packet scheduling */
454 	SKBTX_SCHED_TSTAMP = 1 << 6,
455 };
456 
457 #define SKBTX_ZEROCOPY_FRAG	(SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG)
458 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
459 				 SKBTX_SCHED_TSTAMP)
460 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
461 
462 /*
463  * The callback notifies userspace to release buffers when skb DMA is done in
464  * lower device, the skb last reference should be 0 when calling this.
465  * The zerocopy_success argument is true if zero copy transmit occurred,
466  * false on data copy or out of memory error caused by data copy attempt.
467  * The ctx field is used to track device context.
468  * The desc field is used to track userspace buffer index.
469  */
470 struct ubuf_info {
471 	void (*callback)(struct ubuf_info *, bool zerocopy_success);
472 	union {
473 		struct {
474 			unsigned long desc;
475 			void *ctx;
476 		};
477 		struct {
478 			u32 id;
479 			u16 len;
480 			u16 zerocopy:1;
481 			u32 bytelen;
482 		};
483 	};
484 	refcount_t refcnt;
485 
486 	struct mmpin {
487 		struct user_struct *user;
488 		unsigned int num_pg;
489 	} mmp;
490 };
491 
492 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
493 
494 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
495 void mm_unaccount_pinned_pages(struct mmpin *mmp);
496 
497 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size);
498 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
499 					struct ubuf_info *uarg);
500 
501 static inline void sock_zerocopy_get(struct ubuf_info *uarg)
502 {
503 	refcount_inc(&uarg->refcnt);
504 }
505 
506 void sock_zerocopy_put(struct ubuf_info *uarg);
507 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
508 
509 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success);
510 
511 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len);
512 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
513 			     struct msghdr *msg, int len,
514 			     struct ubuf_info *uarg);
515 
516 /* This data is invariant across clones and lives at
517  * the end of the header data, ie. at skb->end.
518  */
519 struct skb_shared_info {
520 	__u8		__unused;
521 	__u8		meta_len;
522 	__u8		nr_frags;
523 	__u8		tx_flags;
524 	unsigned short	gso_size;
525 	/* Warning: this field is not always filled in (UFO)! */
526 	unsigned short	gso_segs;
527 	struct sk_buff	*frag_list;
528 	struct skb_shared_hwtstamps hwtstamps;
529 	unsigned int	gso_type;
530 	u32		tskey;
531 
532 	/*
533 	 * Warning : all fields before dataref are cleared in __alloc_skb()
534 	 */
535 	atomic_t	dataref;
536 
537 	/* Intermediate layers must ensure that destructor_arg
538 	 * remains valid until skb destructor */
539 	void *		destructor_arg;
540 
541 	/* must be last field, see pskb_expand_head() */
542 	skb_frag_t	frags[MAX_SKB_FRAGS];
543 };
544 
545 /* We divide dataref into two halves.  The higher 16 bits hold references
546  * to the payload part of skb->data.  The lower 16 bits hold references to
547  * the entire skb->data.  A clone of a headerless skb holds the length of
548  * the header in skb->hdr_len.
549  *
550  * All users must obey the rule that the skb->data reference count must be
551  * greater than or equal to the payload reference count.
552  *
553  * Holding a reference to the payload part means that the user does not
554  * care about modifications to the header part of skb->data.
555  */
556 #define SKB_DATAREF_SHIFT 16
557 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
558 
559 
560 enum {
561 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
562 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
563 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
564 };
565 
566 enum {
567 	SKB_GSO_TCPV4 = 1 << 0,
568 
569 	/* This indicates the skb is from an untrusted source. */
570 	SKB_GSO_DODGY = 1 << 1,
571 
572 	/* This indicates the tcp segment has CWR set. */
573 	SKB_GSO_TCP_ECN = 1 << 2,
574 
575 	SKB_GSO_TCP_FIXEDID = 1 << 3,
576 
577 	SKB_GSO_TCPV6 = 1 << 4,
578 
579 	SKB_GSO_FCOE = 1 << 5,
580 
581 	SKB_GSO_GRE = 1 << 6,
582 
583 	SKB_GSO_GRE_CSUM = 1 << 7,
584 
585 	SKB_GSO_IPXIP4 = 1 << 8,
586 
587 	SKB_GSO_IPXIP6 = 1 << 9,
588 
589 	SKB_GSO_UDP_TUNNEL = 1 << 10,
590 
591 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
592 
593 	SKB_GSO_PARTIAL = 1 << 12,
594 
595 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
596 
597 	SKB_GSO_SCTP = 1 << 14,
598 
599 	SKB_GSO_ESP = 1 << 15,
600 
601 	SKB_GSO_UDP = 1 << 16,
602 
603 	SKB_GSO_UDP_L4 = 1 << 17,
604 };
605 
606 #if BITS_PER_LONG > 32
607 #define NET_SKBUFF_DATA_USES_OFFSET 1
608 #endif
609 
610 #ifdef NET_SKBUFF_DATA_USES_OFFSET
611 typedef unsigned int sk_buff_data_t;
612 #else
613 typedef unsigned char *sk_buff_data_t;
614 #endif
615 
616 /**
617  *	struct sk_buff - socket buffer
618  *	@next: Next buffer in list
619  *	@prev: Previous buffer in list
620  *	@tstamp: Time we arrived/left
621  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
622  *	@sk: Socket we are owned by
623  *	@dev: Device we arrived on/are leaving by
624  *	@cb: Control buffer. Free for use by every layer. Put private vars here
625  *	@_skb_refdst: destination entry (with norefcount bit)
626  *	@sp: the security path, used for xfrm
627  *	@len: Length of actual data
628  *	@data_len: Data length
629  *	@mac_len: Length of link layer header
630  *	@hdr_len: writable header length of cloned skb
631  *	@csum: Checksum (must include start/offset pair)
632  *	@csum_start: Offset from skb->head where checksumming should start
633  *	@csum_offset: Offset from csum_start where checksum should be stored
634  *	@priority: Packet queueing priority
635  *	@ignore_df: allow local fragmentation
636  *	@cloned: Head may be cloned (check refcnt to be sure)
637  *	@ip_summed: Driver fed us an IP checksum
638  *	@nohdr: Payload reference only, must not modify header
639  *	@pkt_type: Packet class
640  *	@fclone: skbuff clone status
641  *	@ipvs_property: skbuff is owned by ipvs
642  *	@offload_fwd_mark: Packet was L2-forwarded in hardware
643  *	@offload_l3_fwd_mark: Packet was L3-forwarded in hardware
644  *	@tc_skip_classify: do not classify packet. set by IFB device
645  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
646  *	@tc_redirected: packet was redirected by a tc action
647  *	@tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect
648  *	@peeked: this packet has been seen already, so stats have been
649  *		done for it, don't do them again
650  *	@nf_trace: netfilter packet trace flag
651  *	@protocol: Packet protocol from driver
652  *	@destructor: Destruct function
653  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
654  *	@_nfct: Associated connection, if any (with nfctinfo bits)
655  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
656  *	@skb_iif: ifindex of device we arrived on
657  *	@tc_index: Traffic control index
658  *	@hash: the packet hash
659  *	@queue_mapping: Queue mapping for multiqueue devices
660  *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
661  *	@active_extensions: active extensions (skb_ext_id types)
662  *	@ndisc_nodetype: router type (from link layer)
663  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
664  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
665  *		ports.
666  *	@sw_hash: indicates hash was computed in software stack
667  *	@wifi_acked_valid: wifi_acked was set
668  *	@wifi_acked: whether frame was acked on wifi or not
669  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
670  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
671  *	@dst_pending_confirm: need to confirm neighbour
672  *	@decrypted: Decrypted SKB
673  *	@napi_id: id of the NAPI struct this skb came from
674  *	@secmark: security marking
675  *	@mark: Generic packet mark
676  *	@vlan_proto: vlan encapsulation protocol
677  *	@vlan_tci: vlan tag control information
678  *	@inner_protocol: Protocol (encapsulation)
679  *	@inner_transport_header: Inner transport layer header (encapsulation)
680  *	@inner_network_header: Network layer header (encapsulation)
681  *	@inner_mac_header: Link layer header (encapsulation)
682  *	@transport_header: Transport layer header
683  *	@network_header: Network layer header
684  *	@mac_header: Link layer header
685  *	@tail: Tail pointer
686  *	@end: End pointer
687  *	@head: Head of buffer
688  *	@data: Data head pointer
689  *	@truesize: Buffer size
690  *	@users: User count - see {datagram,tcp}.c
691  *	@extensions: allocated extensions, valid if active_extensions is nonzero
692  */
693 
694 struct sk_buff {
695 	union {
696 		struct {
697 			/* These two members must be first. */
698 			struct sk_buff		*next;
699 			struct sk_buff		*prev;
700 
701 			union {
702 				struct net_device	*dev;
703 				/* Some protocols might use this space to store information,
704 				 * while device pointer would be NULL.
705 				 * UDP receive path is one user.
706 				 */
707 				unsigned long		dev_scratch;
708 			};
709 		};
710 		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
711 		struct list_head	list;
712 	};
713 
714 	union {
715 		struct sock		*sk;
716 		int			ip_defrag_offset;
717 	};
718 
719 	union {
720 		ktime_t		tstamp;
721 		u64		skb_mstamp_ns; /* earliest departure time */
722 	};
723 	/*
724 	 * This is the control buffer. It is free to use for every
725 	 * layer. Please put your private variables there. If you
726 	 * want to keep them across layers you have to do a skb_clone()
727 	 * first. This is owned by whoever has the skb queued ATM.
728 	 */
729 	char			cb[48] __aligned(8);
730 
731 	union {
732 		struct {
733 			unsigned long	_skb_refdst;
734 			void		(*destructor)(struct sk_buff *skb);
735 		};
736 		struct list_head	tcp_tsorted_anchor;
737 	};
738 
739 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
740 	unsigned long		 _nfct;
741 #endif
742 	unsigned int		len,
743 				data_len;
744 	__u16			mac_len,
745 				hdr_len;
746 
747 	/* Following fields are _not_ copied in __copy_skb_header()
748 	 * Note that queue_mapping is here mostly to fill a hole.
749 	 */
750 	__u16			queue_mapping;
751 
752 /* if you move cloned around you also must adapt those constants */
753 #ifdef __BIG_ENDIAN_BITFIELD
754 #define CLONED_MASK	(1 << 7)
755 #else
756 #define CLONED_MASK	1
757 #endif
758 #define CLONED_OFFSET()		offsetof(struct sk_buff, __cloned_offset)
759 
760 	__u8			__cloned_offset[0];
761 	__u8			cloned:1,
762 				nohdr:1,
763 				fclone:2,
764 				peeked:1,
765 				head_frag:1,
766 				pfmemalloc:1;
767 #ifdef CONFIG_SKB_EXTENSIONS
768 	__u8			active_extensions;
769 #endif
770 	/* fields enclosed in headers_start/headers_end are copied
771 	 * using a single memcpy() in __copy_skb_header()
772 	 */
773 	/* private: */
774 	__u32			headers_start[0];
775 	/* public: */
776 
777 /* if you move pkt_type around you also must adapt those constants */
778 #ifdef __BIG_ENDIAN_BITFIELD
779 #define PKT_TYPE_MAX	(7 << 5)
780 #else
781 #define PKT_TYPE_MAX	7
782 #endif
783 #define PKT_TYPE_OFFSET()	offsetof(struct sk_buff, __pkt_type_offset)
784 
785 	__u8			__pkt_type_offset[0];
786 	__u8			pkt_type:3;
787 	__u8			ignore_df:1;
788 	__u8			nf_trace:1;
789 	__u8			ip_summed:2;
790 	__u8			ooo_okay:1;
791 
792 	__u8			l4_hash:1;
793 	__u8			sw_hash:1;
794 	__u8			wifi_acked_valid:1;
795 	__u8			wifi_acked:1;
796 	__u8			no_fcs:1;
797 	/* Indicates the inner headers are valid in the skbuff. */
798 	__u8			encapsulation:1;
799 	__u8			encap_hdr_csum:1;
800 	__u8			csum_valid:1;
801 
802 #ifdef __BIG_ENDIAN_BITFIELD
803 #define PKT_VLAN_PRESENT_BIT	7
804 #else
805 #define PKT_VLAN_PRESENT_BIT	0
806 #endif
807 #define PKT_VLAN_PRESENT_OFFSET()	offsetof(struct sk_buff, __pkt_vlan_present_offset)
808 	__u8			__pkt_vlan_present_offset[0];
809 	__u8			vlan_present:1;
810 	__u8			csum_complete_sw:1;
811 	__u8			csum_level:2;
812 	__u8			csum_not_inet:1;
813 	__u8			dst_pending_confirm:1;
814 #ifdef CONFIG_IPV6_NDISC_NODETYPE
815 	__u8			ndisc_nodetype:2;
816 #endif
817 
818 	__u8			ipvs_property:1;
819 	__u8			inner_protocol_type:1;
820 	__u8			remcsum_offload:1;
821 #ifdef CONFIG_NET_SWITCHDEV
822 	__u8			offload_fwd_mark:1;
823 	__u8			offload_l3_fwd_mark:1;
824 #endif
825 #ifdef CONFIG_NET_CLS_ACT
826 	__u8			tc_skip_classify:1;
827 	__u8			tc_at_ingress:1;
828 	__u8			tc_redirected:1;
829 	__u8			tc_from_ingress:1;
830 #endif
831 #ifdef CONFIG_TLS_DEVICE
832 	__u8			decrypted:1;
833 #endif
834 
835 #ifdef CONFIG_NET_SCHED
836 	__u16			tc_index;	/* traffic control index */
837 #endif
838 
839 	union {
840 		__wsum		csum;
841 		struct {
842 			__u16	csum_start;
843 			__u16	csum_offset;
844 		};
845 	};
846 	__u32			priority;
847 	int			skb_iif;
848 	__u32			hash;
849 	__be16			vlan_proto;
850 	__u16			vlan_tci;
851 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
852 	union {
853 		unsigned int	napi_id;
854 		unsigned int	sender_cpu;
855 	};
856 #endif
857 #ifdef CONFIG_NETWORK_SECMARK
858 	__u32		secmark;
859 #endif
860 
861 	union {
862 		__u32		mark;
863 		__u32		reserved_tailroom;
864 	};
865 
866 	union {
867 		__be16		inner_protocol;
868 		__u8		inner_ipproto;
869 	};
870 
871 	__u16			inner_transport_header;
872 	__u16			inner_network_header;
873 	__u16			inner_mac_header;
874 
875 	__be16			protocol;
876 	__u16			transport_header;
877 	__u16			network_header;
878 	__u16			mac_header;
879 
880 	/* private: */
881 	__u32			headers_end[0];
882 	/* public: */
883 
884 	/* These elements must be at the end, see alloc_skb() for details.  */
885 	sk_buff_data_t		tail;
886 	sk_buff_data_t		end;
887 	unsigned char		*head,
888 				*data;
889 	unsigned int		truesize;
890 	refcount_t		users;
891 
892 #ifdef CONFIG_SKB_EXTENSIONS
893 	/* only useable after checking ->active_extensions != 0 */
894 	struct skb_ext		*extensions;
895 #endif
896 };
897 
898 #ifdef __KERNEL__
899 /*
900  *	Handling routines are only of interest to the kernel
901  */
902 
903 #define SKB_ALLOC_FCLONE	0x01
904 #define SKB_ALLOC_RX		0x02
905 #define SKB_ALLOC_NAPI		0x04
906 
907 /**
908  * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
909  * @skb: buffer
910  */
911 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
912 {
913 	return unlikely(skb->pfmemalloc);
914 }
915 
916 /*
917  * skb might have a dst pointer attached, refcounted or not.
918  * _skb_refdst low order bit is set if refcount was _not_ taken
919  */
920 #define SKB_DST_NOREF	1UL
921 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
922 
923 #define SKB_NFCT_PTRMASK	~(7UL)
924 /**
925  * skb_dst - returns skb dst_entry
926  * @skb: buffer
927  *
928  * Returns skb dst_entry, regardless of reference taken or not.
929  */
930 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
931 {
932 	/* If refdst was not refcounted, check we still are in a
933 	 * rcu_read_lock section
934 	 */
935 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
936 		!rcu_read_lock_held() &&
937 		!rcu_read_lock_bh_held());
938 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
939 }
940 
941 /**
942  * skb_dst_set - sets skb dst
943  * @skb: buffer
944  * @dst: dst entry
945  *
946  * Sets skb dst, assuming a reference was taken on dst and should
947  * be released by skb_dst_drop()
948  */
949 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
950 {
951 	skb->_skb_refdst = (unsigned long)dst;
952 }
953 
954 /**
955  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
956  * @skb: buffer
957  * @dst: dst entry
958  *
959  * Sets skb dst, assuming a reference was not taken on dst.
960  * If dst entry is cached, we do not take reference and dst_release
961  * will be avoided by refdst_drop. If dst entry is not cached, we take
962  * reference, so that last dst_release can destroy the dst immediately.
963  */
964 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
965 {
966 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
967 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
968 }
969 
970 /**
971  * skb_dst_is_noref - Test if skb dst isn't refcounted
972  * @skb: buffer
973  */
974 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
975 {
976 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
977 }
978 
979 /**
980  * skb_rtable - Returns the skb &rtable
981  * @skb: buffer
982  */
983 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
984 {
985 	return (struct rtable *)skb_dst(skb);
986 }
987 
988 /* For mangling skb->pkt_type from user space side from applications
989  * such as nft, tc, etc, we only allow a conservative subset of
990  * possible pkt_types to be set.
991 */
992 static inline bool skb_pkt_type_ok(u32 ptype)
993 {
994 	return ptype <= PACKET_OTHERHOST;
995 }
996 
997 /**
998  * skb_napi_id - Returns the skb's NAPI id
999  * @skb: buffer
1000  */
1001 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1002 {
1003 #ifdef CONFIG_NET_RX_BUSY_POLL
1004 	return skb->napi_id;
1005 #else
1006 	return 0;
1007 #endif
1008 }
1009 
1010 /**
1011  * skb_unref - decrement the skb's reference count
1012  * @skb: buffer
1013  *
1014  * Returns true if we can free the skb.
1015  */
1016 static inline bool skb_unref(struct sk_buff *skb)
1017 {
1018 	if (unlikely(!skb))
1019 		return false;
1020 	if (likely(refcount_read(&skb->users) == 1))
1021 		smp_rmb();
1022 	else if (likely(!refcount_dec_and_test(&skb->users)))
1023 		return false;
1024 
1025 	return true;
1026 }
1027 
1028 void skb_release_head_state(struct sk_buff *skb);
1029 void kfree_skb(struct sk_buff *skb);
1030 void kfree_skb_list(struct sk_buff *segs);
1031 void skb_tx_error(struct sk_buff *skb);
1032 void consume_skb(struct sk_buff *skb);
1033 void __consume_stateless_skb(struct sk_buff *skb);
1034 void  __kfree_skb(struct sk_buff *skb);
1035 extern struct kmem_cache *skbuff_head_cache;
1036 
1037 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1038 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1039 		      bool *fragstolen, int *delta_truesize);
1040 
1041 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1042 			    int node);
1043 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1044 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1045 struct sk_buff *build_skb_around(struct sk_buff *skb,
1046 				 void *data, unsigned int frag_size);
1047 
1048 /**
1049  * alloc_skb - allocate a network buffer
1050  * @size: size to allocate
1051  * @priority: allocation mask
1052  *
1053  * This function is a convenient wrapper around __alloc_skb().
1054  */
1055 static inline struct sk_buff *alloc_skb(unsigned int size,
1056 					gfp_t priority)
1057 {
1058 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1059 }
1060 
1061 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1062 				     unsigned long data_len,
1063 				     int max_page_order,
1064 				     int *errcode,
1065 				     gfp_t gfp_mask);
1066 
1067 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1068 struct sk_buff_fclones {
1069 	struct sk_buff	skb1;
1070 
1071 	struct sk_buff	skb2;
1072 
1073 	refcount_t	fclone_ref;
1074 };
1075 
1076 /**
1077  *	skb_fclone_busy - check if fclone is busy
1078  *	@sk: socket
1079  *	@skb: buffer
1080  *
1081  * Returns true if skb is a fast clone, and its clone is not freed.
1082  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1083  * so we also check that this didnt happen.
1084  */
1085 static inline bool skb_fclone_busy(const struct sock *sk,
1086 				   const struct sk_buff *skb)
1087 {
1088 	const struct sk_buff_fclones *fclones;
1089 
1090 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1091 
1092 	return skb->fclone == SKB_FCLONE_ORIG &&
1093 	       refcount_read(&fclones->fclone_ref) > 1 &&
1094 	       fclones->skb2.sk == sk;
1095 }
1096 
1097 /**
1098  * alloc_skb_fclone - allocate a network buffer from fclone cache
1099  * @size: size to allocate
1100  * @priority: allocation mask
1101  *
1102  * This function is a convenient wrapper around __alloc_skb().
1103  */
1104 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1105 					       gfp_t priority)
1106 {
1107 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1108 }
1109 
1110 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1111 void skb_headers_offset_update(struct sk_buff *skb, int off);
1112 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1113 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1114 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1115 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1116 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1117 				   gfp_t gfp_mask, bool fclone);
1118 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1119 					  gfp_t gfp_mask)
1120 {
1121 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1122 }
1123 
1124 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1125 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1126 				     unsigned int headroom);
1127 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1128 				int newtailroom, gfp_t priority);
1129 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1130 				     int offset, int len);
1131 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1132 			      int offset, int len);
1133 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1134 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1135 
1136 /**
1137  *	skb_pad			-	zero pad the tail of an skb
1138  *	@skb: buffer to pad
1139  *	@pad: space to pad
1140  *
1141  *	Ensure that a buffer is followed by a padding area that is zero
1142  *	filled. Used by network drivers which may DMA or transfer data
1143  *	beyond the buffer end onto the wire.
1144  *
1145  *	May return error in out of memory cases. The skb is freed on error.
1146  */
1147 static inline int skb_pad(struct sk_buff *skb, int pad)
1148 {
1149 	return __skb_pad(skb, pad, true);
1150 }
1151 #define dev_kfree_skb(a)	consume_skb(a)
1152 
1153 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1154 			 int offset, size_t size);
1155 
1156 struct skb_seq_state {
1157 	__u32		lower_offset;
1158 	__u32		upper_offset;
1159 	__u32		frag_idx;
1160 	__u32		stepped_offset;
1161 	struct sk_buff	*root_skb;
1162 	struct sk_buff	*cur_skb;
1163 	__u8		*frag_data;
1164 };
1165 
1166 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1167 			  unsigned int to, struct skb_seq_state *st);
1168 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1169 			  struct skb_seq_state *st);
1170 void skb_abort_seq_read(struct skb_seq_state *st);
1171 
1172 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1173 			   unsigned int to, struct ts_config *config);
1174 
1175 /*
1176  * Packet hash types specify the type of hash in skb_set_hash.
1177  *
1178  * Hash types refer to the protocol layer addresses which are used to
1179  * construct a packet's hash. The hashes are used to differentiate or identify
1180  * flows of the protocol layer for the hash type. Hash types are either
1181  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1182  *
1183  * Properties of hashes:
1184  *
1185  * 1) Two packets in different flows have different hash values
1186  * 2) Two packets in the same flow should have the same hash value
1187  *
1188  * A hash at a higher layer is considered to be more specific. A driver should
1189  * set the most specific hash possible.
1190  *
1191  * A driver cannot indicate a more specific hash than the layer at which a hash
1192  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1193  *
1194  * A driver may indicate a hash level which is less specific than the
1195  * actual layer the hash was computed on. For instance, a hash computed
1196  * at L4 may be considered an L3 hash. This should only be done if the
1197  * driver can't unambiguously determine that the HW computed the hash at
1198  * the higher layer. Note that the "should" in the second property above
1199  * permits this.
1200  */
1201 enum pkt_hash_types {
1202 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1203 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1204 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1205 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1206 };
1207 
1208 static inline void skb_clear_hash(struct sk_buff *skb)
1209 {
1210 	skb->hash = 0;
1211 	skb->sw_hash = 0;
1212 	skb->l4_hash = 0;
1213 }
1214 
1215 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1216 {
1217 	if (!skb->l4_hash)
1218 		skb_clear_hash(skb);
1219 }
1220 
1221 static inline void
1222 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1223 {
1224 	skb->l4_hash = is_l4;
1225 	skb->sw_hash = is_sw;
1226 	skb->hash = hash;
1227 }
1228 
1229 static inline void
1230 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1231 {
1232 	/* Used by drivers to set hash from HW */
1233 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1234 }
1235 
1236 static inline void
1237 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1238 {
1239 	__skb_set_hash(skb, hash, true, is_l4);
1240 }
1241 
1242 void __skb_get_hash(struct sk_buff *skb);
1243 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1244 u32 skb_get_poff(const struct sk_buff *skb);
1245 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1246 		   const struct flow_keys_basic *keys, int hlen);
1247 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1248 			    void *data, int hlen_proto);
1249 
1250 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1251 					int thoff, u8 ip_proto)
1252 {
1253 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1254 }
1255 
1256 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1257 			     const struct flow_dissector_key *key,
1258 			     unsigned int key_count);
1259 
1260 #ifdef CONFIG_NET
1261 int skb_flow_dissector_prog_query(const union bpf_attr *attr,
1262 				  union bpf_attr __user *uattr);
1263 int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr,
1264 				       struct bpf_prog *prog);
1265 
1266 int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr);
1267 #else
1268 static inline int skb_flow_dissector_prog_query(const union bpf_attr *attr,
1269 						union bpf_attr __user *uattr)
1270 {
1271 	return -EOPNOTSUPP;
1272 }
1273 
1274 static inline int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr,
1275 						     struct bpf_prog *prog)
1276 {
1277 	return -EOPNOTSUPP;
1278 }
1279 
1280 static inline int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr)
1281 {
1282 	return -EOPNOTSUPP;
1283 }
1284 #endif
1285 
1286 struct bpf_flow_dissector;
1287 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1288 		      __be16 proto, int nhoff, int hlen);
1289 
1290 bool __skb_flow_dissect(const struct net *net,
1291 			const struct sk_buff *skb,
1292 			struct flow_dissector *flow_dissector,
1293 			void *target_container,
1294 			void *data, __be16 proto, int nhoff, int hlen,
1295 			unsigned int flags);
1296 
1297 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1298 				    struct flow_dissector *flow_dissector,
1299 				    void *target_container, unsigned int flags)
1300 {
1301 	return __skb_flow_dissect(NULL, skb, flow_dissector,
1302 				  target_container, NULL, 0, 0, 0, flags);
1303 }
1304 
1305 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1306 					      struct flow_keys *flow,
1307 					      unsigned int flags)
1308 {
1309 	memset(flow, 0, sizeof(*flow));
1310 	return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1311 				  flow, NULL, 0, 0, 0, flags);
1312 }
1313 
1314 static inline bool
1315 skb_flow_dissect_flow_keys_basic(const struct net *net,
1316 				 const struct sk_buff *skb,
1317 				 struct flow_keys_basic *flow, void *data,
1318 				 __be16 proto, int nhoff, int hlen,
1319 				 unsigned int flags)
1320 {
1321 	memset(flow, 0, sizeof(*flow));
1322 	return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1323 				  data, proto, nhoff, hlen, flags);
1324 }
1325 
1326 void
1327 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1328 			     struct flow_dissector *flow_dissector,
1329 			     void *target_container);
1330 
1331 static inline __u32 skb_get_hash(struct sk_buff *skb)
1332 {
1333 	if (!skb->l4_hash && !skb->sw_hash)
1334 		__skb_get_hash(skb);
1335 
1336 	return skb->hash;
1337 }
1338 
1339 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1340 {
1341 	if (!skb->l4_hash && !skb->sw_hash) {
1342 		struct flow_keys keys;
1343 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1344 
1345 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1346 	}
1347 
1348 	return skb->hash;
1349 }
1350 
1351 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);
1352 
1353 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1354 {
1355 	return skb->hash;
1356 }
1357 
1358 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1359 {
1360 	to->hash = from->hash;
1361 	to->sw_hash = from->sw_hash;
1362 	to->l4_hash = from->l4_hash;
1363 };
1364 
1365 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1366 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1367 {
1368 	return skb->head + skb->end;
1369 }
1370 
1371 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1372 {
1373 	return skb->end;
1374 }
1375 #else
1376 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1377 {
1378 	return skb->end;
1379 }
1380 
1381 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1382 {
1383 	return skb->end - skb->head;
1384 }
1385 #endif
1386 
1387 /* Internal */
1388 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1389 
1390 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1391 {
1392 	return &skb_shinfo(skb)->hwtstamps;
1393 }
1394 
1395 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1396 {
1397 	bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY;
1398 
1399 	return is_zcopy ? skb_uarg(skb) : NULL;
1400 }
1401 
1402 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1403 				 bool *have_ref)
1404 {
1405 	if (skb && uarg && !skb_zcopy(skb)) {
1406 		if (unlikely(have_ref && *have_ref))
1407 			*have_ref = false;
1408 		else
1409 			sock_zerocopy_get(uarg);
1410 		skb_shinfo(skb)->destructor_arg = uarg;
1411 		skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1412 	}
1413 }
1414 
1415 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1416 {
1417 	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1418 	skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1419 }
1420 
1421 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1422 {
1423 	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1424 }
1425 
1426 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1427 {
1428 	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1429 }
1430 
1431 /* Release a reference on a zerocopy structure */
1432 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy)
1433 {
1434 	struct ubuf_info *uarg = skb_zcopy(skb);
1435 
1436 	if (uarg) {
1437 		if (skb_zcopy_is_nouarg(skb)) {
1438 			/* no notification callback */
1439 		} else if (uarg->callback == sock_zerocopy_callback) {
1440 			uarg->zerocopy = uarg->zerocopy && zerocopy;
1441 			sock_zerocopy_put(uarg);
1442 		} else {
1443 			uarg->callback(uarg, zerocopy);
1444 		}
1445 
1446 		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1447 	}
1448 }
1449 
1450 /* Abort a zerocopy operation and revert zckey on error in send syscall */
1451 static inline void skb_zcopy_abort(struct sk_buff *skb)
1452 {
1453 	struct ubuf_info *uarg = skb_zcopy(skb);
1454 
1455 	if (uarg) {
1456 		sock_zerocopy_put_abort(uarg, false);
1457 		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1458 	}
1459 }
1460 
1461 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1462 {
1463 	skb->next = NULL;
1464 }
1465 
1466 static inline void skb_list_del_init(struct sk_buff *skb)
1467 {
1468 	__list_del_entry(&skb->list);
1469 	skb_mark_not_on_list(skb);
1470 }
1471 
1472 /**
1473  *	skb_queue_empty - check if a queue is empty
1474  *	@list: queue head
1475  *
1476  *	Returns true if the queue is empty, false otherwise.
1477  */
1478 static inline int skb_queue_empty(const struct sk_buff_head *list)
1479 {
1480 	return list->next == (const struct sk_buff *) list;
1481 }
1482 
1483 /**
1484  *	skb_queue_is_last - check if skb is the last entry in the queue
1485  *	@list: queue head
1486  *	@skb: buffer
1487  *
1488  *	Returns true if @skb is the last buffer on the list.
1489  */
1490 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1491 				     const struct sk_buff *skb)
1492 {
1493 	return skb->next == (const struct sk_buff *) list;
1494 }
1495 
1496 /**
1497  *	skb_queue_is_first - check if skb is the first entry in the queue
1498  *	@list: queue head
1499  *	@skb: buffer
1500  *
1501  *	Returns true if @skb is the first buffer on the list.
1502  */
1503 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1504 				      const struct sk_buff *skb)
1505 {
1506 	return skb->prev == (const struct sk_buff *) list;
1507 }
1508 
1509 /**
1510  *	skb_queue_next - return the next packet in the queue
1511  *	@list: queue head
1512  *	@skb: current buffer
1513  *
1514  *	Return the next packet in @list after @skb.  It is only valid to
1515  *	call this if skb_queue_is_last() evaluates to false.
1516  */
1517 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1518 					     const struct sk_buff *skb)
1519 {
1520 	/* This BUG_ON may seem severe, but if we just return then we
1521 	 * are going to dereference garbage.
1522 	 */
1523 	BUG_ON(skb_queue_is_last(list, skb));
1524 	return skb->next;
1525 }
1526 
1527 /**
1528  *	skb_queue_prev - return the prev packet in the queue
1529  *	@list: queue head
1530  *	@skb: current buffer
1531  *
1532  *	Return the prev packet in @list before @skb.  It is only valid to
1533  *	call this if skb_queue_is_first() evaluates to false.
1534  */
1535 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1536 					     const struct sk_buff *skb)
1537 {
1538 	/* This BUG_ON may seem severe, but if we just return then we
1539 	 * are going to dereference garbage.
1540 	 */
1541 	BUG_ON(skb_queue_is_first(list, skb));
1542 	return skb->prev;
1543 }
1544 
1545 /**
1546  *	skb_get - reference buffer
1547  *	@skb: buffer to reference
1548  *
1549  *	Makes another reference to a socket buffer and returns a pointer
1550  *	to the buffer.
1551  */
1552 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1553 {
1554 	refcount_inc(&skb->users);
1555 	return skb;
1556 }
1557 
1558 /*
1559  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1560  */
1561 
1562 /**
1563  *	skb_cloned - is the buffer a clone
1564  *	@skb: buffer to check
1565  *
1566  *	Returns true if the buffer was generated with skb_clone() and is
1567  *	one of multiple shared copies of the buffer. Cloned buffers are
1568  *	shared data so must not be written to under normal circumstances.
1569  */
1570 static inline int skb_cloned(const struct sk_buff *skb)
1571 {
1572 	return skb->cloned &&
1573 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1574 }
1575 
1576 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1577 {
1578 	might_sleep_if(gfpflags_allow_blocking(pri));
1579 
1580 	if (skb_cloned(skb))
1581 		return pskb_expand_head(skb, 0, 0, pri);
1582 
1583 	return 0;
1584 }
1585 
1586 /**
1587  *	skb_header_cloned - is the header a clone
1588  *	@skb: buffer to check
1589  *
1590  *	Returns true if modifying the header part of the buffer requires
1591  *	the data to be copied.
1592  */
1593 static inline int skb_header_cloned(const struct sk_buff *skb)
1594 {
1595 	int dataref;
1596 
1597 	if (!skb->cloned)
1598 		return 0;
1599 
1600 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1601 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1602 	return dataref != 1;
1603 }
1604 
1605 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1606 {
1607 	might_sleep_if(gfpflags_allow_blocking(pri));
1608 
1609 	if (skb_header_cloned(skb))
1610 		return pskb_expand_head(skb, 0, 0, pri);
1611 
1612 	return 0;
1613 }
1614 
1615 /**
1616  *	__skb_header_release - release reference to header
1617  *	@skb: buffer to operate on
1618  */
1619 static inline void __skb_header_release(struct sk_buff *skb)
1620 {
1621 	skb->nohdr = 1;
1622 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1623 }
1624 
1625 
1626 /**
1627  *	skb_shared - is the buffer shared
1628  *	@skb: buffer to check
1629  *
1630  *	Returns true if more than one person has a reference to this
1631  *	buffer.
1632  */
1633 static inline int skb_shared(const struct sk_buff *skb)
1634 {
1635 	return refcount_read(&skb->users) != 1;
1636 }
1637 
1638 /**
1639  *	skb_share_check - check if buffer is shared and if so clone it
1640  *	@skb: buffer to check
1641  *	@pri: priority for memory allocation
1642  *
1643  *	If the buffer is shared the buffer is cloned and the old copy
1644  *	drops a reference. A new clone with a single reference is returned.
1645  *	If the buffer is not shared the original buffer is returned. When
1646  *	being called from interrupt status or with spinlocks held pri must
1647  *	be GFP_ATOMIC.
1648  *
1649  *	NULL is returned on a memory allocation failure.
1650  */
1651 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1652 {
1653 	might_sleep_if(gfpflags_allow_blocking(pri));
1654 	if (skb_shared(skb)) {
1655 		struct sk_buff *nskb = skb_clone(skb, pri);
1656 
1657 		if (likely(nskb))
1658 			consume_skb(skb);
1659 		else
1660 			kfree_skb(skb);
1661 		skb = nskb;
1662 	}
1663 	return skb;
1664 }
1665 
1666 /*
1667  *	Copy shared buffers into a new sk_buff. We effectively do COW on
1668  *	packets to handle cases where we have a local reader and forward
1669  *	and a couple of other messy ones. The normal one is tcpdumping
1670  *	a packet thats being forwarded.
1671  */
1672 
1673 /**
1674  *	skb_unshare - make a copy of a shared buffer
1675  *	@skb: buffer to check
1676  *	@pri: priority for memory allocation
1677  *
1678  *	If the socket buffer is a clone then this function creates a new
1679  *	copy of the data, drops a reference count on the old copy and returns
1680  *	the new copy with the reference count at 1. If the buffer is not a clone
1681  *	the original buffer is returned. When called with a spinlock held or
1682  *	from interrupt state @pri must be %GFP_ATOMIC
1683  *
1684  *	%NULL is returned on a memory allocation failure.
1685  */
1686 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1687 					  gfp_t pri)
1688 {
1689 	might_sleep_if(gfpflags_allow_blocking(pri));
1690 	if (skb_cloned(skb)) {
1691 		struct sk_buff *nskb = skb_copy(skb, pri);
1692 
1693 		/* Free our shared copy */
1694 		if (likely(nskb))
1695 			consume_skb(skb);
1696 		else
1697 			kfree_skb(skb);
1698 		skb = nskb;
1699 	}
1700 	return skb;
1701 }
1702 
1703 /**
1704  *	skb_peek - peek at the head of an &sk_buff_head
1705  *	@list_: list to peek at
1706  *
1707  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1708  *	be careful with this one. A peek leaves the buffer on the
1709  *	list and someone else may run off with it. You must hold
1710  *	the appropriate locks or have a private queue to do this.
1711  *
1712  *	Returns %NULL for an empty list or a pointer to the head element.
1713  *	The reference count is not incremented and the reference is therefore
1714  *	volatile. Use with caution.
1715  */
1716 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1717 {
1718 	struct sk_buff *skb = list_->next;
1719 
1720 	if (skb == (struct sk_buff *)list_)
1721 		skb = NULL;
1722 	return skb;
1723 }
1724 
1725 /**
1726  *	__skb_peek - peek at the head of a non-empty &sk_buff_head
1727  *	@list_: list to peek at
1728  *
1729  *	Like skb_peek(), but the caller knows that the list is not empty.
1730  */
1731 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
1732 {
1733 	return list_->next;
1734 }
1735 
1736 /**
1737  *	skb_peek_next - peek skb following the given one from a queue
1738  *	@skb: skb to start from
1739  *	@list_: list to peek at
1740  *
1741  *	Returns %NULL when the end of the list is met or a pointer to the
1742  *	next element. The reference count is not incremented and the
1743  *	reference is therefore volatile. Use with caution.
1744  */
1745 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1746 		const struct sk_buff_head *list_)
1747 {
1748 	struct sk_buff *next = skb->next;
1749 
1750 	if (next == (struct sk_buff *)list_)
1751 		next = NULL;
1752 	return next;
1753 }
1754 
1755 /**
1756  *	skb_peek_tail - peek at the tail of an &sk_buff_head
1757  *	@list_: list to peek at
1758  *
1759  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1760  *	be careful with this one. A peek leaves the buffer on the
1761  *	list and someone else may run off with it. You must hold
1762  *	the appropriate locks or have a private queue to do this.
1763  *
1764  *	Returns %NULL for an empty list or a pointer to the tail element.
1765  *	The reference count is not incremented and the reference is therefore
1766  *	volatile. Use with caution.
1767  */
1768 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1769 {
1770 	struct sk_buff *skb = list_->prev;
1771 
1772 	if (skb == (struct sk_buff *)list_)
1773 		skb = NULL;
1774 	return skb;
1775 
1776 }
1777 
1778 /**
1779  *	skb_queue_len	- get queue length
1780  *	@list_: list to measure
1781  *
1782  *	Return the length of an &sk_buff queue.
1783  */
1784 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1785 {
1786 	return list_->qlen;
1787 }
1788 
1789 /**
1790  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1791  *	@list: queue to initialize
1792  *
1793  *	This initializes only the list and queue length aspects of
1794  *	an sk_buff_head object.  This allows to initialize the list
1795  *	aspects of an sk_buff_head without reinitializing things like
1796  *	the spinlock.  It can also be used for on-stack sk_buff_head
1797  *	objects where the spinlock is known to not be used.
1798  */
1799 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1800 {
1801 	list->prev = list->next = (struct sk_buff *)list;
1802 	list->qlen = 0;
1803 }
1804 
1805 /*
1806  * This function creates a split out lock class for each invocation;
1807  * this is needed for now since a whole lot of users of the skb-queue
1808  * infrastructure in drivers have different locking usage (in hardirq)
1809  * than the networking core (in softirq only). In the long run either the
1810  * network layer or drivers should need annotation to consolidate the
1811  * main types of usage into 3 classes.
1812  */
1813 static inline void skb_queue_head_init(struct sk_buff_head *list)
1814 {
1815 	spin_lock_init(&list->lock);
1816 	__skb_queue_head_init(list);
1817 }
1818 
1819 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1820 		struct lock_class_key *class)
1821 {
1822 	skb_queue_head_init(list);
1823 	lockdep_set_class(&list->lock, class);
1824 }
1825 
1826 /*
1827  *	Insert an sk_buff on a list.
1828  *
1829  *	The "__skb_xxxx()" functions are the non-atomic ones that
1830  *	can only be called with interrupts disabled.
1831  */
1832 static inline void __skb_insert(struct sk_buff *newsk,
1833 				struct sk_buff *prev, struct sk_buff *next,
1834 				struct sk_buff_head *list)
1835 {
1836 	newsk->next = next;
1837 	newsk->prev = prev;
1838 	next->prev  = prev->next = newsk;
1839 	list->qlen++;
1840 }
1841 
1842 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1843 				      struct sk_buff *prev,
1844 				      struct sk_buff *next)
1845 {
1846 	struct sk_buff *first = list->next;
1847 	struct sk_buff *last = list->prev;
1848 
1849 	first->prev = prev;
1850 	prev->next = first;
1851 
1852 	last->next = next;
1853 	next->prev = last;
1854 }
1855 
1856 /**
1857  *	skb_queue_splice - join two skb lists, this is designed for stacks
1858  *	@list: the new list to add
1859  *	@head: the place to add it in the first list
1860  */
1861 static inline void skb_queue_splice(const struct sk_buff_head *list,
1862 				    struct sk_buff_head *head)
1863 {
1864 	if (!skb_queue_empty(list)) {
1865 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1866 		head->qlen += list->qlen;
1867 	}
1868 }
1869 
1870 /**
1871  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1872  *	@list: the new list to add
1873  *	@head: the place to add it in the first list
1874  *
1875  *	The list at @list is reinitialised
1876  */
1877 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1878 					 struct sk_buff_head *head)
1879 {
1880 	if (!skb_queue_empty(list)) {
1881 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1882 		head->qlen += list->qlen;
1883 		__skb_queue_head_init(list);
1884 	}
1885 }
1886 
1887 /**
1888  *	skb_queue_splice_tail - join two skb lists, each list being a queue
1889  *	@list: the new list to add
1890  *	@head: the place to add it in the first list
1891  */
1892 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1893 					 struct sk_buff_head *head)
1894 {
1895 	if (!skb_queue_empty(list)) {
1896 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1897 		head->qlen += list->qlen;
1898 	}
1899 }
1900 
1901 /**
1902  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1903  *	@list: the new list to add
1904  *	@head: the place to add it in the first list
1905  *
1906  *	Each of the lists is a queue.
1907  *	The list at @list is reinitialised
1908  */
1909 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1910 					      struct sk_buff_head *head)
1911 {
1912 	if (!skb_queue_empty(list)) {
1913 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1914 		head->qlen += list->qlen;
1915 		__skb_queue_head_init(list);
1916 	}
1917 }
1918 
1919 /**
1920  *	__skb_queue_after - queue a buffer at the list head
1921  *	@list: list to use
1922  *	@prev: place after this buffer
1923  *	@newsk: buffer to queue
1924  *
1925  *	Queue a buffer int the middle of a list. This function takes no locks
1926  *	and you must therefore hold required locks before calling it.
1927  *
1928  *	A buffer cannot be placed on two lists at the same time.
1929  */
1930 static inline void __skb_queue_after(struct sk_buff_head *list,
1931 				     struct sk_buff *prev,
1932 				     struct sk_buff *newsk)
1933 {
1934 	__skb_insert(newsk, prev, prev->next, list);
1935 }
1936 
1937 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1938 		struct sk_buff_head *list);
1939 
1940 static inline void __skb_queue_before(struct sk_buff_head *list,
1941 				      struct sk_buff *next,
1942 				      struct sk_buff *newsk)
1943 {
1944 	__skb_insert(newsk, next->prev, next, list);
1945 }
1946 
1947 /**
1948  *	__skb_queue_head - queue a buffer at the list head
1949  *	@list: list to use
1950  *	@newsk: buffer to queue
1951  *
1952  *	Queue a buffer at the start of a list. This function takes no locks
1953  *	and you must therefore hold required locks before calling it.
1954  *
1955  *	A buffer cannot be placed on two lists at the same time.
1956  */
1957 static inline void __skb_queue_head(struct sk_buff_head *list,
1958 				    struct sk_buff *newsk)
1959 {
1960 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
1961 }
1962 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1963 
1964 /**
1965  *	__skb_queue_tail - queue a buffer at the list tail
1966  *	@list: list to use
1967  *	@newsk: buffer to queue
1968  *
1969  *	Queue a buffer at the end of a list. This function takes no locks
1970  *	and you must therefore hold required locks before calling it.
1971  *
1972  *	A buffer cannot be placed on two lists at the same time.
1973  */
1974 static inline void __skb_queue_tail(struct sk_buff_head *list,
1975 				   struct sk_buff *newsk)
1976 {
1977 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
1978 }
1979 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1980 
1981 /*
1982  * remove sk_buff from list. _Must_ be called atomically, and with
1983  * the list known..
1984  */
1985 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1986 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1987 {
1988 	struct sk_buff *next, *prev;
1989 
1990 	list->qlen--;
1991 	next	   = skb->next;
1992 	prev	   = skb->prev;
1993 	skb->next  = skb->prev = NULL;
1994 	next->prev = prev;
1995 	prev->next = next;
1996 }
1997 
1998 /**
1999  *	__skb_dequeue - remove from the head of the queue
2000  *	@list: list to dequeue from
2001  *
2002  *	Remove the head of the list. This function does not take any locks
2003  *	so must be used with appropriate locks held only. The head item is
2004  *	returned or %NULL if the list is empty.
2005  */
2006 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2007 {
2008 	struct sk_buff *skb = skb_peek(list);
2009 	if (skb)
2010 		__skb_unlink(skb, list);
2011 	return skb;
2012 }
2013 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2014 
2015 /**
2016  *	__skb_dequeue_tail - remove from the tail of the queue
2017  *	@list: list to dequeue from
2018  *
2019  *	Remove the tail of the list. This function does not take any locks
2020  *	so must be used with appropriate locks held only. The tail item is
2021  *	returned or %NULL if the list is empty.
2022  */
2023 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2024 {
2025 	struct sk_buff *skb = skb_peek_tail(list);
2026 	if (skb)
2027 		__skb_unlink(skb, list);
2028 	return skb;
2029 }
2030 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2031 
2032 
2033 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2034 {
2035 	return skb->data_len;
2036 }
2037 
2038 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2039 {
2040 	return skb->len - skb->data_len;
2041 }
2042 
2043 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2044 {
2045 	unsigned int i, len = 0;
2046 
2047 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2048 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2049 	return len;
2050 }
2051 
2052 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2053 {
2054 	return skb_headlen(skb) + __skb_pagelen(skb);
2055 }
2056 
2057 /**
2058  * __skb_fill_page_desc - initialise a paged fragment in an skb
2059  * @skb: buffer containing fragment to be initialised
2060  * @i: paged fragment index to initialise
2061  * @page: the page to use for this fragment
2062  * @off: the offset to the data with @page
2063  * @size: the length of the data
2064  *
2065  * Initialises the @i'th fragment of @skb to point to &size bytes at
2066  * offset @off within @page.
2067  *
2068  * Does not take any additional reference on the fragment.
2069  */
2070 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2071 					struct page *page, int off, int size)
2072 {
2073 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2074 
2075 	/*
2076 	 * Propagate page pfmemalloc to the skb if we can. The problem is
2077 	 * that not all callers have unique ownership of the page but rely
2078 	 * on page_is_pfmemalloc doing the right thing(tm).
2079 	 */
2080 	frag->page.p		  = page;
2081 	frag->page_offset	  = off;
2082 	skb_frag_size_set(frag, size);
2083 
2084 	page = compound_head(page);
2085 	if (page_is_pfmemalloc(page))
2086 		skb->pfmemalloc	= true;
2087 }
2088 
2089 /**
2090  * skb_fill_page_desc - initialise a paged fragment in an skb
2091  * @skb: buffer containing fragment to be initialised
2092  * @i: paged fragment index to initialise
2093  * @page: the page to use for this fragment
2094  * @off: the offset to the data with @page
2095  * @size: the length of the data
2096  *
2097  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2098  * @skb to point to @size bytes at offset @off within @page. In
2099  * addition updates @skb such that @i is the last fragment.
2100  *
2101  * Does not take any additional reference on the fragment.
2102  */
2103 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2104 				      struct page *page, int off, int size)
2105 {
2106 	__skb_fill_page_desc(skb, i, page, off, size);
2107 	skb_shinfo(skb)->nr_frags = i + 1;
2108 }
2109 
2110 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2111 		     int size, unsigned int truesize);
2112 
2113 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2114 			  unsigned int truesize);
2115 
2116 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2117 
2118 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2119 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2120 {
2121 	return skb->head + skb->tail;
2122 }
2123 
2124 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2125 {
2126 	skb->tail = skb->data - skb->head;
2127 }
2128 
2129 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2130 {
2131 	skb_reset_tail_pointer(skb);
2132 	skb->tail += offset;
2133 }
2134 
2135 #else /* NET_SKBUFF_DATA_USES_OFFSET */
2136 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2137 {
2138 	return skb->tail;
2139 }
2140 
2141 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2142 {
2143 	skb->tail = skb->data;
2144 }
2145 
2146 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2147 {
2148 	skb->tail = skb->data + offset;
2149 }
2150 
2151 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2152 
2153 /*
2154  *	Add data to an sk_buff
2155  */
2156 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2157 void *skb_put(struct sk_buff *skb, unsigned int len);
2158 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2159 {
2160 	void *tmp = skb_tail_pointer(skb);
2161 	SKB_LINEAR_ASSERT(skb);
2162 	skb->tail += len;
2163 	skb->len  += len;
2164 	return tmp;
2165 }
2166 
2167 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2168 {
2169 	void *tmp = __skb_put(skb, len);
2170 
2171 	memset(tmp, 0, len);
2172 	return tmp;
2173 }
2174 
2175 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2176 				   unsigned int len)
2177 {
2178 	void *tmp = __skb_put(skb, len);
2179 
2180 	memcpy(tmp, data, len);
2181 	return tmp;
2182 }
2183 
2184 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2185 {
2186 	*(u8 *)__skb_put(skb, 1) = val;
2187 }
2188 
2189 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2190 {
2191 	void *tmp = skb_put(skb, len);
2192 
2193 	memset(tmp, 0, len);
2194 
2195 	return tmp;
2196 }
2197 
2198 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2199 				 unsigned int len)
2200 {
2201 	void *tmp = skb_put(skb, len);
2202 
2203 	memcpy(tmp, data, len);
2204 
2205 	return tmp;
2206 }
2207 
2208 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2209 {
2210 	*(u8 *)skb_put(skb, 1) = val;
2211 }
2212 
2213 void *skb_push(struct sk_buff *skb, unsigned int len);
2214 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2215 {
2216 	skb->data -= len;
2217 	skb->len  += len;
2218 	return skb->data;
2219 }
2220 
2221 void *skb_pull(struct sk_buff *skb, unsigned int len);
2222 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2223 {
2224 	skb->len -= len;
2225 	BUG_ON(skb->len < skb->data_len);
2226 	return skb->data += len;
2227 }
2228 
2229 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2230 {
2231 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2232 }
2233 
2234 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2235 
2236 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2237 {
2238 	if (len > skb_headlen(skb) &&
2239 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2240 		return NULL;
2241 	skb->len -= len;
2242 	return skb->data += len;
2243 }
2244 
2245 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2246 {
2247 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2248 }
2249 
2250 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
2251 {
2252 	if (likely(len <= skb_headlen(skb)))
2253 		return 1;
2254 	if (unlikely(len > skb->len))
2255 		return 0;
2256 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2257 }
2258 
2259 void skb_condense(struct sk_buff *skb);
2260 
2261 /**
2262  *	skb_headroom - bytes at buffer head
2263  *	@skb: buffer to check
2264  *
2265  *	Return the number of bytes of free space at the head of an &sk_buff.
2266  */
2267 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2268 {
2269 	return skb->data - skb->head;
2270 }
2271 
2272 /**
2273  *	skb_tailroom - bytes at buffer end
2274  *	@skb: buffer to check
2275  *
2276  *	Return the number of bytes of free space at the tail of an sk_buff
2277  */
2278 static inline int skb_tailroom(const struct sk_buff *skb)
2279 {
2280 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2281 }
2282 
2283 /**
2284  *	skb_availroom - bytes at buffer end
2285  *	@skb: buffer to check
2286  *
2287  *	Return the number of bytes of free space at the tail of an sk_buff
2288  *	allocated by sk_stream_alloc()
2289  */
2290 static inline int skb_availroom(const struct sk_buff *skb)
2291 {
2292 	if (skb_is_nonlinear(skb))
2293 		return 0;
2294 
2295 	return skb->end - skb->tail - skb->reserved_tailroom;
2296 }
2297 
2298 /**
2299  *	skb_reserve - adjust headroom
2300  *	@skb: buffer to alter
2301  *	@len: bytes to move
2302  *
2303  *	Increase the headroom of an empty &sk_buff by reducing the tail
2304  *	room. This is only allowed for an empty buffer.
2305  */
2306 static inline void skb_reserve(struct sk_buff *skb, int len)
2307 {
2308 	skb->data += len;
2309 	skb->tail += len;
2310 }
2311 
2312 /**
2313  *	skb_tailroom_reserve - adjust reserved_tailroom
2314  *	@skb: buffer to alter
2315  *	@mtu: maximum amount of headlen permitted
2316  *	@needed_tailroom: minimum amount of reserved_tailroom
2317  *
2318  *	Set reserved_tailroom so that headlen can be as large as possible but
2319  *	not larger than mtu and tailroom cannot be smaller than
2320  *	needed_tailroom.
2321  *	The required headroom should already have been reserved before using
2322  *	this function.
2323  */
2324 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2325 					unsigned int needed_tailroom)
2326 {
2327 	SKB_LINEAR_ASSERT(skb);
2328 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2329 		/* use at most mtu */
2330 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2331 	else
2332 		/* use up to all available space */
2333 		skb->reserved_tailroom = needed_tailroom;
2334 }
2335 
2336 #define ENCAP_TYPE_ETHER	0
2337 #define ENCAP_TYPE_IPPROTO	1
2338 
2339 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2340 					  __be16 protocol)
2341 {
2342 	skb->inner_protocol = protocol;
2343 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2344 }
2345 
2346 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2347 					 __u8 ipproto)
2348 {
2349 	skb->inner_ipproto = ipproto;
2350 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2351 }
2352 
2353 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2354 {
2355 	skb->inner_mac_header = skb->mac_header;
2356 	skb->inner_network_header = skb->network_header;
2357 	skb->inner_transport_header = skb->transport_header;
2358 }
2359 
2360 static inline void skb_reset_mac_len(struct sk_buff *skb)
2361 {
2362 	skb->mac_len = skb->network_header - skb->mac_header;
2363 }
2364 
2365 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2366 							*skb)
2367 {
2368 	return skb->head + skb->inner_transport_header;
2369 }
2370 
2371 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2372 {
2373 	return skb_inner_transport_header(skb) - skb->data;
2374 }
2375 
2376 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2377 {
2378 	skb->inner_transport_header = skb->data - skb->head;
2379 }
2380 
2381 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2382 						   const int offset)
2383 {
2384 	skb_reset_inner_transport_header(skb);
2385 	skb->inner_transport_header += offset;
2386 }
2387 
2388 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2389 {
2390 	return skb->head + skb->inner_network_header;
2391 }
2392 
2393 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2394 {
2395 	skb->inner_network_header = skb->data - skb->head;
2396 }
2397 
2398 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2399 						const int offset)
2400 {
2401 	skb_reset_inner_network_header(skb);
2402 	skb->inner_network_header += offset;
2403 }
2404 
2405 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2406 {
2407 	return skb->head + skb->inner_mac_header;
2408 }
2409 
2410 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2411 {
2412 	skb->inner_mac_header = skb->data - skb->head;
2413 }
2414 
2415 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2416 					    const int offset)
2417 {
2418 	skb_reset_inner_mac_header(skb);
2419 	skb->inner_mac_header += offset;
2420 }
2421 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2422 {
2423 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2424 }
2425 
2426 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2427 {
2428 	return skb->head + skb->transport_header;
2429 }
2430 
2431 static inline void skb_reset_transport_header(struct sk_buff *skb)
2432 {
2433 	skb->transport_header = skb->data - skb->head;
2434 }
2435 
2436 static inline void skb_set_transport_header(struct sk_buff *skb,
2437 					    const int offset)
2438 {
2439 	skb_reset_transport_header(skb);
2440 	skb->transport_header += offset;
2441 }
2442 
2443 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2444 {
2445 	return skb->head + skb->network_header;
2446 }
2447 
2448 static inline void skb_reset_network_header(struct sk_buff *skb)
2449 {
2450 	skb->network_header = skb->data - skb->head;
2451 }
2452 
2453 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2454 {
2455 	skb_reset_network_header(skb);
2456 	skb->network_header += offset;
2457 }
2458 
2459 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2460 {
2461 	return skb->head + skb->mac_header;
2462 }
2463 
2464 static inline int skb_mac_offset(const struct sk_buff *skb)
2465 {
2466 	return skb_mac_header(skb) - skb->data;
2467 }
2468 
2469 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2470 {
2471 	return skb->network_header - skb->mac_header;
2472 }
2473 
2474 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2475 {
2476 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2477 }
2478 
2479 static inline void skb_reset_mac_header(struct sk_buff *skb)
2480 {
2481 	skb->mac_header = skb->data - skb->head;
2482 }
2483 
2484 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2485 {
2486 	skb_reset_mac_header(skb);
2487 	skb->mac_header += offset;
2488 }
2489 
2490 static inline void skb_pop_mac_header(struct sk_buff *skb)
2491 {
2492 	skb->mac_header = skb->network_header;
2493 }
2494 
2495 static inline void skb_probe_transport_header(struct sk_buff *skb)
2496 {
2497 	struct flow_keys_basic keys;
2498 
2499 	if (skb_transport_header_was_set(skb))
2500 		return;
2501 
2502 	if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2503 					     NULL, 0, 0, 0, 0))
2504 		skb_set_transport_header(skb, keys.control.thoff);
2505 }
2506 
2507 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2508 {
2509 	if (skb_mac_header_was_set(skb)) {
2510 		const unsigned char *old_mac = skb_mac_header(skb);
2511 
2512 		skb_set_mac_header(skb, -skb->mac_len);
2513 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2514 	}
2515 }
2516 
2517 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2518 {
2519 	return skb->csum_start - skb_headroom(skb);
2520 }
2521 
2522 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2523 {
2524 	return skb->head + skb->csum_start;
2525 }
2526 
2527 static inline int skb_transport_offset(const struct sk_buff *skb)
2528 {
2529 	return skb_transport_header(skb) - skb->data;
2530 }
2531 
2532 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2533 {
2534 	return skb->transport_header - skb->network_header;
2535 }
2536 
2537 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2538 {
2539 	return skb->inner_transport_header - skb->inner_network_header;
2540 }
2541 
2542 static inline int skb_network_offset(const struct sk_buff *skb)
2543 {
2544 	return skb_network_header(skb) - skb->data;
2545 }
2546 
2547 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2548 {
2549 	return skb_inner_network_header(skb) - skb->data;
2550 }
2551 
2552 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2553 {
2554 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
2555 }
2556 
2557 /*
2558  * CPUs often take a performance hit when accessing unaligned memory
2559  * locations. The actual performance hit varies, it can be small if the
2560  * hardware handles it or large if we have to take an exception and fix it
2561  * in software.
2562  *
2563  * Since an ethernet header is 14 bytes network drivers often end up with
2564  * the IP header at an unaligned offset. The IP header can be aligned by
2565  * shifting the start of the packet by 2 bytes. Drivers should do this
2566  * with:
2567  *
2568  * skb_reserve(skb, NET_IP_ALIGN);
2569  *
2570  * The downside to this alignment of the IP header is that the DMA is now
2571  * unaligned. On some architectures the cost of an unaligned DMA is high
2572  * and this cost outweighs the gains made by aligning the IP header.
2573  *
2574  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2575  * to be overridden.
2576  */
2577 #ifndef NET_IP_ALIGN
2578 #define NET_IP_ALIGN	2
2579 #endif
2580 
2581 /*
2582  * The networking layer reserves some headroom in skb data (via
2583  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2584  * the header has to grow. In the default case, if the header has to grow
2585  * 32 bytes or less we avoid the reallocation.
2586  *
2587  * Unfortunately this headroom changes the DMA alignment of the resulting
2588  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2589  * on some architectures. An architecture can override this value,
2590  * perhaps setting it to a cacheline in size (since that will maintain
2591  * cacheline alignment of the DMA). It must be a power of 2.
2592  *
2593  * Various parts of the networking layer expect at least 32 bytes of
2594  * headroom, you should not reduce this.
2595  *
2596  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2597  * to reduce average number of cache lines per packet.
2598  * get_rps_cpus() for example only access one 64 bytes aligned block :
2599  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2600  */
2601 #ifndef NET_SKB_PAD
2602 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2603 #endif
2604 
2605 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2606 
2607 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2608 {
2609 	if (WARN_ON(skb_is_nonlinear(skb)))
2610 		return;
2611 	skb->len = len;
2612 	skb_set_tail_pointer(skb, len);
2613 }
2614 
2615 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2616 {
2617 	__skb_set_length(skb, len);
2618 }
2619 
2620 void skb_trim(struct sk_buff *skb, unsigned int len);
2621 
2622 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2623 {
2624 	if (skb->data_len)
2625 		return ___pskb_trim(skb, len);
2626 	__skb_trim(skb, len);
2627 	return 0;
2628 }
2629 
2630 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2631 {
2632 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2633 }
2634 
2635 /**
2636  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2637  *	@skb: buffer to alter
2638  *	@len: new length
2639  *
2640  *	This is identical to pskb_trim except that the caller knows that
2641  *	the skb is not cloned so we should never get an error due to out-
2642  *	of-memory.
2643  */
2644 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2645 {
2646 	int err = pskb_trim(skb, len);
2647 	BUG_ON(err);
2648 }
2649 
2650 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2651 {
2652 	unsigned int diff = len - skb->len;
2653 
2654 	if (skb_tailroom(skb) < diff) {
2655 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2656 					   GFP_ATOMIC);
2657 		if (ret)
2658 			return ret;
2659 	}
2660 	__skb_set_length(skb, len);
2661 	return 0;
2662 }
2663 
2664 /**
2665  *	skb_orphan - orphan a buffer
2666  *	@skb: buffer to orphan
2667  *
2668  *	If a buffer currently has an owner then we call the owner's
2669  *	destructor function and make the @skb unowned. The buffer continues
2670  *	to exist but is no longer charged to its former owner.
2671  */
2672 static inline void skb_orphan(struct sk_buff *skb)
2673 {
2674 	if (skb->destructor) {
2675 		skb->destructor(skb);
2676 		skb->destructor = NULL;
2677 		skb->sk		= NULL;
2678 	} else {
2679 		BUG_ON(skb->sk);
2680 	}
2681 }
2682 
2683 /**
2684  *	skb_orphan_frags - orphan the frags contained in a buffer
2685  *	@skb: buffer to orphan frags from
2686  *	@gfp_mask: allocation mask for replacement pages
2687  *
2688  *	For each frag in the SKB which needs a destructor (i.e. has an
2689  *	owner) create a copy of that frag and release the original
2690  *	page by calling the destructor.
2691  */
2692 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2693 {
2694 	if (likely(!skb_zcopy(skb)))
2695 		return 0;
2696 	if (!skb_zcopy_is_nouarg(skb) &&
2697 	    skb_uarg(skb)->callback == sock_zerocopy_callback)
2698 		return 0;
2699 	return skb_copy_ubufs(skb, gfp_mask);
2700 }
2701 
2702 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
2703 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2704 {
2705 	if (likely(!skb_zcopy(skb)))
2706 		return 0;
2707 	return skb_copy_ubufs(skb, gfp_mask);
2708 }
2709 
2710 /**
2711  *	__skb_queue_purge - empty a list
2712  *	@list: list to empty
2713  *
2714  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2715  *	the list and one reference dropped. This function does not take the
2716  *	list lock and the caller must hold the relevant locks to use it.
2717  */
2718 static inline void __skb_queue_purge(struct sk_buff_head *list)
2719 {
2720 	struct sk_buff *skb;
2721 	while ((skb = __skb_dequeue(list)) != NULL)
2722 		kfree_skb(skb);
2723 }
2724 void skb_queue_purge(struct sk_buff_head *list);
2725 
2726 unsigned int skb_rbtree_purge(struct rb_root *root);
2727 
2728 void *netdev_alloc_frag(unsigned int fragsz);
2729 
2730 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2731 				   gfp_t gfp_mask);
2732 
2733 /**
2734  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
2735  *	@dev: network device to receive on
2736  *	@length: length to allocate
2737  *
2738  *	Allocate a new &sk_buff and assign it a usage count of one. The
2739  *	buffer has unspecified headroom built in. Users should allocate
2740  *	the headroom they think they need without accounting for the
2741  *	built in space. The built in space is used for optimisations.
2742  *
2743  *	%NULL is returned if there is no free memory. Although this function
2744  *	allocates memory it can be called from an interrupt.
2745  */
2746 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2747 					       unsigned int length)
2748 {
2749 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2750 }
2751 
2752 /* legacy helper around __netdev_alloc_skb() */
2753 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2754 					      gfp_t gfp_mask)
2755 {
2756 	return __netdev_alloc_skb(NULL, length, gfp_mask);
2757 }
2758 
2759 /* legacy helper around netdev_alloc_skb() */
2760 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2761 {
2762 	return netdev_alloc_skb(NULL, length);
2763 }
2764 
2765 
2766 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2767 		unsigned int length, gfp_t gfp)
2768 {
2769 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2770 
2771 	if (NET_IP_ALIGN && skb)
2772 		skb_reserve(skb, NET_IP_ALIGN);
2773 	return skb;
2774 }
2775 
2776 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2777 		unsigned int length)
2778 {
2779 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2780 }
2781 
2782 static inline void skb_free_frag(void *addr)
2783 {
2784 	page_frag_free(addr);
2785 }
2786 
2787 void *napi_alloc_frag(unsigned int fragsz);
2788 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2789 				 unsigned int length, gfp_t gfp_mask);
2790 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2791 					     unsigned int length)
2792 {
2793 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2794 }
2795 void napi_consume_skb(struct sk_buff *skb, int budget);
2796 
2797 void __kfree_skb_flush(void);
2798 void __kfree_skb_defer(struct sk_buff *skb);
2799 
2800 /**
2801  * __dev_alloc_pages - allocate page for network Rx
2802  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2803  * @order: size of the allocation
2804  *
2805  * Allocate a new page.
2806  *
2807  * %NULL is returned if there is no free memory.
2808 */
2809 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2810 					     unsigned int order)
2811 {
2812 	/* This piece of code contains several assumptions.
2813 	 * 1.  This is for device Rx, therefor a cold page is preferred.
2814 	 * 2.  The expectation is the user wants a compound page.
2815 	 * 3.  If requesting a order 0 page it will not be compound
2816 	 *     due to the check to see if order has a value in prep_new_page
2817 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2818 	 *     code in gfp_to_alloc_flags that should be enforcing this.
2819 	 */
2820 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
2821 
2822 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2823 }
2824 
2825 static inline struct page *dev_alloc_pages(unsigned int order)
2826 {
2827 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2828 }
2829 
2830 /**
2831  * __dev_alloc_page - allocate a page for network Rx
2832  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2833  *
2834  * Allocate a new page.
2835  *
2836  * %NULL is returned if there is no free memory.
2837  */
2838 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2839 {
2840 	return __dev_alloc_pages(gfp_mask, 0);
2841 }
2842 
2843 static inline struct page *dev_alloc_page(void)
2844 {
2845 	return dev_alloc_pages(0);
2846 }
2847 
2848 /**
2849  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2850  *	@page: The page that was allocated from skb_alloc_page
2851  *	@skb: The skb that may need pfmemalloc set
2852  */
2853 static inline void skb_propagate_pfmemalloc(struct page *page,
2854 					     struct sk_buff *skb)
2855 {
2856 	if (page_is_pfmemalloc(page))
2857 		skb->pfmemalloc = true;
2858 }
2859 
2860 /**
2861  * skb_frag_page - retrieve the page referred to by a paged fragment
2862  * @frag: the paged fragment
2863  *
2864  * Returns the &struct page associated with @frag.
2865  */
2866 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2867 {
2868 	return frag->page.p;
2869 }
2870 
2871 /**
2872  * __skb_frag_ref - take an addition reference on a paged fragment.
2873  * @frag: the paged fragment
2874  *
2875  * Takes an additional reference on the paged fragment @frag.
2876  */
2877 static inline void __skb_frag_ref(skb_frag_t *frag)
2878 {
2879 	get_page(skb_frag_page(frag));
2880 }
2881 
2882 /**
2883  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2884  * @skb: the buffer
2885  * @f: the fragment offset.
2886  *
2887  * Takes an additional reference on the @f'th paged fragment of @skb.
2888  */
2889 static inline void skb_frag_ref(struct sk_buff *skb, int f)
2890 {
2891 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2892 }
2893 
2894 /**
2895  * __skb_frag_unref - release a reference on a paged fragment.
2896  * @frag: the paged fragment
2897  *
2898  * Releases a reference on the paged fragment @frag.
2899  */
2900 static inline void __skb_frag_unref(skb_frag_t *frag)
2901 {
2902 	put_page(skb_frag_page(frag));
2903 }
2904 
2905 /**
2906  * skb_frag_unref - release a reference on a paged fragment of an skb.
2907  * @skb: the buffer
2908  * @f: the fragment offset
2909  *
2910  * Releases a reference on the @f'th paged fragment of @skb.
2911  */
2912 static inline void skb_frag_unref(struct sk_buff *skb, int f)
2913 {
2914 	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2915 }
2916 
2917 /**
2918  * skb_frag_address - gets the address of the data contained in a paged fragment
2919  * @frag: the paged fragment buffer
2920  *
2921  * Returns the address of the data within @frag. The page must already
2922  * be mapped.
2923  */
2924 static inline void *skb_frag_address(const skb_frag_t *frag)
2925 {
2926 	return page_address(skb_frag_page(frag)) + frag->page_offset;
2927 }
2928 
2929 /**
2930  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2931  * @frag: the paged fragment buffer
2932  *
2933  * Returns the address of the data within @frag. Checks that the page
2934  * is mapped and returns %NULL otherwise.
2935  */
2936 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2937 {
2938 	void *ptr = page_address(skb_frag_page(frag));
2939 	if (unlikely(!ptr))
2940 		return NULL;
2941 
2942 	return ptr + frag->page_offset;
2943 }
2944 
2945 /**
2946  * __skb_frag_set_page - sets the page contained in a paged fragment
2947  * @frag: the paged fragment
2948  * @page: the page to set
2949  *
2950  * Sets the fragment @frag to contain @page.
2951  */
2952 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2953 {
2954 	frag->page.p = page;
2955 }
2956 
2957 /**
2958  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2959  * @skb: the buffer
2960  * @f: the fragment offset
2961  * @page: the page to set
2962  *
2963  * Sets the @f'th fragment of @skb to contain @page.
2964  */
2965 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2966 				     struct page *page)
2967 {
2968 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2969 }
2970 
2971 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2972 
2973 /**
2974  * skb_frag_dma_map - maps a paged fragment via the DMA API
2975  * @dev: the device to map the fragment to
2976  * @frag: the paged fragment to map
2977  * @offset: the offset within the fragment (starting at the
2978  *          fragment's own offset)
2979  * @size: the number of bytes to map
2980  * @dir: the direction of the mapping (``PCI_DMA_*``)
2981  *
2982  * Maps the page associated with @frag to @device.
2983  */
2984 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2985 					  const skb_frag_t *frag,
2986 					  size_t offset, size_t size,
2987 					  enum dma_data_direction dir)
2988 {
2989 	return dma_map_page(dev, skb_frag_page(frag),
2990 			    frag->page_offset + offset, size, dir);
2991 }
2992 
2993 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2994 					gfp_t gfp_mask)
2995 {
2996 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2997 }
2998 
2999 
3000 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3001 						  gfp_t gfp_mask)
3002 {
3003 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3004 }
3005 
3006 
3007 /**
3008  *	skb_clone_writable - is the header of a clone writable
3009  *	@skb: buffer to check
3010  *	@len: length up to which to write
3011  *
3012  *	Returns true if modifying the header part of the cloned buffer
3013  *	does not requires the data to be copied.
3014  */
3015 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3016 {
3017 	return !skb_header_cloned(skb) &&
3018 	       skb_headroom(skb) + len <= skb->hdr_len;
3019 }
3020 
3021 static inline int skb_try_make_writable(struct sk_buff *skb,
3022 					unsigned int write_len)
3023 {
3024 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3025 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3026 }
3027 
3028 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3029 			    int cloned)
3030 {
3031 	int delta = 0;
3032 
3033 	if (headroom > skb_headroom(skb))
3034 		delta = headroom - skb_headroom(skb);
3035 
3036 	if (delta || cloned)
3037 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3038 					GFP_ATOMIC);
3039 	return 0;
3040 }
3041 
3042 /**
3043  *	skb_cow - copy header of skb when it is required
3044  *	@skb: buffer to cow
3045  *	@headroom: needed headroom
3046  *
3047  *	If the skb passed lacks sufficient headroom or its data part
3048  *	is shared, data is reallocated. If reallocation fails, an error
3049  *	is returned and original skb is not changed.
3050  *
3051  *	The result is skb with writable area skb->head...skb->tail
3052  *	and at least @headroom of space at head.
3053  */
3054 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3055 {
3056 	return __skb_cow(skb, headroom, skb_cloned(skb));
3057 }
3058 
3059 /**
3060  *	skb_cow_head - skb_cow but only making the head writable
3061  *	@skb: buffer to cow
3062  *	@headroom: needed headroom
3063  *
3064  *	This function is identical to skb_cow except that we replace the
3065  *	skb_cloned check by skb_header_cloned.  It should be used when
3066  *	you only need to push on some header and do not need to modify
3067  *	the data.
3068  */
3069 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3070 {
3071 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
3072 }
3073 
3074 /**
3075  *	skb_padto	- pad an skbuff up to a minimal size
3076  *	@skb: buffer to pad
3077  *	@len: minimal length
3078  *
3079  *	Pads up a buffer to ensure the trailing bytes exist and are
3080  *	blanked. If the buffer already contains sufficient data it
3081  *	is untouched. Otherwise it is extended. Returns zero on
3082  *	success. The skb is freed on error.
3083  */
3084 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3085 {
3086 	unsigned int size = skb->len;
3087 	if (likely(size >= len))
3088 		return 0;
3089 	return skb_pad(skb, len - size);
3090 }
3091 
3092 /**
3093  *	__skb_put_padto - increase size and pad an skbuff up to a minimal size
3094  *	@skb: buffer to pad
3095  *	@len: minimal length
3096  *	@free_on_error: free buffer on error
3097  *
3098  *	Pads up a buffer to ensure the trailing bytes exist and are
3099  *	blanked. If the buffer already contains sufficient data it
3100  *	is untouched. Otherwise it is extended. Returns zero on
3101  *	success. The skb is freed on error if @free_on_error is true.
3102  */
3103 static inline int __skb_put_padto(struct sk_buff *skb, unsigned int len,
3104 				  bool free_on_error)
3105 {
3106 	unsigned int size = skb->len;
3107 
3108 	if (unlikely(size < len)) {
3109 		len -= size;
3110 		if (__skb_pad(skb, len, free_on_error))
3111 			return -ENOMEM;
3112 		__skb_put(skb, len);
3113 	}
3114 	return 0;
3115 }
3116 
3117 /**
3118  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3119  *	@skb: buffer to pad
3120  *	@len: minimal length
3121  *
3122  *	Pads up a buffer to ensure the trailing bytes exist and are
3123  *	blanked. If the buffer already contains sufficient data it
3124  *	is untouched. Otherwise it is extended. Returns zero on
3125  *	success. The skb is freed on error.
3126  */
3127 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
3128 {
3129 	return __skb_put_padto(skb, len, true);
3130 }
3131 
3132 static inline int skb_add_data(struct sk_buff *skb,
3133 			       struct iov_iter *from, int copy)
3134 {
3135 	const int off = skb->len;
3136 
3137 	if (skb->ip_summed == CHECKSUM_NONE) {
3138 		__wsum csum = 0;
3139 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3140 					         &csum, from)) {
3141 			skb->csum = csum_block_add(skb->csum, csum, off);
3142 			return 0;
3143 		}
3144 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3145 		return 0;
3146 
3147 	__skb_trim(skb, off);
3148 	return -EFAULT;
3149 }
3150 
3151 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3152 				    const struct page *page, int off)
3153 {
3154 	if (skb_zcopy(skb))
3155 		return false;
3156 	if (i) {
3157 		const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
3158 
3159 		return page == skb_frag_page(frag) &&
3160 		       off == frag->page_offset + skb_frag_size(frag);
3161 	}
3162 	return false;
3163 }
3164 
3165 static inline int __skb_linearize(struct sk_buff *skb)
3166 {
3167 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3168 }
3169 
3170 /**
3171  *	skb_linearize - convert paged skb to linear one
3172  *	@skb: buffer to linarize
3173  *
3174  *	If there is no free memory -ENOMEM is returned, otherwise zero
3175  *	is returned and the old skb data released.
3176  */
3177 static inline int skb_linearize(struct sk_buff *skb)
3178 {
3179 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3180 }
3181 
3182 /**
3183  * skb_has_shared_frag - can any frag be overwritten
3184  * @skb: buffer to test
3185  *
3186  * Return true if the skb has at least one frag that might be modified
3187  * by an external entity (as in vmsplice()/sendfile())
3188  */
3189 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3190 {
3191 	return skb_is_nonlinear(skb) &&
3192 	       skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
3193 }
3194 
3195 /**
3196  *	skb_linearize_cow - make sure skb is linear and writable
3197  *	@skb: buffer to process
3198  *
3199  *	If there is no free memory -ENOMEM is returned, otherwise zero
3200  *	is returned and the old skb data released.
3201  */
3202 static inline int skb_linearize_cow(struct sk_buff *skb)
3203 {
3204 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3205 	       __skb_linearize(skb) : 0;
3206 }
3207 
3208 static __always_inline void
3209 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3210 		     unsigned int off)
3211 {
3212 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3213 		skb->csum = csum_block_sub(skb->csum,
3214 					   csum_partial(start, len, 0), off);
3215 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3216 		 skb_checksum_start_offset(skb) < 0)
3217 		skb->ip_summed = CHECKSUM_NONE;
3218 }
3219 
3220 /**
3221  *	skb_postpull_rcsum - update checksum for received skb after pull
3222  *	@skb: buffer to update
3223  *	@start: start of data before pull
3224  *	@len: length of data pulled
3225  *
3226  *	After doing a pull on a received packet, you need to call this to
3227  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3228  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3229  */
3230 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3231 				      const void *start, unsigned int len)
3232 {
3233 	__skb_postpull_rcsum(skb, start, len, 0);
3234 }
3235 
3236 static __always_inline void
3237 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3238 		     unsigned int off)
3239 {
3240 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3241 		skb->csum = csum_block_add(skb->csum,
3242 					   csum_partial(start, len, 0), off);
3243 }
3244 
3245 /**
3246  *	skb_postpush_rcsum - update checksum for received skb after push
3247  *	@skb: buffer to update
3248  *	@start: start of data after push
3249  *	@len: length of data pushed
3250  *
3251  *	After doing a push on a received packet, you need to call this to
3252  *	update the CHECKSUM_COMPLETE checksum.
3253  */
3254 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3255 				      const void *start, unsigned int len)
3256 {
3257 	__skb_postpush_rcsum(skb, start, len, 0);
3258 }
3259 
3260 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3261 
3262 /**
3263  *	skb_push_rcsum - push skb and update receive checksum
3264  *	@skb: buffer to update
3265  *	@len: length of data pulled
3266  *
3267  *	This function performs an skb_push on the packet and updates
3268  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3269  *	receive path processing instead of skb_push unless you know
3270  *	that the checksum difference is zero (e.g., a valid IP header)
3271  *	or you are setting ip_summed to CHECKSUM_NONE.
3272  */
3273 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3274 {
3275 	skb_push(skb, len);
3276 	skb_postpush_rcsum(skb, skb->data, len);
3277 	return skb->data;
3278 }
3279 
3280 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3281 /**
3282  *	pskb_trim_rcsum - trim received skb and update checksum
3283  *	@skb: buffer to trim
3284  *	@len: new length
3285  *
3286  *	This is exactly the same as pskb_trim except that it ensures the
3287  *	checksum of received packets are still valid after the operation.
3288  *	It can change skb pointers.
3289  */
3290 
3291 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3292 {
3293 	if (likely(len >= skb->len))
3294 		return 0;
3295 	return pskb_trim_rcsum_slow(skb, len);
3296 }
3297 
3298 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3299 {
3300 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3301 		skb->ip_summed = CHECKSUM_NONE;
3302 	__skb_trim(skb, len);
3303 	return 0;
3304 }
3305 
3306 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3307 {
3308 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3309 		skb->ip_summed = CHECKSUM_NONE;
3310 	return __skb_grow(skb, len);
3311 }
3312 
3313 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3314 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3315 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3316 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3317 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3318 
3319 #define skb_queue_walk(queue, skb) \
3320 		for (skb = (queue)->next;					\
3321 		     skb != (struct sk_buff *)(queue);				\
3322 		     skb = skb->next)
3323 
3324 #define skb_queue_walk_safe(queue, skb, tmp)					\
3325 		for (skb = (queue)->next, tmp = skb->next;			\
3326 		     skb != (struct sk_buff *)(queue);				\
3327 		     skb = tmp, tmp = skb->next)
3328 
3329 #define skb_queue_walk_from(queue, skb)						\
3330 		for (; skb != (struct sk_buff *)(queue);			\
3331 		     skb = skb->next)
3332 
3333 #define skb_rbtree_walk(skb, root)						\
3334 		for (skb = skb_rb_first(root); skb != NULL;			\
3335 		     skb = skb_rb_next(skb))
3336 
3337 #define skb_rbtree_walk_from(skb)						\
3338 		for (; skb != NULL;						\
3339 		     skb = skb_rb_next(skb))
3340 
3341 #define skb_rbtree_walk_from_safe(skb, tmp)					\
3342 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
3343 		     skb = tmp)
3344 
3345 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3346 		for (tmp = skb->next;						\
3347 		     skb != (struct sk_buff *)(queue);				\
3348 		     skb = tmp, tmp = skb->next)
3349 
3350 #define skb_queue_reverse_walk(queue, skb) \
3351 		for (skb = (queue)->prev;					\
3352 		     skb != (struct sk_buff *)(queue);				\
3353 		     skb = skb->prev)
3354 
3355 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3356 		for (skb = (queue)->prev, tmp = skb->prev;			\
3357 		     skb != (struct sk_buff *)(queue);				\
3358 		     skb = tmp, tmp = skb->prev)
3359 
3360 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3361 		for (tmp = skb->prev;						\
3362 		     skb != (struct sk_buff *)(queue);				\
3363 		     skb = tmp, tmp = skb->prev)
3364 
3365 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3366 {
3367 	return skb_shinfo(skb)->frag_list != NULL;
3368 }
3369 
3370 static inline void skb_frag_list_init(struct sk_buff *skb)
3371 {
3372 	skb_shinfo(skb)->frag_list = NULL;
3373 }
3374 
3375 #define skb_walk_frags(skb, iter)	\
3376 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3377 
3378 
3379 int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
3380 				const struct sk_buff *skb);
3381 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3382 					  struct sk_buff_head *queue,
3383 					  unsigned int flags,
3384 					  void (*destructor)(struct sock *sk,
3385 							   struct sk_buff *skb),
3386 					  int *off, int *err,
3387 					  struct sk_buff **last);
3388 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
3389 					void (*destructor)(struct sock *sk,
3390 							   struct sk_buff *skb),
3391 					int *off, int *err,
3392 					struct sk_buff **last);
3393 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
3394 				    void (*destructor)(struct sock *sk,
3395 						       struct sk_buff *skb),
3396 				    int *off, int *err);
3397 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3398 				  int *err);
3399 __poll_t datagram_poll(struct file *file, struct socket *sock,
3400 			   struct poll_table_struct *wait);
3401 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3402 			   struct iov_iter *to, int size);
3403 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3404 					struct msghdr *msg, int size)
3405 {
3406 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3407 }
3408 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3409 				   struct msghdr *msg);
3410 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3411 			   struct iov_iter *to, int len,
3412 			   struct ahash_request *hash);
3413 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3414 				 struct iov_iter *from, int len);
3415 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3416 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3417 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3418 static inline void skb_free_datagram_locked(struct sock *sk,
3419 					    struct sk_buff *skb)
3420 {
3421 	__skb_free_datagram_locked(sk, skb, 0);
3422 }
3423 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3424 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3425 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3426 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3427 			      int len, __wsum csum);
3428 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3429 		    struct pipe_inode_info *pipe, unsigned int len,
3430 		    unsigned int flags);
3431 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3432 			 int len);
3433 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3434 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3435 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3436 		 int len, int hlen);
3437 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3438 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3439 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3440 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3441 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3442 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3443 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3444 int skb_ensure_writable(struct sk_buff *skb, int write_len);
3445 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3446 int skb_vlan_pop(struct sk_buff *skb);
3447 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3448 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3449 			     gfp_t gfp);
3450 
3451 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3452 {
3453 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3454 }
3455 
3456 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3457 {
3458 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3459 }
3460 
3461 struct skb_checksum_ops {
3462 	__wsum (*update)(const void *mem, int len, __wsum wsum);
3463 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3464 };
3465 
3466 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3467 
3468 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3469 		      __wsum csum, const struct skb_checksum_ops *ops);
3470 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3471 		    __wsum csum);
3472 
3473 static inline void * __must_check
3474 __skb_header_pointer(const struct sk_buff *skb, int offset,
3475 		     int len, void *data, int hlen, void *buffer)
3476 {
3477 	if (hlen - offset >= len)
3478 		return data + offset;
3479 
3480 	if (!skb ||
3481 	    skb_copy_bits(skb, offset, buffer, len) < 0)
3482 		return NULL;
3483 
3484 	return buffer;
3485 }
3486 
3487 static inline void * __must_check
3488 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3489 {
3490 	return __skb_header_pointer(skb, offset, len, skb->data,
3491 				    skb_headlen(skb), buffer);
3492 }
3493 
3494 /**
3495  *	skb_needs_linearize - check if we need to linearize a given skb
3496  *			      depending on the given device features.
3497  *	@skb: socket buffer to check
3498  *	@features: net device features
3499  *
3500  *	Returns true if either:
3501  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
3502  *	2. skb is fragmented and the device does not support SG.
3503  */
3504 static inline bool skb_needs_linearize(struct sk_buff *skb,
3505 				       netdev_features_t features)
3506 {
3507 	return skb_is_nonlinear(skb) &&
3508 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3509 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3510 }
3511 
3512 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3513 					     void *to,
3514 					     const unsigned int len)
3515 {
3516 	memcpy(to, skb->data, len);
3517 }
3518 
3519 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3520 						    const int offset, void *to,
3521 						    const unsigned int len)
3522 {
3523 	memcpy(to, skb->data + offset, len);
3524 }
3525 
3526 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3527 					   const void *from,
3528 					   const unsigned int len)
3529 {
3530 	memcpy(skb->data, from, len);
3531 }
3532 
3533 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3534 						  const int offset,
3535 						  const void *from,
3536 						  const unsigned int len)
3537 {
3538 	memcpy(skb->data + offset, from, len);
3539 }
3540 
3541 void skb_init(void);
3542 
3543 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3544 {
3545 	return skb->tstamp;
3546 }
3547 
3548 /**
3549  *	skb_get_timestamp - get timestamp from a skb
3550  *	@skb: skb to get stamp from
3551  *	@stamp: pointer to struct __kernel_old_timeval to store stamp in
3552  *
3553  *	Timestamps are stored in the skb as offsets to a base timestamp.
3554  *	This function converts the offset back to a struct timeval and stores
3555  *	it in stamp.
3556  */
3557 static inline void skb_get_timestamp(const struct sk_buff *skb,
3558 				     struct __kernel_old_timeval *stamp)
3559 {
3560 	*stamp = ns_to_kernel_old_timeval(skb->tstamp);
3561 }
3562 
3563 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
3564 					 struct __kernel_sock_timeval *stamp)
3565 {
3566 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3567 
3568 	stamp->tv_sec = ts.tv_sec;
3569 	stamp->tv_usec = ts.tv_nsec / 1000;
3570 }
3571 
3572 static inline void skb_get_timestampns(const struct sk_buff *skb,
3573 				       struct timespec *stamp)
3574 {
3575 	*stamp = ktime_to_timespec(skb->tstamp);
3576 }
3577 
3578 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
3579 					   struct __kernel_timespec *stamp)
3580 {
3581 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3582 
3583 	stamp->tv_sec = ts.tv_sec;
3584 	stamp->tv_nsec = ts.tv_nsec;
3585 }
3586 
3587 static inline void __net_timestamp(struct sk_buff *skb)
3588 {
3589 	skb->tstamp = ktime_get_real();
3590 }
3591 
3592 static inline ktime_t net_timedelta(ktime_t t)
3593 {
3594 	return ktime_sub(ktime_get_real(), t);
3595 }
3596 
3597 static inline ktime_t net_invalid_timestamp(void)
3598 {
3599 	return 0;
3600 }
3601 
3602 static inline u8 skb_metadata_len(const struct sk_buff *skb)
3603 {
3604 	return skb_shinfo(skb)->meta_len;
3605 }
3606 
3607 static inline void *skb_metadata_end(const struct sk_buff *skb)
3608 {
3609 	return skb_mac_header(skb);
3610 }
3611 
3612 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3613 					  const struct sk_buff *skb_b,
3614 					  u8 meta_len)
3615 {
3616 	const void *a = skb_metadata_end(skb_a);
3617 	const void *b = skb_metadata_end(skb_b);
3618 	/* Using more efficient varaiant than plain call to memcmp(). */
3619 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3620 	u64 diffs = 0;
3621 
3622 	switch (meta_len) {
3623 #define __it(x, op) (x -= sizeof(u##op))
3624 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3625 	case 32: diffs |= __it_diff(a, b, 64);
3626 		 /* fall through */
3627 	case 24: diffs |= __it_diff(a, b, 64);
3628 		 /* fall through */
3629 	case 16: diffs |= __it_diff(a, b, 64);
3630 		 /* fall through */
3631 	case  8: diffs |= __it_diff(a, b, 64);
3632 		break;
3633 	case 28: diffs |= __it_diff(a, b, 64);
3634 		 /* fall through */
3635 	case 20: diffs |= __it_diff(a, b, 64);
3636 		 /* fall through */
3637 	case 12: diffs |= __it_diff(a, b, 64);
3638 		 /* fall through */
3639 	case  4: diffs |= __it_diff(a, b, 32);
3640 		break;
3641 	}
3642 	return diffs;
3643 #else
3644 	return memcmp(a - meta_len, b - meta_len, meta_len);
3645 #endif
3646 }
3647 
3648 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3649 					const struct sk_buff *skb_b)
3650 {
3651 	u8 len_a = skb_metadata_len(skb_a);
3652 	u8 len_b = skb_metadata_len(skb_b);
3653 
3654 	if (!(len_a | len_b))
3655 		return false;
3656 
3657 	return len_a != len_b ?
3658 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
3659 }
3660 
3661 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3662 {
3663 	skb_shinfo(skb)->meta_len = meta_len;
3664 }
3665 
3666 static inline void skb_metadata_clear(struct sk_buff *skb)
3667 {
3668 	skb_metadata_set(skb, 0);
3669 }
3670 
3671 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3672 
3673 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3674 
3675 void skb_clone_tx_timestamp(struct sk_buff *skb);
3676 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3677 
3678 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3679 
3680 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3681 {
3682 }
3683 
3684 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3685 {
3686 	return false;
3687 }
3688 
3689 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3690 
3691 /**
3692  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3693  *
3694  * PHY drivers may accept clones of transmitted packets for
3695  * timestamping via their phy_driver.txtstamp method. These drivers
3696  * must call this function to return the skb back to the stack with a
3697  * timestamp.
3698  *
3699  * @skb: clone of the the original outgoing packet
3700  * @hwtstamps: hardware time stamps
3701  *
3702  */
3703 void skb_complete_tx_timestamp(struct sk_buff *skb,
3704 			       struct skb_shared_hwtstamps *hwtstamps);
3705 
3706 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3707 		     struct skb_shared_hwtstamps *hwtstamps,
3708 		     struct sock *sk, int tstype);
3709 
3710 /**
3711  * skb_tstamp_tx - queue clone of skb with send time stamps
3712  * @orig_skb:	the original outgoing packet
3713  * @hwtstamps:	hardware time stamps, may be NULL if not available
3714  *
3715  * If the skb has a socket associated, then this function clones the
3716  * skb (thus sharing the actual data and optional structures), stores
3717  * the optional hardware time stamping information (if non NULL) or
3718  * generates a software time stamp (otherwise), then queues the clone
3719  * to the error queue of the socket.  Errors are silently ignored.
3720  */
3721 void skb_tstamp_tx(struct sk_buff *orig_skb,
3722 		   struct skb_shared_hwtstamps *hwtstamps);
3723 
3724 /**
3725  * skb_tx_timestamp() - Driver hook for transmit timestamping
3726  *
3727  * Ethernet MAC Drivers should call this function in their hard_xmit()
3728  * function immediately before giving the sk_buff to the MAC hardware.
3729  *
3730  * Specifically, one should make absolutely sure that this function is
3731  * called before TX completion of this packet can trigger.  Otherwise
3732  * the packet could potentially already be freed.
3733  *
3734  * @skb: A socket buffer.
3735  */
3736 static inline void skb_tx_timestamp(struct sk_buff *skb)
3737 {
3738 	skb_clone_tx_timestamp(skb);
3739 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3740 		skb_tstamp_tx(skb, NULL);
3741 }
3742 
3743 /**
3744  * skb_complete_wifi_ack - deliver skb with wifi status
3745  *
3746  * @skb: the original outgoing packet
3747  * @acked: ack status
3748  *
3749  */
3750 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3751 
3752 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3753 __sum16 __skb_checksum_complete(struct sk_buff *skb);
3754 
3755 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3756 {
3757 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3758 		skb->csum_valid ||
3759 		(skb->ip_summed == CHECKSUM_PARTIAL &&
3760 		 skb_checksum_start_offset(skb) >= 0));
3761 }
3762 
3763 /**
3764  *	skb_checksum_complete - Calculate checksum of an entire packet
3765  *	@skb: packet to process
3766  *
3767  *	This function calculates the checksum over the entire packet plus
3768  *	the value of skb->csum.  The latter can be used to supply the
3769  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
3770  *	checksum.
3771  *
3772  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
3773  *	this function can be used to verify that checksum on received
3774  *	packets.  In that case the function should return zero if the
3775  *	checksum is correct.  In particular, this function will return zero
3776  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3777  *	hardware has already verified the correctness of the checksum.
3778  */
3779 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3780 {
3781 	return skb_csum_unnecessary(skb) ?
3782 	       0 : __skb_checksum_complete(skb);
3783 }
3784 
3785 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3786 {
3787 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3788 		if (skb->csum_level == 0)
3789 			skb->ip_summed = CHECKSUM_NONE;
3790 		else
3791 			skb->csum_level--;
3792 	}
3793 }
3794 
3795 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3796 {
3797 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3798 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3799 			skb->csum_level++;
3800 	} else if (skb->ip_summed == CHECKSUM_NONE) {
3801 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3802 		skb->csum_level = 0;
3803 	}
3804 }
3805 
3806 /* Check if we need to perform checksum complete validation.
3807  *
3808  * Returns true if checksum complete is needed, false otherwise
3809  * (either checksum is unnecessary or zero checksum is allowed).
3810  */
3811 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3812 						  bool zero_okay,
3813 						  __sum16 check)
3814 {
3815 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3816 		skb->csum_valid = 1;
3817 		__skb_decr_checksum_unnecessary(skb);
3818 		return false;
3819 	}
3820 
3821 	return true;
3822 }
3823 
3824 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
3825  * in checksum_init.
3826  */
3827 #define CHECKSUM_BREAK 76
3828 
3829 /* Unset checksum-complete
3830  *
3831  * Unset checksum complete can be done when packet is being modified
3832  * (uncompressed for instance) and checksum-complete value is
3833  * invalidated.
3834  */
3835 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3836 {
3837 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3838 		skb->ip_summed = CHECKSUM_NONE;
3839 }
3840 
3841 /* Validate (init) checksum based on checksum complete.
3842  *
3843  * Return values:
3844  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
3845  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3846  *	checksum is stored in skb->csum for use in __skb_checksum_complete
3847  *   non-zero: value of invalid checksum
3848  *
3849  */
3850 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3851 						       bool complete,
3852 						       __wsum psum)
3853 {
3854 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
3855 		if (!csum_fold(csum_add(psum, skb->csum))) {
3856 			skb->csum_valid = 1;
3857 			return 0;
3858 		}
3859 	}
3860 
3861 	skb->csum = psum;
3862 
3863 	if (complete || skb->len <= CHECKSUM_BREAK) {
3864 		__sum16 csum;
3865 
3866 		csum = __skb_checksum_complete(skb);
3867 		skb->csum_valid = !csum;
3868 		return csum;
3869 	}
3870 
3871 	return 0;
3872 }
3873 
3874 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3875 {
3876 	return 0;
3877 }
3878 
3879 /* Perform checksum validate (init). Note that this is a macro since we only
3880  * want to calculate the pseudo header which is an input function if necessary.
3881  * First we try to validate without any computation (checksum unnecessary) and
3882  * then calculate based on checksum complete calling the function to compute
3883  * pseudo header.
3884  *
3885  * Return values:
3886  *   0: checksum is validated or try to in skb_checksum_complete
3887  *   non-zero: value of invalid checksum
3888  */
3889 #define __skb_checksum_validate(skb, proto, complete,			\
3890 				zero_okay, check, compute_pseudo)	\
3891 ({									\
3892 	__sum16 __ret = 0;						\
3893 	skb->csum_valid = 0;						\
3894 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
3895 		__ret = __skb_checksum_validate_complete(skb,		\
3896 				complete, compute_pseudo(skb, proto));	\
3897 	__ret;								\
3898 })
3899 
3900 #define skb_checksum_init(skb, proto, compute_pseudo)			\
3901 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3902 
3903 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
3904 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3905 
3906 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
3907 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3908 
3909 #define skb_checksum_validate_zero_check(skb, proto, check,		\
3910 					 compute_pseudo)		\
3911 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
3912 
3913 #define skb_checksum_simple_validate(skb)				\
3914 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3915 
3916 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3917 {
3918 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
3919 }
3920 
3921 static inline void __skb_checksum_convert(struct sk_buff *skb,
3922 					  __sum16 check, __wsum pseudo)
3923 {
3924 	skb->csum = ~pseudo;
3925 	skb->ip_summed = CHECKSUM_COMPLETE;
3926 }
3927 
3928 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo)	\
3929 do {									\
3930 	if (__skb_checksum_convert_check(skb))				\
3931 		__skb_checksum_convert(skb, check,			\
3932 				       compute_pseudo(skb, proto));	\
3933 } while (0)
3934 
3935 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3936 					      u16 start, u16 offset)
3937 {
3938 	skb->ip_summed = CHECKSUM_PARTIAL;
3939 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3940 	skb->csum_offset = offset - start;
3941 }
3942 
3943 /* Update skbuf and packet to reflect the remote checksum offload operation.
3944  * When called, ptr indicates the starting point for skb->csum when
3945  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3946  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3947  */
3948 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
3949 				       int start, int offset, bool nopartial)
3950 {
3951 	__wsum delta;
3952 
3953 	if (!nopartial) {
3954 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
3955 		return;
3956 	}
3957 
3958 	 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3959 		__skb_checksum_complete(skb);
3960 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3961 	}
3962 
3963 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
3964 
3965 	/* Adjust skb->csum since we changed the packet */
3966 	skb->csum = csum_add(skb->csum, delta);
3967 }
3968 
3969 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
3970 {
3971 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
3972 	return (void *)(skb->_nfct & SKB_NFCT_PTRMASK);
3973 #else
3974 	return NULL;
3975 #endif
3976 }
3977 
3978 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3979 void nf_conntrack_destroy(struct nf_conntrack *nfct);
3980 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3981 {
3982 	if (nfct && atomic_dec_and_test(&nfct->use))
3983 		nf_conntrack_destroy(nfct);
3984 }
3985 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3986 {
3987 	if (nfct)
3988 		atomic_inc(&nfct->use);
3989 }
3990 #endif
3991 
3992 #ifdef CONFIG_SKB_EXTENSIONS
3993 enum skb_ext_id {
3994 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3995 	SKB_EXT_BRIDGE_NF,
3996 #endif
3997 #ifdef CONFIG_XFRM
3998 	SKB_EXT_SEC_PATH,
3999 #endif
4000 	SKB_EXT_NUM, /* must be last */
4001 };
4002 
4003 /**
4004  *	struct skb_ext - sk_buff extensions
4005  *	@refcnt: 1 on allocation, deallocated on 0
4006  *	@offset: offset to add to @data to obtain extension address
4007  *	@chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4008  *	@data: start of extension data, variable sized
4009  *
4010  *	Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4011  *	to use 'u8' types while allowing up to 2kb worth of extension data.
4012  */
4013 struct skb_ext {
4014 	refcount_t refcnt;
4015 	u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4016 	u8 chunks;		/* same */
4017 	char data[0] __aligned(8);
4018 };
4019 
4020 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4021 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4022 void __skb_ext_put(struct skb_ext *ext);
4023 
4024 static inline void skb_ext_put(struct sk_buff *skb)
4025 {
4026 	if (skb->active_extensions)
4027 		__skb_ext_put(skb->extensions);
4028 }
4029 
4030 static inline void __skb_ext_copy(struct sk_buff *dst,
4031 				  const struct sk_buff *src)
4032 {
4033 	dst->active_extensions = src->active_extensions;
4034 
4035 	if (src->active_extensions) {
4036 		struct skb_ext *ext = src->extensions;
4037 
4038 		refcount_inc(&ext->refcnt);
4039 		dst->extensions = ext;
4040 	}
4041 }
4042 
4043 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4044 {
4045 	skb_ext_put(dst);
4046 	__skb_ext_copy(dst, src);
4047 }
4048 
4049 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4050 {
4051 	return !!ext->offset[i];
4052 }
4053 
4054 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4055 {
4056 	return skb->active_extensions & (1 << id);
4057 }
4058 
4059 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4060 {
4061 	if (skb_ext_exist(skb, id))
4062 		__skb_ext_del(skb, id);
4063 }
4064 
4065 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4066 {
4067 	if (skb_ext_exist(skb, id)) {
4068 		struct skb_ext *ext = skb->extensions;
4069 
4070 		return (void *)ext + (ext->offset[id] << 3);
4071 	}
4072 
4073 	return NULL;
4074 }
4075 #else
4076 static inline void skb_ext_put(struct sk_buff *skb) {}
4077 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4078 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4079 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4080 #endif /* CONFIG_SKB_EXTENSIONS */
4081 
4082 static inline void nf_reset(struct sk_buff *skb)
4083 {
4084 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4085 	nf_conntrack_put(skb_nfct(skb));
4086 	skb->_nfct = 0;
4087 #endif
4088 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4089 	skb_ext_del(skb, SKB_EXT_BRIDGE_NF);
4090 #endif
4091 }
4092 
4093 static inline void nf_reset_trace(struct sk_buff *skb)
4094 {
4095 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4096 	skb->nf_trace = 0;
4097 #endif
4098 }
4099 
4100 static inline void ipvs_reset(struct sk_buff *skb)
4101 {
4102 #if IS_ENABLED(CONFIG_IP_VS)
4103 	skb->ipvs_property = 0;
4104 #endif
4105 }
4106 
4107 /* Note: This doesn't put any conntrack info in dst. */
4108 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4109 			     bool copy)
4110 {
4111 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4112 	dst->_nfct = src->_nfct;
4113 	nf_conntrack_get(skb_nfct(src));
4114 #endif
4115 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4116 	if (copy)
4117 		dst->nf_trace = src->nf_trace;
4118 #endif
4119 }
4120 
4121 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4122 {
4123 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4124 	nf_conntrack_put(skb_nfct(dst));
4125 #endif
4126 	__nf_copy(dst, src, true);
4127 }
4128 
4129 #ifdef CONFIG_NETWORK_SECMARK
4130 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4131 {
4132 	to->secmark = from->secmark;
4133 }
4134 
4135 static inline void skb_init_secmark(struct sk_buff *skb)
4136 {
4137 	skb->secmark = 0;
4138 }
4139 #else
4140 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4141 { }
4142 
4143 static inline void skb_init_secmark(struct sk_buff *skb)
4144 { }
4145 #endif
4146 
4147 static inline int secpath_exists(const struct sk_buff *skb)
4148 {
4149 #ifdef CONFIG_XFRM
4150 	return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4151 #else
4152 	return 0;
4153 #endif
4154 }
4155 
4156 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4157 {
4158 	return !skb->destructor &&
4159 		!secpath_exists(skb) &&
4160 		!skb_nfct(skb) &&
4161 		!skb->_skb_refdst &&
4162 		!skb_has_frag_list(skb);
4163 }
4164 
4165 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4166 {
4167 	skb->queue_mapping = queue_mapping;
4168 }
4169 
4170 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4171 {
4172 	return skb->queue_mapping;
4173 }
4174 
4175 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4176 {
4177 	to->queue_mapping = from->queue_mapping;
4178 }
4179 
4180 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4181 {
4182 	skb->queue_mapping = rx_queue + 1;
4183 }
4184 
4185 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4186 {
4187 	return skb->queue_mapping - 1;
4188 }
4189 
4190 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4191 {
4192 	return skb->queue_mapping != 0;
4193 }
4194 
4195 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4196 {
4197 	skb->dst_pending_confirm = val;
4198 }
4199 
4200 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4201 {
4202 	return skb->dst_pending_confirm != 0;
4203 }
4204 
4205 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4206 {
4207 #ifdef CONFIG_XFRM
4208 	return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4209 #else
4210 	return NULL;
4211 #endif
4212 }
4213 
4214 /* Keeps track of mac header offset relative to skb->head.
4215  * It is useful for TSO of Tunneling protocol. e.g. GRE.
4216  * For non-tunnel skb it points to skb_mac_header() and for
4217  * tunnel skb it points to outer mac header.
4218  * Keeps track of level of encapsulation of network headers.
4219  */
4220 struct skb_gso_cb {
4221 	union {
4222 		int	mac_offset;
4223 		int	data_offset;
4224 	};
4225 	int	encap_level;
4226 	__wsum	csum;
4227 	__u16	csum_start;
4228 };
4229 #define SKB_SGO_CB_OFFSET	32
4230 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
4231 
4232 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4233 {
4234 	return (skb_mac_header(inner_skb) - inner_skb->head) -
4235 		SKB_GSO_CB(inner_skb)->mac_offset;
4236 }
4237 
4238 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4239 {
4240 	int new_headroom, headroom;
4241 	int ret;
4242 
4243 	headroom = skb_headroom(skb);
4244 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4245 	if (ret)
4246 		return ret;
4247 
4248 	new_headroom = skb_headroom(skb);
4249 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4250 	return 0;
4251 }
4252 
4253 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4254 {
4255 	/* Do not update partial checksums if remote checksum is enabled. */
4256 	if (skb->remcsum_offload)
4257 		return;
4258 
4259 	SKB_GSO_CB(skb)->csum = res;
4260 	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4261 }
4262 
4263 /* Compute the checksum for a gso segment. First compute the checksum value
4264  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4265  * then add in skb->csum (checksum from csum_start to end of packet).
4266  * skb->csum and csum_start are then updated to reflect the checksum of the
4267  * resultant packet starting from the transport header-- the resultant checksum
4268  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4269  * header.
4270  */
4271 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4272 {
4273 	unsigned char *csum_start = skb_transport_header(skb);
4274 	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4275 	__wsum partial = SKB_GSO_CB(skb)->csum;
4276 
4277 	SKB_GSO_CB(skb)->csum = res;
4278 	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4279 
4280 	return csum_fold(csum_partial(csum_start, plen, partial));
4281 }
4282 
4283 static inline bool skb_is_gso(const struct sk_buff *skb)
4284 {
4285 	return skb_shinfo(skb)->gso_size;
4286 }
4287 
4288 /* Note: Should be called only if skb_is_gso(skb) is true */
4289 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4290 {
4291 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4292 }
4293 
4294 /* Note: Should be called only if skb_is_gso(skb) is true */
4295 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4296 {
4297 	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4298 }
4299 
4300 /* Note: Should be called only if skb_is_gso(skb) is true */
4301 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4302 {
4303 	return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4304 }
4305 
4306 static inline void skb_gso_reset(struct sk_buff *skb)
4307 {
4308 	skb_shinfo(skb)->gso_size = 0;
4309 	skb_shinfo(skb)->gso_segs = 0;
4310 	skb_shinfo(skb)->gso_type = 0;
4311 }
4312 
4313 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4314 					 u16 increment)
4315 {
4316 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4317 		return;
4318 	shinfo->gso_size += increment;
4319 }
4320 
4321 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4322 					 u16 decrement)
4323 {
4324 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4325 		return;
4326 	shinfo->gso_size -= decrement;
4327 }
4328 
4329 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4330 
4331 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4332 {
4333 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
4334 	 * wanted then gso_type will be set. */
4335 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4336 
4337 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4338 	    unlikely(shinfo->gso_type == 0)) {
4339 		__skb_warn_lro_forwarding(skb);
4340 		return true;
4341 	}
4342 	return false;
4343 }
4344 
4345 static inline void skb_forward_csum(struct sk_buff *skb)
4346 {
4347 	/* Unfortunately we don't support this one.  Any brave souls? */
4348 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4349 		skb->ip_summed = CHECKSUM_NONE;
4350 }
4351 
4352 /**
4353  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4354  * @skb: skb to check
4355  *
4356  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4357  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4358  * use this helper, to document places where we make this assertion.
4359  */
4360 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4361 {
4362 #ifdef DEBUG
4363 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4364 #endif
4365 }
4366 
4367 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4368 
4369 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4370 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4371 				     unsigned int transport_len,
4372 				     __sum16(*skb_chkf)(struct sk_buff *skb));
4373 
4374 /**
4375  * skb_head_is_locked - Determine if the skb->head is locked down
4376  * @skb: skb to check
4377  *
4378  * The head on skbs build around a head frag can be removed if they are
4379  * not cloned.  This function returns true if the skb head is locked down
4380  * due to either being allocated via kmalloc, or by being a clone with
4381  * multiple references to the head.
4382  */
4383 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4384 {
4385 	return !skb->head_frag || skb_cloned(skb);
4386 }
4387 
4388 /* Local Checksum Offload.
4389  * Compute outer checksum based on the assumption that the
4390  * inner checksum will be offloaded later.
4391  * See Documentation/networking/checksum-offloads.rst for
4392  * explanation of how this works.
4393  * Fill in outer checksum adjustment (e.g. with sum of outer
4394  * pseudo-header) before calling.
4395  * Also ensure that inner checksum is in linear data area.
4396  */
4397 static inline __wsum lco_csum(struct sk_buff *skb)
4398 {
4399 	unsigned char *csum_start = skb_checksum_start(skb);
4400 	unsigned char *l4_hdr = skb_transport_header(skb);
4401 	__wsum partial;
4402 
4403 	/* Start with complement of inner checksum adjustment */
4404 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4405 						    skb->csum_offset));
4406 
4407 	/* Add in checksum of our headers (incl. outer checksum
4408 	 * adjustment filled in by caller) and return result.
4409 	 */
4410 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4411 }
4412 
4413 #endif	/* __KERNEL__ */
4414 #endif	/* _LINUX_SKBUFF_H */
4415