xref: /linux-6.15/include/linux/skbuff.h (revision aeb3f462)
1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <[email protected]>
6  *		Florian La Roche, <[email protected]>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/cache.h>
21 
22 #include <asm/atomic.h>
23 #include <asm/types.h>
24 #include <linux/spinlock.h>
25 #include <linux/net.h>
26 #include <linux/textsearch.h>
27 #include <net/checksum.h>
28 #include <linux/rcupdate.h>
29 #include <linux/dmaengine.h>
30 #include <linux/hrtimer.h>
31 
32 #define HAVE_ALLOC_SKB		/* For the drivers to know */
33 #define HAVE_ALIGNABLE_SKB	/* Ditto 8)		   */
34 
35 /* Don't change this without changing skb_csum_unnecessary! */
36 #define CHECKSUM_NONE 0
37 #define CHECKSUM_UNNECESSARY 1
38 #define CHECKSUM_COMPLETE 2
39 #define CHECKSUM_PARTIAL 3
40 
41 #define SKB_DATA_ALIGN(X)	(((X) + (SMP_CACHE_BYTES - 1)) & \
42 				 ~(SMP_CACHE_BYTES - 1))
43 #define SKB_WITH_OVERHEAD(X)	\
44 	(((X) - sizeof(struct skb_shared_info)) & \
45 	 ~(SMP_CACHE_BYTES - 1))
46 #define SKB_MAX_ORDER(X, ORDER) \
47 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
48 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
49 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
50 
51 /* A. Checksumming of received packets by device.
52  *
53  *	NONE: device failed to checksum this packet.
54  *		skb->csum is undefined.
55  *
56  *	UNNECESSARY: device parsed packet and wouldbe verified checksum.
57  *		skb->csum is undefined.
58  *	      It is bad option, but, unfortunately, many of vendors do this.
59  *	      Apparently with secret goal to sell you new device, when you
60  *	      will add new protocol to your host. F.e. IPv6. 8)
61  *
62  *	COMPLETE: the most generic way. Device supplied checksum of _all_
63  *	    the packet as seen by netif_rx in skb->csum.
64  *	    NOTE: Even if device supports only some protocols, but
65  *	    is able to produce some skb->csum, it MUST use COMPLETE,
66  *	    not UNNECESSARY.
67  *
68  *	PARTIAL: identical to the case for output below.  This may occur
69  *	    on a packet received directly from another Linux OS, e.g.,
70  *	    a virtualised Linux kernel on the same host.  The packet can
71  *	    be treated in the same way as UNNECESSARY except that on
72  *	    output (i.e., forwarding) the checksum must be filled in
73  *	    by the OS or the hardware.
74  *
75  * B. Checksumming on output.
76  *
77  *	NONE: skb is checksummed by protocol or csum is not required.
78  *
79  *	PARTIAL: device is required to csum packet as seen by hard_start_xmit
80  *	from skb->csum_start to the end and to record the checksum
81  *	at skb->csum_start + skb->csum_offset.
82  *
83  *	Device must show its capabilities in dev->features, set
84  *	at device setup time.
85  *	NETIF_F_HW_CSUM	- it is clever device, it is able to checksum
86  *			  everything.
87  *	NETIF_F_NO_CSUM - loopback or reliable single hop media.
88  *	NETIF_F_IP_CSUM - device is dumb. It is able to csum only
89  *			  TCP/UDP over IPv4. Sigh. Vendors like this
90  *			  way by an unknown reason. Though, see comment above
91  *			  about CHECKSUM_UNNECESSARY. 8)
92  *	NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
93  *
94  *	Any questions? No questions, good. 		--ANK
95  */
96 
97 struct net_device;
98 struct scatterlist;
99 
100 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
101 struct nf_conntrack {
102 	atomic_t use;
103 };
104 #endif
105 
106 #ifdef CONFIG_BRIDGE_NETFILTER
107 struct nf_bridge_info {
108 	atomic_t use;
109 	struct net_device *physindev;
110 	struct net_device *physoutdev;
111 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
112 	struct net_device *netoutdev;
113 #endif
114 	unsigned int mask;
115 	unsigned long data[32 / sizeof(unsigned long)];
116 };
117 #endif
118 
119 struct sk_buff_head {
120 	/* These two members must be first. */
121 	struct sk_buff	*next;
122 	struct sk_buff	*prev;
123 
124 	__u32		qlen;
125 	spinlock_t	lock;
126 };
127 
128 struct sk_buff;
129 
130 /* To allow 64K frame to be packed as single skb without frag_list */
131 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
132 
133 typedef struct skb_frag_struct skb_frag_t;
134 
135 struct skb_frag_struct {
136 	struct page *page;
137 	__u16 page_offset;
138 	__u16 size;
139 };
140 
141 /* This data is invariant across clones and lives at
142  * the end of the header data, ie. at skb->end.
143  */
144 struct skb_shared_info {
145 	atomic_t	dataref;
146 	unsigned short	nr_frags;
147 	unsigned short	gso_size;
148 	/* Warning: this field is not always filled in (UFO)! */
149 	unsigned short	gso_segs;
150 	unsigned short  gso_type;
151 	__be32          ip6_frag_id;
152 	struct sk_buff	*frag_list;
153 	skb_frag_t	frags[MAX_SKB_FRAGS];
154 };
155 
156 /* We divide dataref into two halves.  The higher 16 bits hold references
157  * to the payload part of skb->data.  The lower 16 bits hold references to
158  * the entire skb->data.  A clone of a headerless skb holds the length of
159  * the header in skb->hdr_len.
160  *
161  * All users must obey the rule that the skb->data reference count must be
162  * greater than or equal to the payload reference count.
163  *
164  * Holding a reference to the payload part means that the user does not
165  * care about modifications to the header part of skb->data.
166  */
167 #define SKB_DATAREF_SHIFT 16
168 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
169 
170 
171 enum {
172 	SKB_FCLONE_UNAVAILABLE,
173 	SKB_FCLONE_ORIG,
174 	SKB_FCLONE_CLONE,
175 };
176 
177 enum {
178 	SKB_GSO_TCPV4 = 1 << 0,
179 	SKB_GSO_UDP = 1 << 1,
180 
181 	/* This indicates the skb is from an untrusted source. */
182 	SKB_GSO_DODGY = 1 << 2,
183 
184 	/* This indicates the tcp segment has CWR set. */
185 	SKB_GSO_TCP_ECN = 1 << 3,
186 
187 	SKB_GSO_TCPV6 = 1 << 4,
188 };
189 
190 #if BITS_PER_LONG > 32
191 #define NET_SKBUFF_DATA_USES_OFFSET 1
192 #endif
193 
194 #ifdef NET_SKBUFF_DATA_USES_OFFSET
195 typedef unsigned int sk_buff_data_t;
196 #else
197 typedef unsigned char *sk_buff_data_t;
198 #endif
199 
200 /**
201  *	struct sk_buff - socket buffer
202  *	@next: Next buffer in list
203  *	@prev: Previous buffer in list
204  *	@sk: Socket we are owned by
205  *	@tstamp: Time we arrived
206  *	@dev: Device we arrived on/are leaving by
207  *	@transport_header: Transport layer header
208  *	@network_header: Network layer header
209  *	@mac_header: Link layer header
210  *	@dst: destination entry
211  *	@sp: the security path, used for xfrm
212  *	@cb: Control buffer. Free for use by every layer. Put private vars here
213  *	@len: Length of actual data
214  *	@data_len: Data length
215  *	@mac_len: Length of link layer header
216  *	@hdr_len: writable header length of cloned skb
217  *	@csum: Checksum (must include start/offset pair)
218  *	@csum_start: Offset from skb->head where checksumming should start
219  *	@csum_offset: Offset from csum_start where checksum should be stored
220  *	@local_df: allow local fragmentation
221  *	@cloned: Head may be cloned (check refcnt to be sure)
222  *	@nohdr: Payload reference only, must not modify header
223  *	@pkt_type: Packet class
224  *	@fclone: skbuff clone status
225  *	@ip_summed: Driver fed us an IP checksum
226  *	@priority: Packet queueing priority
227  *	@users: User count - see {datagram,tcp}.c
228  *	@protocol: Packet protocol from driver
229  *	@truesize: Buffer size
230  *	@head: Head of buffer
231  *	@data: Data head pointer
232  *	@tail: Tail pointer
233  *	@end: End pointer
234  *	@destructor: Destruct function
235  *	@mark: Generic packet mark
236  *	@nfct: Associated connection, if any
237  *	@ipvs_property: skbuff is owned by ipvs
238  *	@nf_trace: netfilter packet trace flag
239  *	@nfctinfo: Relationship of this skb to the connection
240  *	@nfct_reasm: netfilter conntrack re-assembly pointer
241  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
242  *	@iif: ifindex of device we arrived on
243  *	@queue_mapping: Queue mapping for multiqueue devices
244  *	@tc_index: Traffic control index
245  *	@tc_verd: traffic control verdict
246  *	@dma_cookie: a cookie to one of several possible DMA operations
247  *		done by skb DMA functions
248  *	@secmark: security marking
249  */
250 
251 struct sk_buff {
252 	/* These two members must be first. */
253 	struct sk_buff		*next;
254 	struct sk_buff		*prev;
255 
256 	struct sock		*sk;
257 	ktime_t			tstamp;
258 	struct net_device	*dev;
259 
260 	struct  dst_entry	*dst;
261 	struct	sec_path	*sp;
262 
263 	/*
264 	 * This is the control buffer. It is free to use for every
265 	 * layer. Please put your private variables there. If you
266 	 * want to keep them across layers you have to do a skb_clone()
267 	 * first. This is owned by whoever has the skb queued ATM.
268 	 */
269 	char			cb[48];
270 
271 	unsigned int		len,
272 				data_len;
273 	__u16			mac_len,
274 				hdr_len;
275 	union {
276 		__wsum		csum;
277 		struct {
278 			__u16	csum_start;
279 			__u16	csum_offset;
280 		};
281 	};
282 	__u32			priority;
283 	__u8			local_df:1,
284 				cloned:1,
285 				ip_summed:2,
286 				nohdr:1,
287 				nfctinfo:3;
288 	__u8			pkt_type:3,
289 				fclone:2,
290 				ipvs_property:1,
291 				nf_trace:1;
292 	__be16			protocol;
293 
294 	void			(*destructor)(struct sk_buff *skb);
295 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
296 	struct nf_conntrack	*nfct;
297 	struct sk_buff		*nfct_reasm;
298 #endif
299 #ifdef CONFIG_BRIDGE_NETFILTER
300 	struct nf_bridge_info	*nf_bridge;
301 #endif
302 
303 	int			iif;
304 	__u16			queue_mapping;
305 
306 #ifdef CONFIG_NET_SCHED
307 	__u16			tc_index;	/* traffic control index */
308 #ifdef CONFIG_NET_CLS_ACT
309 	__u16			tc_verd;	/* traffic control verdict */
310 #endif
311 #endif
312 	/* 2 byte hole */
313 
314 #ifdef CONFIG_NET_DMA
315 	dma_cookie_t		dma_cookie;
316 #endif
317 #ifdef CONFIG_NETWORK_SECMARK
318 	__u32			secmark;
319 #endif
320 
321 	__u32			mark;
322 
323 	sk_buff_data_t		transport_header;
324 	sk_buff_data_t		network_header;
325 	sk_buff_data_t		mac_header;
326 	/* These elements must be at the end, see alloc_skb() for details.  */
327 	sk_buff_data_t		tail;
328 	sk_buff_data_t		end;
329 	unsigned char		*head,
330 				*data;
331 	unsigned int		truesize;
332 	atomic_t		users;
333 };
334 
335 #ifdef __KERNEL__
336 /*
337  *	Handling routines are only of interest to the kernel
338  */
339 #include <linux/slab.h>
340 
341 #include <asm/system.h>
342 
343 extern void kfree_skb(struct sk_buff *skb);
344 extern void	       __kfree_skb(struct sk_buff *skb);
345 extern struct sk_buff *__alloc_skb(unsigned int size,
346 				   gfp_t priority, int fclone, int node);
347 static inline struct sk_buff *alloc_skb(unsigned int size,
348 					gfp_t priority)
349 {
350 	return __alloc_skb(size, priority, 0, -1);
351 }
352 
353 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
354 					       gfp_t priority)
355 {
356 	return __alloc_skb(size, priority, 1, -1);
357 }
358 
359 extern void	       kfree_skbmem(struct sk_buff *skb);
360 extern struct sk_buff *skb_clone(struct sk_buff *skb,
361 				 gfp_t priority);
362 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
363 				gfp_t priority);
364 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
365 				 gfp_t gfp_mask);
366 extern int	       pskb_expand_head(struct sk_buff *skb,
367 					int nhead, int ntail,
368 					gfp_t gfp_mask);
369 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
370 					    unsigned int headroom);
371 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
372 				       int newheadroom, int newtailroom,
373 				       gfp_t priority);
374 extern int	       skb_to_sgvec(struct sk_buff *skb,
375 				    struct scatterlist *sg, int offset,
376 				    int len);
377 extern int	       skb_cow_data(struct sk_buff *skb, int tailbits,
378 				    struct sk_buff **trailer);
379 extern int	       skb_pad(struct sk_buff *skb, int pad);
380 #define dev_kfree_skb(a)	kfree_skb(a)
381 extern void	      skb_over_panic(struct sk_buff *skb, int len,
382 				     void *here);
383 extern void	      skb_under_panic(struct sk_buff *skb, int len,
384 				      void *here);
385 extern void	      skb_truesize_bug(struct sk_buff *skb);
386 
387 static inline void skb_truesize_check(struct sk_buff *skb)
388 {
389 	if (unlikely((int)skb->truesize < sizeof(struct sk_buff) + skb->len))
390 		skb_truesize_bug(skb);
391 }
392 
393 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
394 			int getfrag(void *from, char *to, int offset,
395 			int len,int odd, struct sk_buff *skb),
396 			void *from, int length);
397 
398 struct skb_seq_state
399 {
400 	__u32		lower_offset;
401 	__u32		upper_offset;
402 	__u32		frag_idx;
403 	__u32		stepped_offset;
404 	struct sk_buff	*root_skb;
405 	struct sk_buff	*cur_skb;
406 	__u8		*frag_data;
407 };
408 
409 extern void	      skb_prepare_seq_read(struct sk_buff *skb,
410 					   unsigned int from, unsigned int to,
411 					   struct skb_seq_state *st);
412 extern unsigned int   skb_seq_read(unsigned int consumed, const u8 **data,
413 				   struct skb_seq_state *st);
414 extern void	      skb_abort_seq_read(struct skb_seq_state *st);
415 
416 extern unsigned int   skb_find_text(struct sk_buff *skb, unsigned int from,
417 				    unsigned int to, struct ts_config *config,
418 				    struct ts_state *state);
419 
420 #ifdef NET_SKBUFF_DATA_USES_OFFSET
421 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
422 {
423 	return skb->head + skb->end;
424 }
425 #else
426 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
427 {
428 	return skb->end;
429 }
430 #endif
431 
432 /* Internal */
433 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
434 
435 /**
436  *	skb_queue_empty - check if a queue is empty
437  *	@list: queue head
438  *
439  *	Returns true if the queue is empty, false otherwise.
440  */
441 static inline int skb_queue_empty(const struct sk_buff_head *list)
442 {
443 	return list->next == (struct sk_buff *)list;
444 }
445 
446 /**
447  *	skb_get - reference buffer
448  *	@skb: buffer to reference
449  *
450  *	Makes another reference to a socket buffer and returns a pointer
451  *	to the buffer.
452  */
453 static inline struct sk_buff *skb_get(struct sk_buff *skb)
454 {
455 	atomic_inc(&skb->users);
456 	return skb;
457 }
458 
459 /*
460  * If users == 1, we are the only owner and are can avoid redundant
461  * atomic change.
462  */
463 
464 /**
465  *	skb_cloned - is the buffer a clone
466  *	@skb: buffer to check
467  *
468  *	Returns true if the buffer was generated with skb_clone() and is
469  *	one of multiple shared copies of the buffer. Cloned buffers are
470  *	shared data so must not be written to under normal circumstances.
471  */
472 static inline int skb_cloned(const struct sk_buff *skb)
473 {
474 	return skb->cloned &&
475 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
476 }
477 
478 /**
479  *	skb_header_cloned - is the header a clone
480  *	@skb: buffer to check
481  *
482  *	Returns true if modifying the header part of the buffer requires
483  *	the data to be copied.
484  */
485 static inline int skb_header_cloned(const struct sk_buff *skb)
486 {
487 	int dataref;
488 
489 	if (!skb->cloned)
490 		return 0;
491 
492 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
493 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
494 	return dataref != 1;
495 }
496 
497 /**
498  *	skb_header_release - release reference to header
499  *	@skb: buffer to operate on
500  *
501  *	Drop a reference to the header part of the buffer.  This is done
502  *	by acquiring a payload reference.  You must not read from the header
503  *	part of skb->data after this.
504  */
505 static inline void skb_header_release(struct sk_buff *skb)
506 {
507 	BUG_ON(skb->nohdr);
508 	skb->nohdr = 1;
509 	atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
510 }
511 
512 /**
513  *	skb_shared - is the buffer shared
514  *	@skb: buffer to check
515  *
516  *	Returns true if more than one person has a reference to this
517  *	buffer.
518  */
519 static inline int skb_shared(const struct sk_buff *skb)
520 {
521 	return atomic_read(&skb->users) != 1;
522 }
523 
524 /**
525  *	skb_share_check - check if buffer is shared and if so clone it
526  *	@skb: buffer to check
527  *	@pri: priority for memory allocation
528  *
529  *	If the buffer is shared the buffer is cloned and the old copy
530  *	drops a reference. A new clone with a single reference is returned.
531  *	If the buffer is not shared the original buffer is returned. When
532  *	being called from interrupt status or with spinlocks held pri must
533  *	be GFP_ATOMIC.
534  *
535  *	NULL is returned on a memory allocation failure.
536  */
537 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
538 					      gfp_t pri)
539 {
540 	might_sleep_if(pri & __GFP_WAIT);
541 	if (skb_shared(skb)) {
542 		struct sk_buff *nskb = skb_clone(skb, pri);
543 		kfree_skb(skb);
544 		skb = nskb;
545 	}
546 	return skb;
547 }
548 
549 /*
550  *	Copy shared buffers into a new sk_buff. We effectively do COW on
551  *	packets to handle cases where we have a local reader and forward
552  *	and a couple of other messy ones. The normal one is tcpdumping
553  *	a packet thats being forwarded.
554  */
555 
556 /**
557  *	skb_unshare - make a copy of a shared buffer
558  *	@skb: buffer to check
559  *	@pri: priority for memory allocation
560  *
561  *	If the socket buffer is a clone then this function creates a new
562  *	copy of the data, drops a reference count on the old copy and returns
563  *	the new copy with the reference count at 1. If the buffer is not a clone
564  *	the original buffer is returned. When called with a spinlock held or
565  *	from interrupt state @pri must be %GFP_ATOMIC
566  *
567  *	%NULL is returned on a memory allocation failure.
568  */
569 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
570 					  gfp_t pri)
571 {
572 	might_sleep_if(pri & __GFP_WAIT);
573 	if (skb_cloned(skb)) {
574 		struct sk_buff *nskb = skb_copy(skb, pri);
575 		kfree_skb(skb);	/* Free our shared copy */
576 		skb = nskb;
577 	}
578 	return skb;
579 }
580 
581 /**
582  *	skb_peek
583  *	@list_: list to peek at
584  *
585  *	Peek an &sk_buff. Unlike most other operations you _MUST_
586  *	be careful with this one. A peek leaves the buffer on the
587  *	list and someone else may run off with it. You must hold
588  *	the appropriate locks or have a private queue to do this.
589  *
590  *	Returns %NULL for an empty list or a pointer to the head element.
591  *	The reference count is not incremented and the reference is therefore
592  *	volatile. Use with caution.
593  */
594 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
595 {
596 	struct sk_buff *list = ((struct sk_buff *)list_)->next;
597 	if (list == (struct sk_buff *)list_)
598 		list = NULL;
599 	return list;
600 }
601 
602 /**
603  *	skb_peek_tail
604  *	@list_: list to peek at
605  *
606  *	Peek an &sk_buff. Unlike most other operations you _MUST_
607  *	be careful with this one. A peek leaves the buffer on the
608  *	list and someone else may run off with it. You must hold
609  *	the appropriate locks or have a private queue to do this.
610  *
611  *	Returns %NULL for an empty list or a pointer to the tail element.
612  *	The reference count is not incremented and the reference is therefore
613  *	volatile. Use with caution.
614  */
615 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
616 {
617 	struct sk_buff *list = ((struct sk_buff *)list_)->prev;
618 	if (list == (struct sk_buff *)list_)
619 		list = NULL;
620 	return list;
621 }
622 
623 /**
624  *	skb_queue_len	- get queue length
625  *	@list_: list to measure
626  *
627  *	Return the length of an &sk_buff queue.
628  */
629 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
630 {
631 	return list_->qlen;
632 }
633 
634 /*
635  * This function creates a split out lock class for each invocation;
636  * this is needed for now since a whole lot of users of the skb-queue
637  * infrastructure in drivers have different locking usage (in hardirq)
638  * than the networking core (in softirq only). In the long run either the
639  * network layer or drivers should need annotation to consolidate the
640  * main types of usage into 3 classes.
641  */
642 static inline void skb_queue_head_init(struct sk_buff_head *list)
643 {
644 	spin_lock_init(&list->lock);
645 	list->prev = list->next = (struct sk_buff *)list;
646 	list->qlen = 0;
647 }
648 
649 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
650 		struct lock_class_key *class)
651 {
652 	skb_queue_head_init(list);
653 	lockdep_set_class(&list->lock, class);
654 }
655 
656 /*
657  *	Insert an sk_buff at the start of a list.
658  *
659  *	The "__skb_xxxx()" functions are the non-atomic ones that
660  *	can only be called with interrupts disabled.
661  */
662 
663 /**
664  *	__skb_queue_after - queue a buffer at the list head
665  *	@list: list to use
666  *	@prev: place after this buffer
667  *	@newsk: buffer to queue
668  *
669  *	Queue a buffer int the middle of a list. This function takes no locks
670  *	and you must therefore hold required locks before calling it.
671  *
672  *	A buffer cannot be placed on two lists at the same time.
673  */
674 static inline void __skb_queue_after(struct sk_buff_head *list,
675 				     struct sk_buff *prev,
676 				     struct sk_buff *newsk)
677 {
678 	struct sk_buff *next;
679 	list->qlen++;
680 
681 	next = prev->next;
682 	newsk->next = next;
683 	newsk->prev = prev;
684 	next->prev  = prev->next = newsk;
685 }
686 
687 /**
688  *	__skb_queue_head - queue a buffer at the list head
689  *	@list: list to use
690  *	@newsk: buffer to queue
691  *
692  *	Queue a buffer at the start of a list. This function takes no locks
693  *	and you must therefore hold required locks before calling it.
694  *
695  *	A buffer cannot be placed on two lists at the same time.
696  */
697 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
698 static inline void __skb_queue_head(struct sk_buff_head *list,
699 				    struct sk_buff *newsk)
700 {
701 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
702 }
703 
704 /**
705  *	__skb_queue_tail - queue a buffer at the list tail
706  *	@list: list to use
707  *	@newsk: buffer to queue
708  *
709  *	Queue a buffer at the end of a list. This function takes no locks
710  *	and you must therefore hold required locks before calling it.
711  *
712  *	A buffer cannot be placed on two lists at the same time.
713  */
714 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
715 static inline void __skb_queue_tail(struct sk_buff_head *list,
716 				   struct sk_buff *newsk)
717 {
718 	struct sk_buff *prev, *next;
719 
720 	list->qlen++;
721 	next = (struct sk_buff *)list;
722 	prev = next->prev;
723 	newsk->next = next;
724 	newsk->prev = prev;
725 	next->prev  = prev->next = newsk;
726 }
727 
728 
729 /**
730  *	__skb_dequeue - remove from the head of the queue
731  *	@list: list to dequeue from
732  *
733  *	Remove the head of the list. This function does not take any locks
734  *	so must be used with appropriate locks held only. The head item is
735  *	returned or %NULL if the list is empty.
736  */
737 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
738 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
739 {
740 	struct sk_buff *next, *prev, *result;
741 
742 	prev = (struct sk_buff *) list;
743 	next = prev->next;
744 	result = NULL;
745 	if (next != prev) {
746 		result	     = next;
747 		next	     = next->next;
748 		list->qlen--;
749 		next->prev   = prev;
750 		prev->next   = next;
751 		result->next = result->prev = NULL;
752 	}
753 	return result;
754 }
755 
756 
757 /*
758  *	Insert a packet on a list.
759  */
760 extern void        skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
761 static inline void __skb_insert(struct sk_buff *newsk,
762 				struct sk_buff *prev, struct sk_buff *next,
763 				struct sk_buff_head *list)
764 {
765 	newsk->next = next;
766 	newsk->prev = prev;
767 	next->prev  = prev->next = newsk;
768 	list->qlen++;
769 }
770 
771 /*
772  *	Place a packet after a given packet in a list.
773  */
774 extern void	   skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
775 static inline void __skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
776 {
777 	__skb_insert(newsk, old, old->next, list);
778 }
779 
780 /*
781  * remove sk_buff from list. _Must_ be called atomically, and with
782  * the list known..
783  */
784 extern void	   skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
785 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
786 {
787 	struct sk_buff *next, *prev;
788 
789 	list->qlen--;
790 	next	   = skb->next;
791 	prev	   = skb->prev;
792 	skb->next  = skb->prev = NULL;
793 	next->prev = prev;
794 	prev->next = next;
795 }
796 
797 
798 /* XXX: more streamlined implementation */
799 
800 /**
801  *	__skb_dequeue_tail - remove from the tail of the queue
802  *	@list: list to dequeue from
803  *
804  *	Remove the tail of the list. This function does not take any locks
805  *	so must be used with appropriate locks held only. The tail item is
806  *	returned or %NULL if the list is empty.
807  */
808 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
809 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
810 {
811 	struct sk_buff *skb = skb_peek_tail(list);
812 	if (skb)
813 		__skb_unlink(skb, list);
814 	return skb;
815 }
816 
817 
818 static inline int skb_is_nonlinear(const struct sk_buff *skb)
819 {
820 	return skb->data_len;
821 }
822 
823 static inline unsigned int skb_headlen(const struct sk_buff *skb)
824 {
825 	return skb->len - skb->data_len;
826 }
827 
828 static inline int skb_pagelen(const struct sk_buff *skb)
829 {
830 	int i, len = 0;
831 
832 	for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
833 		len += skb_shinfo(skb)->frags[i].size;
834 	return len + skb_headlen(skb);
835 }
836 
837 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
838 				      struct page *page, int off, int size)
839 {
840 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
841 
842 	frag->page		  = page;
843 	frag->page_offset	  = off;
844 	frag->size		  = size;
845 	skb_shinfo(skb)->nr_frags = i + 1;
846 }
847 
848 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
849 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->frag_list)
850 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
851 
852 #ifdef NET_SKBUFF_DATA_USES_OFFSET
853 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
854 {
855 	return skb->head + skb->tail;
856 }
857 
858 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
859 {
860 	skb->tail = skb->data - skb->head;
861 }
862 
863 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
864 {
865 	skb_reset_tail_pointer(skb);
866 	skb->tail += offset;
867 }
868 #else /* NET_SKBUFF_DATA_USES_OFFSET */
869 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
870 {
871 	return skb->tail;
872 }
873 
874 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
875 {
876 	skb->tail = skb->data;
877 }
878 
879 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
880 {
881 	skb->tail = skb->data + offset;
882 }
883 
884 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
885 
886 /*
887  *	Add data to an sk_buff
888  */
889 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
890 {
891 	unsigned char *tmp = skb_tail_pointer(skb);
892 	SKB_LINEAR_ASSERT(skb);
893 	skb->tail += len;
894 	skb->len  += len;
895 	return tmp;
896 }
897 
898 /**
899  *	skb_put - add data to a buffer
900  *	@skb: buffer to use
901  *	@len: amount of data to add
902  *
903  *	This function extends the used data area of the buffer. If this would
904  *	exceed the total buffer size the kernel will panic. A pointer to the
905  *	first byte of the extra data is returned.
906  */
907 static inline unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
908 {
909 	unsigned char *tmp = skb_tail_pointer(skb);
910 	SKB_LINEAR_ASSERT(skb);
911 	skb->tail += len;
912 	skb->len  += len;
913 	if (unlikely(skb->tail > skb->end))
914 		skb_over_panic(skb, len, current_text_addr());
915 	return tmp;
916 }
917 
918 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
919 {
920 	skb->data -= len;
921 	skb->len  += len;
922 	return skb->data;
923 }
924 
925 /**
926  *	skb_push - add data to the start of a buffer
927  *	@skb: buffer to use
928  *	@len: amount of data to add
929  *
930  *	This function extends the used data area of the buffer at the buffer
931  *	start. If this would exceed the total buffer headroom the kernel will
932  *	panic. A pointer to the first byte of the extra data is returned.
933  */
934 static inline unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
935 {
936 	skb->data -= len;
937 	skb->len  += len;
938 	if (unlikely(skb->data<skb->head))
939 		skb_under_panic(skb, len, current_text_addr());
940 	return skb->data;
941 }
942 
943 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
944 {
945 	skb->len -= len;
946 	BUG_ON(skb->len < skb->data_len);
947 	return skb->data += len;
948 }
949 
950 /**
951  *	skb_pull - remove data from the start of a buffer
952  *	@skb: buffer to use
953  *	@len: amount of data to remove
954  *
955  *	This function removes data from the start of a buffer, returning
956  *	the memory to the headroom. A pointer to the next data in the buffer
957  *	is returned. Once the data has been pulled future pushes will overwrite
958  *	the old data.
959  */
960 static inline unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
961 {
962 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
963 }
964 
965 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
966 
967 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
968 {
969 	if (len > skb_headlen(skb) &&
970 	    !__pskb_pull_tail(skb, len-skb_headlen(skb)))
971 		return NULL;
972 	skb->len -= len;
973 	return skb->data += len;
974 }
975 
976 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
977 {
978 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
979 }
980 
981 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
982 {
983 	if (likely(len <= skb_headlen(skb)))
984 		return 1;
985 	if (unlikely(len > skb->len))
986 		return 0;
987 	return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL;
988 }
989 
990 /**
991  *	skb_headroom - bytes at buffer head
992  *	@skb: buffer to check
993  *
994  *	Return the number of bytes of free space at the head of an &sk_buff.
995  */
996 static inline int skb_headroom(const struct sk_buff *skb)
997 {
998 	return skb->data - skb->head;
999 }
1000 
1001 /**
1002  *	skb_tailroom - bytes at buffer end
1003  *	@skb: buffer to check
1004  *
1005  *	Return the number of bytes of free space at the tail of an sk_buff
1006  */
1007 static inline int skb_tailroom(const struct sk_buff *skb)
1008 {
1009 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1010 }
1011 
1012 /**
1013  *	skb_reserve - adjust headroom
1014  *	@skb: buffer to alter
1015  *	@len: bytes to move
1016  *
1017  *	Increase the headroom of an empty &sk_buff by reducing the tail
1018  *	room. This is only allowed for an empty buffer.
1019  */
1020 static inline void skb_reserve(struct sk_buff *skb, int len)
1021 {
1022 	skb->data += len;
1023 	skb->tail += len;
1024 }
1025 
1026 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1027 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1028 {
1029 	return skb->head + skb->transport_header;
1030 }
1031 
1032 static inline void skb_reset_transport_header(struct sk_buff *skb)
1033 {
1034 	skb->transport_header = skb->data - skb->head;
1035 }
1036 
1037 static inline void skb_set_transport_header(struct sk_buff *skb,
1038 					    const int offset)
1039 {
1040 	skb_reset_transport_header(skb);
1041 	skb->transport_header += offset;
1042 }
1043 
1044 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1045 {
1046 	return skb->head + skb->network_header;
1047 }
1048 
1049 static inline void skb_reset_network_header(struct sk_buff *skb)
1050 {
1051 	skb->network_header = skb->data - skb->head;
1052 }
1053 
1054 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1055 {
1056 	skb_reset_network_header(skb);
1057 	skb->network_header += offset;
1058 }
1059 
1060 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1061 {
1062 	return skb->head + skb->mac_header;
1063 }
1064 
1065 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1066 {
1067 	return skb->mac_header != ~0U;
1068 }
1069 
1070 static inline void skb_reset_mac_header(struct sk_buff *skb)
1071 {
1072 	skb->mac_header = skb->data - skb->head;
1073 }
1074 
1075 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1076 {
1077 	skb_reset_mac_header(skb);
1078 	skb->mac_header += offset;
1079 }
1080 
1081 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1082 
1083 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1084 {
1085 	return skb->transport_header;
1086 }
1087 
1088 static inline void skb_reset_transport_header(struct sk_buff *skb)
1089 {
1090 	skb->transport_header = skb->data;
1091 }
1092 
1093 static inline void skb_set_transport_header(struct sk_buff *skb,
1094 					    const int offset)
1095 {
1096 	skb->transport_header = skb->data + offset;
1097 }
1098 
1099 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1100 {
1101 	return skb->network_header;
1102 }
1103 
1104 static inline void skb_reset_network_header(struct sk_buff *skb)
1105 {
1106 	skb->network_header = skb->data;
1107 }
1108 
1109 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1110 {
1111 	skb->network_header = skb->data + offset;
1112 }
1113 
1114 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1115 {
1116 	return skb->mac_header;
1117 }
1118 
1119 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1120 {
1121 	return skb->mac_header != NULL;
1122 }
1123 
1124 static inline void skb_reset_mac_header(struct sk_buff *skb)
1125 {
1126 	skb->mac_header = skb->data;
1127 }
1128 
1129 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1130 {
1131 	skb->mac_header = skb->data + offset;
1132 }
1133 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1134 
1135 static inline int skb_transport_offset(const struct sk_buff *skb)
1136 {
1137 	return skb_transport_header(skb) - skb->data;
1138 }
1139 
1140 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1141 {
1142 	return skb->transport_header - skb->network_header;
1143 }
1144 
1145 static inline int skb_network_offset(const struct sk_buff *skb)
1146 {
1147 	return skb_network_header(skb) - skb->data;
1148 }
1149 
1150 /*
1151  * CPUs often take a performance hit when accessing unaligned memory
1152  * locations. The actual performance hit varies, it can be small if the
1153  * hardware handles it or large if we have to take an exception and fix it
1154  * in software.
1155  *
1156  * Since an ethernet header is 14 bytes network drivers often end up with
1157  * the IP header at an unaligned offset. The IP header can be aligned by
1158  * shifting the start of the packet by 2 bytes. Drivers should do this
1159  * with:
1160  *
1161  * skb_reserve(NET_IP_ALIGN);
1162  *
1163  * The downside to this alignment of the IP header is that the DMA is now
1164  * unaligned. On some architectures the cost of an unaligned DMA is high
1165  * and this cost outweighs the gains made by aligning the IP header.
1166  *
1167  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1168  * to be overridden.
1169  */
1170 #ifndef NET_IP_ALIGN
1171 #define NET_IP_ALIGN	2
1172 #endif
1173 
1174 /*
1175  * The networking layer reserves some headroom in skb data (via
1176  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1177  * the header has to grow. In the default case, if the header has to grow
1178  * 16 bytes or less we avoid the reallocation.
1179  *
1180  * Unfortunately this headroom changes the DMA alignment of the resulting
1181  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1182  * on some architectures. An architecture can override this value,
1183  * perhaps setting it to a cacheline in size (since that will maintain
1184  * cacheline alignment of the DMA). It must be a power of 2.
1185  *
1186  * Various parts of the networking layer expect at least 16 bytes of
1187  * headroom, you should not reduce this.
1188  */
1189 #ifndef NET_SKB_PAD
1190 #define NET_SKB_PAD	16
1191 #endif
1192 
1193 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1194 
1195 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1196 {
1197 	if (unlikely(skb->data_len)) {
1198 		WARN_ON(1);
1199 		return;
1200 	}
1201 	skb->len = len;
1202 	skb_set_tail_pointer(skb, len);
1203 }
1204 
1205 /**
1206  *	skb_trim - remove end from a buffer
1207  *	@skb: buffer to alter
1208  *	@len: new length
1209  *
1210  *	Cut the length of a buffer down by removing data from the tail. If
1211  *	the buffer is already under the length specified it is not modified.
1212  *	The skb must be linear.
1213  */
1214 static inline void skb_trim(struct sk_buff *skb, unsigned int len)
1215 {
1216 	if (skb->len > len)
1217 		__skb_trim(skb, len);
1218 }
1219 
1220 
1221 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1222 {
1223 	if (skb->data_len)
1224 		return ___pskb_trim(skb, len);
1225 	__skb_trim(skb, len);
1226 	return 0;
1227 }
1228 
1229 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1230 {
1231 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1232 }
1233 
1234 /**
1235  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1236  *	@skb: buffer to alter
1237  *	@len: new length
1238  *
1239  *	This is identical to pskb_trim except that the caller knows that
1240  *	the skb is not cloned so we should never get an error due to out-
1241  *	of-memory.
1242  */
1243 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1244 {
1245 	int err = pskb_trim(skb, len);
1246 	BUG_ON(err);
1247 }
1248 
1249 /**
1250  *	skb_orphan - orphan a buffer
1251  *	@skb: buffer to orphan
1252  *
1253  *	If a buffer currently has an owner then we call the owner's
1254  *	destructor function and make the @skb unowned. The buffer continues
1255  *	to exist but is no longer charged to its former owner.
1256  */
1257 static inline void skb_orphan(struct sk_buff *skb)
1258 {
1259 	if (skb->destructor)
1260 		skb->destructor(skb);
1261 	skb->destructor = NULL;
1262 	skb->sk		= NULL;
1263 }
1264 
1265 /**
1266  *	__skb_queue_purge - empty a list
1267  *	@list: list to empty
1268  *
1269  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
1270  *	the list and one reference dropped. This function does not take the
1271  *	list lock and the caller must hold the relevant locks to use it.
1272  */
1273 extern void skb_queue_purge(struct sk_buff_head *list);
1274 static inline void __skb_queue_purge(struct sk_buff_head *list)
1275 {
1276 	struct sk_buff *skb;
1277 	while ((skb = __skb_dequeue(list)) != NULL)
1278 		kfree_skb(skb);
1279 }
1280 
1281 /**
1282  *	__dev_alloc_skb - allocate an skbuff for receiving
1283  *	@length: length to allocate
1284  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
1285  *
1286  *	Allocate a new &sk_buff and assign it a usage count of one. The
1287  *	buffer has unspecified headroom built in. Users should allocate
1288  *	the headroom they think they need without accounting for the
1289  *	built in space. The built in space is used for optimisations.
1290  *
1291  *	%NULL is returned if there is no free memory.
1292  */
1293 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1294 					      gfp_t gfp_mask)
1295 {
1296 	struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1297 	if (likely(skb))
1298 		skb_reserve(skb, NET_SKB_PAD);
1299 	return skb;
1300 }
1301 
1302 /**
1303  *	dev_alloc_skb - allocate an skbuff for receiving
1304  *	@length: length to allocate
1305  *
1306  *	Allocate a new &sk_buff and assign it a usage count of one. The
1307  *	buffer has unspecified headroom built in. Users should allocate
1308  *	the headroom they think they need without accounting for the
1309  *	built in space. The built in space is used for optimisations.
1310  *
1311  *	%NULL is returned if there is no free memory. Although this function
1312  *	allocates memory it can be called from an interrupt.
1313  */
1314 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
1315 {
1316 	return __dev_alloc_skb(length, GFP_ATOMIC);
1317 }
1318 
1319 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1320 		unsigned int length, gfp_t gfp_mask);
1321 
1322 /**
1323  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
1324  *	@dev: network device to receive on
1325  *	@length: length to allocate
1326  *
1327  *	Allocate a new &sk_buff and assign it a usage count of one. The
1328  *	buffer has unspecified headroom built in. Users should allocate
1329  *	the headroom they think they need without accounting for the
1330  *	built in space. The built in space is used for optimisations.
1331  *
1332  *	%NULL is returned if there is no free memory. Although this function
1333  *	allocates memory it can be called from an interrupt.
1334  */
1335 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1336 		unsigned int length)
1337 {
1338 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1339 }
1340 
1341 /**
1342  *	skb_clone_writable - is the header of a clone writable
1343  *	@skb: buffer to check
1344  *	@len: length up to which to write
1345  *
1346  *	Returns true if modifying the header part of the cloned buffer
1347  *	does not requires the data to be copied.
1348  */
1349 static inline int skb_clone_writable(struct sk_buff *skb, int len)
1350 {
1351 	return !skb_header_cloned(skb) &&
1352 	       skb_headroom(skb) + len <= skb->hdr_len;
1353 }
1354 
1355 /**
1356  *	skb_cow - copy header of skb when it is required
1357  *	@skb: buffer to cow
1358  *	@headroom: needed headroom
1359  *
1360  *	If the skb passed lacks sufficient headroom or its data part
1361  *	is shared, data is reallocated. If reallocation fails, an error
1362  *	is returned and original skb is not changed.
1363  *
1364  *	The result is skb with writable area skb->head...skb->tail
1365  *	and at least @headroom of space at head.
1366  */
1367 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1368 {
1369 	int delta = (headroom > NET_SKB_PAD ? headroom : NET_SKB_PAD) -
1370 			skb_headroom(skb);
1371 
1372 	if (delta < 0)
1373 		delta = 0;
1374 
1375 	if (delta || skb_cloned(skb))
1376 		return pskb_expand_head(skb, (delta + (NET_SKB_PAD-1)) &
1377 				~(NET_SKB_PAD-1), 0, GFP_ATOMIC);
1378 	return 0;
1379 }
1380 
1381 /**
1382  *	skb_padto	- pad an skbuff up to a minimal size
1383  *	@skb: buffer to pad
1384  *	@len: minimal length
1385  *
1386  *	Pads up a buffer to ensure the trailing bytes exist and are
1387  *	blanked. If the buffer already contains sufficient data it
1388  *	is untouched. Otherwise it is extended. Returns zero on
1389  *	success. The skb is freed on error.
1390  */
1391 
1392 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1393 {
1394 	unsigned int size = skb->len;
1395 	if (likely(size >= len))
1396 		return 0;
1397 	return skb_pad(skb, len-size);
1398 }
1399 
1400 static inline int skb_add_data(struct sk_buff *skb,
1401 			       char __user *from, int copy)
1402 {
1403 	const int off = skb->len;
1404 
1405 	if (skb->ip_summed == CHECKSUM_NONE) {
1406 		int err = 0;
1407 		__wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1408 							    copy, 0, &err);
1409 		if (!err) {
1410 			skb->csum = csum_block_add(skb->csum, csum, off);
1411 			return 0;
1412 		}
1413 	} else if (!copy_from_user(skb_put(skb, copy), from, copy))
1414 		return 0;
1415 
1416 	__skb_trim(skb, off);
1417 	return -EFAULT;
1418 }
1419 
1420 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1421 				   struct page *page, int off)
1422 {
1423 	if (i) {
1424 		struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1425 
1426 		return page == frag->page &&
1427 		       off == frag->page_offset + frag->size;
1428 	}
1429 	return 0;
1430 }
1431 
1432 static inline int __skb_linearize(struct sk_buff *skb)
1433 {
1434 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1435 }
1436 
1437 /**
1438  *	skb_linearize - convert paged skb to linear one
1439  *	@skb: buffer to linarize
1440  *
1441  *	If there is no free memory -ENOMEM is returned, otherwise zero
1442  *	is returned and the old skb data released.
1443  */
1444 static inline int skb_linearize(struct sk_buff *skb)
1445 {
1446 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1447 }
1448 
1449 /**
1450  *	skb_linearize_cow - make sure skb is linear and writable
1451  *	@skb: buffer to process
1452  *
1453  *	If there is no free memory -ENOMEM is returned, otherwise zero
1454  *	is returned and the old skb data released.
1455  */
1456 static inline int skb_linearize_cow(struct sk_buff *skb)
1457 {
1458 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1459 	       __skb_linearize(skb) : 0;
1460 }
1461 
1462 /**
1463  *	skb_postpull_rcsum - update checksum for received skb after pull
1464  *	@skb: buffer to update
1465  *	@start: start of data before pull
1466  *	@len: length of data pulled
1467  *
1468  *	After doing a pull on a received packet, you need to call this to
1469  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1470  *	CHECKSUM_NONE so that it can be recomputed from scratch.
1471  */
1472 
1473 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1474 				      const void *start, unsigned int len)
1475 {
1476 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1477 		skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1478 }
1479 
1480 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1481 
1482 /**
1483  *	pskb_trim_rcsum - trim received skb and update checksum
1484  *	@skb: buffer to trim
1485  *	@len: new length
1486  *
1487  *	This is exactly the same as pskb_trim except that it ensures the
1488  *	checksum of received packets are still valid after the operation.
1489  */
1490 
1491 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1492 {
1493 	if (likely(len >= skb->len))
1494 		return 0;
1495 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1496 		skb->ip_summed = CHECKSUM_NONE;
1497 	return __pskb_trim(skb, len);
1498 }
1499 
1500 #define skb_queue_walk(queue, skb) \
1501 		for (skb = (queue)->next;					\
1502 		     prefetch(skb->next), (skb != (struct sk_buff *)(queue));	\
1503 		     skb = skb->next)
1504 
1505 #define skb_queue_walk_safe(queue, skb, tmp)					\
1506 		for (skb = (queue)->next, tmp = skb->next;			\
1507 		     skb != (struct sk_buff *)(queue);				\
1508 		     skb = tmp, tmp = skb->next)
1509 
1510 #define skb_queue_reverse_walk(queue, skb) \
1511 		for (skb = (queue)->prev;					\
1512 		     prefetch(skb->prev), (skb != (struct sk_buff *)(queue));	\
1513 		     skb = skb->prev)
1514 
1515 
1516 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1517 					 int noblock, int *err);
1518 extern unsigned int    datagram_poll(struct file *file, struct socket *sock,
1519 				     struct poll_table_struct *wait);
1520 extern int	       skb_copy_datagram_iovec(const struct sk_buff *from,
1521 					       int offset, struct iovec *to,
1522 					       int size);
1523 extern int	       skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1524 							int hlen,
1525 							struct iovec *iov);
1526 extern void	       skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1527 extern void	       skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1528 					 unsigned int flags);
1529 extern __wsum	       skb_checksum(const struct sk_buff *skb, int offset,
1530 				    int len, __wsum csum);
1531 extern int	       skb_copy_bits(const struct sk_buff *skb, int offset,
1532 				     void *to, int len);
1533 extern int	       skb_store_bits(struct sk_buff *skb, int offset,
1534 				      const void *from, int len);
1535 extern __wsum	       skb_copy_and_csum_bits(const struct sk_buff *skb,
1536 					      int offset, u8 *to, int len,
1537 					      __wsum csum);
1538 extern void	       skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1539 extern void	       skb_split(struct sk_buff *skb,
1540 				 struct sk_buff *skb1, const u32 len);
1541 
1542 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
1543 
1544 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1545 				       int len, void *buffer)
1546 {
1547 	int hlen = skb_headlen(skb);
1548 
1549 	if (hlen - offset >= len)
1550 		return skb->data + offset;
1551 
1552 	if (skb_copy_bits(skb, offset, buffer, len) < 0)
1553 		return NULL;
1554 
1555 	return buffer;
1556 }
1557 
1558 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
1559 					     void *to,
1560 					     const unsigned int len)
1561 {
1562 	memcpy(to, skb->data, len);
1563 }
1564 
1565 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
1566 						    const int offset, void *to,
1567 						    const unsigned int len)
1568 {
1569 	memcpy(to, skb->data + offset, len);
1570 }
1571 
1572 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
1573 					   const void *from,
1574 					   const unsigned int len)
1575 {
1576 	memcpy(skb->data, from, len);
1577 }
1578 
1579 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
1580 						  const int offset,
1581 						  const void *from,
1582 						  const unsigned int len)
1583 {
1584 	memcpy(skb->data + offset, from, len);
1585 }
1586 
1587 extern void skb_init(void);
1588 
1589 /**
1590  *	skb_get_timestamp - get timestamp from a skb
1591  *	@skb: skb to get stamp from
1592  *	@stamp: pointer to struct timeval to store stamp in
1593  *
1594  *	Timestamps are stored in the skb as offsets to a base timestamp.
1595  *	This function converts the offset back to a struct timeval and stores
1596  *	it in stamp.
1597  */
1598 static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp)
1599 {
1600 	*stamp = ktime_to_timeval(skb->tstamp);
1601 }
1602 
1603 static inline void __net_timestamp(struct sk_buff *skb)
1604 {
1605 	skb->tstamp = ktime_get_real();
1606 }
1607 
1608 static inline ktime_t net_timedelta(ktime_t t)
1609 {
1610 	return ktime_sub(ktime_get_real(), t);
1611 }
1612 
1613 static inline ktime_t net_invalid_timestamp(void)
1614 {
1615 	return ktime_set(0, 0);
1616 }
1617 
1618 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
1619 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
1620 
1621 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
1622 {
1623 	return skb->ip_summed & CHECKSUM_UNNECESSARY;
1624 }
1625 
1626 /**
1627  *	skb_checksum_complete - Calculate checksum of an entire packet
1628  *	@skb: packet to process
1629  *
1630  *	This function calculates the checksum over the entire packet plus
1631  *	the value of skb->csum.  The latter can be used to supply the
1632  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
1633  *	checksum.
1634  *
1635  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
1636  *	this function can be used to verify that checksum on received
1637  *	packets.  In that case the function should return zero if the
1638  *	checksum is correct.  In particular, this function will return zero
1639  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1640  *	hardware has already verified the correctness of the checksum.
1641  */
1642 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
1643 {
1644 	return skb_csum_unnecessary(skb) ?
1645 	       0 : __skb_checksum_complete(skb);
1646 }
1647 
1648 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1649 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
1650 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1651 {
1652 	if (nfct && atomic_dec_and_test(&nfct->use))
1653 		nf_conntrack_destroy(nfct);
1654 }
1655 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1656 {
1657 	if (nfct)
1658 		atomic_inc(&nfct->use);
1659 }
1660 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
1661 {
1662 	if (skb)
1663 		atomic_inc(&skb->users);
1664 }
1665 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
1666 {
1667 	if (skb)
1668 		kfree_skb(skb);
1669 }
1670 #endif
1671 #ifdef CONFIG_BRIDGE_NETFILTER
1672 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1673 {
1674 	if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1675 		kfree(nf_bridge);
1676 }
1677 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1678 {
1679 	if (nf_bridge)
1680 		atomic_inc(&nf_bridge->use);
1681 }
1682 #endif /* CONFIG_BRIDGE_NETFILTER */
1683 static inline void nf_reset(struct sk_buff *skb)
1684 {
1685 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1686 	nf_conntrack_put(skb->nfct);
1687 	skb->nfct = NULL;
1688 	nf_conntrack_put_reasm(skb->nfct_reasm);
1689 	skb->nfct_reasm = NULL;
1690 #endif
1691 #ifdef CONFIG_BRIDGE_NETFILTER
1692 	nf_bridge_put(skb->nf_bridge);
1693 	skb->nf_bridge = NULL;
1694 #endif
1695 }
1696 
1697 /* Note: This doesn't put any conntrack and bridge info in dst. */
1698 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1699 {
1700 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1701 	dst->nfct = src->nfct;
1702 	nf_conntrack_get(src->nfct);
1703 	dst->nfctinfo = src->nfctinfo;
1704 	dst->nfct_reasm = src->nfct_reasm;
1705 	nf_conntrack_get_reasm(src->nfct_reasm);
1706 #endif
1707 #ifdef CONFIG_BRIDGE_NETFILTER
1708 	dst->nf_bridge  = src->nf_bridge;
1709 	nf_bridge_get(src->nf_bridge);
1710 #endif
1711 }
1712 
1713 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1714 {
1715 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1716 	nf_conntrack_put(dst->nfct);
1717 	nf_conntrack_put_reasm(dst->nfct_reasm);
1718 #endif
1719 #ifdef CONFIG_BRIDGE_NETFILTER
1720 	nf_bridge_put(dst->nf_bridge);
1721 #endif
1722 	__nf_copy(dst, src);
1723 }
1724 
1725 #ifdef CONFIG_NETWORK_SECMARK
1726 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1727 {
1728 	to->secmark = from->secmark;
1729 }
1730 
1731 static inline void skb_init_secmark(struct sk_buff *skb)
1732 {
1733 	skb->secmark = 0;
1734 }
1735 #else
1736 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1737 { }
1738 
1739 static inline void skb_init_secmark(struct sk_buff *skb)
1740 { }
1741 #endif
1742 
1743 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
1744 {
1745 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
1746 	skb->queue_mapping = queue_mapping;
1747 #endif
1748 }
1749 
1750 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
1751 {
1752 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
1753 	to->queue_mapping = from->queue_mapping;
1754 #endif
1755 }
1756 
1757 static inline int skb_is_gso(const struct sk_buff *skb)
1758 {
1759 	return skb_shinfo(skb)->gso_size;
1760 }
1761 
1762 static inline void skb_forward_csum(struct sk_buff *skb)
1763 {
1764 	/* Unfortunately we don't support this one.  Any brave souls? */
1765 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1766 		skb->ip_summed = CHECKSUM_NONE;
1767 }
1768 
1769 #endif	/* __KERNEL__ */
1770 #endif	/* _LINUX_SKBUFF_H */
1771