xref: /linux-6.15/include/linux/skbuff.h (revision aaa3e7fb)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  *	Definitions for the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:
6  *		Alan Cox, <[email protected]>
7  *		Florian La Roche, <[email protected]>
8  */
9 
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12 
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
22 
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/hrtimer.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/netdev_features.h>
33 #include <linux/sched.h>
34 #include <linux/sched/clock.h>
35 #include <net/flow_dissector.h>
36 #include <linux/splice.h>
37 #include <linux/in6.h>
38 #include <linux/if_packet.h>
39 #include <net/flow.h>
40 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
41 #include <linux/netfilter/nf_conntrack_common.h>
42 #endif
43 
44 /* The interface for checksum offload between the stack and networking drivers
45  * is as follows...
46  *
47  * A. IP checksum related features
48  *
49  * Drivers advertise checksum offload capabilities in the features of a device.
50  * From the stack's point of view these are capabilities offered by the driver.
51  * A driver typically only advertises features that it is capable of offloading
52  * to its device.
53  *
54  * The checksum related features are:
55  *
56  *	NETIF_F_HW_CSUM	- The driver (or its device) is able to compute one
57  *			  IP (one's complement) checksum for any combination
58  *			  of protocols or protocol layering. The checksum is
59  *			  computed and set in a packet per the CHECKSUM_PARTIAL
60  *			  interface (see below).
61  *
62  *	NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
63  *			  TCP or UDP packets over IPv4. These are specifically
64  *			  unencapsulated packets of the form IPv4|TCP or
65  *			  IPv4|UDP where the Protocol field in the IPv4 header
66  *			  is TCP or UDP. The IPv4 header may contain IP options.
67  *			  This feature cannot be set in features for a device
68  *			  with NETIF_F_HW_CSUM also set. This feature is being
69  *			  DEPRECATED (see below).
70  *
71  *	NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
72  *			  TCP or UDP packets over IPv6. These are specifically
73  *			  unencapsulated packets of the form IPv6|TCP or
74  *			  IPv4|UDP where the Next Header field in the IPv6
75  *			  header is either TCP or UDP. IPv6 extension headers
76  *			  are not supported with this feature. This feature
77  *			  cannot be set in features for a device with
78  *			  NETIF_F_HW_CSUM also set. This feature is being
79  *			  DEPRECATED (see below).
80  *
81  *	NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
82  *			 This flag is only used to disable the RX checksum
83  *			 feature for a device. The stack will accept receive
84  *			 checksum indication in packets received on a device
85  *			 regardless of whether NETIF_F_RXCSUM is set.
86  *
87  * B. Checksumming of received packets by device. Indication of checksum
88  *    verification is set in skb->ip_summed. Possible values are:
89  *
90  * CHECKSUM_NONE:
91  *
92  *   Device did not checksum this packet e.g. due to lack of capabilities.
93  *   The packet contains full (though not verified) checksum in packet but
94  *   not in skb->csum. Thus, skb->csum is undefined in this case.
95  *
96  * CHECKSUM_UNNECESSARY:
97  *
98  *   The hardware you're dealing with doesn't calculate the full checksum
99  *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
100  *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
101  *   if their checksums are okay. skb->csum is still undefined in this case
102  *   though. A driver or device must never modify the checksum field in the
103  *   packet even if checksum is verified.
104  *
105  *   CHECKSUM_UNNECESSARY is applicable to following protocols:
106  *     TCP: IPv6 and IPv4.
107  *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
108  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
109  *       may perform further validation in this case.
110  *     GRE: only if the checksum is present in the header.
111  *     SCTP: indicates the CRC in SCTP header has been validated.
112  *     FCOE: indicates the CRC in FC frame has been validated.
113  *
114  *   skb->csum_level indicates the number of consecutive checksums found in
115  *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
116  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
117  *   and a device is able to verify the checksums for UDP (possibly zero),
118  *   GRE (checksum flag is set) and TCP, skb->csum_level would be set to
119  *   two. If the device were only able to verify the UDP checksum and not
120  *   GRE, either because it doesn't support GRE checksum or because GRE
121  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
122  *   not considered in this case).
123  *
124  * CHECKSUM_COMPLETE:
125  *
126  *   This is the most generic way. The device supplied checksum of the _whole_
127  *   packet as seen by netif_rx() and fills in skb->csum. This means the
128  *   hardware doesn't need to parse L3/L4 headers to implement this.
129  *
130  *   Notes:
131  *   - Even if device supports only some protocols, but is able to produce
132  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
133  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
134  *
135  * CHECKSUM_PARTIAL:
136  *
137  *   A checksum is set up to be offloaded to a device as described in the
138  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
139  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
140  *   on the same host, or it may be set in the input path in GRO or remote
141  *   checksum offload. For the purposes of checksum verification, the checksum
142  *   referred to by skb->csum_start + skb->csum_offset and any preceding
143  *   checksums in the packet are considered verified. Any checksums in the
144  *   packet that are after the checksum being offloaded are not considered to
145  *   be verified.
146  *
147  * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
148  *    in the skb->ip_summed for a packet. Values are:
149  *
150  * CHECKSUM_PARTIAL:
151  *
152  *   The driver is required to checksum the packet as seen by hard_start_xmit()
153  *   from skb->csum_start up to the end, and to record/write the checksum at
154  *   offset skb->csum_start + skb->csum_offset. A driver may verify that the
155  *   csum_start and csum_offset values are valid values given the length and
156  *   offset of the packet, but it should not attempt to validate that the
157  *   checksum refers to a legitimate transport layer checksum -- it is the
158  *   purview of the stack to validate that csum_start and csum_offset are set
159  *   correctly.
160  *
161  *   When the stack requests checksum offload for a packet, the driver MUST
162  *   ensure that the checksum is set correctly. A driver can either offload the
163  *   checksum calculation to the device, or call skb_checksum_help (in the case
164  *   that the device does not support offload for a particular checksum).
165  *
166  *   NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
167  *   NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
168  *   checksum offload capability.
169  *   skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
170  *   on network device checksumming capabilities: if a packet does not match
171  *   them, skb_checksum_help or skb_crc32c_help (depending on the value of
172  *   csum_not_inet, see item D.) is called to resolve the checksum.
173  *
174  * CHECKSUM_NONE:
175  *
176  *   The skb was already checksummed by the protocol, or a checksum is not
177  *   required.
178  *
179  * CHECKSUM_UNNECESSARY:
180  *
181  *   This has the same meaning as CHECKSUM_NONE for checksum offload on
182  *   output.
183  *
184  * CHECKSUM_COMPLETE:
185  *   Not used in checksum output. If a driver observes a packet with this value
186  *   set in skbuff, it should treat the packet as if CHECKSUM_NONE were set.
187  *
188  * D. Non-IP checksum (CRC) offloads
189  *
190  *   NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
191  *     offloading the SCTP CRC in a packet. To perform this offload the stack
192  *     will set csum_start and csum_offset accordingly, set ip_summed to
193  *     CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
194  *     the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
195  *     A driver that supports both IP checksum offload and SCTP CRC32c offload
196  *     must verify which offload is configured for a packet by testing the
197  *     value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
198  *     CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
199  *
200  *   NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
201  *     offloading the FCOE CRC in a packet. To perform this offload the stack
202  *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
203  *     accordingly. Note that there is no indication in the skbuff that the
204  *     CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
205  *     both IP checksum offload and FCOE CRC offload must verify which offload
206  *     is configured for a packet, presumably by inspecting packet headers.
207  *
208  * E. Checksumming on output with GSO.
209  *
210  * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
211  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
212  * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
213  * part of the GSO operation is implied. If a checksum is being offloaded
214  * with GSO then ip_summed is CHECKSUM_PARTIAL, and both csum_start and
215  * csum_offset are set to refer to the outermost checksum being offloaded
216  * (two offloaded checksums are possible with UDP encapsulation).
217  */
218 
219 /* Don't change this without changing skb_csum_unnecessary! */
220 #define CHECKSUM_NONE		0
221 #define CHECKSUM_UNNECESSARY	1
222 #define CHECKSUM_COMPLETE	2
223 #define CHECKSUM_PARTIAL	3
224 
225 /* Maximum value in skb->csum_level */
226 #define SKB_MAX_CSUM_LEVEL	3
227 
228 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
229 #define SKB_WITH_OVERHEAD(X)	\
230 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
231 #define SKB_MAX_ORDER(X, ORDER) \
232 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
233 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
234 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
235 
236 /* return minimum truesize of one skb containing X bytes of data */
237 #define SKB_TRUESIZE(X) ((X) +						\
238 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
239 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
240 
241 struct ahash_request;
242 struct net_device;
243 struct scatterlist;
244 struct pipe_inode_info;
245 struct iov_iter;
246 struct napi_struct;
247 struct bpf_prog;
248 union bpf_attr;
249 struct skb_ext;
250 
251 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
252 struct nf_bridge_info {
253 	enum {
254 		BRNF_PROTO_UNCHANGED,
255 		BRNF_PROTO_8021Q,
256 		BRNF_PROTO_PPPOE
257 	} orig_proto:8;
258 	u8			pkt_otherhost:1;
259 	u8			in_prerouting:1;
260 	u8			bridged_dnat:1;
261 	__u16			frag_max_size;
262 	struct net_device	*physindev;
263 
264 	/* always valid & non-NULL from FORWARD on, for physdev match */
265 	struct net_device	*physoutdev;
266 	union {
267 		/* prerouting: detect dnat in orig/reply direction */
268 		__be32          ipv4_daddr;
269 		struct in6_addr ipv6_daddr;
270 
271 		/* after prerouting + nat detected: store original source
272 		 * mac since neigh resolution overwrites it, only used while
273 		 * skb is out in neigh layer.
274 		 */
275 		char neigh_header[8];
276 	};
277 };
278 #endif
279 
280 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
281 /* Chain in tc_skb_ext will be used to share the tc chain with
282  * ovs recirc_id. It will be set to the current chain by tc
283  * and read by ovs to recirc_id.
284  */
285 struct tc_skb_ext {
286 	__u32 chain;
287 	__u16 mru;
288 };
289 #endif
290 
291 struct sk_buff_head {
292 	/* These two members must be first. */
293 	struct sk_buff	*next;
294 	struct sk_buff	*prev;
295 
296 	__u32		qlen;
297 	spinlock_t	lock;
298 };
299 
300 struct sk_buff;
301 
302 /* To allow 64K frame to be packed as single skb without frag_list we
303  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
304  * buffers which do not start on a page boundary.
305  *
306  * Since GRO uses frags we allocate at least 16 regardless of page
307  * size.
308  */
309 #if (65536/PAGE_SIZE + 1) < 16
310 #define MAX_SKB_FRAGS 16UL
311 #else
312 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
313 #endif
314 extern int sysctl_max_skb_frags;
315 
316 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
317  * segment using its current segmentation instead.
318  */
319 #define GSO_BY_FRAGS	0xFFFF
320 
321 typedef struct bio_vec skb_frag_t;
322 
323 /**
324  * skb_frag_size() - Returns the size of a skb fragment
325  * @frag: skb fragment
326  */
327 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
328 {
329 	return frag->bv_len;
330 }
331 
332 /**
333  * skb_frag_size_set() - Sets the size of a skb fragment
334  * @frag: skb fragment
335  * @size: size of fragment
336  */
337 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
338 {
339 	frag->bv_len = size;
340 }
341 
342 /**
343  * skb_frag_size_add() - Increments the size of a skb fragment by @delta
344  * @frag: skb fragment
345  * @delta: value to add
346  */
347 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
348 {
349 	frag->bv_len += delta;
350 }
351 
352 /**
353  * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
354  * @frag: skb fragment
355  * @delta: value to subtract
356  */
357 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
358 {
359 	frag->bv_len -= delta;
360 }
361 
362 /**
363  * skb_frag_must_loop - Test if %p is a high memory page
364  * @p: fragment's page
365  */
366 static inline bool skb_frag_must_loop(struct page *p)
367 {
368 #if defined(CONFIG_HIGHMEM)
369 	if (PageHighMem(p))
370 		return true;
371 #endif
372 	return false;
373 }
374 
375 /**
376  *	skb_frag_foreach_page - loop over pages in a fragment
377  *
378  *	@f:		skb frag to operate on
379  *	@f_off:		offset from start of f->bv_page
380  *	@f_len:		length from f_off to loop over
381  *	@p:		(temp var) current page
382  *	@p_off:		(temp var) offset from start of current page,
383  *	                           non-zero only on first page.
384  *	@p_len:		(temp var) length in current page,
385  *				   < PAGE_SIZE only on first and last page.
386  *	@copied:	(temp var) length so far, excluding current p_len.
387  *
388  *	A fragment can hold a compound page, in which case per-page
389  *	operations, notably kmap_atomic, must be called for each
390  *	regular page.
391  */
392 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
393 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
394 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
395 	     p_len = skb_frag_must_loop(p) ?				\
396 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
397 	     copied = 0;						\
398 	     copied < f_len;						\
399 	     copied += p_len, p++, p_off = 0,				\
400 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
401 
402 #define HAVE_HW_TIME_STAMP
403 
404 /**
405  * struct skb_shared_hwtstamps - hardware time stamps
406  * @hwtstamp:	hardware time stamp transformed into duration
407  *		since arbitrary point in time
408  *
409  * Software time stamps generated by ktime_get_real() are stored in
410  * skb->tstamp.
411  *
412  * hwtstamps can only be compared against other hwtstamps from
413  * the same device.
414  *
415  * This structure is attached to packets as part of the
416  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
417  */
418 struct skb_shared_hwtstamps {
419 	ktime_t	hwtstamp;
420 };
421 
422 /* Definitions for tx_flags in struct skb_shared_info */
423 enum {
424 	/* generate hardware time stamp */
425 	SKBTX_HW_TSTAMP = 1 << 0,
426 
427 	/* generate software time stamp when queueing packet to NIC */
428 	SKBTX_SW_TSTAMP = 1 << 1,
429 
430 	/* device driver is going to provide hardware time stamp */
431 	SKBTX_IN_PROGRESS = 1 << 2,
432 
433 	/* device driver supports TX zero-copy buffers */
434 	SKBTX_DEV_ZEROCOPY = 1 << 3,
435 
436 	/* generate wifi status information (where possible) */
437 	SKBTX_WIFI_STATUS = 1 << 4,
438 
439 	/* This indicates at least one fragment might be overwritten
440 	 * (as in vmsplice(), sendfile() ...)
441 	 * If we need to compute a TX checksum, we'll need to copy
442 	 * all frags to avoid possible bad checksum
443 	 */
444 	SKBTX_SHARED_FRAG = 1 << 5,
445 
446 	/* generate software time stamp when entering packet scheduling */
447 	SKBTX_SCHED_TSTAMP = 1 << 6,
448 };
449 
450 #define SKBTX_ZEROCOPY_FRAG	(SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG)
451 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
452 				 SKBTX_SCHED_TSTAMP)
453 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
454 
455 /*
456  * The callback notifies userspace to release buffers when skb DMA is done in
457  * lower device, the skb last reference should be 0 when calling this.
458  * The zerocopy_success argument is true if zero copy transmit occurred,
459  * false on data copy or out of memory error caused by data copy attempt.
460  * The ctx field is used to track device context.
461  * The desc field is used to track userspace buffer index.
462  */
463 struct ubuf_info {
464 	void (*callback)(struct ubuf_info *, bool zerocopy_success);
465 	union {
466 		struct {
467 			unsigned long desc;
468 			void *ctx;
469 		};
470 		struct {
471 			u32 id;
472 			u16 len;
473 			u16 zerocopy:1;
474 			u32 bytelen;
475 		};
476 	};
477 	refcount_t refcnt;
478 
479 	struct mmpin {
480 		struct user_struct *user;
481 		unsigned int num_pg;
482 	} mmp;
483 };
484 
485 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
486 
487 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
488 void mm_unaccount_pinned_pages(struct mmpin *mmp);
489 
490 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size);
491 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
492 					struct ubuf_info *uarg);
493 
494 static inline void sock_zerocopy_get(struct ubuf_info *uarg)
495 {
496 	refcount_inc(&uarg->refcnt);
497 }
498 
499 void sock_zerocopy_put(struct ubuf_info *uarg);
500 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
501 
502 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success);
503 
504 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len);
505 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
506 			     struct msghdr *msg, int len,
507 			     struct ubuf_info *uarg);
508 
509 /* This data is invariant across clones and lives at
510  * the end of the header data, ie. at skb->end.
511  */
512 struct skb_shared_info {
513 	__u8		__unused;
514 	__u8		meta_len;
515 	__u8		nr_frags;
516 	__u8		tx_flags;
517 	unsigned short	gso_size;
518 	/* Warning: this field is not always filled in (UFO)! */
519 	unsigned short	gso_segs;
520 	struct sk_buff	*frag_list;
521 	struct skb_shared_hwtstamps hwtstamps;
522 	unsigned int	gso_type;
523 	u32		tskey;
524 
525 	/*
526 	 * Warning : all fields before dataref are cleared in __alloc_skb()
527 	 */
528 	atomic_t	dataref;
529 
530 	/* Intermediate layers must ensure that destructor_arg
531 	 * remains valid until skb destructor */
532 	void *		destructor_arg;
533 
534 	/* must be last field, see pskb_expand_head() */
535 	skb_frag_t	frags[MAX_SKB_FRAGS];
536 };
537 
538 /* We divide dataref into two halves.  The higher 16 bits hold references
539  * to the payload part of skb->data.  The lower 16 bits hold references to
540  * the entire skb->data.  A clone of a headerless skb holds the length of
541  * the header in skb->hdr_len.
542  *
543  * All users must obey the rule that the skb->data reference count must be
544  * greater than or equal to the payload reference count.
545  *
546  * Holding a reference to the payload part means that the user does not
547  * care about modifications to the header part of skb->data.
548  */
549 #define SKB_DATAREF_SHIFT 16
550 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
551 
552 
553 enum {
554 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
555 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
556 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
557 };
558 
559 enum {
560 	SKB_GSO_TCPV4 = 1 << 0,
561 
562 	/* This indicates the skb is from an untrusted source. */
563 	SKB_GSO_DODGY = 1 << 1,
564 
565 	/* This indicates the tcp segment has CWR set. */
566 	SKB_GSO_TCP_ECN = 1 << 2,
567 
568 	SKB_GSO_TCP_FIXEDID = 1 << 3,
569 
570 	SKB_GSO_TCPV6 = 1 << 4,
571 
572 	SKB_GSO_FCOE = 1 << 5,
573 
574 	SKB_GSO_GRE = 1 << 6,
575 
576 	SKB_GSO_GRE_CSUM = 1 << 7,
577 
578 	SKB_GSO_IPXIP4 = 1 << 8,
579 
580 	SKB_GSO_IPXIP6 = 1 << 9,
581 
582 	SKB_GSO_UDP_TUNNEL = 1 << 10,
583 
584 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
585 
586 	SKB_GSO_PARTIAL = 1 << 12,
587 
588 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
589 
590 	SKB_GSO_SCTP = 1 << 14,
591 
592 	SKB_GSO_ESP = 1 << 15,
593 
594 	SKB_GSO_UDP = 1 << 16,
595 
596 	SKB_GSO_UDP_L4 = 1 << 17,
597 
598 	SKB_GSO_FRAGLIST = 1 << 18,
599 };
600 
601 #if BITS_PER_LONG > 32
602 #define NET_SKBUFF_DATA_USES_OFFSET 1
603 #endif
604 
605 #ifdef NET_SKBUFF_DATA_USES_OFFSET
606 typedef unsigned int sk_buff_data_t;
607 #else
608 typedef unsigned char *sk_buff_data_t;
609 #endif
610 
611 /**
612  *	struct sk_buff - socket buffer
613  *	@next: Next buffer in list
614  *	@prev: Previous buffer in list
615  *	@tstamp: Time we arrived/left
616  *	@skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
617  *		for retransmit timer
618  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
619  *	@list: queue head
620  *	@sk: Socket we are owned by
621  *	@ip_defrag_offset: (aka @sk) alternate use of @sk, used in
622  *		fragmentation management
623  *	@dev: Device we arrived on/are leaving by
624  *	@dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
625  *	@cb: Control buffer. Free for use by every layer. Put private vars here
626  *	@_skb_refdst: destination entry (with norefcount bit)
627  *	@sp: the security path, used for xfrm
628  *	@len: Length of actual data
629  *	@data_len: Data length
630  *	@mac_len: Length of link layer header
631  *	@hdr_len: writable header length of cloned skb
632  *	@csum: Checksum (must include start/offset pair)
633  *	@csum_start: Offset from skb->head where checksumming should start
634  *	@csum_offset: Offset from csum_start where checksum should be stored
635  *	@priority: Packet queueing priority
636  *	@ignore_df: allow local fragmentation
637  *	@cloned: Head may be cloned (check refcnt to be sure)
638  *	@ip_summed: Driver fed us an IP checksum
639  *	@nohdr: Payload reference only, must not modify header
640  *	@pkt_type: Packet class
641  *	@fclone: skbuff clone status
642  *	@ipvs_property: skbuff is owned by ipvs
643  *	@inner_protocol_type: whether the inner protocol is
644  *		ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
645  *	@remcsum_offload: remote checksum offload is enabled
646  *	@offload_fwd_mark: Packet was L2-forwarded in hardware
647  *	@offload_l3_fwd_mark: Packet was L3-forwarded in hardware
648  *	@tc_skip_classify: do not classify packet. set by IFB device
649  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
650  *	@redirected: packet was redirected by packet classifier
651  *	@from_ingress: packet was redirected from the ingress path
652  *	@peeked: this packet has been seen already, so stats have been
653  *		done for it, don't do them again
654  *	@nf_trace: netfilter packet trace flag
655  *	@protocol: Packet protocol from driver
656  *	@destructor: Destruct function
657  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
658  *	@_nfct: Associated connection, if any (with nfctinfo bits)
659  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
660  *	@skb_iif: ifindex of device we arrived on
661  *	@tc_index: Traffic control index
662  *	@hash: the packet hash
663  *	@queue_mapping: Queue mapping for multiqueue devices
664  *	@head_frag: skb was allocated from page fragments,
665  *		not allocated by kmalloc() or vmalloc().
666  *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
667  *	@active_extensions: active extensions (skb_ext_id types)
668  *	@ndisc_nodetype: router type (from link layer)
669  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
670  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
671  *		ports.
672  *	@sw_hash: indicates hash was computed in software stack
673  *	@wifi_acked_valid: wifi_acked was set
674  *	@wifi_acked: whether frame was acked on wifi or not
675  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
676  *	@encapsulation: indicates the inner headers in the skbuff are valid
677  *	@encap_hdr_csum: software checksum is needed
678  *	@csum_valid: checksum is already valid
679  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
680  *	@csum_complete_sw: checksum was completed by software
681  *	@csum_level: indicates the number of consecutive checksums found in
682  *		the packet minus one that have been verified as
683  *		CHECKSUM_UNNECESSARY (max 3)
684  *	@dst_pending_confirm: need to confirm neighbour
685  *	@decrypted: Decrypted SKB
686  *	@napi_id: id of the NAPI struct this skb came from
687  *	@sender_cpu: (aka @napi_id) source CPU in XPS
688  *	@secmark: security marking
689  *	@mark: Generic packet mark
690  *	@reserved_tailroom: (aka @mark) number of bytes of free space available
691  *		at the tail of an sk_buff
692  *	@vlan_present: VLAN tag is present
693  *	@vlan_proto: vlan encapsulation protocol
694  *	@vlan_tci: vlan tag control information
695  *	@inner_protocol: Protocol (encapsulation)
696  *	@inner_ipproto: (aka @inner_protocol) stores ipproto when
697  *		skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
698  *	@inner_transport_header: Inner transport layer header (encapsulation)
699  *	@inner_network_header: Network layer header (encapsulation)
700  *	@inner_mac_header: Link layer header (encapsulation)
701  *	@transport_header: Transport layer header
702  *	@network_header: Network layer header
703  *	@mac_header: Link layer header
704  *	@tail: Tail pointer
705  *	@end: End pointer
706  *	@head: Head of buffer
707  *	@data: Data head pointer
708  *	@truesize: Buffer size
709  *	@users: User count - see {datagram,tcp}.c
710  *	@extensions: allocated extensions, valid if active_extensions is nonzero
711  */
712 
713 struct sk_buff {
714 	union {
715 		struct {
716 			/* These two members must be first. */
717 			struct sk_buff		*next;
718 			struct sk_buff		*prev;
719 
720 			union {
721 				struct net_device	*dev;
722 				/* Some protocols might use this space to store information,
723 				 * while device pointer would be NULL.
724 				 * UDP receive path is one user.
725 				 */
726 				unsigned long		dev_scratch;
727 			};
728 		};
729 		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
730 		struct list_head	list;
731 	};
732 
733 	union {
734 		struct sock		*sk;
735 		int			ip_defrag_offset;
736 	};
737 
738 	union {
739 		ktime_t		tstamp;
740 		u64		skb_mstamp_ns; /* earliest departure time */
741 	};
742 	/*
743 	 * This is the control buffer. It is free to use for every
744 	 * layer. Please put your private variables there. If you
745 	 * want to keep them across layers you have to do a skb_clone()
746 	 * first. This is owned by whoever has the skb queued ATM.
747 	 */
748 	char			cb[48] __aligned(8);
749 
750 	union {
751 		struct {
752 			unsigned long	_skb_refdst;
753 			void		(*destructor)(struct sk_buff *skb);
754 		};
755 		struct list_head	tcp_tsorted_anchor;
756 	};
757 
758 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
759 	unsigned long		 _nfct;
760 #endif
761 	unsigned int		len,
762 				data_len;
763 	__u16			mac_len,
764 				hdr_len;
765 
766 	/* Following fields are _not_ copied in __copy_skb_header()
767 	 * Note that queue_mapping is here mostly to fill a hole.
768 	 */
769 	__u16			queue_mapping;
770 
771 /* if you move cloned around you also must adapt those constants */
772 #ifdef __BIG_ENDIAN_BITFIELD
773 #define CLONED_MASK	(1 << 7)
774 #else
775 #define CLONED_MASK	1
776 #endif
777 #define CLONED_OFFSET()		offsetof(struct sk_buff, __cloned_offset)
778 
779 	/* private: */
780 	__u8			__cloned_offset[0];
781 	/* public: */
782 	__u8			cloned:1,
783 				nohdr:1,
784 				fclone:2,
785 				peeked:1,
786 				head_frag:1,
787 				pfmemalloc:1;
788 #ifdef CONFIG_SKB_EXTENSIONS
789 	__u8			active_extensions;
790 #endif
791 	/* fields enclosed in headers_start/headers_end are copied
792 	 * using a single memcpy() in __copy_skb_header()
793 	 */
794 	/* private: */
795 	__u32			headers_start[0];
796 	/* public: */
797 
798 /* if you move pkt_type around you also must adapt those constants */
799 #ifdef __BIG_ENDIAN_BITFIELD
800 #define PKT_TYPE_MAX	(7 << 5)
801 #else
802 #define PKT_TYPE_MAX	7
803 #endif
804 #define PKT_TYPE_OFFSET()	offsetof(struct sk_buff, __pkt_type_offset)
805 
806 	/* private: */
807 	__u8			__pkt_type_offset[0];
808 	/* public: */
809 	__u8			pkt_type:3;
810 	__u8			ignore_df:1;
811 	__u8			nf_trace:1;
812 	__u8			ip_summed:2;
813 	__u8			ooo_okay:1;
814 
815 	__u8			l4_hash:1;
816 	__u8			sw_hash:1;
817 	__u8			wifi_acked_valid:1;
818 	__u8			wifi_acked:1;
819 	__u8			no_fcs:1;
820 	/* Indicates the inner headers are valid in the skbuff. */
821 	__u8			encapsulation:1;
822 	__u8			encap_hdr_csum:1;
823 	__u8			csum_valid:1;
824 
825 #ifdef __BIG_ENDIAN_BITFIELD
826 #define PKT_VLAN_PRESENT_BIT	7
827 #else
828 #define PKT_VLAN_PRESENT_BIT	0
829 #endif
830 #define PKT_VLAN_PRESENT_OFFSET()	offsetof(struct sk_buff, __pkt_vlan_present_offset)
831 	/* private: */
832 	__u8			__pkt_vlan_present_offset[0];
833 	/* public: */
834 	__u8			vlan_present:1;
835 	__u8			csum_complete_sw:1;
836 	__u8			csum_level:2;
837 	__u8			csum_not_inet:1;
838 	__u8			dst_pending_confirm:1;
839 #ifdef CONFIG_IPV6_NDISC_NODETYPE
840 	__u8			ndisc_nodetype:2;
841 #endif
842 
843 	__u8			ipvs_property:1;
844 	__u8			inner_protocol_type:1;
845 	__u8			remcsum_offload:1;
846 #ifdef CONFIG_NET_SWITCHDEV
847 	__u8			offload_fwd_mark:1;
848 	__u8			offload_l3_fwd_mark:1;
849 #endif
850 #ifdef CONFIG_NET_CLS_ACT
851 	__u8			tc_skip_classify:1;
852 	__u8			tc_at_ingress:1;
853 #endif
854 #ifdef CONFIG_NET_REDIRECT
855 	__u8			redirected:1;
856 	__u8			from_ingress:1;
857 #endif
858 #ifdef CONFIG_TLS_DEVICE
859 	__u8			decrypted:1;
860 #endif
861 
862 #ifdef CONFIG_NET_SCHED
863 	__u16			tc_index;	/* traffic control index */
864 #endif
865 
866 	union {
867 		__wsum		csum;
868 		struct {
869 			__u16	csum_start;
870 			__u16	csum_offset;
871 		};
872 	};
873 	__u32			priority;
874 	int			skb_iif;
875 	__u32			hash;
876 	__be16			vlan_proto;
877 	__u16			vlan_tci;
878 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
879 	union {
880 		unsigned int	napi_id;
881 		unsigned int	sender_cpu;
882 	};
883 #endif
884 #ifdef CONFIG_NETWORK_SECMARK
885 	__u32		secmark;
886 #endif
887 
888 	union {
889 		__u32		mark;
890 		__u32		reserved_tailroom;
891 	};
892 
893 	union {
894 		__be16		inner_protocol;
895 		__u8		inner_ipproto;
896 	};
897 
898 	__u16			inner_transport_header;
899 	__u16			inner_network_header;
900 	__u16			inner_mac_header;
901 
902 	__be16			protocol;
903 	__u16			transport_header;
904 	__u16			network_header;
905 	__u16			mac_header;
906 
907 	/* private: */
908 	__u32			headers_end[0];
909 	/* public: */
910 
911 	/* These elements must be at the end, see alloc_skb() for details.  */
912 	sk_buff_data_t		tail;
913 	sk_buff_data_t		end;
914 	unsigned char		*head,
915 				*data;
916 	unsigned int		truesize;
917 	refcount_t		users;
918 
919 #ifdef CONFIG_SKB_EXTENSIONS
920 	/* only useable after checking ->active_extensions != 0 */
921 	struct skb_ext		*extensions;
922 #endif
923 };
924 
925 #ifdef __KERNEL__
926 /*
927  *	Handling routines are only of interest to the kernel
928  */
929 
930 #define SKB_ALLOC_FCLONE	0x01
931 #define SKB_ALLOC_RX		0x02
932 #define SKB_ALLOC_NAPI		0x04
933 
934 /**
935  * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
936  * @skb: buffer
937  */
938 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
939 {
940 	return unlikely(skb->pfmemalloc);
941 }
942 
943 /*
944  * skb might have a dst pointer attached, refcounted or not.
945  * _skb_refdst low order bit is set if refcount was _not_ taken
946  */
947 #define SKB_DST_NOREF	1UL
948 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
949 
950 /**
951  * skb_dst - returns skb dst_entry
952  * @skb: buffer
953  *
954  * Returns skb dst_entry, regardless of reference taken or not.
955  */
956 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
957 {
958 	/* If refdst was not refcounted, check we still are in a
959 	 * rcu_read_lock section
960 	 */
961 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
962 		!rcu_read_lock_held() &&
963 		!rcu_read_lock_bh_held());
964 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
965 }
966 
967 /**
968  * skb_dst_set - sets skb dst
969  * @skb: buffer
970  * @dst: dst entry
971  *
972  * Sets skb dst, assuming a reference was taken on dst and should
973  * be released by skb_dst_drop()
974  */
975 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
976 {
977 	skb->_skb_refdst = (unsigned long)dst;
978 }
979 
980 /**
981  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
982  * @skb: buffer
983  * @dst: dst entry
984  *
985  * Sets skb dst, assuming a reference was not taken on dst.
986  * If dst entry is cached, we do not take reference and dst_release
987  * will be avoided by refdst_drop. If dst entry is not cached, we take
988  * reference, so that last dst_release can destroy the dst immediately.
989  */
990 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
991 {
992 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
993 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
994 }
995 
996 /**
997  * skb_dst_is_noref - Test if skb dst isn't refcounted
998  * @skb: buffer
999  */
1000 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1001 {
1002 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1003 }
1004 
1005 /**
1006  * skb_rtable - Returns the skb &rtable
1007  * @skb: buffer
1008  */
1009 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
1010 {
1011 	return (struct rtable *)skb_dst(skb);
1012 }
1013 
1014 /* For mangling skb->pkt_type from user space side from applications
1015  * such as nft, tc, etc, we only allow a conservative subset of
1016  * possible pkt_types to be set.
1017 */
1018 static inline bool skb_pkt_type_ok(u32 ptype)
1019 {
1020 	return ptype <= PACKET_OTHERHOST;
1021 }
1022 
1023 /**
1024  * skb_napi_id - Returns the skb's NAPI id
1025  * @skb: buffer
1026  */
1027 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1028 {
1029 #ifdef CONFIG_NET_RX_BUSY_POLL
1030 	return skb->napi_id;
1031 #else
1032 	return 0;
1033 #endif
1034 }
1035 
1036 /**
1037  * skb_unref - decrement the skb's reference count
1038  * @skb: buffer
1039  *
1040  * Returns true if we can free the skb.
1041  */
1042 static inline bool skb_unref(struct sk_buff *skb)
1043 {
1044 	if (unlikely(!skb))
1045 		return false;
1046 	if (likely(refcount_read(&skb->users) == 1))
1047 		smp_rmb();
1048 	else if (likely(!refcount_dec_and_test(&skb->users)))
1049 		return false;
1050 
1051 	return true;
1052 }
1053 
1054 void skb_release_head_state(struct sk_buff *skb);
1055 void kfree_skb(struct sk_buff *skb);
1056 void kfree_skb_list(struct sk_buff *segs);
1057 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1058 void skb_tx_error(struct sk_buff *skb);
1059 void consume_skb(struct sk_buff *skb);
1060 void __consume_stateless_skb(struct sk_buff *skb);
1061 void  __kfree_skb(struct sk_buff *skb);
1062 extern struct kmem_cache *skbuff_head_cache;
1063 
1064 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1065 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1066 		      bool *fragstolen, int *delta_truesize);
1067 
1068 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1069 			    int node);
1070 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1071 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1072 struct sk_buff *build_skb_around(struct sk_buff *skb,
1073 				 void *data, unsigned int frag_size);
1074 
1075 /**
1076  * alloc_skb - allocate a network buffer
1077  * @size: size to allocate
1078  * @priority: allocation mask
1079  *
1080  * This function is a convenient wrapper around __alloc_skb().
1081  */
1082 static inline struct sk_buff *alloc_skb(unsigned int size,
1083 					gfp_t priority)
1084 {
1085 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1086 }
1087 
1088 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1089 				     unsigned long data_len,
1090 				     int max_page_order,
1091 				     int *errcode,
1092 				     gfp_t gfp_mask);
1093 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1094 
1095 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1096 struct sk_buff_fclones {
1097 	struct sk_buff	skb1;
1098 
1099 	struct sk_buff	skb2;
1100 
1101 	refcount_t	fclone_ref;
1102 };
1103 
1104 /**
1105  *	skb_fclone_busy - check if fclone is busy
1106  *	@sk: socket
1107  *	@skb: buffer
1108  *
1109  * Returns true if skb is a fast clone, and its clone is not freed.
1110  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1111  * so we also check that this didnt happen.
1112  */
1113 static inline bool skb_fclone_busy(const struct sock *sk,
1114 				   const struct sk_buff *skb)
1115 {
1116 	const struct sk_buff_fclones *fclones;
1117 
1118 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1119 
1120 	return skb->fclone == SKB_FCLONE_ORIG &&
1121 	       refcount_read(&fclones->fclone_ref) > 1 &&
1122 	       fclones->skb2.sk == sk;
1123 }
1124 
1125 /**
1126  * alloc_skb_fclone - allocate a network buffer from fclone cache
1127  * @size: size to allocate
1128  * @priority: allocation mask
1129  *
1130  * This function is a convenient wrapper around __alloc_skb().
1131  */
1132 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1133 					       gfp_t priority)
1134 {
1135 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1136 }
1137 
1138 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1139 void skb_headers_offset_update(struct sk_buff *skb, int off);
1140 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1141 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1142 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1143 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1144 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1145 				   gfp_t gfp_mask, bool fclone);
1146 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1147 					  gfp_t gfp_mask)
1148 {
1149 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1150 }
1151 
1152 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1153 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1154 				     unsigned int headroom);
1155 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1156 				int newtailroom, gfp_t priority);
1157 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1158 				     int offset, int len);
1159 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1160 			      int offset, int len);
1161 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1162 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1163 
1164 /**
1165  *	skb_pad			-	zero pad the tail of an skb
1166  *	@skb: buffer to pad
1167  *	@pad: space to pad
1168  *
1169  *	Ensure that a buffer is followed by a padding area that is zero
1170  *	filled. Used by network drivers which may DMA or transfer data
1171  *	beyond the buffer end onto the wire.
1172  *
1173  *	May return error in out of memory cases. The skb is freed on error.
1174  */
1175 static inline int skb_pad(struct sk_buff *skb, int pad)
1176 {
1177 	return __skb_pad(skb, pad, true);
1178 }
1179 #define dev_kfree_skb(a)	consume_skb(a)
1180 
1181 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1182 			 int offset, size_t size);
1183 
1184 struct skb_seq_state {
1185 	__u32		lower_offset;
1186 	__u32		upper_offset;
1187 	__u32		frag_idx;
1188 	__u32		stepped_offset;
1189 	struct sk_buff	*root_skb;
1190 	struct sk_buff	*cur_skb;
1191 	__u8		*frag_data;
1192 };
1193 
1194 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1195 			  unsigned int to, struct skb_seq_state *st);
1196 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1197 			  struct skb_seq_state *st);
1198 void skb_abort_seq_read(struct skb_seq_state *st);
1199 
1200 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1201 			   unsigned int to, struct ts_config *config);
1202 
1203 /*
1204  * Packet hash types specify the type of hash in skb_set_hash.
1205  *
1206  * Hash types refer to the protocol layer addresses which are used to
1207  * construct a packet's hash. The hashes are used to differentiate or identify
1208  * flows of the protocol layer for the hash type. Hash types are either
1209  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1210  *
1211  * Properties of hashes:
1212  *
1213  * 1) Two packets in different flows have different hash values
1214  * 2) Two packets in the same flow should have the same hash value
1215  *
1216  * A hash at a higher layer is considered to be more specific. A driver should
1217  * set the most specific hash possible.
1218  *
1219  * A driver cannot indicate a more specific hash than the layer at which a hash
1220  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1221  *
1222  * A driver may indicate a hash level which is less specific than the
1223  * actual layer the hash was computed on. For instance, a hash computed
1224  * at L4 may be considered an L3 hash. This should only be done if the
1225  * driver can't unambiguously determine that the HW computed the hash at
1226  * the higher layer. Note that the "should" in the second property above
1227  * permits this.
1228  */
1229 enum pkt_hash_types {
1230 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1231 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1232 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1233 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1234 };
1235 
1236 static inline void skb_clear_hash(struct sk_buff *skb)
1237 {
1238 	skb->hash = 0;
1239 	skb->sw_hash = 0;
1240 	skb->l4_hash = 0;
1241 }
1242 
1243 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1244 {
1245 	if (!skb->l4_hash)
1246 		skb_clear_hash(skb);
1247 }
1248 
1249 static inline void
1250 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1251 {
1252 	skb->l4_hash = is_l4;
1253 	skb->sw_hash = is_sw;
1254 	skb->hash = hash;
1255 }
1256 
1257 static inline void
1258 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1259 {
1260 	/* Used by drivers to set hash from HW */
1261 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1262 }
1263 
1264 static inline void
1265 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1266 {
1267 	__skb_set_hash(skb, hash, true, is_l4);
1268 }
1269 
1270 void __skb_get_hash(struct sk_buff *skb);
1271 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1272 u32 skb_get_poff(const struct sk_buff *skb);
1273 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1274 		   const struct flow_keys_basic *keys, int hlen);
1275 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1276 			    void *data, int hlen_proto);
1277 
1278 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1279 					int thoff, u8 ip_proto)
1280 {
1281 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1282 }
1283 
1284 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1285 			     const struct flow_dissector_key *key,
1286 			     unsigned int key_count);
1287 
1288 struct bpf_flow_dissector;
1289 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1290 		      __be16 proto, int nhoff, int hlen, unsigned int flags);
1291 
1292 bool __skb_flow_dissect(const struct net *net,
1293 			const struct sk_buff *skb,
1294 			struct flow_dissector *flow_dissector,
1295 			void *target_container,
1296 			void *data, __be16 proto, int nhoff, int hlen,
1297 			unsigned int flags);
1298 
1299 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1300 				    struct flow_dissector *flow_dissector,
1301 				    void *target_container, unsigned int flags)
1302 {
1303 	return __skb_flow_dissect(NULL, skb, flow_dissector,
1304 				  target_container, NULL, 0, 0, 0, flags);
1305 }
1306 
1307 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1308 					      struct flow_keys *flow,
1309 					      unsigned int flags)
1310 {
1311 	memset(flow, 0, sizeof(*flow));
1312 	return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1313 				  flow, NULL, 0, 0, 0, flags);
1314 }
1315 
1316 static inline bool
1317 skb_flow_dissect_flow_keys_basic(const struct net *net,
1318 				 const struct sk_buff *skb,
1319 				 struct flow_keys_basic *flow, void *data,
1320 				 __be16 proto, int nhoff, int hlen,
1321 				 unsigned int flags)
1322 {
1323 	memset(flow, 0, sizeof(*flow));
1324 	return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1325 				  data, proto, nhoff, hlen, flags);
1326 }
1327 
1328 void skb_flow_dissect_meta(const struct sk_buff *skb,
1329 			   struct flow_dissector *flow_dissector,
1330 			   void *target_container);
1331 
1332 /* Gets a skb connection tracking info, ctinfo map should be a
1333  * map of mapsize to translate enum ip_conntrack_info states
1334  * to user states.
1335  */
1336 void
1337 skb_flow_dissect_ct(const struct sk_buff *skb,
1338 		    struct flow_dissector *flow_dissector,
1339 		    void *target_container,
1340 		    u16 *ctinfo_map,
1341 		    size_t mapsize);
1342 void
1343 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1344 			     struct flow_dissector *flow_dissector,
1345 			     void *target_container);
1346 
1347 void skb_flow_dissect_hash(const struct sk_buff *skb,
1348 			   struct flow_dissector *flow_dissector,
1349 			   void *target_container);
1350 
1351 static inline __u32 skb_get_hash(struct sk_buff *skb)
1352 {
1353 	if (!skb->l4_hash && !skb->sw_hash)
1354 		__skb_get_hash(skb);
1355 
1356 	return skb->hash;
1357 }
1358 
1359 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1360 {
1361 	if (!skb->l4_hash && !skb->sw_hash) {
1362 		struct flow_keys keys;
1363 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1364 
1365 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1366 	}
1367 
1368 	return skb->hash;
1369 }
1370 
1371 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1372 			   const siphash_key_t *perturb);
1373 
1374 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1375 {
1376 	return skb->hash;
1377 }
1378 
1379 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1380 {
1381 	to->hash = from->hash;
1382 	to->sw_hash = from->sw_hash;
1383 	to->l4_hash = from->l4_hash;
1384 };
1385 
1386 static inline void skb_copy_decrypted(struct sk_buff *to,
1387 				      const struct sk_buff *from)
1388 {
1389 #ifdef CONFIG_TLS_DEVICE
1390 	to->decrypted = from->decrypted;
1391 #endif
1392 }
1393 
1394 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1395 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1396 {
1397 	return skb->head + skb->end;
1398 }
1399 
1400 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1401 {
1402 	return skb->end;
1403 }
1404 #else
1405 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1406 {
1407 	return skb->end;
1408 }
1409 
1410 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1411 {
1412 	return skb->end - skb->head;
1413 }
1414 #endif
1415 
1416 /* Internal */
1417 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1418 
1419 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1420 {
1421 	return &skb_shinfo(skb)->hwtstamps;
1422 }
1423 
1424 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1425 {
1426 	bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY;
1427 
1428 	return is_zcopy ? skb_uarg(skb) : NULL;
1429 }
1430 
1431 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1432 				 bool *have_ref)
1433 {
1434 	if (skb && uarg && !skb_zcopy(skb)) {
1435 		if (unlikely(have_ref && *have_ref))
1436 			*have_ref = false;
1437 		else
1438 			sock_zerocopy_get(uarg);
1439 		skb_shinfo(skb)->destructor_arg = uarg;
1440 		skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1441 	}
1442 }
1443 
1444 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1445 {
1446 	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1447 	skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1448 }
1449 
1450 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1451 {
1452 	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1453 }
1454 
1455 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1456 {
1457 	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1458 }
1459 
1460 /* Release a reference on a zerocopy structure */
1461 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy)
1462 {
1463 	struct ubuf_info *uarg = skb_zcopy(skb);
1464 
1465 	if (uarg) {
1466 		if (skb_zcopy_is_nouarg(skb)) {
1467 			/* no notification callback */
1468 		} else if (uarg->callback == sock_zerocopy_callback) {
1469 			uarg->zerocopy = uarg->zerocopy && zerocopy;
1470 			sock_zerocopy_put(uarg);
1471 		} else {
1472 			uarg->callback(uarg, zerocopy);
1473 		}
1474 
1475 		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1476 	}
1477 }
1478 
1479 /* Abort a zerocopy operation and revert zckey on error in send syscall */
1480 static inline void skb_zcopy_abort(struct sk_buff *skb)
1481 {
1482 	struct ubuf_info *uarg = skb_zcopy(skb);
1483 
1484 	if (uarg) {
1485 		sock_zerocopy_put_abort(uarg, false);
1486 		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1487 	}
1488 }
1489 
1490 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1491 {
1492 	skb->next = NULL;
1493 }
1494 
1495 /* Iterate through singly-linked GSO fragments of an skb. */
1496 #define skb_list_walk_safe(first, skb, next_skb)                               \
1497 	for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb);  \
1498 	     (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1499 
1500 static inline void skb_list_del_init(struct sk_buff *skb)
1501 {
1502 	__list_del_entry(&skb->list);
1503 	skb_mark_not_on_list(skb);
1504 }
1505 
1506 /**
1507  *	skb_queue_empty - check if a queue is empty
1508  *	@list: queue head
1509  *
1510  *	Returns true if the queue is empty, false otherwise.
1511  */
1512 static inline int skb_queue_empty(const struct sk_buff_head *list)
1513 {
1514 	return list->next == (const struct sk_buff *) list;
1515 }
1516 
1517 /**
1518  *	skb_queue_empty_lockless - check if a queue is empty
1519  *	@list: queue head
1520  *
1521  *	Returns true if the queue is empty, false otherwise.
1522  *	This variant can be used in lockless contexts.
1523  */
1524 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1525 {
1526 	return READ_ONCE(list->next) == (const struct sk_buff *) list;
1527 }
1528 
1529 
1530 /**
1531  *	skb_queue_is_last - check if skb is the last entry in the queue
1532  *	@list: queue head
1533  *	@skb: buffer
1534  *
1535  *	Returns true if @skb is the last buffer on the list.
1536  */
1537 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1538 				     const struct sk_buff *skb)
1539 {
1540 	return skb->next == (const struct sk_buff *) list;
1541 }
1542 
1543 /**
1544  *	skb_queue_is_first - check if skb is the first entry in the queue
1545  *	@list: queue head
1546  *	@skb: buffer
1547  *
1548  *	Returns true if @skb is the first buffer on the list.
1549  */
1550 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1551 				      const struct sk_buff *skb)
1552 {
1553 	return skb->prev == (const struct sk_buff *) list;
1554 }
1555 
1556 /**
1557  *	skb_queue_next - return the next packet in the queue
1558  *	@list: queue head
1559  *	@skb: current buffer
1560  *
1561  *	Return the next packet in @list after @skb.  It is only valid to
1562  *	call this if skb_queue_is_last() evaluates to false.
1563  */
1564 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1565 					     const struct sk_buff *skb)
1566 {
1567 	/* This BUG_ON may seem severe, but if we just return then we
1568 	 * are going to dereference garbage.
1569 	 */
1570 	BUG_ON(skb_queue_is_last(list, skb));
1571 	return skb->next;
1572 }
1573 
1574 /**
1575  *	skb_queue_prev - return the prev packet in the queue
1576  *	@list: queue head
1577  *	@skb: current buffer
1578  *
1579  *	Return the prev packet in @list before @skb.  It is only valid to
1580  *	call this if skb_queue_is_first() evaluates to false.
1581  */
1582 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1583 					     const struct sk_buff *skb)
1584 {
1585 	/* This BUG_ON may seem severe, but if we just return then we
1586 	 * are going to dereference garbage.
1587 	 */
1588 	BUG_ON(skb_queue_is_first(list, skb));
1589 	return skb->prev;
1590 }
1591 
1592 /**
1593  *	skb_get - reference buffer
1594  *	@skb: buffer to reference
1595  *
1596  *	Makes another reference to a socket buffer and returns a pointer
1597  *	to the buffer.
1598  */
1599 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1600 {
1601 	refcount_inc(&skb->users);
1602 	return skb;
1603 }
1604 
1605 /*
1606  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1607  */
1608 
1609 /**
1610  *	skb_cloned - is the buffer a clone
1611  *	@skb: buffer to check
1612  *
1613  *	Returns true if the buffer was generated with skb_clone() and is
1614  *	one of multiple shared copies of the buffer. Cloned buffers are
1615  *	shared data so must not be written to under normal circumstances.
1616  */
1617 static inline int skb_cloned(const struct sk_buff *skb)
1618 {
1619 	return skb->cloned &&
1620 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1621 }
1622 
1623 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1624 {
1625 	might_sleep_if(gfpflags_allow_blocking(pri));
1626 
1627 	if (skb_cloned(skb))
1628 		return pskb_expand_head(skb, 0, 0, pri);
1629 
1630 	return 0;
1631 }
1632 
1633 /**
1634  *	skb_header_cloned - is the header a clone
1635  *	@skb: buffer to check
1636  *
1637  *	Returns true if modifying the header part of the buffer requires
1638  *	the data to be copied.
1639  */
1640 static inline int skb_header_cloned(const struct sk_buff *skb)
1641 {
1642 	int dataref;
1643 
1644 	if (!skb->cloned)
1645 		return 0;
1646 
1647 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1648 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1649 	return dataref != 1;
1650 }
1651 
1652 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1653 {
1654 	might_sleep_if(gfpflags_allow_blocking(pri));
1655 
1656 	if (skb_header_cloned(skb))
1657 		return pskb_expand_head(skb, 0, 0, pri);
1658 
1659 	return 0;
1660 }
1661 
1662 /**
1663  *	__skb_header_release - release reference to header
1664  *	@skb: buffer to operate on
1665  */
1666 static inline void __skb_header_release(struct sk_buff *skb)
1667 {
1668 	skb->nohdr = 1;
1669 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1670 }
1671 
1672 
1673 /**
1674  *	skb_shared - is the buffer shared
1675  *	@skb: buffer to check
1676  *
1677  *	Returns true if more than one person has a reference to this
1678  *	buffer.
1679  */
1680 static inline int skb_shared(const struct sk_buff *skb)
1681 {
1682 	return refcount_read(&skb->users) != 1;
1683 }
1684 
1685 /**
1686  *	skb_share_check - check if buffer is shared and if so clone it
1687  *	@skb: buffer to check
1688  *	@pri: priority for memory allocation
1689  *
1690  *	If the buffer is shared the buffer is cloned and the old copy
1691  *	drops a reference. A new clone with a single reference is returned.
1692  *	If the buffer is not shared the original buffer is returned. When
1693  *	being called from interrupt status or with spinlocks held pri must
1694  *	be GFP_ATOMIC.
1695  *
1696  *	NULL is returned on a memory allocation failure.
1697  */
1698 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1699 {
1700 	might_sleep_if(gfpflags_allow_blocking(pri));
1701 	if (skb_shared(skb)) {
1702 		struct sk_buff *nskb = skb_clone(skb, pri);
1703 
1704 		if (likely(nskb))
1705 			consume_skb(skb);
1706 		else
1707 			kfree_skb(skb);
1708 		skb = nskb;
1709 	}
1710 	return skb;
1711 }
1712 
1713 /*
1714  *	Copy shared buffers into a new sk_buff. We effectively do COW on
1715  *	packets to handle cases where we have a local reader and forward
1716  *	and a couple of other messy ones. The normal one is tcpdumping
1717  *	a packet thats being forwarded.
1718  */
1719 
1720 /**
1721  *	skb_unshare - make a copy of a shared buffer
1722  *	@skb: buffer to check
1723  *	@pri: priority for memory allocation
1724  *
1725  *	If the socket buffer is a clone then this function creates a new
1726  *	copy of the data, drops a reference count on the old copy and returns
1727  *	the new copy with the reference count at 1. If the buffer is not a clone
1728  *	the original buffer is returned. When called with a spinlock held or
1729  *	from interrupt state @pri must be %GFP_ATOMIC
1730  *
1731  *	%NULL is returned on a memory allocation failure.
1732  */
1733 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1734 					  gfp_t pri)
1735 {
1736 	might_sleep_if(gfpflags_allow_blocking(pri));
1737 	if (skb_cloned(skb)) {
1738 		struct sk_buff *nskb = skb_copy(skb, pri);
1739 
1740 		/* Free our shared copy */
1741 		if (likely(nskb))
1742 			consume_skb(skb);
1743 		else
1744 			kfree_skb(skb);
1745 		skb = nskb;
1746 	}
1747 	return skb;
1748 }
1749 
1750 /**
1751  *	skb_peek - peek at the head of an &sk_buff_head
1752  *	@list_: list to peek at
1753  *
1754  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1755  *	be careful with this one. A peek leaves the buffer on the
1756  *	list and someone else may run off with it. You must hold
1757  *	the appropriate locks or have a private queue to do this.
1758  *
1759  *	Returns %NULL for an empty list or a pointer to the head element.
1760  *	The reference count is not incremented and the reference is therefore
1761  *	volatile. Use with caution.
1762  */
1763 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1764 {
1765 	struct sk_buff *skb = list_->next;
1766 
1767 	if (skb == (struct sk_buff *)list_)
1768 		skb = NULL;
1769 	return skb;
1770 }
1771 
1772 /**
1773  *	__skb_peek - peek at the head of a non-empty &sk_buff_head
1774  *	@list_: list to peek at
1775  *
1776  *	Like skb_peek(), but the caller knows that the list is not empty.
1777  */
1778 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
1779 {
1780 	return list_->next;
1781 }
1782 
1783 /**
1784  *	skb_peek_next - peek skb following the given one from a queue
1785  *	@skb: skb to start from
1786  *	@list_: list to peek at
1787  *
1788  *	Returns %NULL when the end of the list is met or a pointer to the
1789  *	next element. The reference count is not incremented and the
1790  *	reference is therefore volatile. Use with caution.
1791  */
1792 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1793 		const struct sk_buff_head *list_)
1794 {
1795 	struct sk_buff *next = skb->next;
1796 
1797 	if (next == (struct sk_buff *)list_)
1798 		next = NULL;
1799 	return next;
1800 }
1801 
1802 /**
1803  *	skb_peek_tail - peek at the tail of an &sk_buff_head
1804  *	@list_: list to peek at
1805  *
1806  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1807  *	be careful with this one. A peek leaves the buffer on the
1808  *	list and someone else may run off with it. You must hold
1809  *	the appropriate locks or have a private queue to do this.
1810  *
1811  *	Returns %NULL for an empty list or a pointer to the tail element.
1812  *	The reference count is not incremented and the reference is therefore
1813  *	volatile. Use with caution.
1814  */
1815 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1816 {
1817 	struct sk_buff *skb = READ_ONCE(list_->prev);
1818 
1819 	if (skb == (struct sk_buff *)list_)
1820 		skb = NULL;
1821 	return skb;
1822 
1823 }
1824 
1825 /**
1826  *	skb_queue_len	- get queue length
1827  *	@list_: list to measure
1828  *
1829  *	Return the length of an &sk_buff queue.
1830  */
1831 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1832 {
1833 	return list_->qlen;
1834 }
1835 
1836 /**
1837  *	skb_queue_len_lockless	- get queue length
1838  *	@list_: list to measure
1839  *
1840  *	Return the length of an &sk_buff queue.
1841  *	This variant can be used in lockless contexts.
1842  */
1843 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
1844 {
1845 	return READ_ONCE(list_->qlen);
1846 }
1847 
1848 /**
1849  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1850  *	@list: queue to initialize
1851  *
1852  *	This initializes only the list and queue length aspects of
1853  *	an sk_buff_head object.  This allows to initialize the list
1854  *	aspects of an sk_buff_head without reinitializing things like
1855  *	the spinlock.  It can also be used for on-stack sk_buff_head
1856  *	objects where the spinlock is known to not be used.
1857  */
1858 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1859 {
1860 	list->prev = list->next = (struct sk_buff *)list;
1861 	list->qlen = 0;
1862 }
1863 
1864 /*
1865  * This function creates a split out lock class for each invocation;
1866  * this is needed for now since a whole lot of users of the skb-queue
1867  * infrastructure in drivers have different locking usage (in hardirq)
1868  * than the networking core (in softirq only). In the long run either the
1869  * network layer or drivers should need annotation to consolidate the
1870  * main types of usage into 3 classes.
1871  */
1872 static inline void skb_queue_head_init(struct sk_buff_head *list)
1873 {
1874 	spin_lock_init(&list->lock);
1875 	__skb_queue_head_init(list);
1876 }
1877 
1878 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1879 		struct lock_class_key *class)
1880 {
1881 	skb_queue_head_init(list);
1882 	lockdep_set_class(&list->lock, class);
1883 }
1884 
1885 /*
1886  *	Insert an sk_buff on a list.
1887  *
1888  *	The "__skb_xxxx()" functions are the non-atomic ones that
1889  *	can only be called with interrupts disabled.
1890  */
1891 static inline void __skb_insert(struct sk_buff *newsk,
1892 				struct sk_buff *prev, struct sk_buff *next,
1893 				struct sk_buff_head *list)
1894 {
1895 	/* See skb_queue_empty_lockless() and skb_peek_tail()
1896 	 * for the opposite READ_ONCE()
1897 	 */
1898 	WRITE_ONCE(newsk->next, next);
1899 	WRITE_ONCE(newsk->prev, prev);
1900 	WRITE_ONCE(next->prev, newsk);
1901 	WRITE_ONCE(prev->next, newsk);
1902 	list->qlen++;
1903 }
1904 
1905 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1906 				      struct sk_buff *prev,
1907 				      struct sk_buff *next)
1908 {
1909 	struct sk_buff *first = list->next;
1910 	struct sk_buff *last = list->prev;
1911 
1912 	WRITE_ONCE(first->prev, prev);
1913 	WRITE_ONCE(prev->next, first);
1914 
1915 	WRITE_ONCE(last->next, next);
1916 	WRITE_ONCE(next->prev, last);
1917 }
1918 
1919 /**
1920  *	skb_queue_splice - join two skb lists, this is designed for stacks
1921  *	@list: the new list to add
1922  *	@head: the place to add it in the first list
1923  */
1924 static inline void skb_queue_splice(const struct sk_buff_head *list,
1925 				    struct sk_buff_head *head)
1926 {
1927 	if (!skb_queue_empty(list)) {
1928 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1929 		head->qlen += list->qlen;
1930 	}
1931 }
1932 
1933 /**
1934  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1935  *	@list: the new list to add
1936  *	@head: the place to add it in the first list
1937  *
1938  *	The list at @list is reinitialised
1939  */
1940 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1941 					 struct sk_buff_head *head)
1942 {
1943 	if (!skb_queue_empty(list)) {
1944 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1945 		head->qlen += list->qlen;
1946 		__skb_queue_head_init(list);
1947 	}
1948 }
1949 
1950 /**
1951  *	skb_queue_splice_tail - join two skb lists, each list being a queue
1952  *	@list: the new list to add
1953  *	@head: the place to add it in the first list
1954  */
1955 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1956 					 struct sk_buff_head *head)
1957 {
1958 	if (!skb_queue_empty(list)) {
1959 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1960 		head->qlen += list->qlen;
1961 	}
1962 }
1963 
1964 /**
1965  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1966  *	@list: the new list to add
1967  *	@head: the place to add it in the first list
1968  *
1969  *	Each of the lists is a queue.
1970  *	The list at @list is reinitialised
1971  */
1972 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1973 					      struct sk_buff_head *head)
1974 {
1975 	if (!skb_queue_empty(list)) {
1976 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1977 		head->qlen += list->qlen;
1978 		__skb_queue_head_init(list);
1979 	}
1980 }
1981 
1982 /**
1983  *	__skb_queue_after - queue a buffer at the list head
1984  *	@list: list to use
1985  *	@prev: place after this buffer
1986  *	@newsk: buffer to queue
1987  *
1988  *	Queue a buffer int the middle of a list. This function takes no locks
1989  *	and you must therefore hold required locks before calling it.
1990  *
1991  *	A buffer cannot be placed on two lists at the same time.
1992  */
1993 static inline void __skb_queue_after(struct sk_buff_head *list,
1994 				     struct sk_buff *prev,
1995 				     struct sk_buff *newsk)
1996 {
1997 	__skb_insert(newsk, prev, prev->next, list);
1998 }
1999 
2000 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2001 		struct sk_buff_head *list);
2002 
2003 static inline void __skb_queue_before(struct sk_buff_head *list,
2004 				      struct sk_buff *next,
2005 				      struct sk_buff *newsk)
2006 {
2007 	__skb_insert(newsk, next->prev, next, list);
2008 }
2009 
2010 /**
2011  *	__skb_queue_head - queue a buffer at the list head
2012  *	@list: list to use
2013  *	@newsk: buffer to queue
2014  *
2015  *	Queue a buffer at the start of a list. This function takes no locks
2016  *	and you must therefore hold required locks before calling it.
2017  *
2018  *	A buffer cannot be placed on two lists at the same time.
2019  */
2020 static inline void __skb_queue_head(struct sk_buff_head *list,
2021 				    struct sk_buff *newsk)
2022 {
2023 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
2024 }
2025 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2026 
2027 /**
2028  *	__skb_queue_tail - queue a buffer at the list tail
2029  *	@list: list to use
2030  *	@newsk: buffer to queue
2031  *
2032  *	Queue a buffer at the end of a list. This function takes no locks
2033  *	and you must therefore hold required locks before calling it.
2034  *
2035  *	A buffer cannot be placed on two lists at the same time.
2036  */
2037 static inline void __skb_queue_tail(struct sk_buff_head *list,
2038 				   struct sk_buff *newsk)
2039 {
2040 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
2041 }
2042 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2043 
2044 /*
2045  * remove sk_buff from list. _Must_ be called atomically, and with
2046  * the list known..
2047  */
2048 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
2049 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2050 {
2051 	struct sk_buff *next, *prev;
2052 
2053 	WRITE_ONCE(list->qlen, list->qlen - 1);
2054 	next	   = skb->next;
2055 	prev	   = skb->prev;
2056 	skb->next  = skb->prev = NULL;
2057 	WRITE_ONCE(next->prev, prev);
2058 	WRITE_ONCE(prev->next, next);
2059 }
2060 
2061 /**
2062  *	__skb_dequeue - remove from the head of the queue
2063  *	@list: list to dequeue from
2064  *
2065  *	Remove the head of the list. This function does not take any locks
2066  *	so must be used with appropriate locks held only. The head item is
2067  *	returned or %NULL if the list is empty.
2068  */
2069 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2070 {
2071 	struct sk_buff *skb = skb_peek(list);
2072 	if (skb)
2073 		__skb_unlink(skb, list);
2074 	return skb;
2075 }
2076 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2077 
2078 /**
2079  *	__skb_dequeue_tail - remove from the tail of the queue
2080  *	@list: list to dequeue from
2081  *
2082  *	Remove the tail of the list. This function does not take any locks
2083  *	so must be used with appropriate locks held only. The tail item is
2084  *	returned or %NULL if the list is empty.
2085  */
2086 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2087 {
2088 	struct sk_buff *skb = skb_peek_tail(list);
2089 	if (skb)
2090 		__skb_unlink(skb, list);
2091 	return skb;
2092 }
2093 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2094 
2095 
2096 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2097 {
2098 	return skb->data_len;
2099 }
2100 
2101 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2102 {
2103 	return skb->len - skb->data_len;
2104 }
2105 
2106 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2107 {
2108 	unsigned int i, len = 0;
2109 
2110 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2111 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2112 	return len;
2113 }
2114 
2115 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2116 {
2117 	return skb_headlen(skb) + __skb_pagelen(skb);
2118 }
2119 
2120 /**
2121  * __skb_fill_page_desc - initialise a paged fragment in an skb
2122  * @skb: buffer containing fragment to be initialised
2123  * @i: paged fragment index to initialise
2124  * @page: the page to use for this fragment
2125  * @off: the offset to the data with @page
2126  * @size: the length of the data
2127  *
2128  * Initialises the @i'th fragment of @skb to point to &size bytes at
2129  * offset @off within @page.
2130  *
2131  * Does not take any additional reference on the fragment.
2132  */
2133 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2134 					struct page *page, int off, int size)
2135 {
2136 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2137 
2138 	/*
2139 	 * Propagate page pfmemalloc to the skb if we can. The problem is
2140 	 * that not all callers have unique ownership of the page but rely
2141 	 * on page_is_pfmemalloc doing the right thing(tm).
2142 	 */
2143 	frag->bv_page		  = page;
2144 	frag->bv_offset		  = off;
2145 	skb_frag_size_set(frag, size);
2146 
2147 	page = compound_head(page);
2148 	if (page_is_pfmemalloc(page))
2149 		skb->pfmemalloc	= true;
2150 }
2151 
2152 /**
2153  * skb_fill_page_desc - initialise a paged fragment in an skb
2154  * @skb: buffer containing fragment to be initialised
2155  * @i: paged fragment index to initialise
2156  * @page: the page to use for this fragment
2157  * @off: the offset to the data with @page
2158  * @size: the length of the data
2159  *
2160  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2161  * @skb to point to @size bytes at offset @off within @page. In
2162  * addition updates @skb such that @i is the last fragment.
2163  *
2164  * Does not take any additional reference on the fragment.
2165  */
2166 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2167 				      struct page *page, int off, int size)
2168 {
2169 	__skb_fill_page_desc(skb, i, page, off, size);
2170 	skb_shinfo(skb)->nr_frags = i + 1;
2171 }
2172 
2173 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2174 		     int size, unsigned int truesize);
2175 
2176 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2177 			  unsigned int truesize);
2178 
2179 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2180 
2181 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2182 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2183 {
2184 	return skb->head + skb->tail;
2185 }
2186 
2187 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2188 {
2189 	skb->tail = skb->data - skb->head;
2190 }
2191 
2192 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2193 {
2194 	skb_reset_tail_pointer(skb);
2195 	skb->tail += offset;
2196 }
2197 
2198 #else /* NET_SKBUFF_DATA_USES_OFFSET */
2199 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2200 {
2201 	return skb->tail;
2202 }
2203 
2204 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2205 {
2206 	skb->tail = skb->data;
2207 }
2208 
2209 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2210 {
2211 	skb->tail = skb->data + offset;
2212 }
2213 
2214 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2215 
2216 /*
2217  *	Add data to an sk_buff
2218  */
2219 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2220 void *skb_put(struct sk_buff *skb, unsigned int len);
2221 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2222 {
2223 	void *tmp = skb_tail_pointer(skb);
2224 	SKB_LINEAR_ASSERT(skb);
2225 	skb->tail += len;
2226 	skb->len  += len;
2227 	return tmp;
2228 }
2229 
2230 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2231 {
2232 	void *tmp = __skb_put(skb, len);
2233 
2234 	memset(tmp, 0, len);
2235 	return tmp;
2236 }
2237 
2238 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2239 				   unsigned int len)
2240 {
2241 	void *tmp = __skb_put(skb, len);
2242 
2243 	memcpy(tmp, data, len);
2244 	return tmp;
2245 }
2246 
2247 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2248 {
2249 	*(u8 *)__skb_put(skb, 1) = val;
2250 }
2251 
2252 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2253 {
2254 	void *tmp = skb_put(skb, len);
2255 
2256 	memset(tmp, 0, len);
2257 
2258 	return tmp;
2259 }
2260 
2261 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2262 				 unsigned int len)
2263 {
2264 	void *tmp = skb_put(skb, len);
2265 
2266 	memcpy(tmp, data, len);
2267 
2268 	return tmp;
2269 }
2270 
2271 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2272 {
2273 	*(u8 *)skb_put(skb, 1) = val;
2274 }
2275 
2276 void *skb_push(struct sk_buff *skb, unsigned int len);
2277 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2278 {
2279 	skb->data -= len;
2280 	skb->len  += len;
2281 	return skb->data;
2282 }
2283 
2284 void *skb_pull(struct sk_buff *skb, unsigned int len);
2285 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2286 {
2287 	skb->len -= len;
2288 	BUG_ON(skb->len < skb->data_len);
2289 	return skb->data += len;
2290 }
2291 
2292 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2293 {
2294 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2295 }
2296 
2297 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2298 
2299 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2300 {
2301 	if (len > skb_headlen(skb) &&
2302 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2303 		return NULL;
2304 	skb->len -= len;
2305 	return skb->data += len;
2306 }
2307 
2308 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2309 {
2310 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2311 }
2312 
2313 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2314 {
2315 	if (likely(len <= skb_headlen(skb)))
2316 		return true;
2317 	if (unlikely(len > skb->len))
2318 		return false;
2319 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2320 }
2321 
2322 void skb_condense(struct sk_buff *skb);
2323 
2324 /**
2325  *	skb_headroom - bytes at buffer head
2326  *	@skb: buffer to check
2327  *
2328  *	Return the number of bytes of free space at the head of an &sk_buff.
2329  */
2330 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2331 {
2332 	return skb->data - skb->head;
2333 }
2334 
2335 /**
2336  *	skb_tailroom - bytes at buffer end
2337  *	@skb: buffer to check
2338  *
2339  *	Return the number of bytes of free space at the tail of an sk_buff
2340  */
2341 static inline int skb_tailroom(const struct sk_buff *skb)
2342 {
2343 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2344 }
2345 
2346 /**
2347  *	skb_availroom - bytes at buffer end
2348  *	@skb: buffer to check
2349  *
2350  *	Return the number of bytes of free space at the tail of an sk_buff
2351  *	allocated by sk_stream_alloc()
2352  */
2353 static inline int skb_availroom(const struct sk_buff *skb)
2354 {
2355 	if (skb_is_nonlinear(skb))
2356 		return 0;
2357 
2358 	return skb->end - skb->tail - skb->reserved_tailroom;
2359 }
2360 
2361 /**
2362  *	skb_reserve - adjust headroom
2363  *	@skb: buffer to alter
2364  *	@len: bytes to move
2365  *
2366  *	Increase the headroom of an empty &sk_buff by reducing the tail
2367  *	room. This is only allowed for an empty buffer.
2368  */
2369 static inline void skb_reserve(struct sk_buff *skb, int len)
2370 {
2371 	skb->data += len;
2372 	skb->tail += len;
2373 }
2374 
2375 /**
2376  *	skb_tailroom_reserve - adjust reserved_tailroom
2377  *	@skb: buffer to alter
2378  *	@mtu: maximum amount of headlen permitted
2379  *	@needed_tailroom: minimum amount of reserved_tailroom
2380  *
2381  *	Set reserved_tailroom so that headlen can be as large as possible but
2382  *	not larger than mtu and tailroom cannot be smaller than
2383  *	needed_tailroom.
2384  *	The required headroom should already have been reserved before using
2385  *	this function.
2386  */
2387 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2388 					unsigned int needed_tailroom)
2389 {
2390 	SKB_LINEAR_ASSERT(skb);
2391 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2392 		/* use at most mtu */
2393 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2394 	else
2395 		/* use up to all available space */
2396 		skb->reserved_tailroom = needed_tailroom;
2397 }
2398 
2399 #define ENCAP_TYPE_ETHER	0
2400 #define ENCAP_TYPE_IPPROTO	1
2401 
2402 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2403 					  __be16 protocol)
2404 {
2405 	skb->inner_protocol = protocol;
2406 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2407 }
2408 
2409 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2410 					 __u8 ipproto)
2411 {
2412 	skb->inner_ipproto = ipproto;
2413 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2414 }
2415 
2416 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2417 {
2418 	skb->inner_mac_header = skb->mac_header;
2419 	skb->inner_network_header = skb->network_header;
2420 	skb->inner_transport_header = skb->transport_header;
2421 }
2422 
2423 static inline void skb_reset_mac_len(struct sk_buff *skb)
2424 {
2425 	skb->mac_len = skb->network_header - skb->mac_header;
2426 }
2427 
2428 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2429 							*skb)
2430 {
2431 	return skb->head + skb->inner_transport_header;
2432 }
2433 
2434 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2435 {
2436 	return skb_inner_transport_header(skb) - skb->data;
2437 }
2438 
2439 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2440 {
2441 	skb->inner_transport_header = skb->data - skb->head;
2442 }
2443 
2444 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2445 						   const int offset)
2446 {
2447 	skb_reset_inner_transport_header(skb);
2448 	skb->inner_transport_header += offset;
2449 }
2450 
2451 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2452 {
2453 	return skb->head + skb->inner_network_header;
2454 }
2455 
2456 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2457 {
2458 	skb->inner_network_header = skb->data - skb->head;
2459 }
2460 
2461 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2462 						const int offset)
2463 {
2464 	skb_reset_inner_network_header(skb);
2465 	skb->inner_network_header += offset;
2466 }
2467 
2468 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2469 {
2470 	return skb->head + skb->inner_mac_header;
2471 }
2472 
2473 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2474 {
2475 	skb->inner_mac_header = skb->data - skb->head;
2476 }
2477 
2478 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2479 					    const int offset)
2480 {
2481 	skb_reset_inner_mac_header(skb);
2482 	skb->inner_mac_header += offset;
2483 }
2484 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2485 {
2486 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2487 }
2488 
2489 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2490 {
2491 	return skb->head + skb->transport_header;
2492 }
2493 
2494 static inline void skb_reset_transport_header(struct sk_buff *skb)
2495 {
2496 	skb->transport_header = skb->data - skb->head;
2497 }
2498 
2499 static inline void skb_set_transport_header(struct sk_buff *skb,
2500 					    const int offset)
2501 {
2502 	skb_reset_transport_header(skb);
2503 	skb->transport_header += offset;
2504 }
2505 
2506 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2507 {
2508 	return skb->head + skb->network_header;
2509 }
2510 
2511 static inline void skb_reset_network_header(struct sk_buff *skb)
2512 {
2513 	skb->network_header = skb->data - skb->head;
2514 }
2515 
2516 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2517 {
2518 	skb_reset_network_header(skb);
2519 	skb->network_header += offset;
2520 }
2521 
2522 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2523 {
2524 	return skb->head + skb->mac_header;
2525 }
2526 
2527 static inline int skb_mac_offset(const struct sk_buff *skb)
2528 {
2529 	return skb_mac_header(skb) - skb->data;
2530 }
2531 
2532 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2533 {
2534 	return skb->network_header - skb->mac_header;
2535 }
2536 
2537 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2538 {
2539 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2540 }
2541 
2542 static inline void skb_reset_mac_header(struct sk_buff *skb)
2543 {
2544 	skb->mac_header = skb->data - skb->head;
2545 }
2546 
2547 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2548 {
2549 	skb_reset_mac_header(skb);
2550 	skb->mac_header += offset;
2551 }
2552 
2553 static inline void skb_pop_mac_header(struct sk_buff *skb)
2554 {
2555 	skb->mac_header = skb->network_header;
2556 }
2557 
2558 static inline void skb_probe_transport_header(struct sk_buff *skb)
2559 {
2560 	struct flow_keys_basic keys;
2561 
2562 	if (skb_transport_header_was_set(skb))
2563 		return;
2564 
2565 	if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2566 					     NULL, 0, 0, 0, 0))
2567 		skb_set_transport_header(skb, keys.control.thoff);
2568 }
2569 
2570 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2571 {
2572 	if (skb_mac_header_was_set(skb)) {
2573 		const unsigned char *old_mac = skb_mac_header(skb);
2574 
2575 		skb_set_mac_header(skb, -skb->mac_len);
2576 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2577 	}
2578 }
2579 
2580 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2581 {
2582 	return skb->csum_start - skb_headroom(skb);
2583 }
2584 
2585 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2586 {
2587 	return skb->head + skb->csum_start;
2588 }
2589 
2590 static inline int skb_transport_offset(const struct sk_buff *skb)
2591 {
2592 	return skb_transport_header(skb) - skb->data;
2593 }
2594 
2595 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2596 {
2597 	return skb->transport_header - skb->network_header;
2598 }
2599 
2600 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2601 {
2602 	return skb->inner_transport_header - skb->inner_network_header;
2603 }
2604 
2605 static inline int skb_network_offset(const struct sk_buff *skb)
2606 {
2607 	return skb_network_header(skb) - skb->data;
2608 }
2609 
2610 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2611 {
2612 	return skb_inner_network_header(skb) - skb->data;
2613 }
2614 
2615 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2616 {
2617 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
2618 }
2619 
2620 /*
2621  * CPUs often take a performance hit when accessing unaligned memory
2622  * locations. The actual performance hit varies, it can be small if the
2623  * hardware handles it or large if we have to take an exception and fix it
2624  * in software.
2625  *
2626  * Since an ethernet header is 14 bytes network drivers often end up with
2627  * the IP header at an unaligned offset. The IP header can be aligned by
2628  * shifting the start of the packet by 2 bytes. Drivers should do this
2629  * with:
2630  *
2631  * skb_reserve(skb, NET_IP_ALIGN);
2632  *
2633  * The downside to this alignment of the IP header is that the DMA is now
2634  * unaligned. On some architectures the cost of an unaligned DMA is high
2635  * and this cost outweighs the gains made by aligning the IP header.
2636  *
2637  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2638  * to be overridden.
2639  */
2640 #ifndef NET_IP_ALIGN
2641 #define NET_IP_ALIGN	2
2642 #endif
2643 
2644 /*
2645  * The networking layer reserves some headroom in skb data (via
2646  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2647  * the header has to grow. In the default case, if the header has to grow
2648  * 32 bytes or less we avoid the reallocation.
2649  *
2650  * Unfortunately this headroom changes the DMA alignment of the resulting
2651  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2652  * on some architectures. An architecture can override this value,
2653  * perhaps setting it to a cacheline in size (since that will maintain
2654  * cacheline alignment of the DMA). It must be a power of 2.
2655  *
2656  * Various parts of the networking layer expect at least 32 bytes of
2657  * headroom, you should not reduce this.
2658  *
2659  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2660  * to reduce average number of cache lines per packet.
2661  * get_rps_cpus() for example only access one 64 bytes aligned block :
2662  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2663  */
2664 #ifndef NET_SKB_PAD
2665 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2666 #endif
2667 
2668 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2669 
2670 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2671 {
2672 	if (WARN_ON(skb_is_nonlinear(skb)))
2673 		return;
2674 	skb->len = len;
2675 	skb_set_tail_pointer(skb, len);
2676 }
2677 
2678 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2679 {
2680 	__skb_set_length(skb, len);
2681 }
2682 
2683 void skb_trim(struct sk_buff *skb, unsigned int len);
2684 
2685 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2686 {
2687 	if (skb->data_len)
2688 		return ___pskb_trim(skb, len);
2689 	__skb_trim(skb, len);
2690 	return 0;
2691 }
2692 
2693 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2694 {
2695 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2696 }
2697 
2698 /**
2699  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2700  *	@skb: buffer to alter
2701  *	@len: new length
2702  *
2703  *	This is identical to pskb_trim except that the caller knows that
2704  *	the skb is not cloned so we should never get an error due to out-
2705  *	of-memory.
2706  */
2707 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2708 {
2709 	int err = pskb_trim(skb, len);
2710 	BUG_ON(err);
2711 }
2712 
2713 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2714 {
2715 	unsigned int diff = len - skb->len;
2716 
2717 	if (skb_tailroom(skb) < diff) {
2718 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2719 					   GFP_ATOMIC);
2720 		if (ret)
2721 			return ret;
2722 	}
2723 	__skb_set_length(skb, len);
2724 	return 0;
2725 }
2726 
2727 /**
2728  *	skb_orphan - orphan a buffer
2729  *	@skb: buffer to orphan
2730  *
2731  *	If a buffer currently has an owner then we call the owner's
2732  *	destructor function and make the @skb unowned. The buffer continues
2733  *	to exist but is no longer charged to its former owner.
2734  */
2735 static inline void skb_orphan(struct sk_buff *skb)
2736 {
2737 	if (skb->destructor) {
2738 		skb->destructor(skb);
2739 		skb->destructor = NULL;
2740 		skb->sk		= NULL;
2741 	} else {
2742 		BUG_ON(skb->sk);
2743 	}
2744 }
2745 
2746 /**
2747  *	skb_orphan_frags - orphan the frags contained in a buffer
2748  *	@skb: buffer to orphan frags from
2749  *	@gfp_mask: allocation mask for replacement pages
2750  *
2751  *	For each frag in the SKB which needs a destructor (i.e. has an
2752  *	owner) create a copy of that frag and release the original
2753  *	page by calling the destructor.
2754  */
2755 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2756 {
2757 	if (likely(!skb_zcopy(skb)))
2758 		return 0;
2759 	if (!skb_zcopy_is_nouarg(skb) &&
2760 	    skb_uarg(skb)->callback == sock_zerocopy_callback)
2761 		return 0;
2762 	return skb_copy_ubufs(skb, gfp_mask);
2763 }
2764 
2765 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
2766 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2767 {
2768 	if (likely(!skb_zcopy(skb)))
2769 		return 0;
2770 	return skb_copy_ubufs(skb, gfp_mask);
2771 }
2772 
2773 /**
2774  *	__skb_queue_purge - empty a list
2775  *	@list: list to empty
2776  *
2777  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2778  *	the list and one reference dropped. This function does not take the
2779  *	list lock and the caller must hold the relevant locks to use it.
2780  */
2781 static inline void __skb_queue_purge(struct sk_buff_head *list)
2782 {
2783 	struct sk_buff *skb;
2784 	while ((skb = __skb_dequeue(list)) != NULL)
2785 		kfree_skb(skb);
2786 }
2787 void skb_queue_purge(struct sk_buff_head *list);
2788 
2789 unsigned int skb_rbtree_purge(struct rb_root *root);
2790 
2791 void *netdev_alloc_frag(unsigned int fragsz);
2792 
2793 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2794 				   gfp_t gfp_mask);
2795 
2796 /**
2797  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
2798  *	@dev: network device to receive on
2799  *	@length: length to allocate
2800  *
2801  *	Allocate a new &sk_buff and assign it a usage count of one. The
2802  *	buffer has unspecified headroom built in. Users should allocate
2803  *	the headroom they think they need without accounting for the
2804  *	built in space. The built in space is used for optimisations.
2805  *
2806  *	%NULL is returned if there is no free memory. Although this function
2807  *	allocates memory it can be called from an interrupt.
2808  */
2809 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2810 					       unsigned int length)
2811 {
2812 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2813 }
2814 
2815 /* legacy helper around __netdev_alloc_skb() */
2816 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2817 					      gfp_t gfp_mask)
2818 {
2819 	return __netdev_alloc_skb(NULL, length, gfp_mask);
2820 }
2821 
2822 /* legacy helper around netdev_alloc_skb() */
2823 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2824 {
2825 	return netdev_alloc_skb(NULL, length);
2826 }
2827 
2828 
2829 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2830 		unsigned int length, gfp_t gfp)
2831 {
2832 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2833 
2834 	if (NET_IP_ALIGN && skb)
2835 		skb_reserve(skb, NET_IP_ALIGN);
2836 	return skb;
2837 }
2838 
2839 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2840 		unsigned int length)
2841 {
2842 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2843 }
2844 
2845 static inline void skb_free_frag(void *addr)
2846 {
2847 	page_frag_free(addr);
2848 }
2849 
2850 void *napi_alloc_frag(unsigned int fragsz);
2851 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2852 				 unsigned int length, gfp_t gfp_mask);
2853 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2854 					     unsigned int length)
2855 {
2856 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2857 }
2858 void napi_consume_skb(struct sk_buff *skb, int budget);
2859 
2860 void __kfree_skb_flush(void);
2861 void __kfree_skb_defer(struct sk_buff *skb);
2862 
2863 /**
2864  * __dev_alloc_pages - allocate page for network Rx
2865  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2866  * @order: size of the allocation
2867  *
2868  * Allocate a new page.
2869  *
2870  * %NULL is returned if there is no free memory.
2871 */
2872 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2873 					     unsigned int order)
2874 {
2875 	/* This piece of code contains several assumptions.
2876 	 * 1.  This is for device Rx, therefor a cold page is preferred.
2877 	 * 2.  The expectation is the user wants a compound page.
2878 	 * 3.  If requesting a order 0 page it will not be compound
2879 	 *     due to the check to see if order has a value in prep_new_page
2880 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2881 	 *     code in gfp_to_alloc_flags that should be enforcing this.
2882 	 */
2883 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
2884 
2885 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2886 }
2887 
2888 static inline struct page *dev_alloc_pages(unsigned int order)
2889 {
2890 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2891 }
2892 
2893 /**
2894  * __dev_alloc_page - allocate a page for network Rx
2895  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2896  *
2897  * Allocate a new page.
2898  *
2899  * %NULL is returned if there is no free memory.
2900  */
2901 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2902 {
2903 	return __dev_alloc_pages(gfp_mask, 0);
2904 }
2905 
2906 static inline struct page *dev_alloc_page(void)
2907 {
2908 	return dev_alloc_pages(0);
2909 }
2910 
2911 /**
2912  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2913  *	@page: The page that was allocated from skb_alloc_page
2914  *	@skb: The skb that may need pfmemalloc set
2915  */
2916 static inline void skb_propagate_pfmemalloc(struct page *page,
2917 					     struct sk_buff *skb)
2918 {
2919 	if (page_is_pfmemalloc(page))
2920 		skb->pfmemalloc = true;
2921 }
2922 
2923 /**
2924  * skb_frag_off() - Returns the offset of a skb fragment
2925  * @frag: the paged fragment
2926  */
2927 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
2928 {
2929 	return frag->bv_offset;
2930 }
2931 
2932 /**
2933  * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
2934  * @frag: skb fragment
2935  * @delta: value to add
2936  */
2937 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
2938 {
2939 	frag->bv_offset += delta;
2940 }
2941 
2942 /**
2943  * skb_frag_off_set() - Sets the offset of a skb fragment
2944  * @frag: skb fragment
2945  * @offset: offset of fragment
2946  */
2947 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
2948 {
2949 	frag->bv_offset = offset;
2950 }
2951 
2952 /**
2953  * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
2954  * @fragto: skb fragment where offset is set
2955  * @fragfrom: skb fragment offset is copied from
2956  */
2957 static inline void skb_frag_off_copy(skb_frag_t *fragto,
2958 				     const skb_frag_t *fragfrom)
2959 {
2960 	fragto->bv_offset = fragfrom->bv_offset;
2961 }
2962 
2963 /**
2964  * skb_frag_page - retrieve the page referred to by a paged fragment
2965  * @frag: the paged fragment
2966  *
2967  * Returns the &struct page associated with @frag.
2968  */
2969 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2970 {
2971 	return frag->bv_page;
2972 }
2973 
2974 /**
2975  * __skb_frag_ref - take an addition reference on a paged fragment.
2976  * @frag: the paged fragment
2977  *
2978  * Takes an additional reference on the paged fragment @frag.
2979  */
2980 static inline void __skb_frag_ref(skb_frag_t *frag)
2981 {
2982 	get_page(skb_frag_page(frag));
2983 }
2984 
2985 /**
2986  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2987  * @skb: the buffer
2988  * @f: the fragment offset.
2989  *
2990  * Takes an additional reference on the @f'th paged fragment of @skb.
2991  */
2992 static inline void skb_frag_ref(struct sk_buff *skb, int f)
2993 {
2994 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2995 }
2996 
2997 /**
2998  * __skb_frag_unref - release a reference on a paged fragment.
2999  * @frag: the paged fragment
3000  *
3001  * Releases a reference on the paged fragment @frag.
3002  */
3003 static inline void __skb_frag_unref(skb_frag_t *frag)
3004 {
3005 	put_page(skb_frag_page(frag));
3006 }
3007 
3008 /**
3009  * skb_frag_unref - release a reference on a paged fragment of an skb.
3010  * @skb: the buffer
3011  * @f: the fragment offset
3012  *
3013  * Releases a reference on the @f'th paged fragment of @skb.
3014  */
3015 static inline void skb_frag_unref(struct sk_buff *skb, int f)
3016 {
3017 	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
3018 }
3019 
3020 /**
3021  * skb_frag_address - gets the address of the data contained in a paged fragment
3022  * @frag: the paged fragment buffer
3023  *
3024  * Returns the address of the data within @frag. The page must already
3025  * be mapped.
3026  */
3027 static inline void *skb_frag_address(const skb_frag_t *frag)
3028 {
3029 	return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3030 }
3031 
3032 /**
3033  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3034  * @frag: the paged fragment buffer
3035  *
3036  * Returns the address of the data within @frag. Checks that the page
3037  * is mapped and returns %NULL otherwise.
3038  */
3039 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3040 {
3041 	void *ptr = page_address(skb_frag_page(frag));
3042 	if (unlikely(!ptr))
3043 		return NULL;
3044 
3045 	return ptr + skb_frag_off(frag);
3046 }
3047 
3048 /**
3049  * skb_frag_page_copy() - sets the page in a fragment from another fragment
3050  * @fragto: skb fragment where page is set
3051  * @fragfrom: skb fragment page is copied from
3052  */
3053 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3054 				      const skb_frag_t *fragfrom)
3055 {
3056 	fragto->bv_page = fragfrom->bv_page;
3057 }
3058 
3059 /**
3060  * __skb_frag_set_page - sets the page contained in a paged fragment
3061  * @frag: the paged fragment
3062  * @page: the page to set
3063  *
3064  * Sets the fragment @frag to contain @page.
3065  */
3066 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
3067 {
3068 	frag->bv_page = page;
3069 }
3070 
3071 /**
3072  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
3073  * @skb: the buffer
3074  * @f: the fragment offset
3075  * @page: the page to set
3076  *
3077  * Sets the @f'th fragment of @skb to contain @page.
3078  */
3079 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
3080 				     struct page *page)
3081 {
3082 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
3083 }
3084 
3085 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3086 
3087 /**
3088  * skb_frag_dma_map - maps a paged fragment via the DMA API
3089  * @dev: the device to map the fragment to
3090  * @frag: the paged fragment to map
3091  * @offset: the offset within the fragment (starting at the
3092  *          fragment's own offset)
3093  * @size: the number of bytes to map
3094  * @dir: the direction of the mapping (``PCI_DMA_*``)
3095  *
3096  * Maps the page associated with @frag to @device.
3097  */
3098 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3099 					  const skb_frag_t *frag,
3100 					  size_t offset, size_t size,
3101 					  enum dma_data_direction dir)
3102 {
3103 	return dma_map_page(dev, skb_frag_page(frag),
3104 			    skb_frag_off(frag) + offset, size, dir);
3105 }
3106 
3107 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3108 					gfp_t gfp_mask)
3109 {
3110 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3111 }
3112 
3113 
3114 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3115 						  gfp_t gfp_mask)
3116 {
3117 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3118 }
3119 
3120 
3121 /**
3122  *	skb_clone_writable - is the header of a clone writable
3123  *	@skb: buffer to check
3124  *	@len: length up to which to write
3125  *
3126  *	Returns true if modifying the header part of the cloned buffer
3127  *	does not requires the data to be copied.
3128  */
3129 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3130 {
3131 	return !skb_header_cloned(skb) &&
3132 	       skb_headroom(skb) + len <= skb->hdr_len;
3133 }
3134 
3135 static inline int skb_try_make_writable(struct sk_buff *skb,
3136 					unsigned int write_len)
3137 {
3138 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3139 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3140 }
3141 
3142 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3143 			    int cloned)
3144 {
3145 	int delta = 0;
3146 
3147 	if (headroom > skb_headroom(skb))
3148 		delta = headroom - skb_headroom(skb);
3149 
3150 	if (delta || cloned)
3151 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3152 					GFP_ATOMIC);
3153 	return 0;
3154 }
3155 
3156 /**
3157  *	skb_cow - copy header of skb when it is required
3158  *	@skb: buffer to cow
3159  *	@headroom: needed headroom
3160  *
3161  *	If the skb passed lacks sufficient headroom or its data part
3162  *	is shared, data is reallocated. If reallocation fails, an error
3163  *	is returned and original skb is not changed.
3164  *
3165  *	The result is skb with writable area skb->head...skb->tail
3166  *	and at least @headroom of space at head.
3167  */
3168 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3169 {
3170 	return __skb_cow(skb, headroom, skb_cloned(skb));
3171 }
3172 
3173 /**
3174  *	skb_cow_head - skb_cow but only making the head writable
3175  *	@skb: buffer to cow
3176  *	@headroom: needed headroom
3177  *
3178  *	This function is identical to skb_cow except that we replace the
3179  *	skb_cloned check by skb_header_cloned.  It should be used when
3180  *	you only need to push on some header and do not need to modify
3181  *	the data.
3182  */
3183 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3184 {
3185 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
3186 }
3187 
3188 /**
3189  *	skb_padto	- pad an skbuff up to a minimal size
3190  *	@skb: buffer to pad
3191  *	@len: minimal length
3192  *
3193  *	Pads up a buffer to ensure the trailing bytes exist and are
3194  *	blanked. If the buffer already contains sufficient data it
3195  *	is untouched. Otherwise it is extended. Returns zero on
3196  *	success. The skb is freed on error.
3197  */
3198 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3199 {
3200 	unsigned int size = skb->len;
3201 	if (likely(size >= len))
3202 		return 0;
3203 	return skb_pad(skb, len - size);
3204 }
3205 
3206 /**
3207  *	__skb_put_padto - increase size and pad an skbuff up to a minimal size
3208  *	@skb: buffer to pad
3209  *	@len: minimal length
3210  *	@free_on_error: free buffer on error
3211  *
3212  *	Pads up a buffer to ensure the trailing bytes exist and are
3213  *	blanked. If the buffer already contains sufficient data it
3214  *	is untouched. Otherwise it is extended. Returns zero on
3215  *	success. The skb is freed on error if @free_on_error is true.
3216  */
3217 static inline int __skb_put_padto(struct sk_buff *skb, unsigned int len,
3218 				  bool free_on_error)
3219 {
3220 	unsigned int size = skb->len;
3221 
3222 	if (unlikely(size < len)) {
3223 		len -= size;
3224 		if (__skb_pad(skb, len, free_on_error))
3225 			return -ENOMEM;
3226 		__skb_put(skb, len);
3227 	}
3228 	return 0;
3229 }
3230 
3231 /**
3232  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3233  *	@skb: buffer to pad
3234  *	@len: minimal length
3235  *
3236  *	Pads up a buffer to ensure the trailing bytes exist and are
3237  *	blanked. If the buffer already contains sufficient data it
3238  *	is untouched. Otherwise it is extended. Returns zero on
3239  *	success. The skb is freed on error.
3240  */
3241 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
3242 {
3243 	return __skb_put_padto(skb, len, true);
3244 }
3245 
3246 static inline int skb_add_data(struct sk_buff *skb,
3247 			       struct iov_iter *from, int copy)
3248 {
3249 	const int off = skb->len;
3250 
3251 	if (skb->ip_summed == CHECKSUM_NONE) {
3252 		__wsum csum = 0;
3253 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3254 					         &csum, from)) {
3255 			skb->csum = csum_block_add(skb->csum, csum, off);
3256 			return 0;
3257 		}
3258 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3259 		return 0;
3260 
3261 	__skb_trim(skb, off);
3262 	return -EFAULT;
3263 }
3264 
3265 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3266 				    const struct page *page, int off)
3267 {
3268 	if (skb_zcopy(skb))
3269 		return false;
3270 	if (i) {
3271 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3272 
3273 		return page == skb_frag_page(frag) &&
3274 		       off == skb_frag_off(frag) + skb_frag_size(frag);
3275 	}
3276 	return false;
3277 }
3278 
3279 static inline int __skb_linearize(struct sk_buff *skb)
3280 {
3281 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3282 }
3283 
3284 /**
3285  *	skb_linearize - convert paged skb to linear one
3286  *	@skb: buffer to linarize
3287  *
3288  *	If there is no free memory -ENOMEM is returned, otherwise zero
3289  *	is returned and the old skb data released.
3290  */
3291 static inline int skb_linearize(struct sk_buff *skb)
3292 {
3293 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3294 }
3295 
3296 /**
3297  * skb_has_shared_frag - can any frag be overwritten
3298  * @skb: buffer to test
3299  *
3300  * Return true if the skb has at least one frag that might be modified
3301  * by an external entity (as in vmsplice()/sendfile())
3302  */
3303 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3304 {
3305 	return skb_is_nonlinear(skb) &&
3306 	       skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
3307 }
3308 
3309 /**
3310  *	skb_linearize_cow - make sure skb is linear and writable
3311  *	@skb: buffer to process
3312  *
3313  *	If there is no free memory -ENOMEM is returned, otherwise zero
3314  *	is returned and the old skb data released.
3315  */
3316 static inline int skb_linearize_cow(struct sk_buff *skb)
3317 {
3318 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3319 	       __skb_linearize(skb) : 0;
3320 }
3321 
3322 static __always_inline void
3323 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3324 		     unsigned int off)
3325 {
3326 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3327 		skb->csum = csum_block_sub(skb->csum,
3328 					   csum_partial(start, len, 0), off);
3329 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3330 		 skb_checksum_start_offset(skb) < 0)
3331 		skb->ip_summed = CHECKSUM_NONE;
3332 }
3333 
3334 /**
3335  *	skb_postpull_rcsum - update checksum for received skb after pull
3336  *	@skb: buffer to update
3337  *	@start: start of data before pull
3338  *	@len: length of data pulled
3339  *
3340  *	After doing a pull on a received packet, you need to call this to
3341  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3342  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3343  */
3344 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3345 				      const void *start, unsigned int len)
3346 {
3347 	__skb_postpull_rcsum(skb, start, len, 0);
3348 }
3349 
3350 static __always_inline void
3351 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3352 		     unsigned int off)
3353 {
3354 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3355 		skb->csum = csum_block_add(skb->csum,
3356 					   csum_partial(start, len, 0), off);
3357 }
3358 
3359 /**
3360  *	skb_postpush_rcsum - update checksum for received skb after push
3361  *	@skb: buffer to update
3362  *	@start: start of data after push
3363  *	@len: length of data pushed
3364  *
3365  *	After doing a push on a received packet, you need to call this to
3366  *	update the CHECKSUM_COMPLETE checksum.
3367  */
3368 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3369 				      const void *start, unsigned int len)
3370 {
3371 	__skb_postpush_rcsum(skb, start, len, 0);
3372 }
3373 
3374 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3375 
3376 /**
3377  *	skb_push_rcsum - push skb and update receive checksum
3378  *	@skb: buffer to update
3379  *	@len: length of data pulled
3380  *
3381  *	This function performs an skb_push on the packet and updates
3382  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3383  *	receive path processing instead of skb_push unless you know
3384  *	that the checksum difference is zero (e.g., a valid IP header)
3385  *	or you are setting ip_summed to CHECKSUM_NONE.
3386  */
3387 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3388 {
3389 	skb_push(skb, len);
3390 	skb_postpush_rcsum(skb, skb->data, len);
3391 	return skb->data;
3392 }
3393 
3394 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3395 /**
3396  *	pskb_trim_rcsum - trim received skb and update checksum
3397  *	@skb: buffer to trim
3398  *	@len: new length
3399  *
3400  *	This is exactly the same as pskb_trim except that it ensures the
3401  *	checksum of received packets are still valid after the operation.
3402  *	It can change skb pointers.
3403  */
3404 
3405 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3406 {
3407 	if (likely(len >= skb->len))
3408 		return 0;
3409 	return pskb_trim_rcsum_slow(skb, len);
3410 }
3411 
3412 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3413 {
3414 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3415 		skb->ip_summed = CHECKSUM_NONE;
3416 	__skb_trim(skb, len);
3417 	return 0;
3418 }
3419 
3420 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3421 {
3422 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3423 		skb->ip_summed = CHECKSUM_NONE;
3424 	return __skb_grow(skb, len);
3425 }
3426 
3427 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3428 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3429 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3430 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3431 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3432 
3433 #define skb_queue_walk(queue, skb) \
3434 		for (skb = (queue)->next;					\
3435 		     skb != (struct sk_buff *)(queue);				\
3436 		     skb = skb->next)
3437 
3438 #define skb_queue_walk_safe(queue, skb, tmp)					\
3439 		for (skb = (queue)->next, tmp = skb->next;			\
3440 		     skb != (struct sk_buff *)(queue);				\
3441 		     skb = tmp, tmp = skb->next)
3442 
3443 #define skb_queue_walk_from(queue, skb)						\
3444 		for (; skb != (struct sk_buff *)(queue);			\
3445 		     skb = skb->next)
3446 
3447 #define skb_rbtree_walk(skb, root)						\
3448 		for (skb = skb_rb_first(root); skb != NULL;			\
3449 		     skb = skb_rb_next(skb))
3450 
3451 #define skb_rbtree_walk_from(skb)						\
3452 		for (; skb != NULL;						\
3453 		     skb = skb_rb_next(skb))
3454 
3455 #define skb_rbtree_walk_from_safe(skb, tmp)					\
3456 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
3457 		     skb = tmp)
3458 
3459 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3460 		for (tmp = skb->next;						\
3461 		     skb != (struct sk_buff *)(queue);				\
3462 		     skb = tmp, tmp = skb->next)
3463 
3464 #define skb_queue_reverse_walk(queue, skb) \
3465 		for (skb = (queue)->prev;					\
3466 		     skb != (struct sk_buff *)(queue);				\
3467 		     skb = skb->prev)
3468 
3469 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3470 		for (skb = (queue)->prev, tmp = skb->prev;			\
3471 		     skb != (struct sk_buff *)(queue);				\
3472 		     skb = tmp, tmp = skb->prev)
3473 
3474 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3475 		for (tmp = skb->prev;						\
3476 		     skb != (struct sk_buff *)(queue);				\
3477 		     skb = tmp, tmp = skb->prev)
3478 
3479 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3480 {
3481 	return skb_shinfo(skb)->frag_list != NULL;
3482 }
3483 
3484 static inline void skb_frag_list_init(struct sk_buff *skb)
3485 {
3486 	skb_shinfo(skb)->frag_list = NULL;
3487 }
3488 
3489 #define skb_walk_frags(skb, iter)	\
3490 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3491 
3492 
3493 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3494 				int *err, long *timeo_p,
3495 				const struct sk_buff *skb);
3496 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3497 					  struct sk_buff_head *queue,
3498 					  unsigned int flags,
3499 					  int *off, int *err,
3500 					  struct sk_buff **last);
3501 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
3502 					struct sk_buff_head *queue,
3503 					unsigned int flags, int *off, int *err,
3504 					struct sk_buff **last);
3505 struct sk_buff *__skb_recv_datagram(struct sock *sk,
3506 				    struct sk_buff_head *sk_queue,
3507 				    unsigned int flags, int *off, int *err);
3508 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3509 				  int *err);
3510 __poll_t datagram_poll(struct file *file, struct socket *sock,
3511 			   struct poll_table_struct *wait);
3512 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3513 			   struct iov_iter *to, int size);
3514 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3515 					struct msghdr *msg, int size)
3516 {
3517 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3518 }
3519 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3520 				   struct msghdr *msg);
3521 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3522 			   struct iov_iter *to, int len,
3523 			   struct ahash_request *hash);
3524 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3525 				 struct iov_iter *from, int len);
3526 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3527 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3528 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3529 static inline void skb_free_datagram_locked(struct sock *sk,
3530 					    struct sk_buff *skb)
3531 {
3532 	__skb_free_datagram_locked(sk, skb, 0);
3533 }
3534 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3535 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3536 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3537 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3538 			      int len, __wsum csum);
3539 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3540 		    struct pipe_inode_info *pipe, unsigned int len,
3541 		    unsigned int flags);
3542 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3543 			 int len);
3544 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3545 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3546 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3547 		 int len, int hlen);
3548 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3549 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3550 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3551 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3552 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3553 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3554 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
3555 				 unsigned int offset);
3556 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3557 int skb_ensure_writable(struct sk_buff *skb, int write_len);
3558 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3559 int skb_vlan_pop(struct sk_buff *skb);
3560 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3561 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
3562 		  int mac_len, bool ethernet);
3563 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
3564 		 bool ethernet);
3565 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
3566 int skb_mpls_dec_ttl(struct sk_buff *skb);
3567 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3568 			     gfp_t gfp);
3569 
3570 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3571 {
3572 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3573 }
3574 
3575 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3576 {
3577 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3578 }
3579 
3580 struct skb_checksum_ops {
3581 	__wsum (*update)(const void *mem, int len, __wsum wsum);
3582 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3583 };
3584 
3585 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3586 
3587 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3588 		      __wsum csum, const struct skb_checksum_ops *ops);
3589 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3590 		    __wsum csum);
3591 
3592 static inline void * __must_check
3593 __skb_header_pointer(const struct sk_buff *skb, int offset,
3594 		     int len, void *data, int hlen, void *buffer)
3595 {
3596 	if (hlen - offset >= len)
3597 		return data + offset;
3598 
3599 	if (!skb ||
3600 	    skb_copy_bits(skb, offset, buffer, len) < 0)
3601 		return NULL;
3602 
3603 	return buffer;
3604 }
3605 
3606 static inline void * __must_check
3607 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3608 {
3609 	return __skb_header_pointer(skb, offset, len, skb->data,
3610 				    skb_headlen(skb), buffer);
3611 }
3612 
3613 /**
3614  *	skb_needs_linearize - check if we need to linearize a given skb
3615  *			      depending on the given device features.
3616  *	@skb: socket buffer to check
3617  *	@features: net device features
3618  *
3619  *	Returns true if either:
3620  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
3621  *	2. skb is fragmented and the device does not support SG.
3622  */
3623 static inline bool skb_needs_linearize(struct sk_buff *skb,
3624 				       netdev_features_t features)
3625 {
3626 	return skb_is_nonlinear(skb) &&
3627 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3628 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3629 }
3630 
3631 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3632 					     void *to,
3633 					     const unsigned int len)
3634 {
3635 	memcpy(to, skb->data, len);
3636 }
3637 
3638 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3639 						    const int offset, void *to,
3640 						    const unsigned int len)
3641 {
3642 	memcpy(to, skb->data + offset, len);
3643 }
3644 
3645 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3646 					   const void *from,
3647 					   const unsigned int len)
3648 {
3649 	memcpy(skb->data, from, len);
3650 }
3651 
3652 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3653 						  const int offset,
3654 						  const void *from,
3655 						  const unsigned int len)
3656 {
3657 	memcpy(skb->data + offset, from, len);
3658 }
3659 
3660 void skb_init(void);
3661 
3662 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3663 {
3664 	return skb->tstamp;
3665 }
3666 
3667 /**
3668  *	skb_get_timestamp - get timestamp from a skb
3669  *	@skb: skb to get stamp from
3670  *	@stamp: pointer to struct __kernel_old_timeval to store stamp in
3671  *
3672  *	Timestamps are stored in the skb as offsets to a base timestamp.
3673  *	This function converts the offset back to a struct timeval and stores
3674  *	it in stamp.
3675  */
3676 static inline void skb_get_timestamp(const struct sk_buff *skb,
3677 				     struct __kernel_old_timeval *stamp)
3678 {
3679 	*stamp = ns_to_kernel_old_timeval(skb->tstamp);
3680 }
3681 
3682 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
3683 					 struct __kernel_sock_timeval *stamp)
3684 {
3685 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3686 
3687 	stamp->tv_sec = ts.tv_sec;
3688 	stamp->tv_usec = ts.tv_nsec / 1000;
3689 }
3690 
3691 static inline void skb_get_timestampns(const struct sk_buff *skb,
3692 				       struct __kernel_old_timespec *stamp)
3693 {
3694 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3695 
3696 	stamp->tv_sec = ts.tv_sec;
3697 	stamp->tv_nsec = ts.tv_nsec;
3698 }
3699 
3700 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
3701 					   struct __kernel_timespec *stamp)
3702 {
3703 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3704 
3705 	stamp->tv_sec = ts.tv_sec;
3706 	stamp->tv_nsec = ts.tv_nsec;
3707 }
3708 
3709 static inline void __net_timestamp(struct sk_buff *skb)
3710 {
3711 	skb->tstamp = ktime_get_real();
3712 }
3713 
3714 static inline ktime_t net_timedelta(ktime_t t)
3715 {
3716 	return ktime_sub(ktime_get_real(), t);
3717 }
3718 
3719 static inline ktime_t net_invalid_timestamp(void)
3720 {
3721 	return 0;
3722 }
3723 
3724 static inline u8 skb_metadata_len(const struct sk_buff *skb)
3725 {
3726 	return skb_shinfo(skb)->meta_len;
3727 }
3728 
3729 static inline void *skb_metadata_end(const struct sk_buff *skb)
3730 {
3731 	return skb_mac_header(skb);
3732 }
3733 
3734 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3735 					  const struct sk_buff *skb_b,
3736 					  u8 meta_len)
3737 {
3738 	const void *a = skb_metadata_end(skb_a);
3739 	const void *b = skb_metadata_end(skb_b);
3740 	/* Using more efficient varaiant than plain call to memcmp(). */
3741 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3742 	u64 diffs = 0;
3743 
3744 	switch (meta_len) {
3745 #define __it(x, op) (x -= sizeof(u##op))
3746 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3747 	case 32: diffs |= __it_diff(a, b, 64);
3748 		 /* fall through */
3749 	case 24: diffs |= __it_diff(a, b, 64);
3750 		 /* fall through */
3751 	case 16: diffs |= __it_diff(a, b, 64);
3752 		 /* fall through */
3753 	case  8: diffs |= __it_diff(a, b, 64);
3754 		break;
3755 	case 28: diffs |= __it_diff(a, b, 64);
3756 		 /* fall through */
3757 	case 20: diffs |= __it_diff(a, b, 64);
3758 		 /* fall through */
3759 	case 12: diffs |= __it_diff(a, b, 64);
3760 		 /* fall through */
3761 	case  4: diffs |= __it_diff(a, b, 32);
3762 		break;
3763 	}
3764 	return diffs;
3765 #else
3766 	return memcmp(a - meta_len, b - meta_len, meta_len);
3767 #endif
3768 }
3769 
3770 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3771 					const struct sk_buff *skb_b)
3772 {
3773 	u8 len_a = skb_metadata_len(skb_a);
3774 	u8 len_b = skb_metadata_len(skb_b);
3775 
3776 	if (!(len_a | len_b))
3777 		return false;
3778 
3779 	return len_a != len_b ?
3780 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
3781 }
3782 
3783 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3784 {
3785 	skb_shinfo(skb)->meta_len = meta_len;
3786 }
3787 
3788 static inline void skb_metadata_clear(struct sk_buff *skb)
3789 {
3790 	skb_metadata_set(skb, 0);
3791 }
3792 
3793 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3794 
3795 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3796 
3797 void skb_clone_tx_timestamp(struct sk_buff *skb);
3798 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3799 
3800 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3801 
3802 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3803 {
3804 }
3805 
3806 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3807 {
3808 	return false;
3809 }
3810 
3811 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3812 
3813 /**
3814  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3815  *
3816  * PHY drivers may accept clones of transmitted packets for
3817  * timestamping via their phy_driver.txtstamp method. These drivers
3818  * must call this function to return the skb back to the stack with a
3819  * timestamp.
3820  *
3821  * @skb: clone of the original outgoing packet
3822  * @hwtstamps: hardware time stamps
3823  *
3824  */
3825 void skb_complete_tx_timestamp(struct sk_buff *skb,
3826 			       struct skb_shared_hwtstamps *hwtstamps);
3827 
3828 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3829 		     struct skb_shared_hwtstamps *hwtstamps,
3830 		     struct sock *sk, int tstype);
3831 
3832 /**
3833  * skb_tstamp_tx - queue clone of skb with send time stamps
3834  * @orig_skb:	the original outgoing packet
3835  * @hwtstamps:	hardware time stamps, may be NULL if not available
3836  *
3837  * If the skb has a socket associated, then this function clones the
3838  * skb (thus sharing the actual data and optional structures), stores
3839  * the optional hardware time stamping information (if non NULL) or
3840  * generates a software time stamp (otherwise), then queues the clone
3841  * to the error queue of the socket.  Errors are silently ignored.
3842  */
3843 void skb_tstamp_tx(struct sk_buff *orig_skb,
3844 		   struct skb_shared_hwtstamps *hwtstamps);
3845 
3846 /**
3847  * skb_tx_timestamp() - Driver hook for transmit timestamping
3848  *
3849  * Ethernet MAC Drivers should call this function in their hard_xmit()
3850  * function immediately before giving the sk_buff to the MAC hardware.
3851  *
3852  * Specifically, one should make absolutely sure that this function is
3853  * called before TX completion of this packet can trigger.  Otherwise
3854  * the packet could potentially already be freed.
3855  *
3856  * @skb: A socket buffer.
3857  */
3858 static inline void skb_tx_timestamp(struct sk_buff *skb)
3859 {
3860 	skb_clone_tx_timestamp(skb);
3861 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3862 		skb_tstamp_tx(skb, NULL);
3863 }
3864 
3865 /**
3866  * skb_complete_wifi_ack - deliver skb with wifi status
3867  *
3868  * @skb: the original outgoing packet
3869  * @acked: ack status
3870  *
3871  */
3872 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3873 
3874 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3875 __sum16 __skb_checksum_complete(struct sk_buff *skb);
3876 
3877 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3878 {
3879 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3880 		skb->csum_valid ||
3881 		(skb->ip_summed == CHECKSUM_PARTIAL &&
3882 		 skb_checksum_start_offset(skb) >= 0));
3883 }
3884 
3885 /**
3886  *	skb_checksum_complete - Calculate checksum of an entire packet
3887  *	@skb: packet to process
3888  *
3889  *	This function calculates the checksum over the entire packet plus
3890  *	the value of skb->csum.  The latter can be used to supply the
3891  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
3892  *	checksum.
3893  *
3894  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
3895  *	this function can be used to verify that checksum on received
3896  *	packets.  In that case the function should return zero if the
3897  *	checksum is correct.  In particular, this function will return zero
3898  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3899  *	hardware has already verified the correctness of the checksum.
3900  */
3901 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3902 {
3903 	return skb_csum_unnecessary(skb) ?
3904 	       0 : __skb_checksum_complete(skb);
3905 }
3906 
3907 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3908 {
3909 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3910 		if (skb->csum_level == 0)
3911 			skb->ip_summed = CHECKSUM_NONE;
3912 		else
3913 			skb->csum_level--;
3914 	}
3915 }
3916 
3917 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3918 {
3919 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3920 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3921 			skb->csum_level++;
3922 	} else if (skb->ip_summed == CHECKSUM_NONE) {
3923 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3924 		skb->csum_level = 0;
3925 	}
3926 }
3927 
3928 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
3929 {
3930 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3931 		skb->ip_summed = CHECKSUM_NONE;
3932 		skb->csum_level = 0;
3933 	}
3934 }
3935 
3936 /* Check if we need to perform checksum complete validation.
3937  *
3938  * Returns true if checksum complete is needed, false otherwise
3939  * (either checksum is unnecessary or zero checksum is allowed).
3940  */
3941 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3942 						  bool zero_okay,
3943 						  __sum16 check)
3944 {
3945 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3946 		skb->csum_valid = 1;
3947 		__skb_decr_checksum_unnecessary(skb);
3948 		return false;
3949 	}
3950 
3951 	return true;
3952 }
3953 
3954 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
3955  * in checksum_init.
3956  */
3957 #define CHECKSUM_BREAK 76
3958 
3959 /* Unset checksum-complete
3960  *
3961  * Unset checksum complete can be done when packet is being modified
3962  * (uncompressed for instance) and checksum-complete value is
3963  * invalidated.
3964  */
3965 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3966 {
3967 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3968 		skb->ip_summed = CHECKSUM_NONE;
3969 }
3970 
3971 /* Validate (init) checksum based on checksum complete.
3972  *
3973  * Return values:
3974  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
3975  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3976  *	checksum is stored in skb->csum for use in __skb_checksum_complete
3977  *   non-zero: value of invalid checksum
3978  *
3979  */
3980 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3981 						       bool complete,
3982 						       __wsum psum)
3983 {
3984 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
3985 		if (!csum_fold(csum_add(psum, skb->csum))) {
3986 			skb->csum_valid = 1;
3987 			return 0;
3988 		}
3989 	}
3990 
3991 	skb->csum = psum;
3992 
3993 	if (complete || skb->len <= CHECKSUM_BREAK) {
3994 		__sum16 csum;
3995 
3996 		csum = __skb_checksum_complete(skb);
3997 		skb->csum_valid = !csum;
3998 		return csum;
3999 	}
4000 
4001 	return 0;
4002 }
4003 
4004 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4005 {
4006 	return 0;
4007 }
4008 
4009 /* Perform checksum validate (init). Note that this is a macro since we only
4010  * want to calculate the pseudo header which is an input function if necessary.
4011  * First we try to validate without any computation (checksum unnecessary) and
4012  * then calculate based on checksum complete calling the function to compute
4013  * pseudo header.
4014  *
4015  * Return values:
4016  *   0: checksum is validated or try to in skb_checksum_complete
4017  *   non-zero: value of invalid checksum
4018  */
4019 #define __skb_checksum_validate(skb, proto, complete,			\
4020 				zero_okay, check, compute_pseudo)	\
4021 ({									\
4022 	__sum16 __ret = 0;						\
4023 	skb->csum_valid = 0;						\
4024 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
4025 		__ret = __skb_checksum_validate_complete(skb,		\
4026 				complete, compute_pseudo(skb, proto));	\
4027 	__ret;								\
4028 })
4029 
4030 #define skb_checksum_init(skb, proto, compute_pseudo)			\
4031 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4032 
4033 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
4034 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4035 
4036 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
4037 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4038 
4039 #define skb_checksum_validate_zero_check(skb, proto, check,		\
4040 					 compute_pseudo)		\
4041 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4042 
4043 #define skb_checksum_simple_validate(skb)				\
4044 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4045 
4046 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4047 {
4048 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4049 }
4050 
4051 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4052 {
4053 	skb->csum = ~pseudo;
4054 	skb->ip_summed = CHECKSUM_COMPLETE;
4055 }
4056 
4057 #define skb_checksum_try_convert(skb, proto, compute_pseudo)	\
4058 do {									\
4059 	if (__skb_checksum_convert_check(skb))				\
4060 		__skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4061 } while (0)
4062 
4063 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4064 					      u16 start, u16 offset)
4065 {
4066 	skb->ip_summed = CHECKSUM_PARTIAL;
4067 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4068 	skb->csum_offset = offset - start;
4069 }
4070 
4071 /* Update skbuf and packet to reflect the remote checksum offload operation.
4072  * When called, ptr indicates the starting point for skb->csum when
4073  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4074  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4075  */
4076 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4077 				       int start, int offset, bool nopartial)
4078 {
4079 	__wsum delta;
4080 
4081 	if (!nopartial) {
4082 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
4083 		return;
4084 	}
4085 
4086 	 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4087 		__skb_checksum_complete(skb);
4088 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4089 	}
4090 
4091 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
4092 
4093 	/* Adjust skb->csum since we changed the packet */
4094 	skb->csum = csum_add(skb->csum, delta);
4095 }
4096 
4097 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4098 {
4099 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4100 	return (void *)(skb->_nfct & NFCT_PTRMASK);
4101 #else
4102 	return NULL;
4103 #endif
4104 }
4105 
4106 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4107 {
4108 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4109 	return skb->_nfct;
4110 #else
4111 	return 0UL;
4112 #endif
4113 }
4114 
4115 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4116 {
4117 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4118 	skb->_nfct = nfct;
4119 #endif
4120 }
4121 
4122 #ifdef CONFIG_SKB_EXTENSIONS
4123 enum skb_ext_id {
4124 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4125 	SKB_EXT_BRIDGE_NF,
4126 #endif
4127 #ifdef CONFIG_XFRM
4128 	SKB_EXT_SEC_PATH,
4129 #endif
4130 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4131 	TC_SKB_EXT,
4132 #endif
4133 #if IS_ENABLED(CONFIG_MPTCP)
4134 	SKB_EXT_MPTCP,
4135 #endif
4136 	SKB_EXT_NUM, /* must be last */
4137 };
4138 
4139 /**
4140  *	struct skb_ext - sk_buff extensions
4141  *	@refcnt: 1 on allocation, deallocated on 0
4142  *	@offset: offset to add to @data to obtain extension address
4143  *	@chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4144  *	@data: start of extension data, variable sized
4145  *
4146  *	Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4147  *	to use 'u8' types while allowing up to 2kb worth of extension data.
4148  */
4149 struct skb_ext {
4150 	refcount_t refcnt;
4151 	u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4152 	u8 chunks;		/* same */
4153 	char data[] __aligned(8);
4154 };
4155 
4156 struct skb_ext *__skb_ext_alloc(gfp_t flags);
4157 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4158 		    struct skb_ext *ext);
4159 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4160 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4161 void __skb_ext_put(struct skb_ext *ext);
4162 
4163 static inline void skb_ext_put(struct sk_buff *skb)
4164 {
4165 	if (skb->active_extensions)
4166 		__skb_ext_put(skb->extensions);
4167 }
4168 
4169 static inline void __skb_ext_copy(struct sk_buff *dst,
4170 				  const struct sk_buff *src)
4171 {
4172 	dst->active_extensions = src->active_extensions;
4173 
4174 	if (src->active_extensions) {
4175 		struct skb_ext *ext = src->extensions;
4176 
4177 		refcount_inc(&ext->refcnt);
4178 		dst->extensions = ext;
4179 	}
4180 }
4181 
4182 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4183 {
4184 	skb_ext_put(dst);
4185 	__skb_ext_copy(dst, src);
4186 }
4187 
4188 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4189 {
4190 	return !!ext->offset[i];
4191 }
4192 
4193 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4194 {
4195 	return skb->active_extensions & (1 << id);
4196 }
4197 
4198 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4199 {
4200 	if (skb_ext_exist(skb, id))
4201 		__skb_ext_del(skb, id);
4202 }
4203 
4204 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4205 {
4206 	if (skb_ext_exist(skb, id)) {
4207 		struct skb_ext *ext = skb->extensions;
4208 
4209 		return (void *)ext + (ext->offset[id] << 3);
4210 	}
4211 
4212 	return NULL;
4213 }
4214 
4215 static inline void skb_ext_reset(struct sk_buff *skb)
4216 {
4217 	if (unlikely(skb->active_extensions)) {
4218 		__skb_ext_put(skb->extensions);
4219 		skb->active_extensions = 0;
4220 	}
4221 }
4222 
4223 static inline bool skb_has_extensions(struct sk_buff *skb)
4224 {
4225 	return unlikely(skb->active_extensions);
4226 }
4227 #else
4228 static inline void skb_ext_put(struct sk_buff *skb) {}
4229 static inline void skb_ext_reset(struct sk_buff *skb) {}
4230 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4231 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4232 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4233 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4234 #endif /* CONFIG_SKB_EXTENSIONS */
4235 
4236 static inline void nf_reset_ct(struct sk_buff *skb)
4237 {
4238 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4239 	nf_conntrack_put(skb_nfct(skb));
4240 	skb->_nfct = 0;
4241 #endif
4242 }
4243 
4244 static inline void nf_reset_trace(struct sk_buff *skb)
4245 {
4246 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4247 	skb->nf_trace = 0;
4248 #endif
4249 }
4250 
4251 static inline void ipvs_reset(struct sk_buff *skb)
4252 {
4253 #if IS_ENABLED(CONFIG_IP_VS)
4254 	skb->ipvs_property = 0;
4255 #endif
4256 }
4257 
4258 /* Note: This doesn't put any conntrack info in dst. */
4259 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4260 			     bool copy)
4261 {
4262 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4263 	dst->_nfct = src->_nfct;
4264 	nf_conntrack_get(skb_nfct(src));
4265 #endif
4266 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4267 	if (copy)
4268 		dst->nf_trace = src->nf_trace;
4269 #endif
4270 }
4271 
4272 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4273 {
4274 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4275 	nf_conntrack_put(skb_nfct(dst));
4276 #endif
4277 	__nf_copy(dst, src, true);
4278 }
4279 
4280 #ifdef CONFIG_NETWORK_SECMARK
4281 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4282 {
4283 	to->secmark = from->secmark;
4284 }
4285 
4286 static inline void skb_init_secmark(struct sk_buff *skb)
4287 {
4288 	skb->secmark = 0;
4289 }
4290 #else
4291 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4292 { }
4293 
4294 static inline void skb_init_secmark(struct sk_buff *skb)
4295 { }
4296 #endif
4297 
4298 static inline int secpath_exists(const struct sk_buff *skb)
4299 {
4300 #ifdef CONFIG_XFRM
4301 	return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4302 #else
4303 	return 0;
4304 #endif
4305 }
4306 
4307 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4308 {
4309 	return !skb->destructor &&
4310 		!secpath_exists(skb) &&
4311 		!skb_nfct(skb) &&
4312 		!skb->_skb_refdst &&
4313 		!skb_has_frag_list(skb);
4314 }
4315 
4316 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4317 {
4318 	skb->queue_mapping = queue_mapping;
4319 }
4320 
4321 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4322 {
4323 	return skb->queue_mapping;
4324 }
4325 
4326 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4327 {
4328 	to->queue_mapping = from->queue_mapping;
4329 }
4330 
4331 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4332 {
4333 	skb->queue_mapping = rx_queue + 1;
4334 }
4335 
4336 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4337 {
4338 	return skb->queue_mapping - 1;
4339 }
4340 
4341 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4342 {
4343 	return skb->queue_mapping != 0;
4344 }
4345 
4346 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4347 {
4348 	skb->dst_pending_confirm = val;
4349 }
4350 
4351 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4352 {
4353 	return skb->dst_pending_confirm != 0;
4354 }
4355 
4356 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4357 {
4358 #ifdef CONFIG_XFRM
4359 	return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4360 #else
4361 	return NULL;
4362 #endif
4363 }
4364 
4365 /* Keeps track of mac header offset relative to skb->head.
4366  * It is useful for TSO of Tunneling protocol. e.g. GRE.
4367  * For non-tunnel skb it points to skb_mac_header() and for
4368  * tunnel skb it points to outer mac header.
4369  * Keeps track of level of encapsulation of network headers.
4370  */
4371 struct skb_gso_cb {
4372 	union {
4373 		int	mac_offset;
4374 		int	data_offset;
4375 	};
4376 	int	encap_level;
4377 	__wsum	csum;
4378 	__u16	csum_start;
4379 };
4380 #define SKB_GSO_CB_OFFSET	32
4381 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET))
4382 
4383 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4384 {
4385 	return (skb_mac_header(inner_skb) - inner_skb->head) -
4386 		SKB_GSO_CB(inner_skb)->mac_offset;
4387 }
4388 
4389 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4390 {
4391 	int new_headroom, headroom;
4392 	int ret;
4393 
4394 	headroom = skb_headroom(skb);
4395 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4396 	if (ret)
4397 		return ret;
4398 
4399 	new_headroom = skb_headroom(skb);
4400 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4401 	return 0;
4402 }
4403 
4404 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4405 {
4406 	/* Do not update partial checksums if remote checksum is enabled. */
4407 	if (skb->remcsum_offload)
4408 		return;
4409 
4410 	SKB_GSO_CB(skb)->csum = res;
4411 	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4412 }
4413 
4414 /* Compute the checksum for a gso segment. First compute the checksum value
4415  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4416  * then add in skb->csum (checksum from csum_start to end of packet).
4417  * skb->csum and csum_start are then updated to reflect the checksum of the
4418  * resultant packet starting from the transport header-- the resultant checksum
4419  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4420  * header.
4421  */
4422 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4423 {
4424 	unsigned char *csum_start = skb_transport_header(skb);
4425 	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4426 	__wsum partial = SKB_GSO_CB(skb)->csum;
4427 
4428 	SKB_GSO_CB(skb)->csum = res;
4429 	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4430 
4431 	return csum_fold(csum_partial(csum_start, plen, partial));
4432 }
4433 
4434 static inline bool skb_is_gso(const struct sk_buff *skb)
4435 {
4436 	return skb_shinfo(skb)->gso_size;
4437 }
4438 
4439 /* Note: Should be called only if skb_is_gso(skb) is true */
4440 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4441 {
4442 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4443 }
4444 
4445 /* Note: Should be called only if skb_is_gso(skb) is true */
4446 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4447 {
4448 	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4449 }
4450 
4451 /* Note: Should be called only if skb_is_gso(skb) is true */
4452 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4453 {
4454 	return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4455 }
4456 
4457 static inline void skb_gso_reset(struct sk_buff *skb)
4458 {
4459 	skb_shinfo(skb)->gso_size = 0;
4460 	skb_shinfo(skb)->gso_segs = 0;
4461 	skb_shinfo(skb)->gso_type = 0;
4462 }
4463 
4464 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4465 					 u16 increment)
4466 {
4467 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4468 		return;
4469 	shinfo->gso_size += increment;
4470 }
4471 
4472 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4473 					 u16 decrement)
4474 {
4475 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4476 		return;
4477 	shinfo->gso_size -= decrement;
4478 }
4479 
4480 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4481 
4482 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4483 {
4484 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
4485 	 * wanted then gso_type will be set. */
4486 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4487 
4488 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4489 	    unlikely(shinfo->gso_type == 0)) {
4490 		__skb_warn_lro_forwarding(skb);
4491 		return true;
4492 	}
4493 	return false;
4494 }
4495 
4496 static inline void skb_forward_csum(struct sk_buff *skb)
4497 {
4498 	/* Unfortunately we don't support this one.  Any brave souls? */
4499 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4500 		skb->ip_summed = CHECKSUM_NONE;
4501 }
4502 
4503 /**
4504  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4505  * @skb: skb to check
4506  *
4507  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4508  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4509  * use this helper, to document places where we make this assertion.
4510  */
4511 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4512 {
4513 #ifdef DEBUG
4514 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4515 #endif
4516 }
4517 
4518 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4519 
4520 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4521 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4522 				     unsigned int transport_len,
4523 				     __sum16(*skb_chkf)(struct sk_buff *skb));
4524 
4525 /**
4526  * skb_head_is_locked - Determine if the skb->head is locked down
4527  * @skb: skb to check
4528  *
4529  * The head on skbs build around a head frag can be removed if they are
4530  * not cloned.  This function returns true if the skb head is locked down
4531  * due to either being allocated via kmalloc, or by being a clone with
4532  * multiple references to the head.
4533  */
4534 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4535 {
4536 	return !skb->head_frag || skb_cloned(skb);
4537 }
4538 
4539 /* Local Checksum Offload.
4540  * Compute outer checksum based on the assumption that the
4541  * inner checksum will be offloaded later.
4542  * See Documentation/networking/checksum-offloads.rst for
4543  * explanation of how this works.
4544  * Fill in outer checksum adjustment (e.g. with sum of outer
4545  * pseudo-header) before calling.
4546  * Also ensure that inner checksum is in linear data area.
4547  */
4548 static inline __wsum lco_csum(struct sk_buff *skb)
4549 {
4550 	unsigned char *csum_start = skb_checksum_start(skb);
4551 	unsigned char *l4_hdr = skb_transport_header(skb);
4552 	__wsum partial;
4553 
4554 	/* Start with complement of inner checksum adjustment */
4555 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4556 						    skb->csum_offset));
4557 
4558 	/* Add in checksum of our headers (incl. outer checksum
4559 	 * adjustment filled in by caller) and return result.
4560 	 */
4561 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4562 }
4563 
4564 static inline bool skb_is_redirected(const struct sk_buff *skb)
4565 {
4566 #ifdef CONFIG_NET_REDIRECT
4567 	return skb->redirected;
4568 #else
4569 	return false;
4570 #endif
4571 }
4572 
4573 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
4574 {
4575 #ifdef CONFIG_NET_REDIRECT
4576 	skb->redirected = 1;
4577 	skb->from_ingress = from_ingress;
4578 	if (skb->from_ingress)
4579 		skb->tstamp = 0;
4580 #endif
4581 }
4582 
4583 static inline void skb_reset_redirect(struct sk_buff *skb)
4584 {
4585 #ifdef CONFIG_NET_REDIRECT
4586 	skb->redirected = 0;
4587 #endif
4588 }
4589 
4590 #endif	/* __KERNEL__ */
4591 #endif	/* _LINUX_SKBUFF_H */
4592