xref: /linux-6.15/include/linux/skbuff.h (revision a9c59ef7)
1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <[email protected]>
6  *		Florian La Roche, <[email protected]>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/bug.h>
22 #include <linux/cache.h>
23 #include <linux/rbtree.h>
24 #include <linux/socket.h>
25 
26 #include <linux/atomic.h>
27 #include <asm/types.h>
28 #include <linux/spinlock.h>
29 #include <linux/net.h>
30 #include <linux/textsearch.h>
31 #include <net/checksum.h>
32 #include <linux/rcupdate.h>
33 #include <linux/hrtimer.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/netdev_features.h>
36 #include <linux/sched.h>
37 #include <net/flow_dissector.h>
38 #include <linux/splice.h>
39 #include <linux/in6.h>
40 #include <net/flow.h>
41 
42 /* The interface for checksum offload between the stack and networking drivers
43  * is as follows...
44  *
45  * A. IP checksum related features
46  *
47  * Drivers advertise checksum offload capabilities in the features of a device.
48  * From the stack's point of view these are capabilities offered by the driver,
49  * a driver typically only advertises features that it is capable of offloading
50  * to its device.
51  *
52  * The checksum related features are:
53  *
54  *	NETIF_F_HW_CSUM	- The driver (or its device) is able to compute one
55  *			  IP (one's complement) checksum for any combination
56  *			  of protocols or protocol layering. The checksum is
57  *			  computed and set in a packet per the CHECKSUM_PARTIAL
58  *			  interface (see below).
59  *
60  *	NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
61  *			  TCP or UDP packets over IPv4. These are specifically
62  *			  unencapsulated packets of the form IPv4|TCP or
63  *			  IPv4|UDP where the Protocol field in the IPv4 header
64  *			  is TCP or UDP. The IPv4 header may contain IP options
65  *			  This feature cannot be set in features for a device
66  *			  with NETIF_F_HW_CSUM also set. This feature is being
67  *			  DEPRECATED (see below).
68  *
69  *	NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
70  *			  TCP or UDP packets over IPv6. These are specifically
71  *			  unencapsulated packets of the form IPv6|TCP or
72  *			  IPv4|UDP where the Next Header field in the IPv6
73  *			  header is either TCP or UDP. IPv6 extension headers
74  *			  are not supported with this feature. This feature
75  *			  cannot be set in features for a device with
76  *			  NETIF_F_HW_CSUM also set. This feature is being
77  *			  DEPRECATED (see below).
78  *
79  *	NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
80  *			 This flag is used only used to disable the RX checksum
81  *			 feature for a device. The stack will accept receive
82  *			 checksum indication in packets received on a device
83  *			 regardless of whether NETIF_F_RXCSUM is set.
84  *
85  * B. Checksumming of received packets by device. Indication of checksum
86  *    verification is in set skb->ip_summed. Possible values are:
87  *
88  * CHECKSUM_NONE:
89  *
90  *   Device did not checksum this packet e.g. due to lack of capabilities.
91  *   The packet contains full (though not verified) checksum in packet but
92  *   not in skb->csum. Thus, skb->csum is undefined in this case.
93  *
94  * CHECKSUM_UNNECESSARY:
95  *
96  *   The hardware you're dealing with doesn't calculate the full checksum
97  *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
98  *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
99  *   if their checksums are okay. skb->csum is still undefined in this case
100  *   though. A driver or device must never modify the checksum field in the
101  *   packet even if checksum is verified.
102  *
103  *   CHECKSUM_UNNECESSARY is applicable to following protocols:
104  *     TCP: IPv6 and IPv4.
105  *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
106  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
107  *       may perform further validation in this case.
108  *     GRE: only if the checksum is present in the header.
109  *     SCTP: indicates the CRC in SCTP header has been validated.
110  *
111  *   skb->csum_level indicates the number of consecutive checksums found in
112  *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
113  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
114  *   and a device is able to verify the checksums for UDP (possibly zero),
115  *   GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
116  *   two. If the device were only able to verify the UDP checksum and not
117  *   GRE, either because it doesn't support GRE checksum of because GRE
118  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
119  *   not considered in this case).
120  *
121  * CHECKSUM_COMPLETE:
122  *
123  *   This is the most generic way. The device supplied checksum of the _whole_
124  *   packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
125  *   hardware doesn't need to parse L3/L4 headers to implement this.
126  *
127  *   Note: Even if device supports only some protocols, but is able to produce
128  *   skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
129  *
130  * CHECKSUM_PARTIAL:
131  *
132  *   A checksum is set up to be offloaded to a device as described in the
133  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
134  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
135  *   on the same host, or it may be set in the input path in GRO or remote
136  *   checksum offload. For the purposes of checksum verification, the checksum
137  *   referred to by skb->csum_start + skb->csum_offset and any preceding
138  *   checksums in the packet are considered verified. Any checksums in the
139  *   packet that are after the checksum being offloaded are not considered to
140  *   be verified.
141  *
142  * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
143  *    in the skb->ip_summed for a packet. Values are:
144  *
145  * CHECKSUM_PARTIAL:
146  *
147  *   The driver is required to checksum the packet as seen by hard_start_xmit()
148  *   from skb->csum_start up to the end, and to record/write the checksum at
149  *   offset skb->csum_start + skb->csum_offset. A driver may verify that the
150  *   csum_start and csum_offset values are valid values given the length and
151  *   offset of the packet, however they should not attempt to validate that the
152  *   checksum refers to a legitimate transport layer checksum-- it is the
153  *   purview of the stack to validate that csum_start and csum_offset are set
154  *   correctly.
155  *
156  *   When the stack requests checksum offload for a packet, the driver MUST
157  *   ensure that the checksum is set correctly. A driver can either offload the
158  *   checksum calculation to the device, or call skb_checksum_help (in the case
159  *   that the device does not support offload for a particular checksum).
160  *
161  *   NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
162  *   NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
163  *   checksum offload capability. If a	device has limited checksum capabilities
164  *   (for instance can only perform NETIF_F_IP_CSUM or NETIF_F_IPV6_CSUM as
165  *   described above) a helper function can be called to resolve
166  *   CHECKSUM_PARTIAL. The helper functions are skb_csum_off_chk*. The helper
167  *   function takes a spec argument that describes the protocol layer that is
168  *   supported for checksum offload and can be called for each packet. If a
169  *   packet does not match the specification for offload, skb_checksum_help
170  *   is called to resolve the checksum.
171  *
172  * CHECKSUM_NONE:
173  *
174  *   The skb was already checksummed by the protocol, or a checksum is not
175  *   required.
176  *
177  * CHECKSUM_UNNECESSARY:
178  *
179  *   This has the same meaning on as CHECKSUM_NONE for checksum offload on
180  *   output.
181  *
182  * CHECKSUM_COMPLETE:
183  *   Not used in checksum output. If a driver observes a packet with this value
184  *   set in skbuff, if should treat as CHECKSUM_NONE being set.
185  *
186  * D. Non-IP checksum (CRC) offloads
187  *
188  *   NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
189  *     offloading the SCTP CRC in a packet. To perform this offload the stack
190  *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
191  *     accordingly. Note the there is no indication in the skbuff that the
192  *     CHECKSUM_PARTIAL refers to an SCTP checksum, a driver that supports
193  *     both IP checksum offload and SCTP CRC offload must verify which offload
194  *     is configured for a packet presumably by inspecting packet headers.
195  *
196  *   NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
197  *     offloading the FCOE CRC in a packet. To perform this offload the stack
198  *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
199  *     accordingly. Note the there is no indication in the skbuff that the
200  *     CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
201  *     both IP checksum offload and FCOE CRC offload must verify which offload
202  *     is configured for a packet presumably by inspecting packet headers.
203  *
204  * E. Checksumming on output with GSO.
205  *
206  * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
207  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
208  * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
209  * part of the GSO operation is implied. If a checksum is being offloaded
210  * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
211  * are set to refer to the outermost checksum being offload (two offloaded
212  * checksums are possible with UDP encapsulation).
213  */
214 
215 /* Don't change this without changing skb_csum_unnecessary! */
216 #define CHECKSUM_NONE		0
217 #define CHECKSUM_UNNECESSARY	1
218 #define CHECKSUM_COMPLETE	2
219 #define CHECKSUM_PARTIAL	3
220 
221 /* Maximum value in skb->csum_level */
222 #define SKB_MAX_CSUM_LEVEL	3
223 
224 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
225 #define SKB_WITH_OVERHEAD(X)	\
226 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
227 #define SKB_MAX_ORDER(X, ORDER) \
228 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
229 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
230 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
231 
232 /* return minimum truesize of one skb containing X bytes of data */
233 #define SKB_TRUESIZE(X) ((X) +						\
234 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
235 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
236 
237 struct net_device;
238 struct scatterlist;
239 struct pipe_inode_info;
240 struct iov_iter;
241 struct napi_struct;
242 
243 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
244 struct nf_conntrack {
245 	atomic_t use;
246 };
247 #endif
248 
249 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
250 struct nf_bridge_info {
251 	atomic_t		use;
252 	enum {
253 		BRNF_PROTO_UNCHANGED,
254 		BRNF_PROTO_8021Q,
255 		BRNF_PROTO_PPPOE
256 	} orig_proto:8;
257 	u8			pkt_otherhost:1;
258 	u8			in_prerouting:1;
259 	u8			bridged_dnat:1;
260 	__u16			frag_max_size;
261 	struct net_device	*physindev;
262 
263 	/* always valid & non-NULL from FORWARD on, for physdev match */
264 	struct net_device	*physoutdev;
265 	union {
266 		/* prerouting: detect dnat in orig/reply direction */
267 		__be32          ipv4_daddr;
268 		struct in6_addr ipv6_daddr;
269 
270 		/* after prerouting + nat detected: store original source
271 		 * mac since neigh resolution overwrites it, only used while
272 		 * skb is out in neigh layer.
273 		 */
274 		char neigh_header[8];
275 	};
276 };
277 #endif
278 
279 struct sk_buff_head {
280 	/* These two members must be first. */
281 	struct sk_buff	*next;
282 	struct sk_buff	*prev;
283 
284 	__u32		qlen;
285 	spinlock_t	lock;
286 };
287 
288 struct sk_buff;
289 
290 /* To allow 64K frame to be packed as single skb without frag_list we
291  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
292  * buffers which do not start on a page boundary.
293  *
294  * Since GRO uses frags we allocate at least 16 regardless of page
295  * size.
296  */
297 #if (65536/PAGE_SIZE + 1) < 16
298 #define MAX_SKB_FRAGS 16UL
299 #else
300 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
301 #endif
302 extern int sysctl_max_skb_frags;
303 
304 typedef struct skb_frag_struct skb_frag_t;
305 
306 struct skb_frag_struct {
307 	struct {
308 		struct page *p;
309 	} page;
310 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
311 	__u32 page_offset;
312 	__u32 size;
313 #else
314 	__u16 page_offset;
315 	__u16 size;
316 #endif
317 };
318 
319 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
320 {
321 	return frag->size;
322 }
323 
324 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
325 {
326 	frag->size = size;
327 }
328 
329 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
330 {
331 	frag->size += delta;
332 }
333 
334 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
335 {
336 	frag->size -= delta;
337 }
338 
339 #define HAVE_HW_TIME_STAMP
340 
341 /**
342  * struct skb_shared_hwtstamps - hardware time stamps
343  * @hwtstamp:	hardware time stamp transformed into duration
344  *		since arbitrary point in time
345  *
346  * Software time stamps generated by ktime_get_real() are stored in
347  * skb->tstamp.
348  *
349  * hwtstamps can only be compared against other hwtstamps from
350  * the same device.
351  *
352  * This structure is attached to packets as part of the
353  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
354  */
355 struct skb_shared_hwtstamps {
356 	ktime_t	hwtstamp;
357 };
358 
359 /* Definitions for tx_flags in struct skb_shared_info */
360 enum {
361 	/* generate hardware time stamp */
362 	SKBTX_HW_TSTAMP = 1 << 0,
363 
364 	/* generate software time stamp when queueing packet to NIC */
365 	SKBTX_SW_TSTAMP = 1 << 1,
366 
367 	/* device driver is going to provide hardware time stamp */
368 	SKBTX_IN_PROGRESS = 1 << 2,
369 
370 	/* device driver supports TX zero-copy buffers */
371 	SKBTX_DEV_ZEROCOPY = 1 << 3,
372 
373 	/* generate wifi status information (where possible) */
374 	SKBTX_WIFI_STATUS = 1 << 4,
375 
376 	/* This indicates at least one fragment might be overwritten
377 	 * (as in vmsplice(), sendfile() ...)
378 	 * If we need to compute a TX checksum, we'll need to copy
379 	 * all frags to avoid possible bad checksum
380 	 */
381 	SKBTX_SHARED_FRAG = 1 << 5,
382 
383 	/* generate software time stamp when entering packet scheduling */
384 	SKBTX_SCHED_TSTAMP = 1 << 6,
385 };
386 
387 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
388 				 SKBTX_SCHED_TSTAMP)
389 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
390 
391 /*
392  * The callback notifies userspace to release buffers when skb DMA is done in
393  * lower device, the skb last reference should be 0 when calling this.
394  * The zerocopy_success argument is true if zero copy transmit occurred,
395  * false on data copy or out of memory error caused by data copy attempt.
396  * The ctx field is used to track device context.
397  * The desc field is used to track userspace buffer index.
398  */
399 struct ubuf_info {
400 	void (*callback)(struct ubuf_info *, bool zerocopy_success);
401 	void *ctx;
402 	unsigned long desc;
403 };
404 
405 /* This data is invariant across clones and lives at
406  * the end of the header data, ie. at skb->end.
407  */
408 struct skb_shared_info {
409 	unsigned char	nr_frags;
410 	__u8		tx_flags;
411 	unsigned short	gso_size;
412 	/* Warning: this field is not always filled in (UFO)! */
413 	unsigned short	gso_segs;
414 	unsigned short  gso_type;
415 	struct sk_buff	*frag_list;
416 	struct skb_shared_hwtstamps hwtstamps;
417 	u32		tskey;
418 	__be32          ip6_frag_id;
419 
420 	/*
421 	 * Warning : all fields before dataref are cleared in __alloc_skb()
422 	 */
423 	atomic_t	dataref;
424 
425 	/* Intermediate layers must ensure that destructor_arg
426 	 * remains valid until skb destructor */
427 	void *		destructor_arg;
428 
429 	/* must be last field, see pskb_expand_head() */
430 	skb_frag_t	frags[MAX_SKB_FRAGS];
431 };
432 
433 /* We divide dataref into two halves.  The higher 16 bits hold references
434  * to the payload part of skb->data.  The lower 16 bits hold references to
435  * the entire skb->data.  A clone of a headerless skb holds the length of
436  * the header in skb->hdr_len.
437  *
438  * All users must obey the rule that the skb->data reference count must be
439  * greater than or equal to the payload reference count.
440  *
441  * Holding a reference to the payload part means that the user does not
442  * care about modifications to the header part of skb->data.
443  */
444 #define SKB_DATAREF_SHIFT 16
445 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
446 
447 
448 enum {
449 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
450 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
451 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
452 };
453 
454 enum {
455 	SKB_GSO_TCPV4 = 1 << 0,
456 	SKB_GSO_UDP = 1 << 1,
457 
458 	/* This indicates the skb is from an untrusted source. */
459 	SKB_GSO_DODGY = 1 << 2,
460 
461 	/* This indicates the tcp segment has CWR set. */
462 	SKB_GSO_TCP_ECN = 1 << 3,
463 
464 	SKB_GSO_TCP_FIXEDID = 1 << 4,
465 
466 	SKB_GSO_TCPV6 = 1 << 5,
467 
468 	SKB_GSO_FCOE = 1 << 6,
469 
470 	SKB_GSO_GRE = 1 << 7,
471 
472 	SKB_GSO_GRE_CSUM = 1 << 8,
473 
474 	SKB_GSO_IPXIP4 = 1 << 9,
475 
476 	SKB_GSO_IPXIP6 = 1 << 10,
477 
478 	SKB_GSO_UDP_TUNNEL = 1 << 11,
479 
480 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 12,
481 
482 	SKB_GSO_PARTIAL = 1 << 13,
483 
484 	SKB_GSO_TUNNEL_REMCSUM = 1 << 14,
485 };
486 
487 #if BITS_PER_LONG > 32
488 #define NET_SKBUFF_DATA_USES_OFFSET 1
489 #endif
490 
491 #ifdef NET_SKBUFF_DATA_USES_OFFSET
492 typedef unsigned int sk_buff_data_t;
493 #else
494 typedef unsigned char *sk_buff_data_t;
495 #endif
496 
497 /**
498  * struct skb_mstamp - multi resolution time stamps
499  * @stamp_us: timestamp in us resolution
500  * @stamp_jiffies: timestamp in jiffies
501  */
502 struct skb_mstamp {
503 	union {
504 		u64		v64;
505 		struct {
506 			u32	stamp_us;
507 			u32	stamp_jiffies;
508 		};
509 	};
510 };
511 
512 /**
513  * skb_mstamp_get - get current timestamp
514  * @cl: place to store timestamps
515  */
516 static inline void skb_mstamp_get(struct skb_mstamp *cl)
517 {
518 	u64 val = local_clock();
519 
520 	do_div(val, NSEC_PER_USEC);
521 	cl->stamp_us = (u32)val;
522 	cl->stamp_jiffies = (u32)jiffies;
523 }
524 
525 /**
526  * skb_mstamp_delta - compute the difference in usec between two skb_mstamp
527  * @t1: pointer to newest sample
528  * @t0: pointer to oldest sample
529  */
530 static inline u32 skb_mstamp_us_delta(const struct skb_mstamp *t1,
531 				      const struct skb_mstamp *t0)
532 {
533 	s32 delta_us = t1->stamp_us - t0->stamp_us;
534 	u32 delta_jiffies = t1->stamp_jiffies - t0->stamp_jiffies;
535 
536 	/* If delta_us is negative, this might be because interval is too big,
537 	 * or local_clock() drift is too big : fallback using jiffies.
538 	 */
539 	if (delta_us <= 0 ||
540 	    delta_jiffies >= (INT_MAX / (USEC_PER_SEC / HZ)))
541 
542 		delta_us = jiffies_to_usecs(delta_jiffies);
543 
544 	return delta_us;
545 }
546 
547 static inline bool skb_mstamp_after(const struct skb_mstamp *t1,
548 				    const struct skb_mstamp *t0)
549 {
550 	s32 diff = t1->stamp_jiffies - t0->stamp_jiffies;
551 
552 	if (!diff)
553 		diff = t1->stamp_us - t0->stamp_us;
554 	return diff > 0;
555 }
556 
557 /**
558  *	struct sk_buff - socket buffer
559  *	@next: Next buffer in list
560  *	@prev: Previous buffer in list
561  *	@tstamp: Time we arrived/left
562  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
563  *	@sk: Socket we are owned by
564  *	@dev: Device we arrived on/are leaving by
565  *	@cb: Control buffer. Free for use by every layer. Put private vars here
566  *	@_skb_refdst: destination entry (with norefcount bit)
567  *	@sp: the security path, used for xfrm
568  *	@len: Length of actual data
569  *	@data_len: Data length
570  *	@mac_len: Length of link layer header
571  *	@hdr_len: writable header length of cloned skb
572  *	@csum: Checksum (must include start/offset pair)
573  *	@csum_start: Offset from skb->head where checksumming should start
574  *	@csum_offset: Offset from csum_start where checksum should be stored
575  *	@priority: Packet queueing priority
576  *	@ignore_df: allow local fragmentation
577  *	@cloned: Head may be cloned (check refcnt to be sure)
578  *	@ip_summed: Driver fed us an IP checksum
579  *	@nohdr: Payload reference only, must not modify header
580  *	@nfctinfo: Relationship of this skb to the connection
581  *	@pkt_type: Packet class
582  *	@fclone: skbuff clone status
583  *	@ipvs_property: skbuff is owned by ipvs
584  *	@peeked: this packet has been seen already, so stats have been
585  *		done for it, don't do them again
586  *	@nf_trace: netfilter packet trace flag
587  *	@protocol: Packet protocol from driver
588  *	@destructor: Destruct function
589  *	@nfct: Associated connection, if any
590  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
591  *	@skb_iif: ifindex of device we arrived on
592  *	@tc_index: Traffic control index
593  *	@tc_verd: traffic control verdict
594  *	@hash: the packet hash
595  *	@queue_mapping: Queue mapping for multiqueue devices
596  *	@xmit_more: More SKBs are pending for this queue
597  *	@ndisc_nodetype: router type (from link layer)
598  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
599  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
600  *		ports.
601  *	@sw_hash: indicates hash was computed in software stack
602  *	@wifi_acked_valid: wifi_acked was set
603  *	@wifi_acked: whether frame was acked on wifi or not
604  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
605   *	@napi_id: id of the NAPI struct this skb came from
606  *	@secmark: security marking
607  *	@offload_fwd_mark: fwding offload mark
608  *	@mark: Generic packet mark
609  *	@vlan_proto: vlan encapsulation protocol
610  *	@vlan_tci: vlan tag control information
611  *	@inner_protocol: Protocol (encapsulation)
612  *	@inner_transport_header: Inner transport layer header (encapsulation)
613  *	@inner_network_header: Network layer header (encapsulation)
614  *	@inner_mac_header: Link layer header (encapsulation)
615  *	@transport_header: Transport layer header
616  *	@network_header: Network layer header
617  *	@mac_header: Link layer header
618  *	@tail: Tail pointer
619  *	@end: End pointer
620  *	@head: Head of buffer
621  *	@data: Data head pointer
622  *	@truesize: Buffer size
623  *	@users: User count - see {datagram,tcp}.c
624  */
625 
626 struct sk_buff {
627 	union {
628 		struct {
629 			/* These two members must be first. */
630 			struct sk_buff		*next;
631 			struct sk_buff		*prev;
632 
633 			union {
634 				ktime_t		tstamp;
635 				struct skb_mstamp skb_mstamp;
636 			};
637 		};
638 		struct rb_node	rbnode; /* used in netem & tcp stack */
639 	};
640 	struct sock		*sk;
641 	struct net_device	*dev;
642 
643 	/*
644 	 * This is the control buffer. It is free to use for every
645 	 * layer. Please put your private variables there. If you
646 	 * want to keep them across layers you have to do a skb_clone()
647 	 * first. This is owned by whoever has the skb queued ATM.
648 	 */
649 	char			cb[48] __aligned(8);
650 
651 	unsigned long		_skb_refdst;
652 	void			(*destructor)(struct sk_buff *skb);
653 #ifdef CONFIG_XFRM
654 	struct	sec_path	*sp;
655 #endif
656 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
657 	struct nf_conntrack	*nfct;
658 #endif
659 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
660 	struct nf_bridge_info	*nf_bridge;
661 #endif
662 	unsigned int		len,
663 				data_len;
664 	__u16			mac_len,
665 				hdr_len;
666 
667 	/* Following fields are _not_ copied in __copy_skb_header()
668 	 * Note that queue_mapping is here mostly to fill a hole.
669 	 */
670 	kmemcheck_bitfield_begin(flags1);
671 	__u16			queue_mapping;
672 	__u8			cloned:1,
673 				nohdr:1,
674 				fclone:2,
675 				peeked:1,
676 				head_frag:1,
677 				xmit_more:1;
678 	/* one bit hole */
679 	kmemcheck_bitfield_end(flags1);
680 
681 	/* fields enclosed in headers_start/headers_end are copied
682 	 * using a single memcpy() in __copy_skb_header()
683 	 */
684 	/* private: */
685 	__u32			headers_start[0];
686 	/* public: */
687 
688 /* if you move pkt_type around you also must adapt those constants */
689 #ifdef __BIG_ENDIAN_BITFIELD
690 #define PKT_TYPE_MAX	(7 << 5)
691 #else
692 #define PKT_TYPE_MAX	7
693 #endif
694 #define PKT_TYPE_OFFSET()	offsetof(struct sk_buff, __pkt_type_offset)
695 
696 	__u8			__pkt_type_offset[0];
697 	__u8			pkt_type:3;
698 	__u8			pfmemalloc:1;
699 	__u8			ignore_df:1;
700 	__u8			nfctinfo:3;
701 
702 	__u8			nf_trace:1;
703 	__u8			ip_summed:2;
704 	__u8			ooo_okay:1;
705 	__u8			l4_hash:1;
706 	__u8			sw_hash:1;
707 	__u8			wifi_acked_valid:1;
708 	__u8			wifi_acked:1;
709 
710 	__u8			no_fcs:1;
711 	/* Indicates the inner headers are valid in the skbuff. */
712 	__u8			encapsulation:1;
713 	__u8			encap_hdr_csum:1;
714 	__u8			csum_valid:1;
715 	__u8			csum_complete_sw:1;
716 	__u8			csum_level:2;
717 	__u8			csum_bad:1;
718 
719 #ifdef CONFIG_IPV6_NDISC_NODETYPE
720 	__u8			ndisc_nodetype:2;
721 #endif
722 	__u8			ipvs_property:1;
723 	__u8			inner_protocol_type:1;
724 	__u8			remcsum_offload:1;
725 	/* 3 or 5 bit hole */
726 
727 #ifdef CONFIG_NET_SCHED
728 	__u16			tc_index;	/* traffic control index */
729 #ifdef CONFIG_NET_CLS_ACT
730 	__u16			tc_verd;	/* traffic control verdict */
731 #endif
732 #endif
733 
734 	union {
735 		__wsum		csum;
736 		struct {
737 			__u16	csum_start;
738 			__u16	csum_offset;
739 		};
740 	};
741 	__u32			priority;
742 	int			skb_iif;
743 	__u32			hash;
744 	__be16			vlan_proto;
745 	__u16			vlan_tci;
746 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
747 	union {
748 		unsigned int	napi_id;
749 		unsigned int	sender_cpu;
750 	};
751 #endif
752 	union {
753 #ifdef CONFIG_NETWORK_SECMARK
754 		__u32		secmark;
755 #endif
756 #ifdef CONFIG_NET_SWITCHDEV
757 		__u32		offload_fwd_mark;
758 #endif
759 	};
760 
761 	union {
762 		__u32		mark;
763 		__u32		reserved_tailroom;
764 	};
765 
766 	union {
767 		__be16		inner_protocol;
768 		__u8		inner_ipproto;
769 	};
770 
771 	__u16			inner_transport_header;
772 	__u16			inner_network_header;
773 	__u16			inner_mac_header;
774 
775 	__be16			protocol;
776 	__u16			transport_header;
777 	__u16			network_header;
778 	__u16			mac_header;
779 
780 	/* private: */
781 	__u32			headers_end[0];
782 	/* public: */
783 
784 	/* These elements must be at the end, see alloc_skb() for details.  */
785 	sk_buff_data_t		tail;
786 	sk_buff_data_t		end;
787 	unsigned char		*head,
788 				*data;
789 	unsigned int		truesize;
790 	atomic_t		users;
791 };
792 
793 #ifdef __KERNEL__
794 /*
795  *	Handling routines are only of interest to the kernel
796  */
797 #include <linux/slab.h>
798 
799 
800 #define SKB_ALLOC_FCLONE	0x01
801 #define SKB_ALLOC_RX		0x02
802 #define SKB_ALLOC_NAPI		0x04
803 
804 /* Returns true if the skb was allocated from PFMEMALLOC reserves */
805 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
806 {
807 	return unlikely(skb->pfmemalloc);
808 }
809 
810 /*
811  * skb might have a dst pointer attached, refcounted or not.
812  * _skb_refdst low order bit is set if refcount was _not_ taken
813  */
814 #define SKB_DST_NOREF	1UL
815 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
816 
817 /**
818  * skb_dst - returns skb dst_entry
819  * @skb: buffer
820  *
821  * Returns skb dst_entry, regardless of reference taken or not.
822  */
823 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
824 {
825 	/* If refdst was not refcounted, check we still are in a
826 	 * rcu_read_lock section
827 	 */
828 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
829 		!rcu_read_lock_held() &&
830 		!rcu_read_lock_bh_held());
831 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
832 }
833 
834 /**
835  * skb_dst_set - sets skb dst
836  * @skb: buffer
837  * @dst: dst entry
838  *
839  * Sets skb dst, assuming a reference was taken on dst and should
840  * be released by skb_dst_drop()
841  */
842 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
843 {
844 	skb->_skb_refdst = (unsigned long)dst;
845 }
846 
847 /**
848  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
849  * @skb: buffer
850  * @dst: dst entry
851  *
852  * Sets skb dst, assuming a reference was not taken on dst.
853  * If dst entry is cached, we do not take reference and dst_release
854  * will be avoided by refdst_drop. If dst entry is not cached, we take
855  * reference, so that last dst_release can destroy the dst immediately.
856  */
857 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
858 {
859 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
860 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
861 }
862 
863 /**
864  * skb_dst_is_noref - Test if skb dst isn't refcounted
865  * @skb: buffer
866  */
867 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
868 {
869 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
870 }
871 
872 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
873 {
874 	return (struct rtable *)skb_dst(skb);
875 }
876 
877 void kfree_skb(struct sk_buff *skb);
878 void kfree_skb_list(struct sk_buff *segs);
879 void skb_tx_error(struct sk_buff *skb);
880 void consume_skb(struct sk_buff *skb);
881 void  __kfree_skb(struct sk_buff *skb);
882 extern struct kmem_cache *skbuff_head_cache;
883 
884 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
885 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
886 		      bool *fragstolen, int *delta_truesize);
887 
888 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
889 			    int node);
890 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
891 struct sk_buff *build_skb(void *data, unsigned int frag_size);
892 static inline struct sk_buff *alloc_skb(unsigned int size,
893 					gfp_t priority)
894 {
895 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
896 }
897 
898 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
899 				     unsigned long data_len,
900 				     int max_page_order,
901 				     int *errcode,
902 				     gfp_t gfp_mask);
903 
904 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
905 struct sk_buff_fclones {
906 	struct sk_buff	skb1;
907 
908 	struct sk_buff	skb2;
909 
910 	atomic_t	fclone_ref;
911 };
912 
913 /**
914  *	skb_fclone_busy - check if fclone is busy
915  *	@skb: buffer
916  *
917  * Returns true if skb is a fast clone, and its clone is not freed.
918  * Some drivers call skb_orphan() in their ndo_start_xmit(),
919  * so we also check that this didnt happen.
920  */
921 static inline bool skb_fclone_busy(const struct sock *sk,
922 				   const struct sk_buff *skb)
923 {
924 	const struct sk_buff_fclones *fclones;
925 
926 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
927 
928 	return skb->fclone == SKB_FCLONE_ORIG &&
929 	       atomic_read(&fclones->fclone_ref) > 1 &&
930 	       fclones->skb2.sk == sk;
931 }
932 
933 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
934 					       gfp_t priority)
935 {
936 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
937 }
938 
939 struct sk_buff *__alloc_skb_head(gfp_t priority, int node);
940 static inline struct sk_buff *alloc_skb_head(gfp_t priority)
941 {
942 	return __alloc_skb_head(priority, -1);
943 }
944 
945 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
946 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
947 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
948 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
949 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
950 				   gfp_t gfp_mask, bool fclone);
951 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
952 					  gfp_t gfp_mask)
953 {
954 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
955 }
956 
957 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
958 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
959 				     unsigned int headroom);
960 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
961 				int newtailroom, gfp_t priority);
962 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
963 			int offset, int len);
964 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset,
965 		 int len);
966 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
967 int skb_pad(struct sk_buff *skb, int pad);
968 #define dev_kfree_skb(a)	consume_skb(a)
969 
970 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
971 			    int getfrag(void *from, char *to, int offset,
972 					int len, int odd, struct sk_buff *skb),
973 			    void *from, int length);
974 
975 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
976 			 int offset, size_t size);
977 
978 struct skb_seq_state {
979 	__u32		lower_offset;
980 	__u32		upper_offset;
981 	__u32		frag_idx;
982 	__u32		stepped_offset;
983 	struct sk_buff	*root_skb;
984 	struct sk_buff	*cur_skb;
985 	__u8		*frag_data;
986 };
987 
988 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
989 			  unsigned int to, struct skb_seq_state *st);
990 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
991 			  struct skb_seq_state *st);
992 void skb_abort_seq_read(struct skb_seq_state *st);
993 
994 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
995 			   unsigned int to, struct ts_config *config);
996 
997 /*
998  * Packet hash types specify the type of hash in skb_set_hash.
999  *
1000  * Hash types refer to the protocol layer addresses which are used to
1001  * construct a packet's hash. The hashes are used to differentiate or identify
1002  * flows of the protocol layer for the hash type. Hash types are either
1003  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1004  *
1005  * Properties of hashes:
1006  *
1007  * 1) Two packets in different flows have different hash values
1008  * 2) Two packets in the same flow should have the same hash value
1009  *
1010  * A hash at a higher layer is considered to be more specific. A driver should
1011  * set the most specific hash possible.
1012  *
1013  * A driver cannot indicate a more specific hash than the layer at which a hash
1014  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1015  *
1016  * A driver may indicate a hash level which is less specific than the
1017  * actual layer the hash was computed on. For instance, a hash computed
1018  * at L4 may be considered an L3 hash. This should only be done if the
1019  * driver can't unambiguously determine that the HW computed the hash at
1020  * the higher layer. Note that the "should" in the second property above
1021  * permits this.
1022  */
1023 enum pkt_hash_types {
1024 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1025 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1026 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1027 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1028 };
1029 
1030 static inline void skb_clear_hash(struct sk_buff *skb)
1031 {
1032 	skb->hash = 0;
1033 	skb->sw_hash = 0;
1034 	skb->l4_hash = 0;
1035 }
1036 
1037 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1038 {
1039 	if (!skb->l4_hash)
1040 		skb_clear_hash(skb);
1041 }
1042 
1043 static inline void
1044 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1045 {
1046 	skb->l4_hash = is_l4;
1047 	skb->sw_hash = is_sw;
1048 	skb->hash = hash;
1049 }
1050 
1051 static inline void
1052 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1053 {
1054 	/* Used by drivers to set hash from HW */
1055 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1056 }
1057 
1058 static inline void
1059 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1060 {
1061 	__skb_set_hash(skb, hash, true, is_l4);
1062 }
1063 
1064 void __skb_get_hash(struct sk_buff *skb);
1065 u32 __skb_get_hash_symmetric(struct sk_buff *skb);
1066 u32 skb_get_poff(const struct sk_buff *skb);
1067 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1068 		   const struct flow_keys *keys, int hlen);
1069 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1070 			    void *data, int hlen_proto);
1071 
1072 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1073 					int thoff, u8 ip_proto)
1074 {
1075 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1076 }
1077 
1078 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1079 			     const struct flow_dissector_key *key,
1080 			     unsigned int key_count);
1081 
1082 bool __skb_flow_dissect(const struct sk_buff *skb,
1083 			struct flow_dissector *flow_dissector,
1084 			void *target_container,
1085 			void *data, __be16 proto, int nhoff, int hlen,
1086 			unsigned int flags);
1087 
1088 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1089 				    struct flow_dissector *flow_dissector,
1090 				    void *target_container, unsigned int flags)
1091 {
1092 	return __skb_flow_dissect(skb, flow_dissector, target_container,
1093 				  NULL, 0, 0, 0, flags);
1094 }
1095 
1096 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1097 					      struct flow_keys *flow,
1098 					      unsigned int flags)
1099 {
1100 	memset(flow, 0, sizeof(*flow));
1101 	return __skb_flow_dissect(skb, &flow_keys_dissector, flow,
1102 				  NULL, 0, 0, 0, flags);
1103 }
1104 
1105 static inline bool skb_flow_dissect_flow_keys_buf(struct flow_keys *flow,
1106 						  void *data, __be16 proto,
1107 						  int nhoff, int hlen,
1108 						  unsigned int flags)
1109 {
1110 	memset(flow, 0, sizeof(*flow));
1111 	return __skb_flow_dissect(NULL, &flow_keys_buf_dissector, flow,
1112 				  data, proto, nhoff, hlen, flags);
1113 }
1114 
1115 static inline __u32 skb_get_hash(struct sk_buff *skb)
1116 {
1117 	if (!skb->l4_hash && !skb->sw_hash)
1118 		__skb_get_hash(skb);
1119 
1120 	return skb->hash;
1121 }
1122 
1123 __u32 __skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6);
1124 
1125 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1126 {
1127 	if (!skb->l4_hash && !skb->sw_hash) {
1128 		struct flow_keys keys;
1129 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1130 
1131 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1132 	}
1133 
1134 	return skb->hash;
1135 }
1136 
1137 __u32 __skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl);
1138 
1139 static inline __u32 skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl4)
1140 {
1141 	if (!skb->l4_hash && !skb->sw_hash) {
1142 		struct flow_keys keys;
1143 		__u32 hash = __get_hash_from_flowi4(fl4, &keys);
1144 
1145 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1146 	}
1147 
1148 	return skb->hash;
1149 }
1150 
1151 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);
1152 
1153 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1154 {
1155 	return skb->hash;
1156 }
1157 
1158 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1159 {
1160 	to->hash = from->hash;
1161 	to->sw_hash = from->sw_hash;
1162 	to->l4_hash = from->l4_hash;
1163 };
1164 
1165 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1166 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1167 {
1168 	return skb->head + skb->end;
1169 }
1170 
1171 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1172 {
1173 	return skb->end;
1174 }
1175 #else
1176 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1177 {
1178 	return skb->end;
1179 }
1180 
1181 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1182 {
1183 	return skb->end - skb->head;
1184 }
1185 #endif
1186 
1187 /* Internal */
1188 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1189 
1190 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1191 {
1192 	return &skb_shinfo(skb)->hwtstamps;
1193 }
1194 
1195 /**
1196  *	skb_queue_empty - check if a queue is empty
1197  *	@list: queue head
1198  *
1199  *	Returns true if the queue is empty, false otherwise.
1200  */
1201 static inline int skb_queue_empty(const struct sk_buff_head *list)
1202 {
1203 	return list->next == (const struct sk_buff *) list;
1204 }
1205 
1206 /**
1207  *	skb_queue_is_last - check if skb is the last entry in the queue
1208  *	@list: queue head
1209  *	@skb: buffer
1210  *
1211  *	Returns true if @skb is the last buffer on the list.
1212  */
1213 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1214 				     const struct sk_buff *skb)
1215 {
1216 	return skb->next == (const struct sk_buff *) list;
1217 }
1218 
1219 /**
1220  *	skb_queue_is_first - check if skb is the first entry in the queue
1221  *	@list: queue head
1222  *	@skb: buffer
1223  *
1224  *	Returns true if @skb is the first buffer on the list.
1225  */
1226 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1227 				      const struct sk_buff *skb)
1228 {
1229 	return skb->prev == (const struct sk_buff *) list;
1230 }
1231 
1232 /**
1233  *	skb_queue_next - return the next packet in the queue
1234  *	@list: queue head
1235  *	@skb: current buffer
1236  *
1237  *	Return the next packet in @list after @skb.  It is only valid to
1238  *	call this if skb_queue_is_last() evaluates to false.
1239  */
1240 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1241 					     const struct sk_buff *skb)
1242 {
1243 	/* This BUG_ON may seem severe, but if we just return then we
1244 	 * are going to dereference garbage.
1245 	 */
1246 	BUG_ON(skb_queue_is_last(list, skb));
1247 	return skb->next;
1248 }
1249 
1250 /**
1251  *	skb_queue_prev - return the prev packet in the queue
1252  *	@list: queue head
1253  *	@skb: current buffer
1254  *
1255  *	Return the prev packet in @list before @skb.  It is only valid to
1256  *	call this if skb_queue_is_first() evaluates to false.
1257  */
1258 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1259 					     const struct sk_buff *skb)
1260 {
1261 	/* This BUG_ON may seem severe, but if we just return then we
1262 	 * are going to dereference garbage.
1263 	 */
1264 	BUG_ON(skb_queue_is_first(list, skb));
1265 	return skb->prev;
1266 }
1267 
1268 /**
1269  *	skb_get - reference buffer
1270  *	@skb: buffer to reference
1271  *
1272  *	Makes another reference to a socket buffer and returns a pointer
1273  *	to the buffer.
1274  */
1275 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1276 {
1277 	atomic_inc(&skb->users);
1278 	return skb;
1279 }
1280 
1281 /*
1282  * If users == 1, we are the only owner and are can avoid redundant
1283  * atomic change.
1284  */
1285 
1286 /**
1287  *	skb_cloned - is the buffer a clone
1288  *	@skb: buffer to check
1289  *
1290  *	Returns true if the buffer was generated with skb_clone() and is
1291  *	one of multiple shared copies of the buffer. Cloned buffers are
1292  *	shared data so must not be written to under normal circumstances.
1293  */
1294 static inline int skb_cloned(const struct sk_buff *skb)
1295 {
1296 	return skb->cloned &&
1297 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1298 }
1299 
1300 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1301 {
1302 	might_sleep_if(gfpflags_allow_blocking(pri));
1303 
1304 	if (skb_cloned(skb))
1305 		return pskb_expand_head(skb, 0, 0, pri);
1306 
1307 	return 0;
1308 }
1309 
1310 /**
1311  *	skb_header_cloned - is the header a clone
1312  *	@skb: buffer to check
1313  *
1314  *	Returns true if modifying the header part of the buffer requires
1315  *	the data to be copied.
1316  */
1317 static inline int skb_header_cloned(const struct sk_buff *skb)
1318 {
1319 	int dataref;
1320 
1321 	if (!skb->cloned)
1322 		return 0;
1323 
1324 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1325 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1326 	return dataref != 1;
1327 }
1328 
1329 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1330 {
1331 	might_sleep_if(gfpflags_allow_blocking(pri));
1332 
1333 	if (skb_header_cloned(skb))
1334 		return pskb_expand_head(skb, 0, 0, pri);
1335 
1336 	return 0;
1337 }
1338 
1339 /**
1340  *	skb_header_release - release reference to header
1341  *	@skb: buffer to operate on
1342  *
1343  *	Drop a reference to the header part of the buffer.  This is done
1344  *	by acquiring a payload reference.  You must not read from the header
1345  *	part of skb->data after this.
1346  *	Note : Check if you can use __skb_header_release() instead.
1347  */
1348 static inline void skb_header_release(struct sk_buff *skb)
1349 {
1350 	BUG_ON(skb->nohdr);
1351 	skb->nohdr = 1;
1352 	atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
1353 }
1354 
1355 /**
1356  *	__skb_header_release - release reference to header
1357  *	@skb: buffer to operate on
1358  *
1359  *	Variant of skb_header_release() assuming skb is private to caller.
1360  *	We can avoid one atomic operation.
1361  */
1362 static inline void __skb_header_release(struct sk_buff *skb)
1363 {
1364 	skb->nohdr = 1;
1365 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1366 }
1367 
1368 
1369 /**
1370  *	skb_shared - is the buffer shared
1371  *	@skb: buffer to check
1372  *
1373  *	Returns true if more than one person has a reference to this
1374  *	buffer.
1375  */
1376 static inline int skb_shared(const struct sk_buff *skb)
1377 {
1378 	return atomic_read(&skb->users) != 1;
1379 }
1380 
1381 /**
1382  *	skb_share_check - check if buffer is shared and if so clone it
1383  *	@skb: buffer to check
1384  *	@pri: priority for memory allocation
1385  *
1386  *	If the buffer is shared the buffer is cloned and the old copy
1387  *	drops a reference. A new clone with a single reference is returned.
1388  *	If the buffer is not shared the original buffer is returned. When
1389  *	being called from interrupt status or with spinlocks held pri must
1390  *	be GFP_ATOMIC.
1391  *
1392  *	NULL is returned on a memory allocation failure.
1393  */
1394 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1395 {
1396 	might_sleep_if(gfpflags_allow_blocking(pri));
1397 	if (skb_shared(skb)) {
1398 		struct sk_buff *nskb = skb_clone(skb, pri);
1399 
1400 		if (likely(nskb))
1401 			consume_skb(skb);
1402 		else
1403 			kfree_skb(skb);
1404 		skb = nskb;
1405 	}
1406 	return skb;
1407 }
1408 
1409 /*
1410  *	Copy shared buffers into a new sk_buff. We effectively do COW on
1411  *	packets to handle cases where we have a local reader and forward
1412  *	and a couple of other messy ones. The normal one is tcpdumping
1413  *	a packet thats being forwarded.
1414  */
1415 
1416 /**
1417  *	skb_unshare - make a copy of a shared buffer
1418  *	@skb: buffer to check
1419  *	@pri: priority for memory allocation
1420  *
1421  *	If the socket buffer is a clone then this function creates a new
1422  *	copy of the data, drops a reference count on the old copy and returns
1423  *	the new copy with the reference count at 1. If the buffer is not a clone
1424  *	the original buffer is returned. When called with a spinlock held or
1425  *	from interrupt state @pri must be %GFP_ATOMIC
1426  *
1427  *	%NULL is returned on a memory allocation failure.
1428  */
1429 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1430 					  gfp_t pri)
1431 {
1432 	might_sleep_if(gfpflags_allow_blocking(pri));
1433 	if (skb_cloned(skb)) {
1434 		struct sk_buff *nskb = skb_copy(skb, pri);
1435 
1436 		/* Free our shared copy */
1437 		if (likely(nskb))
1438 			consume_skb(skb);
1439 		else
1440 			kfree_skb(skb);
1441 		skb = nskb;
1442 	}
1443 	return skb;
1444 }
1445 
1446 /**
1447  *	skb_peek - peek at the head of an &sk_buff_head
1448  *	@list_: list to peek at
1449  *
1450  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1451  *	be careful with this one. A peek leaves the buffer on the
1452  *	list and someone else may run off with it. You must hold
1453  *	the appropriate locks or have a private queue to do this.
1454  *
1455  *	Returns %NULL for an empty list or a pointer to the head element.
1456  *	The reference count is not incremented and the reference is therefore
1457  *	volatile. Use with caution.
1458  */
1459 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1460 {
1461 	struct sk_buff *skb = list_->next;
1462 
1463 	if (skb == (struct sk_buff *)list_)
1464 		skb = NULL;
1465 	return skb;
1466 }
1467 
1468 /**
1469  *	skb_peek_next - peek skb following the given one from a queue
1470  *	@skb: skb to start from
1471  *	@list_: list to peek at
1472  *
1473  *	Returns %NULL when the end of the list is met or a pointer to the
1474  *	next element. The reference count is not incremented and the
1475  *	reference is therefore volatile. Use with caution.
1476  */
1477 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1478 		const struct sk_buff_head *list_)
1479 {
1480 	struct sk_buff *next = skb->next;
1481 
1482 	if (next == (struct sk_buff *)list_)
1483 		next = NULL;
1484 	return next;
1485 }
1486 
1487 /**
1488  *	skb_peek_tail - peek at the tail of an &sk_buff_head
1489  *	@list_: list to peek at
1490  *
1491  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1492  *	be careful with this one. A peek leaves the buffer on the
1493  *	list and someone else may run off with it. You must hold
1494  *	the appropriate locks or have a private queue to do this.
1495  *
1496  *	Returns %NULL for an empty list or a pointer to the tail element.
1497  *	The reference count is not incremented and the reference is therefore
1498  *	volatile. Use with caution.
1499  */
1500 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1501 {
1502 	struct sk_buff *skb = list_->prev;
1503 
1504 	if (skb == (struct sk_buff *)list_)
1505 		skb = NULL;
1506 	return skb;
1507 
1508 }
1509 
1510 /**
1511  *	skb_queue_len	- get queue length
1512  *	@list_: list to measure
1513  *
1514  *	Return the length of an &sk_buff queue.
1515  */
1516 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1517 {
1518 	return list_->qlen;
1519 }
1520 
1521 /**
1522  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1523  *	@list: queue to initialize
1524  *
1525  *	This initializes only the list and queue length aspects of
1526  *	an sk_buff_head object.  This allows to initialize the list
1527  *	aspects of an sk_buff_head without reinitializing things like
1528  *	the spinlock.  It can also be used for on-stack sk_buff_head
1529  *	objects where the spinlock is known to not be used.
1530  */
1531 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1532 {
1533 	list->prev = list->next = (struct sk_buff *)list;
1534 	list->qlen = 0;
1535 }
1536 
1537 /*
1538  * This function creates a split out lock class for each invocation;
1539  * this is needed for now since a whole lot of users of the skb-queue
1540  * infrastructure in drivers have different locking usage (in hardirq)
1541  * than the networking core (in softirq only). In the long run either the
1542  * network layer or drivers should need annotation to consolidate the
1543  * main types of usage into 3 classes.
1544  */
1545 static inline void skb_queue_head_init(struct sk_buff_head *list)
1546 {
1547 	spin_lock_init(&list->lock);
1548 	__skb_queue_head_init(list);
1549 }
1550 
1551 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1552 		struct lock_class_key *class)
1553 {
1554 	skb_queue_head_init(list);
1555 	lockdep_set_class(&list->lock, class);
1556 }
1557 
1558 /*
1559  *	Insert an sk_buff on a list.
1560  *
1561  *	The "__skb_xxxx()" functions are the non-atomic ones that
1562  *	can only be called with interrupts disabled.
1563  */
1564 void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1565 		struct sk_buff_head *list);
1566 static inline void __skb_insert(struct sk_buff *newsk,
1567 				struct sk_buff *prev, struct sk_buff *next,
1568 				struct sk_buff_head *list)
1569 {
1570 	newsk->next = next;
1571 	newsk->prev = prev;
1572 	next->prev  = prev->next = newsk;
1573 	list->qlen++;
1574 }
1575 
1576 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1577 				      struct sk_buff *prev,
1578 				      struct sk_buff *next)
1579 {
1580 	struct sk_buff *first = list->next;
1581 	struct sk_buff *last = list->prev;
1582 
1583 	first->prev = prev;
1584 	prev->next = first;
1585 
1586 	last->next = next;
1587 	next->prev = last;
1588 }
1589 
1590 /**
1591  *	skb_queue_splice - join two skb lists, this is designed for stacks
1592  *	@list: the new list to add
1593  *	@head: the place to add it in the first list
1594  */
1595 static inline void skb_queue_splice(const struct sk_buff_head *list,
1596 				    struct sk_buff_head *head)
1597 {
1598 	if (!skb_queue_empty(list)) {
1599 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1600 		head->qlen += list->qlen;
1601 	}
1602 }
1603 
1604 /**
1605  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1606  *	@list: the new list to add
1607  *	@head: the place to add it in the first list
1608  *
1609  *	The list at @list is reinitialised
1610  */
1611 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1612 					 struct sk_buff_head *head)
1613 {
1614 	if (!skb_queue_empty(list)) {
1615 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1616 		head->qlen += list->qlen;
1617 		__skb_queue_head_init(list);
1618 	}
1619 }
1620 
1621 /**
1622  *	skb_queue_splice_tail - join two skb lists, each list being a queue
1623  *	@list: the new list to add
1624  *	@head: the place to add it in the first list
1625  */
1626 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1627 					 struct sk_buff_head *head)
1628 {
1629 	if (!skb_queue_empty(list)) {
1630 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1631 		head->qlen += list->qlen;
1632 	}
1633 }
1634 
1635 /**
1636  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1637  *	@list: the new list to add
1638  *	@head: the place to add it in the first list
1639  *
1640  *	Each of the lists is a queue.
1641  *	The list at @list is reinitialised
1642  */
1643 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1644 					      struct sk_buff_head *head)
1645 {
1646 	if (!skb_queue_empty(list)) {
1647 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1648 		head->qlen += list->qlen;
1649 		__skb_queue_head_init(list);
1650 	}
1651 }
1652 
1653 /**
1654  *	__skb_queue_after - queue a buffer at the list head
1655  *	@list: list to use
1656  *	@prev: place after this buffer
1657  *	@newsk: buffer to queue
1658  *
1659  *	Queue a buffer int the middle of a list. This function takes no locks
1660  *	and you must therefore hold required locks before calling it.
1661  *
1662  *	A buffer cannot be placed on two lists at the same time.
1663  */
1664 static inline void __skb_queue_after(struct sk_buff_head *list,
1665 				     struct sk_buff *prev,
1666 				     struct sk_buff *newsk)
1667 {
1668 	__skb_insert(newsk, prev, prev->next, list);
1669 }
1670 
1671 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1672 		struct sk_buff_head *list);
1673 
1674 static inline void __skb_queue_before(struct sk_buff_head *list,
1675 				      struct sk_buff *next,
1676 				      struct sk_buff *newsk)
1677 {
1678 	__skb_insert(newsk, next->prev, next, list);
1679 }
1680 
1681 /**
1682  *	__skb_queue_head - queue a buffer at the list head
1683  *	@list: list to use
1684  *	@newsk: buffer to queue
1685  *
1686  *	Queue a buffer at the start of a list. This function takes no locks
1687  *	and you must therefore hold required locks before calling it.
1688  *
1689  *	A buffer cannot be placed on two lists at the same time.
1690  */
1691 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1692 static inline void __skb_queue_head(struct sk_buff_head *list,
1693 				    struct sk_buff *newsk)
1694 {
1695 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
1696 }
1697 
1698 /**
1699  *	__skb_queue_tail - queue a buffer at the list tail
1700  *	@list: list to use
1701  *	@newsk: buffer to queue
1702  *
1703  *	Queue a buffer at the end of a list. This function takes no locks
1704  *	and you must therefore hold required locks before calling it.
1705  *
1706  *	A buffer cannot be placed on two lists at the same time.
1707  */
1708 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1709 static inline void __skb_queue_tail(struct sk_buff_head *list,
1710 				   struct sk_buff *newsk)
1711 {
1712 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
1713 }
1714 
1715 /*
1716  * remove sk_buff from list. _Must_ be called atomically, and with
1717  * the list known..
1718  */
1719 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1720 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1721 {
1722 	struct sk_buff *next, *prev;
1723 
1724 	list->qlen--;
1725 	next	   = skb->next;
1726 	prev	   = skb->prev;
1727 	skb->next  = skb->prev = NULL;
1728 	next->prev = prev;
1729 	prev->next = next;
1730 }
1731 
1732 /**
1733  *	__skb_dequeue - remove from the head of the queue
1734  *	@list: list to dequeue from
1735  *
1736  *	Remove the head of the list. This function does not take any locks
1737  *	so must be used with appropriate locks held only. The head item is
1738  *	returned or %NULL if the list is empty.
1739  */
1740 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1741 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1742 {
1743 	struct sk_buff *skb = skb_peek(list);
1744 	if (skb)
1745 		__skb_unlink(skb, list);
1746 	return skb;
1747 }
1748 
1749 /**
1750  *	__skb_dequeue_tail - remove from the tail of the queue
1751  *	@list: list to dequeue from
1752  *
1753  *	Remove the tail of the list. This function does not take any locks
1754  *	so must be used with appropriate locks held only. The tail item is
1755  *	returned or %NULL if the list is empty.
1756  */
1757 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1758 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1759 {
1760 	struct sk_buff *skb = skb_peek_tail(list);
1761 	if (skb)
1762 		__skb_unlink(skb, list);
1763 	return skb;
1764 }
1765 
1766 
1767 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1768 {
1769 	return skb->data_len;
1770 }
1771 
1772 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1773 {
1774 	return skb->len - skb->data_len;
1775 }
1776 
1777 static inline int skb_pagelen(const struct sk_buff *skb)
1778 {
1779 	int i, len = 0;
1780 
1781 	for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1782 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1783 	return len + skb_headlen(skb);
1784 }
1785 
1786 /**
1787  * __skb_fill_page_desc - initialise a paged fragment in an skb
1788  * @skb: buffer containing fragment to be initialised
1789  * @i: paged fragment index to initialise
1790  * @page: the page to use for this fragment
1791  * @off: the offset to the data with @page
1792  * @size: the length of the data
1793  *
1794  * Initialises the @i'th fragment of @skb to point to &size bytes at
1795  * offset @off within @page.
1796  *
1797  * Does not take any additional reference on the fragment.
1798  */
1799 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1800 					struct page *page, int off, int size)
1801 {
1802 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1803 
1804 	/*
1805 	 * Propagate page pfmemalloc to the skb if we can. The problem is
1806 	 * that not all callers have unique ownership of the page but rely
1807 	 * on page_is_pfmemalloc doing the right thing(tm).
1808 	 */
1809 	frag->page.p		  = page;
1810 	frag->page_offset	  = off;
1811 	skb_frag_size_set(frag, size);
1812 
1813 	page = compound_head(page);
1814 	if (page_is_pfmemalloc(page))
1815 		skb->pfmemalloc	= true;
1816 }
1817 
1818 /**
1819  * skb_fill_page_desc - initialise a paged fragment in an skb
1820  * @skb: buffer containing fragment to be initialised
1821  * @i: paged fragment index to initialise
1822  * @page: the page to use for this fragment
1823  * @off: the offset to the data with @page
1824  * @size: the length of the data
1825  *
1826  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1827  * @skb to point to @size bytes at offset @off within @page. In
1828  * addition updates @skb such that @i is the last fragment.
1829  *
1830  * Does not take any additional reference on the fragment.
1831  */
1832 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1833 				      struct page *page, int off, int size)
1834 {
1835 	__skb_fill_page_desc(skb, i, page, off, size);
1836 	skb_shinfo(skb)->nr_frags = i + 1;
1837 }
1838 
1839 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
1840 		     int size, unsigned int truesize);
1841 
1842 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
1843 			  unsigned int truesize);
1844 
1845 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
1846 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_has_frag_list(skb))
1847 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
1848 
1849 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1850 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1851 {
1852 	return skb->head + skb->tail;
1853 }
1854 
1855 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1856 {
1857 	skb->tail = skb->data - skb->head;
1858 }
1859 
1860 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1861 {
1862 	skb_reset_tail_pointer(skb);
1863 	skb->tail += offset;
1864 }
1865 
1866 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1867 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1868 {
1869 	return skb->tail;
1870 }
1871 
1872 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1873 {
1874 	skb->tail = skb->data;
1875 }
1876 
1877 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1878 {
1879 	skb->tail = skb->data + offset;
1880 }
1881 
1882 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1883 
1884 /*
1885  *	Add data to an sk_buff
1886  */
1887 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
1888 unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1889 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1890 {
1891 	unsigned char *tmp = skb_tail_pointer(skb);
1892 	SKB_LINEAR_ASSERT(skb);
1893 	skb->tail += len;
1894 	skb->len  += len;
1895 	return tmp;
1896 }
1897 
1898 unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1899 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1900 {
1901 	skb->data -= len;
1902 	skb->len  += len;
1903 	return skb->data;
1904 }
1905 
1906 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1907 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1908 {
1909 	skb->len -= len;
1910 	BUG_ON(skb->len < skb->data_len);
1911 	return skb->data += len;
1912 }
1913 
1914 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1915 {
1916 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1917 }
1918 
1919 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1920 
1921 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1922 {
1923 	if (len > skb_headlen(skb) &&
1924 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1925 		return NULL;
1926 	skb->len -= len;
1927 	return skb->data += len;
1928 }
1929 
1930 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1931 {
1932 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1933 }
1934 
1935 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1936 {
1937 	if (likely(len <= skb_headlen(skb)))
1938 		return 1;
1939 	if (unlikely(len > skb->len))
1940 		return 0;
1941 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1942 }
1943 
1944 /**
1945  *	skb_headroom - bytes at buffer head
1946  *	@skb: buffer to check
1947  *
1948  *	Return the number of bytes of free space at the head of an &sk_buff.
1949  */
1950 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1951 {
1952 	return skb->data - skb->head;
1953 }
1954 
1955 /**
1956  *	skb_tailroom - bytes at buffer end
1957  *	@skb: buffer to check
1958  *
1959  *	Return the number of bytes of free space at the tail of an sk_buff
1960  */
1961 static inline int skb_tailroom(const struct sk_buff *skb)
1962 {
1963 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1964 }
1965 
1966 /**
1967  *	skb_availroom - bytes at buffer end
1968  *	@skb: buffer to check
1969  *
1970  *	Return the number of bytes of free space at the tail of an sk_buff
1971  *	allocated by sk_stream_alloc()
1972  */
1973 static inline int skb_availroom(const struct sk_buff *skb)
1974 {
1975 	if (skb_is_nonlinear(skb))
1976 		return 0;
1977 
1978 	return skb->end - skb->tail - skb->reserved_tailroom;
1979 }
1980 
1981 /**
1982  *	skb_reserve - adjust headroom
1983  *	@skb: buffer to alter
1984  *	@len: bytes to move
1985  *
1986  *	Increase the headroom of an empty &sk_buff by reducing the tail
1987  *	room. This is only allowed for an empty buffer.
1988  */
1989 static inline void skb_reserve(struct sk_buff *skb, int len)
1990 {
1991 	skb->data += len;
1992 	skb->tail += len;
1993 }
1994 
1995 /**
1996  *	skb_tailroom_reserve - adjust reserved_tailroom
1997  *	@skb: buffer to alter
1998  *	@mtu: maximum amount of headlen permitted
1999  *	@needed_tailroom: minimum amount of reserved_tailroom
2000  *
2001  *	Set reserved_tailroom so that headlen can be as large as possible but
2002  *	not larger than mtu and tailroom cannot be smaller than
2003  *	needed_tailroom.
2004  *	The required headroom should already have been reserved before using
2005  *	this function.
2006  */
2007 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2008 					unsigned int needed_tailroom)
2009 {
2010 	SKB_LINEAR_ASSERT(skb);
2011 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2012 		/* use at most mtu */
2013 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2014 	else
2015 		/* use up to all available space */
2016 		skb->reserved_tailroom = needed_tailroom;
2017 }
2018 
2019 #define ENCAP_TYPE_ETHER	0
2020 #define ENCAP_TYPE_IPPROTO	1
2021 
2022 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2023 					  __be16 protocol)
2024 {
2025 	skb->inner_protocol = protocol;
2026 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2027 }
2028 
2029 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2030 					 __u8 ipproto)
2031 {
2032 	skb->inner_ipproto = ipproto;
2033 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2034 }
2035 
2036 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2037 {
2038 	skb->inner_mac_header = skb->mac_header;
2039 	skb->inner_network_header = skb->network_header;
2040 	skb->inner_transport_header = skb->transport_header;
2041 }
2042 
2043 static inline void skb_reset_mac_len(struct sk_buff *skb)
2044 {
2045 	skb->mac_len = skb->network_header - skb->mac_header;
2046 }
2047 
2048 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2049 							*skb)
2050 {
2051 	return skb->head + skb->inner_transport_header;
2052 }
2053 
2054 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2055 {
2056 	return skb_inner_transport_header(skb) - skb->data;
2057 }
2058 
2059 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2060 {
2061 	skb->inner_transport_header = skb->data - skb->head;
2062 }
2063 
2064 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2065 						   const int offset)
2066 {
2067 	skb_reset_inner_transport_header(skb);
2068 	skb->inner_transport_header += offset;
2069 }
2070 
2071 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2072 {
2073 	return skb->head + skb->inner_network_header;
2074 }
2075 
2076 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2077 {
2078 	skb->inner_network_header = skb->data - skb->head;
2079 }
2080 
2081 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2082 						const int offset)
2083 {
2084 	skb_reset_inner_network_header(skb);
2085 	skb->inner_network_header += offset;
2086 }
2087 
2088 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2089 {
2090 	return skb->head + skb->inner_mac_header;
2091 }
2092 
2093 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2094 {
2095 	skb->inner_mac_header = skb->data - skb->head;
2096 }
2097 
2098 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2099 					    const int offset)
2100 {
2101 	skb_reset_inner_mac_header(skb);
2102 	skb->inner_mac_header += offset;
2103 }
2104 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2105 {
2106 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2107 }
2108 
2109 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2110 {
2111 	return skb->head + skb->transport_header;
2112 }
2113 
2114 static inline void skb_reset_transport_header(struct sk_buff *skb)
2115 {
2116 	skb->transport_header = skb->data - skb->head;
2117 }
2118 
2119 static inline void skb_set_transport_header(struct sk_buff *skb,
2120 					    const int offset)
2121 {
2122 	skb_reset_transport_header(skb);
2123 	skb->transport_header += offset;
2124 }
2125 
2126 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2127 {
2128 	return skb->head + skb->network_header;
2129 }
2130 
2131 static inline void skb_reset_network_header(struct sk_buff *skb)
2132 {
2133 	skb->network_header = skb->data - skb->head;
2134 }
2135 
2136 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2137 {
2138 	skb_reset_network_header(skb);
2139 	skb->network_header += offset;
2140 }
2141 
2142 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2143 {
2144 	return skb->head + skb->mac_header;
2145 }
2146 
2147 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2148 {
2149 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2150 }
2151 
2152 static inline void skb_reset_mac_header(struct sk_buff *skb)
2153 {
2154 	skb->mac_header = skb->data - skb->head;
2155 }
2156 
2157 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2158 {
2159 	skb_reset_mac_header(skb);
2160 	skb->mac_header += offset;
2161 }
2162 
2163 static inline void skb_pop_mac_header(struct sk_buff *skb)
2164 {
2165 	skb->mac_header = skb->network_header;
2166 }
2167 
2168 static inline void skb_probe_transport_header(struct sk_buff *skb,
2169 					      const int offset_hint)
2170 {
2171 	struct flow_keys keys;
2172 
2173 	if (skb_transport_header_was_set(skb))
2174 		return;
2175 	else if (skb_flow_dissect_flow_keys(skb, &keys, 0))
2176 		skb_set_transport_header(skb, keys.control.thoff);
2177 	else
2178 		skb_set_transport_header(skb, offset_hint);
2179 }
2180 
2181 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2182 {
2183 	if (skb_mac_header_was_set(skb)) {
2184 		const unsigned char *old_mac = skb_mac_header(skb);
2185 
2186 		skb_set_mac_header(skb, -skb->mac_len);
2187 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2188 	}
2189 }
2190 
2191 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2192 {
2193 	return skb->csum_start - skb_headroom(skb);
2194 }
2195 
2196 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2197 {
2198 	return skb->head + skb->csum_start;
2199 }
2200 
2201 static inline int skb_transport_offset(const struct sk_buff *skb)
2202 {
2203 	return skb_transport_header(skb) - skb->data;
2204 }
2205 
2206 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2207 {
2208 	return skb->transport_header - skb->network_header;
2209 }
2210 
2211 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2212 {
2213 	return skb->inner_transport_header - skb->inner_network_header;
2214 }
2215 
2216 static inline int skb_network_offset(const struct sk_buff *skb)
2217 {
2218 	return skb_network_header(skb) - skb->data;
2219 }
2220 
2221 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2222 {
2223 	return skb_inner_network_header(skb) - skb->data;
2224 }
2225 
2226 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2227 {
2228 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
2229 }
2230 
2231 /*
2232  * CPUs often take a performance hit when accessing unaligned memory
2233  * locations. The actual performance hit varies, it can be small if the
2234  * hardware handles it or large if we have to take an exception and fix it
2235  * in software.
2236  *
2237  * Since an ethernet header is 14 bytes network drivers often end up with
2238  * the IP header at an unaligned offset. The IP header can be aligned by
2239  * shifting the start of the packet by 2 bytes. Drivers should do this
2240  * with:
2241  *
2242  * skb_reserve(skb, NET_IP_ALIGN);
2243  *
2244  * The downside to this alignment of the IP header is that the DMA is now
2245  * unaligned. On some architectures the cost of an unaligned DMA is high
2246  * and this cost outweighs the gains made by aligning the IP header.
2247  *
2248  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2249  * to be overridden.
2250  */
2251 #ifndef NET_IP_ALIGN
2252 #define NET_IP_ALIGN	2
2253 #endif
2254 
2255 /*
2256  * The networking layer reserves some headroom in skb data (via
2257  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2258  * the header has to grow. In the default case, if the header has to grow
2259  * 32 bytes or less we avoid the reallocation.
2260  *
2261  * Unfortunately this headroom changes the DMA alignment of the resulting
2262  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2263  * on some architectures. An architecture can override this value,
2264  * perhaps setting it to a cacheline in size (since that will maintain
2265  * cacheline alignment of the DMA). It must be a power of 2.
2266  *
2267  * Various parts of the networking layer expect at least 32 bytes of
2268  * headroom, you should not reduce this.
2269  *
2270  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2271  * to reduce average number of cache lines per packet.
2272  * get_rps_cpus() for example only access one 64 bytes aligned block :
2273  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2274  */
2275 #ifndef NET_SKB_PAD
2276 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2277 #endif
2278 
2279 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2280 
2281 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2282 {
2283 	if (unlikely(skb_is_nonlinear(skb))) {
2284 		WARN_ON(1);
2285 		return;
2286 	}
2287 	skb->len = len;
2288 	skb_set_tail_pointer(skb, len);
2289 }
2290 
2291 void skb_trim(struct sk_buff *skb, unsigned int len);
2292 
2293 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2294 {
2295 	if (skb->data_len)
2296 		return ___pskb_trim(skb, len);
2297 	__skb_trim(skb, len);
2298 	return 0;
2299 }
2300 
2301 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2302 {
2303 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2304 }
2305 
2306 /**
2307  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2308  *	@skb: buffer to alter
2309  *	@len: new length
2310  *
2311  *	This is identical to pskb_trim except that the caller knows that
2312  *	the skb is not cloned so we should never get an error due to out-
2313  *	of-memory.
2314  */
2315 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2316 {
2317 	int err = pskb_trim(skb, len);
2318 	BUG_ON(err);
2319 }
2320 
2321 /**
2322  *	skb_orphan - orphan a buffer
2323  *	@skb: buffer to orphan
2324  *
2325  *	If a buffer currently has an owner then we call the owner's
2326  *	destructor function and make the @skb unowned. The buffer continues
2327  *	to exist but is no longer charged to its former owner.
2328  */
2329 static inline void skb_orphan(struct sk_buff *skb)
2330 {
2331 	if (skb->destructor) {
2332 		skb->destructor(skb);
2333 		skb->destructor = NULL;
2334 		skb->sk		= NULL;
2335 	} else {
2336 		BUG_ON(skb->sk);
2337 	}
2338 }
2339 
2340 /**
2341  *	skb_orphan_frags - orphan the frags contained in a buffer
2342  *	@skb: buffer to orphan frags from
2343  *	@gfp_mask: allocation mask for replacement pages
2344  *
2345  *	For each frag in the SKB which needs a destructor (i.e. has an
2346  *	owner) create a copy of that frag and release the original
2347  *	page by calling the destructor.
2348  */
2349 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2350 {
2351 	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
2352 		return 0;
2353 	return skb_copy_ubufs(skb, gfp_mask);
2354 }
2355 
2356 /**
2357  *	__skb_queue_purge - empty a list
2358  *	@list: list to empty
2359  *
2360  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2361  *	the list and one reference dropped. This function does not take the
2362  *	list lock and the caller must hold the relevant locks to use it.
2363  */
2364 void skb_queue_purge(struct sk_buff_head *list);
2365 static inline void __skb_queue_purge(struct sk_buff_head *list)
2366 {
2367 	struct sk_buff *skb;
2368 	while ((skb = __skb_dequeue(list)) != NULL)
2369 		kfree_skb(skb);
2370 }
2371 
2372 void *netdev_alloc_frag(unsigned int fragsz);
2373 
2374 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2375 				   gfp_t gfp_mask);
2376 
2377 /**
2378  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
2379  *	@dev: network device to receive on
2380  *	@length: length to allocate
2381  *
2382  *	Allocate a new &sk_buff and assign it a usage count of one. The
2383  *	buffer has unspecified headroom built in. Users should allocate
2384  *	the headroom they think they need without accounting for the
2385  *	built in space. The built in space is used for optimisations.
2386  *
2387  *	%NULL is returned if there is no free memory. Although this function
2388  *	allocates memory it can be called from an interrupt.
2389  */
2390 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2391 					       unsigned int length)
2392 {
2393 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2394 }
2395 
2396 /* legacy helper around __netdev_alloc_skb() */
2397 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2398 					      gfp_t gfp_mask)
2399 {
2400 	return __netdev_alloc_skb(NULL, length, gfp_mask);
2401 }
2402 
2403 /* legacy helper around netdev_alloc_skb() */
2404 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2405 {
2406 	return netdev_alloc_skb(NULL, length);
2407 }
2408 
2409 
2410 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2411 		unsigned int length, gfp_t gfp)
2412 {
2413 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2414 
2415 	if (NET_IP_ALIGN && skb)
2416 		skb_reserve(skb, NET_IP_ALIGN);
2417 	return skb;
2418 }
2419 
2420 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2421 		unsigned int length)
2422 {
2423 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2424 }
2425 
2426 static inline void skb_free_frag(void *addr)
2427 {
2428 	__free_page_frag(addr);
2429 }
2430 
2431 void *napi_alloc_frag(unsigned int fragsz);
2432 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2433 				 unsigned int length, gfp_t gfp_mask);
2434 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2435 					     unsigned int length)
2436 {
2437 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2438 }
2439 void napi_consume_skb(struct sk_buff *skb, int budget);
2440 
2441 void __kfree_skb_flush(void);
2442 void __kfree_skb_defer(struct sk_buff *skb);
2443 
2444 /**
2445  * __dev_alloc_pages - allocate page for network Rx
2446  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2447  * @order: size of the allocation
2448  *
2449  * Allocate a new page.
2450  *
2451  * %NULL is returned if there is no free memory.
2452 */
2453 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2454 					     unsigned int order)
2455 {
2456 	/* This piece of code contains several assumptions.
2457 	 * 1.  This is for device Rx, therefor a cold page is preferred.
2458 	 * 2.  The expectation is the user wants a compound page.
2459 	 * 3.  If requesting a order 0 page it will not be compound
2460 	 *     due to the check to see if order has a value in prep_new_page
2461 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2462 	 *     code in gfp_to_alloc_flags that should be enforcing this.
2463 	 */
2464 	gfp_mask |= __GFP_COLD | __GFP_COMP | __GFP_MEMALLOC;
2465 
2466 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2467 }
2468 
2469 static inline struct page *dev_alloc_pages(unsigned int order)
2470 {
2471 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2472 }
2473 
2474 /**
2475  * __dev_alloc_page - allocate a page for network Rx
2476  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2477  *
2478  * Allocate a new page.
2479  *
2480  * %NULL is returned if there is no free memory.
2481  */
2482 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2483 {
2484 	return __dev_alloc_pages(gfp_mask, 0);
2485 }
2486 
2487 static inline struct page *dev_alloc_page(void)
2488 {
2489 	return dev_alloc_pages(0);
2490 }
2491 
2492 /**
2493  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2494  *	@page: The page that was allocated from skb_alloc_page
2495  *	@skb: The skb that may need pfmemalloc set
2496  */
2497 static inline void skb_propagate_pfmemalloc(struct page *page,
2498 					     struct sk_buff *skb)
2499 {
2500 	if (page_is_pfmemalloc(page))
2501 		skb->pfmemalloc = true;
2502 }
2503 
2504 /**
2505  * skb_frag_page - retrieve the page referred to by a paged fragment
2506  * @frag: the paged fragment
2507  *
2508  * Returns the &struct page associated with @frag.
2509  */
2510 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2511 {
2512 	return frag->page.p;
2513 }
2514 
2515 /**
2516  * __skb_frag_ref - take an addition reference on a paged fragment.
2517  * @frag: the paged fragment
2518  *
2519  * Takes an additional reference on the paged fragment @frag.
2520  */
2521 static inline void __skb_frag_ref(skb_frag_t *frag)
2522 {
2523 	get_page(skb_frag_page(frag));
2524 }
2525 
2526 /**
2527  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2528  * @skb: the buffer
2529  * @f: the fragment offset.
2530  *
2531  * Takes an additional reference on the @f'th paged fragment of @skb.
2532  */
2533 static inline void skb_frag_ref(struct sk_buff *skb, int f)
2534 {
2535 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2536 }
2537 
2538 /**
2539  * __skb_frag_unref - release a reference on a paged fragment.
2540  * @frag: the paged fragment
2541  *
2542  * Releases a reference on the paged fragment @frag.
2543  */
2544 static inline void __skb_frag_unref(skb_frag_t *frag)
2545 {
2546 	put_page(skb_frag_page(frag));
2547 }
2548 
2549 /**
2550  * skb_frag_unref - release a reference on a paged fragment of an skb.
2551  * @skb: the buffer
2552  * @f: the fragment offset
2553  *
2554  * Releases a reference on the @f'th paged fragment of @skb.
2555  */
2556 static inline void skb_frag_unref(struct sk_buff *skb, int f)
2557 {
2558 	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2559 }
2560 
2561 /**
2562  * skb_frag_address - gets the address of the data contained in a paged fragment
2563  * @frag: the paged fragment buffer
2564  *
2565  * Returns the address of the data within @frag. The page must already
2566  * be mapped.
2567  */
2568 static inline void *skb_frag_address(const skb_frag_t *frag)
2569 {
2570 	return page_address(skb_frag_page(frag)) + frag->page_offset;
2571 }
2572 
2573 /**
2574  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2575  * @frag: the paged fragment buffer
2576  *
2577  * Returns the address of the data within @frag. Checks that the page
2578  * is mapped and returns %NULL otherwise.
2579  */
2580 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2581 {
2582 	void *ptr = page_address(skb_frag_page(frag));
2583 	if (unlikely(!ptr))
2584 		return NULL;
2585 
2586 	return ptr + frag->page_offset;
2587 }
2588 
2589 /**
2590  * __skb_frag_set_page - sets the page contained in a paged fragment
2591  * @frag: the paged fragment
2592  * @page: the page to set
2593  *
2594  * Sets the fragment @frag to contain @page.
2595  */
2596 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2597 {
2598 	frag->page.p = page;
2599 }
2600 
2601 /**
2602  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2603  * @skb: the buffer
2604  * @f: the fragment offset
2605  * @page: the page to set
2606  *
2607  * Sets the @f'th fragment of @skb to contain @page.
2608  */
2609 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2610 				     struct page *page)
2611 {
2612 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2613 }
2614 
2615 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2616 
2617 /**
2618  * skb_frag_dma_map - maps a paged fragment via the DMA API
2619  * @dev: the device to map the fragment to
2620  * @frag: the paged fragment to map
2621  * @offset: the offset within the fragment (starting at the
2622  *          fragment's own offset)
2623  * @size: the number of bytes to map
2624  * @dir: the direction of the mapping (%PCI_DMA_*)
2625  *
2626  * Maps the page associated with @frag to @device.
2627  */
2628 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2629 					  const skb_frag_t *frag,
2630 					  size_t offset, size_t size,
2631 					  enum dma_data_direction dir)
2632 {
2633 	return dma_map_page(dev, skb_frag_page(frag),
2634 			    frag->page_offset + offset, size, dir);
2635 }
2636 
2637 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2638 					gfp_t gfp_mask)
2639 {
2640 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2641 }
2642 
2643 
2644 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2645 						  gfp_t gfp_mask)
2646 {
2647 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2648 }
2649 
2650 
2651 /**
2652  *	skb_clone_writable - is the header of a clone writable
2653  *	@skb: buffer to check
2654  *	@len: length up to which to write
2655  *
2656  *	Returns true if modifying the header part of the cloned buffer
2657  *	does not requires the data to be copied.
2658  */
2659 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2660 {
2661 	return !skb_header_cloned(skb) &&
2662 	       skb_headroom(skb) + len <= skb->hdr_len;
2663 }
2664 
2665 static inline int skb_try_make_writable(struct sk_buff *skb,
2666 					unsigned int write_len)
2667 {
2668 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
2669 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2670 }
2671 
2672 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2673 			    int cloned)
2674 {
2675 	int delta = 0;
2676 
2677 	if (headroom > skb_headroom(skb))
2678 		delta = headroom - skb_headroom(skb);
2679 
2680 	if (delta || cloned)
2681 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2682 					GFP_ATOMIC);
2683 	return 0;
2684 }
2685 
2686 /**
2687  *	skb_cow - copy header of skb when it is required
2688  *	@skb: buffer to cow
2689  *	@headroom: needed headroom
2690  *
2691  *	If the skb passed lacks sufficient headroom or its data part
2692  *	is shared, data is reallocated. If reallocation fails, an error
2693  *	is returned and original skb is not changed.
2694  *
2695  *	The result is skb with writable area skb->head...skb->tail
2696  *	and at least @headroom of space at head.
2697  */
2698 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2699 {
2700 	return __skb_cow(skb, headroom, skb_cloned(skb));
2701 }
2702 
2703 /**
2704  *	skb_cow_head - skb_cow but only making the head writable
2705  *	@skb: buffer to cow
2706  *	@headroom: needed headroom
2707  *
2708  *	This function is identical to skb_cow except that we replace the
2709  *	skb_cloned check by skb_header_cloned.  It should be used when
2710  *	you only need to push on some header and do not need to modify
2711  *	the data.
2712  */
2713 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2714 {
2715 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
2716 }
2717 
2718 /**
2719  *	skb_padto	- pad an skbuff up to a minimal size
2720  *	@skb: buffer to pad
2721  *	@len: minimal length
2722  *
2723  *	Pads up a buffer to ensure the trailing bytes exist and are
2724  *	blanked. If the buffer already contains sufficient data it
2725  *	is untouched. Otherwise it is extended. Returns zero on
2726  *	success. The skb is freed on error.
2727  */
2728 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
2729 {
2730 	unsigned int size = skb->len;
2731 	if (likely(size >= len))
2732 		return 0;
2733 	return skb_pad(skb, len - size);
2734 }
2735 
2736 /**
2737  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
2738  *	@skb: buffer to pad
2739  *	@len: minimal length
2740  *
2741  *	Pads up a buffer to ensure the trailing bytes exist and are
2742  *	blanked. If the buffer already contains sufficient data it
2743  *	is untouched. Otherwise it is extended. Returns zero on
2744  *	success. The skb is freed on error.
2745  */
2746 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
2747 {
2748 	unsigned int size = skb->len;
2749 
2750 	if (unlikely(size < len)) {
2751 		len -= size;
2752 		if (skb_pad(skb, len))
2753 			return -ENOMEM;
2754 		__skb_put(skb, len);
2755 	}
2756 	return 0;
2757 }
2758 
2759 static inline int skb_add_data(struct sk_buff *skb,
2760 			       struct iov_iter *from, int copy)
2761 {
2762 	const int off = skb->len;
2763 
2764 	if (skb->ip_summed == CHECKSUM_NONE) {
2765 		__wsum csum = 0;
2766 		if (csum_and_copy_from_iter(skb_put(skb, copy), copy,
2767 					    &csum, from) == copy) {
2768 			skb->csum = csum_block_add(skb->csum, csum, off);
2769 			return 0;
2770 		}
2771 	} else if (copy_from_iter(skb_put(skb, copy), copy, from) == copy)
2772 		return 0;
2773 
2774 	__skb_trim(skb, off);
2775 	return -EFAULT;
2776 }
2777 
2778 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
2779 				    const struct page *page, int off)
2780 {
2781 	if (i) {
2782 		const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
2783 
2784 		return page == skb_frag_page(frag) &&
2785 		       off == frag->page_offset + skb_frag_size(frag);
2786 	}
2787 	return false;
2788 }
2789 
2790 static inline int __skb_linearize(struct sk_buff *skb)
2791 {
2792 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
2793 }
2794 
2795 /**
2796  *	skb_linearize - convert paged skb to linear one
2797  *	@skb: buffer to linarize
2798  *
2799  *	If there is no free memory -ENOMEM is returned, otherwise zero
2800  *	is returned and the old skb data released.
2801  */
2802 static inline int skb_linearize(struct sk_buff *skb)
2803 {
2804 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
2805 }
2806 
2807 /**
2808  * skb_has_shared_frag - can any frag be overwritten
2809  * @skb: buffer to test
2810  *
2811  * Return true if the skb has at least one frag that might be modified
2812  * by an external entity (as in vmsplice()/sendfile())
2813  */
2814 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
2815 {
2816 	return skb_is_nonlinear(skb) &&
2817 	       skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2818 }
2819 
2820 /**
2821  *	skb_linearize_cow - make sure skb is linear and writable
2822  *	@skb: buffer to process
2823  *
2824  *	If there is no free memory -ENOMEM is returned, otherwise zero
2825  *	is returned and the old skb data released.
2826  */
2827 static inline int skb_linearize_cow(struct sk_buff *skb)
2828 {
2829 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
2830 	       __skb_linearize(skb) : 0;
2831 }
2832 
2833 /**
2834  *	skb_postpull_rcsum - update checksum for received skb after pull
2835  *	@skb: buffer to update
2836  *	@start: start of data before pull
2837  *	@len: length of data pulled
2838  *
2839  *	After doing a pull on a received packet, you need to call this to
2840  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
2841  *	CHECKSUM_NONE so that it can be recomputed from scratch.
2842  */
2843 
2844 static inline void skb_postpull_rcsum(struct sk_buff *skb,
2845 				      const void *start, unsigned int len)
2846 {
2847 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2848 		skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
2849 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
2850 		 skb_checksum_start_offset(skb) < 0)
2851 		skb->ip_summed = CHECKSUM_NONE;
2852 }
2853 
2854 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
2855 
2856 static inline void skb_postpush_rcsum(struct sk_buff *skb,
2857 				      const void *start, unsigned int len)
2858 {
2859 	/* For performing the reverse operation to skb_postpull_rcsum(),
2860 	 * we can instead of ...
2861 	 *
2862 	 *   skb->csum = csum_add(skb->csum, csum_partial(start, len, 0));
2863 	 *
2864 	 * ... just use this equivalent version here to save a few
2865 	 * instructions. Feeding csum of 0 in csum_partial() and later
2866 	 * on adding skb->csum is equivalent to feed skb->csum in the
2867 	 * first place.
2868 	 */
2869 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2870 		skb->csum = csum_partial(start, len, skb->csum);
2871 }
2872 
2873 /**
2874  *	skb_push_rcsum - push skb and update receive checksum
2875  *	@skb: buffer to update
2876  *	@len: length of data pulled
2877  *
2878  *	This function performs an skb_push on the packet and updates
2879  *	the CHECKSUM_COMPLETE checksum.  It should be used on
2880  *	receive path processing instead of skb_push unless you know
2881  *	that the checksum difference is zero (e.g., a valid IP header)
2882  *	or you are setting ip_summed to CHECKSUM_NONE.
2883  */
2884 static inline unsigned char *skb_push_rcsum(struct sk_buff *skb,
2885 					    unsigned int len)
2886 {
2887 	skb_push(skb, len);
2888 	skb_postpush_rcsum(skb, skb->data, len);
2889 	return skb->data;
2890 }
2891 
2892 /**
2893  *	pskb_trim_rcsum - trim received skb and update checksum
2894  *	@skb: buffer to trim
2895  *	@len: new length
2896  *
2897  *	This is exactly the same as pskb_trim except that it ensures the
2898  *	checksum of received packets are still valid after the operation.
2899  */
2900 
2901 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2902 {
2903 	if (likely(len >= skb->len))
2904 		return 0;
2905 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2906 		skb->ip_summed = CHECKSUM_NONE;
2907 	return __pskb_trim(skb, len);
2908 }
2909 
2910 #define skb_queue_walk(queue, skb) \
2911 		for (skb = (queue)->next;					\
2912 		     skb != (struct sk_buff *)(queue);				\
2913 		     skb = skb->next)
2914 
2915 #define skb_queue_walk_safe(queue, skb, tmp)					\
2916 		for (skb = (queue)->next, tmp = skb->next;			\
2917 		     skb != (struct sk_buff *)(queue);				\
2918 		     skb = tmp, tmp = skb->next)
2919 
2920 #define skb_queue_walk_from(queue, skb)						\
2921 		for (; skb != (struct sk_buff *)(queue);			\
2922 		     skb = skb->next)
2923 
2924 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
2925 		for (tmp = skb->next;						\
2926 		     skb != (struct sk_buff *)(queue);				\
2927 		     skb = tmp, tmp = skb->next)
2928 
2929 #define skb_queue_reverse_walk(queue, skb) \
2930 		for (skb = (queue)->prev;					\
2931 		     skb != (struct sk_buff *)(queue);				\
2932 		     skb = skb->prev)
2933 
2934 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
2935 		for (skb = (queue)->prev, tmp = skb->prev;			\
2936 		     skb != (struct sk_buff *)(queue);				\
2937 		     skb = tmp, tmp = skb->prev)
2938 
2939 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
2940 		for (tmp = skb->prev;						\
2941 		     skb != (struct sk_buff *)(queue);				\
2942 		     skb = tmp, tmp = skb->prev)
2943 
2944 static inline bool skb_has_frag_list(const struct sk_buff *skb)
2945 {
2946 	return skb_shinfo(skb)->frag_list != NULL;
2947 }
2948 
2949 static inline void skb_frag_list_init(struct sk_buff *skb)
2950 {
2951 	skb_shinfo(skb)->frag_list = NULL;
2952 }
2953 
2954 #define skb_walk_frags(skb, iter)	\
2955 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
2956 
2957 
2958 int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
2959 				const struct sk_buff *skb);
2960 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
2961 					int *peeked, int *off, int *err,
2962 					struct sk_buff **last);
2963 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
2964 				    int *peeked, int *off, int *err);
2965 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
2966 				  int *err);
2967 unsigned int datagram_poll(struct file *file, struct socket *sock,
2968 			   struct poll_table_struct *wait);
2969 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
2970 			   struct iov_iter *to, int size);
2971 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
2972 					struct msghdr *msg, int size)
2973 {
2974 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
2975 }
2976 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
2977 				   struct msghdr *msg);
2978 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
2979 				 struct iov_iter *from, int len);
2980 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
2981 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
2982 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
2983 static inline void skb_free_datagram_locked(struct sock *sk,
2984 					    struct sk_buff *skb)
2985 {
2986 	__skb_free_datagram_locked(sk, skb, 0);
2987 }
2988 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
2989 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
2990 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
2991 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
2992 			      int len, __wsum csum);
2993 ssize_t skb_socket_splice(struct sock *sk,
2994 			  struct pipe_inode_info *pipe,
2995 			  struct splice_pipe_desc *spd);
2996 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2997 		    struct pipe_inode_info *pipe, unsigned int len,
2998 		    unsigned int flags,
2999 		    ssize_t (*splice_cb)(struct sock *,
3000 					 struct pipe_inode_info *,
3001 					 struct splice_pipe_desc *));
3002 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3003 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3004 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3005 		 int len, int hlen);
3006 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3007 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3008 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3009 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
3010 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3011 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3012 int skb_ensure_writable(struct sk_buff *skb, int write_len);
3013 int skb_vlan_pop(struct sk_buff *skb);
3014 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3015 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3016 			     gfp_t gfp);
3017 
3018 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3019 {
3020 	return copy_from_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3021 }
3022 
3023 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3024 {
3025 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3026 }
3027 
3028 struct skb_checksum_ops {
3029 	__wsum (*update)(const void *mem, int len, __wsum wsum);
3030 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3031 };
3032 
3033 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3034 		      __wsum csum, const struct skb_checksum_ops *ops);
3035 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3036 		    __wsum csum);
3037 
3038 static inline void * __must_check
3039 __skb_header_pointer(const struct sk_buff *skb, int offset,
3040 		     int len, void *data, int hlen, void *buffer)
3041 {
3042 	if (hlen - offset >= len)
3043 		return data + offset;
3044 
3045 	if (!skb ||
3046 	    skb_copy_bits(skb, offset, buffer, len) < 0)
3047 		return NULL;
3048 
3049 	return buffer;
3050 }
3051 
3052 static inline void * __must_check
3053 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3054 {
3055 	return __skb_header_pointer(skb, offset, len, skb->data,
3056 				    skb_headlen(skb), buffer);
3057 }
3058 
3059 /**
3060  *	skb_needs_linearize - check if we need to linearize a given skb
3061  *			      depending on the given device features.
3062  *	@skb: socket buffer to check
3063  *	@features: net device features
3064  *
3065  *	Returns true if either:
3066  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
3067  *	2. skb is fragmented and the device does not support SG.
3068  */
3069 static inline bool skb_needs_linearize(struct sk_buff *skb,
3070 				       netdev_features_t features)
3071 {
3072 	return skb_is_nonlinear(skb) &&
3073 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3074 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3075 }
3076 
3077 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3078 					     void *to,
3079 					     const unsigned int len)
3080 {
3081 	memcpy(to, skb->data, len);
3082 }
3083 
3084 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3085 						    const int offset, void *to,
3086 						    const unsigned int len)
3087 {
3088 	memcpy(to, skb->data + offset, len);
3089 }
3090 
3091 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3092 					   const void *from,
3093 					   const unsigned int len)
3094 {
3095 	memcpy(skb->data, from, len);
3096 }
3097 
3098 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3099 						  const int offset,
3100 						  const void *from,
3101 						  const unsigned int len)
3102 {
3103 	memcpy(skb->data + offset, from, len);
3104 }
3105 
3106 void skb_init(void);
3107 
3108 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3109 {
3110 	return skb->tstamp;
3111 }
3112 
3113 /**
3114  *	skb_get_timestamp - get timestamp from a skb
3115  *	@skb: skb to get stamp from
3116  *	@stamp: pointer to struct timeval to store stamp in
3117  *
3118  *	Timestamps are stored in the skb as offsets to a base timestamp.
3119  *	This function converts the offset back to a struct timeval and stores
3120  *	it in stamp.
3121  */
3122 static inline void skb_get_timestamp(const struct sk_buff *skb,
3123 				     struct timeval *stamp)
3124 {
3125 	*stamp = ktime_to_timeval(skb->tstamp);
3126 }
3127 
3128 static inline void skb_get_timestampns(const struct sk_buff *skb,
3129 				       struct timespec *stamp)
3130 {
3131 	*stamp = ktime_to_timespec(skb->tstamp);
3132 }
3133 
3134 static inline void __net_timestamp(struct sk_buff *skb)
3135 {
3136 	skb->tstamp = ktime_get_real();
3137 }
3138 
3139 static inline ktime_t net_timedelta(ktime_t t)
3140 {
3141 	return ktime_sub(ktime_get_real(), t);
3142 }
3143 
3144 static inline ktime_t net_invalid_timestamp(void)
3145 {
3146 	return ktime_set(0, 0);
3147 }
3148 
3149 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3150 
3151 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3152 
3153 void skb_clone_tx_timestamp(struct sk_buff *skb);
3154 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3155 
3156 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3157 
3158 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3159 {
3160 }
3161 
3162 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3163 {
3164 	return false;
3165 }
3166 
3167 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3168 
3169 /**
3170  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3171  *
3172  * PHY drivers may accept clones of transmitted packets for
3173  * timestamping via their phy_driver.txtstamp method. These drivers
3174  * must call this function to return the skb back to the stack with a
3175  * timestamp.
3176  *
3177  * @skb: clone of the the original outgoing packet
3178  * @hwtstamps: hardware time stamps
3179  *
3180  */
3181 void skb_complete_tx_timestamp(struct sk_buff *skb,
3182 			       struct skb_shared_hwtstamps *hwtstamps);
3183 
3184 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3185 		     struct skb_shared_hwtstamps *hwtstamps,
3186 		     struct sock *sk, int tstype);
3187 
3188 /**
3189  * skb_tstamp_tx - queue clone of skb with send time stamps
3190  * @orig_skb:	the original outgoing packet
3191  * @hwtstamps:	hardware time stamps, may be NULL if not available
3192  *
3193  * If the skb has a socket associated, then this function clones the
3194  * skb (thus sharing the actual data and optional structures), stores
3195  * the optional hardware time stamping information (if non NULL) or
3196  * generates a software time stamp (otherwise), then queues the clone
3197  * to the error queue of the socket.  Errors are silently ignored.
3198  */
3199 void skb_tstamp_tx(struct sk_buff *orig_skb,
3200 		   struct skb_shared_hwtstamps *hwtstamps);
3201 
3202 static inline void sw_tx_timestamp(struct sk_buff *skb)
3203 {
3204 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
3205 	    !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
3206 		skb_tstamp_tx(skb, NULL);
3207 }
3208 
3209 /**
3210  * skb_tx_timestamp() - Driver hook for transmit timestamping
3211  *
3212  * Ethernet MAC Drivers should call this function in their hard_xmit()
3213  * function immediately before giving the sk_buff to the MAC hardware.
3214  *
3215  * Specifically, one should make absolutely sure that this function is
3216  * called before TX completion of this packet can trigger.  Otherwise
3217  * the packet could potentially already be freed.
3218  *
3219  * @skb: A socket buffer.
3220  */
3221 static inline void skb_tx_timestamp(struct sk_buff *skb)
3222 {
3223 	skb_clone_tx_timestamp(skb);
3224 	sw_tx_timestamp(skb);
3225 }
3226 
3227 /**
3228  * skb_complete_wifi_ack - deliver skb with wifi status
3229  *
3230  * @skb: the original outgoing packet
3231  * @acked: ack status
3232  *
3233  */
3234 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3235 
3236 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3237 __sum16 __skb_checksum_complete(struct sk_buff *skb);
3238 
3239 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3240 {
3241 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3242 		skb->csum_valid ||
3243 		(skb->ip_summed == CHECKSUM_PARTIAL &&
3244 		 skb_checksum_start_offset(skb) >= 0));
3245 }
3246 
3247 /**
3248  *	skb_checksum_complete - Calculate checksum of an entire packet
3249  *	@skb: packet to process
3250  *
3251  *	This function calculates the checksum over the entire packet plus
3252  *	the value of skb->csum.  The latter can be used to supply the
3253  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
3254  *	checksum.
3255  *
3256  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
3257  *	this function can be used to verify that checksum on received
3258  *	packets.  In that case the function should return zero if the
3259  *	checksum is correct.  In particular, this function will return zero
3260  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3261  *	hardware has already verified the correctness of the checksum.
3262  */
3263 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3264 {
3265 	return skb_csum_unnecessary(skb) ?
3266 	       0 : __skb_checksum_complete(skb);
3267 }
3268 
3269 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3270 {
3271 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3272 		if (skb->csum_level == 0)
3273 			skb->ip_summed = CHECKSUM_NONE;
3274 		else
3275 			skb->csum_level--;
3276 	}
3277 }
3278 
3279 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3280 {
3281 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3282 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3283 			skb->csum_level++;
3284 	} else if (skb->ip_summed == CHECKSUM_NONE) {
3285 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3286 		skb->csum_level = 0;
3287 	}
3288 }
3289 
3290 static inline void __skb_mark_checksum_bad(struct sk_buff *skb)
3291 {
3292 	/* Mark current checksum as bad (typically called from GRO
3293 	 * path). In the case that ip_summed is CHECKSUM_NONE
3294 	 * this must be the first checksum encountered in the packet.
3295 	 * When ip_summed is CHECKSUM_UNNECESSARY, this is the first
3296 	 * checksum after the last one validated. For UDP, a zero
3297 	 * checksum can not be marked as bad.
3298 	 */
3299 
3300 	if (skb->ip_summed == CHECKSUM_NONE ||
3301 	    skb->ip_summed == CHECKSUM_UNNECESSARY)
3302 		skb->csum_bad = 1;
3303 }
3304 
3305 /* Check if we need to perform checksum complete validation.
3306  *
3307  * Returns true if checksum complete is needed, false otherwise
3308  * (either checksum is unnecessary or zero checksum is allowed).
3309  */
3310 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3311 						  bool zero_okay,
3312 						  __sum16 check)
3313 {
3314 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3315 		skb->csum_valid = 1;
3316 		__skb_decr_checksum_unnecessary(skb);
3317 		return false;
3318 	}
3319 
3320 	return true;
3321 }
3322 
3323 /* For small packets <= CHECKSUM_BREAK peform checksum complete directly
3324  * in checksum_init.
3325  */
3326 #define CHECKSUM_BREAK 76
3327 
3328 /* Unset checksum-complete
3329  *
3330  * Unset checksum complete can be done when packet is being modified
3331  * (uncompressed for instance) and checksum-complete value is
3332  * invalidated.
3333  */
3334 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3335 {
3336 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3337 		skb->ip_summed = CHECKSUM_NONE;
3338 }
3339 
3340 /* Validate (init) checksum based on checksum complete.
3341  *
3342  * Return values:
3343  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
3344  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3345  *	checksum is stored in skb->csum for use in __skb_checksum_complete
3346  *   non-zero: value of invalid checksum
3347  *
3348  */
3349 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3350 						       bool complete,
3351 						       __wsum psum)
3352 {
3353 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
3354 		if (!csum_fold(csum_add(psum, skb->csum))) {
3355 			skb->csum_valid = 1;
3356 			return 0;
3357 		}
3358 	} else if (skb->csum_bad) {
3359 		/* ip_summed == CHECKSUM_NONE in this case */
3360 		return (__force __sum16)1;
3361 	}
3362 
3363 	skb->csum = psum;
3364 
3365 	if (complete || skb->len <= CHECKSUM_BREAK) {
3366 		__sum16 csum;
3367 
3368 		csum = __skb_checksum_complete(skb);
3369 		skb->csum_valid = !csum;
3370 		return csum;
3371 	}
3372 
3373 	return 0;
3374 }
3375 
3376 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3377 {
3378 	return 0;
3379 }
3380 
3381 /* Perform checksum validate (init). Note that this is a macro since we only
3382  * want to calculate the pseudo header which is an input function if necessary.
3383  * First we try to validate without any computation (checksum unnecessary) and
3384  * then calculate based on checksum complete calling the function to compute
3385  * pseudo header.
3386  *
3387  * Return values:
3388  *   0: checksum is validated or try to in skb_checksum_complete
3389  *   non-zero: value of invalid checksum
3390  */
3391 #define __skb_checksum_validate(skb, proto, complete,			\
3392 				zero_okay, check, compute_pseudo)	\
3393 ({									\
3394 	__sum16 __ret = 0;						\
3395 	skb->csum_valid = 0;						\
3396 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
3397 		__ret = __skb_checksum_validate_complete(skb,		\
3398 				complete, compute_pseudo(skb, proto));	\
3399 	__ret;								\
3400 })
3401 
3402 #define skb_checksum_init(skb, proto, compute_pseudo)			\
3403 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3404 
3405 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
3406 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3407 
3408 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
3409 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3410 
3411 #define skb_checksum_validate_zero_check(skb, proto, check,		\
3412 					 compute_pseudo)		\
3413 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
3414 
3415 #define skb_checksum_simple_validate(skb)				\
3416 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3417 
3418 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3419 {
3420 	return (skb->ip_summed == CHECKSUM_NONE &&
3421 		skb->csum_valid && !skb->csum_bad);
3422 }
3423 
3424 static inline void __skb_checksum_convert(struct sk_buff *skb,
3425 					  __sum16 check, __wsum pseudo)
3426 {
3427 	skb->csum = ~pseudo;
3428 	skb->ip_summed = CHECKSUM_COMPLETE;
3429 }
3430 
3431 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo)	\
3432 do {									\
3433 	if (__skb_checksum_convert_check(skb))				\
3434 		__skb_checksum_convert(skb, check,			\
3435 				       compute_pseudo(skb, proto));	\
3436 } while (0)
3437 
3438 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3439 					      u16 start, u16 offset)
3440 {
3441 	skb->ip_summed = CHECKSUM_PARTIAL;
3442 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3443 	skb->csum_offset = offset - start;
3444 }
3445 
3446 /* Update skbuf and packet to reflect the remote checksum offload operation.
3447  * When called, ptr indicates the starting point for skb->csum when
3448  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3449  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3450  */
3451 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
3452 				       int start, int offset, bool nopartial)
3453 {
3454 	__wsum delta;
3455 
3456 	if (!nopartial) {
3457 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
3458 		return;
3459 	}
3460 
3461 	 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3462 		__skb_checksum_complete(skb);
3463 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3464 	}
3465 
3466 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
3467 
3468 	/* Adjust skb->csum since we changed the packet */
3469 	skb->csum = csum_add(skb->csum, delta);
3470 }
3471 
3472 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3473 void nf_conntrack_destroy(struct nf_conntrack *nfct);
3474 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3475 {
3476 	if (nfct && atomic_dec_and_test(&nfct->use))
3477 		nf_conntrack_destroy(nfct);
3478 }
3479 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3480 {
3481 	if (nfct)
3482 		atomic_inc(&nfct->use);
3483 }
3484 #endif
3485 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3486 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
3487 {
3488 	if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
3489 		kfree(nf_bridge);
3490 }
3491 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
3492 {
3493 	if (nf_bridge)
3494 		atomic_inc(&nf_bridge->use);
3495 }
3496 #endif /* CONFIG_BRIDGE_NETFILTER */
3497 static inline void nf_reset(struct sk_buff *skb)
3498 {
3499 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3500 	nf_conntrack_put(skb->nfct);
3501 	skb->nfct = NULL;
3502 #endif
3503 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3504 	nf_bridge_put(skb->nf_bridge);
3505 	skb->nf_bridge = NULL;
3506 #endif
3507 }
3508 
3509 static inline void nf_reset_trace(struct sk_buff *skb)
3510 {
3511 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3512 	skb->nf_trace = 0;
3513 #endif
3514 }
3515 
3516 /* Note: This doesn't put any conntrack and bridge info in dst. */
3517 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
3518 			     bool copy)
3519 {
3520 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3521 	dst->nfct = src->nfct;
3522 	nf_conntrack_get(src->nfct);
3523 	if (copy)
3524 		dst->nfctinfo = src->nfctinfo;
3525 #endif
3526 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3527 	dst->nf_bridge  = src->nf_bridge;
3528 	nf_bridge_get(src->nf_bridge);
3529 #endif
3530 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3531 	if (copy)
3532 		dst->nf_trace = src->nf_trace;
3533 #endif
3534 }
3535 
3536 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
3537 {
3538 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3539 	nf_conntrack_put(dst->nfct);
3540 #endif
3541 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3542 	nf_bridge_put(dst->nf_bridge);
3543 #endif
3544 	__nf_copy(dst, src, true);
3545 }
3546 
3547 #ifdef CONFIG_NETWORK_SECMARK
3548 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3549 {
3550 	to->secmark = from->secmark;
3551 }
3552 
3553 static inline void skb_init_secmark(struct sk_buff *skb)
3554 {
3555 	skb->secmark = 0;
3556 }
3557 #else
3558 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3559 { }
3560 
3561 static inline void skb_init_secmark(struct sk_buff *skb)
3562 { }
3563 #endif
3564 
3565 static inline bool skb_irq_freeable(const struct sk_buff *skb)
3566 {
3567 	return !skb->destructor &&
3568 #if IS_ENABLED(CONFIG_XFRM)
3569 		!skb->sp &&
3570 #endif
3571 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
3572 		!skb->nfct &&
3573 #endif
3574 		!skb->_skb_refdst &&
3575 		!skb_has_frag_list(skb);
3576 }
3577 
3578 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
3579 {
3580 	skb->queue_mapping = queue_mapping;
3581 }
3582 
3583 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
3584 {
3585 	return skb->queue_mapping;
3586 }
3587 
3588 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
3589 {
3590 	to->queue_mapping = from->queue_mapping;
3591 }
3592 
3593 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
3594 {
3595 	skb->queue_mapping = rx_queue + 1;
3596 }
3597 
3598 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
3599 {
3600 	return skb->queue_mapping - 1;
3601 }
3602 
3603 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
3604 {
3605 	return skb->queue_mapping != 0;
3606 }
3607 
3608 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
3609 {
3610 #ifdef CONFIG_XFRM
3611 	return skb->sp;
3612 #else
3613 	return NULL;
3614 #endif
3615 }
3616 
3617 /* Keeps track of mac header offset relative to skb->head.
3618  * It is useful for TSO of Tunneling protocol. e.g. GRE.
3619  * For non-tunnel skb it points to skb_mac_header() and for
3620  * tunnel skb it points to outer mac header.
3621  * Keeps track of level of encapsulation of network headers.
3622  */
3623 struct skb_gso_cb {
3624 	union {
3625 		int	mac_offset;
3626 		int	data_offset;
3627 	};
3628 	int	encap_level;
3629 	__wsum	csum;
3630 	__u16	csum_start;
3631 };
3632 #define SKB_SGO_CB_OFFSET	32
3633 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
3634 
3635 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
3636 {
3637 	return (skb_mac_header(inner_skb) - inner_skb->head) -
3638 		SKB_GSO_CB(inner_skb)->mac_offset;
3639 }
3640 
3641 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
3642 {
3643 	int new_headroom, headroom;
3644 	int ret;
3645 
3646 	headroom = skb_headroom(skb);
3647 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
3648 	if (ret)
3649 		return ret;
3650 
3651 	new_headroom = skb_headroom(skb);
3652 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
3653 	return 0;
3654 }
3655 
3656 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
3657 {
3658 	/* Do not update partial checksums if remote checksum is enabled. */
3659 	if (skb->remcsum_offload)
3660 		return;
3661 
3662 	SKB_GSO_CB(skb)->csum = res;
3663 	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
3664 }
3665 
3666 /* Compute the checksum for a gso segment. First compute the checksum value
3667  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
3668  * then add in skb->csum (checksum from csum_start to end of packet).
3669  * skb->csum and csum_start are then updated to reflect the checksum of the
3670  * resultant packet starting from the transport header-- the resultant checksum
3671  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
3672  * header.
3673  */
3674 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
3675 {
3676 	unsigned char *csum_start = skb_transport_header(skb);
3677 	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
3678 	__wsum partial = SKB_GSO_CB(skb)->csum;
3679 
3680 	SKB_GSO_CB(skb)->csum = res;
3681 	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
3682 
3683 	return csum_fold(csum_partial(csum_start, plen, partial));
3684 }
3685 
3686 static inline bool skb_is_gso(const struct sk_buff *skb)
3687 {
3688 	return skb_shinfo(skb)->gso_size;
3689 }
3690 
3691 /* Note: Should be called only if skb_is_gso(skb) is true */
3692 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
3693 {
3694 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
3695 }
3696 
3697 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
3698 
3699 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
3700 {
3701 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
3702 	 * wanted then gso_type will be set. */
3703 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3704 
3705 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
3706 	    unlikely(shinfo->gso_type == 0)) {
3707 		__skb_warn_lro_forwarding(skb);
3708 		return true;
3709 	}
3710 	return false;
3711 }
3712 
3713 static inline void skb_forward_csum(struct sk_buff *skb)
3714 {
3715 	/* Unfortunately we don't support this one.  Any brave souls? */
3716 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3717 		skb->ip_summed = CHECKSUM_NONE;
3718 }
3719 
3720 /**
3721  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
3722  * @skb: skb to check
3723  *
3724  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
3725  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
3726  * use this helper, to document places where we make this assertion.
3727  */
3728 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
3729 {
3730 #ifdef DEBUG
3731 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
3732 #endif
3733 }
3734 
3735 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
3736 
3737 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
3738 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
3739 				     unsigned int transport_len,
3740 				     __sum16(*skb_chkf)(struct sk_buff *skb));
3741 
3742 /**
3743  * skb_head_is_locked - Determine if the skb->head is locked down
3744  * @skb: skb to check
3745  *
3746  * The head on skbs build around a head frag can be removed if they are
3747  * not cloned.  This function returns true if the skb head is locked down
3748  * due to either being allocated via kmalloc, or by being a clone with
3749  * multiple references to the head.
3750  */
3751 static inline bool skb_head_is_locked(const struct sk_buff *skb)
3752 {
3753 	return !skb->head_frag || skb_cloned(skb);
3754 }
3755 
3756 /**
3757  * skb_gso_network_seglen - Return length of individual segments of a gso packet
3758  *
3759  * @skb: GSO skb
3760  *
3761  * skb_gso_network_seglen is used to determine the real size of the
3762  * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
3763  *
3764  * The MAC/L2 header is not accounted for.
3765  */
3766 static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
3767 {
3768 	unsigned int hdr_len = skb_transport_header(skb) -
3769 			       skb_network_header(skb);
3770 	return hdr_len + skb_gso_transport_seglen(skb);
3771 }
3772 
3773 /* Local Checksum Offload.
3774  * Compute outer checksum based on the assumption that the
3775  * inner checksum will be offloaded later.
3776  * See Documentation/networking/checksum-offloads.txt for
3777  * explanation of how this works.
3778  * Fill in outer checksum adjustment (e.g. with sum of outer
3779  * pseudo-header) before calling.
3780  * Also ensure that inner checksum is in linear data area.
3781  */
3782 static inline __wsum lco_csum(struct sk_buff *skb)
3783 {
3784 	unsigned char *csum_start = skb_checksum_start(skb);
3785 	unsigned char *l4_hdr = skb_transport_header(skb);
3786 	__wsum partial;
3787 
3788 	/* Start with complement of inner checksum adjustment */
3789 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
3790 						    skb->csum_offset));
3791 
3792 	/* Add in checksum of our headers (incl. outer checksum
3793 	 * adjustment filled in by caller) and return result.
3794 	 */
3795 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
3796 }
3797 
3798 #endif	/* __KERNEL__ */
3799 #endif	/* _LINUX_SKBUFF_H */
3800