1 /* 2 * Definitions for the 'struct sk_buff' memory handlers. 3 * 4 * Authors: 5 * Alan Cox, <[email protected]> 6 * Florian La Roche, <[email protected]> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14 #ifndef _LINUX_SKBUFF_H 15 #define _LINUX_SKBUFF_H 16 17 #include <linux/kernel.h> 18 #include <linux/kmemcheck.h> 19 #include <linux/compiler.h> 20 #include <linux/time.h> 21 #include <linux/cache.h> 22 23 #include <asm/atomic.h> 24 #include <asm/types.h> 25 #include <linux/spinlock.h> 26 #include <linux/net.h> 27 #include <linux/textsearch.h> 28 #include <net/checksum.h> 29 #include <linux/rcupdate.h> 30 #include <linux/dmaengine.h> 31 #include <linux/hrtimer.h> 32 33 /* Don't change this without changing skb_csum_unnecessary! */ 34 #define CHECKSUM_NONE 0 35 #define CHECKSUM_UNNECESSARY 1 36 #define CHECKSUM_COMPLETE 2 37 #define CHECKSUM_PARTIAL 3 38 39 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \ 40 ~(SMP_CACHE_BYTES - 1)) 41 #define SKB_WITH_OVERHEAD(X) \ 42 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 43 #define SKB_MAX_ORDER(X, ORDER) \ 44 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 45 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 46 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 47 48 /* A. Checksumming of received packets by device. 49 * 50 * NONE: device failed to checksum this packet. 51 * skb->csum is undefined. 52 * 53 * UNNECESSARY: device parsed packet and wouldbe verified checksum. 54 * skb->csum is undefined. 55 * It is bad option, but, unfortunately, many of vendors do this. 56 * Apparently with secret goal to sell you new device, when you 57 * will add new protocol to your host. F.e. IPv6. 8) 58 * 59 * COMPLETE: the most generic way. Device supplied checksum of _all_ 60 * the packet as seen by netif_rx in skb->csum. 61 * NOTE: Even if device supports only some protocols, but 62 * is able to produce some skb->csum, it MUST use COMPLETE, 63 * not UNNECESSARY. 64 * 65 * PARTIAL: identical to the case for output below. This may occur 66 * on a packet received directly from another Linux OS, e.g., 67 * a virtualised Linux kernel on the same host. The packet can 68 * be treated in the same way as UNNECESSARY except that on 69 * output (i.e., forwarding) the checksum must be filled in 70 * by the OS or the hardware. 71 * 72 * B. Checksumming on output. 73 * 74 * NONE: skb is checksummed by protocol or csum is not required. 75 * 76 * PARTIAL: device is required to csum packet as seen by hard_start_xmit 77 * from skb->csum_start to the end and to record the checksum 78 * at skb->csum_start + skb->csum_offset. 79 * 80 * Device must show its capabilities in dev->features, set 81 * at device setup time. 82 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum 83 * everything. 84 * NETIF_F_NO_CSUM - loopback or reliable single hop media. 85 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only 86 * TCP/UDP over IPv4. Sigh. Vendors like this 87 * way by an unknown reason. Though, see comment above 88 * about CHECKSUM_UNNECESSARY. 8) 89 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead. 90 * 91 * Any questions? No questions, good. --ANK 92 */ 93 94 struct net_device; 95 struct scatterlist; 96 struct pipe_inode_info; 97 98 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 99 struct nf_conntrack { 100 atomic_t use; 101 }; 102 #endif 103 104 #ifdef CONFIG_BRIDGE_NETFILTER 105 struct nf_bridge_info { 106 atomic_t use; 107 struct net_device *physindev; 108 struct net_device *physoutdev; 109 unsigned int mask; 110 unsigned long data[32 / sizeof(unsigned long)]; 111 }; 112 #endif 113 114 struct sk_buff_head { 115 /* These two members must be first. */ 116 struct sk_buff *next; 117 struct sk_buff *prev; 118 119 __u32 qlen; 120 spinlock_t lock; 121 }; 122 123 struct sk_buff; 124 125 /* To allow 64K frame to be packed as single skb without frag_list. Since 126 * GRO uses frags we allocate at least 16 regardless of page size. 127 */ 128 #if (65536/PAGE_SIZE + 2) < 16 129 #define MAX_SKB_FRAGS 16UL 130 #else 131 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2) 132 #endif 133 134 typedef struct skb_frag_struct skb_frag_t; 135 136 struct skb_frag_struct { 137 struct page *page; 138 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536) 139 __u32 page_offset; 140 __u32 size; 141 #else 142 __u16 page_offset; 143 __u16 size; 144 #endif 145 }; 146 147 #define HAVE_HW_TIME_STAMP 148 149 /** 150 * struct skb_shared_hwtstamps - hardware time stamps 151 * @hwtstamp: hardware time stamp transformed into duration 152 * since arbitrary point in time 153 * @syststamp: hwtstamp transformed to system time base 154 * 155 * Software time stamps generated by ktime_get_real() are stored in 156 * skb->tstamp. The relation between the different kinds of time 157 * stamps is as follows: 158 * 159 * syststamp and tstamp can be compared against each other in 160 * arbitrary combinations. The accuracy of a 161 * syststamp/tstamp/"syststamp from other device" comparison is 162 * limited by the accuracy of the transformation into system time 163 * base. This depends on the device driver and its underlying 164 * hardware. 165 * 166 * hwtstamps can only be compared against other hwtstamps from 167 * the same device. 168 * 169 * This structure is attached to packets as part of the 170 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 171 */ 172 struct skb_shared_hwtstamps { 173 ktime_t hwtstamp; 174 ktime_t syststamp; 175 }; 176 177 /* Definitions for tx_flags in struct skb_shared_info */ 178 enum { 179 /* generate hardware time stamp */ 180 SKBTX_HW_TSTAMP = 1 << 0, 181 182 /* generate software time stamp */ 183 SKBTX_SW_TSTAMP = 1 << 1, 184 185 /* device driver is going to provide hardware time stamp */ 186 SKBTX_IN_PROGRESS = 1 << 2, 187 188 /* ensure the originating sk reference is available on driver level */ 189 SKBTX_DRV_NEEDS_SK_REF = 1 << 3, 190 }; 191 192 /* This data is invariant across clones and lives at 193 * the end of the header data, ie. at skb->end. 194 */ 195 struct skb_shared_info { 196 unsigned short nr_frags; 197 unsigned short gso_size; 198 /* Warning: this field is not always filled in (UFO)! */ 199 unsigned short gso_segs; 200 unsigned short gso_type; 201 __be32 ip6_frag_id; 202 __u8 tx_flags; 203 struct sk_buff *frag_list; 204 struct skb_shared_hwtstamps hwtstamps; 205 206 /* 207 * Warning : all fields before dataref are cleared in __alloc_skb() 208 */ 209 atomic_t dataref; 210 211 /* Intermediate layers must ensure that destructor_arg 212 * remains valid until skb destructor */ 213 void * destructor_arg; 214 /* must be last field, see pskb_expand_head() */ 215 skb_frag_t frags[MAX_SKB_FRAGS]; 216 }; 217 218 /* We divide dataref into two halves. The higher 16 bits hold references 219 * to the payload part of skb->data. The lower 16 bits hold references to 220 * the entire skb->data. A clone of a headerless skb holds the length of 221 * the header in skb->hdr_len. 222 * 223 * All users must obey the rule that the skb->data reference count must be 224 * greater than or equal to the payload reference count. 225 * 226 * Holding a reference to the payload part means that the user does not 227 * care about modifications to the header part of skb->data. 228 */ 229 #define SKB_DATAREF_SHIFT 16 230 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 231 232 233 enum { 234 SKB_FCLONE_UNAVAILABLE, 235 SKB_FCLONE_ORIG, 236 SKB_FCLONE_CLONE, 237 }; 238 239 enum { 240 SKB_GSO_TCPV4 = 1 << 0, 241 SKB_GSO_UDP = 1 << 1, 242 243 /* This indicates the skb is from an untrusted source. */ 244 SKB_GSO_DODGY = 1 << 2, 245 246 /* This indicates the tcp segment has CWR set. */ 247 SKB_GSO_TCP_ECN = 1 << 3, 248 249 SKB_GSO_TCPV6 = 1 << 4, 250 251 SKB_GSO_FCOE = 1 << 5, 252 }; 253 254 #if BITS_PER_LONG > 32 255 #define NET_SKBUFF_DATA_USES_OFFSET 1 256 #endif 257 258 #ifdef NET_SKBUFF_DATA_USES_OFFSET 259 typedef unsigned int sk_buff_data_t; 260 #else 261 typedef unsigned char *sk_buff_data_t; 262 #endif 263 264 #if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \ 265 defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE) 266 #define NET_SKBUFF_NF_DEFRAG_NEEDED 1 267 #endif 268 269 /** 270 * struct sk_buff - socket buffer 271 * @next: Next buffer in list 272 * @prev: Previous buffer in list 273 * @sk: Socket we are owned by 274 * @tstamp: Time we arrived 275 * @dev: Device we arrived on/are leaving by 276 * @transport_header: Transport layer header 277 * @network_header: Network layer header 278 * @mac_header: Link layer header 279 * @_skb_refdst: destination entry (with norefcount bit) 280 * @sp: the security path, used for xfrm 281 * @cb: Control buffer. Free for use by every layer. Put private vars here 282 * @len: Length of actual data 283 * @data_len: Data length 284 * @mac_len: Length of link layer header 285 * @hdr_len: writable header length of cloned skb 286 * @csum: Checksum (must include start/offset pair) 287 * @csum_start: Offset from skb->head where checksumming should start 288 * @csum_offset: Offset from csum_start where checksum should be stored 289 * @local_df: allow local fragmentation 290 * @cloned: Head may be cloned (check refcnt to be sure) 291 * @nohdr: Payload reference only, must not modify header 292 * @pkt_type: Packet class 293 * @fclone: skbuff clone status 294 * @ip_summed: Driver fed us an IP checksum 295 * @priority: Packet queueing priority 296 * @users: User count - see {datagram,tcp}.c 297 * @protocol: Packet protocol from driver 298 * @truesize: Buffer size 299 * @head: Head of buffer 300 * @data: Data head pointer 301 * @tail: Tail pointer 302 * @end: End pointer 303 * @destructor: Destruct function 304 * @mark: Generic packet mark 305 * @nfct: Associated connection, if any 306 * @ipvs_property: skbuff is owned by ipvs 307 * @peeked: this packet has been seen already, so stats have been 308 * done for it, don't do them again 309 * @nf_trace: netfilter packet trace flag 310 * @nfctinfo: Relationship of this skb to the connection 311 * @nfct_reasm: netfilter conntrack re-assembly pointer 312 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 313 * @skb_iif: ifindex of device we arrived on 314 * @rxhash: the packet hash computed on receive 315 * @queue_mapping: Queue mapping for multiqueue devices 316 * @tc_index: Traffic control index 317 * @tc_verd: traffic control verdict 318 * @ndisc_nodetype: router type (from link layer) 319 * @dma_cookie: a cookie to one of several possible DMA operations 320 * done by skb DMA functions 321 * @secmark: security marking 322 * @vlan_tci: vlan tag control information 323 */ 324 325 struct sk_buff { 326 /* These two members must be first. */ 327 struct sk_buff *next; 328 struct sk_buff *prev; 329 330 ktime_t tstamp; 331 332 struct sock *sk; 333 struct net_device *dev; 334 335 /* 336 * This is the control buffer. It is free to use for every 337 * layer. Please put your private variables there. If you 338 * want to keep them across layers you have to do a skb_clone() 339 * first. This is owned by whoever has the skb queued ATM. 340 */ 341 char cb[48] __aligned(8); 342 343 unsigned long _skb_refdst; 344 #ifdef CONFIG_XFRM 345 struct sec_path *sp; 346 #endif 347 unsigned int len, 348 data_len; 349 __u16 mac_len, 350 hdr_len; 351 union { 352 __wsum csum; 353 struct { 354 __u16 csum_start; 355 __u16 csum_offset; 356 }; 357 }; 358 __u32 priority; 359 kmemcheck_bitfield_begin(flags1); 360 __u8 local_df:1, 361 cloned:1, 362 ip_summed:2, 363 nohdr:1, 364 nfctinfo:3; 365 __u8 pkt_type:3, 366 fclone:2, 367 ipvs_property:1, 368 peeked:1, 369 nf_trace:1; 370 kmemcheck_bitfield_end(flags1); 371 __be16 protocol; 372 373 void (*destructor)(struct sk_buff *skb); 374 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 375 struct nf_conntrack *nfct; 376 #endif 377 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 378 struct sk_buff *nfct_reasm; 379 #endif 380 #ifdef CONFIG_BRIDGE_NETFILTER 381 struct nf_bridge_info *nf_bridge; 382 #endif 383 384 int skb_iif; 385 #ifdef CONFIG_NET_SCHED 386 __u16 tc_index; /* traffic control index */ 387 #ifdef CONFIG_NET_CLS_ACT 388 __u16 tc_verd; /* traffic control verdict */ 389 #endif 390 #endif 391 392 __u32 rxhash; 393 394 __u16 queue_mapping; 395 kmemcheck_bitfield_begin(flags2); 396 #ifdef CONFIG_IPV6_NDISC_NODETYPE 397 __u8 ndisc_nodetype:2; 398 #endif 399 __u8 ooo_okay:1; 400 kmemcheck_bitfield_end(flags2); 401 402 /* 0/13 bit hole */ 403 404 #ifdef CONFIG_NET_DMA 405 dma_cookie_t dma_cookie; 406 #endif 407 #ifdef CONFIG_NETWORK_SECMARK 408 __u32 secmark; 409 #endif 410 union { 411 __u32 mark; 412 __u32 dropcount; 413 }; 414 415 __u16 vlan_tci; 416 417 sk_buff_data_t transport_header; 418 sk_buff_data_t network_header; 419 sk_buff_data_t mac_header; 420 /* These elements must be at the end, see alloc_skb() for details. */ 421 sk_buff_data_t tail; 422 sk_buff_data_t end; 423 unsigned char *head, 424 *data; 425 unsigned int truesize; 426 atomic_t users; 427 }; 428 429 #ifdef __KERNEL__ 430 /* 431 * Handling routines are only of interest to the kernel 432 */ 433 #include <linux/slab.h> 434 435 #include <asm/system.h> 436 437 /* 438 * skb might have a dst pointer attached, refcounted or not. 439 * _skb_refdst low order bit is set if refcount was _not_ taken 440 */ 441 #define SKB_DST_NOREF 1UL 442 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 443 444 /** 445 * skb_dst - returns skb dst_entry 446 * @skb: buffer 447 * 448 * Returns skb dst_entry, regardless of reference taken or not. 449 */ 450 static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 451 { 452 /* If refdst was not refcounted, check we still are in a 453 * rcu_read_lock section 454 */ 455 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 456 !rcu_read_lock_held() && 457 !rcu_read_lock_bh_held()); 458 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 459 } 460 461 /** 462 * skb_dst_set - sets skb dst 463 * @skb: buffer 464 * @dst: dst entry 465 * 466 * Sets skb dst, assuming a reference was taken on dst and should 467 * be released by skb_dst_drop() 468 */ 469 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 470 { 471 skb->_skb_refdst = (unsigned long)dst; 472 } 473 474 extern void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst); 475 476 /** 477 * skb_dst_is_noref - Test if skb dst isn't refcounted 478 * @skb: buffer 479 */ 480 static inline bool skb_dst_is_noref(const struct sk_buff *skb) 481 { 482 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 483 } 484 485 static inline struct rtable *skb_rtable(const struct sk_buff *skb) 486 { 487 return (struct rtable *)skb_dst(skb); 488 } 489 490 extern void kfree_skb(struct sk_buff *skb); 491 extern void consume_skb(struct sk_buff *skb); 492 extern void __kfree_skb(struct sk_buff *skb); 493 extern struct sk_buff *__alloc_skb(unsigned int size, 494 gfp_t priority, int fclone, int node); 495 static inline struct sk_buff *alloc_skb(unsigned int size, 496 gfp_t priority) 497 { 498 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 499 } 500 501 static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 502 gfp_t priority) 503 { 504 return __alloc_skb(size, priority, 1, NUMA_NO_NODE); 505 } 506 507 extern bool skb_recycle_check(struct sk_buff *skb, int skb_size); 508 509 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 510 extern struct sk_buff *skb_clone(struct sk_buff *skb, 511 gfp_t priority); 512 extern struct sk_buff *skb_copy(const struct sk_buff *skb, 513 gfp_t priority); 514 extern struct sk_buff *pskb_copy(struct sk_buff *skb, 515 gfp_t gfp_mask); 516 extern int pskb_expand_head(struct sk_buff *skb, 517 int nhead, int ntail, 518 gfp_t gfp_mask); 519 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 520 unsigned int headroom); 521 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 522 int newheadroom, int newtailroom, 523 gfp_t priority); 524 extern int skb_to_sgvec(struct sk_buff *skb, 525 struct scatterlist *sg, int offset, 526 int len); 527 extern int skb_cow_data(struct sk_buff *skb, int tailbits, 528 struct sk_buff **trailer); 529 extern int skb_pad(struct sk_buff *skb, int pad); 530 #define dev_kfree_skb(a) consume_skb(a) 531 532 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 533 int getfrag(void *from, char *to, int offset, 534 int len,int odd, struct sk_buff *skb), 535 void *from, int length); 536 537 struct skb_seq_state { 538 __u32 lower_offset; 539 __u32 upper_offset; 540 __u32 frag_idx; 541 __u32 stepped_offset; 542 struct sk_buff *root_skb; 543 struct sk_buff *cur_skb; 544 __u8 *frag_data; 545 }; 546 547 extern void skb_prepare_seq_read(struct sk_buff *skb, 548 unsigned int from, unsigned int to, 549 struct skb_seq_state *st); 550 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 551 struct skb_seq_state *st); 552 extern void skb_abort_seq_read(struct skb_seq_state *st); 553 554 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 555 unsigned int to, struct ts_config *config, 556 struct ts_state *state); 557 558 extern __u32 __skb_get_rxhash(struct sk_buff *skb); 559 static inline __u32 skb_get_rxhash(struct sk_buff *skb) 560 { 561 if (!skb->rxhash) 562 skb->rxhash = __skb_get_rxhash(skb); 563 564 return skb->rxhash; 565 } 566 567 #ifdef NET_SKBUFF_DATA_USES_OFFSET 568 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 569 { 570 return skb->head + skb->end; 571 } 572 #else 573 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 574 { 575 return skb->end; 576 } 577 #endif 578 579 /* Internal */ 580 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 581 582 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 583 { 584 return &skb_shinfo(skb)->hwtstamps; 585 } 586 587 /** 588 * skb_queue_empty - check if a queue is empty 589 * @list: queue head 590 * 591 * Returns true if the queue is empty, false otherwise. 592 */ 593 static inline int skb_queue_empty(const struct sk_buff_head *list) 594 { 595 return list->next == (struct sk_buff *)list; 596 } 597 598 /** 599 * skb_queue_is_last - check if skb is the last entry in the queue 600 * @list: queue head 601 * @skb: buffer 602 * 603 * Returns true if @skb is the last buffer on the list. 604 */ 605 static inline bool skb_queue_is_last(const struct sk_buff_head *list, 606 const struct sk_buff *skb) 607 { 608 return skb->next == (struct sk_buff *)list; 609 } 610 611 /** 612 * skb_queue_is_first - check if skb is the first entry in the queue 613 * @list: queue head 614 * @skb: buffer 615 * 616 * Returns true if @skb is the first buffer on the list. 617 */ 618 static inline bool skb_queue_is_first(const struct sk_buff_head *list, 619 const struct sk_buff *skb) 620 { 621 return skb->prev == (struct sk_buff *)list; 622 } 623 624 /** 625 * skb_queue_next - return the next packet in the queue 626 * @list: queue head 627 * @skb: current buffer 628 * 629 * Return the next packet in @list after @skb. It is only valid to 630 * call this if skb_queue_is_last() evaluates to false. 631 */ 632 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 633 const struct sk_buff *skb) 634 { 635 /* This BUG_ON may seem severe, but if we just return then we 636 * are going to dereference garbage. 637 */ 638 BUG_ON(skb_queue_is_last(list, skb)); 639 return skb->next; 640 } 641 642 /** 643 * skb_queue_prev - return the prev packet in the queue 644 * @list: queue head 645 * @skb: current buffer 646 * 647 * Return the prev packet in @list before @skb. It is only valid to 648 * call this if skb_queue_is_first() evaluates to false. 649 */ 650 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 651 const struct sk_buff *skb) 652 { 653 /* This BUG_ON may seem severe, but if we just return then we 654 * are going to dereference garbage. 655 */ 656 BUG_ON(skb_queue_is_first(list, skb)); 657 return skb->prev; 658 } 659 660 /** 661 * skb_get - reference buffer 662 * @skb: buffer to reference 663 * 664 * Makes another reference to a socket buffer and returns a pointer 665 * to the buffer. 666 */ 667 static inline struct sk_buff *skb_get(struct sk_buff *skb) 668 { 669 atomic_inc(&skb->users); 670 return skb; 671 } 672 673 /* 674 * If users == 1, we are the only owner and are can avoid redundant 675 * atomic change. 676 */ 677 678 /** 679 * skb_cloned - is the buffer a clone 680 * @skb: buffer to check 681 * 682 * Returns true if the buffer was generated with skb_clone() and is 683 * one of multiple shared copies of the buffer. Cloned buffers are 684 * shared data so must not be written to under normal circumstances. 685 */ 686 static inline int skb_cloned(const struct sk_buff *skb) 687 { 688 return skb->cloned && 689 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 690 } 691 692 /** 693 * skb_header_cloned - is the header a clone 694 * @skb: buffer to check 695 * 696 * Returns true if modifying the header part of the buffer requires 697 * the data to be copied. 698 */ 699 static inline int skb_header_cloned(const struct sk_buff *skb) 700 { 701 int dataref; 702 703 if (!skb->cloned) 704 return 0; 705 706 dataref = atomic_read(&skb_shinfo(skb)->dataref); 707 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 708 return dataref != 1; 709 } 710 711 /** 712 * skb_header_release - release reference to header 713 * @skb: buffer to operate on 714 * 715 * Drop a reference to the header part of the buffer. This is done 716 * by acquiring a payload reference. You must not read from the header 717 * part of skb->data after this. 718 */ 719 static inline void skb_header_release(struct sk_buff *skb) 720 { 721 BUG_ON(skb->nohdr); 722 skb->nohdr = 1; 723 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref); 724 } 725 726 /** 727 * skb_shared - is the buffer shared 728 * @skb: buffer to check 729 * 730 * Returns true if more than one person has a reference to this 731 * buffer. 732 */ 733 static inline int skb_shared(const struct sk_buff *skb) 734 { 735 return atomic_read(&skb->users) != 1; 736 } 737 738 /** 739 * skb_share_check - check if buffer is shared and if so clone it 740 * @skb: buffer to check 741 * @pri: priority for memory allocation 742 * 743 * If the buffer is shared the buffer is cloned and the old copy 744 * drops a reference. A new clone with a single reference is returned. 745 * If the buffer is not shared the original buffer is returned. When 746 * being called from interrupt status or with spinlocks held pri must 747 * be GFP_ATOMIC. 748 * 749 * NULL is returned on a memory allocation failure. 750 */ 751 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, 752 gfp_t pri) 753 { 754 might_sleep_if(pri & __GFP_WAIT); 755 if (skb_shared(skb)) { 756 struct sk_buff *nskb = skb_clone(skb, pri); 757 kfree_skb(skb); 758 skb = nskb; 759 } 760 return skb; 761 } 762 763 /* 764 * Copy shared buffers into a new sk_buff. We effectively do COW on 765 * packets to handle cases where we have a local reader and forward 766 * and a couple of other messy ones. The normal one is tcpdumping 767 * a packet thats being forwarded. 768 */ 769 770 /** 771 * skb_unshare - make a copy of a shared buffer 772 * @skb: buffer to check 773 * @pri: priority for memory allocation 774 * 775 * If the socket buffer is a clone then this function creates a new 776 * copy of the data, drops a reference count on the old copy and returns 777 * the new copy with the reference count at 1. If the buffer is not a clone 778 * the original buffer is returned. When called with a spinlock held or 779 * from interrupt state @pri must be %GFP_ATOMIC 780 * 781 * %NULL is returned on a memory allocation failure. 782 */ 783 static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 784 gfp_t pri) 785 { 786 might_sleep_if(pri & __GFP_WAIT); 787 if (skb_cloned(skb)) { 788 struct sk_buff *nskb = skb_copy(skb, pri); 789 kfree_skb(skb); /* Free our shared copy */ 790 skb = nskb; 791 } 792 return skb; 793 } 794 795 /** 796 * skb_peek - peek at the head of an &sk_buff_head 797 * @list_: list to peek at 798 * 799 * Peek an &sk_buff. Unlike most other operations you _MUST_ 800 * be careful with this one. A peek leaves the buffer on the 801 * list and someone else may run off with it. You must hold 802 * the appropriate locks or have a private queue to do this. 803 * 804 * Returns %NULL for an empty list or a pointer to the head element. 805 * The reference count is not incremented and the reference is therefore 806 * volatile. Use with caution. 807 */ 808 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_) 809 { 810 struct sk_buff *list = ((struct sk_buff *)list_)->next; 811 if (list == (struct sk_buff *)list_) 812 list = NULL; 813 return list; 814 } 815 816 /** 817 * skb_peek_tail - peek at the tail of an &sk_buff_head 818 * @list_: list to peek at 819 * 820 * Peek an &sk_buff. Unlike most other operations you _MUST_ 821 * be careful with this one. A peek leaves the buffer on the 822 * list and someone else may run off with it. You must hold 823 * the appropriate locks or have a private queue to do this. 824 * 825 * Returns %NULL for an empty list or a pointer to the tail element. 826 * The reference count is not incremented and the reference is therefore 827 * volatile. Use with caution. 828 */ 829 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_) 830 { 831 struct sk_buff *list = ((struct sk_buff *)list_)->prev; 832 if (list == (struct sk_buff *)list_) 833 list = NULL; 834 return list; 835 } 836 837 /** 838 * skb_queue_len - get queue length 839 * @list_: list to measure 840 * 841 * Return the length of an &sk_buff queue. 842 */ 843 static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 844 { 845 return list_->qlen; 846 } 847 848 /** 849 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 850 * @list: queue to initialize 851 * 852 * This initializes only the list and queue length aspects of 853 * an sk_buff_head object. This allows to initialize the list 854 * aspects of an sk_buff_head without reinitializing things like 855 * the spinlock. It can also be used for on-stack sk_buff_head 856 * objects where the spinlock is known to not be used. 857 */ 858 static inline void __skb_queue_head_init(struct sk_buff_head *list) 859 { 860 list->prev = list->next = (struct sk_buff *)list; 861 list->qlen = 0; 862 } 863 864 /* 865 * This function creates a split out lock class for each invocation; 866 * this is needed for now since a whole lot of users of the skb-queue 867 * infrastructure in drivers have different locking usage (in hardirq) 868 * than the networking core (in softirq only). In the long run either the 869 * network layer or drivers should need annotation to consolidate the 870 * main types of usage into 3 classes. 871 */ 872 static inline void skb_queue_head_init(struct sk_buff_head *list) 873 { 874 spin_lock_init(&list->lock); 875 __skb_queue_head_init(list); 876 } 877 878 static inline void skb_queue_head_init_class(struct sk_buff_head *list, 879 struct lock_class_key *class) 880 { 881 skb_queue_head_init(list); 882 lockdep_set_class(&list->lock, class); 883 } 884 885 /* 886 * Insert an sk_buff on a list. 887 * 888 * The "__skb_xxxx()" functions are the non-atomic ones that 889 * can only be called with interrupts disabled. 890 */ 891 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list); 892 static inline void __skb_insert(struct sk_buff *newsk, 893 struct sk_buff *prev, struct sk_buff *next, 894 struct sk_buff_head *list) 895 { 896 newsk->next = next; 897 newsk->prev = prev; 898 next->prev = prev->next = newsk; 899 list->qlen++; 900 } 901 902 static inline void __skb_queue_splice(const struct sk_buff_head *list, 903 struct sk_buff *prev, 904 struct sk_buff *next) 905 { 906 struct sk_buff *first = list->next; 907 struct sk_buff *last = list->prev; 908 909 first->prev = prev; 910 prev->next = first; 911 912 last->next = next; 913 next->prev = last; 914 } 915 916 /** 917 * skb_queue_splice - join two skb lists, this is designed for stacks 918 * @list: the new list to add 919 * @head: the place to add it in the first list 920 */ 921 static inline void skb_queue_splice(const struct sk_buff_head *list, 922 struct sk_buff_head *head) 923 { 924 if (!skb_queue_empty(list)) { 925 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 926 head->qlen += list->qlen; 927 } 928 } 929 930 /** 931 * skb_queue_splice - join two skb lists and reinitialise the emptied list 932 * @list: the new list to add 933 * @head: the place to add it in the first list 934 * 935 * The list at @list is reinitialised 936 */ 937 static inline void skb_queue_splice_init(struct sk_buff_head *list, 938 struct sk_buff_head *head) 939 { 940 if (!skb_queue_empty(list)) { 941 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 942 head->qlen += list->qlen; 943 __skb_queue_head_init(list); 944 } 945 } 946 947 /** 948 * skb_queue_splice_tail - join two skb lists, each list being a queue 949 * @list: the new list to add 950 * @head: the place to add it in the first list 951 */ 952 static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 953 struct sk_buff_head *head) 954 { 955 if (!skb_queue_empty(list)) { 956 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 957 head->qlen += list->qlen; 958 } 959 } 960 961 /** 962 * skb_queue_splice_tail - join two skb lists and reinitialise the emptied list 963 * @list: the new list to add 964 * @head: the place to add it in the first list 965 * 966 * Each of the lists is a queue. 967 * The list at @list is reinitialised 968 */ 969 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 970 struct sk_buff_head *head) 971 { 972 if (!skb_queue_empty(list)) { 973 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 974 head->qlen += list->qlen; 975 __skb_queue_head_init(list); 976 } 977 } 978 979 /** 980 * __skb_queue_after - queue a buffer at the list head 981 * @list: list to use 982 * @prev: place after this buffer 983 * @newsk: buffer to queue 984 * 985 * Queue a buffer int the middle of a list. This function takes no locks 986 * and you must therefore hold required locks before calling it. 987 * 988 * A buffer cannot be placed on two lists at the same time. 989 */ 990 static inline void __skb_queue_after(struct sk_buff_head *list, 991 struct sk_buff *prev, 992 struct sk_buff *newsk) 993 { 994 __skb_insert(newsk, prev, prev->next, list); 995 } 996 997 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, 998 struct sk_buff_head *list); 999 1000 static inline void __skb_queue_before(struct sk_buff_head *list, 1001 struct sk_buff *next, 1002 struct sk_buff *newsk) 1003 { 1004 __skb_insert(newsk, next->prev, next, list); 1005 } 1006 1007 /** 1008 * __skb_queue_head - queue a buffer at the list head 1009 * @list: list to use 1010 * @newsk: buffer to queue 1011 * 1012 * Queue a buffer at the start of a list. This function takes no locks 1013 * and you must therefore hold required locks before calling it. 1014 * 1015 * A buffer cannot be placed on two lists at the same time. 1016 */ 1017 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 1018 static inline void __skb_queue_head(struct sk_buff_head *list, 1019 struct sk_buff *newsk) 1020 { 1021 __skb_queue_after(list, (struct sk_buff *)list, newsk); 1022 } 1023 1024 /** 1025 * __skb_queue_tail - queue a buffer at the list tail 1026 * @list: list to use 1027 * @newsk: buffer to queue 1028 * 1029 * Queue a buffer at the end of a list. This function takes no locks 1030 * and you must therefore hold required locks before calling it. 1031 * 1032 * A buffer cannot be placed on two lists at the same time. 1033 */ 1034 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 1035 static inline void __skb_queue_tail(struct sk_buff_head *list, 1036 struct sk_buff *newsk) 1037 { 1038 __skb_queue_before(list, (struct sk_buff *)list, newsk); 1039 } 1040 1041 /* 1042 * remove sk_buff from list. _Must_ be called atomically, and with 1043 * the list known.. 1044 */ 1045 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 1046 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 1047 { 1048 struct sk_buff *next, *prev; 1049 1050 list->qlen--; 1051 next = skb->next; 1052 prev = skb->prev; 1053 skb->next = skb->prev = NULL; 1054 next->prev = prev; 1055 prev->next = next; 1056 } 1057 1058 /** 1059 * __skb_dequeue - remove from the head of the queue 1060 * @list: list to dequeue from 1061 * 1062 * Remove the head of the list. This function does not take any locks 1063 * so must be used with appropriate locks held only. The head item is 1064 * returned or %NULL if the list is empty. 1065 */ 1066 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list); 1067 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 1068 { 1069 struct sk_buff *skb = skb_peek(list); 1070 if (skb) 1071 __skb_unlink(skb, list); 1072 return skb; 1073 } 1074 1075 /** 1076 * __skb_dequeue_tail - remove from the tail of the queue 1077 * @list: list to dequeue from 1078 * 1079 * Remove the tail of the list. This function does not take any locks 1080 * so must be used with appropriate locks held only. The tail item is 1081 * returned or %NULL if the list is empty. 1082 */ 1083 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 1084 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 1085 { 1086 struct sk_buff *skb = skb_peek_tail(list); 1087 if (skb) 1088 __skb_unlink(skb, list); 1089 return skb; 1090 } 1091 1092 1093 static inline int skb_is_nonlinear(const struct sk_buff *skb) 1094 { 1095 return skb->data_len; 1096 } 1097 1098 static inline unsigned int skb_headlen(const struct sk_buff *skb) 1099 { 1100 return skb->len - skb->data_len; 1101 } 1102 1103 static inline int skb_pagelen(const struct sk_buff *skb) 1104 { 1105 int i, len = 0; 1106 1107 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--) 1108 len += skb_shinfo(skb)->frags[i].size; 1109 return len + skb_headlen(skb); 1110 } 1111 1112 static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 1113 struct page *page, int off, int size) 1114 { 1115 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1116 1117 frag->page = page; 1118 frag->page_offset = off; 1119 frag->size = size; 1120 skb_shinfo(skb)->nr_frags = i + 1; 1121 } 1122 1123 extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, 1124 int off, int size); 1125 1126 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags) 1127 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb)) 1128 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 1129 1130 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1131 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1132 { 1133 return skb->head + skb->tail; 1134 } 1135 1136 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1137 { 1138 skb->tail = skb->data - skb->head; 1139 } 1140 1141 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1142 { 1143 skb_reset_tail_pointer(skb); 1144 skb->tail += offset; 1145 } 1146 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 1147 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1148 { 1149 return skb->tail; 1150 } 1151 1152 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1153 { 1154 skb->tail = skb->data; 1155 } 1156 1157 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1158 { 1159 skb->tail = skb->data + offset; 1160 } 1161 1162 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1163 1164 /* 1165 * Add data to an sk_buff 1166 */ 1167 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len); 1168 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len) 1169 { 1170 unsigned char *tmp = skb_tail_pointer(skb); 1171 SKB_LINEAR_ASSERT(skb); 1172 skb->tail += len; 1173 skb->len += len; 1174 return tmp; 1175 } 1176 1177 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len); 1178 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len) 1179 { 1180 skb->data -= len; 1181 skb->len += len; 1182 return skb->data; 1183 } 1184 1185 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len); 1186 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len) 1187 { 1188 skb->len -= len; 1189 BUG_ON(skb->len < skb->data_len); 1190 return skb->data += len; 1191 } 1192 1193 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len) 1194 { 1195 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 1196 } 1197 1198 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta); 1199 1200 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len) 1201 { 1202 if (len > skb_headlen(skb) && 1203 !__pskb_pull_tail(skb, len - skb_headlen(skb))) 1204 return NULL; 1205 skb->len -= len; 1206 return skb->data += len; 1207 } 1208 1209 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len) 1210 { 1211 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 1212 } 1213 1214 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) 1215 { 1216 if (likely(len <= skb_headlen(skb))) 1217 return 1; 1218 if (unlikely(len > skb->len)) 1219 return 0; 1220 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; 1221 } 1222 1223 /** 1224 * skb_headroom - bytes at buffer head 1225 * @skb: buffer to check 1226 * 1227 * Return the number of bytes of free space at the head of an &sk_buff. 1228 */ 1229 static inline unsigned int skb_headroom(const struct sk_buff *skb) 1230 { 1231 return skb->data - skb->head; 1232 } 1233 1234 /** 1235 * skb_tailroom - bytes at buffer end 1236 * @skb: buffer to check 1237 * 1238 * Return the number of bytes of free space at the tail of an sk_buff 1239 */ 1240 static inline int skb_tailroom(const struct sk_buff *skb) 1241 { 1242 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 1243 } 1244 1245 /** 1246 * skb_reserve - adjust headroom 1247 * @skb: buffer to alter 1248 * @len: bytes to move 1249 * 1250 * Increase the headroom of an empty &sk_buff by reducing the tail 1251 * room. This is only allowed for an empty buffer. 1252 */ 1253 static inline void skb_reserve(struct sk_buff *skb, int len) 1254 { 1255 skb->data += len; 1256 skb->tail += len; 1257 } 1258 1259 static inline void skb_reset_mac_len(struct sk_buff *skb) 1260 { 1261 skb->mac_len = skb->network_header - skb->mac_header; 1262 } 1263 1264 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1265 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 1266 { 1267 return skb->head + skb->transport_header; 1268 } 1269 1270 static inline void skb_reset_transport_header(struct sk_buff *skb) 1271 { 1272 skb->transport_header = skb->data - skb->head; 1273 } 1274 1275 static inline void skb_set_transport_header(struct sk_buff *skb, 1276 const int offset) 1277 { 1278 skb_reset_transport_header(skb); 1279 skb->transport_header += offset; 1280 } 1281 1282 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 1283 { 1284 return skb->head + skb->network_header; 1285 } 1286 1287 static inline void skb_reset_network_header(struct sk_buff *skb) 1288 { 1289 skb->network_header = skb->data - skb->head; 1290 } 1291 1292 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 1293 { 1294 skb_reset_network_header(skb); 1295 skb->network_header += offset; 1296 } 1297 1298 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 1299 { 1300 return skb->head + skb->mac_header; 1301 } 1302 1303 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 1304 { 1305 return skb->mac_header != ~0U; 1306 } 1307 1308 static inline void skb_reset_mac_header(struct sk_buff *skb) 1309 { 1310 skb->mac_header = skb->data - skb->head; 1311 } 1312 1313 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1314 { 1315 skb_reset_mac_header(skb); 1316 skb->mac_header += offset; 1317 } 1318 1319 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 1320 1321 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 1322 { 1323 return skb->transport_header; 1324 } 1325 1326 static inline void skb_reset_transport_header(struct sk_buff *skb) 1327 { 1328 skb->transport_header = skb->data; 1329 } 1330 1331 static inline void skb_set_transport_header(struct sk_buff *skb, 1332 const int offset) 1333 { 1334 skb->transport_header = skb->data + offset; 1335 } 1336 1337 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 1338 { 1339 return skb->network_header; 1340 } 1341 1342 static inline void skb_reset_network_header(struct sk_buff *skb) 1343 { 1344 skb->network_header = skb->data; 1345 } 1346 1347 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 1348 { 1349 skb->network_header = skb->data + offset; 1350 } 1351 1352 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 1353 { 1354 return skb->mac_header; 1355 } 1356 1357 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 1358 { 1359 return skb->mac_header != NULL; 1360 } 1361 1362 static inline void skb_reset_mac_header(struct sk_buff *skb) 1363 { 1364 skb->mac_header = skb->data; 1365 } 1366 1367 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1368 { 1369 skb->mac_header = skb->data + offset; 1370 } 1371 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1372 1373 static inline int skb_checksum_start_offset(const struct sk_buff *skb) 1374 { 1375 return skb->csum_start - skb_headroom(skb); 1376 } 1377 1378 static inline int skb_transport_offset(const struct sk_buff *skb) 1379 { 1380 return skb_transport_header(skb) - skb->data; 1381 } 1382 1383 static inline u32 skb_network_header_len(const struct sk_buff *skb) 1384 { 1385 return skb->transport_header - skb->network_header; 1386 } 1387 1388 static inline int skb_network_offset(const struct sk_buff *skb) 1389 { 1390 return skb_network_header(skb) - skb->data; 1391 } 1392 1393 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 1394 { 1395 return pskb_may_pull(skb, skb_network_offset(skb) + len); 1396 } 1397 1398 /* 1399 * CPUs often take a performance hit when accessing unaligned memory 1400 * locations. The actual performance hit varies, it can be small if the 1401 * hardware handles it or large if we have to take an exception and fix it 1402 * in software. 1403 * 1404 * Since an ethernet header is 14 bytes network drivers often end up with 1405 * the IP header at an unaligned offset. The IP header can be aligned by 1406 * shifting the start of the packet by 2 bytes. Drivers should do this 1407 * with: 1408 * 1409 * skb_reserve(skb, NET_IP_ALIGN); 1410 * 1411 * The downside to this alignment of the IP header is that the DMA is now 1412 * unaligned. On some architectures the cost of an unaligned DMA is high 1413 * and this cost outweighs the gains made by aligning the IP header. 1414 * 1415 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 1416 * to be overridden. 1417 */ 1418 #ifndef NET_IP_ALIGN 1419 #define NET_IP_ALIGN 2 1420 #endif 1421 1422 /* 1423 * The networking layer reserves some headroom in skb data (via 1424 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 1425 * the header has to grow. In the default case, if the header has to grow 1426 * 32 bytes or less we avoid the reallocation. 1427 * 1428 * Unfortunately this headroom changes the DMA alignment of the resulting 1429 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 1430 * on some architectures. An architecture can override this value, 1431 * perhaps setting it to a cacheline in size (since that will maintain 1432 * cacheline alignment of the DMA). It must be a power of 2. 1433 * 1434 * Various parts of the networking layer expect at least 32 bytes of 1435 * headroom, you should not reduce this. 1436 * 1437 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 1438 * to reduce average number of cache lines per packet. 1439 * get_rps_cpus() for example only access one 64 bytes aligned block : 1440 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 1441 */ 1442 #ifndef NET_SKB_PAD 1443 #define NET_SKB_PAD max(32, L1_CACHE_BYTES) 1444 #endif 1445 1446 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len); 1447 1448 static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 1449 { 1450 if (unlikely(skb_is_nonlinear(skb))) { 1451 WARN_ON(1); 1452 return; 1453 } 1454 skb->len = len; 1455 skb_set_tail_pointer(skb, len); 1456 } 1457 1458 extern void skb_trim(struct sk_buff *skb, unsigned int len); 1459 1460 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 1461 { 1462 if (skb->data_len) 1463 return ___pskb_trim(skb, len); 1464 __skb_trim(skb, len); 1465 return 0; 1466 } 1467 1468 static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 1469 { 1470 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 1471 } 1472 1473 /** 1474 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 1475 * @skb: buffer to alter 1476 * @len: new length 1477 * 1478 * This is identical to pskb_trim except that the caller knows that 1479 * the skb is not cloned so we should never get an error due to out- 1480 * of-memory. 1481 */ 1482 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 1483 { 1484 int err = pskb_trim(skb, len); 1485 BUG_ON(err); 1486 } 1487 1488 /** 1489 * skb_orphan - orphan a buffer 1490 * @skb: buffer to orphan 1491 * 1492 * If a buffer currently has an owner then we call the owner's 1493 * destructor function and make the @skb unowned. The buffer continues 1494 * to exist but is no longer charged to its former owner. 1495 */ 1496 static inline void skb_orphan(struct sk_buff *skb) 1497 { 1498 if (skb->destructor) 1499 skb->destructor(skb); 1500 skb->destructor = NULL; 1501 skb->sk = NULL; 1502 } 1503 1504 /** 1505 * __skb_queue_purge - empty a list 1506 * @list: list to empty 1507 * 1508 * Delete all buffers on an &sk_buff list. Each buffer is removed from 1509 * the list and one reference dropped. This function does not take the 1510 * list lock and the caller must hold the relevant locks to use it. 1511 */ 1512 extern void skb_queue_purge(struct sk_buff_head *list); 1513 static inline void __skb_queue_purge(struct sk_buff_head *list) 1514 { 1515 struct sk_buff *skb; 1516 while ((skb = __skb_dequeue(list)) != NULL) 1517 kfree_skb(skb); 1518 } 1519 1520 /** 1521 * __dev_alloc_skb - allocate an skbuff for receiving 1522 * @length: length to allocate 1523 * @gfp_mask: get_free_pages mask, passed to alloc_skb 1524 * 1525 * Allocate a new &sk_buff and assign it a usage count of one. The 1526 * buffer has unspecified headroom built in. Users should allocate 1527 * the headroom they think they need without accounting for the 1528 * built in space. The built in space is used for optimisations. 1529 * 1530 * %NULL is returned if there is no free memory. 1531 */ 1532 static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 1533 gfp_t gfp_mask) 1534 { 1535 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask); 1536 if (likely(skb)) 1537 skb_reserve(skb, NET_SKB_PAD); 1538 return skb; 1539 } 1540 1541 extern struct sk_buff *dev_alloc_skb(unsigned int length); 1542 1543 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev, 1544 unsigned int length, gfp_t gfp_mask); 1545 1546 /** 1547 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 1548 * @dev: network device to receive on 1549 * @length: length to allocate 1550 * 1551 * Allocate a new &sk_buff and assign it a usage count of one. The 1552 * buffer has unspecified headroom built in. Users should allocate 1553 * the headroom they think they need without accounting for the 1554 * built in space. The built in space is used for optimisations. 1555 * 1556 * %NULL is returned if there is no free memory. Although this function 1557 * allocates memory it can be called from an interrupt. 1558 */ 1559 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 1560 unsigned int length) 1561 { 1562 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 1563 } 1564 1565 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 1566 unsigned int length) 1567 { 1568 struct sk_buff *skb = netdev_alloc_skb(dev, length + NET_IP_ALIGN); 1569 1570 if (NET_IP_ALIGN && skb) 1571 skb_reserve(skb, NET_IP_ALIGN); 1572 return skb; 1573 } 1574 1575 /** 1576 * __netdev_alloc_page - allocate a page for ps-rx on a specific device 1577 * @dev: network device to receive on 1578 * @gfp_mask: alloc_pages_node mask 1579 * 1580 * Allocate a new page. dev currently unused. 1581 * 1582 * %NULL is returned if there is no free memory. 1583 */ 1584 static inline struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask) 1585 { 1586 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, 0); 1587 } 1588 1589 /** 1590 * netdev_alloc_page - allocate a page for ps-rx on a specific device 1591 * @dev: network device to receive on 1592 * 1593 * Allocate a new page. dev currently unused. 1594 * 1595 * %NULL is returned if there is no free memory. 1596 */ 1597 static inline struct page *netdev_alloc_page(struct net_device *dev) 1598 { 1599 return __netdev_alloc_page(dev, GFP_ATOMIC); 1600 } 1601 1602 static inline void netdev_free_page(struct net_device *dev, struct page *page) 1603 { 1604 __free_page(page); 1605 } 1606 1607 /** 1608 * skb_clone_writable - is the header of a clone writable 1609 * @skb: buffer to check 1610 * @len: length up to which to write 1611 * 1612 * Returns true if modifying the header part of the cloned buffer 1613 * does not requires the data to be copied. 1614 */ 1615 static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len) 1616 { 1617 return !skb_header_cloned(skb) && 1618 skb_headroom(skb) + len <= skb->hdr_len; 1619 } 1620 1621 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 1622 int cloned) 1623 { 1624 int delta = 0; 1625 1626 if (headroom < NET_SKB_PAD) 1627 headroom = NET_SKB_PAD; 1628 if (headroom > skb_headroom(skb)) 1629 delta = headroom - skb_headroom(skb); 1630 1631 if (delta || cloned) 1632 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 1633 GFP_ATOMIC); 1634 return 0; 1635 } 1636 1637 /** 1638 * skb_cow - copy header of skb when it is required 1639 * @skb: buffer to cow 1640 * @headroom: needed headroom 1641 * 1642 * If the skb passed lacks sufficient headroom or its data part 1643 * is shared, data is reallocated. If reallocation fails, an error 1644 * is returned and original skb is not changed. 1645 * 1646 * The result is skb with writable area skb->head...skb->tail 1647 * and at least @headroom of space at head. 1648 */ 1649 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 1650 { 1651 return __skb_cow(skb, headroom, skb_cloned(skb)); 1652 } 1653 1654 /** 1655 * skb_cow_head - skb_cow but only making the head writable 1656 * @skb: buffer to cow 1657 * @headroom: needed headroom 1658 * 1659 * This function is identical to skb_cow except that we replace the 1660 * skb_cloned check by skb_header_cloned. It should be used when 1661 * you only need to push on some header and do not need to modify 1662 * the data. 1663 */ 1664 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 1665 { 1666 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 1667 } 1668 1669 /** 1670 * skb_padto - pad an skbuff up to a minimal size 1671 * @skb: buffer to pad 1672 * @len: minimal length 1673 * 1674 * Pads up a buffer to ensure the trailing bytes exist and are 1675 * blanked. If the buffer already contains sufficient data it 1676 * is untouched. Otherwise it is extended. Returns zero on 1677 * success. The skb is freed on error. 1678 */ 1679 1680 static inline int skb_padto(struct sk_buff *skb, unsigned int len) 1681 { 1682 unsigned int size = skb->len; 1683 if (likely(size >= len)) 1684 return 0; 1685 return skb_pad(skb, len - size); 1686 } 1687 1688 static inline int skb_add_data(struct sk_buff *skb, 1689 char __user *from, int copy) 1690 { 1691 const int off = skb->len; 1692 1693 if (skb->ip_summed == CHECKSUM_NONE) { 1694 int err = 0; 1695 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy), 1696 copy, 0, &err); 1697 if (!err) { 1698 skb->csum = csum_block_add(skb->csum, csum, off); 1699 return 0; 1700 } 1701 } else if (!copy_from_user(skb_put(skb, copy), from, copy)) 1702 return 0; 1703 1704 __skb_trim(skb, off); 1705 return -EFAULT; 1706 } 1707 1708 static inline int skb_can_coalesce(struct sk_buff *skb, int i, 1709 struct page *page, int off) 1710 { 1711 if (i) { 1712 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 1713 1714 return page == frag->page && 1715 off == frag->page_offset + frag->size; 1716 } 1717 return 0; 1718 } 1719 1720 static inline int __skb_linearize(struct sk_buff *skb) 1721 { 1722 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 1723 } 1724 1725 /** 1726 * skb_linearize - convert paged skb to linear one 1727 * @skb: buffer to linarize 1728 * 1729 * If there is no free memory -ENOMEM is returned, otherwise zero 1730 * is returned and the old skb data released. 1731 */ 1732 static inline int skb_linearize(struct sk_buff *skb) 1733 { 1734 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 1735 } 1736 1737 /** 1738 * skb_linearize_cow - make sure skb is linear and writable 1739 * @skb: buffer to process 1740 * 1741 * If there is no free memory -ENOMEM is returned, otherwise zero 1742 * is returned and the old skb data released. 1743 */ 1744 static inline int skb_linearize_cow(struct sk_buff *skb) 1745 { 1746 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 1747 __skb_linearize(skb) : 0; 1748 } 1749 1750 /** 1751 * skb_postpull_rcsum - update checksum for received skb after pull 1752 * @skb: buffer to update 1753 * @start: start of data before pull 1754 * @len: length of data pulled 1755 * 1756 * After doing a pull on a received packet, you need to call this to 1757 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 1758 * CHECKSUM_NONE so that it can be recomputed from scratch. 1759 */ 1760 1761 static inline void skb_postpull_rcsum(struct sk_buff *skb, 1762 const void *start, unsigned int len) 1763 { 1764 if (skb->ip_summed == CHECKSUM_COMPLETE) 1765 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0)); 1766 } 1767 1768 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 1769 1770 /** 1771 * pskb_trim_rcsum - trim received skb and update checksum 1772 * @skb: buffer to trim 1773 * @len: new length 1774 * 1775 * This is exactly the same as pskb_trim except that it ensures the 1776 * checksum of received packets are still valid after the operation. 1777 */ 1778 1779 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 1780 { 1781 if (likely(len >= skb->len)) 1782 return 0; 1783 if (skb->ip_summed == CHECKSUM_COMPLETE) 1784 skb->ip_summed = CHECKSUM_NONE; 1785 return __pskb_trim(skb, len); 1786 } 1787 1788 #define skb_queue_walk(queue, skb) \ 1789 for (skb = (queue)->next; \ 1790 skb != (struct sk_buff *)(queue); \ 1791 skb = skb->next) 1792 1793 #define skb_queue_walk_safe(queue, skb, tmp) \ 1794 for (skb = (queue)->next, tmp = skb->next; \ 1795 skb != (struct sk_buff *)(queue); \ 1796 skb = tmp, tmp = skb->next) 1797 1798 #define skb_queue_walk_from(queue, skb) \ 1799 for (; skb != (struct sk_buff *)(queue); \ 1800 skb = skb->next) 1801 1802 #define skb_queue_walk_from_safe(queue, skb, tmp) \ 1803 for (tmp = skb->next; \ 1804 skb != (struct sk_buff *)(queue); \ 1805 skb = tmp, tmp = skb->next) 1806 1807 #define skb_queue_reverse_walk(queue, skb) \ 1808 for (skb = (queue)->prev; \ 1809 skb != (struct sk_buff *)(queue); \ 1810 skb = skb->prev) 1811 1812 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \ 1813 for (skb = (queue)->prev, tmp = skb->prev; \ 1814 skb != (struct sk_buff *)(queue); \ 1815 skb = tmp, tmp = skb->prev) 1816 1817 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ 1818 for (tmp = skb->prev; \ 1819 skb != (struct sk_buff *)(queue); \ 1820 skb = tmp, tmp = skb->prev) 1821 1822 static inline bool skb_has_frag_list(const struct sk_buff *skb) 1823 { 1824 return skb_shinfo(skb)->frag_list != NULL; 1825 } 1826 1827 static inline void skb_frag_list_init(struct sk_buff *skb) 1828 { 1829 skb_shinfo(skb)->frag_list = NULL; 1830 } 1831 1832 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag) 1833 { 1834 frag->next = skb_shinfo(skb)->frag_list; 1835 skb_shinfo(skb)->frag_list = frag; 1836 } 1837 1838 #define skb_walk_frags(skb, iter) \ 1839 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 1840 1841 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags, 1842 int *peeked, int *err); 1843 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, 1844 int noblock, int *err); 1845 extern unsigned int datagram_poll(struct file *file, struct socket *sock, 1846 struct poll_table_struct *wait); 1847 extern int skb_copy_datagram_iovec(const struct sk_buff *from, 1848 int offset, struct iovec *to, 1849 int size); 1850 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb, 1851 int hlen, 1852 struct iovec *iov); 1853 extern int skb_copy_datagram_from_iovec(struct sk_buff *skb, 1854 int offset, 1855 const struct iovec *from, 1856 int from_offset, 1857 int len); 1858 extern int skb_copy_datagram_const_iovec(const struct sk_buff *from, 1859 int offset, 1860 const struct iovec *to, 1861 int to_offset, 1862 int size); 1863 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 1864 extern void skb_free_datagram_locked(struct sock *sk, 1865 struct sk_buff *skb); 1866 extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, 1867 unsigned int flags); 1868 extern __wsum skb_checksum(const struct sk_buff *skb, int offset, 1869 int len, __wsum csum); 1870 extern int skb_copy_bits(const struct sk_buff *skb, int offset, 1871 void *to, int len); 1872 extern int skb_store_bits(struct sk_buff *skb, int offset, 1873 const void *from, int len); 1874 extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, 1875 int offset, u8 *to, int len, 1876 __wsum csum); 1877 extern int skb_splice_bits(struct sk_buff *skb, 1878 unsigned int offset, 1879 struct pipe_inode_info *pipe, 1880 unsigned int len, 1881 unsigned int flags); 1882 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 1883 extern void skb_split(struct sk_buff *skb, 1884 struct sk_buff *skb1, const u32 len); 1885 extern int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, 1886 int shiftlen); 1887 1888 extern struct sk_buff *skb_segment(struct sk_buff *skb, u32 features); 1889 1890 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset, 1891 int len, void *buffer) 1892 { 1893 int hlen = skb_headlen(skb); 1894 1895 if (hlen - offset >= len) 1896 return skb->data + offset; 1897 1898 if (skb_copy_bits(skb, offset, buffer, len) < 0) 1899 return NULL; 1900 1901 return buffer; 1902 } 1903 1904 static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 1905 void *to, 1906 const unsigned int len) 1907 { 1908 memcpy(to, skb->data, len); 1909 } 1910 1911 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 1912 const int offset, void *to, 1913 const unsigned int len) 1914 { 1915 memcpy(to, skb->data + offset, len); 1916 } 1917 1918 static inline void skb_copy_to_linear_data(struct sk_buff *skb, 1919 const void *from, 1920 const unsigned int len) 1921 { 1922 memcpy(skb->data, from, len); 1923 } 1924 1925 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 1926 const int offset, 1927 const void *from, 1928 const unsigned int len) 1929 { 1930 memcpy(skb->data + offset, from, len); 1931 } 1932 1933 extern void skb_init(void); 1934 1935 static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 1936 { 1937 return skb->tstamp; 1938 } 1939 1940 /** 1941 * skb_get_timestamp - get timestamp from a skb 1942 * @skb: skb to get stamp from 1943 * @stamp: pointer to struct timeval to store stamp in 1944 * 1945 * Timestamps are stored in the skb as offsets to a base timestamp. 1946 * This function converts the offset back to a struct timeval and stores 1947 * it in stamp. 1948 */ 1949 static inline void skb_get_timestamp(const struct sk_buff *skb, 1950 struct timeval *stamp) 1951 { 1952 *stamp = ktime_to_timeval(skb->tstamp); 1953 } 1954 1955 static inline void skb_get_timestampns(const struct sk_buff *skb, 1956 struct timespec *stamp) 1957 { 1958 *stamp = ktime_to_timespec(skb->tstamp); 1959 } 1960 1961 static inline void __net_timestamp(struct sk_buff *skb) 1962 { 1963 skb->tstamp = ktime_get_real(); 1964 } 1965 1966 static inline ktime_t net_timedelta(ktime_t t) 1967 { 1968 return ktime_sub(ktime_get_real(), t); 1969 } 1970 1971 static inline ktime_t net_invalid_timestamp(void) 1972 { 1973 return ktime_set(0, 0); 1974 } 1975 1976 extern void skb_timestamping_init(void); 1977 1978 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 1979 1980 extern void skb_clone_tx_timestamp(struct sk_buff *skb); 1981 extern bool skb_defer_rx_timestamp(struct sk_buff *skb); 1982 1983 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 1984 1985 static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 1986 { 1987 } 1988 1989 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 1990 { 1991 return false; 1992 } 1993 1994 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 1995 1996 /** 1997 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 1998 * 1999 * @skb: clone of the the original outgoing packet 2000 * @hwtstamps: hardware time stamps 2001 * 2002 */ 2003 void skb_complete_tx_timestamp(struct sk_buff *skb, 2004 struct skb_shared_hwtstamps *hwtstamps); 2005 2006 /** 2007 * skb_tstamp_tx - queue clone of skb with send time stamps 2008 * @orig_skb: the original outgoing packet 2009 * @hwtstamps: hardware time stamps, may be NULL if not available 2010 * 2011 * If the skb has a socket associated, then this function clones the 2012 * skb (thus sharing the actual data and optional structures), stores 2013 * the optional hardware time stamping information (if non NULL) or 2014 * generates a software time stamp (otherwise), then queues the clone 2015 * to the error queue of the socket. Errors are silently ignored. 2016 */ 2017 extern void skb_tstamp_tx(struct sk_buff *orig_skb, 2018 struct skb_shared_hwtstamps *hwtstamps); 2019 2020 static inline void sw_tx_timestamp(struct sk_buff *skb) 2021 { 2022 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP && 2023 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) 2024 skb_tstamp_tx(skb, NULL); 2025 } 2026 2027 /** 2028 * skb_tx_timestamp() - Driver hook for transmit timestamping 2029 * 2030 * Ethernet MAC Drivers should call this function in their hard_xmit() 2031 * function as soon as possible after giving the sk_buff to the MAC 2032 * hardware, but before freeing the sk_buff. 2033 * 2034 * @skb: A socket buffer. 2035 */ 2036 static inline void skb_tx_timestamp(struct sk_buff *skb) 2037 { 2038 skb_clone_tx_timestamp(skb); 2039 sw_tx_timestamp(skb); 2040 } 2041 2042 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 2043 extern __sum16 __skb_checksum_complete(struct sk_buff *skb); 2044 2045 static inline int skb_csum_unnecessary(const struct sk_buff *skb) 2046 { 2047 return skb->ip_summed & CHECKSUM_UNNECESSARY; 2048 } 2049 2050 /** 2051 * skb_checksum_complete - Calculate checksum of an entire packet 2052 * @skb: packet to process 2053 * 2054 * This function calculates the checksum over the entire packet plus 2055 * the value of skb->csum. The latter can be used to supply the 2056 * checksum of a pseudo header as used by TCP/UDP. It returns the 2057 * checksum. 2058 * 2059 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 2060 * this function can be used to verify that checksum on received 2061 * packets. In that case the function should return zero if the 2062 * checksum is correct. In particular, this function will return zero 2063 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 2064 * hardware has already verified the correctness of the checksum. 2065 */ 2066 static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 2067 { 2068 return skb_csum_unnecessary(skb) ? 2069 0 : __skb_checksum_complete(skb); 2070 } 2071 2072 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2073 extern void nf_conntrack_destroy(struct nf_conntrack *nfct); 2074 static inline void nf_conntrack_put(struct nf_conntrack *nfct) 2075 { 2076 if (nfct && atomic_dec_and_test(&nfct->use)) 2077 nf_conntrack_destroy(nfct); 2078 } 2079 static inline void nf_conntrack_get(struct nf_conntrack *nfct) 2080 { 2081 if (nfct) 2082 atomic_inc(&nfct->use); 2083 } 2084 #endif 2085 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 2086 static inline void nf_conntrack_get_reasm(struct sk_buff *skb) 2087 { 2088 if (skb) 2089 atomic_inc(&skb->users); 2090 } 2091 static inline void nf_conntrack_put_reasm(struct sk_buff *skb) 2092 { 2093 if (skb) 2094 kfree_skb(skb); 2095 } 2096 #endif 2097 #ifdef CONFIG_BRIDGE_NETFILTER 2098 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge) 2099 { 2100 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use)) 2101 kfree(nf_bridge); 2102 } 2103 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge) 2104 { 2105 if (nf_bridge) 2106 atomic_inc(&nf_bridge->use); 2107 } 2108 #endif /* CONFIG_BRIDGE_NETFILTER */ 2109 static inline void nf_reset(struct sk_buff *skb) 2110 { 2111 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2112 nf_conntrack_put(skb->nfct); 2113 skb->nfct = NULL; 2114 #endif 2115 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 2116 nf_conntrack_put_reasm(skb->nfct_reasm); 2117 skb->nfct_reasm = NULL; 2118 #endif 2119 #ifdef CONFIG_BRIDGE_NETFILTER 2120 nf_bridge_put(skb->nf_bridge); 2121 skb->nf_bridge = NULL; 2122 #endif 2123 } 2124 2125 /* Note: This doesn't put any conntrack and bridge info in dst. */ 2126 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src) 2127 { 2128 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2129 dst->nfct = src->nfct; 2130 nf_conntrack_get(src->nfct); 2131 dst->nfctinfo = src->nfctinfo; 2132 #endif 2133 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 2134 dst->nfct_reasm = src->nfct_reasm; 2135 nf_conntrack_get_reasm(src->nfct_reasm); 2136 #endif 2137 #ifdef CONFIG_BRIDGE_NETFILTER 2138 dst->nf_bridge = src->nf_bridge; 2139 nf_bridge_get(src->nf_bridge); 2140 #endif 2141 } 2142 2143 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 2144 { 2145 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2146 nf_conntrack_put(dst->nfct); 2147 #endif 2148 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 2149 nf_conntrack_put_reasm(dst->nfct_reasm); 2150 #endif 2151 #ifdef CONFIG_BRIDGE_NETFILTER 2152 nf_bridge_put(dst->nf_bridge); 2153 #endif 2154 __nf_copy(dst, src); 2155 } 2156 2157 #ifdef CONFIG_NETWORK_SECMARK 2158 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 2159 { 2160 to->secmark = from->secmark; 2161 } 2162 2163 static inline void skb_init_secmark(struct sk_buff *skb) 2164 { 2165 skb->secmark = 0; 2166 } 2167 #else 2168 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 2169 { } 2170 2171 static inline void skb_init_secmark(struct sk_buff *skb) 2172 { } 2173 #endif 2174 2175 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 2176 { 2177 skb->queue_mapping = queue_mapping; 2178 } 2179 2180 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 2181 { 2182 return skb->queue_mapping; 2183 } 2184 2185 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 2186 { 2187 to->queue_mapping = from->queue_mapping; 2188 } 2189 2190 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 2191 { 2192 skb->queue_mapping = rx_queue + 1; 2193 } 2194 2195 static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 2196 { 2197 return skb->queue_mapping - 1; 2198 } 2199 2200 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 2201 { 2202 return skb->queue_mapping != 0; 2203 } 2204 2205 extern u16 __skb_tx_hash(const struct net_device *dev, 2206 const struct sk_buff *skb, 2207 unsigned int num_tx_queues); 2208 2209 #ifdef CONFIG_XFRM 2210 static inline struct sec_path *skb_sec_path(struct sk_buff *skb) 2211 { 2212 return skb->sp; 2213 } 2214 #else 2215 static inline struct sec_path *skb_sec_path(struct sk_buff *skb) 2216 { 2217 return NULL; 2218 } 2219 #endif 2220 2221 static inline int skb_is_gso(const struct sk_buff *skb) 2222 { 2223 return skb_shinfo(skb)->gso_size; 2224 } 2225 2226 static inline int skb_is_gso_v6(const struct sk_buff *skb) 2227 { 2228 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 2229 } 2230 2231 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb); 2232 2233 static inline bool skb_warn_if_lro(const struct sk_buff *skb) 2234 { 2235 /* LRO sets gso_size but not gso_type, whereas if GSO is really 2236 * wanted then gso_type will be set. */ 2237 struct skb_shared_info *shinfo = skb_shinfo(skb); 2238 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 2239 unlikely(shinfo->gso_type == 0)) { 2240 __skb_warn_lro_forwarding(skb); 2241 return true; 2242 } 2243 return false; 2244 } 2245 2246 static inline void skb_forward_csum(struct sk_buff *skb) 2247 { 2248 /* Unfortunately we don't support this one. Any brave souls? */ 2249 if (skb->ip_summed == CHECKSUM_COMPLETE) 2250 skb->ip_summed = CHECKSUM_NONE; 2251 } 2252 2253 /** 2254 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 2255 * @skb: skb to check 2256 * 2257 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 2258 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 2259 * use this helper, to document places where we make this assertion. 2260 */ 2261 static inline void skb_checksum_none_assert(struct sk_buff *skb) 2262 { 2263 #ifdef DEBUG 2264 BUG_ON(skb->ip_summed != CHECKSUM_NONE); 2265 #endif 2266 } 2267 2268 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 2269 #endif /* __KERNEL__ */ 2270 #endif /* _LINUX_SKBUFF_H */ 2271