xref: /linux-6.15/include/linux/skbuff.h (revision a7c428ee)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  *	Definitions for the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:
6  *		Alan Cox, <[email protected]>
7  *		Florian La Roche, <[email protected]>
8  */
9 
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12 
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
22 
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <net/checksum.h>
27 #include <linux/rcupdate.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/netdev_features.h>
30 #include <net/flow_dissector.h>
31 #include <linux/in6.h>
32 #include <linux/if_packet.h>
33 #include <linux/llist.h>
34 #include <linux/page_frag_cache.h>
35 #include <net/flow.h>
36 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
37 #include <linux/netfilter/nf_conntrack_common.h>
38 #endif
39 #include <net/net_debug.h>
40 #include <net/dropreason-core.h>
41 #include <net/netmem.h>
42 
43 /**
44  * DOC: skb checksums
45  *
46  * The interface for checksum offload between the stack and networking drivers
47  * is as follows...
48  *
49  * IP checksum related features
50  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
51  *
52  * Drivers advertise checksum offload capabilities in the features of a device.
53  * From the stack's point of view these are capabilities offered by the driver.
54  * A driver typically only advertises features that it is capable of offloading
55  * to its device.
56  *
57  * .. flat-table:: Checksum related device features
58  *   :widths: 1 10
59  *
60  *   * - %NETIF_F_HW_CSUM
61  *     - The driver (or its device) is able to compute one
62  *	 IP (one's complement) checksum for any combination
63  *	 of protocols or protocol layering. The checksum is
64  *	 computed and set in a packet per the CHECKSUM_PARTIAL
65  *	 interface (see below).
66  *
67  *   * - %NETIF_F_IP_CSUM
68  *     - Driver (device) is only able to checksum plain
69  *	 TCP or UDP packets over IPv4. These are specifically
70  *	 unencapsulated packets of the form IPv4|TCP or
71  *	 IPv4|UDP where the Protocol field in the IPv4 header
72  *	 is TCP or UDP. The IPv4 header may contain IP options.
73  *	 This feature cannot be set in features for a device
74  *	 with NETIF_F_HW_CSUM also set. This feature is being
75  *	 DEPRECATED (see below).
76  *
77  *   * - %NETIF_F_IPV6_CSUM
78  *     - Driver (device) is only able to checksum plain
79  *	 TCP or UDP packets over IPv6. These are specifically
80  *	 unencapsulated packets of the form IPv6|TCP or
81  *	 IPv6|UDP where the Next Header field in the IPv6
82  *	 header is either TCP or UDP. IPv6 extension headers
83  *	 are not supported with this feature. This feature
84  *	 cannot be set in features for a device with
85  *	 NETIF_F_HW_CSUM also set. This feature is being
86  *	 DEPRECATED (see below).
87  *
88  *   * - %NETIF_F_RXCSUM
89  *     - Driver (device) performs receive checksum offload.
90  *	 This flag is only used to disable the RX checksum
91  *	 feature for a device. The stack will accept receive
92  *	 checksum indication in packets received on a device
93  *	 regardless of whether NETIF_F_RXCSUM is set.
94  *
95  * Checksumming of received packets by device
96  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
97  *
98  * Indication of checksum verification is set in &sk_buff.ip_summed.
99  * Possible values are:
100  *
101  * - %CHECKSUM_NONE
102  *
103  *   Device did not checksum this packet e.g. due to lack of capabilities.
104  *   The packet contains full (though not verified) checksum in packet but
105  *   not in skb->csum. Thus, skb->csum is undefined in this case.
106  *
107  * - %CHECKSUM_UNNECESSARY
108  *
109  *   The hardware you're dealing with doesn't calculate the full checksum
110  *   (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums
111  *   for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY
112  *   if their checksums are okay. &sk_buff.csum is still undefined in this case
113  *   though. A driver or device must never modify the checksum field in the
114  *   packet even if checksum is verified.
115  *
116  *   %CHECKSUM_UNNECESSARY is applicable to following protocols:
117  *
118  *     - TCP: IPv6 and IPv4.
119  *     - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
120  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
121  *       may perform further validation in this case.
122  *     - GRE: only if the checksum is present in the header.
123  *     - SCTP: indicates the CRC in SCTP header has been validated.
124  *     - FCOE: indicates the CRC in FC frame has been validated.
125  *
126  *   &sk_buff.csum_level indicates the number of consecutive checksums found in
127  *   the packet minus one that have been verified as %CHECKSUM_UNNECESSARY.
128  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
129  *   and a device is able to verify the checksums for UDP (possibly zero),
130  *   GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to
131  *   two. If the device were only able to verify the UDP checksum and not
132  *   GRE, either because it doesn't support GRE checksum or because GRE
133  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
134  *   not considered in this case).
135  *
136  * - %CHECKSUM_COMPLETE
137  *
138  *   This is the most generic way. The device supplied checksum of the _whole_
139  *   packet as seen by netif_rx() and fills in &sk_buff.csum. This means the
140  *   hardware doesn't need to parse L3/L4 headers to implement this.
141  *
142  *   Notes:
143  *
144  *   - Even if device supports only some protocols, but is able to produce
145  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
146  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
147  *
148  * - %CHECKSUM_PARTIAL
149  *
150  *   A checksum is set up to be offloaded to a device as described in the
151  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
152  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
153  *   on the same host, or it may be set in the input path in GRO or remote
154  *   checksum offload. For the purposes of checksum verification, the checksum
155  *   referred to by skb->csum_start + skb->csum_offset and any preceding
156  *   checksums in the packet are considered verified. Any checksums in the
157  *   packet that are after the checksum being offloaded are not considered to
158  *   be verified.
159  *
160  * Checksumming on transmit for non-GSO
161  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
162  *
163  * The stack requests checksum offload in the &sk_buff.ip_summed for a packet.
164  * Values are:
165  *
166  * - %CHECKSUM_PARTIAL
167  *
168  *   The driver is required to checksum the packet as seen by hard_start_xmit()
169  *   from &sk_buff.csum_start up to the end, and to record/write the checksum at
170  *   offset &sk_buff.csum_start + &sk_buff.csum_offset.
171  *   A driver may verify that the
172  *   csum_start and csum_offset values are valid values given the length and
173  *   offset of the packet, but it should not attempt to validate that the
174  *   checksum refers to a legitimate transport layer checksum -- it is the
175  *   purview of the stack to validate that csum_start and csum_offset are set
176  *   correctly.
177  *
178  *   When the stack requests checksum offload for a packet, the driver MUST
179  *   ensure that the checksum is set correctly. A driver can either offload the
180  *   checksum calculation to the device, or call skb_checksum_help (in the case
181  *   that the device does not support offload for a particular checksum).
182  *
183  *   %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of
184  *   %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate
185  *   checksum offload capability.
186  *   skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based
187  *   on network device checksumming capabilities: if a packet does not match
188  *   them, skb_checksum_help() or skb_crc32c_help() (depending on the value of
189  *   &sk_buff.csum_not_inet, see :ref:`crc`)
190  *   is called to resolve the checksum.
191  *
192  * - %CHECKSUM_NONE
193  *
194  *   The skb was already checksummed by the protocol, or a checksum is not
195  *   required.
196  *
197  * - %CHECKSUM_UNNECESSARY
198  *
199  *   This has the same meaning as CHECKSUM_NONE for checksum offload on
200  *   output.
201  *
202  * - %CHECKSUM_COMPLETE
203  *
204  *   Not used in checksum output. If a driver observes a packet with this value
205  *   set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set.
206  *
207  * .. _crc:
208  *
209  * Non-IP checksum (CRC) offloads
210  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
211  *
212  * .. flat-table::
213  *   :widths: 1 10
214  *
215  *   * - %NETIF_F_SCTP_CRC
216  *     - This feature indicates that a device is capable of
217  *	 offloading the SCTP CRC in a packet. To perform this offload the stack
218  *	 will set csum_start and csum_offset accordingly, set ip_summed to
219  *	 %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication
220  *	 in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c.
221  *	 A driver that supports both IP checksum offload and SCTP CRC32c offload
222  *	 must verify which offload is configured for a packet by testing the
223  *	 value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to
224  *	 resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
225  *
226  *   * - %NETIF_F_FCOE_CRC
227  *     - This feature indicates that a device is capable of offloading the FCOE
228  *	 CRC in a packet. To perform this offload the stack will set ip_summed
229  *	 to %CHECKSUM_PARTIAL and set csum_start and csum_offset
230  *	 accordingly. Note that there is no indication in the skbuff that the
231  *	 %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
232  *	 both IP checksum offload and FCOE CRC offload must verify which offload
233  *	 is configured for a packet, presumably by inspecting packet headers.
234  *
235  * Checksumming on output with GSO
236  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
237  *
238  * In the case of a GSO packet (skb_is_gso() is true), checksum offload
239  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
240  * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as
241  * part of the GSO operation is implied. If a checksum is being offloaded
242  * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and
243  * csum_offset are set to refer to the outermost checksum being offloaded
244  * (two offloaded checksums are possible with UDP encapsulation).
245  */
246 
247 /* Don't change this without changing skb_csum_unnecessary! */
248 #define CHECKSUM_NONE		0
249 #define CHECKSUM_UNNECESSARY	1
250 #define CHECKSUM_COMPLETE	2
251 #define CHECKSUM_PARTIAL	3
252 
253 /* Maximum value in skb->csum_level */
254 #define SKB_MAX_CSUM_LEVEL	3
255 
256 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
257 #define SKB_WITH_OVERHEAD(X)	\
258 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
259 
260 /* For X bytes available in skb->head, what is the minimal
261  * allocation needed, knowing struct skb_shared_info needs
262  * to be aligned.
263  */
264 #define SKB_HEAD_ALIGN(X) (SKB_DATA_ALIGN(X) + \
265 	SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
266 
267 #define SKB_MAX_ORDER(X, ORDER) \
268 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
269 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
270 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
271 
272 /* return minimum truesize of one skb containing X bytes of data */
273 #define SKB_TRUESIZE(X) ((X) +						\
274 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
275 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
276 
277 struct ahash_request;
278 struct net_device;
279 struct scatterlist;
280 struct pipe_inode_info;
281 struct iov_iter;
282 struct napi_struct;
283 struct bpf_prog;
284 union bpf_attr;
285 struct skb_ext;
286 struct ts_config;
287 
288 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
289 struct nf_bridge_info {
290 	enum {
291 		BRNF_PROTO_UNCHANGED,
292 		BRNF_PROTO_8021Q,
293 		BRNF_PROTO_PPPOE
294 	} orig_proto:8;
295 	u8			pkt_otherhost:1;
296 	u8			in_prerouting:1;
297 	u8			bridged_dnat:1;
298 	u8			sabotage_in_done:1;
299 	__u16			frag_max_size;
300 	int			physinif;
301 
302 	/* always valid & non-NULL from FORWARD on, for physdev match */
303 	struct net_device	*physoutdev;
304 	union {
305 		/* prerouting: detect dnat in orig/reply direction */
306 		__be32          ipv4_daddr;
307 		struct in6_addr ipv6_daddr;
308 
309 		/* after prerouting + nat detected: store original source
310 		 * mac since neigh resolution overwrites it, only used while
311 		 * skb is out in neigh layer.
312 		 */
313 		char neigh_header[8];
314 	};
315 };
316 #endif
317 
318 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
319 /* Chain in tc_skb_ext will be used to share the tc chain with
320  * ovs recirc_id. It will be set to the current chain by tc
321  * and read by ovs to recirc_id.
322  */
323 struct tc_skb_ext {
324 	union {
325 		u64 act_miss_cookie;
326 		__u32 chain;
327 	};
328 	__u16 mru;
329 	__u16 zone;
330 	u8 post_ct:1;
331 	u8 post_ct_snat:1;
332 	u8 post_ct_dnat:1;
333 	u8 act_miss:1; /* Set if act_miss_cookie is used */
334 	u8 l2_miss:1; /* Set by bridge upon FDB or MDB miss */
335 };
336 #endif
337 
338 struct sk_buff_head {
339 	/* These two members must be first to match sk_buff. */
340 	struct_group_tagged(sk_buff_list, list,
341 		struct sk_buff	*next;
342 		struct sk_buff	*prev;
343 	);
344 
345 	__u32		qlen;
346 	spinlock_t	lock;
347 };
348 
349 struct sk_buff;
350 
351 #ifndef CONFIG_MAX_SKB_FRAGS
352 # define CONFIG_MAX_SKB_FRAGS 17
353 #endif
354 
355 #define MAX_SKB_FRAGS CONFIG_MAX_SKB_FRAGS
356 
357 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
358  * segment using its current segmentation instead.
359  */
360 #define GSO_BY_FRAGS	0xFFFF
361 
362 typedef struct skb_frag {
363 	netmem_ref netmem;
364 	unsigned int len;
365 	unsigned int offset;
366 } skb_frag_t;
367 
368 /**
369  * skb_frag_size() - Returns the size of a skb fragment
370  * @frag: skb fragment
371  */
372 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
373 {
374 	return frag->len;
375 }
376 
377 /**
378  * skb_frag_size_set() - Sets the size of a skb fragment
379  * @frag: skb fragment
380  * @size: size of fragment
381  */
382 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
383 {
384 	frag->len = size;
385 }
386 
387 /**
388  * skb_frag_size_add() - Increments the size of a skb fragment by @delta
389  * @frag: skb fragment
390  * @delta: value to add
391  */
392 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
393 {
394 	frag->len += delta;
395 }
396 
397 /**
398  * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
399  * @frag: skb fragment
400  * @delta: value to subtract
401  */
402 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
403 {
404 	frag->len -= delta;
405 }
406 
407 /**
408  * skb_frag_must_loop - Test if %p is a high memory page
409  * @p: fragment's page
410  */
411 static inline bool skb_frag_must_loop(struct page *p)
412 {
413 #if defined(CONFIG_HIGHMEM)
414 	if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p))
415 		return true;
416 #endif
417 	return false;
418 }
419 
420 /**
421  *	skb_frag_foreach_page - loop over pages in a fragment
422  *
423  *	@f:		skb frag to operate on
424  *	@f_off:		offset from start of f->netmem
425  *	@f_len:		length from f_off to loop over
426  *	@p:		(temp var) current page
427  *	@p_off:		(temp var) offset from start of current page,
428  *	                           non-zero only on first page.
429  *	@p_len:		(temp var) length in current page,
430  *				   < PAGE_SIZE only on first and last page.
431  *	@copied:	(temp var) length so far, excluding current p_len.
432  *
433  *	A fragment can hold a compound page, in which case per-page
434  *	operations, notably kmap_atomic, must be called for each
435  *	regular page.
436  */
437 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
438 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
439 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
440 	     p_len = skb_frag_must_loop(p) ?				\
441 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
442 	     copied = 0;						\
443 	     copied < f_len;						\
444 	     copied += p_len, p++, p_off = 0,				\
445 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
446 
447 /**
448  * struct skb_shared_hwtstamps - hardware time stamps
449  * @hwtstamp:		hardware time stamp transformed into duration
450  *			since arbitrary point in time
451  * @netdev_data:	address/cookie of network device driver used as
452  *			reference to actual hardware time stamp
453  *
454  * Software time stamps generated by ktime_get_real() are stored in
455  * skb->tstamp.
456  *
457  * hwtstamps can only be compared against other hwtstamps from
458  * the same device.
459  *
460  * This structure is attached to packets as part of the
461  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
462  */
463 struct skb_shared_hwtstamps {
464 	union {
465 		ktime_t	hwtstamp;
466 		void *netdev_data;
467 	};
468 };
469 
470 /* Definitions for tx_flags in struct skb_shared_info */
471 enum {
472 	/* generate hardware time stamp */
473 	SKBTX_HW_TSTAMP_NOBPF = 1 << 0,
474 
475 	/* generate software time stamp when queueing packet to NIC */
476 	SKBTX_SW_TSTAMP = 1 << 1,
477 
478 	/* device driver is going to provide hardware time stamp */
479 	SKBTX_IN_PROGRESS = 1 << 2,
480 
481 	/* reserved */
482 	SKBTX_RESERVED = 1 << 3,
483 
484 	/* generate wifi status information (where possible) */
485 	SKBTX_WIFI_STATUS = 1 << 4,
486 
487 	/* determine hardware time stamp based on time or cycles */
488 	SKBTX_HW_TSTAMP_NETDEV = 1 << 5,
489 
490 	/* generate software time stamp when entering packet scheduling */
491 	SKBTX_SCHED_TSTAMP = 1 << 6,
492 
493 	/* used for bpf extension when a bpf program is loaded */
494 	SKBTX_BPF = 1 << 7,
495 };
496 
497 #define SKBTX_HW_TSTAMP		(SKBTX_HW_TSTAMP_NOBPF | SKBTX_BPF)
498 
499 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
500 				 SKBTX_SCHED_TSTAMP | \
501 				 SKBTX_BPF)
502 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | \
503 				 SKBTX_ANY_SW_TSTAMP)
504 
505 /* Definitions for flags in struct skb_shared_info */
506 enum {
507 	/* use zcopy routines */
508 	SKBFL_ZEROCOPY_ENABLE = BIT(0),
509 
510 	/* This indicates at least one fragment might be overwritten
511 	 * (as in vmsplice(), sendfile() ...)
512 	 * If we need to compute a TX checksum, we'll need to copy
513 	 * all frags to avoid possible bad checksum
514 	 */
515 	SKBFL_SHARED_FRAG = BIT(1),
516 
517 	/* segment contains only zerocopy data and should not be
518 	 * charged to the kernel memory.
519 	 */
520 	SKBFL_PURE_ZEROCOPY = BIT(2),
521 
522 	SKBFL_DONT_ORPHAN = BIT(3),
523 
524 	/* page references are managed by the ubuf_info, so it's safe to
525 	 * use frags only up until ubuf_info is released
526 	 */
527 	SKBFL_MANAGED_FRAG_REFS = BIT(4),
528 };
529 
530 #define SKBFL_ZEROCOPY_FRAG	(SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG)
531 #define SKBFL_ALL_ZEROCOPY	(SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY | \
532 				 SKBFL_DONT_ORPHAN | SKBFL_MANAGED_FRAG_REFS)
533 
534 struct ubuf_info_ops {
535 	void (*complete)(struct sk_buff *, struct ubuf_info *,
536 			 bool zerocopy_success);
537 	/* has to be compatible with skb_zcopy_set() */
538 	int (*link_skb)(struct sk_buff *skb, struct ubuf_info *uarg);
539 };
540 
541 /*
542  * The callback notifies userspace to release buffers when skb DMA is done in
543  * lower device, the skb last reference should be 0 when calling this.
544  * The zerocopy_success argument is true if zero copy transmit occurred,
545  * false on data copy or out of memory error caused by data copy attempt.
546  * The ctx field is used to track device context.
547  * The desc field is used to track userspace buffer index.
548  */
549 struct ubuf_info {
550 	const struct ubuf_info_ops *ops;
551 	refcount_t refcnt;
552 	u8 flags;
553 };
554 
555 struct ubuf_info_msgzc {
556 	struct ubuf_info ubuf;
557 
558 	union {
559 		struct {
560 			unsigned long desc;
561 			void *ctx;
562 		};
563 		struct {
564 			u32 id;
565 			u16 len;
566 			u16 zerocopy:1;
567 			u32 bytelen;
568 		};
569 	};
570 
571 	struct mmpin {
572 		struct user_struct *user;
573 		unsigned int num_pg;
574 	} mmp;
575 };
576 
577 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
578 #define uarg_to_msgzc(ubuf_ptr)	container_of((ubuf_ptr), struct ubuf_info_msgzc, \
579 					     ubuf)
580 
581 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
582 void mm_unaccount_pinned_pages(struct mmpin *mmp);
583 
584 /* Preserve some data across TX submission and completion.
585  *
586  * Note, this state is stored in the driver. Extending the layout
587  * might need some special care.
588  */
589 struct xsk_tx_metadata_compl {
590 	__u64 *tx_timestamp;
591 };
592 
593 /* This data is invariant across clones and lives at
594  * the end of the header data, ie. at skb->end.
595  */
596 struct skb_shared_info {
597 	__u8		flags;
598 	__u8		meta_len;
599 	__u8		nr_frags;
600 	__u8		tx_flags;
601 	unsigned short	gso_size;
602 	/* Warning: this field is not always filled in (UFO)! */
603 	unsigned short	gso_segs;
604 	struct sk_buff	*frag_list;
605 	union {
606 		struct skb_shared_hwtstamps hwtstamps;
607 		struct xsk_tx_metadata_compl xsk_meta;
608 	};
609 	unsigned int	gso_type;
610 	u32		tskey;
611 
612 	/*
613 	 * Warning : all fields before dataref are cleared in __alloc_skb()
614 	 */
615 	atomic_t	dataref;
616 
617 	union {
618 		struct {
619 			u32		xdp_frags_size;
620 			u32		xdp_frags_truesize;
621 		};
622 
623 		/*
624 		 * Intermediate layers must ensure that destructor_arg
625 		 * remains valid until skb destructor.
626 		 */
627 		void		*destructor_arg;
628 	};
629 
630 	/* must be last field, see pskb_expand_head() */
631 	skb_frag_t	frags[MAX_SKB_FRAGS];
632 };
633 
634 /**
635  * DOC: dataref and headerless skbs
636  *
637  * Transport layers send out clones of payload skbs they hold for
638  * retransmissions. To allow lower layers of the stack to prepend their headers
639  * we split &skb_shared_info.dataref into two halves.
640  * The lower 16 bits count the overall number of references.
641  * The higher 16 bits indicate how many of the references are payload-only.
642  * skb_header_cloned() checks if skb is allowed to add / write the headers.
643  *
644  * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr
645  * (via __skb_header_release()). Any clone created from marked skb will get
646  * &sk_buff.hdr_len populated with the available headroom.
647  * If there's the only clone in existence it's able to modify the headroom
648  * at will. The sequence of calls inside the transport layer is::
649  *
650  *  <alloc skb>
651  *  skb_reserve()
652  *  __skb_header_release()
653  *  skb_clone()
654  *  // send the clone down the stack
655  *
656  * This is not a very generic construct and it depends on the transport layers
657  * doing the right thing. In practice there's usually only one payload-only skb.
658  * Having multiple payload-only skbs with different lengths of hdr_len is not
659  * possible. The payload-only skbs should never leave their owner.
660  */
661 #define SKB_DATAREF_SHIFT 16
662 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
663 
664 
665 enum {
666 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
667 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
668 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
669 };
670 
671 enum {
672 	SKB_GSO_TCPV4 = 1 << 0,
673 
674 	/* This indicates the skb is from an untrusted source. */
675 	SKB_GSO_DODGY = 1 << 1,
676 
677 	/* This indicates the tcp segment has CWR set. */
678 	SKB_GSO_TCP_ECN = 1 << 2,
679 
680 	SKB_GSO_TCP_FIXEDID = 1 << 3,
681 
682 	SKB_GSO_TCPV6 = 1 << 4,
683 
684 	SKB_GSO_FCOE = 1 << 5,
685 
686 	SKB_GSO_GRE = 1 << 6,
687 
688 	SKB_GSO_GRE_CSUM = 1 << 7,
689 
690 	SKB_GSO_IPXIP4 = 1 << 8,
691 
692 	SKB_GSO_IPXIP6 = 1 << 9,
693 
694 	SKB_GSO_UDP_TUNNEL = 1 << 10,
695 
696 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
697 
698 	SKB_GSO_PARTIAL = 1 << 12,
699 
700 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
701 
702 	SKB_GSO_SCTP = 1 << 14,
703 
704 	SKB_GSO_ESP = 1 << 15,
705 
706 	SKB_GSO_UDP = 1 << 16,
707 
708 	SKB_GSO_UDP_L4 = 1 << 17,
709 
710 	SKB_GSO_FRAGLIST = 1 << 18,
711 
712 	SKB_GSO_TCP_ACCECN = 1 << 19,
713 };
714 
715 #if BITS_PER_LONG > 32
716 #define NET_SKBUFF_DATA_USES_OFFSET 1
717 #endif
718 
719 #ifdef NET_SKBUFF_DATA_USES_OFFSET
720 typedef unsigned int sk_buff_data_t;
721 #else
722 typedef unsigned char *sk_buff_data_t;
723 #endif
724 
725 enum skb_tstamp_type {
726 	SKB_CLOCK_REALTIME,
727 	SKB_CLOCK_MONOTONIC,
728 	SKB_CLOCK_TAI,
729 	__SKB_CLOCK_MAX = SKB_CLOCK_TAI,
730 };
731 
732 /**
733  * DOC: Basic sk_buff geometry
734  *
735  * struct sk_buff itself is a metadata structure and does not hold any packet
736  * data. All the data is held in associated buffers.
737  *
738  * &sk_buff.head points to the main "head" buffer. The head buffer is divided
739  * into two parts:
740  *
741  *  - data buffer, containing headers and sometimes payload;
742  *    this is the part of the skb operated on by the common helpers
743  *    such as skb_put() or skb_pull();
744  *  - shared info (struct skb_shared_info) which holds an array of pointers
745  *    to read-only data in the (page, offset, length) format.
746  *
747  * Optionally &skb_shared_info.frag_list may point to another skb.
748  *
749  * Basic diagram may look like this::
750  *
751  *                                  ---------------
752  *                                 | sk_buff       |
753  *                                  ---------------
754  *     ,---------------------------  + head
755  *    /          ,-----------------  + data
756  *   /          /      ,-----------  + tail
757  *  |          |      |            , + end
758  *  |          |      |           |
759  *  v          v      v           v
760  *   -----------------------------------------------
761  *  | headroom | data |  tailroom | skb_shared_info |
762  *   -----------------------------------------------
763  *                                 + [page frag]
764  *                                 + [page frag]
765  *                                 + [page frag]
766  *                                 + [page frag]       ---------
767  *                                 + frag_list    --> | sk_buff |
768  *                                                     ---------
769  *
770  */
771 
772 /**
773  *	struct sk_buff - socket buffer
774  *	@next: Next buffer in list
775  *	@prev: Previous buffer in list
776  *	@tstamp: Time we arrived/left
777  *	@skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
778  *		for retransmit timer
779  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
780  *	@list: queue head
781  *	@ll_node: anchor in an llist (eg socket defer_list)
782  *	@sk: Socket we are owned by
783  *	@dev: Device we arrived on/are leaving by
784  *	@dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
785  *	@cb: Control buffer. Free for use by every layer. Put private vars here
786  *	@_skb_refdst: destination entry (with norefcount bit)
787  *	@len: Length of actual data
788  *	@data_len: Data length
789  *	@mac_len: Length of link layer header
790  *	@hdr_len: writable header length of cloned skb
791  *	@csum: Checksum (must include start/offset pair)
792  *	@csum_start: Offset from skb->head where checksumming should start
793  *	@csum_offset: Offset from csum_start where checksum should be stored
794  *	@priority: Packet queueing priority
795  *	@ignore_df: allow local fragmentation
796  *	@cloned: Head may be cloned (check refcnt to be sure)
797  *	@ip_summed: Driver fed us an IP checksum
798  *	@nohdr: Payload reference only, must not modify header
799  *	@pkt_type: Packet class
800  *	@fclone: skbuff clone status
801  *	@ipvs_property: skbuff is owned by ipvs
802  *	@inner_protocol_type: whether the inner protocol is
803  *		ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
804  *	@remcsum_offload: remote checksum offload is enabled
805  *	@offload_fwd_mark: Packet was L2-forwarded in hardware
806  *	@offload_l3_fwd_mark: Packet was L3-forwarded in hardware
807  *	@tc_skip_classify: do not classify packet. set by IFB device
808  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
809  *	@redirected: packet was redirected by packet classifier
810  *	@from_ingress: packet was redirected from the ingress path
811  *	@nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h
812  *	@peeked: this packet has been seen already, so stats have been
813  *		done for it, don't do them again
814  *	@nf_trace: netfilter packet trace flag
815  *	@protocol: Packet protocol from driver
816  *	@destructor: Destruct function
817  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
818  *	@_sk_redir: socket redirection information for skmsg
819  *	@_nfct: Associated connection, if any (with nfctinfo bits)
820  *	@skb_iif: ifindex of device we arrived on
821  *	@tc_index: Traffic control index
822  *	@hash: the packet hash
823  *	@queue_mapping: Queue mapping for multiqueue devices
824  *	@head_frag: skb was allocated from page fragments,
825  *		not allocated by kmalloc() or vmalloc().
826  *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
827  *	@pp_recycle: mark the packet for recycling instead of freeing (implies
828  *		page_pool support on driver)
829  *	@active_extensions: active extensions (skb_ext_id types)
830  *	@ndisc_nodetype: router type (from link layer)
831  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
832  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
833  *		ports.
834  *	@sw_hash: indicates hash was computed in software stack
835  *	@wifi_acked_valid: wifi_acked was set
836  *	@wifi_acked: whether frame was acked on wifi or not
837  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
838  *	@encapsulation: indicates the inner headers in the skbuff are valid
839  *	@encap_hdr_csum: software checksum is needed
840  *	@csum_valid: checksum is already valid
841  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
842  *	@csum_complete_sw: checksum was completed by software
843  *	@csum_level: indicates the number of consecutive checksums found in
844  *		the packet minus one that have been verified as
845  *		CHECKSUM_UNNECESSARY (max 3)
846  *	@unreadable: indicates that at least 1 of the fragments in this skb is
847  *		unreadable.
848  *	@dst_pending_confirm: need to confirm neighbour
849  *	@decrypted: Decrypted SKB
850  *	@slow_gro: state present at GRO time, slower prepare step required
851  *	@tstamp_type: When set, skb->tstamp has the
852  *		delivery_time clock base of skb->tstamp.
853  *	@napi_id: id of the NAPI struct this skb came from
854  *	@sender_cpu: (aka @napi_id) source CPU in XPS
855  *	@alloc_cpu: CPU which did the skb allocation.
856  *	@secmark: security marking
857  *	@mark: Generic packet mark
858  *	@reserved_tailroom: (aka @mark) number of bytes of free space available
859  *		at the tail of an sk_buff
860  *	@vlan_all: vlan fields (proto & tci)
861  *	@vlan_proto: vlan encapsulation protocol
862  *	@vlan_tci: vlan tag control information
863  *	@inner_protocol: Protocol (encapsulation)
864  *	@inner_ipproto: (aka @inner_protocol) stores ipproto when
865  *		skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
866  *	@inner_transport_header: Inner transport layer header (encapsulation)
867  *	@inner_network_header: Network layer header (encapsulation)
868  *	@inner_mac_header: Link layer header (encapsulation)
869  *	@transport_header: Transport layer header
870  *	@network_header: Network layer header
871  *	@mac_header: Link layer header
872  *	@kcov_handle: KCOV remote handle for remote coverage collection
873  *	@tail: Tail pointer
874  *	@end: End pointer
875  *	@head: Head of buffer
876  *	@data: Data head pointer
877  *	@truesize: Buffer size
878  *	@users: User count - see {datagram,tcp}.c
879  *	@extensions: allocated extensions, valid if active_extensions is nonzero
880  */
881 
882 struct sk_buff {
883 	union {
884 		struct {
885 			/* These two members must be first to match sk_buff_head. */
886 			struct sk_buff		*next;
887 			struct sk_buff		*prev;
888 
889 			union {
890 				struct net_device	*dev;
891 				/* Some protocols might use this space to store information,
892 				 * while device pointer would be NULL.
893 				 * UDP receive path is one user.
894 				 */
895 				unsigned long		dev_scratch;
896 			};
897 		};
898 		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
899 		struct list_head	list;
900 		struct llist_node	ll_node;
901 	};
902 
903 	struct sock		*sk;
904 
905 	union {
906 		ktime_t		tstamp;
907 		u64		skb_mstamp_ns; /* earliest departure time */
908 	};
909 	/*
910 	 * This is the control buffer. It is free to use for every
911 	 * layer. Please put your private variables there. If you
912 	 * want to keep them across layers you have to do a skb_clone()
913 	 * first. This is owned by whoever has the skb queued ATM.
914 	 */
915 	char			cb[48] __aligned(8);
916 
917 	union {
918 		struct {
919 			unsigned long	_skb_refdst;
920 			void		(*destructor)(struct sk_buff *skb);
921 		};
922 		struct list_head	tcp_tsorted_anchor;
923 #ifdef CONFIG_NET_SOCK_MSG
924 		unsigned long		_sk_redir;
925 #endif
926 	};
927 
928 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
929 	unsigned long		 _nfct;
930 #endif
931 	unsigned int		len,
932 				data_len;
933 	__u16			mac_len,
934 				hdr_len;
935 
936 	/* Following fields are _not_ copied in __copy_skb_header()
937 	 * Note that queue_mapping is here mostly to fill a hole.
938 	 */
939 	__u16			queue_mapping;
940 
941 /* if you move cloned around you also must adapt those constants */
942 #ifdef __BIG_ENDIAN_BITFIELD
943 #define CLONED_MASK	(1 << 7)
944 #else
945 #define CLONED_MASK	1
946 #endif
947 #define CLONED_OFFSET		offsetof(struct sk_buff, __cloned_offset)
948 
949 	/* private: */
950 	__u8			__cloned_offset[0];
951 	/* public: */
952 	__u8			cloned:1,
953 				nohdr:1,
954 				fclone:2,
955 				peeked:1,
956 				head_frag:1,
957 				pfmemalloc:1,
958 				pp_recycle:1; /* page_pool recycle indicator */
959 #ifdef CONFIG_SKB_EXTENSIONS
960 	__u8			active_extensions;
961 #endif
962 
963 	/* Fields enclosed in headers group are copied
964 	 * using a single memcpy() in __copy_skb_header()
965 	 */
966 	struct_group(headers,
967 
968 	/* private: */
969 	__u8			__pkt_type_offset[0];
970 	/* public: */
971 	__u8			pkt_type:3; /* see PKT_TYPE_MAX */
972 	__u8			ignore_df:1;
973 	__u8			dst_pending_confirm:1;
974 	__u8			ip_summed:2;
975 	__u8			ooo_okay:1;
976 
977 	/* private: */
978 	__u8			__mono_tc_offset[0];
979 	/* public: */
980 	__u8			tstamp_type:2;	/* See skb_tstamp_type */
981 #ifdef CONFIG_NET_XGRESS
982 	__u8			tc_at_ingress:1;	/* See TC_AT_INGRESS_MASK */
983 	__u8			tc_skip_classify:1;
984 #endif
985 	__u8			remcsum_offload:1;
986 	__u8			csum_complete_sw:1;
987 	__u8			csum_level:2;
988 	__u8			inner_protocol_type:1;
989 
990 	__u8			l4_hash:1;
991 	__u8			sw_hash:1;
992 #ifdef CONFIG_WIRELESS
993 	__u8			wifi_acked_valid:1;
994 	__u8			wifi_acked:1;
995 #endif
996 	__u8			no_fcs:1;
997 	/* Indicates the inner headers are valid in the skbuff. */
998 	__u8			encapsulation:1;
999 	__u8			encap_hdr_csum:1;
1000 	__u8			csum_valid:1;
1001 #ifdef CONFIG_IPV6_NDISC_NODETYPE
1002 	__u8			ndisc_nodetype:2;
1003 #endif
1004 
1005 #if IS_ENABLED(CONFIG_IP_VS)
1006 	__u8			ipvs_property:1;
1007 #endif
1008 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
1009 	__u8			nf_trace:1;
1010 #endif
1011 #ifdef CONFIG_NET_SWITCHDEV
1012 	__u8			offload_fwd_mark:1;
1013 	__u8			offload_l3_fwd_mark:1;
1014 #endif
1015 	__u8			redirected:1;
1016 #ifdef CONFIG_NET_REDIRECT
1017 	__u8			from_ingress:1;
1018 #endif
1019 #ifdef CONFIG_NETFILTER_SKIP_EGRESS
1020 	__u8			nf_skip_egress:1;
1021 #endif
1022 #ifdef CONFIG_SKB_DECRYPTED
1023 	__u8			decrypted:1;
1024 #endif
1025 	__u8			slow_gro:1;
1026 #if IS_ENABLED(CONFIG_IP_SCTP)
1027 	__u8			csum_not_inet:1;
1028 #endif
1029 	__u8			unreadable:1;
1030 #if defined(CONFIG_NET_SCHED) || defined(CONFIG_NET_XGRESS)
1031 	__u16			tc_index;	/* traffic control index */
1032 #endif
1033 
1034 	u16			alloc_cpu;
1035 
1036 	union {
1037 		__wsum		csum;
1038 		struct {
1039 			__u16	csum_start;
1040 			__u16	csum_offset;
1041 		};
1042 	};
1043 	__u32			priority;
1044 	int			skb_iif;
1045 	__u32			hash;
1046 	union {
1047 		u32		vlan_all;
1048 		struct {
1049 			__be16	vlan_proto;
1050 			__u16	vlan_tci;
1051 		};
1052 	};
1053 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
1054 	union {
1055 		unsigned int	napi_id;
1056 		unsigned int	sender_cpu;
1057 	};
1058 #endif
1059 #ifdef CONFIG_NETWORK_SECMARK
1060 	__u32		secmark;
1061 #endif
1062 
1063 	union {
1064 		__u32		mark;
1065 		__u32		reserved_tailroom;
1066 	};
1067 
1068 	union {
1069 		__be16		inner_protocol;
1070 		__u8		inner_ipproto;
1071 	};
1072 
1073 	__u16			inner_transport_header;
1074 	__u16			inner_network_header;
1075 	__u16			inner_mac_header;
1076 
1077 	__be16			protocol;
1078 	__u16			transport_header;
1079 	__u16			network_header;
1080 	__u16			mac_header;
1081 
1082 #ifdef CONFIG_KCOV
1083 	u64			kcov_handle;
1084 #endif
1085 
1086 	); /* end headers group */
1087 
1088 	/* These elements must be at the end, see alloc_skb() for details.  */
1089 	sk_buff_data_t		tail;
1090 	sk_buff_data_t		end;
1091 	unsigned char		*head,
1092 				*data;
1093 	unsigned int		truesize;
1094 	refcount_t		users;
1095 
1096 #ifdef CONFIG_SKB_EXTENSIONS
1097 	/* only usable after checking ->active_extensions != 0 */
1098 	struct skb_ext		*extensions;
1099 #endif
1100 };
1101 
1102 /* if you move pkt_type around you also must adapt those constants */
1103 #ifdef __BIG_ENDIAN_BITFIELD
1104 #define PKT_TYPE_MAX	(7 << 5)
1105 #else
1106 #define PKT_TYPE_MAX	7
1107 #endif
1108 #define PKT_TYPE_OFFSET		offsetof(struct sk_buff, __pkt_type_offset)
1109 
1110 /* if you move tc_at_ingress or tstamp_type
1111  * around, you also must adapt these constants.
1112  */
1113 #ifdef __BIG_ENDIAN_BITFIELD
1114 #define SKB_TSTAMP_TYPE_MASK		(3 << 6)
1115 #define SKB_TSTAMP_TYPE_RSHIFT		(6)
1116 #define TC_AT_INGRESS_MASK		(1 << 5)
1117 #else
1118 #define SKB_TSTAMP_TYPE_MASK		(3)
1119 #define TC_AT_INGRESS_MASK		(1 << 2)
1120 #endif
1121 #define SKB_BF_MONO_TC_OFFSET		offsetof(struct sk_buff, __mono_tc_offset)
1122 
1123 #ifdef __KERNEL__
1124 /*
1125  *	Handling routines are only of interest to the kernel
1126  */
1127 
1128 #define SKB_ALLOC_FCLONE	0x01
1129 #define SKB_ALLOC_RX		0x02
1130 #define SKB_ALLOC_NAPI		0x04
1131 
1132 /**
1133  * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
1134  * @skb: buffer
1135  */
1136 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
1137 {
1138 	return unlikely(skb->pfmemalloc);
1139 }
1140 
1141 /*
1142  * skb might have a dst pointer attached, refcounted or not.
1143  * _skb_refdst low order bit is set if refcount was _not_ taken
1144  */
1145 #define SKB_DST_NOREF	1UL
1146 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
1147 
1148 /**
1149  * skb_dst - returns skb dst_entry
1150  * @skb: buffer
1151  *
1152  * Returns: skb dst_entry, regardless of reference taken or not.
1153  */
1154 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
1155 {
1156 	/* If refdst was not refcounted, check we still are in a
1157 	 * rcu_read_lock section
1158 	 */
1159 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
1160 		!rcu_read_lock_held() &&
1161 		!rcu_read_lock_bh_held());
1162 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
1163 }
1164 
1165 /**
1166  * skb_dst_set - sets skb dst
1167  * @skb: buffer
1168  * @dst: dst entry
1169  *
1170  * Sets skb dst, assuming a reference was taken on dst and should
1171  * be released by skb_dst_drop()
1172  */
1173 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
1174 {
1175 	skb->slow_gro |= !!dst;
1176 	skb->_skb_refdst = (unsigned long)dst;
1177 }
1178 
1179 /**
1180  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
1181  * @skb: buffer
1182  * @dst: dst entry
1183  *
1184  * Sets skb dst, assuming a reference was not taken on dst.
1185  * If dst entry is cached, we do not take reference and dst_release
1186  * will be avoided by refdst_drop. If dst entry is not cached, we take
1187  * reference, so that last dst_release can destroy the dst immediately.
1188  */
1189 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
1190 {
1191 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
1192 	skb->slow_gro |= !!dst;
1193 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
1194 }
1195 
1196 /**
1197  * skb_dst_is_noref - Test if skb dst isn't refcounted
1198  * @skb: buffer
1199  */
1200 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1201 {
1202 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1203 }
1204 
1205 /* For mangling skb->pkt_type from user space side from applications
1206  * such as nft, tc, etc, we only allow a conservative subset of
1207  * possible pkt_types to be set.
1208 */
1209 static inline bool skb_pkt_type_ok(u32 ptype)
1210 {
1211 	return ptype <= PACKET_OTHERHOST;
1212 }
1213 
1214 /**
1215  * skb_napi_id - Returns the skb's NAPI id
1216  * @skb: buffer
1217  */
1218 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1219 {
1220 #ifdef CONFIG_NET_RX_BUSY_POLL
1221 	return skb->napi_id;
1222 #else
1223 	return 0;
1224 #endif
1225 }
1226 
1227 static inline bool skb_wifi_acked_valid(const struct sk_buff *skb)
1228 {
1229 #ifdef CONFIG_WIRELESS
1230 	return skb->wifi_acked_valid;
1231 #else
1232 	return 0;
1233 #endif
1234 }
1235 
1236 /**
1237  * skb_unref - decrement the skb's reference count
1238  * @skb: buffer
1239  *
1240  * Returns: true if we can free the skb.
1241  */
1242 static inline bool skb_unref(struct sk_buff *skb)
1243 {
1244 	if (unlikely(!skb))
1245 		return false;
1246 	if (!IS_ENABLED(CONFIG_DEBUG_NET) && likely(refcount_read(&skb->users) == 1))
1247 		smp_rmb();
1248 	else if (likely(!refcount_dec_and_test(&skb->users)))
1249 		return false;
1250 
1251 	return true;
1252 }
1253 
1254 static inline bool skb_data_unref(const struct sk_buff *skb,
1255 				  struct skb_shared_info *shinfo)
1256 {
1257 	int bias;
1258 
1259 	if (!skb->cloned)
1260 		return true;
1261 
1262 	bias = skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1;
1263 
1264 	if (atomic_read(&shinfo->dataref) == bias)
1265 		smp_rmb();
1266 	else if (atomic_sub_return(bias, &shinfo->dataref))
1267 		return false;
1268 
1269 	return true;
1270 }
1271 
1272 void __fix_address sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb,
1273 				      enum skb_drop_reason reason);
1274 
1275 static inline void
1276 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
1277 {
1278 	sk_skb_reason_drop(NULL, skb, reason);
1279 }
1280 
1281 /**
1282  *	kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason
1283  *	@skb: buffer to free
1284  */
1285 static inline void kfree_skb(struct sk_buff *skb)
1286 {
1287 	kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1288 }
1289 
1290 void skb_release_head_state(struct sk_buff *skb);
1291 void kfree_skb_list_reason(struct sk_buff *segs,
1292 			   enum skb_drop_reason reason);
1293 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1294 void skb_tx_error(struct sk_buff *skb);
1295 
1296 static inline void kfree_skb_list(struct sk_buff *segs)
1297 {
1298 	kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED);
1299 }
1300 
1301 #ifdef CONFIG_TRACEPOINTS
1302 void consume_skb(struct sk_buff *skb);
1303 #else
1304 static inline void consume_skb(struct sk_buff *skb)
1305 {
1306 	return kfree_skb(skb);
1307 }
1308 #endif
1309 
1310 void __consume_stateless_skb(struct sk_buff *skb);
1311 void  __kfree_skb(struct sk_buff *skb);
1312 
1313 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1314 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1315 		      bool *fragstolen, int *delta_truesize);
1316 
1317 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1318 			    int node);
1319 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1320 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1321 struct sk_buff *build_skb_around(struct sk_buff *skb,
1322 				 void *data, unsigned int frag_size);
1323 void skb_attempt_defer_free(struct sk_buff *skb);
1324 
1325 u32 napi_skb_cache_get_bulk(void **skbs, u32 n);
1326 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size);
1327 struct sk_buff *slab_build_skb(void *data);
1328 
1329 /**
1330  * alloc_skb - allocate a network buffer
1331  * @size: size to allocate
1332  * @priority: allocation mask
1333  *
1334  * This function is a convenient wrapper around __alloc_skb().
1335  */
1336 static inline struct sk_buff *alloc_skb(unsigned int size,
1337 					gfp_t priority)
1338 {
1339 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1340 }
1341 
1342 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1343 				     unsigned long data_len,
1344 				     int max_page_order,
1345 				     int *errcode,
1346 				     gfp_t gfp_mask);
1347 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1348 
1349 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1350 struct sk_buff_fclones {
1351 	struct sk_buff	skb1;
1352 
1353 	struct sk_buff	skb2;
1354 
1355 	refcount_t	fclone_ref;
1356 };
1357 
1358 /**
1359  *	skb_fclone_busy - check if fclone is busy
1360  *	@sk: socket
1361  *	@skb: buffer
1362  *
1363  * Returns: true if skb is a fast clone, and its clone is not freed.
1364  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1365  * so we also check that didn't happen.
1366  */
1367 static inline bool skb_fclone_busy(const struct sock *sk,
1368 				   const struct sk_buff *skb)
1369 {
1370 	const struct sk_buff_fclones *fclones;
1371 
1372 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1373 
1374 	return skb->fclone == SKB_FCLONE_ORIG &&
1375 	       refcount_read(&fclones->fclone_ref) > 1 &&
1376 	       READ_ONCE(fclones->skb2.sk) == sk;
1377 }
1378 
1379 /**
1380  * alloc_skb_fclone - allocate a network buffer from fclone cache
1381  * @size: size to allocate
1382  * @priority: allocation mask
1383  *
1384  * This function is a convenient wrapper around __alloc_skb().
1385  */
1386 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1387 					       gfp_t priority)
1388 {
1389 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1390 }
1391 
1392 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1393 void skb_headers_offset_update(struct sk_buff *skb, int off);
1394 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1395 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1396 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1397 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1398 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1399 				   gfp_t gfp_mask, bool fclone);
1400 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1401 					  gfp_t gfp_mask)
1402 {
1403 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1404 }
1405 
1406 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1407 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1408 				     unsigned int headroom);
1409 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom);
1410 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1411 				int newtailroom, gfp_t priority);
1412 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1413 				     int offset, int len);
1414 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1415 			      int offset, int len);
1416 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1417 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1418 
1419 /**
1420  *	skb_pad			-	zero pad the tail of an skb
1421  *	@skb: buffer to pad
1422  *	@pad: space to pad
1423  *
1424  *	Ensure that a buffer is followed by a padding area that is zero
1425  *	filled. Used by network drivers which may DMA or transfer data
1426  *	beyond the buffer end onto the wire.
1427  *
1428  *	May return error in out of memory cases. The skb is freed on error.
1429  */
1430 static inline int skb_pad(struct sk_buff *skb, int pad)
1431 {
1432 	return __skb_pad(skb, pad, true);
1433 }
1434 #define dev_kfree_skb(a)	consume_skb(a)
1435 
1436 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1437 			 int offset, size_t size, size_t max_frags);
1438 
1439 struct skb_seq_state {
1440 	__u32		lower_offset;
1441 	__u32		upper_offset;
1442 	__u32		frag_idx;
1443 	__u32		stepped_offset;
1444 	struct sk_buff	*root_skb;
1445 	struct sk_buff	*cur_skb;
1446 	__u8		*frag_data;
1447 	__u32		frag_off;
1448 };
1449 
1450 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1451 			  unsigned int to, struct skb_seq_state *st);
1452 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1453 			  struct skb_seq_state *st);
1454 void skb_abort_seq_read(struct skb_seq_state *st);
1455 int skb_copy_seq_read(struct skb_seq_state *st, int offset, void *to, int len);
1456 
1457 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1458 			   unsigned int to, struct ts_config *config);
1459 
1460 /*
1461  * Packet hash types specify the type of hash in skb_set_hash.
1462  *
1463  * Hash types refer to the protocol layer addresses which are used to
1464  * construct a packet's hash. The hashes are used to differentiate or identify
1465  * flows of the protocol layer for the hash type. Hash types are either
1466  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1467  *
1468  * Properties of hashes:
1469  *
1470  * 1) Two packets in different flows have different hash values
1471  * 2) Two packets in the same flow should have the same hash value
1472  *
1473  * A hash at a higher layer is considered to be more specific. A driver should
1474  * set the most specific hash possible.
1475  *
1476  * A driver cannot indicate a more specific hash than the layer at which a hash
1477  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1478  *
1479  * A driver may indicate a hash level which is less specific than the
1480  * actual layer the hash was computed on. For instance, a hash computed
1481  * at L4 may be considered an L3 hash. This should only be done if the
1482  * driver can't unambiguously determine that the HW computed the hash at
1483  * the higher layer. Note that the "should" in the second property above
1484  * permits this.
1485  */
1486 enum pkt_hash_types {
1487 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1488 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1489 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1490 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1491 };
1492 
1493 static inline void skb_clear_hash(struct sk_buff *skb)
1494 {
1495 	skb->hash = 0;
1496 	skb->sw_hash = 0;
1497 	skb->l4_hash = 0;
1498 }
1499 
1500 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1501 {
1502 	if (!skb->l4_hash)
1503 		skb_clear_hash(skb);
1504 }
1505 
1506 static inline void
1507 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1508 {
1509 	skb->l4_hash = is_l4;
1510 	skb->sw_hash = is_sw;
1511 	skb->hash = hash;
1512 }
1513 
1514 static inline void
1515 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1516 {
1517 	/* Used by drivers to set hash from HW */
1518 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1519 }
1520 
1521 static inline void
1522 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1523 {
1524 	__skb_set_hash(skb, hash, true, is_l4);
1525 }
1526 
1527 u32 __skb_get_hash_symmetric_net(const struct net *net, const struct sk_buff *skb);
1528 
1529 static inline u32 __skb_get_hash_symmetric(const struct sk_buff *skb)
1530 {
1531 	return __skb_get_hash_symmetric_net(NULL, skb);
1532 }
1533 
1534 void __skb_get_hash_net(const struct net *net, struct sk_buff *skb);
1535 u32 skb_get_poff(const struct sk_buff *skb);
1536 u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
1537 		   const struct flow_keys_basic *keys, int hlen);
1538 __be32 skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1539 			  const void *data, int hlen_proto);
1540 
1541 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1542 			     const struct flow_dissector_key *key,
1543 			     unsigned int key_count);
1544 
1545 struct bpf_flow_dissector;
1546 u32 bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1547 		     __be16 proto, int nhoff, int hlen, unsigned int flags);
1548 
1549 bool __skb_flow_dissect(const struct net *net,
1550 			const struct sk_buff *skb,
1551 			struct flow_dissector *flow_dissector,
1552 			void *target_container, const void *data,
1553 			__be16 proto, int nhoff, int hlen, unsigned int flags);
1554 
1555 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1556 				    struct flow_dissector *flow_dissector,
1557 				    void *target_container, unsigned int flags)
1558 {
1559 	return __skb_flow_dissect(NULL, skb, flow_dissector,
1560 				  target_container, NULL, 0, 0, 0, flags);
1561 }
1562 
1563 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1564 					      struct flow_keys *flow,
1565 					      unsigned int flags)
1566 {
1567 	memset(flow, 0, sizeof(*flow));
1568 	return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1569 				  flow, NULL, 0, 0, 0, flags);
1570 }
1571 
1572 static inline bool
1573 skb_flow_dissect_flow_keys_basic(const struct net *net,
1574 				 const struct sk_buff *skb,
1575 				 struct flow_keys_basic *flow,
1576 				 const void *data, __be16 proto,
1577 				 int nhoff, int hlen, unsigned int flags)
1578 {
1579 	memset(flow, 0, sizeof(*flow));
1580 	return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1581 				  data, proto, nhoff, hlen, flags);
1582 }
1583 
1584 void skb_flow_dissect_meta(const struct sk_buff *skb,
1585 			   struct flow_dissector *flow_dissector,
1586 			   void *target_container);
1587 
1588 /* Gets a skb connection tracking info, ctinfo map should be a
1589  * map of mapsize to translate enum ip_conntrack_info states
1590  * to user states.
1591  */
1592 void
1593 skb_flow_dissect_ct(const struct sk_buff *skb,
1594 		    struct flow_dissector *flow_dissector,
1595 		    void *target_container,
1596 		    u16 *ctinfo_map, size_t mapsize,
1597 		    bool post_ct, u16 zone);
1598 void
1599 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1600 			     struct flow_dissector *flow_dissector,
1601 			     void *target_container);
1602 
1603 void skb_flow_dissect_hash(const struct sk_buff *skb,
1604 			   struct flow_dissector *flow_dissector,
1605 			   void *target_container);
1606 
1607 static inline __u32 skb_get_hash_net(const struct net *net, struct sk_buff *skb)
1608 {
1609 	if (!skb->l4_hash && !skb->sw_hash)
1610 		__skb_get_hash_net(net, skb);
1611 
1612 	return skb->hash;
1613 }
1614 
1615 static inline __u32 skb_get_hash(struct sk_buff *skb)
1616 {
1617 	if (!skb->l4_hash && !skb->sw_hash)
1618 		__skb_get_hash_net(NULL, skb);
1619 
1620 	return skb->hash;
1621 }
1622 
1623 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1624 {
1625 	if (!skb->l4_hash && !skb->sw_hash) {
1626 		struct flow_keys keys;
1627 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1628 
1629 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1630 	}
1631 
1632 	return skb->hash;
1633 }
1634 
1635 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1636 			   const siphash_key_t *perturb);
1637 
1638 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1639 {
1640 	return skb->hash;
1641 }
1642 
1643 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1644 {
1645 	to->hash = from->hash;
1646 	to->sw_hash = from->sw_hash;
1647 	to->l4_hash = from->l4_hash;
1648 };
1649 
1650 static inline int skb_cmp_decrypted(const struct sk_buff *skb1,
1651 				    const struct sk_buff *skb2)
1652 {
1653 #ifdef CONFIG_SKB_DECRYPTED
1654 	return skb2->decrypted - skb1->decrypted;
1655 #else
1656 	return 0;
1657 #endif
1658 }
1659 
1660 static inline bool skb_is_decrypted(const struct sk_buff *skb)
1661 {
1662 #ifdef CONFIG_SKB_DECRYPTED
1663 	return skb->decrypted;
1664 #else
1665 	return false;
1666 #endif
1667 }
1668 
1669 static inline void skb_copy_decrypted(struct sk_buff *to,
1670 				      const struct sk_buff *from)
1671 {
1672 #ifdef CONFIG_SKB_DECRYPTED
1673 	to->decrypted = from->decrypted;
1674 #endif
1675 }
1676 
1677 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1678 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1679 {
1680 	return skb->head + skb->end;
1681 }
1682 
1683 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1684 {
1685 	return skb->end;
1686 }
1687 
1688 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1689 {
1690 	skb->end = offset;
1691 }
1692 #else
1693 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1694 {
1695 	return skb->end;
1696 }
1697 
1698 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1699 {
1700 	return skb->end - skb->head;
1701 }
1702 
1703 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1704 {
1705 	skb->end = skb->head + offset;
1706 }
1707 #endif
1708 
1709 extern const struct ubuf_info_ops msg_zerocopy_ubuf_ops;
1710 
1711 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1712 				       struct ubuf_info *uarg);
1713 
1714 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
1715 
1716 int __zerocopy_sg_from_iter(struct msghdr *msg, struct sock *sk,
1717 			    struct sk_buff *skb, struct iov_iter *from,
1718 			    size_t length);
1719 
1720 int zerocopy_fill_skb_from_iter(struct sk_buff *skb,
1721 				struct iov_iter *from, size_t length);
1722 
1723 static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb,
1724 					  struct msghdr *msg, int len)
1725 {
1726 	return __zerocopy_sg_from_iter(msg, skb->sk, skb, &msg->msg_iter, len);
1727 }
1728 
1729 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1730 			     struct msghdr *msg, int len,
1731 			     struct ubuf_info *uarg);
1732 
1733 /* Internal */
1734 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1735 
1736 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1737 {
1738 	return &skb_shinfo(skb)->hwtstamps;
1739 }
1740 
1741 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1742 {
1743 	bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE;
1744 
1745 	return is_zcopy ? skb_uarg(skb) : NULL;
1746 }
1747 
1748 static inline bool skb_zcopy_pure(const struct sk_buff *skb)
1749 {
1750 	return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY;
1751 }
1752 
1753 static inline bool skb_zcopy_managed(const struct sk_buff *skb)
1754 {
1755 	return skb_shinfo(skb)->flags & SKBFL_MANAGED_FRAG_REFS;
1756 }
1757 
1758 static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1,
1759 				       const struct sk_buff *skb2)
1760 {
1761 	return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2);
1762 }
1763 
1764 static inline void net_zcopy_get(struct ubuf_info *uarg)
1765 {
1766 	refcount_inc(&uarg->refcnt);
1767 }
1768 
1769 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg)
1770 {
1771 	skb_shinfo(skb)->destructor_arg = uarg;
1772 	skb_shinfo(skb)->flags |= uarg->flags;
1773 }
1774 
1775 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1776 				 bool *have_ref)
1777 {
1778 	if (skb && uarg && !skb_zcopy(skb)) {
1779 		if (unlikely(have_ref && *have_ref))
1780 			*have_ref = false;
1781 		else
1782 			net_zcopy_get(uarg);
1783 		skb_zcopy_init(skb, uarg);
1784 	}
1785 }
1786 
1787 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1788 {
1789 	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1790 	skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG;
1791 }
1792 
1793 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1794 {
1795 	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1796 }
1797 
1798 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1799 {
1800 	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1801 }
1802 
1803 static inline void net_zcopy_put(struct ubuf_info *uarg)
1804 {
1805 	if (uarg)
1806 		uarg->ops->complete(NULL, uarg, true);
1807 }
1808 
1809 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1810 {
1811 	if (uarg) {
1812 		if (uarg->ops == &msg_zerocopy_ubuf_ops)
1813 			msg_zerocopy_put_abort(uarg, have_uref);
1814 		else if (have_uref)
1815 			net_zcopy_put(uarg);
1816 	}
1817 }
1818 
1819 /* Release a reference on a zerocopy structure */
1820 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success)
1821 {
1822 	struct ubuf_info *uarg = skb_zcopy(skb);
1823 
1824 	if (uarg) {
1825 		if (!skb_zcopy_is_nouarg(skb))
1826 			uarg->ops->complete(skb, uarg, zerocopy_success);
1827 
1828 		skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY;
1829 	}
1830 }
1831 
1832 void __skb_zcopy_downgrade_managed(struct sk_buff *skb);
1833 
1834 static inline void skb_zcopy_downgrade_managed(struct sk_buff *skb)
1835 {
1836 	if (unlikely(skb_zcopy_managed(skb)))
1837 		__skb_zcopy_downgrade_managed(skb);
1838 }
1839 
1840 /* Return true if frags in this skb are readable by the host. */
1841 static inline bool skb_frags_readable(const struct sk_buff *skb)
1842 {
1843 	return !skb->unreadable;
1844 }
1845 
1846 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1847 {
1848 	skb->next = NULL;
1849 }
1850 
1851 static inline void skb_poison_list(struct sk_buff *skb)
1852 {
1853 #ifdef CONFIG_DEBUG_NET
1854 	skb->next = SKB_LIST_POISON_NEXT;
1855 #endif
1856 }
1857 
1858 /* Iterate through singly-linked GSO fragments of an skb. */
1859 #define skb_list_walk_safe(first, skb, next_skb)                               \
1860 	for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb);  \
1861 	     (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1862 
1863 static inline void skb_list_del_init(struct sk_buff *skb)
1864 {
1865 	__list_del_entry(&skb->list);
1866 	skb_mark_not_on_list(skb);
1867 }
1868 
1869 /**
1870  *	skb_queue_empty - check if a queue is empty
1871  *	@list: queue head
1872  *
1873  *	Returns true if the queue is empty, false otherwise.
1874  */
1875 static inline int skb_queue_empty(const struct sk_buff_head *list)
1876 {
1877 	return list->next == (const struct sk_buff *) list;
1878 }
1879 
1880 /**
1881  *	skb_queue_empty_lockless - check if a queue is empty
1882  *	@list: queue head
1883  *
1884  *	Returns true if the queue is empty, false otherwise.
1885  *	This variant can be used in lockless contexts.
1886  */
1887 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1888 {
1889 	return READ_ONCE(list->next) == (const struct sk_buff *) list;
1890 }
1891 
1892 
1893 /**
1894  *	skb_queue_is_last - check if skb is the last entry in the queue
1895  *	@list: queue head
1896  *	@skb: buffer
1897  *
1898  *	Returns true if @skb is the last buffer on the list.
1899  */
1900 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1901 				     const struct sk_buff *skb)
1902 {
1903 	return skb->next == (const struct sk_buff *) list;
1904 }
1905 
1906 /**
1907  *	skb_queue_is_first - check if skb is the first entry in the queue
1908  *	@list: queue head
1909  *	@skb: buffer
1910  *
1911  *	Returns true if @skb is the first buffer on the list.
1912  */
1913 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1914 				      const struct sk_buff *skb)
1915 {
1916 	return skb->prev == (const struct sk_buff *) list;
1917 }
1918 
1919 /**
1920  *	skb_queue_next - return the next packet in the queue
1921  *	@list: queue head
1922  *	@skb: current buffer
1923  *
1924  *	Return the next packet in @list after @skb.  It is only valid to
1925  *	call this if skb_queue_is_last() evaluates to false.
1926  */
1927 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1928 					     const struct sk_buff *skb)
1929 {
1930 	/* This BUG_ON may seem severe, but if we just return then we
1931 	 * are going to dereference garbage.
1932 	 */
1933 	BUG_ON(skb_queue_is_last(list, skb));
1934 	return skb->next;
1935 }
1936 
1937 /**
1938  *	skb_queue_prev - return the prev packet in the queue
1939  *	@list: queue head
1940  *	@skb: current buffer
1941  *
1942  *	Return the prev packet in @list before @skb.  It is only valid to
1943  *	call this if skb_queue_is_first() evaluates to false.
1944  */
1945 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1946 					     const struct sk_buff *skb)
1947 {
1948 	/* This BUG_ON may seem severe, but if we just return then we
1949 	 * are going to dereference garbage.
1950 	 */
1951 	BUG_ON(skb_queue_is_first(list, skb));
1952 	return skb->prev;
1953 }
1954 
1955 /**
1956  *	skb_get - reference buffer
1957  *	@skb: buffer to reference
1958  *
1959  *	Makes another reference to a socket buffer and returns a pointer
1960  *	to the buffer.
1961  */
1962 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1963 {
1964 	refcount_inc(&skb->users);
1965 	return skb;
1966 }
1967 
1968 /*
1969  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1970  */
1971 
1972 /**
1973  *	skb_cloned - is the buffer a clone
1974  *	@skb: buffer to check
1975  *
1976  *	Returns true if the buffer was generated with skb_clone() and is
1977  *	one of multiple shared copies of the buffer. Cloned buffers are
1978  *	shared data so must not be written to under normal circumstances.
1979  */
1980 static inline int skb_cloned(const struct sk_buff *skb)
1981 {
1982 	return skb->cloned &&
1983 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1984 }
1985 
1986 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1987 {
1988 	might_sleep_if(gfpflags_allow_blocking(pri));
1989 
1990 	if (skb_cloned(skb))
1991 		return pskb_expand_head(skb, 0, 0, pri);
1992 
1993 	return 0;
1994 }
1995 
1996 /* This variant of skb_unclone() makes sure skb->truesize
1997  * and skb_end_offset() are not changed, whenever a new skb->head is needed.
1998  *
1999  * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X))
2000  * when various debugging features are in place.
2001  */
2002 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri);
2003 static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
2004 {
2005 	might_sleep_if(gfpflags_allow_blocking(pri));
2006 
2007 	if (skb_cloned(skb))
2008 		return __skb_unclone_keeptruesize(skb, pri);
2009 	return 0;
2010 }
2011 
2012 /**
2013  *	skb_header_cloned - is the header a clone
2014  *	@skb: buffer to check
2015  *
2016  *	Returns true if modifying the header part of the buffer requires
2017  *	the data to be copied.
2018  */
2019 static inline int skb_header_cloned(const struct sk_buff *skb)
2020 {
2021 	int dataref;
2022 
2023 	if (!skb->cloned)
2024 		return 0;
2025 
2026 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
2027 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
2028 	return dataref != 1;
2029 }
2030 
2031 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
2032 {
2033 	might_sleep_if(gfpflags_allow_blocking(pri));
2034 
2035 	if (skb_header_cloned(skb))
2036 		return pskb_expand_head(skb, 0, 0, pri);
2037 
2038 	return 0;
2039 }
2040 
2041 /**
2042  * __skb_header_release() - allow clones to use the headroom
2043  * @skb: buffer to operate on
2044  *
2045  * See "DOC: dataref and headerless skbs".
2046  */
2047 static inline void __skb_header_release(struct sk_buff *skb)
2048 {
2049 	skb->nohdr = 1;
2050 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
2051 }
2052 
2053 
2054 /**
2055  *	skb_shared - is the buffer shared
2056  *	@skb: buffer to check
2057  *
2058  *	Returns true if more than one person has a reference to this
2059  *	buffer.
2060  */
2061 static inline int skb_shared(const struct sk_buff *skb)
2062 {
2063 	return refcount_read(&skb->users) != 1;
2064 }
2065 
2066 /**
2067  *	skb_share_check - check if buffer is shared and if so clone it
2068  *	@skb: buffer to check
2069  *	@pri: priority for memory allocation
2070  *
2071  *	If the buffer is shared the buffer is cloned and the old copy
2072  *	drops a reference. A new clone with a single reference is returned.
2073  *	If the buffer is not shared the original buffer is returned. When
2074  *	being called from interrupt status or with spinlocks held pri must
2075  *	be GFP_ATOMIC.
2076  *
2077  *	NULL is returned on a memory allocation failure.
2078  */
2079 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
2080 {
2081 	might_sleep_if(gfpflags_allow_blocking(pri));
2082 	if (skb_shared(skb)) {
2083 		struct sk_buff *nskb = skb_clone(skb, pri);
2084 
2085 		if (likely(nskb))
2086 			consume_skb(skb);
2087 		else
2088 			kfree_skb(skb);
2089 		skb = nskb;
2090 	}
2091 	return skb;
2092 }
2093 
2094 /*
2095  *	Copy shared buffers into a new sk_buff. We effectively do COW on
2096  *	packets to handle cases where we have a local reader and forward
2097  *	and a couple of other messy ones. The normal one is tcpdumping
2098  *	a packet that's being forwarded.
2099  */
2100 
2101 /**
2102  *	skb_unshare - make a copy of a shared buffer
2103  *	@skb: buffer to check
2104  *	@pri: priority for memory allocation
2105  *
2106  *	If the socket buffer is a clone then this function creates a new
2107  *	copy of the data, drops a reference count on the old copy and returns
2108  *	the new copy with the reference count at 1. If the buffer is not a clone
2109  *	the original buffer is returned. When called with a spinlock held or
2110  *	from interrupt state @pri must be %GFP_ATOMIC
2111  *
2112  *	%NULL is returned on a memory allocation failure.
2113  */
2114 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
2115 					  gfp_t pri)
2116 {
2117 	might_sleep_if(gfpflags_allow_blocking(pri));
2118 	if (skb_cloned(skb)) {
2119 		struct sk_buff *nskb = skb_copy(skb, pri);
2120 
2121 		/* Free our shared copy */
2122 		if (likely(nskb))
2123 			consume_skb(skb);
2124 		else
2125 			kfree_skb(skb);
2126 		skb = nskb;
2127 	}
2128 	return skb;
2129 }
2130 
2131 /**
2132  *	skb_peek - peek at the head of an &sk_buff_head
2133  *	@list_: list to peek at
2134  *
2135  *	Peek an &sk_buff. Unlike most other operations you _MUST_
2136  *	be careful with this one. A peek leaves the buffer on the
2137  *	list and someone else may run off with it. You must hold
2138  *	the appropriate locks or have a private queue to do this.
2139  *
2140  *	Returns %NULL for an empty list or a pointer to the head element.
2141  *	The reference count is not incremented and the reference is therefore
2142  *	volatile. Use with caution.
2143  */
2144 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
2145 {
2146 	struct sk_buff *skb = list_->next;
2147 
2148 	if (skb == (struct sk_buff *)list_)
2149 		skb = NULL;
2150 	return skb;
2151 }
2152 
2153 /**
2154  *	__skb_peek - peek at the head of a non-empty &sk_buff_head
2155  *	@list_: list to peek at
2156  *
2157  *	Like skb_peek(), but the caller knows that the list is not empty.
2158  */
2159 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
2160 {
2161 	return list_->next;
2162 }
2163 
2164 /**
2165  *	skb_peek_next - peek skb following the given one from a queue
2166  *	@skb: skb to start from
2167  *	@list_: list to peek at
2168  *
2169  *	Returns %NULL when the end of the list is met or a pointer to the
2170  *	next element. The reference count is not incremented and the
2171  *	reference is therefore volatile. Use with caution.
2172  */
2173 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
2174 		const struct sk_buff_head *list_)
2175 {
2176 	struct sk_buff *next = skb->next;
2177 
2178 	if (next == (struct sk_buff *)list_)
2179 		next = NULL;
2180 	return next;
2181 }
2182 
2183 /**
2184  *	skb_peek_tail - peek at the tail of an &sk_buff_head
2185  *	@list_: list to peek at
2186  *
2187  *	Peek an &sk_buff. Unlike most other operations you _MUST_
2188  *	be careful with this one. A peek leaves the buffer on the
2189  *	list and someone else may run off with it. You must hold
2190  *	the appropriate locks or have a private queue to do this.
2191  *
2192  *	Returns %NULL for an empty list or a pointer to the tail element.
2193  *	The reference count is not incremented and the reference is therefore
2194  *	volatile. Use with caution.
2195  */
2196 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
2197 {
2198 	struct sk_buff *skb = READ_ONCE(list_->prev);
2199 
2200 	if (skb == (struct sk_buff *)list_)
2201 		skb = NULL;
2202 	return skb;
2203 
2204 }
2205 
2206 /**
2207  *	skb_queue_len	- get queue length
2208  *	@list_: list to measure
2209  *
2210  *	Return the length of an &sk_buff queue.
2211  */
2212 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
2213 {
2214 	return list_->qlen;
2215 }
2216 
2217 /**
2218  *	skb_queue_len_lockless	- get queue length
2219  *	@list_: list to measure
2220  *
2221  *	Return the length of an &sk_buff queue.
2222  *	This variant can be used in lockless contexts.
2223  */
2224 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
2225 {
2226 	return READ_ONCE(list_->qlen);
2227 }
2228 
2229 /**
2230  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
2231  *	@list: queue to initialize
2232  *
2233  *	This initializes only the list and queue length aspects of
2234  *	an sk_buff_head object.  This allows to initialize the list
2235  *	aspects of an sk_buff_head without reinitializing things like
2236  *	the spinlock.  It can also be used for on-stack sk_buff_head
2237  *	objects where the spinlock is known to not be used.
2238  */
2239 static inline void __skb_queue_head_init(struct sk_buff_head *list)
2240 {
2241 	list->prev = list->next = (struct sk_buff *)list;
2242 	list->qlen = 0;
2243 }
2244 
2245 /*
2246  * This function creates a split out lock class for each invocation;
2247  * this is needed for now since a whole lot of users of the skb-queue
2248  * infrastructure in drivers have different locking usage (in hardirq)
2249  * than the networking core (in softirq only). In the long run either the
2250  * network layer or drivers should need annotation to consolidate the
2251  * main types of usage into 3 classes.
2252  */
2253 static inline void skb_queue_head_init(struct sk_buff_head *list)
2254 {
2255 	spin_lock_init(&list->lock);
2256 	__skb_queue_head_init(list);
2257 }
2258 
2259 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
2260 		struct lock_class_key *class)
2261 {
2262 	skb_queue_head_init(list);
2263 	lockdep_set_class(&list->lock, class);
2264 }
2265 
2266 /*
2267  *	Insert an sk_buff on a list.
2268  *
2269  *	The "__skb_xxxx()" functions are the non-atomic ones that
2270  *	can only be called with interrupts disabled.
2271  */
2272 static inline void __skb_insert(struct sk_buff *newsk,
2273 				struct sk_buff *prev, struct sk_buff *next,
2274 				struct sk_buff_head *list)
2275 {
2276 	/* See skb_queue_empty_lockless() and skb_peek_tail()
2277 	 * for the opposite READ_ONCE()
2278 	 */
2279 	WRITE_ONCE(newsk->next, next);
2280 	WRITE_ONCE(newsk->prev, prev);
2281 	WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk);
2282 	WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk);
2283 	WRITE_ONCE(list->qlen, list->qlen + 1);
2284 }
2285 
2286 static inline void __skb_queue_splice(const struct sk_buff_head *list,
2287 				      struct sk_buff *prev,
2288 				      struct sk_buff *next)
2289 {
2290 	struct sk_buff *first = list->next;
2291 	struct sk_buff *last = list->prev;
2292 
2293 	WRITE_ONCE(first->prev, prev);
2294 	WRITE_ONCE(prev->next, first);
2295 
2296 	WRITE_ONCE(last->next, next);
2297 	WRITE_ONCE(next->prev, last);
2298 }
2299 
2300 /**
2301  *	skb_queue_splice - join two skb lists, this is designed for stacks
2302  *	@list: the new list to add
2303  *	@head: the place to add it in the first list
2304  */
2305 static inline void skb_queue_splice(const struct sk_buff_head *list,
2306 				    struct sk_buff_head *head)
2307 {
2308 	if (!skb_queue_empty(list)) {
2309 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2310 		head->qlen += list->qlen;
2311 	}
2312 }
2313 
2314 /**
2315  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
2316  *	@list: the new list to add
2317  *	@head: the place to add it in the first list
2318  *
2319  *	The list at @list is reinitialised
2320  */
2321 static inline void skb_queue_splice_init(struct sk_buff_head *list,
2322 					 struct sk_buff_head *head)
2323 {
2324 	if (!skb_queue_empty(list)) {
2325 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2326 		head->qlen += list->qlen;
2327 		__skb_queue_head_init(list);
2328 	}
2329 }
2330 
2331 /**
2332  *	skb_queue_splice_tail - join two skb lists, each list being a queue
2333  *	@list: the new list to add
2334  *	@head: the place to add it in the first list
2335  */
2336 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
2337 					 struct sk_buff_head *head)
2338 {
2339 	if (!skb_queue_empty(list)) {
2340 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2341 		head->qlen += list->qlen;
2342 	}
2343 }
2344 
2345 /**
2346  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
2347  *	@list: the new list to add
2348  *	@head: the place to add it in the first list
2349  *
2350  *	Each of the lists is a queue.
2351  *	The list at @list is reinitialised
2352  */
2353 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
2354 					      struct sk_buff_head *head)
2355 {
2356 	if (!skb_queue_empty(list)) {
2357 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2358 		head->qlen += list->qlen;
2359 		__skb_queue_head_init(list);
2360 	}
2361 }
2362 
2363 /**
2364  *	__skb_queue_after - queue a buffer at the list head
2365  *	@list: list to use
2366  *	@prev: place after this buffer
2367  *	@newsk: buffer to queue
2368  *
2369  *	Queue a buffer int the middle of a list. This function takes no locks
2370  *	and you must therefore hold required locks before calling it.
2371  *
2372  *	A buffer cannot be placed on two lists at the same time.
2373  */
2374 static inline void __skb_queue_after(struct sk_buff_head *list,
2375 				     struct sk_buff *prev,
2376 				     struct sk_buff *newsk)
2377 {
2378 	__skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list);
2379 }
2380 
2381 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2382 		struct sk_buff_head *list);
2383 
2384 static inline void __skb_queue_before(struct sk_buff_head *list,
2385 				      struct sk_buff *next,
2386 				      struct sk_buff *newsk)
2387 {
2388 	__skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list);
2389 }
2390 
2391 /**
2392  *	__skb_queue_head - queue a buffer at the list head
2393  *	@list: list to use
2394  *	@newsk: buffer to queue
2395  *
2396  *	Queue a buffer at the start of a list. This function takes no locks
2397  *	and you must therefore hold required locks before calling it.
2398  *
2399  *	A buffer cannot be placed on two lists at the same time.
2400  */
2401 static inline void __skb_queue_head(struct sk_buff_head *list,
2402 				    struct sk_buff *newsk)
2403 {
2404 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
2405 }
2406 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2407 
2408 /**
2409  *	__skb_queue_tail - queue a buffer at the list tail
2410  *	@list: list to use
2411  *	@newsk: buffer to queue
2412  *
2413  *	Queue a buffer at the end of a list. This function takes no locks
2414  *	and you must therefore hold required locks before calling it.
2415  *
2416  *	A buffer cannot be placed on two lists at the same time.
2417  */
2418 static inline void __skb_queue_tail(struct sk_buff_head *list,
2419 				   struct sk_buff *newsk)
2420 {
2421 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
2422 }
2423 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2424 
2425 /*
2426  * remove sk_buff from list. _Must_ be called atomically, and with
2427  * the list known..
2428  */
2429 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
2430 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2431 {
2432 	struct sk_buff *next, *prev;
2433 
2434 	WRITE_ONCE(list->qlen, list->qlen - 1);
2435 	next	   = skb->next;
2436 	prev	   = skb->prev;
2437 	skb->next  = skb->prev = NULL;
2438 	WRITE_ONCE(next->prev, prev);
2439 	WRITE_ONCE(prev->next, next);
2440 }
2441 
2442 /**
2443  *	__skb_dequeue - remove from the head of the queue
2444  *	@list: list to dequeue from
2445  *
2446  *	Remove the head of the list. This function does not take any locks
2447  *	so must be used with appropriate locks held only. The head item is
2448  *	returned or %NULL if the list is empty.
2449  */
2450 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2451 {
2452 	struct sk_buff *skb = skb_peek(list);
2453 	if (skb)
2454 		__skb_unlink(skb, list);
2455 	return skb;
2456 }
2457 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2458 
2459 /**
2460  *	__skb_dequeue_tail - remove from the tail of the queue
2461  *	@list: list to dequeue from
2462  *
2463  *	Remove the tail of the list. This function does not take any locks
2464  *	so must be used with appropriate locks held only. The tail item is
2465  *	returned or %NULL if the list is empty.
2466  */
2467 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2468 {
2469 	struct sk_buff *skb = skb_peek_tail(list);
2470 	if (skb)
2471 		__skb_unlink(skb, list);
2472 	return skb;
2473 }
2474 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2475 
2476 
2477 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2478 {
2479 	return skb->data_len;
2480 }
2481 
2482 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2483 {
2484 	return skb->len - skb->data_len;
2485 }
2486 
2487 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2488 {
2489 	unsigned int i, len = 0;
2490 
2491 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2492 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2493 	return len;
2494 }
2495 
2496 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2497 {
2498 	return skb_headlen(skb) + __skb_pagelen(skb);
2499 }
2500 
2501 static inline void skb_frag_fill_netmem_desc(skb_frag_t *frag,
2502 					     netmem_ref netmem, int off,
2503 					     int size)
2504 {
2505 	frag->netmem = netmem;
2506 	frag->offset = off;
2507 	skb_frag_size_set(frag, size);
2508 }
2509 
2510 static inline void skb_frag_fill_page_desc(skb_frag_t *frag,
2511 					   struct page *page,
2512 					   int off, int size)
2513 {
2514 	skb_frag_fill_netmem_desc(frag, page_to_netmem(page), off, size);
2515 }
2516 
2517 static inline void __skb_fill_netmem_desc_noacc(struct skb_shared_info *shinfo,
2518 						int i, netmem_ref netmem,
2519 						int off, int size)
2520 {
2521 	skb_frag_t *frag = &shinfo->frags[i];
2522 
2523 	skb_frag_fill_netmem_desc(frag, netmem, off, size);
2524 }
2525 
2526 static inline void __skb_fill_page_desc_noacc(struct skb_shared_info *shinfo,
2527 					      int i, struct page *page,
2528 					      int off, int size)
2529 {
2530 	__skb_fill_netmem_desc_noacc(shinfo, i, page_to_netmem(page), off,
2531 				     size);
2532 }
2533 
2534 /**
2535  * skb_len_add - adds a number to len fields of skb
2536  * @skb: buffer to add len to
2537  * @delta: number of bytes to add
2538  */
2539 static inline void skb_len_add(struct sk_buff *skb, int delta)
2540 {
2541 	skb->len += delta;
2542 	skb->data_len += delta;
2543 	skb->truesize += delta;
2544 }
2545 
2546 /**
2547  * __skb_fill_netmem_desc - initialise a fragment in an skb
2548  * @skb: buffer containing fragment to be initialised
2549  * @i: fragment index to initialise
2550  * @netmem: the netmem to use for this fragment
2551  * @off: the offset to the data with @page
2552  * @size: the length of the data
2553  *
2554  * Initialises the @i'th fragment of @skb to point to &size bytes at
2555  * offset @off within @page.
2556  *
2557  * Does not take any additional reference on the fragment.
2558  */
2559 static inline void __skb_fill_netmem_desc(struct sk_buff *skb, int i,
2560 					  netmem_ref netmem, int off, int size)
2561 {
2562 	struct page *page;
2563 
2564 	__skb_fill_netmem_desc_noacc(skb_shinfo(skb), i, netmem, off, size);
2565 
2566 	if (netmem_is_net_iov(netmem)) {
2567 		skb->unreadable = true;
2568 		return;
2569 	}
2570 
2571 	page = netmem_to_page(netmem);
2572 
2573 	/* Propagate page pfmemalloc to the skb if we can. The problem is
2574 	 * that not all callers have unique ownership of the page but rely
2575 	 * on page_is_pfmemalloc doing the right thing(tm).
2576 	 */
2577 	page = compound_head(page);
2578 	if (page_is_pfmemalloc(page))
2579 		skb->pfmemalloc = true;
2580 }
2581 
2582 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2583 					struct page *page, int off, int size)
2584 {
2585 	__skb_fill_netmem_desc(skb, i, page_to_netmem(page), off, size);
2586 }
2587 
2588 static inline void skb_fill_netmem_desc(struct sk_buff *skb, int i,
2589 					netmem_ref netmem, int off, int size)
2590 {
2591 	__skb_fill_netmem_desc(skb, i, netmem, off, size);
2592 	skb_shinfo(skb)->nr_frags = i + 1;
2593 }
2594 
2595 /**
2596  * skb_fill_page_desc - initialise a paged fragment in an skb
2597  * @skb: buffer containing fragment to be initialised
2598  * @i: paged fragment index to initialise
2599  * @page: the page to use for this fragment
2600  * @off: the offset to the data with @page
2601  * @size: the length of the data
2602  *
2603  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2604  * @skb to point to @size bytes at offset @off within @page. In
2605  * addition updates @skb such that @i is the last fragment.
2606  *
2607  * Does not take any additional reference on the fragment.
2608  */
2609 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2610 				      struct page *page, int off, int size)
2611 {
2612 	skb_fill_netmem_desc(skb, i, page_to_netmem(page), off, size);
2613 }
2614 
2615 /**
2616  * skb_fill_page_desc_noacc - initialise a paged fragment in an skb
2617  * @skb: buffer containing fragment to be initialised
2618  * @i: paged fragment index to initialise
2619  * @page: the page to use for this fragment
2620  * @off: the offset to the data with @page
2621  * @size: the length of the data
2622  *
2623  * Variant of skb_fill_page_desc() which does not deal with
2624  * pfmemalloc, if page is not owned by us.
2625  */
2626 static inline void skb_fill_page_desc_noacc(struct sk_buff *skb, int i,
2627 					    struct page *page, int off,
2628 					    int size)
2629 {
2630 	struct skb_shared_info *shinfo = skb_shinfo(skb);
2631 
2632 	__skb_fill_page_desc_noacc(shinfo, i, page, off, size);
2633 	shinfo->nr_frags = i + 1;
2634 }
2635 
2636 void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem,
2637 			    int off, int size, unsigned int truesize);
2638 
2639 static inline void skb_add_rx_frag(struct sk_buff *skb, int i,
2640 				   struct page *page, int off, int size,
2641 				   unsigned int truesize)
2642 {
2643 	skb_add_rx_frag_netmem(skb, i, page_to_netmem(page), off, size,
2644 			       truesize);
2645 }
2646 
2647 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2648 			  unsigned int truesize);
2649 
2650 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2651 
2652 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2653 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2654 {
2655 	return skb->head + skb->tail;
2656 }
2657 
2658 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2659 {
2660 	skb->tail = skb->data - skb->head;
2661 }
2662 
2663 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2664 {
2665 	skb_reset_tail_pointer(skb);
2666 	skb->tail += offset;
2667 }
2668 
2669 #else /* NET_SKBUFF_DATA_USES_OFFSET */
2670 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2671 {
2672 	return skb->tail;
2673 }
2674 
2675 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2676 {
2677 	skb->tail = skb->data;
2678 }
2679 
2680 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2681 {
2682 	skb->tail = skb->data + offset;
2683 }
2684 
2685 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2686 
2687 static inline void skb_assert_len(struct sk_buff *skb)
2688 {
2689 #ifdef CONFIG_DEBUG_NET
2690 	if (WARN_ONCE(!skb->len, "%s\n", __func__))
2691 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
2692 #endif /* CONFIG_DEBUG_NET */
2693 }
2694 
2695 #if defined(CONFIG_FAIL_SKB_REALLOC)
2696 void skb_might_realloc(struct sk_buff *skb);
2697 #else
2698 static inline void skb_might_realloc(struct sk_buff *skb) {}
2699 #endif
2700 
2701 /*
2702  *	Add data to an sk_buff
2703  */
2704 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2705 void *skb_put(struct sk_buff *skb, unsigned int len);
2706 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2707 {
2708 	void *tmp = skb_tail_pointer(skb);
2709 	SKB_LINEAR_ASSERT(skb);
2710 	skb->tail += len;
2711 	skb->len  += len;
2712 	return tmp;
2713 }
2714 
2715 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2716 {
2717 	void *tmp = __skb_put(skb, len);
2718 
2719 	memset(tmp, 0, len);
2720 	return tmp;
2721 }
2722 
2723 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2724 				   unsigned int len)
2725 {
2726 	void *tmp = __skb_put(skb, len);
2727 
2728 	memcpy(tmp, data, len);
2729 	return tmp;
2730 }
2731 
2732 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2733 {
2734 	*(u8 *)__skb_put(skb, 1) = val;
2735 }
2736 
2737 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2738 {
2739 	void *tmp = skb_put(skb, len);
2740 
2741 	memset(tmp, 0, len);
2742 
2743 	return tmp;
2744 }
2745 
2746 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2747 				 unsigned int len)
2748 {
2749 	void *tmp = skb_put(skb, len);
2750 
2751 	memcpy(tmp, data, len);
2752 
2753 	return tmp;
2754 }
2755 
2756 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2757 {
2758 	*(u8 *)skb_put(skb, 1) = val;
2759 }
2760 
2761 void *skb_push(struct sk_buff *skb, unsigned int len);
2762 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2763 {
2764 	DEBUG_NET_WARN_ON_ONCE(len > INT_MAX);
2765 
2766 	skb->data -= len;
2767 	skb->len  += len;
2768 	return skb->data;
2769 }
2770 
2771 void *skb_pull(struct sk_buff *skb, unsigned int len);
2772 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2773 {
2774 	DEBUG_NET_WARN_ON_ONCE(len > INT_MAX);
2775 
2776 	skb->len -= len;
2777 	if (unlikely(skb->len < skb->data_len)) {
2778 #if defined(CONFIG_DEBUG_NET)
2779 		skb->len += len;
2780 		pr_err("__skb_pull(len=%u)\n", len);
2781 		skb_dump(KERN_ERR, skb, false);
2782 #endif
2783 		BUG();
2784 	}
2785 	return skb->data += len;
2786 }
2787 
2788 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2789 {
2790 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2791 }
2792 
2793 void *skb_pull_data(struct sk_buff *skb, size_t len);
2794 
2795 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2796 
2797 static inline enum skb_drop_reason
2798 pskb_may_pull_reason(struct sk_buff *skb, unsigned int len)
2799 {
2800 	DEBUG_NET_WARN_ON_ONCE(len > INT_MAX);
2801 	skb_might_realloc(skb);
2802 
2803 	if (likely(len <= skb_headlen(skb)))
2804 		return SKB_NOT_DROPPED_YET;
2805 
2806 	if (unlikely(len > skb->len))
2807 		return SKB_DROP_REASON_PKT_TOO_SMALL;
2808 
2809 	if (unlikely(!__pskb_pull_tail(skb, len - skb_headlen(skb))))
2810 		return SKB_DROP_REASON_NOMEM;
2811 
2812 	return SKB_NOT_DROPPED_YET;
2813 }
2814 
2815 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2816 {
2817 	return pskb_may_pull_reason(skb, len) == SKB_NOT_DROPPED_YET;
2818 }
2819 
2820 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2821 {
2822 	if (!pskb_may_pull(skb, len))
2823 		return NULL;
2824 
2825 	skb->len -= len;
2826 	return skb->data += len;
2827 }
2828 
2829 void skb_condense(struct sk_buff *skb);
2830 
2831 /**
2832  *	skb_headroom - bytes at buffer head
2833  *	@skb: buffer to check
2834  *
2835  *	Return the number of bytes of free space at the head of an &sk_buff.
2836  */
2837 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2838 {
2839 	return skb->data - skb->head;
2840 }
2841 
2842 /**
2843  *	skb_tailroom - bytes at buffer end
2844  *	@skb: buffer to check
2845  *
2846  *	Return the number of bytes of free space at the tail of an sk_buff
2847  */
2848 static inline int skb_tailroom(const struct sk_buff *skb)
2849 {
2850 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2851 }
2852 
2853 /**
2854  *	skb_availroom - bytes at buffer end
2855  *	@skb: buffer to check
2856  *
2857  *	Return the number of bytes of free space at the tail of an sk_buff
2858  *	allocated by sk_stream_alloc()
2859  */
2860 static inline int skb_availroom(const struct sk_buff *skb)
2861 {
2862 	if (skb_is_nonlinear(skb))
2863 		return 0;
2864 
2865 	return skb->end - skb->tail - skb->reserved_tailroom;
2866 }
2867 
2868 /**
2869  *	skb_reserve - adjust headroom
2870  *	@skb: buffer to alter
2871  *	@len: bytes to move
2872  *
2873  *	Increase the headroom of an empty &sk_buff by reducing the tail
2874  *	room. This is only allowed for an empty buffer.
2875  */
2876 static inline void skb_reserve(struct sk_buff *skb, int len)
2877 {
2878 	skb->data += len;
2879 	skb->tail += len;
2880 }
2881 
2882 /**
2883  *	skb_tailroom_reserve - adjust reserved_tailroom
2884  *	@skb: buffer to alter
2885  *	@mtu: maximum amount of headlen permitted
2886  *	@needed_tailroom: minimum amount of reserved_tailroom
2887  *
2888  *	Set reserved_tailroom so that headlen can be as large as possible but
2889  *	not larger than mtu and tailroom cannot be smaller than
2890  *	needed_tailroom.
2891  *	The required headroom should already have been reserved before using
2892  *	this function.
2893  */
2894 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2895 					unsigned int needed_tailroom)
2896 {
2897 	SKB_LINEAR_ASSERT(skb);
2898 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2899 		/* use at most mtu */
2900 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2901 	else
2902 		/* use up to all available space */
2903 		skb->reserved_tailroom = needed_tailroom;
2904 }
2905 
2906 #define ENCAP_TYPE_ETHER	0
2907 #define ENCAP_TYPE_IPPROTO	1
2908 
2909 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2910 					  __be16 protocol)
2911 {
2912 	skb->inner_protocol = protocol;
2913 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2914 }
2915 
2916 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2917 					 __u8 ipproto)
2918 {
2919 	skb->inner_ipproto = ipproto;
2920 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2921 }
2922 
2923 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2924 {
2925 	skb->inner_mac_header = skb->mac_header;
2926 	skb->inner_network_header = skb->network_header;
2927 	skb->inner_transport_header = skb->transport_header;
2928 }
2929 
2930 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2931 {
2932 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2933 }
2934 
2935 static inline void skb_reset_mac_len(struct sk_buff *skb)
2936 {
2937 	if (!skb_mac_header_was_set(skb)) {
2938 		DEBUG_NET_WARN_ON_ONCE(1);
2939 		skb->mac_len = 0;
2940 	} else {
2941 		skb->mac_len = skb->network_header - skb->mac_header;
2942 	}
2943 }
2944 
2945 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2946 							*skb)
2947 {
2948 	return skb->head + skb->inner_transport_header;
2949 }
2950 
2951 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2952 {
2953 	return skb_inner_transport_header(skb) - skb->data;
2954 }
2955 
2956 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2957 {
2958 	long offset = skb->data - skb->head;
2959 
2960 	DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->inner_transport_header))offset);
2961 	skb->inner_transport_header = offset;
2962 }
2963 
2964 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2965 						   const int offset)
2966 {
2967 	skb_reset_inner_transport_header(skb);
2968 	skb->inner_transport_header += offset;
2969 }
2970 
2971 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2972 {
2973 	return skb->head + skb->inner_network_header;
2974 }
2975 
2976 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2977 {
2978 	long offset = skb->data - skb->head;
2979 
2980 	DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->inner_network_header))offset);
2981 	skb->inner_network_header = offset;
2982 }
2983 
2984 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2985 						const int offset)
2986 {
2987 	skb_reset_inner_network_header(skb);
2988 	skb->inner_network_header += offset;
2989 }
2990 
2991 static inline bool skb_inner_network_header_was_set(const struct sk_buff *skb)
2992 {
2993 	return skb->inner_network_header > 0;
2994 }
2995 
2996 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2997 {
2998 	return skb->head + skb->inner_mac_header;
2999 }
3000 
3001 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
3002 {
3003 	long offset = skb->data - skb->head;
3004 
3005 	DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->inner_mac_header))offset);
3006 	skb->inner_mac_header = offset;
3007 }
3008 
3009 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
3010 					    const int offset)
3011 {
3012 	skb_reset_inner_mac_header(skb);
3013 	skb->inner_mac_header += offset;
3014 }
3015 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
3016 {
3017 	return skb->transport_header != (typeof(skb->transport_header))~0U;
3018 }
3019 
3020 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
3021 {
3022 	DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb));
3023 	return skb->head + skb->transport_header;
3024 }
3025 
3026 static inline void skb_reset_transport_header(struct sk_buff *skb)
3027 {
3028 	long offset = skb->data - skb->head;
3029 
3030 	DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->transport_header))offset);
3031 	skb->transport_header = offset;
3032 }
3033 
3034 static inline void skb_set_transport_header(struct sk_buff *skb,
3035 					    const int offset)
3036 {
3037 	skb_reset_transport_header(skb);
3038 	skb->transport_header += offset;
3039 }
3040 
3041 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
3042 {
3043 	return skb->head + skb->network_header;
3044 }
3045 
3046 static inline void skb_reset_network_header(struct sk_buff *skb)
3047 {
3048 	long offset = skb->data - skb->head;
3049 
3050 	DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->network_header))offset);
3051 	skb->network_header = offset;
3052 }
3053 
3054 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
3055 {
3056 	skb_reset_network_header(skb);
3057 	skb->network_header += offset;
3058 }
3059 
3060 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
3061 {
3062 	DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
3063 	return skb->head + skb->mac_header;
3064 }
3065 
3066 static inline int skb_mac_offset(const struct sk_buff *skb)
3067 {
3068 	return skb_mac_header(skb) - skb->data;
3069 }
3070 
3071 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
3072 {
3073 	DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
3074 	return skb->network_header - skb->mac_header;
3075 }
3076 
3077 static inline void skb_unset_mac_header(struct sk_buff *skb)
3078 {
3079 	skb->mac_header = (typeof(skb->mac_header))~0U;
3080 }
3081 
3082 static inline void skb_reset_mac_header(struct sk_buff *skb)
3083 {
3084 	long offset = skb->data - skb->head;
3085 
3086 	DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->mac_header))offset);
3087 	skb->mac_header = offset;
3088 }
3089 
3090 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
3091 {
3092 	skb_reset_mac_header(skb);
3093 	skb->mac_header += offset;
3094 }
3095 
3096 static inline void skb_pop_mac_header(struct sk_buff *skb)
3097 {
3098 	skb->mac_header = skb->network_header;
3099 }
3100 
3101 static inline void skb_probe_transport_header(struct sk_buff *skb)
3102 {
3103 	struct flow_keys_basic keys;
3104 
3105 	if (skb_transport_header_was_set(skb))
3106 		return;
3107 
3108 	if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
3109 					     NULL, 0, 0, 0, 0))
3110 		skb_set_transport_header(skb, keys.control.thoff);
3111 }
3112 
3113 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
3114 {
3115 	if (skb_mac_header_was_set(skb)) {
3116 		const unsigned char *old_mac = skb_mac_header(skb);
3117 
3118 		skb_set_mac_header(skb, -skb->mac_len);
3119 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
3120 	}
3121 }
3122 
3123 /* Move the full mac header up to current network_header.
3124  * Leaves skb->data pointing at offset skb->mac_len into the mac_header.
3125  * Must be provided the complete mac header length.
3126  */
3127 static inline void skb_mac_header_rebuild_full(struct sk_buff *skb, u32 full_mac_len)
3128 {
3129 	if (skb_mac_header_was_set(skb)) {
3130 		const unsigned char *old_mac = skb_mac_header(skb);
3131 
3132 		skb_set_mac_header(skb, -full_mac_len);
3133 		memmove(skb_mac_header(skb), old_mac, full_mac_len);
3134 		__skb_push(skb, full_mac_len - skb->mac_len);
3135 	}
3136 }
3137 
3138 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
3139 {
3140 	return skb->csum_start - skb_headroom(skb);
3141 }
3142 
3143 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
3144 {
3145 	return skb->head + skb->csum_start;
3146 }
3147 
3148 static inline int skb_transport_offset(const struct sk_buff *skb)
3149 {
3150 	return skb_transport_header(skb) - skb->data;
3151 }
3152 
3153 static inline u32 skb_network_header_len(const struct sk_buff *skb)
3154 {
3155 	DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb));
3156 	return skb->transport_header - skb->network_header;
3157 }
3158 
3159 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
3160 {
3161 	return skb->inner_transport_header - skb->inner_network_header;
3162 }
3163 
3164 static inline int skb_network_offset(const struct sk_buff *skb)
3165 {
3166 	return skb_network_header(skb) - skb->data;
3167 }
3168 
3169 static inline int skb_inner_network_offset(const struct sk_buff *skb)
3170 {
3171 	return skb_inner_network_header(skb) - skb->data;
3172 }
3173 
3174 static inline enum skb_drop_reason
3175 pskb_network_may_pull_reason(struct sk_buff *skb, unsigned int len)
3176 {
3177 	return pskb_may_pull_reason(skb, skb_network_offset(skb) + len);
3178 }
3179 
3180 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
3181 {
3182 	return pskb_network_may_pull_reason(skb, len) == SKB_NOT_DROPPED_YET;
3183 }
3184 
3185 /*
3186  * CPUs often take a performance hit when accessing unaligned memory
3187  * locations. The actual performance hit varies, it can be small if the
3188  * hardware handles it or large if we have to take an exception and fix it
3189  * in software.
3190  *
3191  * Since an ethernet header is 14 bytes network drivers often end up with
3192  * the IP header at an unaligned offset. The IP header can be aligned by
3193  * shifting the start of the packet by 2 bytes. Drivers should do this
3194  * with:
3195  *
3196  * skb_reserve(skb, NET_IP_ALIGN);
3197  *
3198  * The downside to this alignment of the IP header is that the DMA is now
3199  * unaligned. On some architectures the cost of an unaligned DMA is high
3200  * and this cost outweighs the gains made by aligning the IP header.
3201  *
3202  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
3203  * to be overridden.
3204  */
3205 #ifndef NET_IP_ALIGN
3206 #define NET_IP_ALIGN	2
3207 #endif
3208 
3209 /*
3210  * The networking layer reserves some headroom in skb data (via
3211  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
3212  * the header has to grow. In the default case, if the header has to grow
3213  * 32 bytes or less we avoid the reallocation.
3214  *
3215  * Unfortunately this headroom changes the DMA alignment of the resulting
3216  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
3217  * on some architectures. An architecture can override this value,
3218  * perhaps setting it to a cacheline in size (since that will maintain
3219  * cacheline alignment of the DMA). It must be a power of 2.
3220  *
3221  * Various parts of the networking layer expect at least 32 bytes of
3222  * headroom, you should not reduce this.
3223  *
3224  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
3225  * to reduce average number of cache lines per packet.
3226  * get_rps_cpu() for example only access one 64 bytes aligned block :
3227  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
3228  */
3229 #ifndef NET_SKB_PAD
3230 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
3231 #endif
3232 
3233 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
3234 
3235 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
3236 {
3237 	if (WARN_ON(skb_is_nonlinear(skb)))
3238 		return;
3239 	skb->len = len;
3240 	skb_set_tail_pointer(skb, len);
3241 }
3242 
3243 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
3244 {
3245 	__skb_set_length(skb, len);
3246 }
3247 
3248 void skb_trim(struct sk_buff *skb, unsigned int len);
3249 
3250 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
3251 {
3252 	if (skb->data_len)
3253 		return ___pskb_trim(skb, len);
3254 	__skb_trim(skb, len);
3255 	return 0;
3256 }
3257 
3258 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
3259 {
3260 	skb_might_realloc(skb);
3261 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
3262 }
3263 
3264 /**
3265  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
3266  *	@skb: buffer to alter
3267  *	@len: new length
3268  *
3269  *	This is identical to pskb_trim except that the caller knows that
3270  *	the skb is not cloned so we should never get an error due to out-
3271  *	of-memory.
3272  */
3273 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
3274 {
3275 	int err = pskb_trim(skb, len);
3276 	BUG_ON(err);
3277 }
3278 
3279 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
3280 {
3281 	unsigned int diff = len - skb->len;
3282 
3283 	if (skb_tailroom(skb) < diff) {
3284 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
3285 					   GFP_ATOMIC);
3286 		if (ret)
3287 			return ret;
3288 	}
3289 	__skb_set_length(skb, len);
3290 	return 0;
3291 }
3292 
3293 /**
3294  *	skb_orphan - orphan a buffer
3295  *	@skb: buffer to orphan
3296  *
3297  *	If a buffer currently has an owner then we call the owner's
3298  *	destructor function and make the @skb unowned. The buffer continues
3299  *	to exist but is no longer charged to its former owner.
3300  */
3301 static inline void skb_orphan(struct sk_buff *skb)
3302 {
3303 	if (skb->destructor) {
3304 		skb->destructor(skb);
3305 		skb->destructor = NULL;
3306 		skb->sk		= NULL;
3307 	} else {
3308 		BUG_ON(skb->sk);
3309 	}
3310 }
3311 
3312 /**
3313  *	skb_orphan_frags - orphan the frags contained in a buffer
3314  *	@skb: buffer to orphan frags from
3315  *	@gfp_mask: allocation mask for replacement pages
3316  *
3317  *	For each frag in the SKB which needs a destructor (i.e. has an
3318  *	owner) create a copy of that frag and release the original
3319  *	page by calling the destructor.
3320  */
3321 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
3322 {
3323 	if (likely(!skb_zcopy(skb)))
3324 		return 0;
3325 	if (skb_shinfo(skb)->flags & SKBFL_DONT_ORPHAN)
3326 		return 0;
3327 	return skb_copy_ubufs(skb, gfp_mask);
3328 }
3329 
3330 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
3331 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
3332 {
3333 	if (likely(!skb_zcopy(skb)))
3334 		return 0;
3335 	return skb_copy_ubufs(skb, gfp_mask);
3336 }
3337 
3338 /**
3339  *	__skb_queue_purge_reason - empty a list
3340  *	@list: list to empty
3341  *	@reason: drop reason
3342  *
3343  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3344  *	the list and one reference dropped. This function does not take the
3345  *	list lock and the caller must hold the relevant locks to use it.
3346  */
3347 static inline void __skb_queue_purge_reason(struct sk_buff_head *list,
3348 					    enum skb_drop_reason reason)
3349 {
3350 	struct sk_buff *skb;
3351 
3352 	while ((skb = __skb_dequeue(list)) != NULL)
3353 		kfree_skb_reason(skb, reason);
3354 }
3355 
3356 static inline void __skb_queue_purge(struct sk_buff_head *list)
3357 {
3358 	__skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE);
3359 }
3360 
3361 void skb_queue_purge_reason(struct sk_buff_head *list,
3362 			    enum skb_drop_reason reason);
3363 
3364 static inline void skb_queue_purge(struct sk_buff_head *list)
3365 {
3366 	skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE);
3367 }
3368 
3369 unsigned int skb_rbtree_purge(struct rb_root *root);
3370 void skb_errqueue_purge(struct sk_buff_head *list);
3371 
3372 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3373 
3374 /**
3375  * netdev_alloc_frag - allocate a page fragment
3376  * @fragsz: fragment size
3377  *
3378  * Allocates a frag from a page for receive buffer.
3379  * Uses GFP_ATOMIC allocations.
3380  */
3381 static inline void *netdev_alloc_frag(unsigned int fragsz)
3382 {
3383 	return __netdev_alloc_frag_align(fragsz, ~0u);
3384 }
3385 
3386 static inline void *netdev_alloc_frag_align(unsigned int fragsz,
3387 					    unsigned int align)
3388 {
3389 	WARN_ON_ONCE(!is_power_of_2(align));
3390 	return __netdev_alloc_frag_align(fragsz, -align);
3391 }
3392 
3393 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
3394 				   gfp_t gfp_mask);
3395 
3396 /**
3397  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
3398  *	@dev: network device to receive on
3399  *	@length: length to allocate
3400  *
3401  *	Allocate a new &sk_buff and assign it a usage count of one. The
3402  *	buffer has unspecified headroom built in. Users should allocate
3403  *	the headroom they think they need without accounting for the
3404  *	built in space. The built in space is used for optimisations.
3405  *
3406  *	%NULL is returned if there is no free memory. Although this function
3407  *	allocates memory it can be called from an interrupt.
3408  */
3409 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
3410 					       unsigned int length)
3411 {
3412 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
3413 }
3414 
3415 /* legacy helper around __netdev_alloc_skb() */
3416 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
3417 					      gfp_t gfp_mask)
3418 {
3419 	return __netdev_alloc_skb(NULL, length, gfp_mask);
3420 }
3421 
3422 /* legacy helper around netdev_alloc_skb() */
3423 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
3424 {
3425 	return netdev_alloc_skb(NULL, length);
3426 }
3427 
3428 
3429 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
3430 		unsigned int length, gfp_t gfp)
3431 {
3432 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
3433 
3434 	if (NET_IP_ALIGN && skb)
3435 		skb_reserve(skb, NET_IP_ALIGN);
3436 	return skb;
3437 }
3438 
3439 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
3440 		unsigned int length)
3441 {
3442 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
3443 }
3444 
3445 static inline void skb_free_frag(void *addr)
3446 {
3447 	page_frag_free(addr);
3448 }
3449 
3450 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3451 
3452 static inline void *napi_alloc_frag(unsigned int fragsz)
3453 {
3454 	return __napi_alloc_frag_align(fragsz, ~0u);
3455 }
3456 
3457 static inline void *napi_alloc_frag_align(unsigned int fragsz,
3458 					  unsigned int align)
3459 {
3460 	WARN_ON_ONCE(!is_power_of_2(align));
3461 	return __napi_alloc_frag_align(fragsz, -align);
3462 }
3463 
3464 struct sk_buff *napi_alloc_skb(struct napi_struct *napi, unsigned int length);
3465 void napi_consume_skb(struct sk_buff *skb, int budget);
3466 
3467 void napi_skb_free_stolen_head(struct sk_buff *skb);
3468 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason);
3469 
3470 /**
3471  * __dev_alloc_pages - allocate page for network Rx
3472  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3473  * @order: size of the allocation
3474  *
3475  * Allocate a new page.
3476  *
3477  * %NULL is returned if there is no free memory.
3478 */
3479 static inline struct page *__dev_alloc_pages_noprof(gfp_t gfp_mask,
3480 					     unsigned int order)
3481 {
3482 	/* This piece of code contains several assumptions.
3483 	 * 1.  This is for device Rx, therefore a cold page is preferred.
3484 	 * 2.  The expectation is the user wants a compound page.
3485 	 * 3.  If requesting a order 0 page it will not be compound
3486 	 *     due to the check to see if order has a value in prep_new_page
3487 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
3488 	 *     code in gfp_to_alloc_flags that should be enforcing this.
3489 	 */
3490 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
3491 
3492 	return alloc_pages_node_noprof(NUMA_NO_NODE, gfp_mask, order);
3493 }
3494 #define __dev_alloc_pages(...)	alloc_hooks(__dev_alloc_pages_noprof(__VA_ARGS__))
3495 
3496 /*
3497  * This specialized allocator has to be a macro for its allocations to be
3498  * accounted separately (to have a separate alloc_tag).
3499  */
3500 #define dev_alloc_pages(_order) __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, _order)
3501 
3502 /**
3503  * __dev_alloc_page - allocate a page for network Rx
3504  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3505  *
3506  * Allocate a new page.
3507  *
3508  * %NULL is returned if there is no free memory.
3509  */
3510 static inline struct page *__dev_alloc_page_noprof(gfp_t gfp_mask)
3511 {
3512 	return __dev_alloc_pages_noprof(gfp_mask, 0);
3513 }
3514 #define __dev_alloc_page(...)	alloc_hooks(__dev_alloc_page_noprof(__VA_ARGS__))
3515 
3516 /*
3517  * This specialized allocator has to be a macro for its allocations to be
3518  * accounted separately (to have a separate alloc_tag).
3519  */
3520 #define dev_alloc_page()	dev_alloc_pages(0)
3521 
3522 /**
3523  * dev_page_is_reusable - check whether a page can be reused for network Rx
3524  * @page: the page to test
3525  *
3526  * A page shouldn't be considered for reusing/recycling if it was allocated
3527  * under memory pressure or at a distant memory node.
3528  *
3529  * Returns: false if this page should be returned to page allocator, true
3530  * otherwise.
3531  */
3532 static inline bool dev_page_is_reusable(const struct page *page)
3533 {
3534 	return likely(page_to_nid(page) == numa_mem_id() &&
3535 		      !page_is_pfmemalloc(page));
3536 }
3537 
3538 /**
3539  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
3540  *	@page: The page that was allocated from skb_alloc_page
3541  *	@skb: The skb that may need pfmemalloc set
3542  */
3543 static inline void skb_propagate_pfmemalloc(const struct page *page,
3544 					    struct sk_buff *skb)
3545 {
3546 	if (page_is_pfmemalloc(page))
3547 		skb->pfmemalloc = true;
3548 }
3549 
3550 /**
3551  * skb_frag_off() - Returns the offset of a skb fragment
3552  * @frag: the paged fragment
3553  */
3554 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
3555 {
3556 	return frag->offset;
3557 }
3558 
3559 /**
3560  * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
3561  * @frag: skb fragment
3562  * @delta: value to add
3563  */
3564 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
3565 {
3566 	frag->offset += delta;
3567 }
3568 
3569 /**
3570  * skb_frag_off_set() - Sets the offset of a skb fragment
3571  * @frag: skb fragment
3572  * @offset: offset of fragment
3573  */
3574 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
3575 {
3576 	frag->offset = offset;
3577 }
3578 
3579 /**
3580  * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
3581  * @fragto: skb fragment where offset is set
3582  * @fragfrom: skb fragment offset is copied from
3583  */
3584 static inline void skb_frag_off_copy(skb_frag_t *fragto,
3585 				     const skb_frag_t *fragfrom)
3586 {
3587 	fragto->offset = fragfrom->offset;
3588 }
3589 
3590 /* Return: true if the skb_frag contains a net_iov. */
3591 static inline bool skb_frag_is_net_iov(const skb_frag_t *frag)
3592 {
3593 	return netmem_is_net_iov(frag->netmem);
3594 }
3595 
3596 /**
3597  * skb_frag_net_iov - retrieve the net_iov referred to by fragment
3598  * @frag: the fragment
3599  *
3600  * Return: the &struct net_iov associated with @frag. Returns NULL if this
3601  * frag has no associated net_iov.
3602  */
3603 static inline struct net_iov *skb_frag_net_iov(const skb_frag_t *frag)
3604 {
3605 	if (!skb_frag_is_net_iov(frag))
3606 		return NULL;
3607 
3608 	return netmem_to_net_iov(frag->netmem);
3609 }
3610 
3611 /**
3612  * skb_frag_page - retrieve the page referred to by a paged fragment
3613  * @frag: the paged fragment
3614  *
3615  * Return: the &struct page associated with @frag. Returns NULL if this frag
3616  * has no associated page.
3617  */
3618 static inline struct page *skb_frag_page(const skb_frag_t *frag)
3619 {
3620 	if (skb_frag_is_net_iov(frag))
3621 		return NULL;
3622 
3623 	return netmem_to_page(frag->netmem);
3624 }
3625 
3626 /**
3627  * skb_frag_netmem - retrieve the netmem referred to by a fragment
3628  * @frag: the fragment
3629  *
3630  * Return: the &netmem_ref associated with @frag.
3631  */
3632 static inline netmem_ref skb_frag_netmem(const skb_frag_t *frag)
3633 {
3634 	return frag->netmem;
3635 }
3636 
3637 int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb,
3638 		    unsigned int headroom);
3639 int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb,
3640 			 const struct bpf_prog *prog);
3641 
3642 /**
3643  * skb_frag_address - gets the address of the data contained in a paged fragment
3644  * @frag: the paged fragment buffer
3645  *
3646  * Returns: the address of the data within @frag. The page must already
3647  * be mapped.
3648  */
3649 static inline void *skb_frag_address(const skb_frag_t *frag)
3650 {
3651 	if (!skb_frag_page(frag))
3652 		return NULL;
3653 
3654 	return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3655 }
3656 
3657 /**
3658  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3659  * @frag: the paged fragment buffer
3660  *
3661  * Returns: the address of the data within @frag. Checks that the page
3662  * is mapped and returns %NULL otherwise.
3663  */
3664 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3665 {
3666 	void *ptr = page_address(skb_frag_page(frag));
3667 	if (unlikely(!ptr))
3668 		return NULL;
3669 
3670 	return ptr + skb_frag_off(frag);
3671 }
3672 
3673 /**
3674  * skb_frag_page_copy() - sets the page in a fragment from another fragment
3675  * @fragto: skb fragment where page is set
3676  * @fragfrom: skb fragment page is copied from
3677  */
3678 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3679 				      const skb_frag_t *fragfrom)
3680 {
3681 	fragto->netmem = fragfrom->netmem;
3682 }
3683 
3684 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3685 
3686 /**
3687  * __skb_frag_dma_map - maps a paged fragment via the DMA API
3688  * @dev: the device to map the fragment to
3689  * @frag: the paged fragment to map
3690  * @offset: the offset within the fragment (starting at the
3691  *          fragment's own offset)
3692  * @size: the number of bytes to map
3693  * @dir: the direction of the mapping (``PCI_DMA_*``)
3694  *
3695  * Maps the page associated with @frag to @device.
3696  */
3697 static inline dma_addr_t __skb_frag_dma_map(struct device *dev,
3698 					    const skb_frag_t *frag,
3699 					    size_t offset, size_t size,
3700 					    enum dma_data_direction dir)
3701 {
3702 	return dma_map_page(dev, skb_frag_page(frag),
3703 			    skb_frag_off(frag) + offset, size, dir);
3704 }
3705 
3706 #define skb_frag_dma_map(dev, frag, ...)				\
3707 	CONCATENATE(_skb_frag_dma_map,					\
3708 		    COUNT_ARGS(__VA_ARGS__))(dev, frag, ##__VA_ARGS__)
3709 
3710 #define __skb_frag_dma_map1(dev, frag, offset, uf, uo) ({		\
3711 	const skb_frag_t *uf = (frag);					\
3712 	size_t uo = (offset);						\
3713 									\
3714 	__skb_frag_dma_map(dev, uf, uo, skb_frag_size(uf) - uo,		\
3715 			   DMA_TO_DEVICE);				\
3716 })
3717 #define _skb_frag_dma_map1(dev, frag, offset)				\
3718 	__skb_frag_dma_map1(dev, frag, offset, __UNIQUE_ID(frag_),	\
3719 			    __UNIQUE_ID(offset_))
3720 #define _skb_frag_dma_map0(dev, frag)					\
3721 	_skb_frag_dma_map1(dev, frag, 0)
3722 #define _skb_frag_dma_map2(dev, frag, offset, size)			\
3723 	__skb_frag_dma_map(dev, frag, offset, size, DMA_TO_DEVICE)
3724 #define _skb_frag_dma_map3(dev, frag, offset, size, dir)		\
3725 	__skb_frag_dma_map(dev, frag, offset, size, dir)
3726 
3727 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3728 					gfp_t gfp_mask)
3729 {
3730 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3731 }
3732 
3733 
3734 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3735 						  gfp_t gfp_mask)
3736 {
3737 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3738 }
3739 
3740 
3741 /**
3742  *	skb_clone_writable - is the header of a clone writable
3743  *	@skb: buffer to check
3744  *	@len: length up to which to write
3745  *
3746  *	Returns true if modifying the header part of the cloned buffer
3747  *	does not requires the data to be copied.
3748  */
3749 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3750 {
3751 	return !skb_header_cloned(skb) &&
3752 	       skb_headroom(skb) + len <= skb->hdr_len;
3753 }
3754 
3755 static inline int skb_try_make_writable(struct sk_buff *skb,
3756 					unsigned int write_len)
3757 {
3758 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3759 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3760 }
3761 
3762 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3763 			    int cloned)
3764 {
3765 	int delta = 0;
3766 
3767 	if (headroom > skb_headroom(skb))
3768 		delta = headroom - skb_headroom(skb);
3769 
3770 	if (delta || cloned)
3771 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3772 					GFP_ATOMIC);
3773 	return 0;
3774 }
3775 
3776 /**
3777  *	skb_cow - copy header of skb when it is required
3778  *	@skb: buffer to cow
3779  *	@headroom: needed headroom
3780  *
3781  *	If the skb passed lacks sufficient headroom or its data part
3782  *	is shared, data is reallocated. If reallocation fails, an error
3783  *	is returned and original skb is not changed.
3784  *
3785  *	The result is skb with writable area skb->head...skb->tail
3786  *	and at least @headroom of space at head.
3787  */
3788 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3789 {
3790 	return __skb_cow(skb, headroom, skb_cloned(skb));
3791 }
3792 
3793 /**
3794  *	skb_cow_head - skb_cow but only making the head writable
3795  *	@skb: buffer to cow
3796  *	@headroom: needed headroom
3797  *
3798  *	This function is identical to skb_cow except that we replace the
3799  *	skb_cloned check by skb_header_cloned.  It should be used when
3800  *	you only need to push on some header and do not need to modify
3801  *	the data.
3802  */
3803 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3804 {
3805 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
3806 }
3807 
3808 /**
3809  *	skb_padto	- pad an skbuff up to a minimal size
3810  *	@skb: buffer to pad
3811  *	@len: minimal length
3812  *
3813  *	Pads up a buffer to ensure the trailing bytes exist and are
3814  *	blanked. If the buffer already contains sufficient data it
3815  *	is untouched. Otherwise it is extended. Returns zero on
3816  *	success. The skb is freed on error.
3817  */
3818 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3819 {
3820 	unsigned int size = skb->len;
3821 	if (likely(size >= len))
3822 		return 0;
3823 	return skb_pad(skb, len - size);
3824 }
3825 
3826 /**
3827  *	__skb_put_padto - increase size and pad an skbuff up to a minimal size
3828  *	@skb: buffer to pad
3829  *	@len: minimal length
3830  *	@free_on_error: free buffer on error
3831  *
3832  *	Pads up a buffer to ensure the trailing bytes exist and are
3833  *	blanked. If the buffer already contains sufficient data it
3834  *	is untouched. Otherwise it is extended. Returns zero on
3835  *	success. The skb is freed on error if @free_on_error is true.
3836  */
3837 static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3838 					       unsigned int len,
3839 					       bool free_on_error)
3840 {
3841 	unsigned int size = skb->len;
3842 
3843 	if (unlikely(size < len)) {
3844 		len -= size;
3845 		if (__skb_pad(skb, len, free_on_error))
3846 			return -ENOMEM;
3847 		__skb_put(skb, len);
3848 	}
3849 	return 0;
3850 }
3851 
3852 /**
3853  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3854  *	@skb: buffer to pad
3855  *	@len: minimal length
3856  *
3857  *	Pads up a buffer to ensure the trailing bytes exist and are
3858  *	blanked. If the buffer already contains sufficient data it
3859  *	is untouched. Otherwise it is extended. Returns zero on
3860  *	success. The skb is freed on error.
3861  */
3862 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3863 {
3864 	return __skb_put_padto(skb, len, true);
3865 }
3866 
3867 bool csum_and_copy_from_iter_full(void *addr, size_t bytes, __wsum *csum, struct iov_iter *i)
3868 	__must_check;
3869 
3870 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3871 				    const struct page *page, int off)
3872 {
3873 	if (skb_zcopy(skb))
3874 		return false;
3875 	if (i) {
3876 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3877 
3878 		return page == skb_frag_page(frag) &&
3879 		       off == skb_frag_off(frag) + skb_frag_size(frag);
3880 	}
3881 	return false;
3882 }
3883 
3884 static inline int __skb_linearize(struct sk_buff *skb)
3885 {
3886 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3887 }
3888 
3889 /**
3890  *	skb_linearize - convert paged skb to linear one
3891  *	@skb: buffer to linarize
3892  *
3893  *	If there is no free memory -ENOMEM is returned, otherwise zero
3894  *	is returned and the old skb data released.
3895  */
3896 static inline int skb_linearize(struct sk_buff *skb)
3897 {
3898 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3899 }
3900 
3901 /**
3902  * skb_has_shared_frag - can any frag be overwritten
3903  * @skb: buffer to test
3904  *
3905  * Return: true if the skb has at least one frag that might be modified
3906  * by an external entity (as in vmsplice()/sendfile())
3907  */
3908 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3909 {
3910 	return skb_is_nonlinear(skb) &&
3911 	       skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3912 }
3913 
3914 /**
3915  *	skb_linearize_cow - make sure skb is linear and writable
3916  *	@skb: buffer to process
3917  *
3918  *	If there is no free memory -ENOMEM is returned, otherwise zero
3919  *	is returned and the old skb data released.
3920  */
3921 static inline int skb_linearize_cow(struct sk_buff *skb)
3922 {
3923 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3924 	       __skb_linearize(skb) : 0;
3925 }
3926 
3927 static __always_inline void
3928 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3929 		     unsigned int off)
3930 {
3931 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3932 		skb->csum = csum_block_sub(skb->csum,
3933 					   csum_partial(start, len, 0), off);
3934 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3935 		 skb_checksum_start_offset(skb) < 0)
3936 		skb->ip_summed = CHECKSUM_NONE;
3937 }
3938 
3939 /**
3940  *	skb_postpull_rcsum - update checksum for received skb after pull
3941  *	@skb: buffer to update
3942  *	@start: start of data before pull
3943  *	@len: length of data pulled
3944  *
3945  *	After doing a pull on a received packet, you need to call this to
3946  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3947  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3948  */
3949 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3950 				      const void *start, unsigned int len)
3951 {
3952 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3953 		skb->csum = wsum_negate(csum_partial(start, len,
3954 						     wsum_negate(skb->csum)));
3955 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3956 		 skb_checksum_start_offset(skb) < 0)
3957 		skb->ip_summed = CHECKSUM_NONE;
3958 }
3959 
3960 static __always_inline void
3961 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3962 		     unsigned int off)
3963 {
3964 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3965 		skb->csum = csum_block_add(skb->csum,
3966 					   csum_partial(start, len, 0), off);
3967 }
3968 
3969 /**
3970  *	skb_postpush_rcsum - update checksum for received skb after push
3971  *	@skb: buffer to update
3972  *	@start: start of data after push
3973  *	@len: length of data pushed
3974  *
3975  *	After doing a push on a received packet, you need to call this to
3976  *	update the CHECKSUM_COMPLETE checksum.
3977  */
3978 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3979 				      const void *start, unsigned int len)
3980 {
3981 	__skb_postpush_rcsum(skb, start, len, 0);
3982 }
3983 
3984 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3985 
3986 /**
3987  *	skb_push_rcsum - push skb and update receive checksum
3988  *	@skb: buffer to update
3989  *	@len: length of data pulled
3990  *
3991  *	This function performs an skb_push on the packet and updates
3992  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3993  *	receive path processing instead of skb_push unless you know
3994  *	that the checksum difference is zero (e.g., a valid IP header)
3995  *	or you are setting ip_summed to CHECKSUM_NONE.
3996  */
3997 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3998 {
3999 	skb_push(skb, len);
4000 	skb_postpush_rcsum(skb, skb->data, len);
4001 	return skb->data;
4002 }
4003 
4004 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
4005 /**
4006  *	pskb_trim_rcsum - trim received skb and update checksum
4007  *	@skb: buffer to trim
4008  *	@len: new length
4009  *
4010  *	This is exactly the same as pskb_trim except that it ensures the
4011  *	checksum of received packets are still valid after the operation.
4012  *	It can change skb pointers.
4013  */
4014 
4015 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
4016 {
4017 	skb_might_realloc(skb);
4018 	if (likely(len >= skb->len))
4019 		return 0;
4020 	return pskb_trim_rcsum_slow(skb, len);
4021 }
4022 
4023 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
4024 {
4025 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4026 		skb->ip_summed = CHECKSUM_NONE;
4027 	__skb_trim(skb, len);
4028 	return 0;
4029 }
4030 
4031 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
4032 {
4033 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4034 		skb->ip_summed = CHECKSUM_NONE;
4035 	return __skb_grow(skb, len);
4036 }
4037 
4038 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
4039 #define skb_rb_first(root) rb_to_skb(rb_first(root))
4040 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
4041 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
4042 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
4043 
4044 #define skb_queue_walk(queue, skb) \
4045 		for (skb = (queue)->next;					\
4046 		     skb != (struct sk_buff *)(queue);				\
4047 		     skb = skb->next)
4048 
4049 #define skb_queue_walk_safe(queue, skb, tmp)					\
4050 		for (skb = (queue)->next, tmp = skb->next;			\
4051 		     skb != (struct sk_buff *)(queue);				\
4052 		     skb = tmp, tmp = skb->next)
4053 
4054 #define skb_queue_walk_from(queue, skb)						\
4055 		for (; skb != (struct sk_buff *)(queue);			\
4056 		     skb = skb->next)
4057 
4058 #define skb_rbtree_walk(skb, root)						\
4059 		for (skb = skb_rb_first(root); skb != NULL;			\
4060 		     skb = skb_rb_next(skb))
4061 
4062 #define skb_rbtree_walk_from(skb)						\
4063 		for (; skb != NULL;						\
4064 		     skb = skb_rb_next(skb))
4065 
4066 #define skb_rbtree_walk_from_safe(skb, tmp)					\
4067 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
4068 		     skb = tmp)
4069 
4070 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
4071 		for (tmp = skb->next;						\
4072 		     skb != (struct sk_buff *)(queue);				\
4073 		     skb = tmp, tmp = skb->next)
4074 
4075 #define skb_queue_reverse_walk(queue, skb) \
4076 		for (skb = (queue)->prev;					\
4077 		     skb != (struct sk_buff *)(queue);				\
4078 		     skb = skb->prev)
4079 
4080 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
4081 		for (skb = (queue)->prev, tmp = skb->prev;			\
4082 		     skb != (struct sk_buff *)(queue);				\
4083 		     skb = tmp, tmp = skb->prev)
4084 
4085 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
4086 		for (tmp = skb->prev;						\
4087 		     skb != (struct sk_buff *)(queue);				\
4088 		     skb = tmp, tmp = skb->prev)
4089 
4090 static inline bool skb_has_frag_list(const struct sk_buff *skb)
4091 {
4092 	return skb_shinfo(skb)->frag_list != NULL;
4093 }
4094 
4095 static inline void skb_frag_list_init(struct sk_buff *skb)
4096 {
4097 	skb_shinfo(skb)->frag_list = NULL;
4098 }
4099 
4100 #define skb_walk_frags(skb, iter)	\
4101 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
4102 
4103 
4104 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
4105 				int *err, long *timeo_p,
4106 				const struct sk_buff *skb);
4107 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
4108 					  struct sk_buff_head *queue,
4109 					  unsigned int flags,
4110 					  int *off, int *err,
4111 					  struct sk_buff **last);
4112 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
4113 					struct sk_buff_head *queue,
4114 					unsigned int flags, int *off, int *err,
4115 					struct sk_buff **last);
4116 struct sk_buff *__skb_recv_datagram(struct sock *sk,
4117 				    struct sk_buff_head *sk_queue,
4118 				    unsigned int flags, int *off, int *err);
4119 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err);
4120 __poll_t datagram_poll(struct file *file, struct socket *sock,
4121 			   struct poll_table_struct *wait);
4122 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
4123 			   struct iov_iter *to, int size);
4124 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
4125 					struct msghdr *msg, int size)
4126 {
4127 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
4128 }
4129 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
4130 				   struct msghdr *msg);
4131 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
4132 			   struct iov_iter *to, int len,
4133 			   struct ahash_request *hash);
4134 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
4135 				 struct iov_iter *from, int len);
4136 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
4137 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
4138 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
4139 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
4140 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
4141 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
4142 			      int len);
4143 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
4144 		    struct pipe_inode_info *pipe, unsigned int len,
4145 		    unsigned int flags);
4146 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
4147 			 int len);
4148 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
4149 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
4150 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
4151 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
4152 		 int len, int hlen);
4153 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
4154 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
4155 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
4156 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
4157 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
4158 				 unsigned int offset);
4159 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
4160 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len);
4161 int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev);
4162 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
4163 int skb_vlan_pop(struct sk_buff *skb);
4164 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
4165 int skb_eth_pop(struct sk_buff *skb);
4166 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
4167 		 const unsigned char *src);
4168 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
4169 		  int mac_len, bool ethernet);
4170 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
4171 		 bool ethernet);
4172 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
4173 int skb_mpls_dec_ttl(struct sk_buff *skb);
4174 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
4175 			     gfp_t gfp);
4176 
4177 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
4178 {
4179 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
4180 }
4181 
4182 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
4183 {
4184 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
4185 }
4186 
4187 struct skb_checksum_ops {
4188 	__wsum (*update)(const void *mem, int len, __wsum wsum);
4189 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
4190 };
4191 
4192 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
4193 
4194 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
4195 		      __wsum csum, const struct skb_checksum_ops *ops);
4196 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
4197 		    __wsum csum);
4198 
4199 static inline void * __must_check
4200 __skb_header_pointer(const struct sk_buff *skb, int offset, int len,
4201 		     const void *data, int hlen, void *buffer)
4202 {
4203 	if (likely(hlen - offset >= len))
4204 		return (void *)data + offset;
4205 
4206 	if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0))
4207 		return NULL;
4208 
4209 	return buffer;
4210 }
4211 
4212 static inline void * __must_check
4213 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
4214 {
4215 	return __skb_header_pointer(skb, offset, len, skb->data,
4216 				    skb_headlen(skb), buffer);
4217 }
4218 
4219 static inline void * __must_check
4220 skb_pointer_if_linear(const struct sk_buff *skb, int offset, int len)
4221 {
4222 	if (likely(skb_headlen(skb) - offset >= len))
4223 		return skb->data + offset;
4224 	return NULL;
4225 }
4226 
4227 /**
4228  *	skb_needs_linearize - check if we need to linearize a given skb
4229  *			      depending on the given device features.
4230  *	@skb: socket buffer to check
4231  *	@features: net device features
4232  *
4233  *	Returns true if either:
4234  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
4235  *	2. skb is fragmented and the device does not support SG.
4236  */
4237 static inline bool skb_needs_linearize(struct sk_buff *skb,
4238 				       netdev_features_t features)
4239 {
4240 	return skb_is_nonlinear(skb) &&
4241 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
4242 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
4243 }
4244 
4245 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
4246 					     void *to,
4247 					     const unsigned int len)
4248 {
4249 	memcpy(to, skb->data, len);
4250 }
4251 
4252 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
4253 						    const int offset, void *to,
4254 						    const unsigned int len)
4255 {
4256 	memcpy(to, skb->data + offset, len);
4257 }
4258 
4259 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
4260 					   const void *from,
4261 					   const unsigned int len)
4262 {
4263 	memcpy(skb->data, from, len);
4264 }
4265 
4266 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
4267 						  const int offset,
4268 						  const void *from,
4269 						  const unsigned int len)
4270 {
4271 	memcpy(skb->data + offset, from, len);
4272 }
4273 
4274 void skb_init(void);
4275 
4276 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
4277 {
4278 	return skb->tstamp;
4279 }
4280 
4281 /**
4282  *	skb_get_timestamp - get timestamp from a skb
4283  *	@skb: skb to get stamp from
4284  *	@stamp: pointer to struct __kernel_old_timeval to store stamp in
4285  *
4286  *	Timestamps are stored in the skb as offsets to a base timestamp.
4287  *	This function converts the offset back to a struct timeval and stores
4288  *	it in stamp.
4289  */
4290 static inline void skb_get_timestamp(const struct sk_buff *skb,
4291 				     struct __kernel_old_timeval *stamp)
4292 {
4293 	*stamp = ns_to_kernel_old_timeval(skb->tstamp);
4294 }
4295 
4296 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
4297 					 struct __kernel_sock_timeval *stamp)
4298 {
4299 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4300 
4301 	stamp->tv_sec = ts.tv_sec;
4302 	stamp->tv_usec = ts.tv_nsec / 1000;
4303 }
4304 
4305 static inline void skb_get_timestampns(const struct sk_buff *skb,
4306 				       struct __kernel_old_timespec *stamp)
4307 {
4308 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4309 
4310 	stamp->tv_sec = ts.tv_sec;
4311 	stamp->tv_nsec = ts.tv_nsec;
4312 }
4313 
4314 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
4315 					   struct __kernel_timespec *stamp)
4316 {
4317 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4318 
4319 	stamp->tv_sec = ts.tv_sec;
4320 	stamp->tv_nsec = ts.tv_nsec;
4321 }
4322 
4323 static inline void __net_timestamp(struct sk_buff *skb)
4324 {
4325 	skb->tstamp = ktime_get_real();
4326 	skb->tstamp_type = SKB_CLOCK_REALTIME;
4327 }
4328 
4329 static inline ktime_t net_timedelta(ktime_t t)
4330 {
4331 	return ktime_sub(ktime_get_real(), t);
4332 }
4333 
4334 static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt,
4335 					 u8 tstamp_type)
4336 {
4337 	skb->tstamp = kt;
4338 
4339 	if (kt)
4340 		skb->tstamp_type = tstamp_type;
4341 	else
4342 		skb->tstamp_type = SKB_CLOCK_REALTIME;
4343 }
4344 
4345 static inline void skb_set_delivery_type_by_clockid(struct sk_buff *skb,
4346 						    ktime_t kt, clockid_t clockid)
4347 {
4348 	u8 tstamp_type = SKB_CLOCK_REALTIME;
4349 
4350 	switch (clockid) {
4351 	case CLOCK_REALTIME:
4352 		break;
4353 	case CLOCK_MONOTONIC:
4354 		tstamp_type = SKB_CLOCK_MONOTONIC;
4355 		break;
4356 	case CLOCK_TAI:
4357 		tstamp_type = SKB_CLOCK_TAI;
4358 		break;
4359 	default:
4360 		WARN_ON_ONCE(1);
4361 		kt = 0;
4362 	}
4363 
4364 	skb_set_delivery_time(skb, kt, tstamp_type);
4365 }
4366 
4367 DECLARE_STATIC_KEY_FALSE(netstamp_needed_key);
4368 
4369 /* It is used in the ingress path to clear the delivery_time.
4370  * If needed, set the skb->tstamp to the (rcv) timestamp.
4371  */
4372 static inline void skb_clear_delivery_time(struct sk_buff *skb)
4373 {
4374 	if (skb->tstamp_type) {
4375 		skb->tstamp_type = SKB_CLOCK_REALTIME;
4376 		if (static_branch_unlikely(&netstamp_needed_key))
4377 			skb->tstamp = ktime_get_real();
4378 		else
4379 			skb->tstamp = 0;
4380 	}
4381 }
4382 
4383 static inline void skb_clear_tstamp(struct sk_buff *skb)
4384 {
4385 	if (skb->tstamp_type)
4386 		return;
4387 
4388 	skb->tstamp = 0;
4389 }
4390 
4391 static inline ktime_t skb_tstamp(const struct sk_buff *skb)
4392 {
4393 	if (skb->tstamp_type)
4394 		return 0;
4395 
4396 	return skb->tstamp;
4397 }
4398 
4399 static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond)
4400 {
4401 	if (skb->tstamp_type != SKB_CLOCK_MONOTONIC && skb->tstamp)
4402 		return skb->tstamp;
4403 
4404 	if (static_branch_unlikely(&netstamp_needed_key) || cond)
4405 		return ktime_get_real();
4406 
4407 	return 0;
4408 }
4409 
4410 static inline u8 skb_metadata_len(const struct sk_buff *skb)
4411 {
4412 	return skb_shinfo(skb)->meta_len;
4413 }
4414 
4415 static inline void *skb_metadata_end(const struct sk_buff *skb)
4416 {
4417 	return skb_mac_header(skb);
4418 }
4419 
4420 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
4421 					  const struct sk_buff *skb_b,
4422 					  u8 meta_len)
4423 {
4424 	const void *a = skb_metadata_end(skb_a);
4425 	const void *b = skb_metadata_end(skb_b);
4426 	u64 diffs = 0;
4427 
4428 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) ||
4429 	    BITS_PER_LONG != 64)
4430 		goto slow;
4431 
4432 	/* Using more efficient variant than plain call to memcmp(). */
4433 	switch (meta_len) {
4434 #define __it(x, op) (x -= sizeof(u##op))
4435 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
4436 	case 32: diffs |= __it_diff(a, b, 64);
4437 		fallthrough;
4438 	case 24: diffs |= __it_diff(a, b, 64);
4439 		fallthrough;
4440 	case 16: diffs |= __it_diff(a, b, 64);
4441 		fallthrough;
4442 	case  8: diffs |= __it_diff(a, b, 64);
4443 		break;
4444 	case 28: diffs |= __it_diff(a, b, 64);
4445 		fallthrough;
4446 	case 20: diffs |= __it_diff(a, b, 64);
4447 		fallthrough;
4448 	case 12: diffs |= __it_diff(a, b, 64);
4449 		fallthrough;
4450 	case  4: diffs |= __it_diff(a, b, 32);
4451 		break;
4452 	default:
4453 slow:
4454 		return memcmp(a - meta_len, b - meta_len, meta_len);
4455 	}
4456 	return diffs;
4457 }
4458 
4459 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
4460 					const struct sk_buff *skb_b)
4461 {
4462 	u8 len_a = skb_metadata_len(skb_a);
4463 	u8 len_b = skb_metadata_len(skb_b);
4464 
4465 	if (!(len_a | len_b))
4466 		return false;
4467 
4468 	return len_a != len_b ?
4469 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
4470 }
4471 
4472 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
4473 {
4474 	skb_shinfo(skb)->meta_len = meta_len;
4475 }
4476 
4477 static inline void skb_metadata_clear(struct sk_buff *skb)
4478 {
4479 	skb_metadata_set(skb, 0);
4480 }
4481 
4482 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
4483 
4484 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
4485 
4486 void skb_clone_tx_timestamp(struct sk_buff *skb);
4487 bool skb_defer_rx_timestamp(struct sk_buff *skb);
4488 
4489 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
4490 
4491 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
4492 {
4493 }
4494 
4495 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
4496 {
4497 	return false;
4498 }
4499 
4500 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
4501 
4502 /**
4503  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
4504  *
4505  * PHY drivers may accept clones of transmitted packets for
4506  * timestamping via their phy_driver.txtstamp method. These drivers
4507  * must call this function to return the skb back to the stack with a
4508  * timestamp.
4509  *
4510  * @skb: clone of the original outgoing packet
4511  * @hwtstamps: hardware time stamps
4512  *
4513  */
4514 void skb_complete_tx_timestamp(struct sk_buff *skb,
4515 			       struct skb_shared_hwtstamps *hwtstamps);
4516 
4517 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb,
4518 		     struct skb_shared_hwtstamps *hwtstamps,
4519 		     struct sock *sk, int tstype);
4520 
4521 /**
4522  * skb_tstamp_tx - queue clone of skb with send time stamps
4523  * @orig_skb:	the original outgoing packet
4524  * @hwtstamps:	hardware time stamps, may be NULL if not available
4525  *
4526  * If the skb has a socket associated, then this function clones the
4527  * skb (thus sharing the actual data and optional structures), stores
4528  * the optional hardware time stamping information (if non NULL) or
4529  * generates a software time stamp (otherwise), then queues the clone
4530  * to the error queue of the socket.  Errors are silently ignored.
4531  */
4532 void skb_tstamp_tx(struct sk_buff *orig_skb,
4533 		   struct skb_shared_hwtstamps *hwtstamps);
4534 
4535 /**
4536  * skb_tx_timestamp() - Driver hook for transmit timestamping
4537  *
4538  * Ethernet MAC Drivers should call this function in their hard_xmit()
4539  * function immediately before giving the sk_buff to the MAC hardware.
4540  *
4541  * Specifically, one should make absolutely sure that this function is
4542  * called before TX completion of this packet can trigger.  Otherwise
4543  * the packet could potentially already be freed.
4544  *
4545  * @skb: A socket buffer.
4546  */
4547 static inline void skb_tx_timestamp(struct sk_buff *skb)
4548 {
4549 	skb_clone_tx_timestamp(skb);
4550 	if (skb_shinfo(skb)->tx_flags & (SKBTX_SW_TSTAMP | SKBTX_BPF))
4551 		skb_tstamp_tx(skb, NULL);
4552 }
4553 
4554 /**
4555  * skb_complete_wifi_ack - deliver skb with wifi status
4556  *
4557  * @skb: the original outgoing packet
4558  * @acked: ack status
4559  *
4560  */
4561 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
4562 
4563 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
4564 __sum16 __skb_checksum_complete(struct sk_buff *skb);
4565 
4566 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
4567 {
4568 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
4569 		skb->csum_valid ||
4570 		(skb->ip_summed == CHECKSUM_PARTIAL &&
4571 		 skb_checksum_start_offset(skb) >= 0));
4572 }
4573 
4574 /**
4575  *	skb_checksum_complete - Calculate checksum of an entire packet
4576  *	@skb: packet to process
4577  *
4578  *	This function calculates the checksum over the entire packet plus
4579  *	the value of skb->csum.  The latter can be used to supply the
4580  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
4581  *	checksum.
4582  *
4583  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
4584  *	this function can be used to verify that checksum on received
4585  *	packets.  In that case the function should return zero if the
4586  *	checksum is correct.  In particular, this function will return zero
4587  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
4588  *	hardware has already verified the correctness of the checksum.
4589  */
4590 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
4591 {
4592 	return skb_csum_unnecessary(skb) ?
4593 	       0 : __skb_checksum_complete(skb);
4594 }
4595 
4596 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
4597 {
4598 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4599 		if (skb->csum_level == 0)
4600 			skb->ip_summed = CHECKSUM_NONE;
4601 		else
4602 			skb->csum_level--;
4603 	}
4604 }
4605 
4606 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
4607 {
4608 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4609 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
4610 			skb->csum_level++;
4611 	} else if (skb->ip_summed == CHECKSUM_NONE) {
4612 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4613 		skb->csum_level = 0;
4614 	}
4615 }
4616 
4617 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
4618 {
4619 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4620 		skb->ip_summed = CHECKSUM_NONE;
4621 		skb->csum_level = 0;
4622 	}
4623 }
4624 
4625 /* Check if we need to perform checksum complete validation.
4626  *
4627  * Returns: true if checksum complete is needed, false otherwise
4628  * (either checksum is unnecessary or zero checksum is allowed).
4629  */
4630 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
4631 						  bool zero_okay,
4632 						  __sum16 check)
4633 {
4634 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
4635 		skb->csum_valid = 1;
4636 		__skb_decr_checksum_unnecessary(skb);
4637 		return false;
4638 	}
4639 
4640 	return true;
4641 }
4642 
4643 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
4644  * in checksum_init.
4645  */
4646 #define CHECKSUM_BREAK 76
4647 
4648 /* Unset checksum-complete
4649  *
4650  * Unset checksum complete can be done when packet is being modified
4651  * (uncompressed for instance) and checksum-complete value is
4652  * invalidated.
4653  */
4654 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
4655 {
4656 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4657 		skb->ip_summed = CHECKSUM_NONE;
4658 }
4659 
4660 /* Validate (init) checksum based on checksum complete.
4661  *
4662  * Return values:
4663  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
4664  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4665  *	checksum is stored in skb->csum for use in __skb_checksum_complete
4666  *   non-zero: value of invalid checksum
4667  *
4668  */
4669 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4670 						       bool complete,
4671 						       __wsum psum)
4672 {
4673 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
4674 		if (!csum_fold(csum_add(psum, skb->csum))) {
4675 			skb->csum_valid = 1;
4676 			return 0;
4677 		}
4678 	}
4679 
4680 	skb->csum = psum;
4681 
4682 	if (complete || skb->len <= CHECKSUM_BREAK) {
4683 		__sum16 csum;
4684 
4685 		csum = __skb_checksum_complete(skb);
4686 		skb->csum_valid = !csum;
4687 		return csum;
4688 	}
4689 
4690 	return 0;
4691 }
4692 
4693 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4694 {
4695 	return 0;
4696 }
4697 
4698 /* Perform checksum validate (init). Note that this is a macro since we only
4699  * want to calculate the pseudo header which is an input function if necessary.
4700  * First we try to validate without any computation (checksum unnecessary) and
4701  * then calculate based on checksum complete calling the function to compute
4702  * pseudo header.
4703  *
4704  * Return values:
4705  *   0: checksum is validated or try to in skb_checksum_complete
4706  *   non-zero: value of invalid checksum
4707  */
4708 #define __skb_checksum_validate(skb, proto, complete,			\
4709 				zero_okay, check, compute_pseudo)	\
4710 ({									\
4711 	__sum16 __ret = 0;						\
4712 	skb->csum_valid = 0;						\
4713 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
4714 		__ret = __skb_checksum_validate_complete(skb,		\
4715 				complete, compute_pseudo(skb, proto));	\
4716 	__ret;								\
4717 })
4718 
4719 #define skb_checksum_init(skb, proto, compute_pseudo)			\
4720 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4721 
4722 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
4723 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4724 
4725 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
4726 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4727 
4728 #define skb_checksum_validate_zero_check(skb, proto, check,		\
4729 					 compute_pseudo)		\
4730 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4731 
4732 #define skb_checksum_simple_validate(skb)				\
4733 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4734 
4735 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4736 {
4737 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4738 }
4739 
4740 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4741 {
4742 	skb->csum = ~pseudo;
4743 	skb->ip_summed = CHECKSUM_COMPLETE;
4744 }
4745 
4746 #define skb_checksum_try_convert(skb, proto, compute_pseudo)	\
4747 do {									\
4748 	if (__skb_checksum_convert_check(skb))				\
4749 		__skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4750 } while (0)
4751 
4752 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4753 					      u16 start, u16 offset)
4754 {
4755 	skb->ip_summed = CHECKSUM_PARTIAL;
4756 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4757 	skb->csum_offset = offset - start;
4758 }
4759 
4760 /* Update skbuf and packet to reflect the remote checksum offload operation.
4761  * When called, ptr indicates the starting point for skb->csum when
4762  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4763  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4764  */
4765 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4766 				       int start, int offset, bool nopartial)
4767 {
4768 	__wsum delta;
4769 
4770 	if (!nopartial) {
4771 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
4772 		return;
4773 	}
4774 
4775 	if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4776 		__skb_checksum_complete(skb);
4777 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4778 	}
4779 
4780 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
4781 
4782 	/* Adjust skb->csum since we changed the packet */
4783 	skb->csum = csum_add(skb->csum, delta);
4784 }
4785 
4786 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4787 {
4788 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4789 	return (void *)(skb->_nfct & NFCT_PTRMASK);
4790 #else
4791 	return NULL;
4792 #endif
4793 }
4794 
4795 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4796 {
4797 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4798 	return skb->_nfct;
4799 #else
4800 	return 0UL;
4801 #endif
4802 }
4803 
4804 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4805 {
4806 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4807 	skb->slow_gro |= !!nfct;
4808 	skb->_nfct = nfct;
4809 #endif
4810 }
4811 
4812 #ifdef CONFIG_SKB_EXTENSIONS
4813 enum skb_ext_id {
4814 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4815 	SKB_EXT_BRIDGE_NF,
4816 #endif
4817 #ifdef CONFIG_XFRM
4818 	SKB_EXT_SEC_PATH,
4819 #endif
4820 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4821 	TC_SKB_EXT,
4822 #endif
4823 #if IS_ENABLED(CONFIG_MPTCP)
4824 	SKB_EXT_MPTCP,
4825 #endif
4826 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4827 	SKB_EXT_MCTP,
4828 #endif
4829 	SKB_EXT_NUM, /* must be last */
4830 };
4831 
4832 /**
4833  *	struct skb_ext - sk_buff extensions
4834  *	@refcnt: 1 on allocation, deallocated on 0
4835  *	@offset: offset to add to @data to obtain extension address
4836  *	@chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4837  *	@data: start of extension data, variable sized
4838  *
4839  *	Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4840  *	to use 'u8' types while allowing up to 2kb worth of extension data.
4841  */
4842 struct skb_ext {
4843 	refcount_t refcnt;
4844 	u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4845 	u8 chunks;		/* same */
4846 	char data[] __aligned(8);
4847 };
4848 
4849 struct skb_ext *__skb_ext_alloc(gfp_t flags);
4850 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4851 		    struct skb_ext *ext);
4852 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4853 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4854 void __skb_ext_put(struct skb_ext *ext);
4855 
4856 static inline void skb_ext_put(struct sk_buff *skb)
4857 {
4858 	if (skb->active_extensions)
4859 		__skb_ext_put(skb->extensions);
4860 }
4861 
4862 static inline void __skb_ext_copy(struct sk_buff *dst,
4863 				  const struct sk_buff *src)
4864 {
4865 	dst->active_extensions = src->active_extensions;
4866 
4867 	if (src->active_extensions) {
4868 		struct skb_ext *ext = src->extensions;
4869 
4870 		refcount_inc(&ext->refcnt);
4871 		dst->extensions = ext;
4872 	}
4873 }
4874 
4875 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4876 {
4877 	skb_ext_put(dst);
4878 	__skb_ext_copy(dst, src);
4879 }
4880 
4881 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4882 {
4883 	return !!ext->offset[i];
4884 }
4885 
4886 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4887 {
4888 	return skb->active_extensions & (1 << id);
4889 }
4890 
4891 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4892 {
4893 	if (skb_ext_exist(skb, id))
4894 		__skb_ext_del(skb, id);
4895 }
4896 
4897 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4898 {
4899 	if (skb_ext_exist(skb, id)) {
4900 		struct skb_ext *ext = skb->extensions;
4901 
4902 		return (void *)ext + (ext->offset[id] << 3);
4903 	}
4904 
4905 	return NULL;
4906 }
4907 
4908 static inline void skb_ext_reset(struct sk_buff *skb)
4909 {
4910 	if (unlikely(skb->active_extensions)) {
4911 		__skb_ext_put(skb->extensions);
4912 		skb->active_extensions = 0;
4913 	}
4914 }
4915 
4916 static inline bool skb_has_extensions(struct sk_buff *skb)
4917 {
4918 	return unlikely(skb->active_extensions);
4919 }
4920 #else
4921 static inline void skb_ext_put(struct sk_buff *skb) {}
4922 static inline void skb_ext_reset(struct sk_buff *skb) {}
4923 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4924 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4925 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4926 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4927 #endif /* CONFIG_SKB_EXTENSIONS */
4928 
4929 static inline void nf_reset_ct(struct sk_buff *skb)
4930 {
4931 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4932 	nf_conntrack_put(skb_nfct(skb));
4933 	skb->_nfct = 0;
4934 #endif
4935 }
4936 
4937 static inline void nf_reset_trace(struct sk_buff *skb)
4938 {
4939 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
4940 	skb->nf_trace = 0;
4941 #endif
4942 }
4943 
4944 static inline void ipvs_reset(struct sk_buff *skb)
4945 {
4946 #if IS_ENABLED(CONFIG_IP_VS)
4947 	skb->ipvs_property = 0;
4948 #endif
4949 }
4950 
4951 /* Note: This doesn't put any conntrack info in dst. */
4952 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4953 			     bool copy)
4954 {
4955 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4956 	dst->_nfct = src->_nfct;
4957 	nf_conntrack_get(skb_nfct(src));
4958 #endif
4959 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
4960 	if (copy)
4961 		dst->nf_trace = src->nf_trace;
4962 #endif
4963 }
4964 
4965 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4966 {
4967 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4968 	nf_conntrack_put(skb_nfct(dst));
4969 #endif
4970 	dst->slow_gro = src->slow_gro;
4971 	__nf_copy(dst, src, true);
4972 }
4973 
4974 #ifdef CONFIG_NETWORK_SECMARK
4975 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4976 {
4977 	to->secmark = from->secmark;
4978 }
4979 
4980 static inline void skb_init_secmark(struct sk_buff *skb)
4981 {
4982 	skb->secmark = 0;
4983 }
4984 #else
4985 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4986 { }
4987 
4988 static inline void skb_init_secmark(struct sk_buff *skb)
4989 { }
4990 #endif
4991 
4992 static inline int secpath_exists(const struct sk_buff *skb)
4993 {
4994 #ifdef CONFIG_XFRM
4995 	return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4996 #else
4997 	return 0;
4998 #endif
4999 }
5000 
5001 static inline bool skb_irq_freeable(const struct sk_buff *skb)
5002 {
5003 	return !skb->destructor &&
5004 		!secpath_exists(skb) &&
5005 		!skb_nfct(skb) &&
5006 		!skb->_skb_refdst &&
5007 		!skb_has_frag_list(skb);
5008 }
5009 
5010 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
5011 {
5012 	skb->queue_mapping = queue_mapping;
5013 }
5014 
5015 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
5016 {
5017 	return skb->queue_mapping;
5018 }
5019 
5020 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
5021 {
5022 	to->queue_mapping = from->queue_mapping;
5023 }
5024 
5025 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
5026 {
5027 	skb->queue_mapping = rx_queue + 1;
5028 }
5029 
5030 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
5031 {
5032 	return skb->queue_mapping - 1;
5033 }
5034 
5035 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
5036 {
5037 	return skb->queue_mapping != 0;
5038 }
5039 
5040 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
5041 {
5042 	skb->dst_pending_confirm = val;
5043 }
5044 
5045 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
5046 {
5047 	return skb->dst_pending_confirm != 0;
5048 }
5049 
5050 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
5051 {
5052 #ifdef CONFIG_XFRM
5053 	return skb_ext_find(skb, SKB_EXT_SEC_PATH);
5054 #else
5055 	return NULL;
5056 #endif
5057 }
5058 
5059 static inline bool skb_is_gso(const struct sk_buff *skb)
5060 {
5061 	return skb_shinfo(skb)->gso_size;
5062 }
5063 
5064 /* Note: Should be called only if skb_is_gso(skb) is true */
5065 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
5066 {
5067 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
5068 }
5069 
5070 /* Note: Should be called only if skb_is_gso(skb) is true */
5071 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
5072 {
5073 	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
5074 }
5075 
5076 /* Note: Should be called only if skb_is_gso(skb) is true */
5077 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
5078 {
5079 	return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
5080 }
5081 
5082 static inline void skb_gso_reset(struct sk_buff *skb)
5083 {
5084 	skb_shinfo(skb)->gso_size = 0;
5085 	skb_shinfo(skb)->gso_segs = 0;
5086 	skb_shinfo(skb)->gso_type = 0;
5087 }
5088 
5089 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
5090 					 u16 increment)
5091 {
5092 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
5093 		return;
5094 	shinfo->gso_size += increment;
5095 }
5096 
5097 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
5098 					 u16 decrement)
5099 {
5100 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
5101 		return;
5102 	shinfo->gso_size -= decrement;
5103 }
5104 
5105 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
5106 
5107 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
5108 {
5109 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
5110 	 * wanted then gso_type will be set. */
5111 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5112 
5113 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
5114 	    unlikely(shinfo->gso_type == 0)) {
5115 		__skb_warn_lro_forwarding(skb);
5116 		return true;
5117 	}
5118 	return false;
5119 }
5120 
5121 static inline void skb_forward_csum(struct sk_buff *skb)
5122 {
5123 	/* Unfortunately we don't support this one.  Any brave souls? */
5124 	if (skb->ip_summed == CHECKSUM_COMPLETE)
5125 		skb->ip_summed = CHECKSUM_NONE;
5126 }
5127 
5128 /**
5129  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
5130  * @skb: skb to check
5131  *
5132  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
5133  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
5134  * use this helper, to document places where we make this assertion.
5135  */
5136 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
5137 {
5138 	DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE);
5139 }
5140 
5141 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
5142 
5143 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
5144 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5145 				     unsigned int transport_len,
5146 				     __sum16(*skb_chkf)(struct sk_buff *skb));
5147 
5148 /**
5149  * skb_head_is_locked - Determine if the skb->head is locked down
5150  * @skb: skb to check
5151  *
5152  * The head on skbs build around a head frag can be removed if they are
5153  * not cloned.  This function returns true if the skb head is locked down
5154  * due to either being allocated via kmalloc, or by being a clone with
5155  * multiple references to the head.
5156  */
5157 static inline bool skb_head_is_locked(const struct sk_buff *skb)
5158 {
5159 	return !skb->head_frag || skb_cloned(skb);
5160 }
5161 
5162 /* Local Checksum Offload.
5163  * Compute outer checksum based on the assumption that the
5164  * inner checksum will be offloaded later.
5165  * See Documentation/networking/checksum-offloads.rst for
5166  * explanation of how this works.
5167  * Fill in outer checksum adjustment (e.g. with sum of outer
5168  * pseudo-header) before calling.
5169  * Also ensure that inner checksum is in linear data area.
5170  */
5171 static inline __wsum lco_csum(struct sk_buff *skb)
5172 {
5173 	unsigned char *csum_start = skb_checksum_start(skb);
5174 	unsigned char *l4_hdr = skb_transport_header(skb);
5175 	__wsum partial;
5176 
5177 	/* Start with complement of inner checksum adjustment */
5178 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
5179 						    skb->csum_offset));
5180 
5181 	/* Add in checksum of our headers (incl. outer checksum
5182 	 * adjustment filled in by caller) and return result.
5183 	 */
5184 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
5185 }
5186 
5187 static inline bool skb_is_redirected(const struct sk_buff *skb)
5188 {
5189 	return skb->redirected;
5190 }
5191 
5192 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
5193 {
5194 	skb->redirected = 1;
5195 #ifdef CONFIG_NET_REDIRECT
5196 	skb->from_ingress = from_ingress;
5197 	if (skb->from_ingress)
5198 		skb_clear_tstamp(skb);
5199 #endif
5200 }
5201 
5202 static inline void skb_reset_redirect(struct sk_buff *skb)
5203 {
5204 	skb->redirected = 0;
5205 }
5206 
5207 static inline void skb_set_redirected_noclear(struct sk_buff *skb,
5208 					      bool from_ingress)
5209 {
5210 	skb->redirected = 1;
5211 #ifdef CONFIG_NET_REDIRECT
5212 	skb->from_ingress = from_ingress;
5213 #endif
5214 }
5215 
5216 static inline bool skb_csum_is_sctp(struct sk_buff *skb)
5217 {
5218 #if IS_ENABLED(CONFIG_IP_SCTP)
5219 	return skb->csum_not_inet;
5220 #else
5221 	return 0;
5222 #endif
5223 }
5224 
5225 static inline void skb_reset_csum_not_inet(struct sk_buff *skb)
5226 {
5227 	skb->ip_summed = CHECKSUM_NONE;
5228 #if IS_ENABLED(CONFIG_IP_SCTP)
5229 	skb->csum_not_inet = 0;
5230 #endif
5231 }
5232 
5233 static inline void skb_set_kcov_handle(struct sk_buff *skb,
5234 				       const u64 kcov_handle)
5235 {
5236 #ifdef CONFIG_KCOV
5237 	skb->kcov_handle = kcov_handle;
5238 #endif
5239 }
5240 
5241 static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
5242 {
5243 #ifdef CONFIG_KCOV
5244 	return skb->kcov_handle;
5245 #else
5246 	return 0;
5247 #endif
5248 }
5249 
5250 static inline void skb_mark_for_recycle(struct sk_buff *skb)
5251 {
5252 #ifdef CONFIG_PAGE_POOL
5253 	skb->pp_recycle = 1;
5254 #endif
5255 }
5256 
5257 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter,
5258 			     ssize_t maxsize, gfp_t gfp);
5259 
5260 #endif	/* __KERNEL__ */
5261 #endif	/* _LINUX_SKBUFF_H */
5262