xref: /linux-6.15/include/linux/skbuff.h (revision a5c43003)
1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <[email protected]>
6  *		Florian La Roche, <[email protected]>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/cache.h>
22 
23 #include <asm/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/dmaengine.h>
31 #include <linux/hrtimer.h>
32 
33 /* Don't change this without changing skb_csum_unnecessary! */
34 #define CHECKSUM_NONE 0
35 #define CHECKSUM_UNNECESSARY 1
36 #define CHECKSUM_COMPLETE 2
37 #define CHECKSUM_PARTIAL 3
38 
39 #define SKB_DATA_ALIGN(X)	(((X) + (SMP_CACHE_BYTES - 1)) & \
40 				 ~(SMP_CACHE_BYTES - 1))
41 #define SKB_WITH_OVERHEAD(X)	\
42 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
43 #define SKB_MAX_ORDER(X, ORDER) \
44 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
45 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
46 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
47 
48 /* A. Checksumming of received packets by device.
49  *
50  *	NONE: device failed to checksum this packet.
51  *		skb->csum is undefined.
52  *
53  *	UNNECESSARY: device parsed packet and wouldbe verified checksum.
54  *		skb->csum is undefined.
55  *	      It is bad option, but, unfortunately, many of vendors do this.
56  *	      Apparently with secret goal to sell you new device, when you
57  *	      will add new protocol to your host. F.e. IPv6. 8)
58  *
59  *	COMPLETE: the most generic way. Device supplied checksum of _all_
60  *	    the packet as seen by netif_rx in skb->csum.
61  *	    NOTE: Even if device supports only some protocols, but
62  *	    is able to produce some skb->csum, it MUST use COMPLETE,
63  *	    not UNNECESSARY.
64  *
65  *	PARTIAL: identical to the case for output below.  This may occur
66  *	    on a packet received directly from another Linux OS, e.g.,
67  *	    a virtualised Linux kernel on the same host.  The packet can
68  *	    be treated in the same way as UNNECESSARY except that on
69  *	    output (i.e., forwarding) the checksum must be filled in
70  *	    by the OS or the hardware.
71  *
72  * B. Checksumming on output.
73  *
74  *	NONE: skb is checksummed by protocol or csum is not required.
75  *
76  *	PARTIAL: device is required to csum packet as seen by hard_start_xmit
77  *	from skb->csum_start to the end and to record the checksum
78  *	at skb->csum_start + skb->csum_offset.
79  *
80  *	Device must show its capabilities in dev->features, set
81  *	at device setup time.
82  *	NETIF_F_HW_CSUM	- it is clever device, it is able to checksum
83  *			  everything.
84  *	NETIF_F_NO_CSUM - loopback or reliable single hop media.
85  *	NETIF_F_IP_CSUM - device is dumb. It is able to csum only
86  *			  TCP/UDP over IPv4. Sigh. Vendors like this
87  *			  way by an unknown reason. Though, see comment above
88  *			  about CHECKSUM_UNNECESSARY. 8)
89  *	NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
90  *
91  *	Any questions? No questions, good. 		--ANK
92  */
93 
94 struct net_device;
95 struct scatterlist;
96 struct pipe_inode_info;
97 
98 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
99 struct nf_conntrack {
100 	atomic_t use;
101 };
102 #endif
103 
104 #ifdef CONFIG_BRIDGE_NETFILTER
105 struct nf_bridge_info {
106 	atomic_t use;
107 	struct net_device *physindev;
108 	struct net_device *physoutdev;
109 	unsigned int mask;
110 	unsigned long data[32 / sizeof(unsigned long)];
111 };
112 #endif
113 
114 struct sk_buff_head {
115 	/* These two members must be first. */
116 	struct sk_buff	*next;
117 	struct sk_buff	*prev;
118 
119 	__u32		qlen;
120 	spinlock_t	lock;
121 };
122 
123 struct sk_buff;
124 
125 /* To allow 64K frame to be packed as single skb without frag_list */
126 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
127 
128 typedef struct skb_frag_struct skb_frag_t;
129 
130 struct skb_frag_struct {
131 	struct page *page;
132 	__u32 page_offset;
133 	__u32 size;
134 };
135 
136 #define HAVE_HW_TIME_STAMP
137 
138 /**
139  * struct skb_shared_hwtstamps - hardware time stamps
140  * @hwtstamp:	hardware time stamp transformed into duration
141  *		since arbitrary point in time
142  * @syststamp:	hwtstamp transformed to system time base
143  *
144  * Software time stamps generated by ktime_get_real() are stored in
145  * skb->tstamp. The relation between the different kinds of time
146  * stamps is as follows:
147  *
148  * syststamp and tstamp can be compared against each other in
149  * arbitrary combinations.  The accuracy of a
150  * syststamp/tstamp/"syststamp from other device" comparison is
151  * limited by the accuracy of the transformation into system time
152  * base. This depends on the device driver and its underlying
153  * hardware.
154  *
155  * hwtstamps can only be compared against other hwtstamps from
156  * the same device.
157  *
158  * This structure is attached to packets as part of the
159  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
160  */
161 struct skb_shared_hwtstamps {
162 	ktime_t	hwtstamp;
163 	ktime_t	syststamp;
164 };
165 
166 /**
167  * struct skb_shared_tx - instructions for time stamping of outgoing packets
168  * @hardware:		generate hardware time stamp
169  * @software:		generate software time stamp
170  * @in_progress:	device driver is going to provide
171  *			hardware time stamp
172  * @flags:		all shared_tx flags
173  *
174  * These flags are attached to packets as part of the
175  * &skb_shared_info. Use skb_tx() to get a pointer.
176  */
177 union skb_shared_tx {
178 	struct {
179 		__u8	hardware:1,
180 			software:1,
181 			in_progress:1;
182 	};
183 	__u8 flags;
184 };
185 
186 /* This data is invariant across clones and lives at
187  * the end of the header data, ie. at skb->end.
188  */
189 struct skb_shared_info {
190 	unsigned short	nr_frags;
191 	unsigned short	gso_size;
192 	/* Warning: this field is not always filled in (UFO)! */
193 	unsigned short	gso_segs;
194 	unsigned short  gso_type;
195 	__be32          ip6_frag_id;
196 	union skb_shared_tx tx_flags;
197 	struct sk_buff	*frag_list;
198 	struct skb_shared_hwtstamps hwtstamps;
199 
200 	/*
201 	 * Warning : all fields before dataref are cleared in __alloc_skb()
202 	 */
203 	atomic_t	dataref;
204 
205 	skb_frag_t	frags[MAX_SKB_FRAGS];
206 	/* Intermediate layers must ensure that destructor_arg
207 	 * remains valid until skb destructor */
208 	void *		destructor_arg;
209 };
210 
211 /* We divide dataref into two halves.  The higher 16 bits hold references
212  * to the payload part of skb->data.  The lower 16 bits hold references to
213  * the entire skb->data.  A clone of a headerless skb holds the length of
214  * the header in skb->hdr_len.
215  *
216  * All users must obey the rule that the skb->data reference count must be
217  * greater than or equal to the payload reference count.
218  *
219  * Holding a reference to the payload part means that the user does not
220  * care about modifications to the header part of skb->data.
221  */
222 #define SKB_DATAREF_SHIFT 16
223 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
224 
225 
226 enum {
227 	SKB_FCLONE_UNAVAILABLE,
228 	SKB_FCLONE_ORIG,
229 	SKB_FCLONE_CLONE,
230 };
231 
232 enum {
233 	SKB_GSO_TCPV4 = 1 << 0,
234 	SKB_GSO_UDP = 1 << 1,
235 
236 	/* This indicates the skb is from an untrusted source. */
237 	SKB_GSO_DODGY = 1 << 2,
238 
239 	/* This indicates the tcp segment has CWR set. */
240 	SKB_GSO_TCP_ECN = 1 << 3,
241 
242 	SKB_GSO_TCPV6 = 1 << 4,
243 
244 	SKB_GSO_FCOE = 1 << 5,
245 };
246 
247 #if BITS_PER_LONG > 32
248 #define NET_SKBUFF_DATA_USES_OFFSET 1
249 #endif
250 
251 #ifdef NET_SKBUFF_DATA_USES_OFFSET
252 typedef unsigned int sk_buff_data_t;
253 #else
254 typedef unsigned char *sk_buff_data_t;
255 #endif
256 
257 /**
258  *	struct sk_buff - socket buffer
259  *	@next: Next buffer in list
260  *	@prev: Previous buffer in list
261  *	@sk: Socket we are owned by
262  *	@tstamp: Time we arrived
263  *	@dev: Device we arrived on/are leaving by
264  *	@transport_header: Transport layer header
265  *	@network_header: Network layer header
266  *	@mac_header: Link layer header
267  *	@_skb_refdst: destination entry (with norefcount bit)
268  *	@sp: the security path, used for xfrm
269  *	@cb: Control buffer. Free for use by every layer. Put private vars here
270  *	@len: Length of actual data
271  *	@data_len: Data length
272  *	@mac_len: Length of link layer header
273  *	@hdr_len: writable header length of cloned skb
274  *	@csum: Checksum (must include start/offset pair)
275  *	@csum_start: Offset from skb->head where checksumming should start
276  *	@csum_offset: Offset from csum_start where checksum should be stored
277  *	@local_df: allow local fragmentation
278  *	@cloned: Head may be cloned (check refcnt to be sure)
279  *	@nohdr: Payload reference only, must not modify header
280  *	@pkt_type: Packet class
281  *	@fclone: skbuff clone status
282  *	@ip_summed: Driver fed us an IP checksum
283  *	@priority: Packet queueing priority
284  *	@users: User count - see {datagram,tcp}.c
285  *	@protocol: Packet protocol from driver
286  *	@truesize: Buffer size
287  *	@head: Head of buffer
288  *	@data: Data head pointer
289  *	@tail: Tail pointer
290  *	@end: End pointer
291  *	@destructor: Destruct function
292  *	@mark: Generic packet mark
293  *	@nfct: Associated connection, if any
294  *	@ipvs_property: skbuff is owned by ipvs
295  *	@peeked: this packet has been seen already, so stats have been
296  *		done for it, don't do them again
297  *	@nf_trace: netfilter packet trace flag
298  *	@nfctinfo: Relationship of this skb to the connection
299  *	@nfct_reasm: netfilter conntrack re-assembly pointer
300  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
301  *	@skb_iif: ifindex of device we arrived on
302  *	@rxhash: the packet hash computed on receive
303  *	@queue_mapping: Queue mapping for multiqueue devices
304  *	@tc_index: Traffic control index
305  *	@tc_verd: traffic control verdict
306  *	@ndisc_nodetype: router type (from link layer)
307  *	@dma_cookie: a cookie to one of several possible DMA operations
308  *		done by skb DMA functions
309  *	@secmark: security marking
310  *	@vlan_tci: vlan tag control information
311  */
312 
313 struct sk_buff {
314 	/* These two members must be first. */
315 	struct sk_buff		*next;
316 	struct sk_buff		*prev;
317 
318 	ktime_t			tstamp;
319 
320 	struct sock		*sk;
321 	struct net_device	*dev;
322 
323 	/*
324 	 * This is the control buffer. It is free to use for every
325 	 * layer. Please put your private variables there. If you
326 	 * want to keep them across layers you have to do a skb_clone()
327 	 * first. This is owned by whoever has the skb queued ATM.
328 	 */
329 	char			cb[48] __aligned(8);
330 
331 	unsigned long		_skb_refdst;
332 #ifdef CONFIG_XFRM
333 	struct	sec_path	*sp;
334 #endif
335 	unsigned int		len,
336 				data_len;
337 	__u16			mac_len,
338 				hdr_len;
339 	union {
340 		__wsum		csum;
341 		struct {
342 			__u16	csum_start;
343 			__u16	csum_offset;
344 		};
345 	};
346 	__u32			priority;
347 	kmemcheck_bitfield_begin(flags1);
348 	__u8			local_df:1,
349 				cloned:1,
350 				ip_summed:2,
351 				nohdr:1,
352 				nfctinfo:3;
353 	__u8			pkt_type:3,
354 				fclone:2,
355 				ipvs_property:1,
356 				peeked:1,
357 				nf_trace:1;
358 	kmemcheck_bitfield_end(flags1);
359 	__be16			protocol;
360 
361 	void			(*destructor)(struct sk_buff *skb);
362 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
363 	struct nf_conntrack	*nfct;
364 	struct sk_buff		*nfct_reasm;
365 #endif
366 #ifdef CONFIG_BRIDGE_NETFILTER
367 	struct nf_bridge_info	*nf_bridge;
368 #endif
369 
370 	int			skb_iif;
371 #ifdef CONFIG_NET_SCHED
372 	__u16			tc_index;	/* traffic control index */
373 #ifdef CONFIG_NET_CLS_ACT
374 	__u16			tc_verd;	/* traffic control verdict */
375 #endif
376 #endif
377 
378 	__u32			rxhash;
379 
380 	kmemcheck_bitfield_begin(flags2);
381 	__u16			queue_mapping:16;
382 #ifdef CONFIG_IPV6_NDISC_NODETYPE
383 	__u8			ndisc_nodetype:2;
384 #endif
385 	kmemcheck_bitfield_end(flags2);
386 
387 	/* 0/14 bit hole */
388 
389 #ifdef CONFIG_NET_DMA
390 	dma_cookie_t		dma_cookie;
391 #endif
392 #ifdef CONFIG_NETWORK_SECMARK
393 	__u32			secmark;
394 #endif
395 	union {
396 		__u32		mark;
397 		__u32		dropcount;
398 	};
399 
400 	__u16			vlan_tci;
401 
402 	sk_buff_data_t		transport_header;
403 	sk_buff_data_t		network_header;
404 	sk_buff_data_t		mac_header;
405 	/* These elements must be at the end, see alloc_skb() for details.  */
406 	sk_buff_data_t		tail;
407 	sk_buff_data_t		end;
408 	unsigned char		*head,
409 				*data;
410 	unsigned int		truesize;
411 	atomic_t		users;
412 };
413 
414 #ifdef __KERNEL__
415 /*
416  *	Handling routines are only of interest to the kernel
417  */
418 #include <linux/slab.h>
419 
420 #include <asm/system.h>
421 
422 /*
423  * skb might have a dst pointer attached, refcounted or not.
424  * _skb_refdst low order bit is set if refcount was _not_ taken
425  */
426 #define SKB_DST_NOREF	1UL
427 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
428 
429 /**
430  * skb_dst - returns skb dst_entry
431  * @skb: buffer
432  *
433  * Returns skb dst_entry, regardless of reference taken or not.
434  */
435 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
436 {
437 	/* If refdst was not refcounted, check we still are in a
438 	 * rcu_read_lock section
439 	 */
440 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
441 		!rcu_read_lock_held() &&
442 		!rcu_read_lock_bh_held());
443 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
444 }
445 
446 /**
447  * skb_dst_set - sets skb dst
448  * @skb: buffer
449  * @dst: dst entry
450  *
451  * Sets skb dst, assuming a reference was taken on dst and should
452  * be released by skb_dst_drop()
453  */
454 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
455 {
456 	skb->_skb_refdst = (unsigned long)dst;
457 }
458 
459 /**
460  * skb_dst_set_noref - sets skb dst, without a reference
461  * @skb: buffer
462  * @dst: dst entry
463  *
464  * Sets skb dst, assuming a reference was not taken on dst
465  * skb_dst_drop() should not dst_release() this dst
466  */
467 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
468 {
469 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
470 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
471 }
472 
473 /**
474  * skb_dst_is_noref - Test if skb dst isnt refcounted
475  * @skb: buffer
476  */
477 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
478 {
479 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
480 }
481 
482 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
483 {
484 	return (struct rtable *)skb_dst(skb);
485 }
486 
487 extern void kfree_skb(struct sk_buff *skb);
488 extern void consume_skb(struct sk_buff *skb);
489 extern void	       __kfree_skb(struct sk_buff *skb);
490 extern struct sk_buff *__alloc_skb(unsigned int size,
491 				   gfp_t priority, int fclone, int node);
492 static inline struct sk_buff *alloc_skb(unsigned int size,
493 					gfp_t priority)
494 {
495 	return __alloc_skb(size, priority, 0, -1);
496 }
497 
498 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
499 					       gfp_t priority)
500 {
501 	return __alloc_skb(size, priority, 1, -1);
502 }
503 
504 extern int skb_recycle_check(struct sk_buff *skb, int skb_size);
505 
506 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
507 extern struct sk_buff *skb_clone(struct sk_buff *skb,
508 				 gfp_t priority);
509 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
510 				gfp_t priority);
511 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
512 				 gfp_t gfp_mask);
513 extern int	       pskb_expand_head(struct sk_buff *skb,
514 					int nhead, int ntail,
515 					gfp_t gfp_mask);
516 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
517 					    unsigned int headroom);
518 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
519 				       int newheadroom, int newtailroom,
520 				       gfp_t priority);
521 extern int	       skb_to_sgvec(struct sk_buff *skb,
522 				    struct scatterlist *sg, int offset,
523 				    int len);
524 extern int	       skb_cow_data(struct sk_buff *skb, int tailbits,
525 				    struct sk_buff **trailer);
526 extern int	       skb_pad(struct sk_buff *skb, int pad);
527 #define dev_kfree_skb(a)	consume_skb(a)
528 
529 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
530 			int getfrag(void *from, char *to, int offset,
531 			int len,int odd, struct sk_buff *skb),
532 			void *from, int length);
533 
534 struct skb_seq_state {
535 	__u32		lower_offset;
536 	__u32		upper_offset;
537 	__u32		frag_idx;
538 	__u32		stepped_offset;
539 	struct sk_buff	*root_skb;
540 	struct sk_buff	*cur_skb;
541 	__u8		*frag_data;
542 };
543 
544 extern void	      skb_prepare_seq_read(struct sk_buff *skb,
545 					   unsigned int from, unsigned int to,
546 					   struct skb_seq_state *st);
547 extern unsigned int   skb_seq_read(unsigned int consumed, const u8 **data,
548 				   struct skb_seq_state *st);
549 extern void	      skb_abort_seq_read(struct skb_seq_state *st);
550 
551 extern unsigned int   skb_find_text(struct sk_buff *skb, unsigned int from,
552 				    unsigned int to, struct ts_config *config,
553 				    struct ts_state *state);
554 
555 #ifdef NET_SKBUFF_DATA_USES_OFFSET
556 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
557 {
558 	return skb->head + skb->end;
559 }
560 #else
561 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
562 {
563 	return skb->end;
564 }
565 #endif
566 
567 /* Internal */
568 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
569 
570 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
571 {
572 	return &skb_shinfo(skb)->hwtstamps;
573 }
574 
575 static inline union skb_shared_tx *skb_tx(struct sk_buff *skb)
576 {
577 	return &skb_shinfo(skb)->tx_flags;
578 }
579 
580 /**
581  *	skb_queue_empty - check if a queue is empty
582  *	@list: queue head
583  *
584  *	Returns true if the queue is empty, false otherwise.
585  */
586 static inline int skb_queue_empty(const struct sk_buff_head *list)
587 {
588 	return list->next == (struct sk_buff *)list;
589 }
590 
591 /**
592  *	skb_queue_is_last - check if skb is the last entry in the queue
593  *	@list: queue head
594  *	@skb: buffer
595  *
596  *	Returns true if @skb is the last buffer on the list.
597  */
598 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
599 				     const struct sk_buff *skb)
600 {
601 	return (skb->next == (struct sk_buff *) list);
602 }
603 
604 /**
605  *	skb_queue_is_first - check if skb is the first entry in the queue
606  *	@list: queue head
607  *	@skb: buffer
608  *
609  *	Returns true if @skb is the first buffer on the list.
610  */
611 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
612 				      const struct sk_buff *skb)
613 {
614 	return (skb->prev == (struct sk_buff *) list);
615 }
616 
617 /**
618  *	skb_queue_next - return the next packet in the queue
619  *	@list: queue head
620  *	@skb: current buffer
621  *
622  *	Return the next packet in @list after @skb.  It is only valid to
623  *	call this if skb_queue_is_last() evaluates to false.
624  */
625 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
626 					     const struct sk_buff *skb)
627 {
628 	/* This BUG_ON may seem severe, but if we just return then we
629 	 * are going to dereference garbage.
630 	 */
631 	BUG_ON(skb_queue_is_last(list, skb));
632 	return skb->next;
633 }
634 
635 /**
636  *	skb_queue_prev - return the prev packet in the queue
637  *	@list: queue head
638  *	@skb: current buffer
639  *
640  *	Return the prev packet in @list before @skb.  It is only valid to
641  *	call this if skb_queue_is_first() evaluates to false.
642  */
643 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
644 					     const struct sk_buff *skb)
645 {
646 	/* This BUG_ON may seem severe, but if we just return then we
647 	 * are going to dereference garbage.
648 	 */
649 	BUG_ON(skb_queue_is_first(list, skb));
650 	return skb->prev;
651 }
652 
653 /**
654  *	skb_get - reference buffer
655  *	@skb: buffer to reference
656  *
657  *	Makes another reference to a socket buffer and returns a pointer
658  *	to the buffer.
659  */
660 static inline struct sk_buff *skb_get(struct sk_buff *skb)
661 {
662 	atomic_inc(&skb->users);
663 	return skb;
664 }
665 
666 /*
667  * If users == 1, we are the only owner and are can avoid redundant
668  * atomic change.
669  */
670 
671 /**
672  *	skb_cloned - is the buffer a clone
673  *	@skb: buffer to check
674  *
675  *	Returns true if the buffer was generated with skb_clone() and is
676  *	one of multiple shared copies of the buffer. Cloned buffers are
677  *	shared data so must not be written to under normal circumstances.
678  */
679 static inline int skb_cloned(const struct sk_buff *skb)
680 {
681 	return skb->cloned &&
682 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
683 }
684 
685 /**
686  *	skb_header_cloned - is the header a clone
687  *	@skb: buffer to check
688  *
689  *	Returns true if modifying the header part of the buffer requires
690  *	the data to be copied.
691  */
692 static inline int skb_header_cloned(const struct sk_buff *skb)
693 {
694 	int dataref;
695 
696 	if (!skb->cloned)
697 		return 0;
698 
699 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
700 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
701 	return dataref != 1;
702 }
703 
704 /**
705  *	skb_header_release - release reference to header
706  *	@skb: buffer to operate on
707  *
708  *	Drop a reference to the header part of the buffer.  This is done
709  *	by acquiring a payload reference.  You must not read from the header
710  *	part of skb->data after this.
711  */
712 static inline void skb_header_release(struct sk_buff *skb)
713 {
714 	BUG_ON(skb->nohdr);
715 	skb->nohdr = 1;
716 	atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
717 }
718 
719 /**
720  *	skb_shared - is the buffer shared
721  *	@skb: buffer to check
722  *
723  *	Returns true if more than one person has a reference to this
724  *	buffer.
725  */
726 static inline int skb_shared(const struct sk_buff *skb)
727 {
728 	return atomic_read(&skb->users) != 1;
729 }
730 
731 /**
732  *	skb_share_check - check if buffer is shared and if so clone it
733  *	@skb: buffer to check
734  *	@pri: priority for memory allocation
735  *
736  *	If the buffer is shared the buffer is cloned and the old copy
737  *	drops a reference. A new clone with a single reference is returned.
738  *	If the buffer is not shared the original buffer is returned. When
739  *	being called from interrupt status or with spinlocks held pri must
740  *	be GFP_ATOMIC.
741  *
742  *	NULL is returned on a memory allocation failure.
743  */
744 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
745 					      gfp_t pri)
746 {
747 	might_sleep_if(pri & __GFP_WAIT);
748 	if (skb_shared(skb)) {
749 		struct sk_buff *nskb = skb_clone(skb, pri);
750 		kfree_skb(skb);
751 		skb = nskb;
752 	}
753 	return skb;
754 }
755 
756 /*
757  *	Copy shared buffers into a new sk_buff. We effectively do COW on
758  *	packets to handle cases where we have a local reader and forward
759  *	and a couple of other messy ones. The normal one is tcpdumping
760  *	a packet thats being forwarded.
761  */
762 
763 /**
764  *	skb_unshare - make a copy of a shared buffer
765  *	@skb: buffer to check
766  *	@pri: priority for memory allocation
767  *
768  *	If the socket buffer is a clone then this function creates a new
769  *	copy of the data, drops a reference count on the old copy and returns
770  *	the new copy with the reference count at 1. If the buffer is not a clone
771  *	the original buffer is returned. When called with a spinlock held or
772  *	from interrupt state @pri must be %GFP_ATOMIC
773  *
774  *	%NULL is returned on a memory allocation failure.
775  */
776 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
777 					  gfp_t pri)
778 {
779 	might_sleep_if(pri & __GFP_WAIT);
780 	if (skb_cloned(skb)) {
781 		struct sk_buff *nskb = skb_copy(skb, pri);
782 		kfree_skb(skb);	/* Free our shared copy */
783 		skb = nskb;
784 	}
785 	return skb;
786 }
787 
788 /**
789  *	skb_peek - peek at the head of an &sk_buff_head
790  *	@list_: list to peek at
791  *
792  *	Peek an &sk_buff. Unlike most other operations you _MUST_
793  *	be careful with this one. A peek leaves the buffer on the
794  *	list and someone else may run off with it. You must hold
795  *	the appropriate locks or have a private queue to do this.
796  *
797  *	Returns %NULL for an empty list or a pointer to the head element.
798  *	The reference count is not incremented and the reference is therefore
799  *	volatile. Use with caution.
800  */
801 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
802 {
803 	struct sk_buff *list = ((struct sk_buff *)list_)->next;
804 	if (list == (struct sk_buff *)list_)
805 		list = NULL;
806 	return list;
807 }
808 
809 /**
810  *	skb_peek_tail - peek at the tail of an &sk_buff_head
811  *	@list_: list to peek at
812  *
813  *	Peek an &sk_buff. Unlike most other operations you _MUST_
814  *	be careful with this one. A peek leaves the buffer on the
815  *	list and someone else may run off with it. You must hold
816  *	the appropriate locks or have a private queue to do this.
817  *
818  *	Returns %NULL for an empty list or a pointer to the tail element.
819  *	The reference count is not incremented and the reference is therefore
820  *	volatile. Use with caution.
821  */
822 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
823 {
824 	struct sk_buff *list = ((struct sk_buff *)list_)->prev;
825 	if (list == (struct sk_buff *)list_)
826 		list = NULL;
827 	return list;
828 }
829 
830 /**
831  *	skb_queue_len	- get queue length
832  *	@list_: list to measure
833  *
834  *	Return the length of an &sk_buff queue.
835  */
836 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
837 {
838 	return list_->qlen;
839 }
840 
841 /**
842  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
843  *	@list: queue to initialize
844  *
845  *	This initializes only the list and queue length aspects of
846  *	an sk_buff_head object.  This allows to initialize the list
847  *	aspects of an sk_buff_head without reinitializing things like
848  *	the spinlock.  It can also be used for on-stack sk_buff_head
849  *	objects where the spinlock is known to not be used.
850  */
851 static inline void __skb_queue_head_init(struct sk_buff_head *list)
852 {
853 	list->prev = list->next = (struct sk_buff *)list;
854 	list->qlen = 0;
855 }
856 
857 /*
858  * This function creates a split out lock class for each invocation;
859  * this is needed for now since a whole lot of users of the skb-queue
860  * infrastructure in drivers have different locking usage (in hardirq)
861  * than the networking core (in softirq only). In the long run either the
862  * network layer or drivers should need annotation to consolidate the
863  * main types of usage into 3 classes.
864  */
865 static inline void skb_queue_head_init(struct sk_buff_head *list)
866 {
867 	spin_lock_init(&list->lock);
868 	__skb_queue_head_init(list);
869 }
870 
871 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
872 		struct lock_class_key *class)
873 {
874 	skb_queue_head_init(list);
875 	lockdep_set_class(&list->lock, class);
876 }
877 
878 /*
879  *	Insert an sk_buff on a list.
880  *
881  *	The "__skb_xxxx()" functions are the non-atomic ones that
882  *	can only be called with interrupts disabled.
883  */
884 extern void        skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
885 static inline void __skb_insert(struct sk_buff *newsk,
886 				struct sk_buff *prev, struct sk_buff *next,
887 				struct sk_buff_head *list)
888 {
889 	newsk->next = next;
890 	newsk->prev = prev;
891 	next->prev  = prev->next = newsk;
892 	list->qlen++;
893 }
894 
895 static inline void __skb_queue_splice(const struct sk_buff_head *list,
896 				      struct sk_buff *prev,
897 				      struct sk_buff *next)
898 {
899 	struct sk_buff *first = list->next;
900 	struct sk_buff *last = list->prev;
901 
902 	first->prev = prev;
903 	prev->next = first;
904 
905 	last->next = next;
906 	next->prev = last;
907 }
908 
909 /**
910  *	skb_queue_splice - join two skb lists, this is designed for stacks
911  *	@list: the new list to add
912  *	@head: the place to add it in the first list
913  */
914 static inline void skb_queue_splice(const struct sk_buff_head *list,
915 				    struct sk_buff_head *head)
916 {
917 	if (!skb_queue_empty(list)) {
918 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
919 		head->qlen += list->qlen;
920 	}
921 }
922 
923 /**
924  *	skb_queue_splice - join two skb lists and reinitialise the emptied list
925  *	@list: the new list to add
926  *	@head: the place to add it in the first list
927  *
928  *	The list at @list is reinitialised
929  */
930 static inline void skb_queue_splice_init(struct sk_buff_head *list,
931 					 struct sk_buff_head *head)
932 {
933 	if (!skb_queue_empty(list)) {
934 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
935 		head->qlen += list->qlen;
936 		__skb_queue_head_init(list);
937 	}
938 }
939 
940 /**
941  *	skb_queue_splice_tail - join two skb lists, each list being a queue
942  *	@list: the new list to add
943  *	@head: the place to add it in the first list
944  */
945 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
946 					 struct sk_buff_head *head)
947 {
948 	if (!skb_queue_empty(list)) {
949 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
950 		head->qlen += list->qlen;
951 	}
952 }
953 
954 /**
955  *	skb_queue_splice_tail - join two skb lists and reinitialise the emptied list
956  *	@list: the new list to add
957  *	@head: the place to add it in the first list
958  *
959  *	Each of the lists is a queue.
960  *	The list at @list is reinitialised
961  */
962 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
963 					      struct sk_buff_head *head)
964 {
965 	if (!skb_queue_empty(list)) {
966 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
967 		head->qlen += list->qlen;
968 		__skb_queue_head_init(list);
969 	}
970 }
971 
972 /**
973  *	__skb_queue_after - queue a buffer at the list head
974  *	@list: list to use
975  *	@prev: place after this buffer
976  *	@newsk: buffer to queue
977  *
978  *	Queue a buffer int the middle of a list. This function takes no locks
979  *	and you must therefore hold required locks before calling it.
980  *
981  *	A buffer cannot be placed on two lists at the same time.
982  */
983 static inline void __skb_queue_after(struct sk_buff_head *list,
984 				     struct sk_buff *prev,
985 				     struct sk_buff *newsk)
986 {
987 	__skb_insert(newsk, prev, prev->next, list);
988 }
989 
990 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
991 		       struct sk_buff_head *list);
992 
993 static inline void __skb_queue_before(struct sk_buff_head *list,
994 				      struct sk_buff *next,
995 				      struct sk_buff *newsk)
996 {
997 	__skb_insert(newsk, next->prev, next, list);
998 }
999 
1000 /**
1001  *	__skb_queue_head - queue a buffer at the list head
1002  *	@list: list to use
1003  *	@newsk: buffer to queue
1004  *
1005  *	Queue a buffer at the start of a list. This function takes no locks
1006  *	and you must therefore hold required locks before calling it.
1007  *
1008  *	A buffer cannot be placed on two lists at the same time.
1009  */
1010 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1011 static inline void __skb_queue_head(struct sk_buff_head *list,
1012 				    struct sk_buff *newsk)
1013 {
1014 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
1015 }
1016 
1017 /**
1018  *	__skb_queue_tail - queue a buffer at the list tail
1019  *	@list: list to use
1020  *	@newsk: buffer to queue
1021  *
1022  *	Queue a buffer at the end of a list. This function takes no locks
1023  *	and you must therefore hold required locks before calling it.
1024  *
1025  *	A buffer cannot be placed on two lists at the same time.
1026  */
1027 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1028 static inline void __skb_queue_tail(struct sk_buff_head *list,
1029 				   struct sk_buff *newsk)
1030 {
1031 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
1032 }
1033 
1034 /*
1035  * remove sk_buff from list. _Must_ be called atomically, and with
1036  * the list known..
1037  */
1038 extern void	   skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1039 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1040 {
1041 	struct sk_buff *next, *prev;
1042 
1043 	list->qlen--;
1044 	next	   = skb->next;
1045 	prev	   = skb->prev;
1046 	skb->next  = skb->prev = NULL;
1047 	next->prev = prev;
1048 	prev->next = next;
1049 }
1050 
1051 /**
1052  *	__skb_dequeue - remove from the head of the queue
1053  *	@list: list to dequeue from
1054  *
1055  *	Remove the head of the list. This function does not take any locks
1056  *	so must be used with appropriate locks held only. The head item is
1057  *	returned or %NULL if the list is empty.
1058  */
1059 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1060 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1061 {
1062 	struct sk_buff *skb = skb_peek(list);
1063 	if (skb)
1064 		__skb_unlink(skb, list);
1065 	return skb;
1066 }
1067 
1068 /**
1069  *	__skb_dequeue_tail - remove from the tail of the queue
1070  *	@list: list to dequeue from
1071  *
1072  *	Remove the tail of the list. This function does not take any locks
1073  *	so must be used with appropriate locks held only. The tail item is
1074  *	returned or %NULL if the list is empty.
1075  */
1076 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1077 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1078 {
1079 	struct sk_buff *skb = skb_peek_tail(list);
1080 	if (skb)
1081 		__skb_unlink(skb, list);
1082 	return skb;
1083 }
1084 
1085 
1086 static inline int skb_is_nonlinear(const struct sk_buff *skb)
1087 {
1088 	return skb->data_len;
1089 }
1090 
1091 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1092 {
1093 	return skb->len - skb->data_len;
1094 }
1095 
1096 static inline int skb_pagelen(const struct sk_buff *skb)
1097 {
1098 	int i, len = 0;
1099 
1100 	for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1101 		len += skb_shinfo(skb)->frags[i].size;
1102 	return len + skb_headlen(skb);
1103 }
1104 
1105 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1106 				      struct page *page, int off, int size)
1107 {
1108 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1109 
1110 	frag->page		  = page;
1111 	frag->page_offset	  = off;
1112 	frag->size		  = size;
1113 	skb_shinfo(skb)->nr_frags = i + 1;
1114 }
1115 
1116 extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
1117 			    int off, int size);
1118 
1119 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
1120 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_has_frags(skb))
1121 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
1122 
1123 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1124 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1125 {
1126 	return skb->head + skb->tail;
1127 }
1128 
1129 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1130 {
1131 	skb->tail = skb->data - skb->head;
1132 }
1133 
1134 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1135 {
1136 	skb_reset_tail_pointer(skb);
1137 	skb->tail += offset;
1138 }
1139 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1140 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1141 {
1142 	return skb->tail;
1143 }
1144 
1145 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1146 {
1147 	skb->tail = skb->data;
1148 }
1149 
1150 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1151 {
1152 	skb->tail = skb->data + offset;
1153 }
1154 
1155 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1156 
1157 /*
1158  *	Add data to an sk_buff
1159  */
1160 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1161 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1162 {
1163 	unsigned char *tmp = skb_tail_pointer(skb);
1164 	SKB_LINEAR_ASSERT(skb);
1165 	skb->tail += len;
1166 	skb->len  += len;
1167 	return tmp;
1168 }
1169 
1170 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1171 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1172 {
1173 	skb->data -= len;
1174 	skb->len  += len;
1175 	return skb->data;
1176 }
1177 
1178 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1179 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1180 {
1181 	skb->len -= len;
1182 	BUG_ON(skb->len < skb->data_len);
1183 	return skb->data += len;
1184 }
1185 
1186 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1187 {
1188 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1189 }
1190 
1191 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1192 
1193 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1194 {
1195 	if (len > skb_headlen(skb) &&
1196 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1197 		return NULL;
1198 	skb->len -= len;
1199 	return skb->data += len;
1200 }
1201 
1202 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1203 {
1204 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1205 }
1206 
1207 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1208 {
1209 	if (likely(len <= skb_headlen(skb)))
1210 		return 1;
1211 	if (unlikely(len > skb->len))
1212 		return 0;
1213 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1214 }
1215 
1216 /**
1217  *	skb_headroom - bytes at buffer head
1218  *	@skb: buffer to check
1219  *
1220  *	Return the number of bytes of free space at the head of an &sk_buff.
1221  */
1222 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1223 {
1224 	return skb->data - skb->head;
1225 }
1226 
1227 /**
1228  *	skb_tailroom - bytes at buffer end
1229  *	@skb: buffer to check
1230  *
1231  *	Return the number of bytes of free space at the tail of an sk_buff
1232  */
1233 static inline int skb_tailroom(const struct sk_buff *skb)
1234 {
1235 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1236 }
1237 
1238 /**
1239  *	skb_reserve - adjust headroom
1240  *	@skb: buffer to alter
1241  *	@len: bytes to move
1242  *
1243  *	Increase the headroom of an empty &sk_buff by reducing the tail
1244  *	room. This is only allowed for an empty buffer.
1245  */
1246 static inline void skb_reserve(struct sk_buff *skb, int len)
1247 {
1248 	skb->data += len;
1249 	skb->tail += len;
1250 }
1251 
1252 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1253 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1254 {
1255 	return skb->head + skb->transport_header;
1256 }
1257 
1258 static inline void skb_reset_transport_header(struct sk_buff *skb)
1259 {
1260 	skb->transport_header = skb->data - skb->head;
1261 }
1262 
1263 static inline void skb_set_transport_header(struct sk_buff *skb,
1264 					    const int offset)
1265 {
1266 	skb_reset_transport_header(skb);
1267 	skb->transport_header += offset;
1268 }
1269 
1270 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1271 {
1272 	return skb->head + skb->network_header;
1273 }
1274 
1275 static inline void skb_reset_network_header(struct sk_buff *skb)
1276 {
1277 	skb->network_header = skb->data - skb->head;
1278 }
1279 
1280 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1281 {
1282 	skb_reset_network_header(skb);
1283 	skb->network_header += offset;
1284 }
1285 
1286 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1287 {
1288 	return skb->head + skb->mac_header;
1289 }
1290 
1291 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1292 {
1293 	return skb->mac_header != ~0U;
1294 }
1295 
1296 static inline void skb_reset_mac_header(struct sk_buff *skb)
1297 {
1298 	skb->mac_header = skb->data - skb->head;
1299 }
1300 
1301 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1302 {
1303 	skb_reset_mac_header(skb);
1304 	skb->mac_header += offset;
1305 }
1306 
1307 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1308 
1309 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1310 {
1311 	return skb->transport_header;
1312 }
1313 
1314 static inline void skb_reset_transport_header(struct sk_buff *skb)
1315 {
1316 	skb->transport_header = skb->data;
1317 }
1318 
1319 static inline void skb_set_transport_header(struct sk_buff *skb,
1320 					    const int offset)
1321 {
1322 	skb->transport_header = skb->data + offset;
1323 }
1324 
1325 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1326 {
1327 	return skb->network_header;
1328 }
1329 
1330 static inline void skb_reset_network_header(struct sk_buff *skb)
1331 {
1332 	skb->network_header = skb->data;
1333 }
1334 
1335 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1336 {
1337 	skb->network_header = skb->data + offset;
1338 }
1339 
1340 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1341 {
1342 	return skb->mac_header;
1343 }
1344 
1345 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1346 {
1347 	return skb->mac_header != NULL;
1348 }
1349 
1350 static inline void skb_reset_mac_header(struct sk_buff *skb)
1351 {
1352 	skb->mac_header = skb->data;
1353 }
1354 
1355 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1356 {
1357 	skb->mac_header = skb->data + offset;
1358 }
1359 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1360 
1361 static inline int skb_transport_offset(const struct sk_buff *skb)
1362 {
1363 	return skb_transport_header(skb) - skb->data;
1364 }
1365 
1366 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1367 {
1368 	return skb->transport_header - skb->network_header;
1369 }
1370 
1371 static inline int skb_network_offset(const struct sk_buff *skb)
1372 {
1373 	return skb_network_header(skb) - skb->data;
1374 }
1375 
1376 /*
1377  * CPUs often take a performance hit when accessing unaligned memory
1378  * locations. The actual performance hit varies, it can be small if the
1379  * hardware handles it or large if we have to take an exception and fix it
1380  * in software.
1381  *
1382  * Since an ethernet header is 14 bytes network drivers often end up with
1383  * the IP header at an unaligned offset. The IP header can be aligned by
1384  * shifting the start of the packet by 2 bytes. Drivers should do this
1385  * with:
1386  *
1387  * skb_reserve(skb, NET_IP_ALIGN);
1388  *
1389  * The downside to this alignment of the IP header is that the DMA is now
1390  * unaligned. On some architectures the cost of an unaligned DMA is high
1391  * and this cost outweighs the gains made by aligning the IP header.
1392  *
1393  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1394  * to be overridden.
1395  */
1396 #ifndef NET_IP_ALIGN
1397 #define NET_IP_ALIGN	2
1398 #endif
1399 
1400 /*
1401  * The networking layer reserves some headroom in skb data (via
1402  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1403  * the header has to grow. In the default case, if the header has to grow
1404  * 32 bytes or less we avoid the reallocation.
1405  *
1406  * Unfortunately this headroom changes the DMA alignment of the resulting
1407  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1408  * on some architectures. An architecture can override this value,
1409  * perhaps setting it to a cacheline in size (since that will maintain
1410  * cacheline alignment of the DMA). It must be a power of 2.
1411  *
1412  * Various parts of the networking layer expect at least 32 bytes of
1413  * headroom, you should not reduce this.
1414  * With RPS, we raised NET_SKB_PAD to 64 so that get_rps_cpus() fetches span
1415  * a 64 bytes aligned block to fit modern (>= 64 bytes) cache line sizes
1416  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
1417  */
1418 #ifndef NET_SKB_PAD
1419 #define NET_SKB_PAD	64
1420 #endif
1421 
1422 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1423 
1424 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1425 {
1426 	if (unlikely(skb->data_len)) {
1427 		WARN_ON(1);
1428 		return;
1429 	}
1430 	skb->len = len;
1431 	skb_set_tail_pointer(skb, len);
1432 }
1433 
1434 extern void skb_trim(struct sk_buff *skb, unsigned int len);
1435 
1436 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1437 {
1438 	if (skb->data_len)
1439 		return ___pskb_trim(skb, len);
1440 	__skb_trim(skb, len);
1441 	return 0;
1442 }
1443 
1444 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1445 {
1446 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1447 }
1448 
1449 /**
1450  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1451  *	@skb: buffer to alter
1452  *	@len: new length
1453  *
1454  *	This is identical to pskb_trim except that the caller knows that
1455  *	the skb is not cloned so we should never get an error due to out-
1456  *	of-memory.
1457  */
1458 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1459 {
1460 	int err = pskb_trim(skb, len);
1461 	BUG_ON(err);
1462 }
1463 
1464 /**
1465  *	skb_orphan - orphan a buffer
1466  *	@skb: buffer to orphan
1467  *
1468  *	If a buffer currently has an owner then we call the owner's
1469  *	destructor function and make the @skb unowned. The buffer continues
1470  *	to exist but is no longer charged to its former owner.
1471  */
1472 static inline void skb_orphan(struct sk_buff *skb)
1473 {
1474 	if (skb->destructor)
1475 		skb->destructor(skb);
1476 	skb->destructor = NULL;
1477 	skb->sk		= NULL;
1478 }
1479 
1480 /**
1481  *	__skb_queue_purge - empty a list
1482  *	@list: list to empty
1483  *
1484  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
1485  *	the list and one reference dropped. This function does not take the
1486  *	list lock and the caller must hold the relevant locks to use it.
1487  */
1488 extern void skb_queue_purge(struct sk_buff_head *list);
1489 static inline void __skb_queue_purge(struct sk_buff_head *list)
1490 {
1491 	struct sk_buff *skb;
1492 	while ((skb = __skb_dequeue(list)) != NULL)
1493 		kfree_skb(skb);
1494 }
1495 
1496 /**
1497  *	__dev_alloc_skb - allocate an skbuff for receiving
1498  *	@length: length to allocate
1499  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
1500  *
1501  *	Allocate a new &sk_buff and assign it a usage count of one. The
1502  *	buffer has unspecified headroom built in. Users should allocate
1503  *	the headroom they think they need without accounting for the
1504  *	built in space. The built in space is used for optimisations.
1505  *
1506  *	%NULL is returned if there is no free memory.
1507  */
1508 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1509 					      gfp_t gfp_mask)
1510 {
1511 	struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1512 	if (likely(skb))
1513 		skb_reserve(skb, NET_SKB_PAD);
1514 	return skb;
1515 }
1516 
1517 extern struct sk_buff *dev_alloc_skb(unsigned int length);
1518 
1519 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1520 		unsigned int length, gfp_t gfp_mask);
1521 
1522 /**
1523  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
1524  *	@dev: network device to receive on
1525  *	@length: length to allocate
1526  *
1527  *	Allocate a new &sk_buff and assign it a usage count of one. The
1528  *	buffer has unspecified headroom built in. Users should allocate
1529  *	the headroom they think they need without accounting for the
1530  *	built in space. The built in space is used for optimisations.
1531  *
1532  *	%NULL is returned if there is no free memory. Although this function
1533  *	allocates memory it can be called from an interrupt.
1534  */
1535 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1536 		unsigned int length)
1537 {
1538 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1539 }
1540 
1541 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
1542 		unsigned int length)
1543 {
1544 	struct sk_buff *skb = netdev_alloc_skb(dev, length + NET_IP_ALIGN);
1545 
1546 	if (NET_IP_ALIGN && skb)
1547 		skb_reserve(skb, NET_IP_ALIGN);
1548 	return skb;
1549 }
1550 
1551 extern struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask);
1552 
1553 /**
1554  *	netdev_alloc_page - allocate a page for ps-rx on a specific device
1555  *	@dev: network device to receive on
1556  *
1557  * 	Allocate a new page node local to the specified device.
1558  *
1559  * 	%NULL is returned if there is no free memory.
1560  */
1561 static inline struct page *netdev_alloc_page(struct net_device *dev)
1562 {
1563 	return __netdev_alloc_page(dev, GFP_ATOMIC);
1564 }
1565 
1566 static inline void netdev_free_page(struct net_device *dev, struct page *page)
1567 {
1568 	__free_page(page);
1569 }
1570 
1571 /**
1572  *	skb_clone_writable - is the header of a clone writable
1573  *	@skb: buffer to check
1574  *	@len: length up to which to write
1575  *
1576  *	Returns true if modifying the header part of the cloned buffer
1577  *	does not requires the data to be copied.
1578  */
1579 static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len)
1580 {
1581 	return !skb_header_cloned(skb) &&
1582 	       skb_headroom(skb) + len <= skb->hdr_len;
1583 }
1584 
1585 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1586 			    int cloned)
1587 {
1588 	int delta = 0;
1589 
1590 	if (headroom < NET_SKB_PAD)
1591 		headroom = NET_SKB_PAD;
1592 	if (headroom > skb_headroom(skb))
1593 		delta = headroom - skb_headroom(skb);
1594 
1595 	if (delta || cloned)
1596 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1597 					GFP_ATOMIC);
1598 	return 0;
1599 }
1600 
1601 /**
1602  *	skb_cow - copy header of skb when it is required
1603  *	@skb: buffer to cow
1604  *	@headroom: needed headroom
1605  *
1606  *	If the skb passed lacks sufficient headroom or its data part
1607  *	is shared, data is reallocated. If reallocation fails, an error
1608  *	is returned and original skb is not changed.
1609  *
1610  *	The result is skb with writable area skb->head...skb->tail
1611  *	and at least @headroom of space at head.
1612  */
1613 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1614 {
1615 	return __skb_cow(skb, headroom, skb_cloned(skb));
1616 }
1617 
1618 /**
1619  *	skb_cow_head - skb_cow but only making the head writable
1620  *	@skb: buffer to cow
1621  *	@headroom: needed headroom
1622  *
1623  *	This function is identical to skb_cow except that we replace the
1624  *	skb_cloned check by skb_header_cloned.  It should be used when
1625  *	you only need to push on some header and do not need to modify
1626  *	the data.
1627  */
1628 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1629 {
1630 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
1631 }
1632 
1633 /**
1634  *	skb_padto	- pad an skbuff up to a minimal size
1635  *	@skb: buffer to pad
1636  *	@len: minimal length
1637  *
1638  *	Pads up a buffer to ensure the trailing bytes exist and are
1639  *	blanked. If the buffer already contains sufficient data it
1640  *	is untouched. Otherwise it is extended. Returns zero on
1641  *	success. The skb is freed on error.
1642  */
1643 
1644 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1645 {
1646 	unsigned int size = skb->len;
1647 	if (likely(size >= len))
1648 		return 0;
1649 	return skb_pad(skb, len - size);
1650 }
1651 
1652 static inline int skb_add_data(struct sk_buff *skb,
1653 			       char __user *from, int copy)
1654 {
1655 	const int off = skb->len;
1656 
1657 	if (skb->ip_summed == CHECKSUM_NONE) {
1658 		int err = 0;
1659 		__wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1660 							    copy, 0, &err);
1661 		if (!err) {
1662 			skb->csum = csum_block_add(skb->csum, csum, off);
1663 			return 0;
1664 		}
1665 	} else if (!copy_from_user(skb_put(skb, copy), from, copy))
1666 		return 0;
1667 
1668 	__skb_trim(skb, off);
1669 	return -EFAULT;
1670 }
1671 
1672 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1673 				   struct page *page, int off)
1674 {
1675 	if (i) {
1676 		struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1677 
1678 		return page == frag->page &&
1679 		       off == frag->page_offset + frag->size;
1680 	}
1681 	return 0;
1682 }
1683 
1684 static inline int __skb_linearize(struct sk_buff *skb)
1685 {
1686 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1687 }
1688 
1689 /**
1690  *	skb_linearize - convert paged skb to linear one
1691  *	@skb: buffer to linarize
1692  *
1693  *	If there is no free memory -ENOMEM is returned, otherwise zero
1694  *	is returned and the old skb data released.
1695  */
1696 static inline int skb_linearize(struct sk_buff *skb)
1697 {
1698 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1699 }
1700 
1701 /**
1702  *	skb_linearize_cow - make sure skb is linear and writable
1703  *	@skb: buffer to process
1704  *
1705  *	If there is no free memory -ENOMEM is returned, otherwise zero
1706  *	is returned and the old skb data released.
1707  */
1708 static inline int skb_linearize_cow(struct sk_buff *skb)
1709 {
1710 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1711 	       __skb_linearize(skb) : 0;
1712 }
1713 
1714 /**
1715  *	skb_postpull_rcsum - update checksum for received skb after pull
1716  *	@skb: buffer to update
1717  *	@start: start of data before pull
1718  *	@len: length of data pulled
1719  *
1720  *	After doing a pull on a received packet, you need to call this to
1721  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1722  *	CHECKSUM_NONE so that it can be recomputed from scratch.
1723  */
1724 
1725 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1726 				      const void *start, unsigned int len)
1727 {
1728 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1729 		skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1730 }
1731 
1732 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1733 
1734 /**
1735  *	pskb_trim_rcsum - trim received skb and update checksum
1736  *	@skb: buffer to trim
1737  *	@len: new length
1738  *
1739  *	This is exactly the same as pskb_trim except that it ensures the
1740  *	checksum of received packets are still valid after the operation.
1741  */
1742 
1743 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1744 {
1745 	if (likely(len >= skb->len))
1746 		return 0;
1747 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1748 		skb->ip_summed = CHECKSUM_NONE;
1749 	return __pskb_trim(skb, len);
1750 }
1751 
1752 #define skb_queue_walk(queue, skb) \
1753 		for (skb = (queue)->next;					\
1754 		     prefetch(skb->next), (skb != (struct sk_buff *)(queue));	\
1755 		     skb = skb->next)
1756 
1757 #define skb_queue_walk_safe(queue, skb, tmp)					\
1758 		for (skb = (queue)->next, tmp = skb->next;			\
1759 		     skb != (struct sk_buff *)(queue);				\
1760 		     skb = tmp, tmp = skb->next)
1761 
1762 #define skb_queue_walk_from(queue, skb)						\
1763 		for (; prefetch(skb->next), (skb != (struct sk_buff *)(queue));	\
1764 		     skb = skb->next)
1765 
1766 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
1767 		for (tmp = skb->next;						\
1768 		     skb != (struct sk_buff *)(queue);				\
1769 		     skb = tmp, tmp = skb->next)
1770 
1771 #define skb_queue_reverse_walk(queue, skb) \
1772 		for (skb = (queue)->prev;					\
1773 		     prefetch(skb->prev), (skb != (struct sk_buff *)(queue));	\
1774 		     skb = skb->prev)
1775 
1776 
1777 static inline bool skb_has_frags(const struct sk_buff *skb)
1778 {
1779 	return skb_shinfo(skb)->frag_list != NULL;
1780 }
1781 
1782 static inline void skb_frag_list_init(struct sk_buff *skb)
1783 {
1784 	skb_shinfo(skb)->frag_list = NULL;
1785 }
1786 
1787 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
1788 {
1789 	frag->next = skb_shinfo(skb)->frag_list;
1790 	skb_shinfo(skb)->frag_list = frag;
1791 }
1792 
1793 #define skb_walk_frags(skb, iter)	\
1794 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
1795 
1796 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
1797 					   int *peeked, int *err);
1798 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1799 					 int noblock, int *err);
1800 extern unsigned int    datagram_poll(struct file *file, struct socket *sock,
1801 				     struct poll_table_struct *wait);
1802 extern int	       skb_copy_datagram_iovec(const struct sk_buff *from,
1803 					       int offset, struct iovec *to,
1804 					       int size);
1805 extern int	       skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1806 							int hlen,
1807 							struct iovec *iov);
1808 extern int	       skb_copy_datagram_from_iovec(struct sk_buff *skb,
1809 						    int offset,
1810 						    const struct iovec *from,
1811 						    int from_offset,
1812 						    int len);
1813 extern int	       skb_copy_datagram_const_iovec(const struct sk_buff *from,
1814 						     int offset,
1815 						     const struct iovec *to,
1816 						     int to_offset,
1817 						     int size);
1818 extern void	       skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1819 extern void	       skb_free_datagram_locked(struct sock *sk,
1820 						struct sk_buff *skb);
1821 extern int	       skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1822 					 unsigned int flags);
1823 extern __wsum	       skb_checksum(const struct sk_buff *skb, int offset,
1824 				    int len, __wsum csum);
1825 extern int	       skb_copy_bits(const struct sk_buff *skb, int offset,
1826 				     void *to, int len);
1827 extern int	       skb_store_bits(struct sk_buff *skb, int offset,
1828 				      const void *from, int len);
1829 extern __wsum	       skb_copy_and_csum_bits(const struct sk_buff *skb,
1830 					      int offset, u8 *to, int len,
1831 					      __wsum csum);
1832 extern int             skb_splice_bits(struct sk_buff *skb,
1833 						unsigned int offset,
1834 						struct pipe_inode_info *pipe,
1835 						unsigned int len,
1836 						unsigned int flags);
1837 extern void	       skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1838 extern void	       skb_split(struct sk_buff *skb,
1839 				 struct sk_buff *skb1, const u32 len);
1840 extern int	       skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
1841 				 int shiftlen);
1842 
1843 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
1844 
1845 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1846 				       int len, void *buffer)
1847 {
1848 	int hlen = skb_headlen(skb);
1849 
1850 	if (hlen - offset >= len)
1851 		return skb->data + offset;
1852 
1853 	if (skb_copy_bits(skb, offset, buffer, len) < 0)
1854 		return NULL;
1855 
1856 	return buffer;
1857 }
1858 
1859 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
1860 					     void *to,
1861 					     const unsigned int len)
1862 {
1863 	memcpy(to, skb->data, len);
1864 }
1865 
1866 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
1867 						    const int offset, void *to,
1868 						    const unsigned int len)
1869 {
1870 	memcpy(to, skb->data + offset, len);
1871 }
1872 
1873 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
1874 					   const void *from,
1875 					   const unsigned int len)
1876 {
1877 	memcpy(skb->data, from, len);
1878 }
1879 
1880 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
1881 						  const int offset,
1882 						  const void *from,
1883 						  const unsigned int len)
1884 {
1885 	memcpy(skb->data + offset, from, len);
1886 }
1887 
1888 extern void skb_init(void);
1889 
1890 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
1891 {
1892 	return skb->tstamp;
1893 }
1894 
1895 /**
1896  *	skb_get_timestamp - get timestamp from a skb
1897  *	@skb: skb to get stamp from
1898  *	@stamp: pointer to struct timeval to store stamp in
1899  *
1900  *	Timestamps are stored in the skb as offsets to a base timestamp.
1901  *	This function converts the offset back to a struct timeval and stores
1902  *	it in stamp.
1903  */
1904 static inline void skb_get_timestamp(const struct sk_buff *skb,
1905 				     struct timeval *stamp)
1906 {
1907 	*stamp = ktime_to_timeval(skb->tstamp);
1908 }
1909 
1910 static inline void skb_get_timestampns(const struct sk_buff *skb,
1911 				       struct timespec *stamp)
1912 {
1913 	*stamp = ktime_to_timespec(skb->tstamp);
1914 }
1915 
1916 static inline void __net_timestamp(struct sk_buff *skb)
1917 {
1918 	skb->tstamp = ktime_get_real();
1919 }
1920 
1921 static inline ktime_t net_timedelta(ktime_t t)
1922 {
1923 	return ktime_sub(ktime_get_real(), t);
1924 }
1925 
1926 static inline ktime_t net_invalid_timestamp(void)
1927 {
1928 	return ktime_set(0, 0);
1929 }
1930 
1931 /**
1932  * skb_tstamp_tx - queue clone of skb with send time stamps
1933  * @orig_skb:	the original outgoing packet
1934  * @hwtstamps:	hardware time stamps, may be NULL if not available
1935  *
1936  * If the skb has a socket associated, then this function clones the
1937  * skb (thus sharing the actual data and optional structures), stores
1938  * the optional hardware time stamping information (if non NULL) or
1939  * generates a software time stamp (otherwise), then queues the clone
1940  * to the error queue of the socket.  Errors are silently ignored.
1941  */
1942 extern void skb_tstamp_tx(struct sk_buff *orig_skb,
1943 			struct skb_shared_hwtstamps *hwtstamps);
1944 
1945 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
1946 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
1947 
1948 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
1949 {
1950 	return skb->ip_summed & CHECKSUM_UNNECESSARY;
1951 }
1952 
1953 /**
1954  *	skb_checksum_complete - Calculate checksum of an entire packet
1955  *	@skb: packet to process
1956  *
1957  *	This function calculates the checksum over the entire packet plus
1958  *	the value of skb->csum.  The latter can be used to supply the
1959  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
1960  *	checksum.
1961  *
1962  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
1963  *	this function can be used to verify that checksum on received
1964  *	packets.  In that case the function should return zero if the
1965  *	checksum is correct.  In particular, this function will return zero
1966  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1967  *	hardware has already verified the correctness of the checksum.
1968  */
1969 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
1970 {
1971 	return skb_csum_unnecessary(skb) ?
1972 	       0 : __skb_checksum_complete(skb);
1973 }
1974 
1975 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1976 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
1977 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1978 {
1979 	if (nfct && atomic_dec_and_test(&nfct->use))
1980 		nf_conntrack_destroy(nfct);
1981 }
1982 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1983 {
1984 	if (nfct)
1985 		atomic_inc(&nfct->use);
1986 }
1987 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
1988 {
1989 	if (skb)
1990 		atomic_inc(&skb->users);
1991 }
1992 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
1993 {
1994 	if (skb)
1995 		kfree_skb(skb);
1996 }
1997 #endif
1998 #ifdef CONFIG_BRIDGE_NETFILTER
1999 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
2000 {
2001 	if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
2002 		kfree(nf_bridge);
2003 }
2004 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
2005 {
2006 	if (nf_bridge)
2007 		atomic_inc(&nf_bridge->use);
2008 }
2009 #endif /* CONFIG_BRIDGE_NETFILTER */
2010 static inline void nf_reset(struct sk_buff *skb)
2011 {
2012 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2013 	nf_conntrack_put(skb->nfct);
2014 	skb->nfct = NULL;
2015 	nf_conntrack_put_reasm(skb->nfct_reasm);
2016 	skb->nfct_reasm = NULL;
2017 #endif
2018 #ifdef CONFIG_BRIDGE_NETFILTER
2019 	nf_bridge_put(skb->nf_bridge);
2020 	skb->nf_bridge = NULL;
2021 #endif
2022 }
2023 
2024 /* Note: This doesn't put any conntrack and bridge info in dst. */
2025 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2026 {
2027 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2028 	dst->nfct = src->nfct;
2029 	nf_conntrack_get(src->nfct);
2030 	dst->nfctinfo = src->nfctinfo;
2031 	dst->nfct_reasm = src->nfct_reasm;
2032 	nf_conntrack_get_reasm(src->nfct_reasm);
2033 #endif
2034 #ifdef CONFIG_BRIDGE_NETFILTER
2035 	dst->nf_bridge  = src->nf_bridge;
2036 	nf_bridge_get(src->nf_bridge);
2037 #endif
2038 }
2039 
2040 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2041 {
2042 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2043 	nf_conntrack_put(dst->nfct);
2044 	nf_conntrack_put_reasm(dst->nfct_reasm);
2045 #endif
2046 #ifdef CONFIG_BRIDGE_NETFILTER
2047 	nf_bridge_put(dst->nf_bridge);
2048 #endif
2049 	__nf_copy(dst, src);
2050 }
2051 
2052 #ifdef CONFIG_NETWORK_SECMARK
2053 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2054 {
2055 	to->secmark = from->secmark;
2056 }
2057 
2058 static inline void skb_init_secmark(struct sk_buff *skb)
2059 {
2060 	skb->secmark = 0;
2061 }
2062 #else
2063 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2064 { }
2065 
2066 static inline void skb_init_secmark(struct sk_buff *skb)
2067 { }
2068 #endif
2069 
2070 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
2071 {
2072 	skb->queue_mapping = queue_mapping;
2073 }
2074 
2075 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
2076 {
2077 	return skb->queue_mapping;
2078 }
2079 
2080 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
2081 {
2082 	to->queue_mapping = from->queue_mapping;
2083 }
2084 
2085 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
2086 {
2087 	skb->queue_mapping = rx_queue + 1;
2088 }
2089 
2090 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
2091 {
2092 	return skb->queue_mapping - 1;
2093 }
2094 
2095 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
2096 {
2097 	return (skb->queue_mapping != 0);
2098 }
2099 
2100 extern u16 skb_tx_hash(const struct net_device *dev,
2101 		       const struct sk_buff *skb);
2102 
2103 #ifdef CONFIG_XFRM
2104 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2105 {
2106 	return skb->sp;
2107 }
2108 #else
2109 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2110 {
2111 	return NULL;
2112 }
2113 #endif
2114 
2115 static inline int skb_is_gso(const struct sk_buff *skb)
2116 {
2117 	return skb_shinfo(skb)->gso_size;
2118 }
2119 
2120 static inline int skb_is_gso_v6(const struct sk_buff *skb)
2121 {
2122 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
2123 }
2124 
2125 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
2126 
2127 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
2128 {
2129 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
2130 	 * wanted then gso_type will be set. */
2131 	struct skb_shared_info *shinfo = skb_shinfo(skb);
2132 	if (shinfo->gso_size != 0 && unlikely(shinfo->gso_type == 0)) {
2133 		__skb_warn_lro_forwarding(skb);
2134 		return true;
2135 	}
2136 	return false;
2137 }
2138 
2139 static inline void skb_forward_csum(struct sk_buff *skb)
2140 {
2141 	/* Unfortunately we don't support this one.  Any brave souls? */
2142 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2143 		skb->ip_summed = CHECKSUM_NONE;
2144 }
2145 
2146 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
2147 #endif	/* __KERNEL__ */
2148 #endif	/* _LINUX_SKBUFF_H */
2149