xref: /linux-6.15/include/linux/skbuff.h (revision a234ca0f)
1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <[email protected]>
6  *		Florian La Roche, <[email protected]>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/cache.h>
22 
23 #include <asm/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/dmaengine.h>
31 #include <linux/hrtimer.h>
32 
33 /* Don't change this without changing skb_csum_unnecessary! */
34 #define CHECKSUM_NONE 0
35 #define CHECKSUM_UNNECESSARY 1
36 #define CHECKSUM_COMPLETE 2
37 #define CHECKSUM_PARTIAL 3
38 
39 #define SKB_DATA_ALIGN(X)	(((X) + (SMP_CACHE_BYTES - 1)) & \
40 				 ~(SMP_CACHE_BYTES - 1))
41 #define SKB_WITH_OVERHEAD(X)	\
42 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
43 #define SKB_MAX_ORDER(X, ORDER) \
44 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
45 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
46 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
47 
48 /* A. Checksumming of received packets by device.
49  *
50  *	NONE: device failed to checksum this packet.
51  *		skb->csum is undefined.
52  *
53  *	UNNECESSARY: device parsed packet and wouldbe verified checksum.
54  *		skb->csum is undefined.
55  *	      It is bad option, but, unfortunately, many of vendors do this.
56  *	      Apparently with secret goal to sell you new device, when you
57  *	      will add new protocol to your host. F.e. IPv6. 8)
58  *
59  *	COMPLETE: the most generic way. Device supplied checksum of _all_
60  *	    the packet as seen by netif_rx in skb->csum.
61  *	    NOTE: Even if device supports only some protocols, but
62  *	    is able to produce some skb->csum, it MUST use COMPLETE,
63  *	    not UNNECESSARY.
64  *
65  *	PARTIAL: identical to the case for output below.  This may occur
66  *	    on a packet received directly from another Linux OS, e.g.,
67  *	    a virtualised Linux kernel on the same host.  The packet can
68  *	    be treated in the same way as UNNECESSARY except that on
69  *	    output (i.e., forwarding) the checksum must be filled in
70  *	    by the OS or the hardware.
71  *
72  * B. Checksumming on output.
73  *
74  *	NONE: skb is checksummed by protocol or csum is not required.
75  *
76  *	PARTIAL: device is required to csum packet as seen by hard_start_xmit
77  *	from skb->csum_start to the end and to record the checksum
78  *	at skb->csum_start + skb->csum_offset.
79  *
80  *	Device must show its capabilities in dev->features, set
81  *	at device setup time.
82  *	NETIF_F_HW_CSUM	- it is clever device, it is able to checksum
83  *			  everything.
84  *	NETIF_F_NO_CSUM - loopback or reliable single hop media.
85  *	NETIF_F_IP_CSUM - device is dumb. It is able to csum only
86  *			  TCP/UDP over IPv4. Sigh. Vendors like this
87  *			  way by an unknown reason. Though, see comment above
88  *			  about CHECKSUM_UNNECESSARY. 8)
89  *	NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
90  *
91  *	Any questions? No questions, good. 		--ANK
92  */
93 
94 struct net_device;
95 struct scatterlist;
96 struct pipe_inode_info;
97 
98 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
99 struct nf_conntrack {
100 	atomic_t use;
101 };
102 #endif
103 
104 #ifdef CONFIG_BRIDGE_NETFILTER
105 struct nf_bridge_info {
106 	atomic_t use;
107 	struct net_device *physindev;
108 	struct net_device *physoutdev;
109 	unsigned int mask;
110 	unsigned long data[32 / sizeof(unsigned long)];
111 };
112 #endif
113 
114 struct sk_buff_head {
115 	/* These two members must be first. */
116 	struct sk_buff	*next;
117 	struct sk_buff	*prev;
118 
119 	__u32		qlen;
120 	spinlock_t	lock;
121 };
122 
123 struct sk_buff;
124 
125 /* To allow 64K frame to be packed as single skb without frag_list */
126 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
127 
128 typedef struct skb_frag_struct skb_frag_t;
129 
130 struct skb_frag_struct {
131 	struct page *page;
132 	__u32 page_offset;
133 	__u32 size;
134 };
135 
136 #define HAVE_HW_TIME_STAMP
137 
138 /**
139  * struct skb_shared_hwtstamps - hardware time stamps
140  * @hwtstamp:	hardware time stamp transformed into duration
141  *		since arbitrary point in time
142  * @syststamp:	hwtstamp transformed to system time base
143  *
144  * Software time stamps generated by ktime_get_real() are stored in
145  * skb->tstamp. The relation between the different kinds of time
146  * stamps is as follows:
147  *
148  * syststamp and tstamp can be compared against each other in
149  * arbitrary combinations.  The accuracy of a
150  * syststamp/tstamp/"syststamp from other device" comparison is
151  * limited by the accuracy of the transformation into system time
152  * base. This depends on the device driver and its underlying
153  * hardware.
154  *
155  * hwtstamps can only be compared against other hwtstamps from
156  * the same device.
157  *
158  * This structure is attached to packets as part of the
159  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
160  */
161 struct skb_shared_hwtstamps {
162 	ktime_t	hwtstamp;
163 	ktime_t	syststamp;
164 };
165 
166 /**
167  * struct skb_shared_tx - instructions for time stamping of outgoing packets
168  * @hardware:		generate hardware time stamp
169  * @software:		generate software time stamp
170  * @in_progress:	device driver is going to provide
171  *			hardware time stamp
172  * @prevent_sk_orphan:	make sk reference available on driver level
173  * @flags:		all shared_tx flags
174  *
175  * These flags are attached to packets as part of the
176  * &skb_shared_info. Use skb_tx() to get a pointer.
177  */
178 union skb_shared_tx {
179 	struct {
180 		__u8	hardware:1,
181 			software:1,
182 			in_progress:1,
183 			prevent_sk_orphan:1;
184 	};
185 	__u8 flags;
186 };
187 
188 /* This data is invariant across clones and lives at
189  * the end of the header data, ie. at skb->end.
190  */
191 struct skb_shared_info {
192 	unsigned short	nr_frags;
193 	unsigned short	gso_size;
194 	/* Warning: this field is not always filled in (UFO)! */
195 	unsigned short	gso_segs;
196 	unsigned short  gso_type;
197 	__be32          ip6_frag_id;
198 	union skb_shared_tx tx_flags;
199 	struct sk_buff	*frag_list;
200 	struct skb_shared_hwtstamps hwtstamps;
201 
202 	/*
203 	 * Warning : all fields before dataref are cleared in __alloc_skb()
204 	 */
205 	atomic_t	dataref;
206 
207 	/* Intermediate layers must ensure that destructor_arg
208 	 * remains valid until skb destructor */
209 	void *		destructor_arg;
210 	/* must be last field, see pskb_expand_head() */
211 	skb_frag_t	frags[MAX_SKB_FRAGS];
212 };
213 
214 /* We divide dataref into two halves.  The higher 16 bits hold references
215  * to the payload part of skb->data.  The lower 16 bits hold references to
216  * the entire skb->data.  A clone of a headerless skb holds the length of
217  * the header in skb->hdr_len.
218  *
219  * All users must obey the rule that the skb->data reference count must be
220  * greater than or equal to the payload reference count.
221  *
222  * Holding a reference to the payload part means that the user does not
223  * care about modifications to the header part of skb->data.
224  */
225 #define SKB_DATAREF_SHIFT 16
226 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
227 
228 
229 enum {
230 	SKB_FCLONE_UNAVAILABLE,
231 	SKB_FCLONE_ORIG,
232 	SKB_FCLONE_CLONE,
233 };
234 
235 enum {
236 	SKB_GSO_TCPV4 = 1 << 0,
237 	SKB_GSO_UDP = 1 << 1,
238 
239 	/* This indicates the skb is from an untrusted source. */
240 	SKB_GSO_DODGY = 1 << 2,
241 
242 	/* This indicates the tcp segment has CWR set. */
243 	SKB_GSO_TCP_ECN = 1 << 3,
244 
245 	SKB_GSO_TCPV6 = 1 << 4,
246 
247 	SKB_GSO_FCOE = 1 << 5,
248 };
249 
250 #if BITS_PER_LONG > 32
251 #define NET_SKBUFF_DATA_USES_OFFSET 1
252 #endif
253 
254 #ifdef NET_SKBUFF_DATA_USES_OFFSET
255 typedef unsigned int sk_buff_data_t;
256 #else
257 typedef unsigned char *sk_buff_data_t;
258 #endif
259 
260 /**
261  *	struct sk_buff - socket buffer
262  *	@next: Next buffer in list
263  *	@prev: Previous buffer in list
264  *	@sk: Socket we are owned by
265  *	@tstamp: Time we arrived
266  *	@dev: Device we arrived on/are leaving by
267  *	@transport_header: Transport layer header
268  *	@network_header: Network layer header
269  *	@mac_header: Link layer header
270  *	@_skb_refdst: destination entry (with norefcount bit)
271  *	@sp: the security path, used for xfrm
272  *	@cb: Control buffer. Free for use by every layer. Put private vars here
273  *	@len: Length of actual data
274  *	@data_len: Data length
275  *	@mac_len: Length of link layer header
276  *	@hdr_len: writable header length of cloned skb
277  *	@csum: Checksum (must include start/offset pair)
278  *	@csum_start: Offset from skb->head where checksumming should start
279  *	@csum_offset: Offset from csum_start where checksum should be stored
280  *	@local_df: allow local fragmentation
281  *	@cloned: Head may be cloned (check refcnt to be sure)
282  *	@nohdr: Payload reference only, must not modify header
283  *	@pkt_type: Packet class
284  *	@fclone: skbuff clone status
285  *	@ip_summed: Driver fed us an IP checksum
286  *	@priority: Packet queueing priority
287  *	@users: User count - see {datagram,tcp}.c
288  *	@protocol: Packet protocol from driver
289  *	@truesize: Buffer size
290  *	@head: Head of buffer
291  *	@data: Data head pointer
292  *	@tail: Tail pointer
293  *	@end: End pointer
294  *	@destructor: Destruct function
295  *	@mark: Generic packet mark
296  *	@nfct: Associated connection, if any
297  *	@ipvs_property: skbuff is owned by ipvs
298  *	@peeked: this packet has been seen already, so stats have been
299  *		done for it, don't do them again
300  *	@nf_trace: netfilter packet trace flag
301  *	@nfctinfo: Relationship of this skb to the connection
302  *	@nfct_reasm: netfilter conntrack re-assembly pointer
303  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
304  *	@skb_iif: ifindex of device we arrived on
305  *	@rxhash: the packet hash computed on receive
306  *	@queue_mapping: Queue mapping for multiqueue devices
307  *	@tc_index: Traffic control index
308  *	@tc_verd: traffic control verdict
309  *	@ndisc_nodetype: router type (from link layer)
310  *	@dma_cookie: a cookie to one of several possible DMA operations
311  *		done by skb DMA functions
312  *	@secmark: security marking
313  *	@vlan_tci: vlan tag control information
314  */
315 
316 struct sk_buff {
317 	/* These two members must be first. */
318 	struct sk_buff		*next;
319 	struct sk_buff		*prev;
320 
321 	ktime_t			tstamp;
322 
323 	struct sock		*sk;
324 	struct net_device	*dev;
325 
326 	/*
327 	 * This is the control buffer. It is free to use for every
328 	 * layer. Please put your private variables there. If you
329 	 * want to keep them across layers you have to do a skb_clone()
330 	 * first. This is owned by whoever has the skb queued ATM.
331 	 */
332 	char			cb[48] __aligned(8);
333 
334 	unsigned long		_skb_refdst;
335 #ifdef CONFIG_XFRM
336 	struct	sec_path	*sp;
337 #endif
338 	unsigned int		len,
339 				data_len;
340 	__u16			mac_len,
341 				hdr_len;
342 	union {
343 		__wsum		csum;
344 		struct {
345 			__u16	csum_start;
346 			__u16	csum_offset;
347 		};
348 	};
349 	__u32			priority;
350 	kmemcheck_bitfield_begin(flags1);
351 	__u8			local_df:1,
352 				cloned:1,
353 				ip_summed:2,
354 				nohdr:1,
355 				nfctinfo:3;
356 	__u8			pkt_type:3,
357 				fclone:2,
358 				ipvs_property:1,
359 				peeked:1,
360 				nf_trace:1;
361 	kmemcheck_bitfield_end(flags1);
362 	__be16			protocol;
363 
364 	void			(*destructor)(struct sk_buff *skb);
365 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
366 	struct nf_conntrack	*nfct;
367 	struct sk_buff		*nfct_reasm;
368 #endif
369 #ifdef CONFIG_BRIDGE_NETFILTER
370 	struct nf_bridge_info	*nf_bridge;
371 #endif
372 
373 	int			skb_iif;
374 #ifdef CONFIG_NET_SCHED
375 	__u16			tc_index;	/* traffic control index */
376 #ifdef CONFIG_NET_CLS_ACT
377 	__u16			tc_verd;	/* traffic control verdict */
378 #endif
379 #endif
380 
381 	__u32			rxhash;
382 
383 	kmemcheck_bitfield_begin(flags2);
384 	__u16			queue_mapping:16;
385 #ifdef CONFIG_IPV6_NDISC_NODETYPE
386 	__u8			ndisc_nodetype:2,
387 				deliver_no_wcard:1;
388 #else
389 	__u8			deliver_no_wcard:1;
390 #endif
391 	kmemcheck_bitfield_end(flags2);
392 
393 	/* 0/14 bit hole */
394 
395 #ifdef CONFIG_NET_DMA
396 	dma_cookie_t		dma_cookie;
397 #endif
398 #ifdef CONFIG_NETWORK_SECMARK
399 	__u32			secmark;
400 #endif
401 	union {
402 		__u32		mark;
403 		__u32		dropcount;
404 	};
405 
406 	__u16			vlan_tci;
407 
408 	sk_buff_data_t		transport_header;
409 	sk_buff_data_t		network_header;
410 	sk_buff_data_t		mac_header;
411 	/* These elements must be at the end, see alloc_skb() for details.  */
412 	sk_buff_data_t		tail;
413 	sk_buff_data_t		end;
414 	unsigned char		*head,
415 				*data;
416 	unsigned int		truesize;
417 	atomic_t		users;
418 };
419 
420 #ifdef __KERNEL__
421 /*
422  *	Handling routines are only of interest to the kernel
423  */
424 #include <linux/slab.h>
425 
426 #include <asm/system.h>
427 
428 /*
429  * skb might have a dst pointer attached, refcounted or not.
430  * _skb_refdst low order bit is set if refcount was _not_ taken
431  */
432 #define SKB_DST_NOREF	1UL
433 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
434 
435 /**
436  * skb_dst - returns skb dst_entry
437  * @skb: buffer
438  *
439  * Returns skb dst_entry, regardless of reference taken or not.
440  */
441 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
442 {
443 	/* If refdst was not refcounted, check we still are in a
444 	 * rcu_read_lock section
445 	 */
446 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
447 		!rcu_read_lock_held() &&
448 		!rcu_read_lock_bh_held());
449 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
450 }
451 
452 /**
453  * skb_dst_set - sets skb dst
454  * @skb: buffer
455  * @dst: dst entry
456  *
457  * Sets skb dst, assuming a reference was taken on dst and should
458  * be released by skb_dst_drop()
459  */
460 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
461 {
462 	skb->_skb_refdst = (unsigned long)dst;
463 }
464 
465 /**
466  * skb_dst_set_noref - sets skb dst, without a reference
467  * @skb: buffer
468  * @dst: dst entry
469  *
470  * Sets skb dst, assuming a reference was not taken on dst
471  * skb_dst_drop() should not dst_release() this dst
472  */
473 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
474 {
475 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
476 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
477 }
478 
479 /**
480  * skb_dst_is_noref - Test if skb dst isnt refcounted
481  * @skb: buffer
482  */
483 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
484 {
485 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
486 }
487 
488 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
489 {
490 	return (struct rtable *)skb_dst(skb);
491 }
492 
493 extern void kfree_skb(struct sk_buff *skb);
494 extern void consume_skb(struct sk_buff *skb);
495 extern void	       __kfree_skb(struct sk_buff *skb);
496 extern struct sk_buff *__alloc_skb(unsigned int size,
497 				   gfp_t priority, int fclone, int node);
498 static inline struct sk_buff *alloc_skb(unsigned int size,
499 					gfp_t priority)
500 {
501 	return __alloc_skb(size, priority, 0, -1);
502 }
503 
504 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
505 					       gfp_t priority)
506 {
507 	return __alloc_skb(size, priority, 1, -1);
508 }
509 
510 extern bool skb_recycle_check(struct sk_buff *skb, int skb_size);
511 
512 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
513 extern struct sk_buff *skb_clone(struct sk_buff *skb,
514 				 gfp_t priority);
515 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
516 				gfp_t priority);
517 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
518 				 gfp_t gfp_mask);
519 extern int	       pskb_expand_head(struct sk_buff *skb,
520 					int nhead, int ntail,
521 					gfp_t gfp_mask);
522 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
523 					    unsigned int headroom);
524 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
525 				       int newheadroom, int newtailroom,
526 				       gfp_t priority);
527 extern int	       skb_to_sgvec(struct sk_buff *skb,
528 				    struct scatterlist *sg, int offset,
529 				    int len);
530 extern int	       skb_cow_data(struct sk_buff *skb, int tailbits,
531 				    struct sk_buff **trailer);
532 extern int	       skb_pad(struct sk_buff *skb, int pad);
533 #define dev_kfree_skb(a)	consume_skb(a)
534 
535 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
536 			int getfrag(void *from, char *to, int offset,
537 			int len,int odd, struct sk_buff *skb),
538 			void *from, int length);
539 
540 struct skb_seq_state {
541 	__u32		lower_offset;
542 	__u32		upper_offset;
543 	__u32		frag_idx;
544 	__u32		stepped_offset;
545 	struct sk_buff	*root_skb;
546 	struct sk_buff	*cur_skb;
547 	__u8		*frag_data;
548 };
549 
550 extern void	      skb_prepare_seq_read(struct sk_buff *skb,
551 					   unsigned int from, unsigned int to,
552 					   struct skb_seq_state *st);
553 extern unsigned int   skb_seq_read(unsigned int consumed, const u8 **data,
554 				   struct skb_seq_state *st);
555 extern void	      skb_abort_seq_read(struct skb_seq_state *st);
556 
557 extern unsigned int   skb_find_text(struct sk_buff *skb, unsigned int from,
558 				    unsigned int to, struct ts_config *config,
559 				    struct ts_state *state);
560 
561 #ifdef NET_SKBUFF_DATA_USES_OFFSET
562 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
563 {
564 	return skb->head + skb->end;
565 }
566 #else
567 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
568 {
569 	return skb->end;
570 }
571 #endif
572 
573 /* Internal */
574 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
575 
576 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
577 {
578 	return &skb_shinfo(skb)->hwtstamps;
579 }
580 
581 static inline union skb_shared_tx *skb_tx(struct sk_buff *skb)
582 {
583 	return &skb_shinfo(skb)->tx_flags;
584 }
585 
586 /**
587  *	skb_queue_empty - check if a queue is empty
588  *	@list: queue head
589  *
590  *	Returns true if the queue is empty, false otherwise.
591  */
592 static inline int skb_queue_empty(const struct sk_buff_head *list)
593 {
594 	return list->next == (struct sk_buff *)list;
595 }
596 
597 /**
598  *	skb_queue_is_last - check if skb is the last entry in the queue
599  *	@list: queue head
600  *	@skb: buffer
601  *
602  *	Returns true if @skb is the last buffer on the list.
603  */
604 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
605 				     const struct sk_buff *skb)
606 {
607 	return (skb->next == (struct sk_buff *) list);
608 }
609 
610 /**
611  *	skb_queue_is_first - check if skb is the first entry in the queue
612  *	@list: queue head
613  *	@skb: buffer
614  *
615  *	Returns true if @skb is the first buffer on the list.
616  */
617 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
618 				      const struct sk_buff *skb)
619 {
620 	return (skb->prev == (struct sk_buff *) list);
621 }
622 
623 /**
624  *	skb_queue_next - return the next packet in the queue
625  *	@list: queue head
626  *	@skb: current buffer
627  *
628  *	Return the next packet in @list after @skb.  It is only valid to
629  *	call this if skb_queue_is_last() evaluates to false.
630  */
631 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
632 					     const struct sk_buff *skb)
633 {
634 	/* This BUG_ON may seem severe, but if we just return then we
635 	 * are going to dereference garbage.
636 	 */
637 	BUG_ON(skb_queue_is_last(list, skb));
638 	return skb->next;
639 }
640 
641 /**
642  *	skb_queue_prev - return the prev packet in the queue
643  *	@list: queue head
644  *	@skb: current buffer
645  *
646  *	Return the prev packet in @list before @skb.  It is only valid to
647  *	call this if skb_queue_is_first() evaluates to false.
648  */
649 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
650 					     const struct sk_buff *skb)
651 {
652 	/* This BUG_ON may seem severe, but if we just return then we
653 	 * are going to dereference garbage.
654 	 */
655 	BUG_ON(skb_queue_is_first(list, skb));
656 	return skb->prev;
657 }
658 
659 /**
660  *	skb_get - reference buffer
661  *	@skb: buffer to reference
662  *
663  *	Makes another reference to a socket buffer and returns a pointer
664  *	to the buffer.
665  */
666 static inline struct sk_buff *skb_get(struct sk_buff *skb)
667 {
668 	atomic_inc(&skb->users);
669 	return skb;
670 }
671 
672 /*
673  * If users == 1, we are the only owner and are can avoid redundant
674  * atomic change.
675  */
676 
677 /**
678  *	skb_cloned - is the buffer a clone
679  *	@skb: buffer to check
680  *
681  *	Returns true if the buffer was generated with skb_clone() and is
682  *	one of multiple shared copies of the buffer. Cloned buffers are
683  *	shared data so must not be written to under normal circumstances.
684  */
685 static inline int skb_cloned(const struct sk_buff *skb)
686 {
687 	return skb->cloned &&
688 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
689 }
690 
691 /**
692  *	skb_header_cloned - is the header a clone
693  *	@skb: buffer to check
694  *
695  *	Returns true if modifying the header part of the buffer requires
696  *	the data to be copied.
697  */
698 static inline int skb_header_cloned(const struct sk_buff *skb)
699 {
700 	int dataref;
701 
702 	if (!skb->cloned)
703 		return 0;
704 
705 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
706 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
707 	return dataref != 1;
708 }
709 
710 /**
711  *	skb_header_release - release reference to header
712  *	@skb: buffer to operate on
713  *
714  *	Drop a reference to the header part of the buffer.  This is done
715  *	by acquiring a payload reference.  You must not read from the header
716  *	part of skb->data after this.
717  */
718 static inline void skb_header_release(struct sk_buff *skb)
719 {
720 	BUG_ON(skb->nohdr);
721 	skb->nohdr = 1;
722 	atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
723 }
724 
725 /**
726  *	skb_shared - is the buffer shared
727  *	@skb: buffer to check
728  *
729  *	Returns true if more than one person has a reference to this
730  *	buffer.
731  */
732 static inline int skb_shared(const struct sk_buff *skb)
733 {
734 	return atomic_read(&skb->users) != 1;
735 }
736 
737 /**
738  *	skb_share_check - check if buffer is shared and if so clone it
739  *	@skb: buffer to check
740  *	@pri: priority for memory allocation
741  *
742  *	If the buffer is shared the buffer is cloned and the old copy
743  *	drops a reference. A new clone with a single reference is returned.
744  *	If the buffer is not shared the original buffer is returned. When
745  *	being called from interrupt status or with spinlocks held pri must
746  *	be GFP_ATOMIC.
747  *
748  *	NULL is returned on a memory allocation failure.
749  */
750 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
751 					      gfp_t pri)
752 {
753 	might_sleep_if(pri & __GFP_WAIT);
754 	if (skb_shared(skb)) {
755 		struct sk_buff *nskb = skb_clone(skb, pri);
756 		kfree_skb(skb);
757 		skb = nskb;
758 	}
759 	return skb;
760 }
761 
762 /*
763  *	Copy shared buffers into a new sk_buff. We effectively do COW on
764  *	packets to handle cases where we have a local reader and forward
765  *	and a couple of other messy ones. The normal one is tcpdumping
766  *	a packet thats being forwarded.
767  */
768 
769 /**
770  *	skb_unshare - make a copy of a shared buffer
771  *	@skb: buffer to check
772  *	@pri: priority for memory allocation
773  *
774  *	If the socket buffer is a clone then this function creates a new
775  *	copy of the data, drops a reference count on the old copy and returns
776  *	the new copy with the reference count at 1. If the buffer is not a clone
777  *	the original buffer is returned. When called with a spinlock held or
778  *	from interrupt state @pri must be %GFP_ATOMIC
779  *
780  *	%NULL is returned on a memory allocation failure.
781  */
782 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
783 					  gfp_t pri)
784 {
785 	might_sleep_if(pri & __GFP_WAIT);
786 	if (skb_cloned(skb)) {
787 		struct sk_buff *nskb = skb_copy(skb, pri);
788 		kfree_skb(skb);	/* Free our shared copy */
789 		skb = nskb;
790 	}
791 	return skb;
792 }
793 
794 /**
795  *	skb_peek - peek at the head of an &sk_buff_head
796  *	@list_: list to peek at
797  *
798  *	Peek an &sk_buff. Unlike most other operations you _MUST_
799  *	be careful with this one. A peek leaves the buffer on the
800  *	list and someone else may run off with it. You must hold
801  *	the appropriate locks or have a private queue to do this.
802  *
803  *	Returns %NULL for an empty list or a pointer to the head element.
804  *	The reference count is not incremented and the reference is therefore
805  *	volatile. Use with caution.
806  */
807 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
808 {
809 	struct sk_buff *list = ((struct sk_buff *)list_)->next;
810 	if (list == (struct sk_buff *)list_)
811 		list = NULL;
812 	return list;
813 }
814 
815 /**
816  *	skb_peek_tail - peek at the tail of an &sk_buff_head
817  *	@list_: list to peek at
818  *
819  *	Peek an &sk_buff. Unlike most other operations you _MUST_
820  *	be careful with this one. A peek leaves the buffer on the
821  *	list and someone else may run off with it. You must hold
822  *	the appropriate locks or have a private queue to do this.
823  *
824  *	Returns %NULL for an empty list or a pointer to the tail element.
825  *	The reference count is not incremented and the reference is therefore
826  *	volatile. Use with caution.
827  */
828 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
829 {
830 	struct sk_buff *list = ((struct sk_buff *)list_)->prev;
831 	if (list == (struct sk_buff *)list_)
832 		list = NULL;
833 	return list;
834 }
835 
836 /**
837  *	skb_queue_len	- get queue length
838  *	@list_: list to measure
839  *
840  *	Return the length of an &sk_buff queue.
841  */
842 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
843 {
844 	return list_->qlen;
845 }
846 
847 /**
848  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
849  *	@list: queue to initialize
850  *
851  *	This initializes only the list and queue length aspects of
852  *	an sk_buff_head object.  This allows to initialize the list
853  *	aspects of an sk_buff_head without reinitializing things like
854  *	the spinlock.  It can also be used for on-stack sk_buff_head
855  *	objects where the spinlock is known to not be used.
856  */
857 static inline void __skb_queue_head_init(struct sk_buff_head *list)
858 {
859 	list->prev = list->next = (struct sk_buff *)list;
860 	list->qlen = 0;
861 }
862 
863 /*
864  * This function creates a split out lock class for each invocation;
865  * this is needed for now since a whole lot of users of the skb-queue
866  * infrastructure in drivers have different locking usage (in hardirq)
867  * than the networking core (in softirq only). In the long run either the
868  * network layer or drivers should need annotation to consolidate the
869  * main types of usage into 3 classes.
870  */
871 static inline void skb_queue_head_init(struct sk_buff_head *list)
872 {
873 	spin_lock_init(&list->lock);
874 	__skb_queue_head_init(list);
875 }
876 
877 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
878 		struct lock_class_key *class)
879 {
880 	skb_queue_head_init(list);
881 	lockdep_set_class(&list->lock, class);
882 }
883 
884 /*
885  *	Insert an sk_buff on a list.
886  *
887  *	The "__skb_xxxx()" functions are the non-atomic ones that
888  *	can only be called with interrupts disabled.
889  */
890 extern void        skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
891 static inline void __skb_insert(struct sk_buff *newsk,
892 				struct sk_buff *prev, struct sk_buff *next,
893 				struct sk_buff_head *list)
894 {
895 	newsk->next = next;
896 	newsk->prev = prev;
897 	next->prev  = prev->next = newsk;
898 	list->qlen++;
899 }
900 
901 static inline void __skb_queue_splice(const struct sk_buff_head *list,
902 				      struct sk_buff *prev,
903 				      struct sk_buff *next)
904 {
905 	struct sk_buff *first = list->next;
906 	struct sk_buff *last = list->prev;
907 
908 	first->prev = prev;
909 	prev->next = first;
910 
911 	last->next = next;
912 	next->prev = last;
913 }
914 
915 /**
916  *	skb_queue_splice - join two skb lists, this is designed for stacks
917  *	@list: the new list to add
918  *	@head: the place to add it in the first list
919  */
920 static inline void skb_queue_splice(const struct sk_buff_head *list,
921 				    struct sk_buff_head *head)
922 {
923 	if (!skb_queue_empty(list)) {
924 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
925 		head->qlen += list->qlen;
926 	}
927 }
928 
929 /**
930  *	skb_queue_splice - join two skb lists and reinitialise the emptied list
931  *	@list: the new list to add
932  *	@head: the place to add it in the first list
933  *
934  *	The list at @list is reinitialised
935  */
936 static inline void skb_queue_splice_init(struct sk_buff_head *list,
937 					 struct sk_buff_head *head)
938 {
939 	if (!skb_queue_empty(list)) {
940 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
941 		head->qlen += list->qlen;
942 		__skb_queue_head_init(list);
943 	}
944 }
945 
946 /**
947  *	skb_queue_splice_tail - join two skb lists, each list being a queue
948  *	@list: the new list to add
949  *	@head: the place to add it in the first list
950  */
951 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
952 					 struct sk_buff_head *head)
953 {
954 	if (!skb_queue_empty(list)) {
955 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
956 		head->qlen += list->qlen;
957 	}
958 }
959 
960 /**
961  *	skb_queue_splice_tail - join two skb lists and reinitialise the emptied list
962  *	@list: the new list to add
963  *	@head: the place to add it in the first list
964  *
965  *	Each of the lists is a queue.
966  *	The list at @list is reinitialised
967  */
968 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
969 					      struct sk_buff_head *head)
970 {
971 	if (!skb_queue_empty(list)) {
972 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
973 		head->qlen += list->qlen;
974 		__skb_queue_head_init(list);
975 	}
976 }
977 
978 /**
979  *	__skb_queue_after - queue a buffer at the list head
980  *	@list: list to use
981  *	@prev: place after this buffer
982  *	@newsk: buffer to queue
983  *
984  *	Queue a buffer int the middle of a list. This function takes no locks
985  *	and you must therefore hold required locks before calling it.
986  *
987  *	A buffer cannot be placed on two lists at the same time.
988  */
989 static inline void __skb_queue_after(struct sk_buff_head *list,
990 				     struct sk_buff *prev,
991 				     struct sk_buff *newsk)
992 {
993 	__skb_insert(newsk, prev, prev->next, list);
994 }
995 
996 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
997 		       struct sk_buff_head *list);
998 
999 static inline void __skb_queue_before(struct sk_buff_head *list,
1000 				      struct sk_buff *next,
1001 				      struct sk_buff *newsk)
1002 {
1003 	__skb_insert(newsk, next->prev, next, list);
1004 }
1005 
1006 /**
1007  *	__skb_queue_head - queue a buffer at the list head
1008  *	@list: list to use
1009  *	@newsk: buffer to queue
1010  *
1011  *	Queue a buffer at the start of a list. This function takes no locks
1012  *	and you must therefore hold required locks before calling it.
1013  *
1014  *	A buffer cannot be placed on two lists at the same time.
1015  */
1016 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1017 static inline void __skb_queue_head(struct sk_buff_head *list,
1018 				    struct sk_buff *newsk)
1019 {
1020 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
1021 }
1022 
1023 /**
1024  *	__skb_queue_tail - queue a buffer at the list tail
1025  *	@list: list to use
1026  *	@newsk: buffer to queue
1027  *
1028  *	Queue a buffer at the end of a list. This function takes no locks
1029  *	and you must therefore hold required locks before calling it.
1030  *
1031  *	A buffer cannot be placed on two lists at the same time.
1032  */
1033 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1034 static inline void __skb_queue_tail(struct sk_buff_head *list,
1035 				   struct sk_buff *newsk)
1036 {
1037 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
1038 }
1039 
1040 /*
1041  * remove sk_buff from list. _Must_ be called atomically, and with
1042  * the list known..
1043  */
1044 extern void	   skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1045 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1046 {
1047 	struct sk_buff *next, *prev;
1048 
1049 	list->qlen--;
1050 	next	   = skb->next;
1051 	prev	   = skb->prev;
1052 	skb->next  = skb->prev = NULL;
1053 	next->prev = prev;
1054 	prev->next = next;
1055 }
1056 
1057 /**
1058  *	__skb_dequeue - remove from the head of the queue
1059  *	@list: list to dequeue from
1060  *
1061  *	Remove the head of the list. This function does not take any locks
1062  *	so must be used with appropriate locks held only. The head item is
1063  *	returned or %NULL if the list is empty.
1064  */
1065 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1066 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1067 {
1068 	struct sk_buff *skb = skb_peek(list);
1069 	if (skb)
1070 		__skb_unlink(skb, list);
1071 	return skb;
1072 }
1073 
1074 /**
1075  *	__skb_dequeue_tail - remove from the tail of the queue
1076  *	@list: list to dequeue from
1077  *
1078  *	Remove the tail of the list. This function does not take any locks
1079  *	so must be used with appropriate locks held only. The tail item is
1080  *	returned or %NULL if the list is empty.
1081  */
1082 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1083 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1084 {
1085 	struct sk_buff *skb = skb_peek_tail(list);
1086 	if (skb)
1087 		__skb_unlink(skb, list);
1088 	return skb;
1089 }
1090 
1091 
1092 static inline int skb_is_nonlinear(const struct sk_buff *skb)
1093 {
1094 	return skb->data_len;
1095 }
1096 
1097 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1098 {
1099 	return skb->len - skb->data_len;
1100 }
1101 
1102 static inline int skb_pagelen(const struct sk_buff *skb)
1103 {
1104 	int i, len = 0;
1105 
1106 	for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1107 		len += skb_shinfo(skb)->frags[i].size;
1108 	return len + skb_headlen(skb);
1109 }
1110 
1111 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1112 				      struct page *page, int off, int size)
1113 {
1114 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1115 
1116 	frag->page		  = page;
1117 	frag->page_offset	  = off;
1118 	frag->size		  = size;
1119 	skb_shinfo(skb)->nr_frags = i + 1;
1120 }
1121 
1122 extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
1123 			    int off, int size);
1124 
1125 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
1126 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_has_frags(skb))
1127 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
1128 
1129 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1130 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1131 {
1132 	return skb->head + skb->tail;
1133 }
1134 
1135 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1136 {
1137 	skb->tail = skb->data - skb->head;
1138 }
1139 
1140 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1141 {
1142 	skb_reset_tail_pointer(skb);
1143 	skb->tail += offset;
1144 }
1145 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1146 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1147 {
1148 	return skb->tail;
1149 }
1150 
1151 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1152 {
1153 	skb->tail = skb->data;
1154 }
1155 
1156 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1157 {
1158 	skb->tail = skb->data + offset;
1159 }
1160 
1161 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1162 
1163 /*
1164  *	Add data to an sk_buff
1165  */
1166 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1167 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1168 {
1169 	unsigned char *tmp = skb_tail_pointer(skb);
1170 	SKB_LINEAR_ASSERT(skb);
1171 	skb->tail += len;
1172 	skb->len  += len;
1173 	return tmp;
1174 }
1175 
1176 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1177 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1178 {
1179 	skb->data -= len;
1180 	skb->len  += len;
1181 	return skb->data;
1182 }
1183 
1184 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1185 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1186 {
1187 	skb->len -= len;
1188 	BUG_ON(skb->len < skb->data_len);
1189 	return skb->data += len;
1190 }
1191 
1192 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1193 {
1194 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1195 }
1196 
1197 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1198 
1199 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1200 {
1201 	if (len > skb_headlen(skb) &&
1202 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1203 		return NULL;
1204 	skb->len -= len;
1205 	return skb->data += len;
1206 }
1207 
1208 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1209 {
1210 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1211 }
1212 
1213 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1214 {
1215 	if (likely(len <= skb_headlen(skb)))
1216 		return 1;
1217 	if (unlikely(len > skb->len))
1218 		return 0;
1219 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1220 }
1221 
1222 /**
1223  *	skb_headroom - bytes at buffer head
1224  *	@skb: buffer to check
1225  *
1226  *	Return the number of bytes of free space at the head of an &sk_buff.
1227  */
1228 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1229 {
1230 	return skb->data - skb->head;
1231 }
1232 
1233 /**
1234  *	skb_tailroom - bytes at buffer end
1235  *	@skb: buffer to check
1236  *
1237  *	Return the number of bytes of free space at the tail of an sk_buff
1238  */
1239 static inline int skb_tailroom(const struct sk_buff *skb)
1240 {
1241 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1242 }
1243 
1244 /**
1245  *	skb_reserve - adjust headroom
1246  *	@skb: buffer to alter
1247  *	@len: bytes to move
1248  *
1249  *	Increase the headroom of an empty &sk_buff by reducing the tail
1250  *	room. This is only allowed for an empty buffer.
1251  */
1252 static inline void skb_reserve(struct sk_buff *skb, int len)
1253 {
1254 	skb->data += len;
1255 	skb->tail += len;
1256 }
1257 
1258 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1259 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1260 {
1261 	return skb->head + skb->transport_header;
1262 }
1263 
1264 static inline void skb_reset_transport_header(struct sk_buff *skb)
1265 {
1266 	skb->transport_header = skb->data - skb->head;
1267 }
1268 
1269 static inline void skb_set_transport_header(struct sk_buff *skb,
1270 					    const int offset)
1271 {
1272 	skb_reset_transport_header(skb);
1273 	skb->transport_header += offset;
1274 }
1275 
1276 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1277 {
1278 	return skb->head + skb->network_header;
1279 }
1280 
1281 static inline void skb_reset_network_header(struct sk_buff *skb)
1282 {
1283 	skb->network_header = skb->data - skb->head;
1284 }
1285 
1286 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1287 {
1288 	skb_reset_network_header(skb);
1289 	skb->network_header += offset;
1290 }
1291 
1292 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1293 {
1294 	return skb->head + skb->mac_header;
1295 }
1296 
1297 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1298 {
1299 	return skb->mac_header != ~0U;
1300 }
1301 
1302 static inline void skb_reset_mac_header(struct sk_buff *skb)
1303 {
1304 	skb->mac_header = skb->data - skb->head;
1305 }
1306 
1307 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1308 {
1309 	skb_reset_mac_header(skb);
1310 	skb->mac_header += offset;
1311 }
1312 
1313 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1314 
1315 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1316 {
1317 	return skb->transport_header;
1318 }
1319 
1320 static inline void skb_reset_transport_header(struct sk_buff *skb)
1321 {
1322 	skb->transport_header = skb->data;
1323 }
1324 
1325 static inline void skb_set_transport_header(struct sk_buff *skb,
1326 					    const int offset)
1327 {
1328 	skb->transport_header = skb->data + offset;
1329 }
1330 
1331 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1332 {
1333 	return skb->network_header;
1334 }
1335 
1336 static inline void skb_reset_network_header(struct sk_buff *skb)
1337 {
1338 	skb->network_header = skb->data;
1339 }
1340 
1341 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1342 {
1343 	skb->network_header = skb->data + offset;
1344 }
1345 
1346 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1347 {
1348 	return skb->mac_header;
1349 }
1350 
1351 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1352 {
1353 	return skb->mac_header != NULL;
1354 }
1355 
1356 static inline void skb_reset_mac_header(struct sk_buff *skb)
1357 {
1358 	skb->mac_header = skb->data;
1359 }
1360 
1361 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1362 {
1363 	skb->mac_header = skb->data + offset;
1364 }
1365 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1366 
1367 static inline int skb_transport_offset(const struct sk_buff *skb)
1368 {
1369 	return skb_transport_header(skb) - skb->data;
1370 }
1371 
1372 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1373 {
1374 	return skb->transport_header - skb->network_header;
1375 }
1376 
1377 static inline int skb_network_offset(const struct sk_buff *skb)
1378 {
1379 	return skb_network_header(skb) - skb->data;
1380 }
1381 
1382 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
1383 {
1384 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
1385 }
1386 
1387 /*
1388  * CPUs often take a performance hit when accessing unaligned memory
1389  * locations. The actual performance hit varies, it can be small if the
1390  * hardware handles it or large if we have to take an exception and fix it
1391  * in software.
1392  *
1393  * Since an ethernet header is 14 bytes network drivers often end up with
1394  * the IP header at an unaligned offset. The IP header can be aligned by
1395  * shifting the start of the packet by 2 bytes. Drivers should do this
1396  * with:
1397  *
1398  * skb_reserve(skb, NET_IP_ALIGN);
1399  *
1400  * The downside to this alignment of the IP header is that the DMA is now
1401  * unaligned. On some architectures the cost of an unaligned DMA is high
1402  * and this cost outweighs the gains made by aligning the IP header.
1403  *
1404  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1405  * to be overridden.
1406  */
1407 #ifndef NET_IP_ALIGN
1408 #define NET_IP_ALIGN	2
1409 #endif
1410 
1411 /*
1412  * The networking layer reserves some headroom in skb data (via
1413  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1414  * the header has to grow. In the default case, if the header has to grow
1415  * 32 bytes or less we avoid the reallocation.
1416  *
1417  * Unfortunately this headroom changes the DMA alignment of the resulting
1418  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1419  * on some architectures. An architecture can override this value,
1420  * perhaps setting it to a cacheline in size (since that will maintain
1421  * cacheline alignment of the DMA). It must be a power of 2.
1422  *
1423  * Various parts of the networking layer expect at least 32 bytes of
1424  * headroom, you should not reduce this.
1425  *
1426  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
1427  * to reduce average number of cache lines per packet.
1428  * get_rps_cpus() for example only access one 64 bytes aligned block :
1429  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
1430  */
1431 #ifndef NET_SKB_PAD
1432 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
1433 #endif
1434 
1435 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1436 
1437 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1438 {
1439 	if (unlikely(skb->data_len)) {
1440 		WARN_ON(1);
1441 		return;
1442 	}
1443 	skb->len = len;
1444 	skb_set_tail_pointer(skb, len);
1445 }
1446 
1447 extern void skb_trim(struct sk_buff *skb, unsigned int len);
1448 
1449 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1450 {
1451 	if (skb->data_len)
1452 		return ___pskb_trim(skb, len);
1453 	__skb_trim(skb, len);
1454 	return 0;
1455 }
1456 
1457 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1458 {
1459 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1460 }
1461 
1462 /**
1463  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1464  *	@skb: buffer to alter
1465  *	@len: new length
1466  *
1467  *	This is identical to pskb_trim except that the caller knows that
1468  *	the skb is not cloned so we should never get an error due to out-
1469  *	of-memory.
1470  */
1471 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1472 {
1473 	int err = pskb_trim(skb, len);
1474 	BUG_ON(err);
1475 }
1476 
1477 /**
1478  *	skb_orphan - orphan a buffer
1479  *	@skb: buffer to orphan
1480  *
1481  *	If a buffer currently has an owner then we call the owner's
1482  *	destructor function and make the @skb unowned. The buffer continues
1483  *	to exist but is no longer charged to its former owner.
1484  */
1485 static inline void skb_orphan(struct sk_buff *skb)
1486 {
1487 	if (skb->destructor)
1488 		skb->destructor(skb);
1489 	skb->destructor = NULL;
1490 	skb->sk		= NULL;
1491 }
1492 
1493 /**
1494  *	__skb_queue_purge - empty a list
1495  *	@list: list to empty
1496  *
1497  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
1498  *	the list and one reference dropped. This function does not take the
1499  *	list lock and the caller must hold the relevant locks to use it.
1500  */
1501 extern void skb_queue_purge(struct sk_buff_head *list);
1502 static inline void __skb_queue_purge(struct sk_buff_head *list)
1503 {
1504 	struct sk_buff *skb;
1505 	while ((skb = __skb_dequeue(list)) != NULL)
1506 		kfree_skb(skb);
1507 }
1508 
1509 /**
1510  *	__dev_alloc_skb - allocate an skbuff for receiving
1511  *	@length: length to allocate
1512  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
1513  *
1514  *	Allocate a new &sk_buff and assign it a usage count of one. The
1515  *	buffer has unspecified headroom built in. Users should allocate
1516  *	the headroom they think they need without accounting for the
1517  *	built in space. The built in space is used for optimisations.
1518  *
1519  *	%NULL is returned if there is no free memory.
1520  */
1521 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1522 					      gfp_t gfp_mask)
1523 {
1524 	struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1525 	if (likely(skb))
1526 		skb_reserve(skb, NET_SKB_PAD);
1527 	return skb;
1528 }
1529 
1530 extern struct sk_buff *dev_alloc_skb(unsigned int length);
1531 
1532 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1533 		unsigned int length, gfp_t gfp_mask);
1534 
1535 /**
1536  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
1537  *	@dev: network device to receive on
1538  *	@length: length to allocate
1539  *
1540  *	Allocate a new &sk_buff and assign it a usage count of one. The
1541  *	buffer has unspecified headroom built in. Users should allocate
1542  *	the headroom they think they need without accounting for the
1543  *	built in space. The built in space is used for optimisations.
1544  *
1545  *	%NULL is returned if there is no free memory. Although this function
1546  *	allocates memory it can be called from an interrupt.
1547  */
1548 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1549 		unsigned int length)
1550 {
1551 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1552 }
1553 
1554 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
1555 		unsigned int length)
1556 {
1557 	struct sk_buff *skb = netdev_alloc_skb(dev, length + NET_IP_ALIGN);
1558 
1559 	if (NET_IP_ALIGN && skb)
1560 		skb_reserve(skb, NET_IP_ALIGN);
1561 	return skb;
1562 }
1563 
1564 extern struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask);
1565 
1566 /**
1567  *	netdev_alloc_page - allocate a page for ps-rx on a specific device
1568  *	@dev: network device to receive on
1569  *
1570  * 	Allocate a new page node local to the specified device.
1571  *
1572  * 	%NULL is returned if there is no free memory.
1573  */
1574 static inline struct page *netdev_alloc_page(struct net_device *dev)
1575 {
1576 	return __netdev_alloc_page(dev, GFP_ATOMIC);
1577 }
1578 
1579 static inline void netdev_free_page(struct net_device *dev, struct page *page)
1580 {
1581 	__free_page(page);
1582 }
1583 
1584 /**
1585  *	skb_clone_writable - is the header of a clone writable
1586  *	@skb: buffer to check
1587  *	@len: length up to which to write
1588  *
1589  *	Returns true if modifying the header part of the cloned buffer
1590  *	does not requires the data to be copied.
1591  */
1592 static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len)
1593 {
1594 	return !skb_header_cloned(skb) &&
1595 	       skb_headroom(skb) + len <= skb->hdr_len;
1596 }
1597 
1598 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1599 			    int cloned)
1600 {
1601 	int delta = 0;
1602 
1603 	if (headroom < NET_SKB_PAD)
1604 		headroom = NET_SKB_PAD;
1605 	if (headroom > skb_headroom(skb))
1606 		delta = headroom - skb_headroom(skb);
1607 
1608 	if (delta || cloned)
1609 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1610 					GFP_ATOMIC);
1611 	return 0;
1612 }
1613 
1614 /**
1615  *	skb_cow - copy header of skb when it is required
1616  *	@skb: buffer to cow
1617  *	@headroom: needed headroom
1618  *
1619  *	If the skb passed lacks sufficient headroom or its data part
1620  *	is shared, data is reallocated. If reallocation fails, an error
1621  *	is returned and original skb is not changed.
1622  *
1623  *	The result is skb with writable area skb->head...skb->tail
1624  *	and at least @headroom of space at head.
1625  */
1626 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1627 {
1628 	return __skb_cow(skb, headroom, skb_cloned(skb));
1629 }
1630 
1631 /**
1632  *	skb_cow_head - skb_cow but only making the head writable
1633  *	@skb: buffer to cow
1634  *	@headroom: needed headroom
1635  *
1636  *	This function is identical to skb_cow except that we replace the
1637  *	skb_cloned check by skb_header_cloned.  It should be used when
1638  *	you only need to push on some header and do not need to modify
1639  *	the data.
1640  */
1641 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1642 {
1643 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
1644 }
1645 
1646 /**
1647  *	skb_padto	- pad an skbuff up to a minimal size
1648  *	@skb: buffer to pad
1649  *	@len: minimal length
1650  *
1651  *	Pads up a buffer to ensure the trailing bytes exist and are
1652  *	blanked. If the buffer already contains sufficient data it
1653  *	is untouched. Otherwise it is extended. Returns zero on
1654  *	success. The skb is freed on error.
1655  */
1656 
1657 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1658 {
1659 	unsigned int size = skb->len;
1660 	if (likely(size >= len))
1661 		return 0;
1662 	return skb_pad(skb, len - size);
1663 }
1664 
1665 static inline int skb_add_data(struct sk_buff *skb,
1666 			       char __user *from, int copy)
1667 {
1668 	const int off = skb->len;
1669 
1670 	if (skb->ip_summed == CHECKSUM_NONE) {
1671 		int err = 0;
1672 		__wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1673 							    copy, 0, &err);
1674 		if (!err) {
1675 			skb->csum = csum_block_add(skb->csum, csum, off);
1676 			return 0;
1677 		}
1678 	} else if (!copy_from_user(skb_put(skb, copy), from, copy))
1679 		return 0;
1680 
1681 	__skb_trim(skb, off);
1682 	return -EFAULT;
1683 }
1684 
1685 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1686 				   struct page *page, int off)
1687 {
1688 	if (i) {
1689 		struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1690 
1691 		return page == frag->page &&
1692 		       off == frag->page_offset + frag->size;
1693 	}
1694 	return 0;
1695 }
1696 
1697 static inline int __skb_linearize(struct sk_buff *skb)
1698 {
1699 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1700 }
1701 
1702 /**
1703  *	skb_linearize - convert paged skb to linear one
1704  *	@skb: buffer to linarize
1705  *
1706  *	If there is no free memory -ENOMEM is returned, otherwise zero
1707  *	is returned and the old skb data released.
1708  */
1709 static inline int skb_linearize(struct sk_buff *skb)
1710 {
1711 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1712 }
1713 
1714 /**
1715  *	skb_linearize_cow - make sure skb is linear and writable
1716  *	@skb: buffer to process
1717  *
1718  *	If there is no free memory -ENOMEM is returned, otherwise zero
1719  *	is returned and the old skb data released.
1720  */
1721 static inline int skb_linearize_cow(struct sk_buff *skb)
1722 {
1723 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1724 	       __skb_linearize(skb) : 0;
1725 }
1726 
1727 /**
1728  *	skb_postpull_rcsum - update checksum for received skb after pull
1729  *	@skb: buffer to update
1730  *	@start: start of data before pull
1731  *	@len: length of data pulled
1732  *
1733  *	After doing a pull on a received packet, you need to call this to
1734  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1735  *	CHECKSUM_NONE so that it can be recomputed from scratch.
1736  */
1737 
1738 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1739 				      const void *start, unsigned int len)
1740 {
1741 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1742 		skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1743 }
1744 
1745 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1746 
1747 /**
1748  *	pskb_trim_rcsum - trim received skb and update checksum
1749  *	@skb: buffer to trim
1750  *	@len: new length
1751  *
1752  *	This is exactly the same as pskb_trim except that it ensures the
1753  *	checksum of received packets are still valid after the operation.
1754  */
1755 
1756 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1757 {
1758 	if (likely(len >= skb->len))
1759 		return 0;
1760 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1761 		skb->ip_summed = CHECKSUM_NONE;
1762 	return __pskb_trim(skb, len);
1763 }
1764 
1765 #define skb_queue_walk(queue, skb) \
1766 		for (skb = (queue)->next;					\
1767 		     prefetch(skb->next), (skb != (struct sk_buff *)(queue));	\
1768 		     skb = skb->next)
1769 
1770 #define skb_queue_walk_safe(queue, skb, tmp)					\
1771 		for (skb = (queue)->next, tmp = skb->next;			\
1772 		     skb != (struct sk_buff *)(queue);				\
1773 		     skb = tmp, tmp = skb->next)
1774 
1775 #define skb_queue_walk_from(queue, skb)						\
1776 		for (; prefetch(skb->next), (skb != (struct sk_buff *)(queue));	\
1777 		     skb = skb->next)
1778 
1779 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
1780 		for (tmp = skb->next;						\
1781 		     skb != (struct sk_buff *)(queue);				\
1782 		     skb = tmp, tmp = skb->next)
1783 
1784 #define skb_queue_reverse_walk(queue, skb) \
1785 		for (skb = (queue)->prev;					\
1786 		     prefetch(skb->prev), (skb != (struct sk_buff *)(queue));	\
1787 		     skb = skb->prev)
1788 
1789 
1790 static inline bool skb_has_frags(const struct sk_buff *skb)
1791 {
1792 	return skb_shinfo(skb)->frag_list != NULL;
1793 }
1794 
1795 static inline void skb_frag_list_init(struct sk_buff *skb)
1796 {
1797 	skb_shinfo(skb)->frag_list = NULL;
1798 }
1799 
1800 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
1801 {
1802 	frag->next = skb_shinfo(skb)->frag_list;
1803 	skb_shinfo(skb)->frag_list = frag;
1804 }
1805 
1806 #define skb_walk_frags(skb, iter)	\
1807 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
1808 
1809 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
1810 					   int *peeked, int *err);
1811 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1812 					 int noblock, int *err);
1813 extern unsigned int    datagram_poll(struct file *file, struct socket *sock,
1814 				     struct poll_table_struct *wait);
1815 extern int	       skb_copy_datagram_iovec(const struct sk_buff *from,
1816 					       int offset, struct iovec *to,
1817 					       int size);
1818 extern int	       skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1819 							int hlen,
1820 							struct iovec *iov);
1821 extern int	       skb_copy_datagram_from_iovec(struct sk_buff *skb,
1822 						    int offset,
1823 						    const struct iovec *from,
1824 						    int from_offset,
1825 						    int len);
1826 extern int	       skb_copy_datagram_const_iovec(const struct sk_buff *from,
1827 						     int offset,
1828 						     const struct iovec *to,
1829 						     int to_offset,
1830 						     int size);
1831 extern void	       skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1832 extern void	       skb_free_datagram_locked(struct sock *sk,
1833 						struct sk_buff *skb);
1834 extern int	       skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1835 					 unsigned int flags);
1836 extern __wsum	       skb_checksum(const struct sk_buff *skb, int offset,
1837 				    int len, __wsum csum);
1838 extern int	       skb_copy_bits(const struct sk_buff *skb, int offset,
1839 				     void *to, int len);
1840 extern int	       skb_store_bits(struct sk_buff *skb, int offset,
1841 				      const void *from, int len);
1842 extern __wsum	       skb_copy_and_csum_bits(const struct sk_buff *skb,
1843 					      int offset, u8 *to, int len,
1844 					      __wsum csum);
1845 extern int             skb_splice_bits(struct sk_buff *skb,
1846 						unsigned int offset,
1847 						struct pipe_inode_info *pipe,
1848 						unsigned int len,
1849 						unsigned int flags);
1850 extern void	       skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1851 extern void	       skb_split(struct sk_buff *skb,
1852 				 struct sk_buff *skb1, const u32 len);
1853 extern int	       skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
1854 				 int shiftlen);
1855 
1856 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
1857 
1858 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1859 				       int len, void *buffer)
1860 {
1861 	int hlen = skb_headlen(skb);
1862 
1863 	if (hlen - offset >= len)
1864 		return skb->data + offset;
1865 
1866 	if (skb_copy_bits(skb, offset, buffer, len) < 0)
1867 		return NULL;
1868 
1869 	return buffer;
1870 }
1871 
1872 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
1873 					     void *to,
1874 					     const unsigned int len)
1875 {
1876 	memcpy(to, skb->data, len);
1877 }
1878 
1879 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
1880 						    const int offset, void *to,
1881 						    const unsigned int len)
1882 {
1883 	memcpy(to, skb->data + offset, len);
1884 }
1885 
1886 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
1887 					   const void *from,
1888 					   const unsigned int len)
1889 {
1890 	memcpy(skb->data, from, len);
1891 }
1892 
1893 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
1894 						  const int offset,
1895 						  const void *from,
1896 						  const unsigned int len)
1897 {
1898 	memcpy(skb->data + offset, from, len);
1899 }
1900 
1901 extern void skb_init(void);
1902 
1903 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
1904 {
1905 	return skb->tstamp;
1906 }
1907 
1908 /**
1909  *	skb_get_timestamp - get timestamp from a skb
1910  *	@skb: skb to get stamp from
1911  *	@stamp: pointer to struct timeval to store stamp in
1912  *
1913  *	Timestamps are stored in the skb as offsets to a base timestamp.
1914  *	This function converts the offset back to a struct timeval and stores
1915  *	it in stamp.
1916  */
1917 static inline void skb_get_timestamp(const struct sk_buff *skb,
1918 				     struct timeval *stamp)
1919 {
1920 	*stamp = ktime_to_timeval(skb->tstamp);
1921 }
1922 
1923 static inline void skb_get_timestampns(const struct sk_buff *skb,
1924 				       struct timespec *stamp)
1925 {
1926 	*stamp = ktime_to_timespec(skb->tstamp);
1927 }
1928 
1929 static inline void __net_timestamp(struct sk_buff *skb)
1930 {
1931 	skb->tstamp = ktime_get_real();
1932 }
1933 
1934 static inline ktime_t net_timedelta(ktime_t t)
1935 {
1936 	return ktime_sub(ktime_get_real(), t);
1937 }
1938 
1939 static inline ktime_t net_invalid_timestamp(void)
1940 {
1941 	return ktime_set(0, 0);
1942 }
1943 
1944 extern void skb_timestamping_init(void);
1945 
1946 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
1947 
1948 extern void skb_clone_tx_timestamp(struct sk_buff *skb);
1949 extern bool skb_defer_rx_timestamp(struct sk_buff *skb);
1950 
1951 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
1952 
1953 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
1954 {
1955 }
1956 
1957 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
1958 {
1959 	return false;
1960 }
1961 
1962 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
1963 
1964 /**
1965  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
1966  *
1967  * @skb: clone of the the original outgoing packet
1968  * @hwtstamps: hardware time stamps
1969  *
1970  */
1971 void skb_complete_tx_timestamp(struct sk_buff *skb,
1972 			       struct skb_shared_hwtstamps *hwtstamps);
1973 
1974 /**
1975  * skb_tstamp_tx - queue clone of skb with send time stamps
1976  * @orig_skb:	the original outgoing packet
1977  * @hwtstamps:	hardware time stamps, may be NULL if not available
1978  *
1979  * If the skb has a socket associated, then this function clones the
1980  * skb (thus sharing the actual data and optional structures), stores
1981  * the optional hardware time stamping information (if non NULL) or
1982  * generates a software time stamp (otherwise), then queues the clone
1983  * to the error queue of the socket.  Errors are silently ignored.
1984  */
1985 extern void skb_tstamp_tx(struct sk_buff *orig_skb,
1986 			struct skb_shared_hwtstamps *hwtstamps);
1987 
1988 static inline void sw_tx_timestamp(struct sk_buff *skb)
1989 {
1990 	union skb_shared_tx *shtx = skb_tx(skb);
1991 	if (shtx->software && !shtx->in_progress)
1992 		skb_tstamp_tx(skb, NULL);
1993 }
1994 
1995 /**
1996  * skb_tx_timestamp() - Driver hook for transmit timestamping
1997  *
1998  * Ethernet MAC Drivers should call this function in their hard_xmit()
1999  * function as soon as possible after giving the sk_buff to the MAC
2000  * hardware, but before freeing the sk_buff.
2001  *
2002  * @skb: A socket buffer.
2003  */
2004 static inline void skb_tx_timestamp(struct sk_buff *skb)
2005 {
2006 	skb_clone_tx_timestamp(skb);
2007 	sw_tx_timestamp(skb);
2008 }
2009 
2010 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
2011 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
2012 
2013 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
2014 {
2015 	return skb->ip_summed & CHECKSUM_UNNECESSARY;
2016 }
2017 
2018 /**
2019  *	skb_checksum_complete - Calculate checksum of an entire packet
2020  *	@skb: packet to process
2021  *
2022  *	This function calculates the checksum over the entire packet plus
2023  *	the value of skb->csum.  The latter can be used to supply the
2024  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
2025  *	checksum.
2026  *
2027  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
2028  *	this function can be used to verify that checksum on received
2029  *	packets.  In that case the function should return zero if the
2030  *	checksum is correct.  In particular, this function will return zero
2031  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
2032  *	hardware has already verified the correctness of the checksum.
2033  */
2034 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
2035 {
2036 	return skb_csum_unnecessary(skb) ?
2037 	       0 : __skb_checksum_complete(skb);
2038 }
2039 
2040 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2041 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
2042 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
2043 {
2044 	if (nfct && atomic_dec_and_test(&nfct->use))
2045 		nf_conntrack_destroy(nfct);
2046 }
2047 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
2048 {
2049 	if (nfct)
2050 		atomic_inc(&nfct->use);
2051 }
2052 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
2053 {
2054 	if (skb)
2055 		atomic_inc(&skb->users);
2056 }
2057 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
2058 {
2059 	if (skb)
2060 		kfree_skb(skb);
2061 }
2062 #endif
2063 #ifdef CONFIG_BRIDGE_NETFILTER
2064 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
2065 {
2066 	if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
2067 		kfree(nf_bridge);
2068 }
2069 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
2070 {
2071 	if (nf_bridge)
2072 		atomic_inc(&nf_bridge->use);
2073 }
2074 #endif /* CONFIG_BRIDGE_NETFILTER */
2075 static inline void nf_reset(struct sk_buff *skb)
2076 {
2077 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2078 	nf_conntrack_put(skb->nfct);
2079 	skb->nfct = NULL;
2080 	nf_conntrack_put_reasm(skb->nfct_reasm);
2081 	skb->nfct_reasm = NULL;
2082 #endif
2083 #ifdef CONFIG_BRIDGE_NETFILTER
2084 	nf_bridge_put(skb->nf_bridge);
2085 	skb->nf_bridge = NULL;
2086 #endif
2087 }
2088 
2089 /* Note: This doesn't put any conntrack and bridge info in dst. */
2090 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2091 {
2092 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2093 	dst->nfct = src->nfct;
2094 	nf_conntrack_get(src->nfct);
2095 	dst->nfctinfo = src->nfctinfo;
2096 	dst->nfct_reasm = src->nfct_reasm;
2097 	nf_conntrack_get_reasm(src->nfct_reasm);
2098 #endif
2099 #ifdef CONFIG_BRIDGE_NETFILTER
2100 	dst->nf_bridge  = src->nf_bridge;
2101 	nf_bridge_get(src->nf_bridge);
2102 #endif
2103 }
2104 
2105 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2106 {
2107 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2108 	nf_conntrack_put(dst->nfct);
2109 	nf_conntrack_put_reasm(dst->nfct_reasm);
2110 #endif
2111 #ifdef CONFIG_BRIDGE_NETFILTER
2112 	nf_bridge_put(dst->nf_bridge);
2113 #endif
2114 	__nf_copy(dst, src);
2115 }
2116 
2117 #ifdef CONFIG_NETWORK_SECMARK
2118 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2119 {
2120 	to->secmark = from->secmark;
2121 }
2122 
2123 static inline void skb_init_secmark(struct sk_buff *skb)
2124 {
2125 	skb->secmark = 0;
2126 }
2127 #else
2128 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2129 { }
2130 
2131 static inline void skb_init_secmark(struct sk_buff *skb)
2132 { }
2133 #endif
2134 
2135 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
2136 {
2137 	skb->queue_mapping = queue_mapping;
2138 }
2139 
2140 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
2141 {
2142 	return skb->queue_mapping;
2143 }
2144 
2145 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
2146 {
2147 	to->queue_mapping = from->queue_mapping;
2148 }
2149 
2150 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
2151 {
2152 	skb->queue_mapping = rx_queue + 1;
2153 }
2154 
2155 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
2156 {
2157 	return skb->queue_mapping - 1;
2158 }
2159 
2160 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
2161 {
2162 	return (skb->queue_mapping != 0);
2163 }
2164 
2165 extern u16 skb_tx_hash(const struct net_device *dev,
2166 		       const struct sk_buff *skb);
2167 
2168 #ifdef CONFIG_XFRM
2169 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2170 {
2171 	return skb->sp;
2172 }
2173 #else
2174 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2175 {
2176 	return NULL;
2177 }
2178 #endif
2179 
2180 static inline int skb_is_gso(const struct sk_buff *skb)
2181 {
2182 	return skb_shinfo(skb)->gso_size;
2183 }
2184 
2185 static inline int skb_is_gso_v6(const struct sk_buff *skb)
2186 {
2187 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
2188 }
2189 
2190 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
2191 
2192 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
2193 {
2194 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
2195 	 * wanted then gso_type will be set. */
2196 	struct skb_shared_info *shinfo = skb_shinfo(skb);
2197 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
2198 	    unlikely(shinfo->gso_type == 0)) {
2199 		__skb_warn_lro_forwarding(skb);
2200 		return true;
2201 	}
2202 	return false;
2203 }
2204 
2205 static inline void skb_forward_csum(struct sk_buff *skb)
2206 {
2207 	/* Unfortunately we don't support this one.  Any brave souls? */
2208 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2209 		skb->ip_summed = CHECKSUM_NONE;
2210 }
2211 
2212 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
2213 #endif	/* __KERNEL__ */
2214 #endif	/* _LINUX_SKBUFF_H */
2215