xref: /linux-6.15/include/linux/skbuff.h (revision a115bc07)
1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <[email protected]>
6  *		Florian La Roche, <[email protected]>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/cache.h>
22 
23 #include <asm/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/dmaengine.h>
31 #include <linux/hrtimer.h>
32 
33 /* Don't change this without changing skb_csum_unnecessary! */
34 #define CHECKSUM_NONE 0
35 #define CHECKSUM_UNNECESSARY 1
36 #define CHECKSUM_COMPLETE 2
37 #define CHECKSUM_PARTIAL 3
38 
39 #define SKB_DATA_ALIGN(X)	(((X) + (SMP_CACHE_BYTES - 1)) & \
40 				 ~(SMP_CACHE_BYTES - 1))
41 #define SKB_WITH_OVERHEAD(X)	\
42 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
43 #define SKB_MAX_ORDER(X, ORDER) \
44 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
45 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
46 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
47 
48 /* A. Checksumming of received packets by device.
49  *
50  *	NONE: device failed to checksum this packet.
51  *		skb->csum is undefined.
52  *
53  *	UNNECESSARY: device parsed packet and wouldbe verified checksum.
54  *		skb->csum is undefined.
55  *	      It is bad option, but, unfortunately, many of vendors do this.
56  *	      Apparently with secret goal to sell you new device, when you
57  *	      will add new protocol to your host. F.e. IPv6. 8)
58  *
59  *	COMPLETE: the most generic way. Device supplied checksum of _all_
60  *	    the packet as seen by netif_rx in skb->csum.
61  *	    NOTE: Even if device supports only some protocols, but
62  *	    is able to produce some skb->csum, it MUST use COMPLETE,
63  *	    not UNNECESSARY.
64  *
65  *	PARTIAL: identical to the case for output below.  This may occur
66  *	    on a packet received directly from another Linux OS, e.g.,
67  *	    a virtualised Linux kernel on the same host.  The packet can
68  *	    be treated in the same way as UNNECESSARY except that on
69  *	    output (i.e., forwarding) the checksum must be filled in
70  *	    by the OS or the hardware.
71  *
72  * B. Checksumming on output.
73  *
74  *	NONE: skb is checksummed by protocol or csum is not required.
75  *
76  *	PARTIAL: device is required to csum packet as seen by hard_start_xmit
77  *	from skb->csum_start to the end and to record the checksum
78  *	at skb->csum_start + skb->csum_offset.
79  *
80  *	Device must show its capabilities in dev->features, set
81  *	at device setup time.
82  *	NETIF_F_HW_CSUM	- it is clever device, it is able to checksum
83  *			  everything.
84  *	NETIF_F_NO_CSUM - loopback or reliable single hop media.
85  *	NETIF_F_IP_CSUM - device is dumb. It is able to csum only
86  *			  TCP/UDP over IPv4. Sigh. Vendors like this
87  *			  way by an unknown reason. Though, see comment above
88  *			  about CHECKSUM_UNNECESSARY. 8)
89  *	NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
90  *
91  *	Any questions? No questions, good. 		--ANK
92  */
93 
94 struct net_device;
95 struct scatterlist;
96 struct pipe_inode_info;
97 
98 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
99 struct nf_conntrack {
100 	atomic_t use;
101 };
102 #endif
103 
104 #ifdef CONFIG_BRIDGE_NETFILTER
105 struct nf_bridge_info {
106 	atomic_t use;
107 	struct net_device *physindev;
108 	struct net_device *physoutdev;
109 	unsigned int mask;
110 	unsigned long data[32 / sizeof(unsigned long)];
111 };
112 #endif
113 
114 struct sk_buff_head {
115 	/* These two members must be first. */
116 	struct sk_buff	*next;
117 	struct sk_buff	*prev;
118 
119 	__u32		qlen;
120 	spinlock_t	lock;
121 };
122 
123 struct sk_buff;
124 
125 /* To allow 64K frame to be packed as single skb without frag_list */
126 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
127 
128 typedef struct skb_frag_struct skb_frag_t;
129 
130 struct skb_frag_struct {
131 	struct page *page;
132 	__u32 page_offset;
133 	__u32 size;
134 };
135 
136 #define HAVE_HW_TIME_STAMP
137 
138 /**
139  * struct skb_shared_hwtstamps - hardware time stamps
140  * @hwtstamp:	hardware time stamp transformed into duration
141  *		since arbitrary point in time
142  * @syststamp:	hwtstamp transformed to system time base
143  *
144  * Software time stamps generated by ktime_get_real() are stored in
145  * skb->tstamp. The relation between the different kinds of time
146  * stamps is as follows:
147  *
148  * syststamp and tstamp can be compared against each other in
149  * arbitrary combinations.  The accuracy of a
150  * syststamp/tstamp/"syststamp from other device" comparison is
151  * limited by the accuracy of the transformation into system time
152  * base. This depends on the device driver and its underlying
153  * hardware.
154  *
155  * hwtstamps can only be compared against other hwtstamps from
156  * the same device.
157  *
158  * This structure is attached to packets as part of the
159  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
160  */
161 struct skb_shared_hwtstamps {
162 	ktime_t	hwtstamp;
163 	ktime_t	syststamp;
164 };
165 
166 /**
167  * struct skb_shared_tx - instructions for time stamping of outgoing packets
168  * @hardware:		generate hardware time stamp
169  * @software:		generate software time stamp
170  * @in_progress:	device driver is going to provide
171  *			hardware time stamp
172  * @flags:		all shared_tx flags
173  *
174  * These flags are attached to packets as part of the
175  * &skb_shared_info. Use skb_tx() to get a pointer.
176  */
177 union skb_shared_tx {
178 	struct {
179 		__u8	hardware:1,
180 			software:1,
181 			in_progress:1;
182 	};
183 	__u8 flags;
184 };
185 
186 /* This data is invariant across clones and lives at
187  * the end of the header data, ie. at skb->end.
188  */
189 struct skb_shared_info {
190 	atomic_t	dataref;
191 	unsigned short	nr_frags;
192 	unsigned short	gso_size;
193 #ifdef CONFIG_HAS_DMA
194 	dma_addr_t	dma_head;
195 #endif
196 	/* Warning: this field is not always filled in (UFO)! */
197 	unsigned short	gso_segs;
198 	unsigned short  gso_type;
199 	__be32          ip6_frag_id;
200 	union skb_shared_tx tx_flags;
201 	struct sk_buff	*frag_list;
202 	struct skb_shared_hwtstamps hwtstamps;
203 	skb_frag_t	frags[MAX_SKB_FRAGS];
204 #ifdef CONFIG_HAS_DMA
205 	dma_addr_t	dma_maps[MAX_SKB_FRAGS];
206 #endif
207 	/* Intermediate layers must ensure that destructor_arg
208 	 * remains valid until skb destructor */
209 	void *		destructor_arg;
210 };
211 
212 /* We divide dataref into two halves.  The higher 16 bits hold references
213  * to the payload part of skb->data.  The lower 16 bits hold references to
214  * the entire skb->data.  A clone of a headerless skb holds the length of
215  * the header in skb->hdr_len.
216  *
217  * All users must obey the rule that the skb->data reference count must be
218  * greater than or equal to the payload reference count.
219  *
220  * Holding a reference to the payload part means that the user does not
221  * care about modifications to the header part of skb->data.
222  */
223 #define SKB_DATAREF_SHIFT 16
224 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
225 
226 
227 enum {
228 	SKB_FCLONE_UNAVAILABLE,
229 	SKB_FCLONE_ORIG,
230 	SKB_FCLONE_CLONE,
231 };
232 
233 enum {
234 	SKB_GSO_TCPV4 = 1 << 0,
235 	SKB_GSO_UDP = 1 << 1,
236 
237 	/* This indicates the skb is from an untrusted source. */
238 	SKB_GSO_DODGY = 1 << 2,
239 
240 	/* This indicates the tcp segment has CWR set. */
241 	SKB_GSO_TCP_ECN = 1 << 3,
242 
243 	SKB_GSO_TCPV6 = 1 << 4,
244 
245 	SKB_GSO_FCOE = 1 << 5,
246 };
247 
248 #if BITS_PER_LONG > 32
249 #define NET_SKBUFF_DATA_USES_OFFSET 1
250 #endif
251 
252 #ifdef NET_SKBUFF_DATA_USES_OFFSET
253 typedef unsigned int sk_buff_data_t;
254 #else
255 typedef unsigned char *sk_buff_data_t;
256 #endif
257 
258 /**
259  *	struct sk_buff - socket buffer
260  *	@next: Next buffer in list
261  *	@prev: Previous buffer in list
262  *	@sk: Socket we are owned by
263  *	@tstamp: Time we arrived
264  *	@dev: Device we arrived on/are leaving by
265  *	@transport_header: Transport layer header
266  *	@network_header: Network layer header
267  *	@mac_header: Link layer header
268  *	@_skb_dst: destination entry
269  *	@sp: the security path, used for xfrm
270  *	@cb: Control buffer. Free for use by every layer. Put private vars here
271  *	@len: Length of actual data
272  *	@data_len: Data length
273  *	@mac_len: Length of link layer header
274  *	@hdr_len: writable header length of cloned skb
275  *	@csum: Checksum (must include start/offset pair)
276  *	@csum_start: Offset from skb->head where checksumming should start
277  *	@csum_offset: Offset from csum_start where checksum should be stored
278  *	@local_df: allow local fragmentation
279  *	@cloned: Head may be cloned (check refcnt to be sure)
280  *	@nohdr: Payload reference only, must not modify header
281  *	@pkt_type: Packet class
282  *	@fclone: skbuff clone status
283  *	@ip_summed: Driver fed us an IP checksum
284  *	@priority: Packet queueing priority
285  *	@users: User count - see {datagram,tcp}.c
286  *	@protocol: Packet protocol from driver
287  *	@truesize: Buffer size
288  *	@head: Head of buffer
289  *	@data: Data head pointer
290  *	@tail: Tail pointer
291  *	@end: End pointer
292  *	@destructor: Destruct function
293  *	@mark: Generic packet mark
294  *	@nfct: Associated connection, if any
295  *	@ipvs_property: skbuff is owned by ipvs
296  *	@peeked: this packet has been seen already, so stats have been
297  *		done for it, don't do them again
298  *	@nf_trace: netfilter packet trace flag
299  *	@nfctinfo: Relationship of this skb to the connection
300  *	@nfct_reasm: netfilter conntrack re-assembly pointer
301  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
302  *	@skb_iif: ifindex of device we arrived on
303  *	@queue_mapping: Queue mapping for multiqueue devices
304  *	@tc_index: Traffic control index
305  *	@tc_verd: traffic control verdict
306  *	@ndisc_nodetype: router type (from link layer)
307  *	@dma_cookie: a cookie to one of several possible DMA operations
308  *		done by skb DMA functions
309  *	@secmark: security marking
310  *	@vlan_tci: vlan tag control information
311  */
312 
313 struct sk_buff {
314 	/* These two members must be first. */
315 	struct sk_buff		*next;
316 	struct sk_buff		*prev;
317 
318 	ktime_t			tstamp;
319 
320 	struct sock		*sk;
321 	struct net_device	*dev;
322 
323 	/*
324 	 * This is the control buffer. It is free to use for every
325 	 * layer. Please put your private variables there. If you
326 	 * want to keep them across layers you have to do a skb_clone()
327 	 * first. This is owned by whoever has the skb queued ATM.
328 	 */
329 	char			cb[48] __aligned(8);
330 
331 	unsigned long		_skb_dst;
332 #ifdef CONFIG_XFRM
333 	struct	sec_path	*sp;
334 #endif
335 	unsigned int		len,
336 				data_len;
337 	__u16			mac_len,
338 				hdr_len;
339 	union {
340 		__wsum		csum;
341 		struct {
342 			__u16	csum_start;
343 			__u16	csum_offset;
344 		};
345 	};
346 	__u32			priority;
347 	kmemcheck_bitfield_begin(flags1);
348 	__u8			local_df:1,
349 				cloned:1,
350 				ip_summed:2,
351 				nohdr:1,
352 				nfctinfo:3;
353 	__u8			pkt_type:3,
354 				fclone:2,
355 				ipvs_property:1,
356 				peeked:1,
357 				nf_trace:1;
358 	kmemcheck_bitfield_end(flags1);
359 	__be16			protocol;
360 
361 	void			(*destructor)(struct sk_buff *skb);
362 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
363 	struct nf_conntrack	*nfct;
364 	struct sk_buff		*nfct_reasm;
365 #endif
366 #ifdef CONFIG_BRIDGE_NETFILTER
367 	struct nf_bridge_info	*nf_bridge;
368 #endif
369 
370 	int			skb_iif;
371 #ifdef CONFIG_NET_SCHED
372 	__u16			tc_index;	/* traffic control index */
373 #ifdef CONFIG_NET_CLS_ACT
374 	__u16			tc_verd;	/* traffic control verdict */
375 #endif
376 #endif
377 
378 	kmemcheck_bitfield_begin(flags2);
379 	__u16			queue_mapping:16;
380 #ifdef CONFIG_IPV6_NDISC_NODETYPE
381 	__u8			ndisc_nodetype:2;
382 #endif
383 	kmemcheck_bitfield_end(flags2);
384 
385 	/* 0/14 bit hole */
386 
387 #ifdef CONFIG_NET_DMA
388 	dma_cookie_t		dma_cookie;
389 #endif
390 #ifdef CONFIG_NETWORK_SECMARK
391 	__u32			secmark;
392 #endif
393 	union {
394 		__u32		mark;
395 		__u32		dropcount;
396 	};
397 
398 	__u16			vlan_tci;
399 
400 	sk_buff_data_t		transport_header;
401 	sk_buff_data_t		network_header;
402 	sk_buff_data_t		mac_header;
403 	/* These elements must be at the end, see alloc_skb() for details.  */
404 	sk_buff_data_t		tail;
405 	sk_buff_data_t		end;
406 	unsigned char		*head,
407 				*data;
408 	unsigned int		truesize;
409 	atomic_t		users;
410 };
411 
412 #ifdef __KERNEL__
413 /*
414  *	Handling routines are only of interest to the kernel
415  */
416 #include <linux/slab.h>
417 
418 #include <asm/system.h>
419 
420 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
421 {
422 	return (struct dst_entry *)skb->_skb_dst;
423 }
424 
425 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
426 {
427 	skb->_skb_dst = (unsigned long)dst;
428 }
429 
430 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
431 {
432 	return (struct rtable *)skb_dst(skb);
433 }
434 
435 extern void kfree_skb(struct sk_buff *skb);
436 extern void consume_skb(struct sk_buff *skb);
437 extern void	       __kfree_skb(struct sk_buff *skb);
438 extern struct sk_buff *__alloc_skb(unsigned int size,
439 				   gfp_t priority, int fclone, int node);
440 static inline struct sk_buff *alloc_skb(unsigned int size,
441 					gfp_t priority)
442 {
443 	return __alloc_skb(size, priority, 0, -1);
444 }
445 
446 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
447 					       gfp_t priority)
448 {
449 	return __alloc_skb(size, priority, 1, -1);
450 }
451 
452 extern int skb_recycle_check(struct sk_buff *skb, int skb_size);
453 
454 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
455 extern struct sk_buff *skb_clone(struct sk_buff *skb,
456 				 gfp_t priority);
457 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
458 				gfp_t priority);
459 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
460 				 gfp_t gfp_mask);
461 extern int	       pskb_expand_head(struct sk_buff *skb,
462 					int nhead, int ntail,
463 					gfp_t gfp_mask);
464 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
465 					    unsigned int headroom);
466 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
467 				       int newheadroom, int newtailroom,
468 				       gfp_t priority);
469 extern int	       skb_to_sgvec(struct sk_buff *skb,
470 				    struct scatterlist *sg, int offset,
471 				    int len);
472 extern int	       skb_cow_data(struct sk_buff *skb, int tailbits,
473 				    struct sk_buff **trailer);
474 extern int	       skb_pad(struct sk_buff *skb, int pad);
475 #define dev_kfree_skb(a)	consume_skb(a)
476 #define dev_consume_skb(a)	kfree_skb_clean(a)
477 extern void	      skb_over_panic(struct sk_buff *skb, int len,
478 				     void *here);
479 extern void	      skb_under_panic(struct sk_buff *skb, int len,
480 				      void *here);
481 
482 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
483 			int getfrag(void *from, char *to, int offset,
484 			int len,int odd, struct sk_buff *skb),
485 			void *from, int length);
486 
487 struct skb_seq_state {
488 	__u32		lower_offset;
489 	__u32		upper_offset;
490 	__u32		frag_idx;
491 	__u32		stepped_offset;
492 	struct sk_buff	*root_skb;
493 	struct sk_buff	*cur_skb;
494 	__u8		*frag_data;
495 };
496 
497 extern void	      skb_prepare_seq_read(struct sk_buff *skb,
498 					   unsigned int from, unsigned int to,
499 					   struct skb_seq_state *st);
500 extern unsigned int   skb_seq_read(unsigned int consumed, const u8 **data,
501 				   struct skb_seq_state *st);
502 extern void	      skb_abort_seq_read(struct skb_seq_state *st);
503 
504 extern unsigned int   skb_find_text(struct sk_buff *skb, unsigned int from,
505 				    unsigned int to, struct ts_config *config,
506 				    struct ts_state *state);
507 
508 #ifdef NET_SKBUFF_DATA_USES_OFFSET
509 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
510 {
511 	return skb->head + skb->end;
512 }
513 #else
514 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
515 {
516 	return skb->end;
517 }
518 #endif
519 
520 /* Internal */
521 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
522 
523 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
524 {
525 	return &skb_shinfo(skb)->hwtstamps;
526 }
527 
528 static inline union skb_shared_tx *skb_tx(struct sk_buff *skb)
529 {
530 	return &skb_shinfo(skb)->tx_flags;
531 }
532 
533 /**
534  *	skb_queue_empty - check if a queue is empty
535  *	@list: queue head
536  *
537  *	Returns true if the queue is empty, false otherwise.
538  */
539 static inline int skb_queue_empty(const struct sk_buff_head *list)
540 {
541 	return list->next == (struct sk_buff *)list;
542 }
543 
544 /**
545  *	skb_queue_is_last - check if skb is the last entry in the queue
546  *	@list: queue head
547  *	@skb: buffer
548  *
549  *	Returns true if @skb is the last buffer on the list.
550  */
551 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
552 				     const struct sk_buff *skb)
553 {
554 	return (skb->next == (struct sk_buff *) list);
555 }
556 
557 /**
558  *	skb_queue_is_first - check if skb is the first entry in the queue
559  *	@list: queue head
560  *	@skb: buffer
561  *
562  *	Returns true if @skb is the first buffer on the list.
563  */
564 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
565 				      const struct sk_buff *skb)
566 {
567 	return (skb->prev == (struct sk_buff *) list);
568 }
569 
570 /**
571  *	skb_queue_next - return the next packet in the queue
572  *	@list: queue head
573  *	@skb: current buffer
574  *
575  *	Return the next packet in @list after @skb.  It is only valid to
576  *	call this if skb_queue_is_last() evaluates to false.
577  */
578 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
579 					     const struct sk_buff *skb)
580 {
581 	/* This BUG_ON may seem severe, but if we just return then we
582 	 * are going to dereference garbage.
583 	 */
584 	BUG_ON(skb_queue_is_last(list, skb));
585 	return skb->next;
586 }
587 
588 /**
589  *	skb_queue_prev - return the prev packet in the queue
590  *	@list: queue head
591  *	@skb: current buffer
592  *
593  *	Return the prev packet in @list before @skb.  It is only valid to
594  *	call this if skb_queue_is_first() evaluates to false.
595  */
596 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
597 					     const struct sk_buff *skb)
598 {
599 	/* This BUG_ON may seem severe, but if we just return then we
600 	 * are going to dereference garbage.
601 	 */
602 	BUG_ON(skb_queue_is_first(list, skb));
603 	return skb->prev;
604 }
605 
606 /**
607  *	skb_get - reference buffer
608  *	@skb: buffer to reference
609  *
610  *	Makes another reference to a socket buffer and returns a pointer
611  *	to the buffer.
612  */
613 static inline struct sk_buff *skb_get(struct sk_buff *skb)
614 {
615 	atomic_inc(&skb->users);
616 	return skb;
617 }
618 
619 /*
620  * If users == 1, we are the only owner and are can avoid redundant
621  * atomic change.
622  */
623 
624 /**
625  *	skb_cloned - is the buffer a clone
626  *	@skb: buffer to check
627  *
628  *	Returns true if the buffer was generated with skb_clone() and is
629  *	one of multiple shared copies of the buffer. Cloned buffers are
630  *	shared data so must not be written to under normal circumstances.
631  */
632 static inline int skb_cloned(const struct sk_buff *skb)
633 {
634 	return skb->cloned &&
635 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
636 }
637 
638 /**
639  *	skb_header_cloned - is the header a clone
640  *	@skb: buffer to check
641  *
642  *	Returns true if modifying the header part of the buffer requires
643  *	the data to be copied.
644  */
645 static inline int skb_header_cloned(const struct sk_buff *skb)
646 {
647 	int dataref;
648 
649 	if (!skb->cloned)
650 		return 0;
651 
652 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
653 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
654 	return dataref != 1;
655 }
656 
657 /**
658  *	skb_header_release - release reference to header
659  *	@skb: buffer to operate on
660  *
661  *	Drop a reference to the header part of the buffer.  This is done
662  *	by acquiring a payload reference.  You must not read from the header
663  *	part of skb->data after this.
664  */
665 static inline void skb_header_release(struct sk_buff *skb)
666 {
667 	BUG_ON(skb->nohdr);
668 	skb->nohdr = 1;
669 	atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
670 }
671 
672 /**
673  *	skb_shared - is the buffer shared
674  *	@skb: buffer to check
675  *
676  *	Returns true if more than one person has a reference to this
677  *	buffer.
678  */
679 static inline int skb_shared(const struct sk_buff *skb)
680 {
681 	return atomic_read(&skb->users) != 1;
682 }
683 
684 /**
685  *	skb_share_check - check if buffer is shared and if so clone it
686  *	@skb: buffer to check
687  *	@pri: priority for memory allocation
688  *
689  *	If the buffer is shared the buffer is cloned and the old copy
690  *	drops a reference. A new clone with a single reference is returned.
691  *	If the buffer is not shared the original buffer is returned. When
692  *	being called from interrupt status or with spinlocks held pri must
693  *	be GFP_ATOMIC.
694  *
695  *	NULL is returned on a memory allocation failure.
696  */
697 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
698 					      gfp_t pri)
699 {
700 	might_sleep_if(pri & __GFP_WAIT);
701 	if (skb_shared(skb)) {
702 		struct sk_buff *nskb = skb_clone(skb, pri);
703 		kfree_skb(skb);
704 		skb = nskb;
705 	}
706 	return skb;
707 }
708 
709 /*
710  *	Copy shared buffers into a new sk_buff. We effectively do COW on
711  *	packets to handle cases where we have a local reader and forward
712  *	and a couple of other messy ones. The normal one is tcpdumping
713  *	a packet thats being forwarded.
714  */
715 
716 /**
717  *	skb_unshare - make a copy of a shared buffer
718  *	@skb: buffer to check
719  *	@pri: priority for memory allocation
720  *
721  *	If the socket buffer is a clone then this function creates a new
722  *	copy of the data, drops a reference count on the old copy and returns
723  *	the new copy with the reference count at 1. If the buffer is not a clone
724  *	the original buffer is returned. When called with a spinlock held or
725  *	from interrupt state @pri must be %GFP_ATOMIC
726  *
727  *	%NULL is returned on a memory allocation failure.
728  */
729 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
730 					  gfp_t pri)
731 {
732 	might_sleep_if(pri & __GFP_WAIT);
733 	if (skb_cloned(skb)) {
734 		struct sk_buff *nskb = skb_copy(skb, pri);
735 		kfree_skb(skb);	/* Free our shared copy */
736 		skb = nskb;
737 	}
738 	return skb;
739 }
740 
741 /**
742  *	skb_peek - peek at the head of an &sk_buff_head
743  *	@list_: list to peek at
744  *
745  *	Peek an &sk_buff. Unlike most other operations you _MUST_
746  *	be careful with this one. A peek leaves the buffer on the
747  *	list and someone else may run off with it. You must hold
748  *	the appropriate locks or have a private queue to do this.
749  *
750  *	Returns %NULL for an empty list or a pointer to the head element.
751  *	The reference count is not incremented and the reference is therefore
752  *	volatile. Use with caution.
753  */
754 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
755 {
756 	struct sk_buff *list = ((struct sk_buff *)list_)->next;
757 	if (list == (struct sk_buff *)list_)
758 		list = NULL;
759 	return list;
760 }
761 
762 /**
763  *	skb_peek_tail - peek at the tail of an &sk_buff_head
764  *	@list_: list to peek at
765  *
766  *	Peek an &sk_buff. Unlike most other operations you _MUST_
767  *	be careful with this one. A peek leaves the buffer on the
768  *	list and someone else may run off with it. You must hold
769  *	the appropriate locks or have a private queue to do this.
770  *
771  *	Returns %NULL for an empty list or a pointer to the tail element.
772  *	The reference count is not incremented and the reference is therefore
773  *	volatile. Use with caution.
774  */
775 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
776 {
777 	struct sk_buff *list = ((struct sk_buff *)list_)->prev;
778 	if (list == (struct sk_buff *)list_)
779 		list = NULL;
780 	return list;
781 }
782 
783 /**
784  *	skb_queue_len	- get queue length
785  *	@list_: list to measure
786  *
787  *	Return the length of an &sk_buff queue.
788  */
789 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
790 {
791 	return list_->qlen;
792 }
793 
794 /**
795  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
796  *	@list: queue to initialize
797  *
798  *	This initializes only the list and queue length aspects of
799  *	an sk_buff_head object.  This allows to initialize the list
800  *	aspects of an sk_buff_head without reinitializing things like
801  *	the spinlock.  It can also be used for on-stack sk_buff_head
802  *	objects where the spinlock is known to not be used.
803  */
804 static inline void __skb_queue_head_init(struct sk_buff_head *list)
805 {
806 	list->prev = list->next = (struct sk_buff *)list;
807 	list->qlen = 0;
808 }
809 
810 /*
811  * This function creates a split out lock class for each invocation;
812  * this is needed for now since a whole lot of users of the skb-queue
813  * infrastructure in drivers have different locking usage (in hardirq)
814  * than the networking core (in softirq only). In the long run either the
815  * network layer or drivers should need annotation to consolidate the
816  * main types of usage into 3 classes.
817  */
818 static inline void skb_queue_head_init(struct sk_buff_head *list)
819 {
820 	spin_lock_init(&list->lock);
821 	__skb_queue_head_init(list);
822 }
823 
824 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
825 		struct lock_class_key *class)
826 {
827 	skb_queue_head_init(list);
828 	lockdep_set_class(&list->lock, class);
829 }
830 
831 /*
832  *	Insert an sk_buff on a list.
833  *
834  *	The "__skb_xxxx()" functions are the non-atomic ones that
835  *	can only be called with interrupts disabled.
836  */
837 extern void        skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
838 static inline void __skb_insert(struct sk_buff *newsk,
839 				struct sk_buff *prev, struct sk_buff *next,
840 				struct sk_buff_head *list)
841 {
842 	newsk->next = next;
843 	newsk->prev = prev;
844 	next->prev  = prev->next = newsk;
845 	list->qlen++;
846 }
847 
848 static inline void __skb_queue_splice(const struct sk_buff_head *list,
849 				      struct sk_buff *prev,
850 				      struct sk_buff *next)
851 {
852 	struct sk_buff *first = list->next;
853 	struct sk_buff *last = list->prev;
854 
855 	first->prev = prev;
856 	prev->next = first;
857 
858 	last->next = next;
859 	next->prev = last;
860 }
861 
862 /**
863  *	skb_queue_splice - join two skb lists, this is designed for stacks
864  *	@list: the new list to add
865  *	@head: the place to add it in the first list
866  */
867 static inline void skb_queue_splice(const struct sk_buff_head *list,
868 				    struct sk_buff_head *head)
869 {
870 	if (!skb_queue_empty(list)) {
871 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
872 		head->qlen += list->qlen;
873 	}
874 }
875 
876 /**
877  *	skb_queue_splice - join two skb lists and reinitialise the emptied list
878  *	@list: the new list to add
879  *	@head: the place to add it in the first list
880  *
881  *	The list at @list is reinitialised
882  */
883 static inline void skb_queue_splice_init(struct sk_buff_head *list,
884 					 struct sk_buff_head *head)
885 {
886 	if (!skb_queue_empty(list)) {
887 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
888 		head->qlen += list->qlen;
889 		__skb_queue_head_init(list);
890 	}
891 }
892 
893 /**
894  *	skb_queue_splice_tail - join two skb lists, each list being a queue
895  *	@list: the new list to add
896  *	@head: the place to add it in the first list
897  */
898 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
899 					 struct sk_buff_head *head)
900 {
901 	if (!skb_queue_empty(list)) {
902 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
903 		head->qlen += list->qlen;
904 	}
905 }
906 
907 /**
908  *	skb_queue_splice_tail - join two skb lists and reinitialise the emptied list
909  *	@list: the new list to add
910  *	@head: the place to add it in the first list
911  *
912  *	Each of the lists is a queue.
913  *	The list at @list is reinitialised
914  */
915 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
916 					      struct sk_buff_head *head)
917 {
918 	if (!skb_queue_empty(list)) {
919 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
920 		head->qlen += list->qlen;
921 		__skb_queue_head_init(list);
922 	}
923 }
924 
925 /**
926  *	__skb_queue_after - queue a buffer at the list head
927  *	@list: list to use
928  *	@prev: place after this buffer
929  *	@newsk: buffer to queue
930  *
931  *	Queue a buffer int the middle of a list. This function takes no locks
932  *	and you must therefore hold required locks before calling it.
933  *
934  *	A buffer cannot be placed on two lists at the same time.
935  */
936 static inline void __skb_queue_after(struct sk_buff_head *list,
937 				     struct sk_buff *prev,
938 				     struct sk_buff *newsk)
939 {
940 	__skb_insert(newsk, prev, prev->next, list);
941 }
942 
943 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
944 		       struct sk_buff_head *list);
945 
946 static inline void __skb_queue_before(struct sk_buff_head *list,
947 				      struct sk_buff *next,
948 				      struct sk_buff *newsk)
949 {
950 	__skb_insert(newsk, next->prev, next, list);
951 }
952 
953 /**
954  *	__skb_queue_head - queue a buffer at the list head
955  *	@list: list to use
956  *	@newsk: buffer to queue
957  *
958  *	Queue a buffer at the start of a list. This function takes no locks
959  *	and you must therefore hold required locks before calling it.
960  *
961  *	A buffer cannot be placed on two lists at the same time.
962  */
963 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
964 static inline void __skb_queue_head(struct sk_buff_head *list,
965 				    struct sk_buff *newsk)
966 {
967 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
968 }
969 
970 /**
971  *	__skb_queue_tail - queue a buffer at the list tail
972  *	@list: list to use
973  *	@newsk: buffer to queue
974  *
975  *	Queue a buffer at the end of a list. This function takes no locks
976  *	and you must therefore hold required locks before calling it.
977  *
978  *	A buffer cannot be placed on two lists at the same time.
979  */
980 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
981 static inline void __skb_queue_tail(struct sk_buff_head *list,
982 				   struct sk_buff *newsk)
983 {
984 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
985 }
986 
987 /*
988  * remove sk_buff from list. _Must_ be called atomically, and with
989  * the list known..
990  */
991 extern void	   skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
992 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
993 {
994 	struct sk_buff *next, *prev;
995 
996 	list->qlen--;
997 	next	   = skb->next;
998 	prev	   = skb->prev;
999 	skb->next  = skb->prev = NULL;
1000 	next->prev = prev;
1001 	prev->next = next;
1002 }
1003 
1004 /**
1005  *	__skb_dequeue - remove from the head of the queue
1006  *	@list: list to dequeue from
1007  *
1008  *	Remove the head of the list. This function does not take any locks
1009  *	so must be used with appropriate locks held only. The head item is
1010  *	returned or %NULL if the list is empty.
1011  */
1012 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1013 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1014 {
1015 	struct sk_buff *skb = skb_peek(list);
1016 	if (skb)
1017 		__skb_unlink(skb, list);
1018 	return skb;
1019 }
1020 
1021 /**
1022  *	__skb_dequeue_tail - remove from the tail of the queue
1023  *	@list: list to dequeue from
1024  *
1025  *	Remove the tail of the list. This function does not take any locks
1026  *	so must be used with appropriate locks held only. The tail item is
1027  *	returned or %NULL if the list is empty.
1028  */
1029 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1030 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1031 {
1032 	struct sk_buff *skb = skb_peek_tail(list);
1033 	if (skb)
1034 		__skb_unlink(skb, list);
1035 	return skb;
1036 }
1037 
1038 
1039 static inline int skb_is_nonlinear(const struct sk_buff *skb)
1040 {
1041 	return skb->data_len;
1042 }
1043 
1044 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1045 {
1046 	return skb->len - skb->data_len;
1047 }
1048 
1049 static inline int skb_pagelen(const struct sk_buff *skb)
1050 {
1051 	int i, len = 0;
1052 
1053 	for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1054 		len += skb_shinfo(skb)->frags[i].size;
1055 	return len + skb_headlen(skb);
1056 }
1057 
1058 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1059 				      struct page *page, int off, int size)
1060 {
1061 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1062 
1063 	frag->page		  = page;
1064 	frag->page_offset	  = off;
1065 	frag->size		  = size;
1066 	skb_shinfo(skb)->nr_frags = i + 1;
1067 }
1068 
1069 extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
1070 			    int off, int size);
1071 
1072 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
1073 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_has_frags(skb))
1074 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
1075 
1076 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1077 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1078 {
1079 	return skb->head + skb->tail;
1080 }
1081 
1082 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1083 {
1084 	skb->tail = skb->data - skb->head;
1085 }
1086 
1087 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1088 {
1089 	skb_reset_tail_pointer(skb);
1090 	skb->tail += offset;
1091 }
1092 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1093 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1094 {
1095 	return skb->tail;
1096 }
1097 
1098 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1099 {
1100 	skb->tail = skb->data;
1101 }
1102 
1103 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1104 {
1105 	skb->tail = skb->data + offset;
1106 }
1107 
1108 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1109 
1110 /*
1111  *	Add data to an sk_buff
1112  */
1113 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1114 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1115 {
1116 	unsigned char *tmp = skb_tail_pointer(skb);
1117 	SKB_LINEAR_ASSERT(skb);
1118 	skb->tail += len;
1119 	skb->len  += len;
1120 	return tmp;
1121 }
1122 
1123 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1124 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1125 {
1126 	skb->data -= len;
1127 	skb->len  += len;
1128 	return skb->data;
1129 }
1130 
1131 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1132 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1133 {
1134 	skb->len -= len;
1135 	BUG_ON(skb->len < skb->data_len);
1136 	return skb->data += len;
1137 }
1138 
1139 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1140 
1141 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1142 {
1143 	if (len > skb_headlen(skb) &&
1144 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1145 		return NULL;
1146 	skb->len -= len;
1147 	return skb->data += len;
1148 }
1149 
1150 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1151 {
1152 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1153 }
1154 
1155 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1156 {
1157 	if (likely(len <= skb_headlen(skb)))
1158 		return 1;
1159 	if (unlikely(len > skb->len))
1160 		return 0;
1161 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1162 }
1163 
1164 /**
1165  *	skb_headroom - bytes at buffer head
1166  *	@skb: buffer to check
1167  *
1168  *	Return the number of bytes of free space at the head of an &sk_buff.
1169  */
1170 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1171 {
1172 	return skb->data - skb->head;
1173 }
1174 
1175 /**
1176  *	skb_tailroom - bytes at buffer end
1177  *	@skb: buffer to check
1178  *
1179  *	Return the number of bytes of free space at the tail of an sk_buff
1180  */
1181 static inline int skb_tailroom(const struct sk_buff *skb)
1182 {
1183 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1184 }
1185 
1186 /**
1187  *	skb_reserve - adjust headroom
1188  *	@skb: buffer to alter
1189  *	@len: bytes to move
1190  *
1191  *	Increase the headroom of an empty &sk_buff by reducing the tail
1192  *	room. This is only allowed for an empty buffer.
1193  */
1194 static inline void skb_reserve(struct sk_buff *skb, int len)
1195 {
1196 	skb->data += len;
1197 	skb->tail += len;
1198 }
1199 
1200 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1201 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1202 {
1203 	return skb->head + skb->transport_header;
1204 }
1205 
1206 static inline void skb_reset_transport_header(struct sk_buff *skb)
1207 {
1208 	skb->transport_header = skb->data - skb->head;
1209 }
1210 
1211 static inline void skb_set_transport_header(struct sk_buff *skb,
1212 					    const int offset)
1213 {
1214 	skb_reset_transport_header(skb);
1215 	skb->transport_header += offset;
1216 }
1217 
1218 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1219 {
1220 	return skb->head + skb->network_header;
1221 }
1222 
1223 static inline void skb_reset_network_header(struct sk_buff *skb)
1224 {
1225 	skb->network_header = skb->data - skb->head;
1226 }
1227 
1228 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1229 {
1230 	skb_reset_network_header(skb);
1231 	skb->network_header += offset;
1232 }
1233 
1234 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1235 {
1236 	return skb->head + skb->mac_header;
1237 }
1238 
1239 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1240 {
1241 	return skb->mac_header != ~0U;
1242 }
1243 
1244 static inline void skb_reset_mac_header(struct sk_buff *skb)
1245 {
1246 	skb->mac_header = skb->data - skb->head;
1247 }
1248 
1249 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1250 {
1251 	skb_reset_mac_header(skb);
1252 	skb->mac_header += offset;
1253 }
1254 
1255 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1256 
1257 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1258 {
1259 	return skb->transport_header;
1260 }
1261 
1262 static inline void skb_reset_transport_header(struct sk_buff *skb)
1263 {
1264 	skb->transport_header = skb->data;
1265 }
1266 
1267 static inline void skb_set_transport_header(struct sk_buff *skb,
1268 					    const int offset)
1269 {
1270 	skb->transport_header = skb->data + offset;
1271 }
1272 
1273 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1274 {
1275 	return skb->network_header;
1276 }
1277 
1278 static inline void skb_reset_network_header(struct sk_buff *skb)
1279 {
1280 	skb->network_header = skb->data;
1281 }
1282 
1283 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1284 {
1285 	skb->network_header = skb->data + offset;
1286 }
1287 
1288 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1289 {
1290 	return skb->mac_header;
1291 }
1292 
1293 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1294 {
1295 	return skb->mac_header != NULL;
1296 }
1297 
1298 static inline void skb_reset_mac_header(struct sk_buff *skb)
1299 {
1300 	skb->mac_header = skb->data;
1301 }
1302 
1303 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1304 {
1305 	skb->mac_header = skb->data + offset;
1306 }
1307 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1308 
1309 static inline int skb_transport_offset(const struct sk_buff *skb)
1310 {
1311 	return skb_transport_header(skb) - skb->data;
1312 }
1313 
1314 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1315 {
1316 	return skb->transport_header - skb->network_header;
1317 }
1318 
1319 static inline int skb_network_offset(const struct sk_buff *skb)
1320 {
1321 	return skb_network_header(skb) - skb->data;
1322 }
1323 
1324 /*
1325  * CPUs often take a performance hit when accessing unaligned memory
1326  * locations. The actual performance hit varies, it can be small if the
1327  * hardware handles it or large if we have to take an exception and fix it
1328  * in software.
1329  *
1330  * Since an ethernet header is 14 bytes network drivers often end up with
1331  * the IP header at an unaligned offset. The IP header can be aligned by
1332  * shifting the start of the packet by 2 bytes. Drivers should do this
1333  * with:
1334  *
1335  * skb_reserve(skb, NET_IP_ALIGN);
1336  *
1337  * The downside to this alignment of the IP header is that the DMA is now
1338  * unaligned. On some architectures the cost of an unaligned DMA is high
1339  * and this cost outweighs the gains made by aligning the IP header.
1340  *
1341  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1342  * to be overridden.
1343  */
1344 #ifndef NET_IP_ALIGN
1345 #define NET_IP_ALIGN	2
1346 #endif
1347 
1348 /*
1349  * The networking layer reserves some headroom in skb data (via
1350  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1351  * the header has to grow. In the default case, if the header has to grow
1352  * 32 bytes or less we avoid the reallocation.
1353  *
1354  * Unfortunately this headroom changes the DMA alignment of the resulting
1355  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1356  * on some architectures. An architecture can override this value,
1357  * perhaps setting it to a cacheline in size (since that will maintain
1358  * cacheline alignment of the DMA). It must be a power of 2.
1359  *
1360  * Various parts of the networking layer expect at least 32 bytes of
1361  * headroom, you should not reduce this.
1362  */
1363 #ifndef NET_SKB_PAD
1364 #define NET_SKB_PAD	32
1365 #endif
1366 
1367 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1368 
1369 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1370 {
1371 	if (unlikely(skb->data_len)) {
1372 		WARN_ON(1);
1373 		return;
1374 	}
1375 	skb->len = len;
1376 	skb_set_tail_pointer(skb, len);
1377 }
1378 
1379 extern void skb_trim(struct sk_buff *skb, unsigned int len);
1380 
1381 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1382 {
1383 	if (skb->data_len)
1384 		return ___pskb_trim(skb, len);
1385 	__skb_trim(skb, len);
1386 	return 0;
1387 }
1388 
1389 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1390 {
1391 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1392 }
1393 
1394 /**
1395  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1396  *	@skb: buffer to alter
1397  *	@len: new length
1398  *
1399  *	This is identical to pskb_trim except that the caller knows that
1400  *	the skb is not cloned so we should never get an error due to out-
1401  *	of-memory.
1402  */
1403 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1404 {
1405 	int err = pskb_trim(skb, len);
1406 	BUG_ON(err);
1407 }
1408 
1409 /**
1410  *	skb_orphan - orphan a buffer
1411  *	@skb: buffer to orphan
1412  *
1413  *	If a buffer currently has an owner then we call the owner's
1414  *	destructor function and make the @skb unowned. The buffer continues
1415  *	to exist but is no longer charged to its former owner.
1416  */
1417 static inline void skb_orphan(struct sk_buff *skb)
1418 {
1419 	if (skb->destructor)
1420 		skb->destructor(skb);
1421 	skb->destructor = NULL;
1422 	skb->sk		= NULL;
1423 }
1424 
1425 /**
1426  *	__skb_queue_purge - empty a list
1427  *	@list: list to empty
1428  *
1429  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
1430  *	the list and one reference dropped. This function does not take the
1431  *	list lock and the caller must hold the relevant locks to use it.
1432  */
1433 extern void skb_queue_purge(struct sk_buff_head *list);
1434 static inline void __skb_queue_purge(struct sk_buff_head *list)
1435 {
1436 	struct sk_buff *skb;
1437 	while ((skb = __skb_dequeue(list)) != NULL)
1438 		kfree_skb(skb);
1439 }
1440 
1441 /**
1442  *	__dev_alloc_skb - allocate an skbuff for receiving
1443  *	@length: length to allocate
1444  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
1445  *
1446  *	Allocate a new &sk_buff and assign it a usage count of one. The
1447  *	buffer has unspecified headroom built in. Users should allocate
1448  *	the headroom they think they need without accounting for the
1449  *	built in space. The built in space is used for optimisations.
1450  *
1451  *	%NULL is returned if there is no free memory.
1452  */
1453 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1454 					      gfp_t gfp_mask)
1455 {
1456 	struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1457 	if (likely(skb))
1458 		skb_reserve(skb, NET_SKB_PAD);
1459 	return skb;
1460 }
1461 
1462 extern struct sk_buff *dev_alloc_skb(unsigned int length);
1463 
1464 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1465 		unsigned int length, gfp_t gfp_mask);
1466 
1467 /**
1468  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
1469  *	@dev: network device to receive on
1470  *	@length: length to allocate
1471  *
1472  *	Allocate a new &sk_buff and assign it a usage count of one. The
1473  *	buffer has unspecified headroom built in. Users should allocate
1474  *	the headroom they think they need without accounting for the
1475  *	built in space. The built in space is used for optimisations.
1476  *
1477  *	%NULL is returned if there is no free memory. Although this function
1478  *	allocates memory it can be called from an interrupt.
1479  */
1480 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1481 		unsigned int length)
1482 {
1483 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1484 }
1485 
1486 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
1487 		unsigned int length)
1488 {
1489 	struct sk_buff *skb = netdev_alloc_skb(dev, length + NET_IP_ALIGN);
1490 
1491 	if (NET_IP_ALIGN && skb)
1492 		skb_reserve(skb, NET_IP_ALIGN);
1493 	return skb;
1494 }
1495 
1496 extern struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask);
1497 
1498 /**
1499  *	netdev_alloc_page - allocate a page for ps-rx on a specific device
1500  *	@dev: network device to receive on
1501  *
1502  * 	Allocate a new page node local to the specified device.
1503  *
1504  * 	%NULL is returned if there is no free memory.
1505  */
1506 static inline struct page *netdev_alloc_page(struct net_device *dev)
1507 {
1508 	return __netdev_alloc_page(dev, GFP_ATOMIC);
1509 }
1510 
1511 static inline void netdev_free_page(struct net_device *dev, struct page *page)
1512 {
1513 	__free_page(page);
1514 }
1515 
1516 /**
1517  *	skb_clone_writable - is the header of a clone writable
1518  *	@skb: buffer to check
1519  *	@len: length up to which to write
1520  *
1521  *	Returns true if modifying the header part of the cloned buffer
1522  *	does not requires the data to be copied.
1523  */
1524 static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len)
1525 {
1526 	return !skb_header_cloned(skb) &&
1527 	       skb_headroom(skb) + len <= skb->hdr_len;
1528 }
1529 
1530 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1531 			    int cloned)
1532 {
1533 	int delta = 0;
1534 
1535 	if (headroom < NET_SKB_PAD)
1536 		headroom = NET_SKB_PAD;
1537 	if (headroom > skb_headroom(skb))
1538 		delta = headroom - skb_headroom(skb);
1539 
1540 	if (delta || cloned)
1541 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1542 					GFP_ATOMIC);
1543 	return 0;
1544 }
1545 
1546 /**
1547  *	skb_cow - copy header of skb when it is required
1548  *	@skb: buffer to cow
1549  *	@headroom: needed headroom
1550  *
1551  *	If the skb passed lacks sufficient headroom or its data part
1552  *	is shared, data is reallocated. If reallocation fails, an error
1553  *	is returned and original skb is not changed.
1554  *
1555  *	The result is skb with writable area skb->head...skb->tail
1556  *	and at least @headroom of space at head.
1557  */
1558 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1559 {
1560 	return __skb_cow(skb, headroom, skb_cloned(skb));
1561 }
1562 
1563 /**
1564  *	skb_cow_head - skb_cow but only making the head writable
1565  *	@skb: buffer to cow
1566  *	@headroom: needed headroom
1567  *
1568  *	This function is identical to skb_cow except that we replace the
1569  *	skb_cloned check by skb_header_cloned.  It should be used when
1570  *	you only need to push on some header and do not need to modify
1571  *	the data.
1572  */
1573 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1574 {
1575 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
1576 }
1577 
1578 /**
1579  *	skb_padto	- pad an skbuff up to a minimal size
1580  *	@skb: buffer to pad
1581  *	@len: minimal length
1582  *
1583  *	Pads up a buffer to ensure the trailing bytes exist and are
1584  *	blanked. If the buffer already contains sufficient data it
1585  *	is untouched. Otherwise it is extended. Returns zero on
1586  *	success. The skb is freed on error.
1587  */
1588 
1589 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1590 {
1591 	unsigned int size = skb->len;
1592 	if (likely(size >= len))
1593 		return 0;
1594 	return skb_pad(skb, len - size);
1595 }
1596 
1597 static inline int skb_add_data(struct sk_buff *skb,
1598 			       char __user *from, int copy)
1599 {
1600 	const int off = skb->len;
1601 
1602 	if (skb->ip_summed == CHECKSUM_NONE) {
1603 		int err = 0;
1604 		__wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1605 							    copy, 0, &err);
1606 		if (!err) {
1607 			skb->csum = csum_block_add(skb->csum, csum, off);
1608 			return 0;
1609 		}
1610 	} else if (!copy_from_user(skb_put(skb, copy), from, copy))
1611 		return 0;
1612 
1613 	__skb_trim(skb, off);
1614 	return -EFAULT;
1615 }
1616 
1617 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1618 				   struct page *page, int off)
1619 {
1620 	if (i) {
1621 		struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1622 
1623 		return page == frag->page &&
1624 		       off == frag->page_offset + frag->size;
1625 	}
1626 	return 0;
1627 }
1628 
1629 static inline int __skb_linearize(struct sk_buff *skb)
1630 {
1631 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1632 }
1633 
1634 /**
1635  *	skb_linearize - convert paged skb to linear one
1636  *	@skb: buffer to linarize
1637  *
1638  *	If there is no free memory -ENOMEM is returned, otherwise zero
1639  *	is returned and the old skb data released.
1640  */
1641 static inline int skb_linearize(struct sk_buff *skb)
1642 {
1643 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1644 }
1645 
1646 /**
1647  *	skb_linearize_cow - make sure skb is linear and writable
1648  *	@skb: buffer to process
1649  *
1650  *	If there is no free memory -ENOMEM is returned, otherwise zero
1651  *	is returned and the old skb data released.
1652  */
1653 static inline int skb_linearize_cow(struct sk_buff *skb)
1654 {
1655 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1656 	       __skb_linearize(skb) : 0;
1657 }
1658 
1659 /**
1660  *	skb_postpull_rcsum - update checksum for received skb after pull
1661  *	@skb: buffer to update
1662  *	@start: start of data before pull
1663  *	@len: length of data pulled
1664  *
1665  *	After doing a pull on a received packet, you need to call this to
1666  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1667  *	CHECKSUM_NONE so that it can be recomputed from scratch.
1668  */
1669 
1670 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1671 				      const void *start, unsigned int len)
1672 {
1673 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1674 		skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1675 }
1676 
1677 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1678 
1679 /**
1680  *	pskb_trim_rcsum - trim received skb and update checksum
1681  *	@skb: buffer to trim
1682  *	@len: new length
1683  *
1684  *	This is exactly the same as pskb_trim except that it ensures the
1685  *	checksum of received packets are still valid after the operation.
1686  */
1687 
1688 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1689 {
1690 	if (likely(len >= skb->len))
1691 		return 0;
1692 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1693 		skb->ip_summed = CHECKSUM_NONE;
1694 	return __pskb_trim(skb, len);
1695 }
1696 
1697 #define skb_queue_walk(queue, skb) \
1698 		for (skb = (queue)->next;					\
1699 		     prefetch(skb->next), (skb != (struct sk_buff *)(queue));	\
1700 		     skb = skb->next)
1701 
1702 #define skb_queue_walk_safe(queue, skb, tmp)					\
1703 		for (skb = (queue)->next, tmp = skb->next;			\
1704 		     skb != (struct sk_buff *)(queue);				\
1705 		     skb = tmp, tmp = skb->next)
1706 
1707 #define skb_queue_walk_from(queue, skb)						\
1708 		for (; prefetch(skb->next), (skb != (struct sk_buff *)(queue));	\
1709 		     skb = skb->next)
1710 
1711 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
1712 		for (tmp = skb->next;						\
1713 		     skb != (struct sk_buff *)(queue);				\
1714 		     skb = tmp, tmp = skb->next)
1715 
1716 #define skb_queue_reverse_walk(queue, skb) \
1717 		for (skb = (queue)->prev;					\
1718 		     prefetch(skb->prev), (skb != (struct sk_buff *)(queue));	\
1719 		     skb = skb->prev)
1720 
1721 
1722 static inline bool skb_has_frags(const struct sk_buff *skb)
1723 {
1724 	return skb_shinfo(skb)->frag_list != NULL;
1725 }
1726 
1727 static inline void skb_frag_list_init(struct sk_buff *skb)
1728 {
1729 	skb_shinfo(skb)->frag_list = NULL;
1730 }
1731 
1732 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
1733 {
1734 	frag->next = skb_shinfo(skb)->frag_list;
1735 	skb_shinfo(skb)->frag_list = frag;
1736 }
1737 
1738 #define skb_walk_frags(skb, iter)	\
1739 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
1740 
1741 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
1742 					   int *peeked, int *err);
1743 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1744 					 int noblock, int *err);
1745 extern unsigned int    datagram_poll(struct file *file, struct socket *sock,
1746 				     struct poll_table_struct *wait);
1747 extern int	       skb_copy_datagram_iovec(const struct sk_buff *from,
1748 					       int offset, struct iovec *to,
1749 					       int size);
1750 extern int	       skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1751 							int hlen,
1752 							struct iovec *iov);
1753 extern int	       skb_copy_datagram_from_iovec(struct sk_buff *skb,
1754 						    int offset,
1755 						    const struct iovec *from,
1756 						    int from_offset,
1757 						    int len);
1758 extern int	       skb_copy_datagram_const_iovec(const struct sk_buff *from,
1759 						     int offset,
1760 						     const struct iovec *to,
1761 						     int to_offset,
1762 						     int size);
1763 extern void	       skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1764 extern void	       skb_free_datagram_locked(struct sock *sk,
1765 						struct sk_buff *skb);
1766 extern int	       skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1767 					 unsigned int flags);
1768 extern __wsum	       skb_checksum(const struct sk_buff *skb, int offset,
1769 				    int len, __wsum csum);
1770 extern int	       skb_copy_bits(const struct sk_buff *skb, int offset,
1771 				     void *to, int len);
1772 extern int	       skb_store_bits(struct sk_buff *skb, int offset,
1773 				      const void *from, int len);
1774 extern __wsum	       skb_copy_and_csum_bits(const struct sk_buff *skb,
1775 					      int offset, u8 *to, int len,
1776 					      __wsum csum);
1777 extern int             skb_splice_bits(struct sk_buff *skb,
1778 						unsigned int offset,
1779 						struct pipe_inode_info *pipe,
1780 						unsigned int len,
1781 						unsigned int flags);
1782 extern void	       skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1783 extern void	       skb_split(struct sk_buff *skb,
1784 				 struct sk_buff *skb1, const u32 len);
1785 extern int	       skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
1786 				 int shiftlen);
1787 
1788 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
1789 
1790 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1791 				       int len, void *buffer)
1792 {
1793 	int hlen = skb_headlen(skb);
1794 
1795 	if (hlen - offset >= len)
1796 		return skb->data + offset;
1797 
1798 	if (skb_copy_bits(skb, offset, buffer, len) < 0)
1799 		return NULL;
1800 
1801 	return buffer;
1802 }
1803 
1804 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
1805 					     void *to,
1806 					     const unsigned int len)
1807 {
1808 	memcpy(to, skb->data, len);
1809 }
1810 
1811 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
1812 						    const int offset, void *to,
1813 						    const unsigned int len)
1814 {
1815 	memcpy(to, skb->data + offset, len);
1816 }
1817 
1818 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
1819 					   const void *from,
1820 					   const unsigned int len)
1821 {
1822 	memcpy(skb->data, from, len);
1823 }
1824 
1825 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
1826 						  const int offset,
1827 						  const void *from,
1828 						  const unsigned int len)
1829 {
1830 	memcpy(skb->data + offset, from, len);
1831 }
1832 
1833 extern void skb_init(void);
1834 
1835 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
1836 {
1837 	return skb->tstamp;
1838 }
1839 
1840 /**
1841  *	skb_get_timestamp - get timestamp from a skb
1842  *	@skb: skb to get stamp from
1843  *	@stamp: pointer to struct timeval to store stamp in
1844  *
1845  *	Timestamps are stored in the skb as offsets to a base timestamp.
1846  *	This function converts the offset back to a struct timeval and stores
1847  *	it in stamp.
1848  */
1849 static inline void skb_get_timestamp(const struct sk_buff *skb,
1850 				     struct timeval *stamp)
1851 {
1852 	*stamp = ktime_to_timeval(skb->tstamp);
1853 }
1854 
1855 static inline void skb_get_timestampns(const struct sk_buff *skb,
1856 				       struct timespec *stamp)
1857 {
1858 	*stamp = ktime_to_timespec(skb->tstamp);
1859 }
1860 
1861 static inline void __net_timestamp(struct sk_buff *skb)
1862 {
1863 	skb->tstamp = ktime_get_real();
1864 }
1865 
1866 static inline ktime_t net_timedelta(ktime_t t)
1867 {
1868 	return ktime_sub(ktime_get_real(), t);
1869 }
1870 
1871 static inline ktime_t net_invalid_timestamp(void)
1872 {
1873 	return ktime_set(0, 0);
1874 }
1875 
1876 /**
1877  * skb_tstamp_tx - queue clone of skb with send time stamps
1878  * @orig_skb:	the original outgoing packet
1879  * @hwtstamps:	hardware time stamps, may be NULL if not available
1880  *
1881  * If the skb has a socket associated, then this function clones the
1882  * skb (thus sharing the actual data and optional structures), stores
1883  * the optional hardware time stamping information (if non NULL) or
1884  * generates a software time stamp (otherwise), then queues the clone
1885  * to the error queue of the socket.  Errors are silently ignored.
1886  */
1887 extern void skb_tstamp_tx(struct sk_buff *orig_skb,
1888 			struct skb_shared_hwtstamps *hwtstamps);
1889 
1890 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
1891 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
1892 
1893 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
1894 {
1895 	return skb->ip_summed & CHECKSUM_UNNECESSARY;
1896 }
1897 
1898 /**
1899  *	skb_checksum_complete - Calculate checksum of an entire packet
1900  *	@skb: packet to process
1901  *
1902  *	This function calculates the checksum over the entire packet plus
1903  *	the value of skb->csum.  The latter can be used to supply the
1904  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
1905  *	checksum.
1906  *
1907  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
1908  *	this function can be used to verify that checksum on received
1909  *	packets.  In that case the function should return zero if the
1910  *	checksum is correct.  In particular, this function will return zero
1911  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1912  *	hardware has already verified the correctness of the checksum.
1913  */
1914 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
1915 {
1916 	return skb_csum_unnecessary(skb) ?
1917 	       0 : __skb_checksum_complete(skb);
1918 }
1919 
1920 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1921 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
1922 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1923 {
1924 	if (nfct && atomic_dec_and_test(&nfct->use))
1925 		nf_conntrack_destroy(nfct);
1926 }
1927 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1928 {
1929 	if (nfct)
1930 		atomic_inc(&nfct->use);
1931 }
1932 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
1933 {
1934 	if (skb)
1935 		atomic_inc(&skb->users);
1936 }
1937 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
1938 {
1939 	if (skb)
1940 		kfree_skb(skb);
1941 }
1942 #endif
1943 #ifdef CONFIG_BRIDGE_NETFILTER
1944 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1945 {
1946 	if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1947 		kfree(nf_bridge);
1948 }
1949 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1950 {
1951 	if (nf_bridge)
1952 		atomic_inc(&nf_bridge->use);
1953 }
1954 #endif /* CONFIG_BRIDGE_NETFILTER */
1955 static inline void nf_reset(struct sk_buff *skb)
1956 {
1957 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1958 	nf_conntrack_put(skb->nfct);
1959 	skb->nfct = NULL;
1960 	nf_conntrack_put_reasm(skb->nfct_reasm);
1961 	skb->nfct_reasm = NULL;
1962 #endif
1963 #ifdef CONFIG_BRIDGE_NETFILTER
1964 	nf_bridge_put(skb->nf_bridge);
1965 	skb->nf_bridge = NULL;
1966 #endif
1967 }
1968 
1969 /* Note: This doesn't put any conntrack and bridge info in dst. */
1970 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1971 {
1972 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1973 	dst->nfct = src->nfct;
1974 	nf_conntrack_get(src->nfct);
1975 	dst->nfctinfo = src->nfctinfo;
1976 	dst->nfct_reasm = src->nfct_reasm;
1977 	nf_conntrack_get_reasm(src->nfct_reasm);
1978 #endif
1979 #ifdef CONFIG_BRIDGE_NETFILTER
1980 	dst->nf_bridge  = src->nf_bridge;
1981 	nf_bridge_get(src->nf_bridge);
1982 #endif
1983 }
1984 
1985 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1986 {
1987 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1988 	nf_conntrack_put(dst->nfct);
1989 	nf_conntrack_put_reasm(dst->nfct_reasm);
1990 #endif
1991 #ifdef CONFIG_BRIDGE_NETFILTER
1992 	nf_bridge_put(dst->nf_bridge);
1993 #endif
1994 	__nf_copy(dst, src);
1995 }
1996 
1997 #ifdef CONFIG_NETWORK_SECMARK
1998 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1999 {
2000 	to->secmark = from->secmark;
2001 }
2002 
2003 static inline void skb_init_secmark(struct sk_buff *skb)
2004 {
2005 	skb->secmark = 0;
2006 }
2007 #else
2008 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2009 { }
2010 
2011 static inline void skb_init_secmark(struct sk_buff *skb)
2012 { }
2013 #endif
2014 
2015 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
2016 {
2017 	skb->queue_mapping = queue_mapping;
2018 }
2019 
2020 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
2021 {
2022 	return skb->queue_mapping;
2023 }
2024 
2025 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
2026 {
2027 	to->queue_mapping = from->queue_mapping;
2028 }
2029 
2030 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
2031 {
2032 	skb->queue_mapping = rx_queue + 1;
2033 }
2034 
2035 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
2036 {
2037 	return skb->queue_mapping - 1;
2038 }
2039 
2040 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
2041 {
2042 	return (skb->queue_mapping != 0);
2043 }
2044 
2045 extern u16 skb_tx_hash(const struct net_device *dev,
2046 		       const struct sk_buff *skb);
2047 
2048 #ifdef CONFIG_XFRM
2049 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2050 {
2051 	return skb->sp;
2052 }
2053 #else
2054 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2055 {
2056 	return NULL;
2057 }
2058 #endif
2059 
2060 static inline int skb_is_gso(const struct sk_buff *skb)
2061 {
2062 	return skb_shinfo(skb)->gso_size;
2063 }
2064 
2065 static inline int skb_is_gso_v6(const struct sk_buff *skb)
2066 {
2067 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
2068 }
2069 
2070 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
2071 
2072 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
2073 {
2074 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
2075 	 * wanted then gso_type will be set. */
2076 	struct skb_shared_info *shinfo = skb_shinfo(skb);
2077 	if (shinfo->gso_size != 0 && unlikely(shinfo->gso_type == 0)) {
2078 		__skb_warn_lro_forwarding(skb);
2079 		return true;
2080 	}
2081 	return false;
2082 }
2083 
2084 static inline void skb_forward_csum(struct sk_buff *skb)
2085 {
2086 	/* Unfortunately we don't support this one.  Any brave souls? */
2087 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2088 		skb->ip_summed = CHECKSUM_NONE;
2089 }
2090 
2091 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
2092 #endif	/* __KERNEL__ */
2093 #endif	/* _LINUX_SKBUFF_H */
2094