1 /* 2 * Definitions for the 'struct sk_buff' memory handlers. 3 * 4 * Authors: 5 * Alan Cox, <[email protected]> 6 * Florian La Roche, <[email protected]> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14 #ifndef _LINUX_SKBUFF_H 15 #define _LINUX_SKBUFF_H 16 17 #include <linux/kernel.h> 18 #include <linux/kmemcheck.h> 19 #include <linux/compiler.h> 20 #include <linux/time.h> 21 #include <linux/cache.h> 22 23 #include <asm/atomic.h> 24 #include <asm/types.h> 25 #include <linux/spinlock.h> 26 #include <linux/net.h> 27 #include <linux/textsearch.h> 28 #include <net/checksum.h> 29 #include <linux/rcupdate.h> 30 #include <linux/dmaengine.h> 31 #include <linux/hrtimer.h> 32 33 /* Don't change this without changing skb_csum_unnecessary! */ 34 #define CHECKSUM_NONE 0 35 #define CHECKSUM_UNNECESSARY 1 36 #define CHECKSUM_COMPLETE 2 37 #define CHECKSUM_PARTIAL 3 38 39 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \ 40 ~(SMP_CACHE_BYTES - 1)) 41 #define SKB_WITH_OVERHEAD(X) \ 42 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 43 #define SKB_MAX_ORDER(X, ORDER) \ 44 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 45 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 46 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 47 48 /* A. Checksumming of received packets by device. 49 * 50 * NONE: device failed to checksum this packet. 51 * skb->csum is undefined. 52 * 53 * UNNECESSARY: device parsed packet and wouldbe verified checksum. 54 * skb->csum is undefined. 55 * It is bad option, but, unfortunately, many of vendors do this. 56 * Apparently with secret goal to sell you new device, when you 57 * will add new protocol to your host. F.e. IPv6. 8) 58 * 59 * COMPLETE: the most generic way. Device supplied checksum of _all_ 60 * the packet as seen by netif_rx in skb->csum. 61 * NOTE: Even if device supports only some protocols, but 62 * is able to produce some skb->csum, it MUST use COMPLETE, 63 * not UNNECESSARY. 64 * 65 * PARTIAL: identical to the case for output below. This may occur 66 * on a packet received directly from another Linux OS, e.g., 67 * a virtualised Linux kernel on the same host. The packet can 68 * be treated in the same way as UNNECESSARY except that on 69 * output (i.e., forwarding) the checksum must be filled in 70 * by the OS or the hardware. 71 * 72 * B. Checksumming on output. 73 * 74 * NONE: skb is checksummed by protocol or csum is not required. 75 * 76 * PARTIAL: device is required to csum packet as seen by hard_start_xmit 77 * from skb->csum_start to the end and to record the checksum 78 * at skb->csum_start + skb->csum_offset. 79 * 80 * Device must show its capabilities in dev->features, set 81 * at device setup time. 82 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum 83 * everything. 84 * NETIF_F_NO_CSUM - loopback or reliable single hop media. 85 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only 86 * TCP/UDP over IPv4. Sigh. Vendors like this 87 * way by an unknown reason. Though, see comment above 88 * about CHECKSUM_UNNECESSARY. 8) 89 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead. 90 * 91 * Any questions? No questions, good. --ANK 92 */ 93 94 struct net_device; 95 struct scatterlist; 96 struct pipe_inode_info; 97 98 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 99 struct nf_conntrack { 100 atomic_t use; 101 }; 102 #endif 103 104 #ifdef CONFIG_BRIDGE_NETFILTER 105 struct nf_bridge_info { 106 atomic_t use; 107 struct net_device *physindev; 108 struct net_device *physoutdev; 109 unsigned int mask; 110 unsigned long data[32 / sizeof(unsigned long)]; 111 }; 112 #endif 113 114 struct sk_buff_head { 115 /* These two members must be first. */ 116 struct sk_buff *next; 117 struct sk_buff *prev; 118 119 __u32 qlen; 120 spinlock_t lock; 121 }; 122 123 struct sk_buff; 124 125 /* To allow 64K frame to be packed as single skb without frag_list */ 126 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2) 127 128 typedef struct skb_frag_struct skb_frag_t; 129 130 struct skb_frag_struct { 131 struct page *page; 132 __u32 page_offset; 133 __u32 size; 134 }; 135 136 #define HAVE_HW_TIME_STAMP 137 138 /** 139 * struct skb_shared_hwtstamps - hardware time stamps 140 * @hwtstamp: hardware time stamp transformed into duration 141 * since arbitrary point in time 142 * @syststamp: hwtstamp transformed to system time base 143 * 144 * Software time stamps generated by ktime_get_real() are stored in 145 * skb->tstamp. The relation between the different kinds of time 146 * stamps is as follows: 147 * 148 * syststamp and tstamp can be compared against each other in 149 * arbitrary combinations. The accuracy of a 150 * syststamp/tstamp/"syststamp from other device" comparison is 151 * limited by the accuracy of the transformation into system time 152 * base. This depends on the device driver and its underlying 153 * hardware. 154 * 155 * hwtstamps can only be compared against other hwtstamps from 156 * the same device. 157 * 158 * This structure is attached to packets as part of the 159 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 160 */ 161 struct skb_shared_hwtstamps { 162 ktime_t hwtstamp; 163 ktime_t syststamp; 164 }; 165 166 /** 167 * struct skb_shared_tx - instructions for time stamping of outgoing packets 168 * @hardware: generate hardware time stamp 169 * @software: generate software time stamp 170 * @in_progress: device driver is going to provide 171 * hardware time stamp 172 * @flags: all shared_tx flags 173 * 174 * These flags are attached to packets as part of the 175 * &skb_shared_info. Use skb_tx() to get a pointer. 176 */ 177 union skb_shared_tx { 178 struct { 179 __u8 hardware:1, 180 software:1, 181 in_progress:1; 182 }; 183 __u8 flags; 184 }; 185 186 /* This data is invariant across clones and lives at 187 * the end of the header data, ie. at skb->end. 188 */ 189 struct skb_shared_info { 190 atomic_t dataref; 191 unsigned short nr_frags; 192 unsigned short gso_size; 193 #ifdef CONFIG_HAS_DMA 194 dma_addr_t dma_head; 195 #endif 196 /* Warning: this field is not always filled in (UFO)! */ 197 unsigned short gso_segs; 198 unsigned short gso_type; 199 __be32 ip6_frag_id; 200 union skb_shared_tx tx_flags; 201 struct sk_buff *frag_list; 202 struct skb_shared_hwtstamps hwtstamps; 203 skb_frag_t frags[MAX_SKB_FRAGS]; 204 #ifdef CONFIG_HAS_DMA 205 dma_addr_t dma_maps[MAX_SKB_FRAGS]; 206 #endif 207 /* Intermediate layers must ensure that destructor_arg 208 * remains valid until skb destructor */ 209 void * destructor_arg; 210 }; 211 212 /* We divide dataref into two halves. The higher 16 bits hold references 213 * to the payload part of skb->data. The lower 16 bits hold references to 214 * the entire skb->data. A clone of a headerless skb holds the length of 215 * the header in skb->hdr_len. 216 * 217 * All users must obey the rule that the skb->data reference count must be 218 * greater than or equal to the payload reference count. 219 * 220 * Holding a reference to the payload part means that the user does not 221 * care about modifications to the header part of skb->data. 222 */ 223 #define SKB_DATAREF_SHIFT 16 224 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 225 226 227 enum { 228 SKB_FCLONE_UNAVAILABLE, 229 SKB_FCLONE_ORIG, 230 SKB_FCLONE_CLONE, 231 }; 232 233 enum { 234 SKB_GSO_TCPV4 = 1 << 0, 235 SKB_GSO_UDP = 1 << 1, 236 237 /* This indicates the skb is from an untrusted source. */ 238 SKB_GSO_DODGY = 1 << 2, 239 240 /* This indicates the tcp segment has CWR set. */ 241 SKB_GSO_TCP_ECN = 1 << 3, 242 243 SKB_GSO_TCPV6 = 1 << 4, 244 245 SKB_GSO_FCOE = 1 << 5, 246 }; 247 248 #if BITS_PER_LONG > 32 249 #define NET_SKBUFF_DATA_USES_OFFSET 1 250 #endif 251 252 #ifdef NET_SKBUFF_DATA_USES_OFFSET 253 typedef unsigned int sk_buff_data_t; 254 #else 255 typedef unsigned char *sk_buff_data_t; 256 #endif 257 258 /** 259 * struct sk_buff - socket buffer 260 * @next: Next buffer in list 261 * @prev: Previous buffer in list 262 * @sk: Socket we are owned by 263 * @tstamp: Time we arrived 264 * @dev: Device we arrived on/are leaving by 265 * @transport_header: Transport layer header 266 * @network_header: Network layer header 267 * @mac_header: Link layer header 268 * @_skb_dst: destination entry 269 * @sp: the security path, used for xfrm 270 * @cb: Control buffer. Free for use by every layer. Put private vars here 271 * @len: Length of actual data 272 * @data_len: Data length 273 * @mac_len: Length of link layer header 274 * @hdr_len: writable header length of cloned skb 275 * @csum: Checksum (must include start/offset pair) 276 * @csum_start: Offset from skb->head where checksumming should start 277 * @csum_offset: Offset from csum_start where checksum should be stored 278 * @local_df: allow local fragmentation 279 * @cloned: Head may be cloned (check refcnt to be sure) 280 * @nohdr: Payload reference only, must not modify header 281 * @pkt_type: Packet class 282 * @fclone: skbuff clone status 283 * @ip_summed: Driver fed us an IP checksum 284 * @priority: Packet queueing priority 285 * @users: User count - see {datagram,tcp}.c 286 * @protocol: Packet protocol from driver 287 * @truesize: Buffer size 288 * @head: Head of buffer 289 * @data: Data head pointer 290 * @tail: Tail pointer 291 * @end: End pointer 292 * @destructor: Destruct function 293 * @mark: Generic packet mark 294 * @nfct: Associated connection, if any 295 * @ipvs_property: skbuff is owned by ipvs 296 * @peeked: this packet has been seen already, so stats have been 297 * done for it, don't do them again 298 * @nf_trace: netfilter packet trace flag 299 * @nfctinfo: Relationship of this skb to the connection 300 * @nfct_reasm: netfilter conntrack re-assembly pointer 301 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 302 * @skb_iif: ifindex of device we arrived on 303 * @queue_mapping: Queue mapping for multiqueue devices 304 * @tc_index: Traffic control index 305 * @tc_verd: traffic control verdict 306 * @ndisc_nodetype: router type (from link layer) 307 * @dma_cookie: a cookie to one of several possible DMA operations 308 * done by skb DMA functions 309 * @secmark: security marking 310 * @vlan_tci: vlan tag control information 311 */ 312 313 struct sk_buff { 314 /* These two members must be first. */ 315 struct sk_buff *next; 316 struct sk_buff *prev; 317 318 ktime_t tstamp; 319 320 struct sock *sk; 321 struct net_device *dev; 322 323 /* 324 * This is the control buffer. It is free to use for every 325 * layer. Please put your private variables there. If you 326 * want to keep them across layers you have to do a skb_clone() 327 * first. This is owned by whoever has the skb queued ATM. 328 */ 329 char cb[48] __aligned(8); 330 331 unsigned long _skb_dst; 332 #ifdef CONFIG_XFRM 333 struct sec_path *sp; 334 #endif 335 unsigned int len, 336 data_len; 337 __u16 mac_len, 338 hdr_len; 339 union { 340 __wsum csum; 341 struct { 342 __u16 csum_start; 343 __u16 csum_offset; 344 }; 345 }; 346 __u32 priority; 347 kmemcheck_bitfield_begin(flags1); 348 __u8 local_df:1, 349 cloned:1, 350 ip_summed:2, 351 nohdr:1, 352 nfctinfo:3; 353 __u8 pkt_type:3, 354 fclone:2, 355 ipvs_property:1, 356 peeked:1, 357 nf_trace:1; 358 kmemcheck_bitfield_end(flags1); 359 __be16 protocol; 360 361 void (*destructor)(struct sk_buff *skb); 362 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 363 struct nf_conntrack *nfct; 364 struct sk_buff *nfct_reasm; 365 #endif 366 #ifdef CONFIG_BRIDGE_NETFILTER 367 struct nf_bridge_info *nf_bridge; 368 #endif 369 370 int skb_iif; 371 #ifdef CONFIG_NET_SCHED 372 __u16 tc_index; /* traffic control index */ 373 #ifdef CONFIG_NET_CLS_ACT 374 __u16 tc_verd; /* traffic control verdict */ 375 #endif 376 #endif 377 378 kmemcheck_bitfield_begin(flags2); 379 __u16 queue_mapping:16; 380 #ifdef CONFIG_IPV6_NDISC_NODETYPE 381 __u8 ndisc_nodetype:2; 382 #endif 383 kmemcheck_bitfield_end(flags2); 384 385 /* 0/14 bit hole */ 386 387 #ifdef CONFIG_NET_DMA 388 dma_cookie_t dma_cookie; 389 #endif 390 #ifdef CONFIG_NETWORK_SECMARK 391 __u32 secmark; 392 #endif 393 union { 394 __u32 mark; 395 __u32 dropcount; 396 }; 397 398 __u16 vlan_tci; 399 400 sk_buff_data_t transport_header; 401 sk_buff_data_t network_header; 402 sk_buff_data_t mac_header; 403 /* These elements must be at the end, see alloc_skb() for details. */ 404 sk_buff_data_t tail; 405 sk_buff_data_t end; 406 unsigned char *head, 407 *data; 408 unsigned int truesize; 409 atomic_t users; 410 }; 411 412 #ifdef __KERNEL__ 413 /* 414 * Handling routines are only of interest to the kernel 415 */ 416 #include <linux/slab.h> 417 418 #include <asm/system.h> 419 420 static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 421 { 422 return (struct dst_entry *)skb->_skb_dst; 423 } 424 425 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 426 { 427 skb->_skb_dst = (unsigned long)dst; 428 } 429 430 static inline struct rtable *skb_rtable(const struct sk_buff *skb) 431 { 432 return (struct rtable *)skb_dst(skb); 433 } 434 435 extern void kfree_skb(struct sk_buff *skb); 436 extern void consume_skb(struct sk_buff *skb); 437 extern void __kfree_skb(struct sk_buff *skb); 438 extern struct sk_buff *__alloc_skb(unsigned int size, 439 gfp_t priority, int fclone, int node); 440 static inline struct sk_buff *alloc_skb(unsigned int size, 441 gfp_t priority) 442 { 443 return __alloc_skb(size, priority, 0, -1); 444 } 445 446 static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 447 gfp_t priority) 448 { 449 return __alloc_skb(size, priority, 1, -1); 450 } 451 452 extern int skb_recycle_check(struct sk_buff *skb, int skb_size); 453 454 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 455 extern struct sk_buff *skb_clone(struct sk_buff *skb, 456 gfp_t priority); 457 extern struct sk_buff *skb_copy(const struct sk_buff *skb, 458 gfp_t priority); 459 extern struct sk_buff *pskb_copy(struct sk_buff *skb, 460 gfp_t gfp_mask); 461 extern int pskb_expand_head(struct sk_buff *skb, 462 int nhead, int ntail, 463 gfp_t gfp_mask); 464 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 465 unsigned int headroom); 466 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 467 int newheadroom, int newtailroom, 468 gfp_t priority); 469 extern int skb_to_sgvec(struct sk_buff *skb, 470 struct scatterlist *sg, int offset, 471 int len); 472 extern int skb_cow_data(struct sk_buff *skb, int tailbits, 473 struct sk_buff **trailer); 474 extern int skb_pad(struct sk_buff *skb, int pad); 475 #define dev_kfree_skb(a) consume_skb(a) 476 #define dev_consume_skb(a) kfree_skb_clean(a) 477 extern void skb_over_panic(struct sk_buff *skb, int len, 478 void *here); 479 extern void skb_under_panic(struct sk_buff *skb, int len, 480 void *here); 481 482 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 483 int getfrag(void *from, char *to, int offset, 484 int len,int odd, struct sk_buff *skb), 485 void *from, int length); 486 487 struct skb_seq_state { 488 __u32 lower_offset; 489 __u32 upper_offset; 490 __u32 frag_idx; 491 __u32 stepped_offset; 492 struct sk_buff *root_skb; 493 struct sk_buff *cur_skb; 494 __u8 *frag_data; 495 }; 496 497 extern void skb_prepare_seq_read(struct sk_buff *skb, 498 unsigned int from, unsigned int to, 499 struct skb_seq_state *st); 500 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 501 struct skb_seq_state *st); 502 extern void skb_abort_seq_read(struct skb_seq_state *st); 503 504 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 505 unsigned int to, struct ts_config *config, 506 struct ts_state *state); 507 508 #ifdef NET_SKBUFF_DATA_USES_OFFSET 509 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 510 { 511 return skb->head + skb->end; 512 } 513 #else 514 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 515 { 516 return skb->end; 517 } 518 #endif 519 520 /* Internal */ 521 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 522 523 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 524 { 525 return &skb_shinfo(skb)->hwtstamps; 526 } 527 528 static inline union skb_shared_tx *skb_tx(struct sk_buff *skb) 529 { 530 return &skb_shinfo(skb)->tx_flags; 531 } 532 533 /** 534 * skb_queue_empty - check if a queue is empty 535 * @list: queue head 536 * 537 * Returns true if the queue is empty, false otherwise. 538 */ 539 static inline int skb_queue_empty(const struct sk_buff_head *list) 540 { 541 return list->next == (struct sk_buff *)list; 542 } 543 544 /** 545 * skb_queue_is_last - check if skb is the last entry in the queue 546 * @list: queue head 547 * @skb: buffer 548 * 549 * Returns true if @skb is the last buffer on the list. 550 */ 551 static inline bool skb_queue_is_last(const struct sk_buff_head *list, 552 const struct sk_buff *skb) 553 { 554 return (skb->next == (struct sk_buff *) list); 555 } 556 557 /** 558 * skb_queue_is_first - check if skb is the first entry in the queue 559 * @list: queue head 560 * @skb: buffer 561 * 562 * Returns true if @skb is the first buffer on the list. 563 */ 564 static inline bool skb_queue_is_first(const struct sk_buff_head *list, 565 const struct sk_buff *skb) 566 { 567 return (skb->prev == (struct sk_buff *) list); 568 } 569 570 /** 571 * skb_queue_next - return the next packet in the queue 572 * @list: queue head 573 * @skb: current buffer 574 * 575 * Return the next packet in @list after @skb. It is only valid to 576 * call this if skb_queue_is_last() evaluates to false. 577 */ 578 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 579 const struct sk_buff *skb) 580 { 581 /* This BUG_ON may seem severe, but if we just return then we 582 * are going to dereference garbage. 583 */ 584 BUG_ON(skb_queue_is_last(list, skb)); 585 return skb->next; 586 } 587 588 /** 589 * skb_queue_prev - return the prev packet in the queue 590 * @list: queue head 591 * @skb: current buffer 592 * 593 * Return the prev packet in @list before @skb. It is only valid to 594 * call this if skb_queue_is_first() evaluates to false. 595 */ 596 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 597 const struct sk_buff *skb) 598 { 599 /* This BUG_ON may seem severe, but if we just return then we 600 * are going to dereference garbage. 601 */ 602 BUG_ON(skb_queue_is_first(list, skb)); 603 return skb->prev; 604 } 605 606 /** 607 * skb_get - reference buffer 608 * @skb: buffer to reference 609 * 610 * Makes another reference to a socket buffer and returns a pointer 611 * to the buffer. 612 */ 613 static inline struct sk_buff *skb_get(struct sk_buff *skb) 614 { 615 atomic_inc(&skb->users); 616 return skb; 617 } 618 619 /* 620 * If users == 1, we are the only owner and are can avoid redundant 621 * atomic change. 622 */ 623 624 /** 625 * skb_cloned - is the buffer a clone 626 * @skb: buffer to check 627 * 628 * Returns true if the buffer was generated with skb_clone() and is 629 * one of multiple shared copies of the buffer. Cloned buffers are 630 * shared data so must not be written to under normal circumstances. 631 */ 632 static inline int skb_cloned(const struct sk_buff *skb) 633 { 634 return skb->cloned && 635 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 636 } 637 638 /** 639 * skb_header_cloned - is the header a clone 640 * @skb: buffer to check 641 * 642 * Returns true if modifying the header part of the buffer requires 643 * the data to be copied. 644 */ 645 static inline int skb_header_cloned(const struct sk_buff *skb) 646 { 647 int dataref; 648 649 if (!skb->cloned) 650 return 0; 651 652 dataref = atomic_read(&skb_shinfo(skb)->dataref); 653 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 654 return dataref != 1; 655 } 656 657 /** 658 * skb_header_release - release reference to header 659 * @skb: buffer to operate on 660 * 661 * Drop a reference to the header part of the buffer. This is done 662 * by acquiring a payload reference. You must not read from the header 663 * part of skb->data after this. 664 */ 665 static inline void skb_header_release(struct sk_buff *skb) 666 { 667 BUG_ON(skb->nohdr); 668 skb->nohdr = 1; 669 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref); 670 } 671 672 /** 673 * skb_shared - is the buffer shared 674 * @skb: buffer to check 675 * 676 * Returns true if more than one person has a reference to this 677 * buffer. 678 */ 679 static inline int skb_shared(const struct sk_buff *skb) 680 { 681 return atomic_read(&skb->users) != 1; 682 } 683 684 /** 685 * skb_share_check - check if buffer is shared and if so clone it 686 * @skb: buffer to check 687 * @pri: priority for memory allocation 688 * 689 * If the buffer is shared the buffer is cloned and the old copy 690 * drops a reference. A new clone with a single reference is returned. 691 * If the buffer is not shared the original buffer is returned. When 692 * being called from interrupt status or with spinlocks held pri must 693 * be GFP_ATOMIC. 694 * 695 * NULL is returned on a memory allocation failure. 696 */ 697 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, 698 gfp_t pri) 699 { 700 might_sleep_if(pri & __GFP_WAIT); 701 if (skb_shared(skb)) { 702 struct sk_buff *nskb = skb_clone(skb, pri); 703 kfree_skb(skb); 704 skb = nskb; 705 } 706 return skb; 707 } 708 709 /* 710 * Copy shared buffers into a new sk_buff. We effectively do COW on 711 * packets to handle cases where we have a local reader and forward 712 * and a couple of other messy ones. The normal one is tcpdumping 713 * a packet thats being forwarded. 714 */ 715 716 /** 717 * skb_unshare - make a copy of a shared buffer 718 * @skb: buffer to check 719 * @pri: priority for memory allocation 720 * 721 * If the socket buffer is a clone then this function creates a new 722 * copy of the data, drops a reference count on the old copy and returns 723 * the new copy with the reference count at 1. If the buffer is not a clone 724 * the original buffer is returned. When called with a spinlock held or 725 * from interrupt state @pri must be %GFP_ATOMIC 726 * 727 * %NULL is returned on a memory allocation failure. 728 */ 729 static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 730 gfp_t pri) 731 { 732 might_sleep_if(pri & __GFP_WAIT); 733 if (skb_cloned(skb)) { 734 struct sk_buff *nskb = skb_copy(skb, pri); 735 kfree_skb(skb); /* Free our shared copy */ 736 skb = nskb; 737 } 738 return skb; 739 } 740 741 /** 742 * skb_peek - peek at the head of an &sk_buff_head 743 * @list_: list to peek at 744 * 745 * Peek an &sk_buff. Unlike most other operations you _MUST_ 746 * be careful with this one. A peek leaves the buffer on the 747 * list and someone else may run off with it. You must hold 748 * the appropriate locks or have a private queue to do this. 749 * 750 * Returns %NULL for an empty list or a pointer to the head element. 751 * The reference count is not incremented and the reference is therefore 752 * volatile. Use with caution. 753 */ 754 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_) 755 { 756 struct sk_buff *list = ((struct sk_buff *)list_)->next; 757 if (list == (struct sk_buff *)list_) 758 list = NULL; 759 return list; 760 } 761 762 /** 763 * skb_peek_tail - peek at the tail of an &sk_buff_head 764 * @list_: list to peek at 765 * 766 * Peek an &sk_buff. Unlike most other operations you _MUST_ 767 * be careful with this one. A peek leaves the buffer on the 768 * list and someone else may run off with it. You must hold 769 * the appropriate locks or have a private queue to do this. 770 * 771 * Returns %NULL for an empty list or a pointer to the tail element. 772 * The reference count is not incremented and the reference is therefore 773 * volatile. Use with caution. 774 */ 775 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_) 776 { 777 struct sk_buff *list = ((struct sk_buff *)list_)->prev; 778 if (list == (struct sk_buff *)list_) 779 list = NULL; 780 return list; 781 } 782 783 /** 784 * skb_queue_len - get queue length 785 * @list_: list to measure 786 * 787 * Return the length of an &sk_buff queue. 788 */ 789 static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 790 { 791 return list_->qlen; 792 } 793 794 /** 795 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 796 * @list: queue to initialize 797 * 798 * This initializes only the list and queue length aspects of 799 * an sk_buff_head object. This allows to initialize the list 800 * aspects of an sk_buff_head without reinitializing things like 801 * the spinlock. It can also be used for on-stack sk_buff_head 802 * objects where the spinlock is known to not be used. 803 */ 804 static inline void __skb_queue_head_init(struct sk_buff_head *list) 805 { 806 list->prev = list->next = (struct sk_buff *)list; 807 list->qlen = 0; 808 } 809 810 /* 811 * This function creates a split out lock class for each invocation; 812 * this is needed for now since a whole lot of users of the skb-queue 813 * infrastructure in drivers have different locking usage (in hardirq) 814 * than the networking core (in softirq only). In the long run either the 815 * network layer or drivers should need annotation to consolidate the 816 * main types of usage into 3 classes. 817 */ 818 static inline void skb_queue_head_init(struct sk_buff_head *list) 819 { 820 spin_lock_init(&list->lock); 821 __skb_queue_head_init(list); 822 } 823 824 static inline void skb_queue_head_init_class(struct sk_buff_head *list, 825 struct lock_class_key *class) 826 { 827 skb_queue_head_init(list); 828 lockdep_set_class(&list->lock, class); 829 } 830 831 /* 832 * Insert an sk_buff on a list. 833 * 834 * The "__skb_xxxx()" functions are the non-atomic ones that 835 * can only be called with interrupts disabled. 836 */ 837 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list); 838 static inline void __skb_insert(struct sk_buff *newsk, 839 struct sk_buff *prev, struct sk_buff *next, 840 struct sk_buff_head *list) 841 { 842 newsk->next = next; 843 newsk->prev = prev; 844 next->prev = prev->next = newsk; 845 list->qlen++; 846 } 847 848 static inline void __skb_queue_splice(const struct sk_buff_head *list, 849 struct sk_buff *prev, 850 struct sk_buff *next) 851 { 852 struct sk_buff *first = list->next; 853 struct sk_buff *last = list->prev; 854 855 first->prev = prev; 856 prev->next = first; 857 858 last->next = next; 859 next->prev = last; 860 } 861 862 /** 863 * skb_queue_splice - join two skb lists, this is designed for stacks 864 * @list: the new list to add 865 * @head: the place to add it in the first list 866 */ 867 static inline void skb_queue_splice(const struct sk_buff_head *list, 868 struct sk_buff_head *head) 869 { 870 if (!skb_queue_empty(list)) { 871 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 872 head->qlen += list->qlen; 873 } 874 } 875 876 /** 877 * skb_queue_splice - join two skb lists and reinitialise the emptied list 878 * @list: the new list to add 879 * @head: the place to add it in the first list 880 * 881 * The list at @list is reinitialised 882 */ 883 static inline void skb_queue_splice_init(struct sk_buff_head *list, 884 struct sk_buff_head *head) 885 { 886 if (!skb_queue_empty(list)) { 887 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 888 head->qlen += list->qlen; 889 __skb_queue_head_init(list); 890 } 891 } 892 893 /** 894 * skb_queue_splice_tail - join two skb lists, each list being a queue 895 * @list: the new list to add 896 * @head: the place to add it in the first list 897 */ 898 static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 899 struct sk_buff_head *head) 900 { 901 if (!skb_queue_empty(list)) { 902 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 903 head->qlen += list->qlen; 904 } 905 } 906 907 /** 908 * skb_queue_splice_tail - join two skb lists and reinitialise the emptied list 909 * @list: the new list to add 910 * @head: the place to add it in the first list 911 * 912 * Each of the lists is a queue. 913 * The list at @list is reinitialised 914 */ 915 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 916 struct sk_buff_head *head) 917 { 918 if (!skb_queue_empty(list)) { 919 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 920 head->qlen += list->qlen; 921 __skb_queue_head_init(list); 922 } 923 } 924 925 /** 926 * __skb_queue_after - queue a buffer at the list head 927 * @list: list to use 928 * @prev: place after this buffer 929 * @newsk: buffer to queue 930 * 931 * Queue a buffer int the middle of a list. This function takes no locks 932 * and you must therefore hold required locks before calling it. 933 * 934 * A buffer cannot be placed on two lists at the same time. 935 */ 936 static inline void __skb_queue_after(struct sk_buff_head *list, 937 struct sk_buff *prev, 938 struct sk_buff *newsk) 939 { 940 __skb_insert(newsk, prev, prev->next, list); 941 } 942 943 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, 944 struct sk_buff_head *list); 945 946 static inline void __skb_queue_before(struct sk_buff_head *list, 947 struct sk_buff *next, 948 struct sk_buff *newsk) 949 { 950 __skb_insert(newsk, next->prev, next, list); 951 } 952 953 /** 954 * __skb_queue_head - queue a buffer at the list head 955 * @list: list to use 956 * @newsk: buffer to queue 957 * 958 * Queue a buffer at the start of a list. This function takes no locks 959 * and you must therefore hold required locks before calling it. 960 * 961 * A buffer cannot be placed on two lists at the same time. 962 */ 963 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 964 static inline void __skb_queue_head(struct sk_buff_head *list, 965 struct sk_buff *newsk) 966 { 967 __skb_queue_after(list, (struct sk_buff *)list, newsk); 968 } 969 970 /** 971 * __skb_queue_tail - queue a buffer at the list tail 972 * @list: list to use 973 * @newsk: buffer to queue 974 * 975 * Queue a buffer at the end of a list. This function takes no locks 976 * and you must therefore hold required locks before calling it. 977 * 978 * A buffer cannot be placed on two lists at the same time. 979 */ 980 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 981 static inline void __skb_queue_tail(struct sk_buff_head *list, 982 struct sk_buff *newsk) 983 { 984 __skb_queue_before(list, (struct sk_buff *)list, newsk); 985 } 986 987 /* 988 * remove sk_buff from list. _Must_ be called atomically, and with 989 * the list known.. 990 */ 991 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 992 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 993 { 994 struct sk_buff *next, *prev; 995 996 list->qlen--; 997 next = skb->next; 998 prev = skb->prev; 999 skb->next = skb->prev = NULL; 1000 next->prev = prev; 1001 prev->next = next; 1002 } 1003 1004 /** 1005 * __skb_dequeue - remove from the head of the queue 1006 * @list: list to dequeue from 1007 * 1008 * Remove the head of the list. This function does not take any locks 1009 * so must be used with appropriate locks held only. The head item is 1010 * returned or %NULL if the list is empty. 1011 */ 1012 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list); 1013 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 1014 { 1015 struct sk_buff *skb = skb_peek(list); 1016 if (skb) 1017 __skb_unlink(skb, list); 1018 return skb; 1019 } 1020 1021 /** 1022 * __skb_dequeue_tail - remove from the tail of the queue 1023 * @list: list to dequeue from 1024 * 1025 * Remove the tail of the list. This function does not take any locks 1026 * so must be used with appropriate locks held only. The tail item is 1027 * returned or %NULL if the list is empty. 1028 */ 1029 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 1030 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 1031 { 1032 struct sk_buff *skb = skb_peek_tail(list); 1033 if (skb) 1034 __skb_unlink(skb, list); 1035 return skb; 1036 } 1037 1038 1039 static inline int skb_is_nonlinear(const struct sk_buff *skb) 1040 { 1041 return skb->data_len; 1042 } 1043 1044 static inline unsigned int skb_headlen(const struct sk_buff *skb) 1045 { 1046 return skb->len - skb->data_len; 1047 } 1048 1049 static inline int skb_pagelen(const struct sk_buff *skb) 1050 { 1051 int i, len = 0; 1052 1053 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--) 1054 len += skb_shinfo(skb)->frags[i].size; 1055 return len + skb_headlen(skb); 1056 } 1057 1058 static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 1059 struct page *page, int off, int size) 1060 { 1061 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1062 1063 frag->page = page; 1064 frag->page_offset = off; 1065 frag->size = size; 1066 skb_shinfo(skb)->nr_frags = i + 1; 1067 } 1068 1069 extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, 1070 int off, int size); 1071 1072 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags) 1073 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frags(skb)) 1074 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 1075 1076 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1077 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1078 { 1079 return skb->head + skb->tail; 1080 } 1081 1082 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1083 { 1084 skb->tail = skb->data - skb->head; 1085 } 1086 1087 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1088 { 1089 skb_reset_tail_pointer(skb); 1090 skb->tail += offset; 1091 } 1092 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 1093 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1094 { 1095 return skb->tail; 1096 } 1097 1098 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1099 { 1100 skb->tail = skb->data; 1101 } 1102 1103 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1104 { 1105 skb->tail = skb->data + offset; 1106 } 1107 1108 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1109 1110 /* 1111 * Add data to an sk_buff 1112 */ 1113 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len); 1114 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len) 1115 { 1116 unsigned char *tmp = skb_tail_pointer(skb); 1117 SKB_LINEAR_ASSERT(skb); 1118 skb->tail += len; 1119 skb->len += len; 1120 return tmp; 1121 } 1122 1123 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len); 1124 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len) 1125 { 1126 skb->data -= len; 1127 skb->len += len; 1128 return skb->data; 1129 } 1130 1131 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len); 1132 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len) 1133 { 1134 skb->len -= len; 1135 BUG_ON(skb->len < skb->data_len); 1136 return skb->data += len; 1137 } 1138 1139 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta); 1140 1141 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len) 1142 { 1143 if (len > skb_headlen(skb) && 1144 !__pskb_pull_tail(skb, len - skb_headlen(skb))) 1145 return NULL; 1146 skb->len -= len; 1147 return skb->data += len; 1148 } 1149 1150 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len) 1151 { 1152 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 1153 } 1154 1155 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) 1156 { 1157 if (likely(len <= skb_headlen(skb))) 1158 return 1; 1159 if (unlikely(len > skb->len)) 1160 return 0; 1161 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; 1162 } 1163 1164 /** 1165 * skb_headroom - bytes at buffer head 1166 * @skb: buffer to check 1167 * 1168 * Return the number of bytes of free space at the head of an &sk_buff. 1169 */ 1170 static inline unsigned int skb_headroom(const struct sk_buff *skb) 1171 { 1172 return skb->data - skb->head; 1173 } 1174 1175 /** 1176 * skb_tailroom - bytes at buffer end 1177 * @skb: buffer to check 1178 * 1179 * Return the number of bytes of free space at the tail of an sk_buff 1180 */ 1181 static inline int skb_tailroom(const struct sk_buff *skb) 1182 { 1183 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 1184 } 1185 1186 /** 1187 * skb_reserve - adjust headroom 1188 * @skb: buffer to alter 1189 * @len: bytes to move 1190 * 1191 * Increase the headroom of an empty &sk_buff by reducing the tail 1192 * room. This is only allowed for an empty buffer. 1193 */ 1194 static inline void skb_reserve(struct sk_buff *skb, int len) 1195 { 1196 skb->data += len; 1197 skb->tail += len; 1198 } 1199 1200 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1201 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 1202 { 1203 return skb->head + skb->transport_header; 1204 } 1205 1206 static inline void skb_reset_transport_header(struct sk_buff *skb) 1207 { 1208 skb->transport_header = skb->data - skb->head; 1209 } 1210 1211 static inline void skb_set_transport_header(struct sk_buff *skb, 1212 const int offset) 1213 { 1214 skb_reset_transport_header(skb); 1215 skb->transport_header += offset; 1216 } 1217 1218 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 1219 { 1220 return skb->head + skb->network_header; 1221 } 1222 1223 static inline void skb_reset_network_header(struct sk_buff *skb) 1224 { 1225 skb->network_header = skb->data - skb->head; 1226 } 1227 1228 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 1229 { 1230 skb_reset_network_header(skb); 1231 skb->network_header += offset; 1232 } 1233 1234 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 1235 { 1236 return skb->head + skb->mac_header; 1237 } 1238 1239 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 1240 { 1241 return skb->mac_header != ~0U; 1242 } 1243 1244 static inline void skb_reset_mac_header(struct sk_buff *skb) 1245 { 1246 skb->mac_header = skb->data - skb->head; 1247 } 1248 1249 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1250 { 1251 skb_reset_mac_header(skb); 1252 skb->mac_header += offset; 1253 } 1254 1255 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 1256 1257 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 1258 { 1259 return skb->transport_header; 1260 } 1261 1262 static inline void skb_reset_transport_header(struct sk_buff *skb) 1263 { 1264 skb->transport_header = skb->data; 1265 } 1266 1267 static inline void skb_set_transport_header(struct sk_buff *skb, 1268 const int offset) 1269 { 1270 skb->transport_header = skb->data + offset; 1271 } 1272 1273 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 1274 { 1275 return skb->network_header; 1276 } 1277 1278 static inline void skb_reset_network_header(struct sk_buff *skb) 1279 { 1280 skb->network_header = skb->data; 1281 } 1282 1283 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 1284 { 1285 skb->network_header = skb->data + offset; 1286 } 1287 1288 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 1289 { 1290 return skb->mac_header; 1291 } 1292 1293 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 1294 { 1295 return skb->mac_header != NULL; 1296 } 1297 1298 static inline void skb_reset_mac_header(struct sk_buff *skb) 1299 { 1300 skb->mac_header = skb->data; 1301 } 1302 1303 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1304 { 1305 skb->mac_header = skb->data + offset; 1306 } 1307 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1308 1309 static inline int skb_transport_offset(const struct sk_buff *skb) 1310 { 1311 return skb_transport_header(skb) - skb->data; 1312 } 1313 1314 static inline u32 skb_network_header_len(const struct sk_buff *skb) 1315 { 1316 return skb->transport_header - skb->network_header; 1317 } 1318 1319 static inline int skb_network_offset(const struct sk_buff *skb) 1320 { 1321 return skb_network_header(skb) - skb->data; 1322 } 1323 1324 /* 1325 * CPUs often take a performance hit when accessing unaligned memory 1326 * locations. The actual performance hit varies, it can be small if the 1327 * hardware handles it or large if we have to take an exception and fix it 1328 * in software. 1329 * 1330 * Since an ethernet header is 14 bytes network drivers often end up with 1331 * the IP header at an unaligned offset. The IP header can be aligned by 1332 * shifting the start of the packet by 2 bytes. Drivers should do this 1333 * with: 1334 * 1335 * skb_reserve(skb, NET_IP_ALIGN); 1336 * 1337 * The downside to this alignment of the IP header is that the DMA is now 1338 * unaligned. On some architectures the cost of an unaligned DMA is high 1339 * and this cost outweighs the gains made by aligning the IP header. 1340 * 1341 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 1342 * to be overridden. 1343 */ 1344 #ifndef NET_IP_ALIGN 1345 #define NET_IP_ALIGN 2 1346 #endif 1347 1348 /* 1349 * The networking layer reserves some headroom in skb data (via 1350 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 1351 * the header has to grow. In the default case, if the header has to grow 1352 * 32 bytes or less we avoid the reallocation. 1353 * 1354 * Unfortunately this headroom changes the DMA alignment of the resulting 1355 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 1356 * on some architectures. An architecture can override this value, 1357 * perhaps setting it to a cacheline in size (since that will maintain 1358 * cacheline alignment of the DMA). It must be a power of 2. 1359 * 1360 * Various parts of the networking layer expect at least 32 bytes of 1361 * headroom, you should not reduce this. 1362 */ 1363 #ifndef NET_SKB_PAD 1364 #define NET_SKB_PAD 32 1365 #endif 1366 1367 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len); 1368 1369 static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 1370 { 1371 if (unlikely(skb->data_len)) { 1372 WARN_ON(1); 1373 return; 1374 } 1375 skb->len = len; 1376 skb_set_tail_pointer(skb, len); 1377 } 1378 1379 extern void skb_trim(struct sk_buff *skb, unsigned int len); 1380 1381 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 1382 { 1383 if (skb->data_len) 1384 return ___pskb_trim(skb, len); 1385 __skb_trim(skb, len); 1386 return 0; 1387 } 1388 1389 static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 1390 { 1391 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 1392 } 1393 1394 /** 1395 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 1396 * @skb: buffer to alter 1397 * @len: new length 1398 * 1399 * This is identical to pskb_trim except that the caller knows that 1400 * the skb is not cloned so we should never get an error due to out- 1401 * of-memory. 1402 */ 1403 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 1404 { 1405 int err = pskb_trim(skb, len); 1406 BUG_ON(err); 1407 } 1408 1409 /** 1410 * skb_orphan - orphan a buffer 1411 * @skb: buffer to orphan 1412 * 1413 * If a buffer currently has an owner then we call the owner's 1414 * destructor function and make the @skb unowned. The buffer continues 1415 * to exist but is no longer charged to its former owner. 1416 */ 1417 static inline void skb_orphan(struct sk_buff *skb) 1418 { 1419 if (skb->destructor) 1420 skb->destructor(skb); 1421 skb->destructor = NULL; 1422 skb->sk = NULL; 1423 } 1424 1425 /** 1426 * __skb_queue_purge - empty a list 1427 * @list: list to empty 1428 * 1429 * Delete all buffers on an &sk_buff list. Each buffer is removed from 1430 * the list and one reference dropped. This function does not take the 1431 * list lock and the caller must hold the relevant locks to use it. 1432 */ 1433 extern void skb_queue_purge(struct sk_buff_head *list); 1434 static inline void __skb_queue_purge(struct sk_buff_head *list) 1435 { 1436 struct sk_buff *skb; 1437 while ((skb = __skb_dequeue(list)) != NULL) 1438 kfree_skb(skb); 1439 } 1440 1441 /** 1442 * __dev_alloc_skb - allocate an skbuff for receiving 1443 * @length: length to allocate 1444 * @gfp_mask: get_free_pages mask, passed to alloc_skb 1445 * 1446 * Allocate a new &sk_buff and assign it a usage count of one. The 1447 * buffer has unspecified headroom built in. Users should allocate 1448 * the headroom they think they need without accounting for the 1449 * built in space. The built in space is used for optimisations. 1450 * 1451 * %NULL is returned if there is no free memory. 1452 */ 1453 static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 1454 gfp_t gfp_mask) 1455 { 1456 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask); 1457 if (likely(skb)) 1458 skb_reserve(skb, NET_SKB_PAD); 1459 return skb; 1460 } 1461 1462 extern struct sk_buff *dev_alloc_skb(unsigned int length); 1463 1464 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev, 1465 unsigned int length, gfp_t gfp_mask); 1466 1467 /** 1468 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 1469 * @dev: network device to receive on 1470 * @length: length to allocate 1471 * 1472 * Allocate a new &sk_buff and assign it a usage count of one. The 1473 * buffer has unspecified headroom built in. Users should allocate 1474 * the headroom they think they need without accounting for the 1475 * built in space. The built in space is used for optimisations. 1476 * 1477 * %NULL is returned if there is no free memory. Although this function 1478 * allocates memory it can be called from an interrupt. 1479 */ 1480 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 1481 unsigned int length) 1482 { 1483 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 1484 } 1485 1486 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 1487 unsigned int length) 1488 { 1489 struct sk_buff *skb = netdev_alloc_skb(dev, length + NET_IP_ALIGN); 1490 1491 if (NET_IP_ALIGN && skb) 1492 skb_reserve(skb, NET_IP_ALIGN); 1493 return skb; 1494 } 1495 1496 extern struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask); 1497 1498 /** 1499 * netdev_alloc_page - allocate a page for ps-rx on a specific device 1500 * @dev: network device to receive on 1501 * 1502 * Allocate a new page node local to the specified device. 1503 * 1504 * %NULL is returned if there is no free memory. 1505 */ 1506 static inline struct page *netdev_alloc_page(struct net_device *dev) 1507 { 1508 return __netdev_alloc_page(dev, GFP_ATOMIC); 1509 } 1510 1511 static inline void netdev_free_page(struct net_device *dev, struct page *page) 1512 { 1513 __free_page(page); 1514 } 1515 1516 /** 1517 * skb_clone_writable - is the header of a clone writable 1518 * @skb: buffer to check 1519 * @len: length up to which to write 1520 * 1521 * Returns true if modifying the header part of the cloned buffer 1522 * does not requires the data to be copied. 1523 */ 1524 static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len) 1525 { 1526 return !skb_header_cloned(skb) && 1527 skb_headroom(skb) + len <= skb->hdr_len; 1528 } 1529 1530 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 1531 int cloned) 1532 { 1533 int delta = 0; 1534 1535 if (headroom < NET_SKB_PAD) 1536 headroom = NET_SKB_PAD; 1537 if (headroom > skb_headroom(skb)) 1538 delta = headroom - skb_headroom(skb); 1539 1540 if (delta || cloned) 1541 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 1542 GFP_ATOMIC); 1543 return 0; 1544 } 1545 1546 /** 1547 * skb_cow - copy header of skb when it is required 1548 * @skb: buffer to cow 1549 * @headroom: needed headroom 1550 * 1551 * If the skb passed lacks sufficient headroom or its data part 1552 * is shared, data is reallocated. If reallocation fails, an error 1553 * is returned and original skb is not changed. 1554 * 1555 * The result is skb with writable area skb->head...skb->tail 1556 * and at least @headroom of space at head. 1557 */ 1558 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 1559 { 1560 return __skb_cow(skb, headroom, skb_cloned(skb)); 1561 } 1562 1563 /** 1564 * skb_cow_head - skb_cow but only making the head writable 1565 * @skb: buffer to cow 1566 * @headroom: needed headroom 1567 * 1568 * This function is identical to skb_cow except that we replace the 1569 * skb_cloned check by skb_header_cloned. It should be used when 1570 * you only need to push on some header and do not need to modify 1571 * the data. 1572 */ 1573 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 1574 { 1575 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 1576 } 1577 1578 /** 1579 * skb_padto - pad an skbuff up to a minimal size 1580 * @skb: buffer to pad 1581 * @len: minimal length 1582 * 1583 * Pads up a buffer to ensure the trailing bytes exist and are 1584 * blanked. If the buffer already contains sufficient data it 1585 * is untouched. Otherwise it is extended. Returns zero on 1586 * success. The skb is freed on error. 1587 */ 1588 1589 static inline int skb_padto(struct sk_buff *skb, unsigned int len) 1590 { 1591 unsigned int size = skb->len; 1592 if (likely(size >= len)) 1593 return 0; 1594 return skb_pad(skb, len - size); 1595 } 1596 1597 static inline int skb_add_data(struct sk_buff *skb, 1598 char __user *from, int copy) 1599 { 1600 const int off = skb->len; 1601 1602 if (skb->ip_summed == CHECKSUM_NONE) { 1603 int err = 0; 1604 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy), 1605 copy, 0, &err); 1606 if (!err) { 1607 skb->csum = csum_block_add(skb->csum, csum, off); 1608 return 0; 1609 } 1610 } else if (!copy_from_user(skb_put(skb, copy), from, copy)) 1611 return 0; 1612 1613 __skb_trim(skb, off); 1614 return -EFAULT; 1615 } 1616 1617 static inline int skb_can_coalesce(struct sk_buff *skb, int i, 1618 struct page *page, int off) 1619 { 1620 if (i) { 1621 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 1622 1623 return page == frag->page && 1624 off == frag->page_offset + frag->size; 1625 } 1626 return 0; 1627 } 1628 1629 static inline int __skb_linearize(struct sk_buff *skb) 1630 { 1631 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 1632 } 1633 1634 /** 1635 * skb_linearize - convert paged skb to linear one 1636 * @skb: buffer to linarize 1637 * 1638 * If there is no free memory -ENOMEM is returned, otherwise zero 1639 * is returned and the old skb data released. 1640 */ 1641 static inline int skb_linearize(struct sk_buff *skb) 1642 { 1643 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 1644 } 1645 1646 /** 1647 * skb_linearize_cow - make sure skb is linear and writable 1648 * @skb: buffer to process 1649 * 1650 * If there is no free memory -ENOMEM is returned, otherwise zero 1651 * is returned and the old skb data released. 1652 */ 1653 static inline int skb_linearize_cow(struct sk_buff *skb) 1654 { 1655 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 1656 __skb_linearize(skb) : 0; 1657 } 1658 1659 /** 1660 * skb_postpull_rcsum - update checksum for received skb after pull 1661 * @skb: buffer to update 1662 * @start: start of data before pull 1663 * @len: length of data pulled 1664 * 1665 * After doing a pull on a received packet, you need to call this to 1666 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 1667 * CHECKSUM_NONE so that it can be recomputed from scratch. 1668 */ 1669 1670 static inline void skb_postpull_rcsum(struct sk_buff *skb, 1671 const void *start, unsigned int len) 1672 { 1673 if (skb->ip_summed == CHECKSUM_COMPLETE) 1674 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0)); 1675 } 1676 1677 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 1678 1679 /** 1680 * pskb_trim_rcsum - trim received skb and update checksum 1681 * @skb: buffer to trim 1682 * @len: new length 1683 * 1684 * This is exactly the same as pskb_trim except that it ensures the 1685 * checksum of received packets are still valid after the operation. 1686 */ 1687 1688 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 1689 { 1690 if (likely(len >= skb->len)) 1691 return 0; 1692 if (skb->ip_summed == CHECKSUM_COMPLETE) 1693 skb->ip_summed = CHECKSUM_NONE; 1694 return __pskb_trim(skb, len); 1695 } 1696 1697 #define skb_queue_walk(queue, skb) \ 1698 for (skb = (queue)->next; \ 1699 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \ 1700 skb = skb->next) 1701 1702 #define skb_queue_walk_safe(queue, skb, tmp) \ 1703 for (skb = (queue)->next, tmp = skb->next; \ 1704 skb != (struct sk_buff *)(queue); \ 1705 skb = tmp, tmp = skb->next) 1706 1707 #define skb_queue_walk_from(queue, skb) \ 1708 for (; prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \ 1709 skb = skb->next) 1710 1711 #define skb_queue_walk_from_safe(queue, skb, tmp) \ 1712 for (tmp = skb->next; \ 1713 skb != (struct sk_buff *)(queue); \ 1714 skb = tmp, tmp = skb->next) 1715 1716 #define skb_queue_reverse_walk(queue, skb) \ 1717 for (skb = (queue)->prev; \ 1718 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \ 1719 skb = skb->prev) 1720 1721 1722 static inline bool skb_has_frags(const struct sk_buff *skb) 1723 { 1724 return skb_shinfo(skb)->frag_list != NULL; 1725 } 1726 1727 static inline void skb_frag_list_init(struct sk_buff *skb) 1728 { 1729 skb_shinfo(skb)->frag_list = NULL; 1730 } 1731 1732 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag) 1733 { 1734 frag->next = skb_shinfo(skb)->frag_list; 1735 skb_shinfo(skb)->frag_list = frag; 1736 } 1737 1738 #define skb_walk_frags(skb, iter) \ 1739 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 1740 1741 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags, 1742 int *peeked, int *err); 1743 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, 1744 int noblock, int *err); 1745 extern unsigned int datagram_poll(struct file *file, struct socket *sock, 1746 struct poll_table_struct *wait); 1747 extern int skb_copy_datagram_iovec(const struct sk_buff *from, 1748 int offset, struct iovec *to, 1749 int size); 1750 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb, 1751 int hlen, 1752 struct iovec *iov); 1753 extern int skb_copy_datagram_from_iovec(struct sk_buff *skb, 1754 int offset, 1755 const struct iovec *from, 1756 int from_offset, 1757 int len); 1758 extern int skb_copy_datagram_const_iovec(const struct sk_buff *from, 1759 int offset, 1760 const struct iovec *to, 1761 int to_offset, 1762 int size); 1763 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 1764 extern void skb_free_datagram_locked(struct sock *sk, 1765 struct sk_buff *skb); 1766 extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, 1767 unsigned int flags); 1768 extern __wsum skb_checksum(const struct sk_buff *skb, int offset, 1769 int len, __wsum csum); 1770 extern int skb_copy_bits(const struct sk_buff *skb, int offset, 1771 void *to, int len); 1772 extern int skb_store_bits(struct sk_buff *skb, int offset, 1773 const void *from, int len); 1774 extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, 1775 int offset, u8 *to, int len, 1776 __wsum csum); 1777 extern int skb_splice_bits(struct sk_buff *skb, 1778 unsigned int offset, 1779 struct pipe_inode_info *pipe, 1780 unsigned int len, 1781 unsigned int flags); 1782 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 1783 extern void skb_split(struct sk_buff *skb, 1784 struct sk_buff *skb1, const u32 len); 1785 extern int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, 1786 int shiftlen); 1787 1788 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features); 1789 1790 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset, 1791 int len, void *buffer) 1792 { 1793 int hlen = skb_headlen(skb); 1794 1795 if (hlen - offset >= len) 1796 return skb->data + offset; 1797 1798 if (skb_copy_bits(skb, offset, buffer, len) < 0) 1799 return NULL; 1800 1801 return buffer; 1802 } 1803 1804 static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 1805 void *to, 1806 const unsigned int len) 1807 { 1808 memcpy(to, skb->data, len); 1809 } 1810 1811 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 1812 const int offset, void *to, 1813 const unsigned int len) 1814 { 1815 memcpy(to, skb->data + offset, len); 1816 } 1817 1818 static inline void skb_copy_to_linear_data(struct sk_buff *skb, 1819 const void *from, 1820 const unsigned int len) 1821 { 1822 memcpy(skb->data, from, len); 1823 } 1824 1825 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 1826 const int offset, 1827 const void *from, 1828 const unsigned int len) 1829 { 1830 memcpy(skb->data + offset, from, len); 1831 } 1832 1833 extern void skb_init(void); 1834 1835 static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 1836 { 1837 return skb->tstamp; 1838 } 1839 1840 /** 1841 * skb_get_timestamp - get timestamp from a skb 1842 * @skb: skb to get stamp from 1843 * @stamp: pointer to struct timeval to store stamp in 1844 * 1845 * Timestamps are stored in the skb as offsets to a base timestamp. 1846 * This function converts the offset back to a struct timeval and stores 1847 * it in stamp. 1848 */ 1849 static inline void skb_get_timestamp(const struct sk_buff *skb, 1850 struct timeval *stamp) 1851 { 1852 *stamp = ktime_to_timeval(skb->tstamp); 1853 } 1854 1855 static inline void skb_get_timestampns(const struct sk_buff *skb, 1856 struct timespec *stamp) 1857 { 1858 *stamp = ktime_to_timespec(skb->tstamp); 1859 } 1860 1861 static inline void __net_timestamp(struct sk_buff *skb) 1862 { 1863 skb->tstamp = ktime_get_real(); 1864 } 1865 1866 static inline ktime_t net_timedelta(ktime_t t) 1867 { 1868 return ktime_sub(ktime_get_real(), t); 1869 } 1870 1871 static inline ktime_t net_invalid_timestamp(void) 1872 { 1873 return ktime_set(0, 0); 1874 } 1875 1876 /** 1877 * skb_tstamp_tx - queue clone of skb with send time stamps 1878 * @orig_skb: the original outgoing packet 1879 * @hwtstamps: hardware time stamps, may be NULL if not available 1880 * 1881 * If the skb has a socket associated, then this function clones the 1882 * skb (thus sharing the actual data and optional structures), stores 1883 * the optional hardware time stamping information (if non NULL) or 1884 * generates a software time stamp (otherwise), then queues the clone 1885 * to the error queue of the socket. Errors are silently ignored. 1886 */ 1887 extern void skb_tstamp_tx(struct sk_buff *orig_skb, 1888 struct skb_shared_hwtstamps *hwtstamps); 1889 1890 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 1891 extern __sum16 __skb_checksum_complete(struct sk_buff *skb); 1892 1893 static inline int skb_csum_unnecessary(const struct sk_buff *skb) 1894 { 1895 return skb->ip_summed & CHECKSUM_UNNECESSARY; 1896 } 1897 1898 /** 1899 * skb_checksum_complete - Calculate checksum of an entire packet 1900 * @skb: packet to process 1901 * 1902 * This function calculates the checksum over the entire packet plus 1903 * the value of skb->csum. The latter can be used to supply the 1904 * checksum of a pseudo header as used by TCP/UDP. It returns the 1905 * checksum. 1906 * 1907 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 1908 * this function can be used to verify that checksum on received 1909 * packets. In that case the function should return zero if the 1910 * checksum is correct. In particular, this function will return zero 1911 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 1912 * hardware has already verified the correctness of the checksum. 1913 */ 1914 static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 1915 { 1916 return skb_csum_unnecessary(skb) ? 1917 0 : __skb_checksum_complete(skb); 1918 } 1919 1920 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 1921 extern void nf_conntrack_destroy(struct nf_conntrack *nfct); 1922 static inline void nf_conntrack_put(struct nf_conntrack *nfct) 1923 { 1924 if (nfct && atomic_dec_and_test(&nfct->use)) 1925 nf_conntrack_destroy(nfct); 1926 } 1927 static inline void nf_conntrack_get(struct nf_conntrack *nfct) 1928 { 1929 if (nfct) 1930 atomic_inc(&nfct->use); 1931 } 1932 static inline void nf_conntrack_get_reasm(struct sk_buff *skb) 1933 { 1934 if (skb) 1935 atomic_inc(&skb->users); 1936 } 1937 static inline void nf_conntrack_put_reasm(struct sk_buff *skb) 1938 { 1939 if (skb) 1940 kfree_skb(skb); 1941 } 1942 #endif 1943 #ifdef CONFIG_BRIDGE_NETFILTER 1944 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge) 1945 { 1946 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use)) 1947 kfree(nf_bridge); 1948 } 1949 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge) 1950 { 1951 if (nf_bridge) 1952 atomic_inc(&nf_bridge->use); 1953 } 1954 #endif /* CONFIG_BRIDGE_NETFILTER */ 1955 static inline void nf_reset(struct sk_buff *skb) 1956 { 1957 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 1958 nf_conntrack_put(skb->nfct); 1959 skb->nfct = NULL; 1960 nf_conntrack_put_reasm(skb->nfct_reasm); 1961 skb->nfct_reasm = NULL; 1962 #endif 1963 #ifdef CONFIG_BRIDGE_NETFILTER 1964 nf_bridge_put(skb->nf_bridge); 1965 skb->nf_bridge = NULL; 1966 #endif 1967 } 1968 1969 /* Note: This doesn't put any conntrack and bridge info in dst. */ 1970 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src) 1971 { 1972 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 1973 dst->nfct = src->nfct; 1974 nf_conntrack_get(src->nfct); 1975 dst->nfctinfo = src->nfctinfo; 1976 dst->nfct_reasm = src->nfct_reasm; 1977 nf_conntrack_get_reasm(src->nfct_reasm); 1978 #endif 1979 #ifdef CONFIG_BRIDGE_NETFILTER 1980 dst->nf_bridge = src->nf_bridge; 1981 nf_bridge_get(src->nf_bridge); 1982 #endif 1983 } 1984 1985 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 1986 { 1987 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 1988 nf_conntrack_put(dst->nfct); 1989 nf_conntrack_put_reasm(dst->nfct_reasm); 1990 #endif 1991 #ifdef CONFIG_BRIDGE_NETFILTER 1992 nf_bridge_put(dst->nf_bridge); 1993 #endif 1994 __nf_copy(dst, src); 1995 } 1996 1997 #ifdef CONFIG_NETWORK_SECMARK 1998 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 1999 { 2000 to->secmark = from->secmark; 2001 } 2002 2003 static inline void skb_init_secmark(struct sk_buff *skb) 2004 { 2005 skb->secmark = 0; 2006 } 2007 #else 2008 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 2009 { } 2010 2011 static inline void skb_init_secmark(struct sk_buff *skb) 2012 { } 2013 #endif 2014 2015 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 2016 { 2017 skb->queue_mapping = queue_mapping; 2018 } 2019 2020 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 2021 { 2022 return skb->queue_mapping; 2023 } 2024 2025 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 2026 { 2027 to->queue_mapping = from->queue_mapping; 2028 } 2029 2030 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 2031 { 2032 skb->queue_mapping = rx_queue + 1; 2033 } 2034 2035 static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 2036 { 2037 return skb->queue_mapping - 1; 2038 } 2039 2040 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 2041 { 2042 return (skb->queue_mapping != 0); 2043 } 2044 2045 extern u16 skb_tx_hash(const struct net_device *dev, 2046 const struct sk_buff *skb); 2047 2048 #ifdef CONFIG_XFRM 2049 static inline struct sec_path *skb_sec_path(struct sk_buff *skb) 2050 { 2051 return skb->sp; 2052 } 2053 #else 2054 static inline struct sec_path *skb_sec_path(struct sk_buff *skb) 2055 { 2056 return NULL; 2057 } 2058 #endif 2059 2060 static inline int skb_is_gso(const struct sk_buff *skb) 2061 { 2062 return skb_shinfo(skb)->gso_size; 2063 } 2064 2065 static inline int skb_is_gso_v6(const struct sk_buff *skb) 2066 { 2067 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 2068 } 2069 2070 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb); 2071 2072 static inline bool skb_warn_if_lro(const struct sk_buff *skb) 2073 { 2074 /* LRO sets gso_size but not gso_type, whereas if GSO is really 2075 * wanted then gso_type will be set. */ 2076 struct skb_shared_info *shinfo = skb_shinfo(skb); 2077 if (shinfo->gso_size != 0 && unlikely(shinfo->gso_type == 0)) { 2078 __skb_warn_lro_forwarding(skb); 2079 return true; 2080 } 2081 return false; 2082 } 2083 2084 static inline void skb_forward_csum(struct sk_buff *skb) 2085 { 2086 /* Unfortunately we don't support this one. Any brave souls? */ 2087 if (skb->ip_summed == CHECKSUM_COMPLETE) 2088 skb->ip_summed = CHECKSUM_NONE; 2089 } 2090 2091 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 2092 #endif /* __KERNEL__ */ 2093 #endif /* _LINUX_SKBUFF_H */ 2094