xref: /linux-6.15/include/linux/skbuff.h (revision 9ffa01ca)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  *	Definitions for the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:
6  *		Alan Cox, <[email protected]>
7  *		Florian La Roche, <[email protected]>
8  */
9 
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12 
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
22 
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <net/checksum.h>
27 #include <linux/rcupdate.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/netdev_features.h>
30 #include <net/flow_dissector.h>
31 #include <linux/in6.h>
32 #include <linux/if_packet.h>
33 #include <linux/llist.h>
34 #include <net/flow.h>
35 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
36 #include <linux/netfilter/nf_conntrack_common.h>
37 #endif
38 #include <net/net_debug.h>
39 #include <net/dropreason-core.h>
40 
41 /**
42  * DOC: skb checksums
43  *
44  * The interface for checksum offload between the stack and networking drivers
45  * is as follows...
46  *
47  * IP checksum related features
48  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
49  *
50  * Drivers advertise checksum offload capabilities in the features of a device.
51  * From the stack's point of view these are capabilities offered by the driver.
52  * A driver typically only advertises features that it is capable of offloading
53  * to its device.
54  *
55  * .. flat-table:: Checksum related device features
56  *   :widths: 1 10
57  *
58  *   * - %NETIF_F_HW_CSUM
59  *     - The driver (or its device) is able to compute one
60  *	 IP (one's complement) checksum for any combination
61  *	 of protocols or protocol layering. The checksum is
62  *	 computed and set in a packet per the CHECKSUM_PARTIAL
63  *	 interface (see below).
64  *
65  *   * - %NETIF_F_IP_CSUM
66  *     - Driver (device) is only able to checksum plain
67  *	 TCP or UDP packets over IPv4. These are specifically
68  *	 unencapsulated packets of the form IPv4|TCP or
69  *	 IPv4|UDP where the Protocol field in the IPv4 header
70  *	 is TCP or UDP. The IPv4 header may contain IP options.
71  *	 This feature cannot be set in features for a device
72  *	 with NETIF_F_HW_CSUM also set. This feature is being
73  *	 DEPRECATED (see below).
74  *
75  *   * - %NETIF_F_IPV6_CSUM
76  *     - Driver (device) is only able to checksum plain
77  *	 TCP or UDP packets over IPv6. These are specifically
78  *	 unencapsulated packets of the form IPv6|TCP or
79  *	 IPv6|UDP where the Next Header field in the IPv6
80  *	 header is either TCP or UDP. IPv6 extension headers
81  *	 are not supported with this feature. This feature
82  *	 cannot be set in features for a device with
83  *	 NETIF_F_HW_CSUM also set. This feature is being
84  *	 DEPRECATED (see below).
85  *
86  *   * - %NETIF_F_RXCSUM
87  *     - Driver (device) performs receive checksum offload.
88  *	 This flag is only used to disable the RX checksum
89  *	 feature for a device. The stack will accept receive
90  *	 checksum indication in packets received on a device
91  *	 regardless of whether NETIF_F_RXCSUM is set.
92  *
93  * Checksumming of received packets by device
94  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
95  *
96  * Indication of checksum verification is set in &sk_buff.ip_summed.
97  * Possible values are:
98  *
99  * - %CHECKSUM_NONE
100  *
101  *   Device did not checksum this packet e.g. due to lack of capabilities.
102  *   The packet contains full (though not verified) checksum in packet but
103  *   not in skb->csum. Thus, skb->csum is undefined in this case.
104  *
105  * - %CHECKSUM_UNNECESSARY
106  *
107  *   The hardware you're dealing with doesn't calculate the full checksum
108  *   (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums
109  *   for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY
110  *   if their checksums are okay. &sk_buff.csum is still undefined in this case
111  *   though. A driver or device must never modify the checksum field in the
112  *   packet even if checksum is verified.
113  *
114  *   %CHECKSUM_UNNECESSARY is applicable to following protocols:
115  *
116  *     - TCP: IPv6 and IPv4.
117  *     - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
118  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
119  *       may perform further validation in this case.
120  *     - GRE: only if the checksum is present in the header.
121  *     - SCTP: indicates the CRC in SCTP header has been validated.
122  *     - FCOE: indicates the CRC in FC frame has been validated.
123  *
124  *   &sk_buff.csum_level indicates the number of consecutive checksums found in
125  *   the packet minus one that have been verified as %CHECKSUM_UNNECESSARY.
126  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
127  *   and a device is able to verify the checksums for UDP (possibly zero),
128  *   GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to
129  *   two. If the device were only able to verify the UDP checksum and not
130  *   GRE, either because it doesn't support GRE checksum or because GRE
131  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
132  *   not considered in this case).
133  *
134  * - %CHECKSUM_COMPLETE
135  *
136  *   This is the most generic way. The device supplied checksum of the _whole_
137  *   packet as seen by netif_rx() and fills in &sk_buff.csum. This means the
138  *   hardware doesn't need to parse L3/L4 headers to implement this.
139  *
140  *   Notes:
141  *
142  *   - Even if device supports only some protocols, but is able to produce
143  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
144  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
145  *
146  * - %CHECKSUM_PARTIAL
147  *
148  *   A checksum is set up to be offloaded to a device as described in the
149  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
150  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
151  *   on the same host, or it may be set in the input path in GRO or remote
152  *   checksum offload. For the purposes of checksum verification, the checksum
153  *   referred to by skb->csum_start + skb->csum_offset and any preceding
154  *   checksums in the packet are considered verified. Any checksums in the
155  *   packet that are after the checksum being offloaded are not considered to
156  *   be verified.
157  *
158  * Checksumming on transmit for non-GSO
159  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
160  *
161  * The stack requests checksum offload in the &sk_buff.ip_summed for a packet.
162  * Values are:
163  *
164  * - %CHECKSUM_PARTIAL
165  *
166  *   The driver is required to checksum the packet as seen by hard_start_xmit()
167  *   from &sk_buff.csum_start up to the end, and to record/write the checksum at
168  *   offset &sk_buff.csum_start + &sk_buff.csum_offset.
169  *   A driver may verify that the
170  *   csum_start and csum_offset values are valid values given the length and
171  *   offset of the packet, but it should not attempt to validate that the
172  *   checksum refers to a legitimate transport layer checksum -- it is the
173  *   purview of the stack to validate that csum_start and csum_offset are set
174  *   correctly.
175  *
176  *   When the stack requests checksum offload for a packet, the driver MUST
177  *   ensure that the checksum is set correctly. A driver can either offload the
178  *   checksum calculation to the device, or call skb_checksum_help (in the case
179  *   that the device does not support offload for a particular checksum).
180  *
181  *   %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of
182  *   %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate
183  *   checksum offload capability.
184  *   skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based
185  *   on network device checksumming capabilities: if a packet does not match
186  *   them, skb_checksum_help() or skb_crc32c_help() (depending on the value of
187  *   &sk_buff.csum_not_inet, see :ref:`crc`)
188  *   is called to resolve the checksum.
189  *
190  * - %CHECKSUM_NONE
191  *
192  *   The skb was already checksummed by the protocol, or a checksum is not
193  *   required.
194  *
195  * - %CHECKSUM_UNNECESSARY
196  *
197  *   This has the same meaning as CHECKSUM_NONE for checksum offload on
198  *   output.
199  *
200  * - %CHECKSUM_COMPLETE
201  *
202  *   Not used in checksum output. If a driver observes a packet with this value
203  *   set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set.
204  *
205  * .. _crc:
206  *
207  * Non-IP checksum (CRC) offloads
208  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
209  *
210  * .. flat-table::
211  *   :widths: 1 10
212  *
213  *   * - %NETIF_F_SCTP_CRC
214  *     - This feature indicates that a device is capable of
215  *	 offloading the SCTP CRC in a packet. To perform this offload the stack
216  *	 will set csum_start and csum_offset accordingly, set ip_summed to
217  *	 %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication
218  *	 in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c.
219  *	 A driver that supports both IP checksum offload and SCTP CRC32c offload
220  *	 must verify which offload is configured for a packet by testing the
221  *	 value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to
222  *	 resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
223  *
224  *   * - %NETIF_F_FCOE_CRC
225  *     - This feature indicates that a device is capable of offloading the FCOE
226  *	 CRC in a packet. To perform this offload the stack will set ip_summed
227  *	 to %CHECKSUM_PARTIAL and set csum_start and csum_offset
228  *	 accordingly. Note that there is no indication in the skbuff that the
229  *	 %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
230  *	 both IP checksum offload and FCOE CRC offload must verify which offload
231  *	 is configured for a packet, presumably by inspecting packet headers.
232  *
233  * Checksumming on output with GSO
234  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
235  *
236  * In the case of a GSO packet (skb_is_gso() is true), checksum offload
237  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
238  * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as
239  * part of the GSO operation is implied. If a checksum is being offloaded
240  * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and
241  * csum_offset are set to refer to the outermost checksum being offloaded
242  * (two offloaded checksums are possible with UDP encapsulation).
243  */
244 
245 /* Don't change this without changing skb_csum_unnecessary! */
246 #define CHECKSUM_NONE		0
247 #define CHECKSUM_UNNECESSARY	1
248 #define CHECKSUM_COMPLETE	2
249 #define CHECKSUM_PARTIAL	3
250 
251 /* Maximum value in skb->csum_level */
252 #define SKB_MAX_CSUM_LEVEL	3
253 
254 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
255 #define SKB_WITH_OVERHEAD(X)	\
256 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
257 
258 /* For X bytes available in skb->head, what is the minimal
259  * allocation needed, knowing struct skb_shared_info needs
260  * to be aligned.
261  */
262 #define SKB_HEAD_ALIGN(X) (SKB_DATA_ALIGN(X) + \
263 	SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
264 
265 #define SKB_MAX_ORDER(X, ORDER) \
266 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
267 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
268 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
269 
270 /* return minimum truesize of one skb containing X bytes of data */
271 #define SKB_TRUESIZE(X) ((X) +						\
272 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
273 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
274 
275 struct ahash_request;
276 struct net_device;
277 struct scatterlist;
278 struct pipe_inode_info;
279 struct iov_iter;
280 struct napi_struct;
281 struct bpf_prog;
282 union bpf_attr;
283 struct skb_ext;
284 struct ts_config;
285 
286 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
287 struct nf_bridge_info {
288 	enum {
289 		BRNF_PROTO_UNCHANGED,
290 		BRNF_PROTO_8021Q,
291 		BRNF_PROTO_PPPOE
292 	} orig_proto:8;
293 	u8			pkt_otherhost:1;
294 	u8			in_prerouting:1;
295 	u8			bridged_dnat:1;
296 	u8			sabotage_in_done:1;
297 	__u16			frag_max_size;
298 	struct net_device	*physindev;
299 
300 	/* always valid & non-NULL from FORWARD on, for physdev match */
301 	struct net_device	*physoutdev;
302 	union {
303 		/* prerouting: detect dnat in orig/reply direction */
304 		__be32          ipv4_daddr;
305 		struct in6_addr ipv6_daddr;
306 
307 		/* after prerouting + nat detected: store original source
308 		 * mac since neigh resolution overwrites it, only used while
309 		 * skb is out in neigh layer.
310 		 */
311 		char neigh_header[8];
312 	};
313 };
314 #endif
315 
316 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
317 /* Chain in tc_skb_ext will be used to share the tc chain with
318  * ovs recirc_id. It will be set to the current chain by tc
319  * and read by ovs to recirc_id.
320  */
321 struct tc_skb_ext {
322 	union {
323 		u64 act_miss_cookie;
324 		__u32 chain;
325 	};
326 	__u16 mru;
327 	__u16 zone;
328 	u8 post_ct:1;
329 	u8 post_ct_snat:1;
330 	u8 post_ct_dnat:1;
331 	u8 act_miss:1; /* Set if act_miss_cookie is used */
332 	u8 l2_miss:1; /* Set by bridge upon FDB or MDB miss */
333 };
334 #endif
335 
336 struct sk_buff_head {
337 	/* These two members must be first to match sk_buff. */
338 	struct_group_tagged(sk_buff_list, list,
339 		struct sk_buff	*next;
340 		struct sk_buff	*prev;
341 	);
342 
343 	__u32		qlen;
344 	spinlock_t	lock;
345 };
346 
347 struct sk_buff;
348 
349 #ifndef CONFIG_MAX_SKB_FRAGS
350 # define CONFIG_MAX_SKB_FRAGS 17
351 #endif
352 
353 #define MAX_SKB_FRAGS CONFIG_MAX_SKB_FRAGS
354 
355 extern int sysctl_max_skb_frags;
356 
357 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
358  * segment using its current segmentation instead.
359  */
360 #define GSO_BY_FRAGS	0xFFFF
361 
362 typedef struct bio_vec skb_frag_t;
363 
364 /**
365  * skb_frag_size() - Returns the size of a skb fragment
366  * @frag: skb fragment
367  */
368 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
369 {
370 	return frag->bv_len;
371 }
372 
373 /**
374  * skb_frag_size_set() - Sets the size of a skb fragment
375  * @frag: skb fragment
376  * @size: size of fragment
377  */
378 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
379 {
380 	frag->bv_len = size;
381 }
382 
383 /**
384  * skb_frag_size_add() - Increments the size of a skb fragment by @delta
385  * @frag: skb fragment
386  * @delta: value to add
387  */
388 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
389 {
390 	frag->bv_len += delta;
391 }
392 
393 /**
394  * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
395  * @frag: skb fragment
396  * @delta: value to subtract
397  */
398 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
399 {
400 	frag->bv_len -= delta;
401 }
402 
403 /**
404  * skb_frag_must_loop - Test if %p is a high memory page
405  * @p: fragment's page
406  */
407 static inline bool skb_frag_must_loop(struct page *p)
408 {
409 #if defined(CONFIG_HIGHMEM)
410 	if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p))
411 		return true;
412 #endif
413 	return false;
414 }
415 
416 /**
417  *	skb_frag_foreach_page - loop over pages in a fragment
418  *
419  *	@f:		skb frag to operate on
420  *	@f_off:		offset from start of f->bv_page
421  *	@f_len:		length from f_off to loop over
422  *	@p:		(temp var) current page
423  *	@p_off:		(temp var) offset from start of current page,
424  *	                           non-zero only on first page.
425  *	@p_len:		(temp var) length in current page,
426  *				   < PAGE_SIZE only on first and last page.
427  *	@copied:	(temp var) length so far, excluding current p_len.
428  *
429  *	A fragment can hold a compound page, in which case per-page
430  *	operations, notably kmap_atomic, must be called for each
431  *	regular page.
432  */
433 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
434 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
435 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
436 	     p_len = skb_frag_must_loop(p) ?				\
437 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
438 	     copied = 0;						\
439 	     copied < f_len;						\
440 	     copied += p_len, p++, p_off = 0,				\
441 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
442 
443 /**
444  * struct skb_shared_hwtstamps - hardware time stamps
445  * @hwtstamp:		hardware time stamp transformed into duration
446  *			since arbitrary point in time
447  * @netdev_data:	address/cookie of network device driver used as
448  *			reference to actual hardware time stamp
449  *
450  * Software time stamps generated by ktime_get_real() are stored in
451  * skb->tstamp.
452  *
453  * hwtstamps can only be compared against other hwtstamps from
454  * the same device.
455  *
456  * This structure is attached to packets as part of the
457  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
458  */
459 struct skb_shared_hwtstamps {
460 	union {
461 		ktime_t	hwtstamp;
462 		void *netdev_data;
463 	};
464 };
465 
466 /* Definitions for tx_flags in struct skb_shared_info */
467 enum {
468 	/* generate hardware time stamp */
469 	SKBTX_HW_TSTAMP = 1 << 0,
470 
471 	/* generate software time stamp when queueing packet to NIC */
472 	SKBTX_SW_TSTAMP = 1 << 1,
473 
474 	/* device driver is going to provide hardware time stamp */
475 	SKBTX_IN_PROGRESS = 1 << 2,
476 
477 	/* generate hardware time stamp based on cycles if supported */
478 	SKBTX_HW_TSTAMP_USE_CYCLES = 1 << 3,
479 
480 	/* generate wifi status information (where possible) */
481 	SKBTX_WIFI_STATUS = 1 << 4,
482 
483 	/* determine hardware time stamp based on time or cycles */
484 	SKBTX_HW_TSTAMP_NETDEV = 1 << 5,
485 
486 	/* generate software time stamp when entering packet scheduling */
487 	SKBTX_SCHED_TSTAMP = 1 << 6,
488 };
489 
490 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
491 				 SKBTX_SCHED_TSTAMP)
492 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | \
493 				 SKBTX_HW_TSTAMP_USE_CYCLES | \
494 				 SKBTX_ANY_SW_TSTAMP)
495 
496 /* Definitions for flags in struct skb_shared_info */
497 enum {
498 	/* use zcopy routines */
499 	SKBFL_ZEROCOPY_ENABLE = BIT(0),
500 
501 	/* This indicates at least one fragment might be overwritten
502 	 * (as in vmsplice(), sendfile() ...)
503 	 * If we need to compute a TX checksum, we'll need to copy
504 	 * all frags to avoid possible bad checksum
505 	 */
506 	SKBFL_SHARED_FRAG = BIT(1),
507 
508 	/* segment contains only zerocopy data and should not be
509 	 * charged to the kernel memory.
510 	 */
511 	SKBFL_PURE_ZEROCOPY = BIT(2),
512 
513 	SKBFL_DONT_ORPHAN = BIT(3),
514 
515 	/* page references are managed by the ubuf_info, so it's safe to
516 	 * use frags only up until ubuf_info is released
517 	 */
518 	SKBFL_MANAGED_FRAG_REFS = BIT(4),
519 };
520 
521 #define SKBFL_ZEROCOPY_FRAG	(SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG)
522 #define SKBFL_ALL_ZEROCOPY	(SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY | \
523 				 SKBFL_DONT_ORPHAN | SKBFL_MANAGED_FRAG_REFS)
524 
525 /*
526  * The callback notifies userspace to release buffers when skb DMA is done in
527  * lower device, the skb last reference should be 0 when calling this.
528  * The zerocopy_success argument is true if zero copy transmit occurred,
529  * false on data copy or out of memory error caused by data copy attempt.
530  * The ctx field is used to track device context.
531  * The desc field is used to track userspace buffer index.
532  */
533 struct ubuf_info {
534 	void (*callback)(struct sk_buff *, struct ubuf_info *,
535 			 bool zerocopy_success);
536 	refcount_t refcnt;
537 	u8 flags;
538 };
539 
540 struct ubuf_info_msgzc {
541 	struct ubuf_info ubuf;
542 
543 	union {
544 		struct {
545 			unsigned long desc;
546 			void *ctx;
547 		};
548 		struct {
549 			u32 id;
550 			u16 len;
551 			u16 zerocopy:1;
552 			u32 bytelen;
553 		};
554 	};
555 
556 	struct mmpin {
557 		struct user_struct *user;
558 		unsigned int num_pg;
559 	} mmp;
560 };
561 
562 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
563 #define uarg_to_msgzc(ubuf_ptr)	container_of((ubuf_ptr), struct ubuf_info_msgzc, \
564 					     ubuf)
565 
566 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
567 void mm_unaccount_pinned_pages(struct mmpin *mmp);
568 
569 /* This data is invariant across clones and lives at
570  * the end of the header data, ie. at skb->end.
571  */
572 struct skb_shared_info {
573 	__u8		flags;
574 	__u8		meta_len;
575 	__u8		nr_frags;
576 	__u8		tx_flags;
577 	unsigned short	gso_size;
578 	/* Warning: this field is not always filled in (UFO)! */
579 	unsigned short	gso_segs;
580 	struct sk_buff	*frag_list;
581 	struct skb_shared_hwtstamps hwtstamps;
582 	unsigned int	gso_type;
583 	u32		tskey;
584 
585 	/*
586 	 * Warning : all fields before dataref are cleared in __alloc_skb()
587 	 */
588 	atomic_t	dataref;
589 	unsigned int	xdp_frags_size;
590 
591 	/* Intermediate layers must ensure that destructor_arg
592 	 * remains valid until skb destructor */
593 	void *		destructor_arg;
594 
595 	/* must be last field, see pskb_expand_head() */
596 	skb_frag_t	frags[MAX_SKB_FRAGS];
597 };
598 
599 /**
600  * DOC: dataref and headerless skbs
601  *
602  * Transport layers send out clones of payload skbs they hold for
603  * retransmissions. To allow lower layers of the stack to prepend their headers
604  * we split &skb_shared_info.dataref into two halves.
605  * The lower 16 bits count the overall number of references.
606  * The higher 16 bits indicate how many of the references are payload-only.
607  * skb_header_cloned() checks if skb is allowed to add / write the headers.
608  *
609  * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr
610  * (via __skb_header_release()). Any clone created from marked skb will get
611  * &sk_buff.hdr_len populated with the available headroom.
612  * If there's the only clone in existence it's able to modify the headroom
613  * at will. The sequence of calls inside the transport layer is::
614  *
615  *  <alloc skb>
616  *  skb_reserve()
617  *  __skb_header_release()
618  *  skb_clone()
619  *  // send the clone down the stack
620  *
621  * This is not a very generic construct and it depends on the transport layers
622  * doing the right thing. In practice there's usually only one payload-only skb.
623  * Having multiple payload-only skbs with different lengths of hdr_len is not
624  * possible. The payload-only skbs should never leave their owner.
625  */
626 #define SKB_DATAREF_SHIFT 16
627 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
628 
629 
630 enum {
631 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
632 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
633 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
634 };
635 
636 enum {
637 	SKB_GSO_TCPV4 = 1 << 0,
638 
639 	/* This indicates the skb is from an untrusted source. */
640 	SKB_GSO_DODGY = 1 << 1,
641 
642 	/* This indicates the tcp segment has CWR set. */
643 	SKB_GSO_TCP_ECN = 1 << 2,
644 
645 	SKB_GSO_TCP_FIXEDID = 1 << 3,
646 
647 	SKB_GSO_TCPV6 = 1 << 4,
648 
649 	SKB_GSO_FCOE = 1 << 5,
650 
651 	SKB_GSO_GRE = 1 << 6,
652 
653 	SKB_GSO_GRE_CSUM = 1 << 7,
654 
655 	SKB_GSO_IPXIP4 = 1 << 8,
656 
657 	SKB_GSO_IPXIP6 = 1 << 9,
658 
659 	SKB_GSO_UDP_TUNNEL = 1 << 10,
660 
661 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
662 
663 	SKB_GSO_PARTIAL = 1 << 12,
664 
665 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
666 
667 	SKB_GSO_SCTP = 1 << 14,
668 
669 	SKB_GSO_ESP = 1 << 15,
670 
671 	SKB_GSO_UDP = 1 << 16,
672 
673 	SKB_GSO_UDP_L4 = 1 << 17,
674 
675 	SKB_GSO_FRAGLIST = 1 << 18,
676 };
677 
678 #if BITS_PER_LONG > 32
679 #define NET_SKBUFF_DATA_USES_OFFSET 1
680 #endif
681 
682 #ifdef NET_SKBUFF_DATA_USES_OFFSET
683 typedef unsigned int sk_buff_data_t;
684 #else
685 typedef unsigned char *sk_buff_data_t;
686 #endif
687 
688 /**
689  * DOC: Basic sk_buff geometry
690  *
691  * struct sk_buff itself is a metadata structure and does not hold any packet
692  * data. All the data is held in associated buffers.
693  *
694  * &sk_buff.head points to the main "head" buffer. The head buffer is divided
695  * into two parts:
696  *
697  *  - data buffer, containing headers and sometimes payload;
698  *    this is the part of the skb operated on by the common helpers
699  *    such as skb_put() or skb_pull();
700  *  - shared info (struct skb_shared_info) which holds an array of pointers
701  *    to read-only data in the (page, offset, length) format.
702  *
703  * Optionally &skb_shared_info.frag_list may point to another skb.
704  *
705  * Basic diagram may look like this::
706  *
707  *                                  ---------------
708  *                                 | sk_buff       |
709  *                                  ---------------
710  *     ,---------------------------  + head
711  *    /          ,-----------------  + data
712  *   /          /      ,-----------  + tail
713  *  |          |      |            , + end
714  *  |          |      |           |
715  *  v          v      v           v
716  *   -----------------------------------------------
717  *  | headroom | data |  tailroom | skb_shared_info |
718  *   -----------------------------------------------
719  *                                 + [page frag]
720  *                                 + [page frag]
721  *                                 + [page frag]
722  *                                 + [page frag]       ---------
723  *                                 + frag_list    --> | sk_buff |
724  *                                                     ---------
725  *
726  */
727 
728 /**
729  *	struct sk_buff - socket buffer
730  *	@next: Next buffer in list
731  *	@prev: Previous buffer in list
732  *	@tstamp: Time we arrived/left
733  *	@skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
734  *		for retransmit timer
735  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
736  *	@list: queue head
737  *	@ll_node: anchor in an llist (eg socket defer_list)
738  *	@sk: Socket we are owned by
739  *	@ip_defrag_offset: (aka @sk) alternate use of @sk, used in
740  *		fragmentation management
741  *	@dev: Device we arrived on/are leaving by
742  *	@dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
743  *	@cb: Control buffer. Free for use by every layer. Put private vars here
744  *	@_skb_refdst: destination entry (with norefcount bit)
745  *	@sp: the security path, used for xfrm
746  *	@len: Length of actual data
747  *	@data_len: Data length
748  *	@mac_len: Length of link layer header
749  *	@hdr_len: writable header length of cloned skb
750  *	@csum: Checksum (must include start/offset pair)
751  *	@csum_start: Offset from skb->head where checksumming should start
752  *	@csum_offset: Offset from csum_start where checksum should be stored
753  *	@priority: Packet queueing priority
754  *	@ignore_df: allow local fragmentation
755  *	@cloned: Head may be cloned (check refcnt to be sure)
756  *	@ip_summed: Driver fed us an IP checksum
757  *	@nohdr: Payload reference only, must not modify header
758  *	@pkt_type: Packet class
759  *	@fclone: skbuff clone status
760  *	@ipvs_property: skbuff is owned by ipvs
761  *	@inner_protocol_type: whether the inner protocol is
762  *		ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
763  *	@remcsum_offload: remote checksum offload is enabled
764  *	@offload_fwd_mark: Packet was L2-forwarded in hardware
765  *	@offload_l3_fwd_mark: Packet was L3-forwarded in hardware
766  *	@tc_skip_classify: do not classify packet. set by IFB device
767  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
768  *	@redirected: packet was redirected by packet classifier
769  *	@from_ingress: packet was redirected from the ingress path
770  *	@nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h
771  *	@peeked: this packet has been seen already, so stats have been
772  *		done for it, don't do them again
773  *	@nf_trace: netfilter packet trace flag
774  *	@protocol: Packet protocol from driver
775  *	@destructor: Destruct function
776  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
777  *	@_sk_redir: socket redirection information for skmsg
778  *	@_nfct: Associated connection, if any (with nfctinfo bits)
779  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
780  *	@skb_iif: ifindex of device we arrived on
781  *	@tc_index: Traffic control index
782  *	@hash: the packet hash
783  *	@queue_mapping: Queue mapping for multiqueue devices
784  *	@head_frag: skb was allocated from page fragments,
785  *		not allocated by kmalloc() or vmalloc().
786  *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
787  *	@pp_recycle: mark the packet for recycling instead of freeing (implies
788  *		page_pool support on driver)
789  *	@active_extensions: active extensions (skb_ext_id types)
790  *	@ndisc_nodetype: router type (from link layer)
791  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
792  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
793  *		ports.
794  *	@sw_hash: indicates hash was computed in software stack
795  *	@wifi_acked_valid: wifi_acked was set
796  *	@wifi_acked: whether frame was acked on wifi or not
797  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
798  *	@encapsulation: indicates the inner headers in the skbuff are valid
799  *	@encap_hdr_csum: software checksum is needed
800  *	@csum_valid: checksum is already valid
801  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
802  *	@csum_complete_sw: checksum was completed by software
803  *	@csum_level: indicates the number of consecutive checksums found in
804  *		the packet minus one that have been verified as
805  *		CHECKSUM_UNNECESSARY (max 3)
806  *	@dst_pending_confirm: need to confirm neighbour
807  *	@decrypted: Decrypted SKB
808  *	@slow_gro: state present at GRO time, slower prepare step required
809  *	@mono_delivery_time: When set, skb->tstamp has the
810  *		delivery_time in mono clock base (i.e. EDT).  Otherwise, the
811  *		skb->tstamp has the (rcv) timestamp at ingress and
812  *		delivery_time at egress.
813  *	@napi_id: id of the NAPI struct this skb came from
814  *	@sender_cpu: (aka @napi_id) source CPU in XPS
815  *	@alloc_cpu: CPU which did the skb allocation.
816  *	@secmark: security marking
817  *	@mark: Generic packet mark
818  *	@reserved_tailroom: (aka @mark) number of bytes of free space available
819  *		at the tail of an sk_buff
820  *	@vlan_all: vlan fields (proto & tci)
821  *	@vlan_proto: vlan encapsulation protocol
822  *	@vlan_tci: vlan tag control information
823  *	@inner_protocol: Protocol (encapsulation)
824  *	@inner_ipproto: (aka @inner_protocol) stores ipproto when
825  *		skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
826  *	@inner_transport_header: Inner transport layer header (encapsulation)
827  *	@inner_network_header: Network layer header (encapsulation)
828  *	@inner_mac_header: Link layer header (encapsulation)
829  *	@transport_header: Transport layer header
830  *	@network_header: Network layer header
831  *	@mac_header: Link layer header
832  *	@kcov_handle: KCOV remote handle for remote coverage collection
833  *	@tail: Tail pointer
834  *	@end: End pointer
835  *	@head: Head of buffer
836  *	@data: Data head pointer
837  *	@truesize: Buffer size
838  *	@users: User count - see {datagram,tcp}.c
839  *	@extensions: allocated extensions, valid if active_extensions is nonzero
840  */
841 
842 struct sk_buff {
843 	union {
844 		struct {
845 			/* These two members must be first to match sk_buff_head. */
846 			struct sk_buff		*next;
847 			struct sk_buff		*prev;
848 
849 			union {
850 				struct net_device	*dev;
851 				/* Some protocols might use this space to store information,
852 				 * while device pointer would be NULL.
853 				 * UDP receive path is one user.
854 				 */
855 				unsigned long		dev_scratch;
856 			};
857 		};
858 		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
859 		struct list_head	list;
860 		struct llist_node	ll_node;
861 	};
862 
863 	union {
864 		struct sock		*sk;
865 		int			ip_defrag_offset;
866 	};
867 
868 	union {
869 		ktime_t		tstamp;
870 		u64		skb_mstamp_ns; /* earliest departure time */
871 	};
872 	/*
873 	 * This is the control buffer. It is free to use for every
874 	 * layer. Please put your private variables there. If you
875 	 * want to keep them across layers you have to do a skb_clone()
876 	 * first. This is owned by whoever has the skb queued ATM.
877 	 */
878 	char			cb[48] __aligned(8);
879 
880 	union {
881 		struct {
882 			unsigned long	_skb_refdst;
883 			void		(*destructor)(struct sk_buff *skb);
884 		};
885 		struct list_head	tcp_tsorted_anchor;
886 #ifdef CONFIG_NET_SOCK_MSG
887 		unsigned long		_sk_redir;
888 #endif
889 	};
890 
891 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
892 	unsigned long		 _nfct;
893 #endif
894 	unsigned int		len,
895 				data_len;
896 	__u16			mac_len,
897 				hdr_len;
898 
899 	/* Following fields are _not_ copied in __copy_skb_header()
900 	 * Note that queue_mapping is here mostly to fill a hole.
901 	 */
902 	__u16			queue_mapping;
903 
904 /* if you move cloned around you also must adapt those constants */
905 #ifdef __BIG_ENDIAN_BITFIELD
906 #define CLONED_MASK	(1 << 7)
907 #else
908 #define CLONED_MASK	1
909 #endif
910 #define CLONED_OFFSET		offsetof(struct sk_buff, __cloned_offset)
911 
912 	/* private: */
913 	__u8			__cloned_offset[0];
914 	/* public: */
915 	__u8			cloned:1,
916 				nohdr:1,
917 				fclone:2,
918 				peeked:1,
919 				head_frag:1,
920 				pfmemalloc:1,
921 				pp_recycle:1; /* page_pool recycle indicator */
922 #ifdef CONFIG_SKB_EXTENSIONS
923 	__u8			active_extensions;
924 #endif
925 
926 	/* Fields enclosed in headers group are copied
927 	 * using a single memcpy() in __copy_skb_header()
928 	 */
929 	struct_group(headers,
930 
931 	/* private: */
932 	__u8			__pkt_type_offset[0];
933 	/* public: */
934 	__u8			pkt_type:3; /* see PKT_TYPE_MAX */
935 	__u8			ignore_df:1;
936 	__u8			dst_pending_confirm:1;
937 	__u8			ip_summed:2;
938 	__u8			ooo_okay:1;
939 
940 	/* private: */
941 	__u8			__mono_tc_offset[0];
942 	/* public: */
943 	__u8			mono_delivery_time:1;	/* See SKB_MONO_DELIVERY_TIME_MASK */
944 #ifdef CONFIG_NET_XGRESS
945 	__u8			tc_at_ingress:1;	/* See TC_AT_INGRESS_MASK */
946 	__u8			tc_skip_classify:1;
947 #endif
948 	__u8			remcsum_offload:1;
949 	__u8			csum_complete_sw:1;
950 	__u8			csum_level:2;
951 	__u8			inner_protocol_type:1;
952 
953 	__u8			l4_hash:1;
954 	__u8			sw_hash:1;
955 #ifdef CONFIG_WIRELESS
956 	__u8			wifi_acked_valid:1;
957 	__u8			wifi_acked:1;
958 #endif
959 	__u8			no_fcs:1;
960 	/* Indicates the inner headers are valid in the skbuff. */
961 	__u8			encapsulation:1;
962 	__u8			encap_hdr_csum:1;
963 	__u8			csum_valid:1;
964 #ifdef CONFIG_IPV6_NDISC_NODETYPE
965 	__u8			ndisc_nodetype:2;
966 #endif
967 
968 #if IS_ENABLED(CONFIG_IP_VS)
969 	__u8			ipvs_property:1;
970 #endif
971 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
972 	__u8			nf_trace:1;
973 #endif
974 #ifdef CONFIG_NET_SWITCHDEV
975 	__u8			offload_fwd_mark:1;
976 	__u8			offload_l3_fwd_mark:1;
977 #endif
978 	__u8			redirected:1;
979 #ifdef CONFIG_NET_REDIRECT
980 	__u8			from_ingress:1;
981 #endif
982 #ifdef CONFIG_NETFILTER_SKIP_EGRESS
983 	__u8			nf_skip_egress:1;
984 #endif
985 #ifdef CONFIG_TLS_DEVICE
986 	__u8			decrypted:1;
987 #endif
988 	__u8			slow_gro:1;
989 #if IS_ENABLED(CONFIG_IP_SCTP)
990 	__u8			csum_not_inet:1;
991 #endif
992 
993 #if defined(CONFIG_NET_SCHED) || defined(CONFIG_NET_XGRESS)
994 	__u16			tc_index;	/* traffic control index */
995 #endif
996 
997 	u16			alloc_cpu;
998 
999 	union {
1000 		__wsum		csum;
1001 		struct {
1002 			__u16	csum_start;
1003 			__u16	csum_offset;
1004 		};
1005 	};
1006 	__u32			priority;
1007 	int			skb_iif;
1008 	__u32			hash;
1009 	union {
1010 		u32		vlan_all;
1011 		struct {
1012 			__be16	vlan_proto;
1013 			__u16	vlan_tci;
1014 		};
1015 	};
1016 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
1017 	union {
1018 		unsigned int	napi_id;
1019 		unsigned int	sender_cpu;
1020 	};
1021 #endif
1022 #ifdef CONFIG_NETWORK_SECMARK
1023 	__u32		secmark;
1024 #endif
1025 
1026 	union {
1027 		__u32		mark;
1028 		__u32		reserved_tailroom;
1029 	};
1030 
1031 	union {
1032 		__be16		inner_protocol;
1033 		__u8		inner_ipproto;
1034 	};
1035 
1036 	__u16			inner_transport_header;
1037 	__u16			inner_network_header;
1038 	__u16			inner_mac_header;
1039 
1040 	__be16			protocol;
1041 	__u16			transport_header;
1042 	__u16			network_header;
1043 	__u16			mac_header;
1044 
1045 #ifdef CONFIG_KCOV
1046 	u64			kcov_handle;
1047 #endif
1048 
1049 	); /* end headers group */
1050 
1051 	/* These elements must be at the end, see alloc_skb() for details.  */
1052 	sk_buff_data_t		tail;
1053 	sk_buff_data_t		end;
1054 	unsigned char		*head,
1055 				*data;
1056 	unsigned int		truesize;
1057 	refcount_t		users;
1058 
1059 #ifdef CONFIG_SKB_EXTENSIONS
1060 	/* only useable after checking ->active_extensions != 0 */
1061 	struct skb_ext		*extensions;
1062 #endif
1063 };
1064 
1065 /* if you move pkt_type around you also must adapt those constants */
1066 #ifdef __BIG_ENDIAN_BITFIELD
1067 #define PKT_TYPE_MAX	(7 << 5)
1068 #else
1069 #define PKT_TYPE_MAX	7
1070 #endif
1071 #define PKT_TYPE_OFFSET		offsetof(struct sk_buff, __pkt_type_offset)
1072 
1073 /* if you move tc_at_ingress or mono_delivery_time
1074  * around, you also must adapt these constants.
1075  */
1076 #ifdef __BIG_ENDIAN_BITFIELD
1077 #define SKB_MONO_DELIVERY_TIME_MASK	(1 << 7)
1078 #define TC_AT_INGRESS_MASK		(1 << 6)
1079 #else
1080 #define SKB_MONO_DELIVERY_TIME_MASK	(1 << 0)
1081 #define TC_AT_INGRESS_MASK		(1 << 1)
1082 #endif
1083 #define SKB_BF_MONO_TC_OFFSET		offsetof(struct sk_buff, __mono_tc_offset)
1084 
1085 #ifdef __KERNEL__
1086 /*
1087  *	Handling routines are only of interest to the kernel
1088  */
1089 
1090 #define SKB_ALLOC_FCLONE	0x01
1091 #define SKB_ALLOC_RX		0x02
1092 #define SKB_ALLOC_NAPI		0x04
1093 
1094 /**
1095  * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
1096  * @skb: buffer
1097  */
1098 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
1099 {
1100 	return unlikely(skb->pfmemalloc);
1101 }
1102 
1103 /*
1104  * skb might have a dst pointer attached, refcounted or not.
1105  * _skb_refdst low order bit is set if refcount was _not_ taken
1106  */
1107 #define SKB_DST_NOREF	1UL
1108 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
1109 
1110 /**
1111  * skb_dst - returns skb dst_entry
1112  * @skb: buffer
1113  *
1114  * Returns skb dst_entry, regardless of reference taken or not.
1115  */
1116 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
1117 {
1118 	/* If refdst was not refcounted, check we still are in a
1119 	 * rcu_read_lock section
1120 	 */
1121 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
1122 		!rcu_read_lock_held() &&
1123 		!rcu_read_lock_bh_held());
1124 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
1125 }
1126 
1127 /**
1128  * skb_dst_set - sets skb dst
1129  * @skb: buffer
1130  * @dst: dst entry
1131  *
1132  * Sets skb dst, assuming a reference was taken on dst and should
1133  * be released by skb_dst_drop()
1134  */
1135 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
1136 {
1137 	skb->slow_gro |= !!dst;
1138 	skb->_skb_refdst = (unsigned long)dst;
1139 }
1140 
1141 /**
1142  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
1143  * @skb: buffer
1144  * @dst: dst entry
1145  *
1146  * Sets skb dst, assuming a reference was not taken on dst.
1147  * If dst entry is cached, we do not take reference and dst_release
1148  * will be avoided by refdst_drop. If dst entry is not cached, we take
1149  * reference, so that last dst_release can destroy the dst immediately.
1150  */
1151 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
1152 {
1153 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
1154 	skb->slow_gro |= !!dst;
1155 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
1156 }
1157 
1158 /**
1159  * skb_dst_is_noref - Test if skb dst isn't refcounted
1160  * @skb: buffer
1161  */
1162 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1163 {
1164 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1165 }
1166 
1167 /**
1168  * skb_rtable - Returns the skb &rtable
1169  * @skb: buffer
1170  */
1171 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
1172 {
1173 	return (struct rtable *)skb_dst(skb);
1174 }
1175 
1176 /* For mangling skb->pkt_type from user space side from applications
1177  * such as nft, tc, etc, we only allow a conservative subset of
1178  * possible pkt_types to be set.
1179 */
1180 static inline bool skb_pkt_type_ok(u32 ptype)
1181 {
1182 	return ptype <= PACKET_OTHERHOST;
1183 }
1184 
1185 /**
1186  * skb_napi_id - Returns the skb's NAPI id
1187  * @skb: buffer
1188  */
1189 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1190 {
1191 #ifdef CONFIG_NET_RX_BUSY_POLL
1192 	return skb->napi_id;
1193 #else
1194 	return 0;
1195 #endif
1196 }
1197 
1198 static inline bool skb_wifi_acked_valid(const struct sk_buff *skb)
1199 {
1200 #ifdef CONFIG_WIRELESS
1201 	return skb->wifi_acked_valid;
1202 #else
1203 	return 0;
1204 #endif
1205 }
1206 
1207 /**
1208  * skb_unref - decrement the skb's reference count
1209  * @skb: buffer
1210  *
1211  * Returns true if we can free the skb.
1212  */
1213 static inline bool skb_unref(struct sk_buff *skb)
1214 {
1215 	if (unlikely(!skb))
1216 		return false;
1217 	if (likely(refcount_read(&skb->users) == 1))
1218 		smp_rmb();
1219 	else if (likely(!refcount_dec_and_test(&skb->users)))
1220 		return false;
1221 
1222 	return true;
1223 }
1224 
1225 void __fix_address
1226 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason);
1227 
1228 /**
1229  *	kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason
1230  *	@skb: buffer to free
1231  */
1232 static inline void kfree_skb(struct sk_buff *skb)
1233 {
1234 	kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1235 }
1236 
1237 void skb_release_head_state(struct sk_buff *skb);
1238 void kfree_skb_list_reason(struct sk_buff *segs,
1239 			   enum skb_drop_reason reason);
1240 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1241 void skb_tx_error(struct sk_buff *skb);
1242 
1243 static inline void kfree_skb_list(struct sk_buff *segs)
1244 {
1245 	kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED);
1246 }
1247 
1248 #ifdef CONFIG_TRACEPOINTS
1249 void consume_skb(struct sk_buff *skb);
1250 #else
1251 static inline void consume_skb(struct sk_buff *skb)
1252 {
1253 	return kfree_skb(skb);
1254 }
1255 #endif
1256 
1257 void __consume_stateless_skb(struct sk_buff *skb);
1258 void  __kfree_skb(struct sk_buff *skb);
1259 extern struct kmem_cache *skbuff_cache;
1260 
1261 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1262 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1263 		      bool *fragstolen, int *delta_truesize);
1264 
1265 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1266 			    int node);
1267 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1268 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1269 struct sk_buff *build_skb_around(struct sk_buff *skb,
1270 				 void *data, unsigned int frag_size);
1271 void skb_attempt_defer_free(struct sk_buff *skb);
1272 
1273 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size);
1274 struct sk_buff *slab_build_skb(void *data);
1275 
1276 /**
1277  * alloc_skb - allocate a network buffer
1278  * @size: size to allocate
1279  * @priority: allocation mask
1280  *
1281  * This function is a convenient wrapper around __alloc_skb().
1282  */
1283 static inline struct sk_buff *alloc_skb(unsigned int size,
1284 					gfp_t priority)
1285 {
1286 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1287 }
1288 
1289 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1290 				     unsigned long data_len,
1291 				     int max_page_order,
1292 				     int *errcode,
1293 				     gfp_t gfp_mask);
1294 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1295 
1296 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1297 struct sk_buff_fclones {
1298 	struct sk_buff	skb1;
1299 
1300 	struct sk_buff	skb2;
1301 
1302 	refcount_t	fclone_ref;
1303 };
1304 
1305 /**
1306  *	skb_fclone_busy - check if fclone is busy
1307  *	@sk: socket
1308  *	@skb: buffer
1309  *
1310  * Returns true if skb is a fast clone, and its clone is not freed.
1311  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1312  * so we also check that didn't happen.
1313  */
1314 static inline bool skb_fclone_busy(const struct sock *sk,
1315 				   const struct sk_buff *skb)
1316 {
1317 	const struct sk_buff_fclones *fclones;
1318 
1319 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1320 
1321 	return skb->fclone == SKB_FCLONE_ORIG &&
1322 	       refcount_read(&fclones->fclone_ref) > 1 &&
1323 	       READ_ONCE(fclones->skb2.sk) == sk;
1324 }
1325 
1326 /**
1327  * alloc_skb_fclone - allocate a network buffer from fclone cache
1328  * @size: size to allocate
1329  * @priority: allocation mask
1330  *
1331  * This function is a convenient wrapper around __alloc_skb().
1332  */
1333 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1334 					       gfp_t priority)
1335 {
1336 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1337 }
1338 
1339 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1340 void skb_headers_offset_update(struct sk_buff *skb, int off);
1341 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1342 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1343 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1344 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1345 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1346 				   gfp_t gfp_mask, bool fclone);
1347 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1348 					  gfp_t gfp_mask)
1349 {
1350 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1351 }
1352 
1353 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1354 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1355 				     unsigned int headroom);
1356 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom);
1357 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1358 				int newtailroom, gfp_t priority);
1359 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1360 				     int offset, int len);
1361 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1362 			      int offset, int len);
1363 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1364 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1365 
1366 /**
1367  *	skb_pad			-	zero pad the tail of an skb
1368  *	@skb: buffer to pad
1369  *	@pad: space to pad
1370  *
1371  *	Ensure that a buffer is followed by a padding area that is zero
1372  *	filled. Used by network drivers which may DMA or transfer data
1373  *	beyond the buffer end onto the wire.
1374  *
1375  *	May return error in out of memory cases. The skb is freed on error.
1376  */
1377 static inline int skb_pad(struct sk_buff *skb, int pad)
1378 {
1379 	return __skb_pad(skb, pad, true);
1380 }
1381 #define dev_kfree_skb(a)	consume_skb(a)
1382 
1383 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1384 			 int offset, size_t size, size_t max_frags);
1385 
1386 struct skb_seq_state {
1387 	__u32		lower_offset;
1388 	__u32		upper_offset;
1389 	__u32		frag_idx;
1390 	__u32		stepped_offset;
1391 	struct sk_buff	*root_skb;
1392 	struct sk_buff	*cur_skb;
1393 	__u8		*frag_data;
1394 	__u32		frag_off;
1395 };
1396 
1397 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1398 			  unsigned int to, struct skb_seq_state *st);
1399 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1400 			  struct skb_seq_state *st);
1401 void skb_abort_seq_read(struct skb_seq_state *st);
1402 
1403 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1404 			   unsigned int to, struct ts_config *config);
1405 
1406 /*
1407  * Packet hash types specify the type of hash in skb_set_hash.
1408  *
1409  * Hash types refer to the protocol layer addresses which are used to
1410  * construct a packet's hash. The hashes are used to differentiate or identify
1411  * flows of the protocol layer for the hash type. Hash types are either
1412  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1413  *
1414  * Properties of hashes:
1415  *
1416  * 1) Two packets in different flows have different hash values
1417  * 2) Two packets in the same flow should have the same hash value
1418  *
1419  * A hash at a higher layer is considered to be more specific. A driver should
1420  * set the most specific hash possible.
1421  *
1422  * A driver cannot indicate a more specific hash than the layer at which a hash
1423  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1424  *
1425  * A driver may indicate a hash level which is less specific than the
1426  * actual layer the hash was computed on. For instance, a hash computed
1427  * at L4 may be considered an L3 hash. This should only be done if the
1428  * driver can't unambiguously determine that the HW computed the hash at
1429  * the higher layer. Note that the "should" in the second property above
1430  * permits this.
1431  */
1432 enum pkt_hash_types {
1433 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1434 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1435 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1436 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1437 };
1438 
1439 static inline void skb_clear_hash(struct sk_buff *skb)
1440 {
1441 	skb->hash = 0;
1442 	skb->sw_hash = 0;
1443 	skb->l4_hash = 0;
1444 }
1445 
1446 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1447 {
1448 	if (!skb->l4_hash)
1449 		skb_clear_hash(skb);
1450 }
1451 
1452 static inline void
1453 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1454 {
1455 	skb->l4_hash = is_l4;
1456 	skb->sw_hash = is_sw;
1457 	skb->hash = hash;
1458 }
1459 
1460 static inline void
1461 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1462 {
1463 	/* Used by drivers to set hash from HW */
1464 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1465 }
1466 
1467 static inline void
1468 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1469 {
1470 	__skb_set_hash(skb, hash, true, is_l4);
1471 }
1472 
1473 void __skb_get_hash(struct sk_buff *skb);
1474 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1475 u32 skb_get_poff(const struct sk_buff *skb);
1476 u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
1477 		   const struct flow_keys_basic *keys, int hlen);
1478 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1479 			    const void *data, int hlen_proto);
1480 
1481 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1482 					int thoff, u8 ip_proto)
1483 {
1484 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1485 }
1486 
1487 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1488 			     const struct flow_dissector_key *key,
1489 			     unsigned int key_count);
1490 
1491 struct bpf_flow_dissector;
1492 u32 bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1493 		     __be16 proto, int nhoff, int hlen, unsigned int flags);
1494 
1495 bool __skb_flow_dissect(const struct net *net,
1496 			const struct sk_buff *skb,
1497 			struct flow_dissector *flow_dissector,
1498 			void *target_container, const void *data,
1499 			__be16 proto, int nhoff, int hlen, unsigned int flags);
1500 
1501 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1502 				    struct flow_dissector *flow_dissector,
1503 				    void *target_container, unsigned int flags)
1504 {
1505 	return __skb_flow_dissect(NULL, skb, flow_dissector,
1506 				  target_container, NULL, 0, 0, 0, flags);
1507 }
1508 
1509 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1510 					      struct flow_keys *flow,
1511 					      unsigned int flags)
1512 {
1513 	memset(flow, 0, sizeof(*flow));
1514 	return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1515 				  flow, NULL, 0, 0, 0, flags);
1516 }
1517 
1518 static inline bool
1519 skb_flow_dissect_flow_keys_basic(const struct net *net,
1520 				 const struct sk_buff *skb,
1521 				 struct flow_keys_basic *flow,
1522 				 const void *data, __be16 proto,
1523 				 int nhoff, int hlen, unsigned int flags)
1524 {
1525 	memset(flow, 0, sizeof(*flow));
1526 	return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1527 				  data, proto, nhoff, hlen, flags);
1528 }
1529 
1530 void skb_flow_dissect_meta(const struct sk_buff *skb,
1531 			   struct flow_dissector *flow_dissector,
1532 			   void *target_container);
1533 
1534 /* Gets a skb connection tracking info, ctinfo map should be a
1535  * map of mapsize to translate enum ip_conntrack_info states
1536  * to user states.
1537  */
1538 void
1539 skb_flow_dissect_ct(const struct sk_buff *skb,
1540 		    struct flow_dissector *flow_dissector,
1541 		    void *target_container,
1542 		    u16 *ctinfo_map, size_t mapsize,
1543 		    bool post_ct, u16 zone);
1544 void
1545 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1546 			     struct flow_dissector *flow_dissector,
1547 			     void *target_container);
1548 
1549 void skb_flow_dissect_hash(const struct sk_buff *skb,
1550 			   struct flow_dissector *flow_dissector,
1551 			   void *target_container);
1552 
1553 static inline __u32 skb_get_hash(struct sk_buff *skb)
1554 {
1555 	if (!skb->l4_hash && !skb->sw_hash)
1556 		__skb_get_hash(skb);
1557 
1558 	return skb->hash;
1559 }
1560 
1561 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1562 {
1563 	if (!skb->l4_hash && !skb->sw_hash) {
1564 		struct flow_keys keys;
1565 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1566 
1567 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1568 	}
1569 
1570 	return skb->hash;
1571 }
1572 
1573 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1574 			   const siphash_key_t *perturb);
1575 
1576 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1577 {
1578 	return skb->hash;
1579 }
1580 
1581 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1582 {
1583 	to->hash = from->hash;
1584 	to->sw_hash = from->sw_hash;
1585 	to->l4_hash = from->l4_hash;
1586 };
1587 
1588 static inline int skb_cmp_decrypted(const struct sk_buff *skb1,
1589 				    const struct sk_buff *skb2)
1590 {
1591 #ifdef CONFIG_TLS_DEVICE
1592 	return skb2->decrypted - skb1->decrypted;
1593 #else
1594 	return 0;
1595 #endif
1596 }
1597 
1598 static inline void skb_copy_decrypted(struct sk_buff *to,
1599 				      const struct sk_buff *from)
1600 {
1601 #ifdef CONFIG_TLS_DEVICE
1602 	to->decrypted = from->decrypted;
1603 #endif
1604 }
1605 
1606 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1607 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1608 {
1609 	return skb->head + skb->end;
1610 }
1611 
1612 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1613 {
1614 	return skb->end;
1615 }
1616 
1617 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1618 {
1619 	skb->end = offset;
1620 }
1621 #else
1622 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1623 {
1624 	return skb->end;
1625 }
1626 
1627 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1628 {
1629 	return skb->end - skb->head;
1630 }
1631 
1632 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1633 {
1634 	skb->end = skb->head + offset;
1635 }
1636 #endif
1637 
1638 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1639 				       struct ubuf_info *uarg);
1640 
1641 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
1642 
1643 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1644 			   bool success);
1645 
1646 int __zerocopy_sg_from_iter(struct msghdr *msg, struct sock *sk,
1647 			    struct sk_buff *skb, struct iov_iter *from,
1648 			    size_t length);
1649 
1650 static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb,
1651 					  struct msghdr *msg, int len)
1652 {
1653 	return __zerocopy_sg_from_iter(msg, skb->sk, skb, &msg->msg_iter, len);
1654 }
1655 
1656 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1657 			     struct msghdr *msg, int len,
1658 			     struct ubuf_info *uarg);
1659 
1660 /* Internal */
1661 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1662 
1663 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1664 {
1665 	return &skb_shinfo(skb)->hwtstamps;
1666 }
1667 
1668 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1669 {
1670 	bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE;
1671 
1672 	return is_zcopy ? skb_uarg(skb) : NULL;
1673 }
1674 
1675 static inline bool skb_zcopy_pure(const struct sk_buff *skb)
1676 {
1677 	return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY;
1678 }
1679 
1680 static inline bool skb_zcopy_managed(const struct sk_buff *skb)
1681 {
1682 	return skb_shinfo(skb)->flags & SKBFL_MANAGED_FRAG_REFS;
1683 }
1684 
1685 static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1,
1686 				       const struct sk_buff *skb2)
1687 {
1688 	return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2);
1689 }
1690 
1691 static inline void net_zcopy_get(struct ubuf_info *uarg)
1692 {
1693 	refcount_inc(&uarg->refcnt);
1694 }
1695 
1696 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg)
1697 {
1698 	skb_shinfo(skb)->destructor_arg = uarg;
1699 	skb_shinfo(skb)->flags |= uarg->flags;
1700 }
1701 
1702 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1703 				 bool *have_ref)
1704 {
1705 	if (skb && uarg && !skb_zcopy(skb)) {
1706 		if (unlikely(have_ref && *have_ref))
1707 			*have_ref = false;
1708 		else
1709 			net_zcopy_get(uarg);
1710 		skb_zcopy_init(skb, uarg);
1711 	}
1712 }
1713 
1714 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1715 {
1716 	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1717 	skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG;
1718 }
1719 
1720 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1721 {
1722 	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1723 }
1724 
1725 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1726 {
1727 	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1728 }
1729 
1730 static inline void net_zcopy_put(struct ubuf_info *uarg)
1731 {
1732 	if (uarg)
1733 		uarg->callback(NULL, uarg, true);
1734 }
1735 
1736 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1737 {
1738 	if (uarg) {
1739 		if (uarg->callback == msg_zerocopy_callback)
1740 			msg_zerocopy_put_abort(uarg, have_uref);
1741 		else if (have_uref)
1742 			net_zcopy_put(uarg);
1743 	}
1744 }
1745 
1746 /* Release a reference on a zerocopy structure */
1747 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success)
1748 {
1749 	struct ubuf_info *uarg = skb_zcopy(skb);
1750 
1751 	if (uarg) {
1752 		if (!skb_zcopy_is_nouarg(skb))
1753 			uarg->callback(skb, uarg, zerocopy_success);
1754 
1755 		skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY;
1756 	}
1757 }
1758 
1759 void __skb_zcopy_downgrade_managed(struct sk_buff *skb);
1760 
1761 static inline void skb_zcopy_downgrade_managed(struct sk_buff *skb)
1762 {
1763 	if (unlikely(skb_zcopy_managed(skb)))
1764 		__skb_zcopy_downgrade_managed(skb);
1765 }
1766 
1767 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1768 {
1769 	skb->next = NULL;
1770 }
1771 
1772 static inline void skb_poison_list(struct sk_buff *skb)
1773 {
1774 #ifdef CONFIG_DEBUG_NET
1775 	skb->next = SKB_LIST_POISON_NEXT;
1776 #endif
1777 }
1778 
1779 /* Iterate through singly-linked GSO fragments of an skb. */
1780 #define skb_list_walk_safe(first, skb, next_skb)                               \
1781 	for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb);  \
1782 	     (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1783 
1784 static inline void skb_list_del_init(struct sk_buff *skb)
1785 {
1786 	__list_del_entry(&skb->list);
1787 	skb_mark_not_on_list(skb);
1788 }
1789 
1790 /**
1791  *	skb_queue_empty - check if a queue is empty
1792  *	@list: queue head
1793  *
1794  *	Returns true if the queue is empty, false otherwise.
1795  */
1796 static inline int skb_queue_empty(const struct sk_buff_head *list)
1797 {
1798 	return list->next == (const struct sk_buff *) list;
1799 }
1800 
1801 /**
1802  *	skb_queue_empty_lockless - check if a queue is empty
1803  *	@list: queue head
1804  *
1805  *	Returns true if the queue is empty, false otherwise.
1806  *	This variant can be used in lockless contexts.
1807  */
1808 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1809 {
1810 	return READ_ONCE(list->next) == (const struct sk_buff *) list;
1811 }
1812 
1813 
1814 /**
1815  *	skb_queue_is_last - check if skb is the last entry in the queue
1816  *	@list: queue head
1817  *	@skb: buffer
1818  *
1819  *	Returns true if @skb is the last buffer on the list.
1820  */
1821 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1822 				     const struct sk_buff *skb)
1823 {
1824 	return skb->next == (const struct sk_buff *) list;
1825 }
1826 
1827 /**
1828  *	skb_queue_is_first - check if skb is the first entry in the queue
1829  *	@list: queue head
1830  *	@skb: buffer
1831  *
1832  *	Returns true if @skb is the first buffer on the list.
1833  */
1834 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1835 				      const struct sk_buff *skb)
1836 {
1837 	return skb->prev == (const struct sk_buff *) list;
1838 }
1839 
1840 /**
1841  *	skb_queue_next - return the next packet in the queue
1842  *	@list: queue head
1843  *	@skb: current buffer
1844  *
1845  *	Return the next packet in @list after @skb.  It is only valid to
1846  *	call this if skb_queue_is_last() evaluates to false.
1847  */
1848 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1849 					     const struct sk_buff *skb)
1850 {
1851 	/* This BUG_ON may seem severe, but if we just return then we
1852 	 * are going to dereference garbage.
1853 	 */
1854 	BUG_ON(skb_queue_is_last(list, skb));
1855 	return skb->next;
1856 }
1857 
1858 /**
1859  *	skb_queue_prev - return the prev packet in the queue
1860  *	@list: queue head
1861  *	@skb: current buffer
1862  *
1863  *	Return the prev packet in @list before @skb.  It is only valid to
1864  *	call this if skb_queue_is_first() evaluates to false.
1865  */
1866 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1867 					     const struct sk_buff *skb)
1868 {
1869 	/* This BUG_ON may seem severe, but if we just return then we
1870 	 * are going to dereference garbage.
1871 	 */
1872 	BUG_ON(skb_queue_is_first(list, skb));
1873 	return skb->prev;
1874 }
1875 
1876 /**
1877  *	skb_get - reference buffer
1878  *	@skb: buffer to reference
1879  *
1880  *	Makes another reference to a socket buffer and returns a pointer
1881  *	to the buffer.
1882  */
1883 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1884 {
1885 	refcount_inc(&skb->users);
1886 	return skb;
1887 }
1888 
1889 /*
1890  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1891  */
1892 
1893 /**
1894  *	skb_cloned - is the buffer a clone
1895  *	@skb: buffer to check
1896  *
1897  *	Returns true if the buffer was generated with skb_clone() and is
1898  *	one of multiple shared copies of the buffer. Cloned buffers are
1899  *	shared data so must not be written to under normal circumstances.
1900  */
1901 static inline int skb_cloned(const struct sk_buff *skb)
1902 {
1903 	return skb->cloned &&
1904 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1905 }
1906 
1907 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1908 {
1909 	might_sleep_if(gfpflags_allow_blocking(pri));
1910 
1911 	if (skb_cloned(skb))
1912 		return pskb_expand_head(skb, 0, 0, pri);
1913 
1914 	return 0;
1915 }
1916 
1917 /* This variant of skb_unclone() makes sure skb->truesize
1918  * and skb_end_offset() are not changed, whenever a new skb->head is needed.
1919  *
1920  * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X))
1921  * when various debugging features are in place.
1922  */
1923 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri);
1924 static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1925 {
1926 	might_sleep_if(gfpflags_allow_blocking(pri));
1927 
1928 	if (skb_cloned(skb))
1929 		return __skb_unclone_keeptruesize(skb, pri);
1930 	return 0;
1931 }
1932 
1933 /**
1934  *	skb_header_cloned - is the header a clone
1935  *	@skb: buffer to check
1936  *
1937  *	Returns true if modifying the header part of the buffer requires
1938  *	the data to be copied.
1939  */
1940 static inline int skb_header_cloned(const struct sk_buff *skb)
1941 {
1942 	int dataref;
1943 
1944 	if (!skb->cloned)
1945 		return 0;
1946 
1947 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1948 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1949 	return dataref != 1;
1950 }
1951 
1952 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1953 {
1954 	might_sleep_if(gfpflags_allow_blocking(pri));
1955 
1956 	if (skb_header_cloned(skb))
1957 		return pskb_expand_head(skb, 0, 0, pri);
1958 
1959 	return 0;
1960 }
1961 
1962 /**
1963  * __skb_header_release() - allow clones to use the headroom
1964  * @skb: buffer to operate on
1965  *
1966  * See "DOC: dataref and headerless skbs".
1967  */
1968 static inline void __skb_header_release(struct sk_buff *skb)
1969 {
1970 	skb->nohdr = 1;
1971 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1972 }
1973 
1974 
1975 /**
1976  *	skb_shared - is the buffer shared
1977  *	@skb: buffer to check
1978  *
1979  *	Returns true if more than one person has a reference to this
1980  *	buffer.
1981  */
1982 static inline int skb_shared(const struct sk_buff *skb)
1983 {
1984 	return refcount_read(&skb->users) != 1;
1985 }
1986 
1987 /**
1988  *	skb_share_check - check if buffer is shared and if so clone it
1989  *	@skb: buffer to check
1990  *	@pri: priority for memory allocation
1991  *
1992  *	If the buffer is shared the buffer is cloned and the old copy
1993  *	drops a reference. A new clone with a single reference is returned.
1994  *	If the buffer is not shared the original buffer is returned. When
1995  *	being called from interrupt status or with spinlocks held pri must
1996  *	be GFP_ATOMIC.
1997  *
1998  *	NULL is returned on a memory allocation failure.
1999  */
2000 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
2001 {
2002 	might_sleep_if(gfpflags_allow_blocking(pri));
2003 	if (skb_shared(skb)) {
2004 		struct sk_buff *nskb = skb_clone(skb, pri);
2005 
2006 		if (likely(nskb))
2007 			consume_skb(skb);
2008 		else
2009 			kfree_skb(skb);
2010 		skb = nskb;
2011 	}
2012 	return skb;
2013 }
2014 
2015 /*
2016  *	Copy shared buffers into a new sk_buff. We effectively do COW on
2017  *	packets to handle cases where we have a local reader and forward
2018  *	and a couple of other messy ones. The normal one is tcpdumping
2019  *	a packet that's being forwarded.
2020  */
2021 
2022 /**
2023  *	skb_unshare - make a copy of a shared buffer
2024  *	@skb: buffer to check
2025  *	@pri: priority for memory allocation
2026  *
2027  *	If the socket buffer is a clone then this function creates a new
2028  *	copy of the data, drops a reference count on the old copy and returns
2029  *	the new copy with the reference count at 1. If the buffer is not a clone
2030  *	the original buffer is returned. When called with a spinlock held or
2031  *	from interrupt state @pri must be %GFP_ATOMIC
2032  *
2033  *	%NULL is returned on a memory allocation failure.
2034  */
2035 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
2036 					  gfp_t pri)
2037 {
2038 	might_sleep_if(gfpflags_allow_blocking(pri));
2039 	if (skb_cloned(skb)) {
2040 		struct sk_buff *nskb = skb_copy(skb, pri);
2041 
2042 		/* Free our shared copy */
2043 		if (likely(nskb))
2044 			consume_skb(skb);
2045 		else
2046 			kfree_skb(skb);
2047 		skb = nskb;
2048 	}
2049 	return skb;
2050 }
2051 
2052 /**
2053  *	skb_peek - peek at the head of an &sk_buff_head
2054  *	@list_: list to peek at
2055  *
2056  *	Peek an &sk_buff. Unlike most other operations you _MUST_
2057  *	be careful with this one. A peek leaves the buffer on the
2058  *	list and someone else may run off with it. You must hold
2059  *	the appropriate locks or have a private queue to do this.
2060  *
2061  *	Returns %NULL for an empty list or a pointer to the head element.
2062  *	The reference count is not incremented and the reference is therefore
2063  *	volatile. Use with caution.
2064  */
2065 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
2066 {
2067 	struct sk_buff *skb = list_->next;
2068 
2069 	if (skb == (struct sk_buff *)list_)
2070 		skb = NULL;
2071 	return skb;
2072 }
2073 
2074 /**
2075  *	__skb_peek - peek at the head of a non-empty &sk_buff_head
2076  *	@list_: list to peek at
2077  *
2078  *	Like skb_peek(), but the caller knows that the list is not empty.
2079  */
2080 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
2081 {
2082 	return list_->next;
2083 }
2084 
2085 /**
2086  *	skb_peek_next - peek skb following the given one from a queue
2087  *	@skb: skb to start from
2088  *	@list_: list to peek at
2089  *
2090  *	Returns %NULL when the end of the list is met or a pointer to the
2091  *	next element. The reference count is not incremented and the
2092  *	reference is therefore volatile. Use with caution.
2093  */
2094 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
2095 		const struct sk_buff_head *list_)
2096 {
2097 	struct sk_buff *next = skb->next;
2098 
2099 	if (next == (struct sk_buff *)list_)
2100 		next = NULL;
2101 	return next;
2102 }
2103 
2104 /**
2105  *	skb_peek_tail - peek at the tail of an &sk_buff_head
2106  *	@list_: list to peek at
2107  *
2108  *	Peek an &sk_buff. Unlike most other operations you _MUST_
2109  *	be careful with this one. A peek leaves the buffer on the
2110  *	list and someone else may run off with it. You must hold
2111  *	the appropriate locks or have a private queue to do this.
2112  *
2113  *	Returns %NULL for an empty list or a pointer to the tail element.
2114  *	The reference count is not incremented and the reference is therefore
2115  *	volatile. Use with caution.
2116  */
2117 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
2118 {
2119 	struct sk_buff *skb = READ_ONCE(list_->prev);
2120 
2121 	if (skb == (struct sk_buff *)list_)
2122 		skb = NULL;
2123 	return skb;
2124 
2125 }
2126 
2127 /**
2128  *	skb_queue_len	- get queue length
2129  *	@list_: list to measure
2130  *
2131  *	Return the length of an &sk_buff queue.
2132  */
2133 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
2134 {
2135 	return list_->qlen;
2136 }
2137 
2138 /**
2139  *	skb_queue_len_lockless	- get queue length
2140  *	@list_: list to measure
2141  *
2142  *	Return the length of an &sk_buff queue.
2143  *	This variant can be used in lockless contexts.
2144  */
2145 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
2146 {
2147 	return READ_ONCE(list_->qlen);
2148 }
2149 
2150 /**
2151  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
2152  *	@list: queue to initialize
2153  *
2154  *	This initializes only the list and queue length aspects of
2155  *	an sk_buff_head object.  This allows to initialize the list
2156  *	aspects of an sk_buff_head without reinitializing things like
2157  *	the spinlock.  It can also be used for on-stack sk_buff_head
2158  *	objects where the spinlock is known to not be used.
2159  */
2160 static inline void __skb_queue_head_init(struct sk_buff_head *list)
2161 {
2162 	list->prev = list->next = (struct sk_buff *)list;
2163 	list->qlen = 0;
2164 }
2165 
2166 /*
2167  * This function creates a split out lock class for each invocation;
2168  * this is needed for now since a whole lot of users of the skb-queue
2169  * infrastructure in drivers have different locking usage (in hardirq)
2170  * than the networking core (in softirq only). In the long run either the
2171  * network layer or drivers should need annotation to consolidate the
2172  * main types of usage into 3 classes.
2173  */
2174 static inline void skb_queue_head_init(struct sk_buff_head *list)
2175 {
2176 	spin_lock_init(&list->lock);
2177 	__skb_queue_head_init(list);
2178 }
2179 
2180 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
2181 		struct lock_class_key *class)
2182 {
2183 	skb_queue_head_init(list);
2184 	lockdep_set_class(&list->lock, class);
2185 }
2186 
2187 /*
2188  *	Insert an sk_buff on a list.
2189  *
2190  *	The "__skb_xxxx()" functions are the non-atomic ones that
2191  *	can only be called with interrupts disabled.
2192  */
2193 static inline void __skb_insert(struct sk_buff *newsk,
2194 				struct sk_buff *prev, struct sk_buff *next,
2195 				struct sk_buff_head *list)
2196 {
2197 	/* See skb_queue_empty_lockless() and skb_peek_tail()
2198 	 * for the opposite READ_ONCE()
2199 	 */
2200 	WRITE_ONCE(newsk->next, next);
2201 	WRITE_ONCE(newsk->prev, prev);
2202 	WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk);
2203 	WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk);
2204 	WRITE_ONCE(list->qlen, list->qlen + 1);
2205 }
2206 
2207 static inline void __skb_queue_splice(const struct sk_buff_head *list,
2208 				      struct sk_buff *prev,
2209 				      struct sk_buff *next)
2210 {
2211 	struct sk_buff *first = list->next;
2212 	struct sk_buff *last = list->prev;
2213 
2214 	WRITE_ONCE(first->prev, prev);
2215 	WRITE_ONCE(prev->next, first);
2216 
2217 	WRITE_ONCE(last->next, next);
2218 	WRITE_ONCE(next->prev, last);
2219 }
2220 
2221 /**
2222  *	skb_queue_splice - join two skb lists, this is designed for stacks
2223  *	@list: the new list to add
2224  *	@head: the place to add it in the first list
2225  */
2226 static inline void skb_queue_splice(const struct sk_buff_head *list,
2227 				    struct sk_buff_head *head)
2228 {
2229 	if (!skb_queue_empty(list)) {
2230 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2231 		head->qlen += list->qlen;
2232 	}
2233 }
2234 
2235 /**
2236  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
2237  *	@list: the new list to add
2238  *	@head: the place to add it in the first list
2239  *
2240  *	The list at @list is reinitialised
2241  */
2242 static inline void skb_queue_splice_init(struct sk_buff_head *list,
2243 					 struct sk_buff_head *head)
2244 {
2245 	if (!skb_queue_empty(list)) {
2246 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2247 		head->qlen += list->qlen;
2248 		__skb_queue_head_init(list);
2249 	}
2250 }
2251 
2252 /**
2253  *	skb_queue_splice_tail - join two skb lists, each list being a queue
2254  *	@list: the new list to add
2255  *	@head: the place to add it in the first list
2256  */
2257 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
2258 					 struct sk_buff_head *head)
2259 {
2260 	if (!skb_queue_empty(list)) {
2261 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2262 		head->qlen += list->qlen;
2263 	}
2264 }
2265 
2266 /**
2267  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
2268  *	@list: the new list to add
2269  *	@head: the place to add it in the first list
2270  *
2271  *	Each of the lists is a queue.
2272  *	The list at @list is reinitialised
2273  */
2274 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
2275 					      struct sk_buff_head *head)
2276 {
2277 	if (!skb_queue_empty(list)) {
2278 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2279 		head->qlen += list->qlen;
2280 		__skb_queue_head_init(list);
2281 	}
2282 }
2283 
2284 /**
2285  *	__skb_queue_after - queue a buffer at the list head
2286  *	@list: list to use
2287  *	@prev: place after this buffer
2288  *	@newsk: buffer to queue
2289  *
2290  *	Queue a buffer int the middle of a list. This function takes no locks
2291  *	and you must therefore hold required locks before calling it.
2292  *
2293  *	A buffer cannot be placed on two lists at the same time.
2294  */
2295 static inline void __skb_queue_after(struct sk_buff_head *list,
2296 				     struct sk_buff *prev,
2297 				     struct sk_buff *newsk)
2298 {
2299 	__skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list);
2300 }
2301 
2302 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2303 		struct sk_buff_head *list);
2304 
2305 static inline void __skb_queue_before(struct sk_buff_head *list,
2306 				      struct sk_buff *next,
2307 				      struct sk_buff *newsk)
2308 {
2309 	__skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list);
2310 }
2311 
2312 /**
2313  *	__skb_queue_head - queue a buffer at the list head
2314  *	@list: list to use
2315  *	@newsk: buffer to queue
2316  *
2317  *	Queue a buffer at the start of a list. This function takes no locks
2318  *	and you must therefore hold required locks before calling it.
2319  *
2320  *	A buffer cannot be placed on two lists at the same time.
2321  */
2322 static inline void __skb_queue_head(struct sk_buff_head *list,
2323 				    struct sk_buff *newsk)
2324 {
2325 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
2326 }
2327 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2328 
2329 /**
2330  *	__skb_queue_tail - queue a buffer at the list tail
2331  *	@list: list to use
2332  *	@newsk: buffer to queue
2333  *
2334  *	Queue a buffer at the end of a list. This function takes no locks
2335  *	and you must therefore hold required locks before calling it.
2336  *
2337  *	A buffer cannot be placed on two lists at the same time.
2338  */
2339 static inline void __skb_queue_tail(struct sk_buff_head *list,
2340 				   struct sk_buff *newsk)
2341 {
2342 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
2343 }
2344 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2345 
2346 /*
2347  * remove sk_buff from list. _Must_ be called atomically, and with
2348  * the list known..
2349  */
2350 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
2351 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2352 {
2353 	struct sk_buff *next, *prev;
2354 
2355 	WRITE_ONCE(list->qlen, list->qlen - 1);
2356 	next	   = skb->next;
2357 	prev	   = skb->prev;
2358 	skb->next  = skb->prev = NULL;
2359 	WRITE_ONCE(next->prev, prev);
2360 	WRITE_ONCE(prev->next, next);
2361 }
2362 
2363 /**
2364  *	__skb_dequeue - remove from the head of the queue
2365  *	@list: list to dequeue from
2366  *
2367  *	Remove the head of the list. This function does not take any locks
2368  *	so must be used with appropriate locks held only. The head item is
2369  *	returned or %NULL if the list is empty.
2370  */
2371 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2372 {
2373 	struct sk_buff *skb = skb_peek(list);
2374 	if (skb)
2375 		__skb_unlink(skb, list);
2376 	return skb;
2377 }
2378 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2379 
2380 /**
2381  *	__skb_dequeue_tail - remove from the tail of the queue
2382  *	@list: list to dequeue from
2383  *
2384  *	Remove the tail of the list. This function does not take any locks
2385  *	so must be used with appropriate locks held only. The tail item is
2386  *	returned or %NULL if the list is empty.
2387  */
2388 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2389 {
2390 	struct sk_buff *skb = skb_peek_tail(list);
2391 	if (skb)
2392 		__skb_unlink(skb, list);
2393 	return skb;
2394 }
2395 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2396 
2397 
2398 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2399 {
2400 	return skb->data_len;
2401 }
2402 
2403 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2404 {
2405 	return skb->len - skb->data_len;
2406 }
2407 
2408 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2409 {
2410 	unsigned int i, len = 0;
2411 
2412 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2413 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2414 	return len;
2415 }
2416 
2417 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2418 {
2419 	return skb_headlen(skb) + __skb_pagelen(skb);
2420 }
2421 
2422 static inline void skb_frag_fill_page_desc(skb_frag_t *frag,
2423 					   struct page *page,
2424 					   int off, int size)
2425 {
2426 	frag->bv_page = page;
2427 	frag->bv_offset = off;
2428 	skb_frag_size_set(frag, size);
2429 }
2430 
2431 static inline void __skb_fill_page_desc_noacc(struct skb_shared_info *shinfo,
2432 					      int i, struct page *page,
2433 					      int off, int size)
2434 {
2435 	skb_frag_t *frag = &shinfo->frags[i];
2436 
2437 	skb_frag_fill_page_desc(frag, page, off, size);
2438 }
2439 
2440 /**
2441  * skb_len_add - adds a number to len fields of skb
2442  * @skb: buffer to add len to
2443  * @delta: number of bytes to add
2444  */
2445 static inline void skb_len_add(struct sk_buff *skb, int delta)
2446 {
2447 	skb->len += delta;
2448 	skb->data_len += delta;
2449 	skb->truesize += delta;
2450 }
2451 
2452 /**
2453  * __skb_fill_page_desc - initialise a paged fragment in an skb
2454  * @skb: buffer containing fragment to be initialised
2455  * @i: paged fragment index to initialise
2456  * @page: the page to use for this fragment
2457  * @off: the offset to the data with @page
2458  * @size: the length of the data
2459  *
2460  * Initialises the @i'th fragment of @skb to point to &size bytes at
2461  * offset @off within @page.
2462  *
2463  * Does not take any additional reference on the fragment.
2464  */
2465 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2466 					struct page *page, int off, int size)
2467 {
2468 	__skb_fill_page_desc_noacc(skb_shinfo(skb), i, page, off, size);
2469 
2470 	/* Propagate page pfmemalloc to the skb if we can. The problem is
2471 	 * that not all callers have unique ownership of the page but rely
2472 	 * on page_is_pfmemalloc doing the right thing(tm).
2473 	 */
2474 	page = compound_head(page);
2475 	if (page_is_pfmemalloc(page))
2476 		skb->pfmemalloc	= true;
2477 }
2478 
2479 /**
2480  * skb_fill_page_desc - initialise a paged fragment in an skb
2481  * @skb: buffer containing fragment to be initialised
2482  * @i: paged fragment index to initialise
2483  * @page: the page to use for this fragment
2484  * @off: the offset to the data with @page
2485  * @size: the length of the data
2486  *
2487  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2488  * @skb to point to @size bytes at offset @off within @page. In
2489  * addition updates @skb such that @i is the last fragment.
2490  *
2491  * Does not take any additional reference on the fragment.
2492  */
2493 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2494 				      struct page *page, int off, int size)
2495 {
2496 	__skb_fill_page_desc(skb, i, page, off, size);
2497 	skb_shinfo(skb)->nr_frags = i + 1;
2498 }
2499 
2500 /**
2501  * skb_fill_page_desc_noacc - initialise a paged fragment in an skb
2502  * @skb: buffer containing fragment to be initialised
2503  * @i: paged fragment index to initialise
2504  * @page: the page to use for this fragment
2505  * @off: the offset to the data with @page
2506  * @size: the length of the data
2507  *
2508  * Variant of skb_fill_page_desc() which does not deal with
2509  * pfmemalloc, if page is not owned by us.
2510  */
2511 static inline void skb_fill_page_desc_noacc(struct sk_buff *skb, int i,
2512 					    struct page *page, int off,
2513 					    int size)
2514 {
2515 	struct skb_shared_info *shinfo = skb_shinfo(skb);
2516 
2517 	__skb_fill_page_desc_noacc(shinfo, i, page, off, size);
2518 	shinfo->nr_frags = i + 1;
2519 }
2520 
2521 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2522 		     int size, unsigned int truesize);
2523 
2524 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2525 			  unsigned int truesize);
2526 
2527 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2528 
2529 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2530 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2531 {
2532 	return skb->head + skb->tail;
2533 }
2534 
2535 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2536 {
2537 	skb->tail = skb->data - skb->head;
2538 }
2539 
2540 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2541 {
2542 	skb_reset_tail_pointer(skb);
2543 	skb->tail += offset;
2544 }
2545 
2546 #else /* NET_SKBUFF_DATA_USES_OFFSET */
2547 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2548 {
2549 	return skb->tail;
2550 }
2551 
2552 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2553 {
2554 	skb->tail = skb->data;
2555 }
2556 
2557 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2558 {
2559 	skb->tail = skb->data + offset;
2560 }
2561 
2562 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2563 
2564 static inline void skb_assert_len(struct sk_buff *skb)
2565 {
2566 #ifdef CONFIG_DEBUG_NET
2567 	if (WARN_ONCE(!skb->len, "%s\n", __func__))
2568 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
2569 #endif /* CONFIG_DEBUG_NET */
2570 }
2571 
2572 /*
2573  *	Add data to an sk_buff
2574  */
2575 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2576 void *skb_put(struct sk_buff *skb, unsigned int len);
2577 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2578 {
2579 	void *tmp = skb_tail_pointer(skb);
2580 	SKB_LINEAR_ASSERT(skb);
2581 	skb->tail += len;
2582 	skb->len  += len;
2583 	return tmp;
2584 }
2585 
2586 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2587 {
2588 	void *tmp = __skb_put(skb, len);
2589 
2590 	memset(tmp, 0, len);
2591 	return tmp;
2592 }
2593 
2594 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2595 				   unsigned int len)
2596 {
2597 	void *tmp = __skb_put(skb, len);
2598 
2599 	memcpy(tmp, data, len);
2600 	return tmp;
2601 }
2602 
2603 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2604 {
2605 	*(u8 *)__skb_put(skb, 1) = val;
2606 }
2607 
2608 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2609 {
2610 	void *tmp = skb_put(skb, len);
2611 
2612 	memset(tmp, 0, len);
2613 
2614 	return tmp;
2615 }
2616 
2617 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2618 				 unsigned int len)
2619 {
2620 	void *tmp = skb_put(skb, len);
2621 
2622 	memcpy(tmp, data, len);
2623 
2624 	return tmp;
2625 }
2626 
2627 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2628 {
2629 	*(u8 *)skb_put(skb, 1) = val;
2630 }
2631 
2632 void *skb_push(struct sk_buff *skb, unsigned int len);
2633 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2634 {
2635 	skb->data -= len;
2636 	skb->len  += len;
2637 	return skb->data;
2638 }
2639 
2640 void *skb_pull(struct sk_buff *skb, unsigned int len);
2641 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2642 {
2643 	skb->len -= len;
2644 	if (unlikely(skb->len < skb->data_len)) {
2645 #if defined(CONFIG_DEBUG_NET)
2646 		skb->len += len;
2647 		pr_err("__skb_pull(len=%u)\n", len);
2648 		skb_dump(KERN_ERR, skb, false);
2649 #endif
2650 		BUG();
2651 	}
2652 	return skb->data += len;
2653 }
2654 
2655 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2656 {
2657 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2658 }
2659 
2660 void *skb_pull_data(struct sk_buff *skb, size_t len);
2661 
2662 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2663 
2664 static inline enum skb_drop_reason
2665 pskb_may_pull_reason(struct sk_buff *skb, unsigned int len)
2666 {
2667 	if (likely(len <= skb_headlen(skb)))
2668 		return SKB_NOT_DROPPED_YET;
2669 
2670 	if (unlikely(len > skb->len))
2671 		return SKB_DROP_REASON_PKT_TOO_SMALL;
2672 
2673 	if (unlikely(!__pskb_pull_tail(skb, len - skb_headlen(skb))))
2674 		return SKB_DROP_REASON_NOMEM;
2675 
2676 	return SKB_NOT_DROPPED_YET;
2677 }
2678 
2679 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2680 {
2681 	return pskb_may_pull_reason(skb, len) == SKB_NOT_DROPPED_YET;
2682 }
2683 
2684 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2685 {
2686 	if (!pskb_may_pull(skb, len))
2687 		return NULL;
2688 
2689 	skb->len -= len;
2690 	return skb->data += len;
2691 }
2692 
2693 void skb_condense(struct sk_buff *skb);
2694 
2695 /**
2696  *	skb_headroom - bytes at buffer head
2697  *	@skb: buffer to check
2698  *
2699  *	Return the number of bytes of free space at the head of an &sk_buff.
2700  */
2701 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2702 {
2703 	return skb->data - skb->head;
2704 }
2705 
2706 /**
2707  *	skb_tailroom - bytes at buffer end
2708  *	@skb: buffer to check
2709  *
2710  *	Return the number of bytes of free space at the tail of an sk_buff
2711  */
2712 static inline int skb_tailroom(const struct sk_buff *skb)
2713 {
2714 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2715 }
2716 
2717 /**
2718  *	skb_availroom - bytes at buffer end
2719  *	@skb: buffer to check
2720  *
2721  *	Return the number of bytes of free space at the tail of an sk_buff
2722  *	allocated by sk_stream_alloc()
2723  */
2724 static inline int skb_availroom(const struct sk_buff *skb)
2725 {
2726 	if (skb_is_nonlinear(skb))
2727 		return 0;
2728 
2729 	return skb->end - skb->tail - skb->reserved_tailroom;
2730 }
2731 
2732 /**
2733  *	skb_reserve - adjust headroom
2734  *	@skb: buffer to alter
2735  *	@len: bytes to move
2736  *
2737  *	Increase the headroom of an empty &sk_buff by reducing the tail
2738  *	room. This is only allowed for an empty buffer.
2739  */
2740 static inline void skb_reserve(struct sk_buff *skb, int len)
2741 {
2742 	skb->data += len;
2743 	skb->tail += len;
2744 }
2745 
2746 /**
2747  *	skb_tailroom_reserve - adjust reserved_tailroom
2748  *	@skb: buffer to alter
2749  *	@mtu: maximum amount of headlen permitted
2750  *	@needed_tailroom: minimum amount of reserved_tailroom
2751  *
2752  *	Set reserved_tailroom so that headlen can be as large as possible but
2753  *	not larger than mtu and tailroom cannot be smaller than
2754  *	needed_tailroom.
2755  *	The required headroom should already have been reserved before using
2756  *	this function.
2757  */
2758 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2759 					unsigned int needed_tailroom)
2760 {
2761 	SKB_LINEAR_ASSERT(skb);
2762 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2763 		/* use at most mtu */
2764 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2765 	else
2766 		/* use up to all available space */
2767 		skb->reserved_tailroom = needed_tailroom;
2768 }
2769 
2770 #define ENCAP_TYPE_ETHER	0
2771 #define ENCAP_TYPE_IPPROTO	1
2772 
2773 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2774 					  __be16 protocol)
2775 {
2776 	skb->inner_protocol = protocol;
2777 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2778 }
2779 
2780 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2781 					 __u8 ipproto)
2782 {
2783 	skb->inner_ipproto = ipproto;
2784 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2785 }
2786 
2787 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2788 {
2789 	skb->inner_mac_header = skb->mac_header;
2790 	skb->inner_network_header = skb->network_header;
2791 	skb->inner_transport_header = skb->transport_header;
2792 }
2793 
2794 static inline void skb_reset_mac_len(struct sk_buff *skb)
2795 {
2796 	skb->mac_len = skb->network_header - skb->mac_header;
2797 }
2798 
2799 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2800 							*skb)
2801 {
2802 	return skb->head + skb->inner_transport_header;
2803 }
2804 
2805 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2806 {
2807 	return skb_inner_transport_header(skb) - skb->data;
2808 }
2809 
2810 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2811 {
2812 	skb->inner_transport_header = skb->data - skb->head;
2813 }
2814 
2815 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2816 						   const int offset)
2817 {
2818 	skb_reset_inner_transport_header(skb);
2819 	skb->inner_transport_header += offset;
2820 }
2821 
2822 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2823 {
2824 	return skb->head + skb->inner_network_header;
2825 }
2826 
2827 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2828 {
2829 	skb->inner_network_header = skb->data - skb->head;
2830 }
2831 
2832 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2833 						const int offset)
2834 {
2835 	skb_reset_inner_network_header(skb);
2836 	skb->inner_network_header += offset;
2837 }
2838 
2839 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2840 {
2841 	return skb->head + skb->inner_mac_header;
2842 }
2843 
2844 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2845 {
2846 	skb->inner_mac_header = skb->data - skb->head;
2847 }
2848 
2849 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2850 					    const int offset)
2851 {
2852 	skb_reset_inner_mac_header(skb);
2853 	skb->inner_mac_header += offset;
2854 }
2855 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2856 {
2857 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2858 }
2859 
2860 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2861 {
2862 	DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb));
2863 	return skb->head + skb->transport_header;
2864 }
2865 
2866 static inline void skb_reset_transport_header(struct sk_buff *skb)
2867 {
2868 	skb->transport_header = skb->data - skb->head;
2869 }
2870 
2871 static inline void skb_set_transport_header(struct sk_buff *skb,
2872 					    const int offset)
2873 {
2874 	skb_reset_transport_header(skb);
2875 	skb->transport_header += offset;
2876 }
2877 
2878 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2879 {
2880 	return skb->head + skb->network_header;
2881 }
2882 
2883 static inline void skb_reset_network_header(struct sk_buff *skb)
2884 {
2885 	skb->network_header = skb->data - skb->head;
2886 }
2887 
2888 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2889 {
2890 	skb_reset_network_header(skb);
2891 	skb->network_header += offset;
2892 }
2893 
2894 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2895 {
2896 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2897 }
2898 
2899 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2900 {
2901 	DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
2902 	return skb->head + skb->mac_header;
2903 }
2904 
2905 static inline int skb_mac_offset(const struct sk_buff *skb)
2906 {
2907 	return skb_mac_header(skb) - skb->data;
2908 }
2909 
2910 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2911 {
2912 	DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
2913 	return skb->network_header - skb->mac_header;
2914 }
2915 
2916 static inline void skb_unset_mac_header(struct sk_buff *skb)
2917 {
2918 	skb->mac_header = (typeof(skb->mac_header))~0U;
2919 }
2920 
2921 static inline void skb_reset_mac_header(struct sk_buff *skb)
2922 {
2923 	skb->mac_header = skb->data - skb->head;
2924 }
2925 
2926 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2927 {
2928 	skb_reset_mac_header(skb);
2929 	skb->mac_header += offset;
2930 }
2931 
2932 static inline void skb_pop_mac_header(struct sk_buff *skb)
2933 {
2934 	skb->mac_header = skb->network_header;
2935 }
2936 
2937 static inline void skb_probe_transport_header(struct sk_buff *skb)
2938 {
2939 	struct flow_keys_basic keys;
2940 
2941 	if (skb_transport_header_was_set(skb))
2942 		return;
2943 
2944 	if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2945 					     NULL, 0, 0, 0, 0))
2946 		skb_set_transport_header(skb, keys.control.thoff);
2947 }
2948 
2949 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2950 {
2951 	if (skb_mac_header_was_set(skb)) {
2952 		const unsigned char *old_mac = skb_mac_header(skb);
2953 
2954 		skb_set_mac_header(skb, -skb->mac_len);
2955 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2956 	}
2957 }
2958 
2959 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2960 {
2961 	return skb->csum_start - skb_headroom(skb);
2962 }
2963 
2964 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2965 {
2966 	return skb->head + skb->csum_start;
2967 }
2968 
2969 static inline int skb_transport_offset(const struct sk_buff *skb)
2970 {
2971 	return skb_transport_header(skb) - skb->data;
2972 }
2973 
2974 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2975 {
2976 	return skb->transport_header - skb->network_header;
2977 }
2978 
2979 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2980 {
2981 	return skb->inner_transport_header - skb->inner_network_header;
2982 }
2983 
2984 static inline int skb_network_offset(const struct sk_buff *skb)
2985 {
2986 	return skb_network_header(skb) - skb->data;
2987 }
2988 
2989 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2990 {
2991 	return skb_inner_network_header(skb) - skb->data;
2992 }
2993 
2994 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2995 {
2996 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
2997 }
2998 
2999 /*
3000  * CPUs often take a performance hit when accessing unaligned memory
3001  * locations. The actual performance hit varies, it can be small if the
3002  * hardware handles it or large if we have to take an exception and fix it
3003  * in software.
3004  *
3005  * Since an ethernet header is 14 bytes network drivers often end up with
3006  * the IP header at an unaligned offset. The IP header can be aligned by
3007  * shifting the start of the packet by 2 bytes. Drivers should do this
3008  * with:
3009  *
3010  * skb_reserve(skb, NET_IP_ALIGN);
3011  *
3012  * The downside to this alignment of the IP header is that the DMA is now
3013  * unaligned. On some architectures the cost of an unaligned DMA is high
3014  * and this cost outweighs the gains made by aligning the IP header.
3015  *
3016  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
3017  * to be overridden.
3018  */
3019 #ifndef NET_IP_ALIGN
3020 #define NET_IP_ALIGN	2
3021 #endif
3022 
3023 /*
3024  * The networking layer reserves some headroom in skb data (via
3025  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
3026  * the header has to grow. In the default case, if the header has to grow
3027  * 32 bytes or less we avoid the reallocation.
3028  *
3029  * Unfortunately this headroom changes the DMA alignment of the resulting
3030  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
3031  * on some architectures. An architecture can override this value,
3032  * perhaps setting it to a cacheline in size (since that will maintain
3033  * cacheline alignment of the DMA). It must be a power of 2.
3034  *
3035  * Various parts of the networking layer expect at least 32 bytes of
3036  * headroom, you should not reduce this.
3037  *
3038  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
3039  * to reduce average number of cache lines per packet.
3040  * get_rps_cpu() for example only access one 64 bytes aligned block :
3041  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
3042  */
3043 #ifndef NET_SKB_PAD
3044 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
3045 #endif
3046 
3047 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
3048 
3049 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
3050 {
3051 	if (WARN_ON(skb_is_nonlinear(skb)))
3052 		return;
3053 	skb->len = len;
3054 	skb_set_tail_pointer(skb, len);
3055 }
3056 
3057 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
3058 {
3059 	__skb_set_length(skb, len);
3060 }
3061 
3062 void skb_trim(struct sk_buff *skb, unsigned int len);
3063 
3064 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
3065 {
3066 	if (skb->data_len)
3067 		return ___pskb_trim(skb, len);
3068 	__skb_trim(skb, len);
3069 	return 0;
3070 }
3071 
3072 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
3073 {
3074 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
3075 }
3076 
3077 /**
3078  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
3079  *	@skb: buffer to alter
3080  *	@len: new length
3081  *
3082  *	This is identical to pskb_trim except that the caller knows that
3083  *	the skb is not cloned so we should never get an error due to out-
3084  *	of-memory.
3085  */
3086 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
3087 {
3088 	int err = pskb_trim(skb, len);
3089 	BUG_ON(err);
3090 }
3091 
3092 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
3093 {
3094 	unsigned int diff = len - skb->len;
3095 
3096 	if (skb_tailroom(skb) < diff) {
3097 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
3098 					   GFP_ATOMIC);
3099 		if (ret)
3100 			return ret;
3101 	}
3102 	__skb_set_length(skb, len);
3103 	return 0;
3104 }
3105 
3106 /**
3107  *	skb_orphan - orphan a buffer
3108  *	@skb: buffer to orphan
3109  *
3110  *	If a buffer currently has an owner then we call the owner's
3111  *	destructor function and make the @skb unowned. The buffer continues
3112  *	to exist but is no longer charged to its former owner.
3113  */
3114 static inline void skb_orphan(struct sk_buff *skb)
3115 {
3116 	if (skb->destructor) {
3117 		skb->destructor(skb);
3118 		skb->destructor = NULL;
3119 		skb->sk		= NULL;
3120 	} else {
3121 		BUG_ON(skb->sk);
3122 	}
3123 }
3124 
3125 /**
3126  *	skb_orphan_frags - orphan the frags contained in a buffer
3127  *	@skb: buffer to orphan frags from
3128  *	@gfp_mask: allocation mask for replacement pages
3129  *
3130  *	For each frag in the SKB which needs a destructor (i.e. has an
3131  *	owner) create a copy of that frag and release the original
3132  *	page by calling the destructor.
3133  */
3134 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
3135 {
3136 	if (likely(!skb_zcopy(skb)))
3137 		return 0;
3138 	if (skb_shinfo(skb)->flags & SKBFL_DONT_ORPHAN)
3139 		return 0;
3140 	return skb_copy_ubufs(skb, gfp_mask);
3141 }
3142 
3143 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
3144 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
3145 {
3146 	if (likely(!skb_zcopy(skb)))
3147 		return 0;
3148 	return skb_copy_ubufs(skb, gfp_mask);
3149 }
3150 
3151 /**
3152  *	__skb_queue_purge_reason - empty a list
3153  *	@list: list to empty
3154  *	@reason: drop reason
3155  *
3156  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3157  *	the list and one reference dropped. This function does not take the
3158  *	list lock and the caller must hold the relevant locks to use it.
3159  */
3160 static inline void __skb_queue_purge_reason(struct sk_buff_head *list,
3161 					    enum skb_drop_reason reason)
3162 {
3163 	struct sk_buff *skb;
3164 
3165 	while ((skb = __skb_dequeue(list)) != NULL)
3166 		kfree_skb_reason(skb, reason);
3167 }
3168 
3169 static inline void __skb_queue_purge(struct sk_buff_head *list)
3170 {
3171 	__skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE);
3172 }
3173 
3174 void skb_queue_purge_reason(struct sk_buff_head *list,
3175 			    enum skb_drop_reason reason);
3176 
3177 static inline void skb_queue_purge(struct sk_buff_head *list)
3178 {
3179 	skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE);
3180 }
3181 
3182 unsigned int skb_rbtree_purge(struct rb_root *root);
3183 void skb_errqueue_purge(struct sk_buff_head *list);
3184 
3185 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3186 
3187 /**
3188  * netdev_alloc_frag - allocate a page fragment
3189  * @fragsz: fragment size
3190  *
3191  * Allocates a frag from a page for receive buffer.
3192  * Uses GFP_ATOMIC allocations.
3193  */
3194 static inline void *netdev_alloc_frag(unsigned int fragsz)
3195 {
3196 	return __netdev_alloc_frag_align(fragsz, ~0u);
3197 }
3198 
3199 static inline void *netdev_alloc_frag_align(unsigned int fragsz,
3200 					    unsigned int align)
3201 {
3202 	WARN_ON_ONCE(!is_power_of_2(align));
3203 	return __netdev_alloc_frag_align(fragsz, -align);
3204 }
3205 
3206 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
3207 				   gfp_t gfp_mask);
3208 
3209 /**
3210  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
3211  *	@dev: network device to receive on
3212  *	@length: length to allocate
3213  *
3214  *	Allocate a new &sk_buff and assign it a usage count of one. The
3215  *	buffer has unspecified headroom built in. Users should allocate
3216  *	the headroom they think they need without accounting for the
3217  *	built in space. The built in space is used for optimisations.
3218  *
3219  *	%NULL is returned if there is no free memory. Although this function
3220  *	allocates memory it can be called from an interrupt.
3221  */
3222 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
3223 					       unsigned int length)
3224 {
3225 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
3226 }
3227 
3228 /* legacy helper around __netdev_alloc_skb() */
3229 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
3230 					      gfp_t gfp_mask)
3231 {
3232 	return __netdev_alloc_skb(NULL, length, gfp_mask);
3233 }
3234 
3235 /* legacy helper around netdev_alloc_skb() */
3236 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
3237 {
3238 	return netdev_alloc_skb(NULL, length);
3239 }
3240 
3241 
3242 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
3243 		unsigned int length, gfp_t gfp)
3244 {
3245 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
3246 
3247 	if (NET_IP_ALIGN && skb)
3248 		skb_reserve(skb, NET_IP_ALIGN);
3249 	return skb;
3250 }
3251 
3252 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
3253 		unsigned int length)
3254 {
3255 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
3256 }
3257 
3258 static inline void skb_free_frag(void *addr)
3259 {
3260 	page_frag_free(addr);
3261 }
3262 
3263 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3264 
3265 static inline void *napi_alloc_frag(unsigned int fragsz)
3266 {
3267 	return __napi_alloc_frag_align(fragsz, ~0u);
3268 }
3269 
3270 static inline void *napi_alloc_frag_align(unsigned int fragsz,
3271 					  unsigned int align)
3272 {
3273 	WARN_ON_ONCE(!is_power_of_2(align));
3274 	return __napi_alloc_frag_align(fragsz, -align);
3275 }
3276 
3277 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
3278 				 unsigned int length, gfp_t gfp_mask);
3279 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
3280 					     unsigned int length)
3281 {
3282 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
3283 }
3284 void napi_consume_skb(struct sk_buff *skb, int budget);
3285 
3286 void napi_skb_free_stolen_head(struct sk_buff *skb);
3287 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason);
3288 
3289 /**
3290  * __dev_alloc_pages - allocate page for network Rx
3291  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3292  * @order: size of the allocation
3293  *
3294  * Allocate a new page.
3295  *
3296  * %NULL is returned if there is no free memory.
3297 */
3298 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
3299 					     unsigned int order)
3300 {
3301 	/* This piece of code contains several assumptions.
3302 	 * 1.  This is for device Rx, therefor a cold page is preferred.
3303 	 * 2.  The expectation is the user wants a compound page.
3304 	 * 3.  If requesting a order 0 page it will not be compound
3305 	 *     due to the check to see if order has a value in prep_new_page
3306 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
3307 	 *     code in gfp_to_alloc_flags that should be enforcing this.
3308 	 */
3309 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
3310 
3311 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
3312 }
3313 
3314 static inline struct page *dev_alloc_pages(unsigned int order)
3315 {
3316 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
3317 }
3318 
3319 /**
3320  * __dev_alloc_page - allocate a page for network Rx
3321  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3322  *
3323  * Allocate a new page.
3324  *
3325  * %NULL is returned if there is no free memory.
3326  */
3327 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
3328 {
3329 	return __dev_alloc_pages(gfp_mask, 0);
3330 }
3331 
3332 static inline struct page *dev_alloc_page(void)
3333 {
3334 	return dev_alloc_pages(0);
3335 }
3336 
3337 /**
3338  * dev_page_is_reusable - check whether a page can be reused for network Rx
3339  * @page: the page to test
3340  *
3341  * A page shouldn't be considered for reusing/recycling if it was allocated
3342  * under memory pressure or at a distant memory node.
3343  *
3344  * Returns false if this page should be returned to page allocator, true
3345  * otherwise.
3346  */
3347 static inline bool dev_page_is_reusable(const struct page *page)
3348 {
3349 	return likely(page_to_nid(page) == numa_mem_id() &&
3350 		      !page_is_pfmemalloc(page));
3351 }
3352 
3353 /**
3354  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
3355  *	@page: The page that was allocated from skb_alloc_page
3356  *	@skb: The skb that may need pfmemalloc set
3357  */
3358 static inline void skb_propagate_pfmemalloc(const struct page *page,
3359 					    struct sk_buff *skb)
3360 {
3361 	if (page_is_pfmemalloc(page))
3362 		skb->pfmemalloc = true;
3363 }
3364 
3365 /**
3366  * skb_frag_off() - Returns the offset of a skb fragment
3367  * @frag: the paged fragment
3368  */
3369 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
3370 {
3371 	return frag->bv_offset;
3372 }
3373 
3374 /**
3375  * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
3376  * @frag: skb fragment
3377  * @delta: value to add
3378  */
3379 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
3380 {
3381 	frag->bv_offset += delta;
3382 }
3383 
3384 /**
3385  * skb_frag_off_set() - Sets the offset of a skb fragment
3386  * @frag: skb fragment
3387  * @offset: offset of fragment
3388  */
3389 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
3390 {
3391 	frag->bv_offset = offset;
3392 }
3393 
3394 /**
3395  * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
3396  * @fragto: skb fragment where offset is set
3397  * @fragfrom: skb fragment offset is copied from
3398  */
3399 static inline void skb_frag_off_copy(skb_frag_t *fragto,
3400 				     const skb_frag_t *fragfrom)
3401 {
3402 	fragto->bv_offset = fragfrom->bv_offset;
3403 }
3404 
3405 /**
3406  * skb_frag_page - retrieve the page referred to by a paged fragment
3407  * @frag: the paged fragment
3408  *
3409  * Returns the &struct page associated with @frag.
3410  */
3411 static inline struct page *skb_frag_page(const skb_frag_t *frag)
3412 {
3413 	return frag->bv_page;
3414 }
3415 
3416 /**
3417  * __skb_frag_ref - take an addition reference on a paged fragment.
3418  * @frag: the paged fragment
3419  *
3420  * Takes an additional reference on the paged fragment @frag.
3421  */
3422 static inline void __skb_frag_ref(skb_frag_t *frag)
3423 {
3424 	get_page(skb_frag_page(frag));
3425 }
3426 
3427 /**
3428  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
3429  * @skb: the buffer
3430  * @f: the fragment offset.
3431  *
3432  * Takes an additional reference on the @f'th paged fragment of @skb.
3433  */
3434 static inline void skb_frag_ref(struct sk_buff *skb, int f)
3435 {
3436 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
3437 }
3438 
3439 bool napi_pp_put_page(struct page *page, bool napi_safe);
3440 
3441 static inline void
3442 napi_frag_unref(skb_frag_t *frag, bool recycle, bool napi_safe)
3443 {
3444 	struct page *page = skb_frag_page(frag);
3445 
3446 #ifdef CONFIG_PAGE_POOL
3447 	if (recycle && napi_pp_put_page(page, napi_safe))
3448 		return;
3449 #endif
3450 	put_page(page);
3451 }
3452 
3453 /**
3454  * __skb_frag_unref - release a reference on a paged fragment.
3455  * @frag: the paged fragment
3456  * @recycle: recycle the page if allocated via page_pool
3457  *
3458  * Releases a reference on the paged fragment @frag
3459  * or recycles the page via the page_pool API.
3460  */
3461 static inline void __skb_frag_unref(skb_frag_t *frag, bool recycle)
3462 {
3463 	napi_frag_unref(frag, recycle, false);
3464 }
3465 
3466 /**
3467  * skb_frag_unref - release a reference on a paged fragment of an skb.
3468  * @skb: the buffer
3469  * @f: the fragment offset
3470  *
3471  * Releases a reference on the @f'th paged fragment of @skb.
3472  */
3473 static inline void skb_frag_unref(struct sk_buff *skb, int f)
3474 {
3475 	struct skb_shared_info *shinfo = skb_shinfo(skb);
3476 
3477 	if (!skb_zcopy_managed(skb))
3478 		__skb_frag_unref(&shinfo->frags[f], skb->pp_recycle);
3479 }
3480 
3481 /**
3482  * skb_frag_address - gets the address of the data contained in a paged fragment
3483  * @frag: the paged fragment buffer
3484  *
3485  * Returns the address of the data within @frag. The page must already
3486  * be mapped.
3487  */
3488 static inline void *skb_frag_address(const skb_frag_t *frag)
3489 {
3490 	return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3491 }
3492 
3493 /**
3494  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3495  * @frag: the paged fragment buffer
3496  *
3497  * Returns the address of the data within @frag. Checks that the page
3498  * is mapped and returns %NULL otherwise.
3499  */
3500 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3501 {
3502 	void *ptr = page_address(skb_frag_page(frag));
3503 	if (unlikely(!ptr))
3504 		return NULL;
3505 
3506 	return ptr + skb_frag_off(frag);
3507 }
3508 
3509 /**
3510  * skb_frag_page_copy() - sets the page in a fragment from another fragment
3511  * @fragto: skb fragment where page is set
3512  * @fragfrom: skb fragment page is copied from
3513  */
3514 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3515 				      const skb_frag_t *fragfrom)
3516 {
3517 	fragto->bv_page = fragfrom->bv_page;
3518 }
3519 
3520 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3521 
3522 /**
3523  * skb_frag_dma_map - maps a paged fragment via the DMA API
3524  * @dev: the device to map the fragment to
3525  * @frag: the paged fragment to map
3526  * @offset: the offset within the fragment (starting at the
3527  *          fragment's own offset)
3528  * @size: the number of bytes to map
3529  * @dir: the direction of the mapping (``PCI_DMA_*``)
3530  *
3531  * Maps the page associated with @frag to @device.
3532  */
3533 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3534 					  const skb_frag_t *frag,
3535 					  size_t offset, size_t size,
3536 					  enum dma_data_direction dir)
3537 {
3538 	return dma_map_page(dev, skb_frag_page(frag),
3539 			    skb_frag_off(frag) + offset, size, dir);
3540 }
3541 
3542 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3543 					gfp_t gfp_mask)
3544 {
3545 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3546 }
3547 
3548 
3549 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3550 						  gfp_t gfp_mask)
3551 {
3552 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3553 }
3554 
3555 
3556 /**
3557  *	skb_clone_writable - is the header of a clone writable
3558  *	@skb: buffer to check
3559  *	@len: length up to which to write
3560  *
3561  *	Returns true if modifying the header part of the cloned buffer
3562  *	does not requires the data to be copied.
3563  */
3564 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3565 {
3566 	return !skb_header_cloned(skb) &&
3567 	       skb_headroom(skb) + len <= skb->hdr_len;
3568 }
3569 
3570 static inline int skb_try_make_writable(struct sk_buff *skb,
3571 					unsigned int write_len)
3572 {
3573 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3574 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3575 }
3576 
3577 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3578 			    int cloned)
3579 {
3580 	int delta = 0;
3581 
3582 	if (headroom > skb_headroom(skb))
3583 		delta = headroom - skb_headroom(skb);
3584 
3585 	if (delta || cloned)
3586 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3587 					GFP_ATOMIC);
3588 	return 0;
3589 }
3590 
3591 /**
3592  *	skb_cow - copy header of skb when it is required
3593  *	@skb: buffer to cow
3594  *	@headroom: needed headroom
3595  *
3596  *	If the skb passed lacks sufficient headroom or its data part
3597  *	is shared, data is reallocated. If reallocation fails, an error
3598  *	is returned and original skb is not changed.
3599  *
3600  *	The result is skb with writable area skb->head...skb->tail
3601  *	and at least @headroom of space at head.
3602  */
3603 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3604 {
3605 	return __skb_cow(skb, headroom, skb_cloned(skb));
3606 }
3607 
3608 /**
3609  *	skb_cow_head - skb_cow but only making the head writable
3610  *	@skb: buffer to cow
3611  *	@headroom: needed headroom
3612  *
3613  *	This function is identical to skb_cow except that we replace the
3614  *	skb_cloned check by skb_header_cloned.  It should be used when
3615  *	you only need to push on some header and do not need to modify
3616  *	the data.
3617  */
3618 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3619 {
3620 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
3621 }
3622 
3623 /**
3624  *	skb_padto	- pad an skbuff up to a minimal size
3625  *	@skb: buffer to pad
3626  *	@len: minimal length
3627  *
3628  *	Pads up a buffer to ensure the trailing bytes exist and are
3629  *	blanked. If the buffer already contains sufficient data it
3630  *	is untouched. Otherwise it is extended. Returns zero on
3631  *	success. The skb is freed on error.
3632  */
3633 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3634 {
3635 	unsigned int size = skb->len;
3636 	if (likely(size >= len))
3637 		return 0;
3638 	return skb_pad(skb, len - size);
3639 }
3640 
3641 /**
3642  *	__skb_put_padto - increase size and pad an skbuff up to a minimal size
3643  *	@skb: buffer to pad
3644  *	@len: minimal length
3645  *	@free_on_error: free buffer on error
3646  *
3647  *	Pads up a buffer to ensure the trailing bytes exist and are
3648  *	blanked. If the buffer already contains sufficient data it
3649  *	is untouched. Otherwise it is extended. Returns zero on
3650  *	success. The skb is freed on error if @free_on_error is true.
3651  */
3652 static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3653 					       unsigned int len,
3654 					       bool free_on_error)
3655 {
3656 	unsigned int size = skb->len;
3657 
3658 	if (unlikely(size < len)) {
3659 		len -= size;
3660 		if (__skb_pad(skb, len, free_on_error))
3661 			return -ENOMEM;
3662 		__skb_put(skb, len);
3663 	}
3664 	return 0;
3665 }
3666 
3667 /**
3668  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3669  *	@skb: buffer to pad
3670  *	@len: minimal length
3671  *
3672  *	Pads up a buffer to ensure the trailing bytes exist and are
3673  *	blanked. If the buffer already contains sufficient data it
3674  *	is untouched. Otherwise it is extended. Returns zero on
3675  *	success. The skb is freed on error.
3676  */
3677 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3678 {
3679 	return __skb_put_padto(skb, len, true);
3680 }
3681 
3682 bool csum_and_copy_from_iter_full(void *addr, size_t bytes, __wsum *csum, struct iov_iter *i)
3683 	__must_check;
3684 
3685 static inline int skb_add_data(struct sk_buff *skb,
3686 			       struct iov_iter *from, int copy)
3687 {
3688 	const int off = skb->len;
3689 
3690 	if (skb->ip_summed == CHECKSUM_NONE) {
3691 		__wsum csum = 0;
3692 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3693 					         &csum, from)) {
3694 			skb->csum = csum_block_add(skb->csum, csum, off);
3695 			return 0;
3696 		}
3697 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3698 		return 0;
3699 
3700 	__skb_trim(skb, off);
3701 	return -EFAULT;
3702 }
3703 
3704 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3705 				    const struct page *page, int off)
3706 {
3707 	if (skb_zcopy(skb))
3708 		return false;
3709 	if (i) {
3710 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3711 
3712 		return page == skb_frag_page(frag) &&
3713 		       off == skb_frag_off(frag) + skb_frag_size(frag);
3714 	}
3715 	return false;
3716 }
3717 
3718 static inline int __skb_linearize(struct sk_buff *skb)
3719 {
3720 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3721 }
3722 
3723 /**
3724  *	skb_linearize - convert paged skb to linear one
3725  *	@skb: buffer to linarize
3726  *
3727  *	If there is no free memory -ENOMEM is returned, otherwise zero
3728  *	is returned and the old skb data released.
3729  */
3730 static inline int skb_linearize(struct sk_buff *skb)
3731 {
3732 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3733 }
3734 
3735 /**
3736  * skb_has_shared_frag - can any frag be overwritten
3737  * @skb: buffer to test
3738  *
3739  * Return true if the skb has at least one frag that might be modified
3740  * by an external entity (as in vmsplice()/sendfile())
3741  */
3742 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3743 {
3744 	return skb_is_nonlinear(skb) &&
3745 	       skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3746 }
3747 
3748 /**
3749  *	skb_linearize_cow - make sure skb is linear and writable
3750  *	@skb: buffer to process
3751  *
3752  *	If there is no free memory -ENOMEM is returned, otherwise zero
3753  *	is returned and the old skb data released.
3754  */
3755 static inline int skb_linearize_cow(struct sk_buff *skb)
3756 {
3757 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3758 	       __skb_linearize(skb) : 0;
3759 }
3760 
3761 static __always_inline void
3762 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3763 		     unsigned int off)
3764 {
3765 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3766 		skb->csum = csum_block_sub(skb->csum,
3767 					   csum_partial(start, len, 0), off);
3768 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3769 		 skb_checksum_start_offset(skb) < 0)
3770 		skb->ip_summed = CHECKSUM_NONE;
3771 }
3772 
3773 /**
3774  *	skb_postpull_rcsum - update checksum for received skb after pull
3775  *	@skb: buffer to update
3776  *	@start: start of data before pull
3777  *	@len: length of data pulled
3778  *
3779  *	After doing a pull on a received packet, you need to call this to
3780  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3781  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3782  */
3783 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3784 				      const void *start, unsigned int len)
3785 {
3786 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3787 		skb->csum = wsum_negate(csum_partial(start, len,
3788 						     wsum_negate(skb->csum)));
3789 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3790 		 skb_checksum_start_offset(skb) < 0)
3791 		skb->ip_summed = CHECKSUM_NONE;
3792 }
3793 
3794 static __always_inline void
3795 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3796 		     unsigned int off)
3797 {
3798 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3799 		skb->csum = csum_block_add(skb->csum,
3800 					   csum_partial(start, len, 0), off);
3801 }
3802 
3803 /**
3804  *	skb_postpush_rcsum - update checksum for received skb after push
3805  *	@skb: buffer to update
3806  *	@start: start of data after push
3807  *	@len: length of data pushed
3808  *
3809  *	After doing a push on a received packet, you need to call this to
3810  *	update the CHECKSUM_COMPLETE checksum.
3811  */
3812 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3813 				      const void *start, unsigned int len)
3814 {
3815 	__skb_postpush_rcsum(skb, start, len, 0);
3816 }
3817 
3818 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3819 
3820 /**
3821  *	skb_push_rcsum - push skb and update receive checksum
3822  *	@skb: buffer to update
3823  *	@len: length of data pulled
3824  *
3825  *	This function performs an skb_push on the packet and updates
3826  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3827  *	receive path processing instead of skb_push unless you know
3828  *	that the checksum difference is zero (e.g., a valid IP header)
3829  *	or you are setting ip_summed to CHECKSUM_NONE.
3830  */
3831 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3832 {
3833 	skb_push(skb, len);
3834 	skb_postpush_rcsum(skb, skb->data, len);
3835 	return skb->data;
3836 }
3837 
3838 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3839 /**
3840  *	pskb_trim_rcsum - trim received skb and update checksum
3841  *	@skb: buffer to trim
3842  *	@len: new length
3843  *
3844  *	This is exactly the same as pskb_trim except that it ensures the
3845  *	checksum of received packets are still valid after the operation.
3846  *	It can change skb pointers.
3847  */
3848 
3849 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3850 {
3851 	if (likely(len >= skb->len))
3852 		return 0;
3853 	return pskb_trim_rcsum_slow(skb, len);
3854 }
3855 
3856 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3857 {
3858 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3859 		skb->ip_summed = CHECKSUM_NONE;
3860 	__skb_trim(skb, len);
3861 	return 0;
3862 }
3863 
3864 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3865 {
3866 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3867 		skb->ip_summed = CHECKSUM_NONE;
3868 	return __skb_grow(skb, len);
3869 }
3870 
3871 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3872 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3873 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3874 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3875 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3876 
3877 #define skb_queue_walk(queue, skb) \
3878 		for (skb = (queue)->next;					\
3879 		     skb != (struct sk_buff *)(queue);				\
3880 		     skb = skb->next)
3881 
3882 #define skb_queue_walk_safe(queue, skb, tmp)					\
3883 		for (skb = (queue)->next, tmp = skb->next;			\
3884 		     skb != (struct sk_buff *)(queue);				\
3885 		     skb = tmp, tmp = skb->next)
3886 
3887 #define skb_queue_walk_from(queue, skb)						\
3888 		for (; skb != (struct sk_buff *)(queue);			\
3889 		     skb = skb->next)
3890 
3891 #define skb_rbtree_walk(skb, root)						\
3892 		for (skb = skb_rb_first(root); skb != NULL;			\
3893 		     skb = skb_rb_next(skb))
3894 
3895 #define skb_rbtree_walk_from(skb)						\
3896 		for (; skb != NULL;						\
3897 		     skb = skb_rb_next(skb))
3898 
3899 #define skb_rbtree_walk_from_safe(skb, tmp)					\
3900 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
3901 		     skb = tmp)
3902 
3903 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3904 		for (tmp = skb->next;						\
3905 		     skb != (struct sk_buff *)(queue);				\
3906 		     skb = tmp, tmp = skb->next)
3907 
3908 #define skb_queue_reverse_walk(queue, skb) \
3909 		for (skb = (queue)->prev;					\
3910 		     skb != (struct sk_buff *)(queue);				\
3911 		     skb = skb->prev)
3912 
3913 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3914 		for (skb = (queue)->prev, tmp = skb->prev;			\
3915 		     skb != (struct sk_buff *)(queue);				\
3916 		     skb = tmp, tmp = skb->prev)
3917 
3918 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3919 		for (tmp = skb->prev;						\
3920 		     skb != (struct sk_buff *)(queue);				\
3921 		     skb = tmp, tmp = skb->prev)
3922 
3923 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3924 {
3925 	return skb_shinfo(skb)->frag_list != NULL;
3926 }
3927 
3928 static inline void skb_frag_list_init(struct sk_buff *skb)
3929 {
3930 	skb_shinfo(skb)->frag_list = NULL;
3931 }
3932 
3933 #define skb_walk_frags(skb, iter)	\
3934 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3935 
3936 
3937 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3938 				int *err, long *timeo_p,
3939 				const struct sk_buff *skb);
3940 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3941 					  struct sk_buff_head *queue,
3942 					  unsigned int flags,
3943 					  int *off, int *err,
3944 					  struct sk_buff **last);
3945 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
3946 					struct sk_buff_head *queue,
3947 					unsigned int flags, int *off, int *err,
3948 					struct sk_buff **last);
3949 struct sk_buff *__skb_recv_datagram(struct sock *sk,
3950 				    struct sk_buff_head *sk_queue,
3951 				    unsigned int flags, int *off, int *err);
3952 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err);
3953 __poll_t datagram_poll(struct file *file, struct socket *sock,
3954 			   struct poll_table_struct *wait);
3955 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3956 			   struct iov_iter *to, int size);
3957 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3958 					struct msghdr *msg, int size)
3959 {
3960 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3961 }
3962 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3963 				   struct msghdr *msg);
3964 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3965 			   struct iov_iter *to, int len,
3966 			   struct ahash_request *hash);
3967 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3968 				 struct iov_iter *from, int len);
3969 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3970 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3971 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3972 static inline void skb_free_datagram_locked(struct sock *sk,
3973 					    struct sk_buff *skb)
3974 {
3975 	__skb_free_datagram_locked(sk, skb, 0);
3976 }
3977 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3978 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3979 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3980 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3981 			      int len);
3982 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3983 		    struct pipe_inode_info *pipe, unsigned int len,
3984 		    unsigned int flags);
3985 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3986 			 int len);
3987 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
3988 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3989 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3990 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3991 		 int len, int hlen);
3992 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3993 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3994 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3995 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3996 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
3997 				 unsigned int offset);
3998 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3999 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len);
4000 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
4001 int skb_vlan_pop(struct sk_buff *skb);
4002 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
4003 int skb_eth_pop(struct sk_buff *skb);
4004 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
4005 		 const unsigned char *src);
4006 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
4007 		  int mac_len, bool ethernet);
4008 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
4009 		 bool ethernet);
4010 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
4011 int skb_mpls_dec_ttl(struct sk_buff *skb);
4012 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
4013 			     gfp_t gfp);
4014 
4015 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
4016 {
4017 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
4018 }
4019 
4020 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
4021 {
4022 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
4023 }
4024 
4025 struct skb_checksum_ops {
4026 	__wsum (*update)(const void *mem, int len, __wsum wsum);
4027 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
4028 };
4029 
4030 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
4031 
4032 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
4033 		      __wsum csum, const struct skb_checksum_ops *ops);
4034 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
4035 		    __wsum csum);
4036 
4037 static inline void * __must_check
4038 __skb_header_pointer(const struct sk_buff *skb, int offset, int len,
4039 		     const void *data, int hlen, void *buffer)
4040 {
4041 	if (likely(hlen - offset >= len))
4042 		return (void *)data + offset;
4043 
4044 	if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0))
4045 		return NULL;
4046 
4047 	return buffer;
4048 }
4049 
4050 static inline void * __must_check
4051 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
4052 {
4053 	return __skb_header_pointer(skb, offset, len, skb->data,
4054 				    skb_headlen(skb), buffer);
4055 }
4056 
4057 static inline void * __must_check
4058 skb_pointer_if_linear(const struct sk_buff *skb, int offset, int len)
4059 {
4060 	if (likely(skb_headlen(skb) - offset >= len))
4061 		return skb->data + offset;
4062 	return NULL;
4063 }
4064 
4065 /**
4066  *	skb_needs_linearize - check if we need to linearize a given skb
4067  *			      depending on the given device features.
4068  *	@skb: socket buffer to check
4069  *	@features: net device features
4070  *
4071  *	Returns true if either:
4072  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
4073  *	2. skb is fragmented and the device does not support SG.
4074  */
4075 static inline bool skb_needs_linearize(struct sk_buff *skb,
4076 				       netdev_features_t features)
4077 {
4078 	return skb_is_nonlinear(skb) &&
4079 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
4080 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
4081 }
4082 
4083 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
4084 					     void *to,
4085 					     const unsigned int len)
4086 {
4087 	memcpy(to, skb->data, len);
4088 }
4089 
4090 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
4091 						    const int offset, void *to,
4092 						    const unsigned int len)
4093 {
4094 	memcpy(to, skb->data + offset, len);
4095 }
4096 
4097 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
4098 					   const void *from,
4099 					   const unsigned int len)
4100 {
4101 	memcpy(skb->data, from, len);
4102 }
4103 
4104 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
4105 						  const int offset,
4106 						  const void *from,
4107 						  const unsigned int len)
4108 {
4109 	memcpy(skb->data + offset, from, len);
4110 }
4111 
4112 void skb_init(void);
4113 
4114 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
4115 {
4116 	return skb->tstamp;
4117 }
4118 
4119 /**
4120  *	skb_get_timestamp - get timestamp from a skb
4121  *	@skb: skb to get stamp from
4122  *	@stamp: pointer to struct __kernel_old_timeval to store stamp in
4123  *
4124  *	Timestamps are stored in the skb as offsets to a base timestamp.
4125  *	This function converts the offset back to a struct timeval and stores
4126  *	it in stamp.
4127  */
4128 static inline void skb_get_timestamp(const struct sk_buff *skb,
4129 				     struct __kernel_old_timeval *stamp)
4130 {
4131 	*stamp = ns_to_kernel_old_timeval(skb->tstamp);
4132 }
4133 
4134 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
4135 					 struct __kernel_sock_timeval *stamp)
4136 {
4137 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4138 
4139 	stamp->tv_sec = ts.tv_sec;
4140 	stamp->tv_usec = ts.tv_nsec / 1000;
4141 }
4142 
4143 static inline void skb_get_timestampns(const struct sk_buff *skb,
4144 				       struct __kernel_old_timespec *stamp)
4145 {
4146 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4147 
4148 	stamp->tv_sec = ts.tv_sec;
4149 	stamp->tv_nsec = ts.tv_nsec;
4150 }
4151 
4152 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
4153 					   struct __kernel_timespec *stamp)
4154 {
4155 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4156 
4157 	stamp->tv_sec = ts.tv_sec;
4158 	stamp->tv_nsec = ts.tv_nsec;
4159 }
4160 
4161 static inline void __net_timestamp(struct sk_buff *skb)
4162 {
4163 	skb->tstamp = ktime_get_real();
4164 	skb->mono_delivery_time = 0;
4165 }
4166 
4167 static inline ktime_t net_timedelta(ktime_t t)
4168 {
4169 	return ktime_sub(ktime_get_real(), t);
4170 }
4171 
4172 static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt,
4173 					 bool mono)
4174 {
4175 	skb->tstamp = kt;
4176 	skb->mono_delivery_time = kt && mono;
4177 }
4178 
4179 DECLARE_STATIC_KEY_FALSE(netstamp_needed_key);
4180 
4181 /* It is used in the ingress path to clear the delivery_time.
4182  * If needed, set the skb->tstamp to the (rcv) timestamp.
4183  */
4184 static inline void skb_clear_delivery_time(struct sk_buff *skb)
4185 {
4186 	if (skb->mono_delivery_time) {
4187 		skb->mono_delivery_time = 0;
4188 		if (static_branch_unlikely(&netstamp_needed_key))
4189 			skb->tstamp = ktime_get_real();
4190 		else
4191 			skb->tstamp = 0;
4192 	}
4193 }
4194 
4195 static inline void skb_clear_tstamp(struct sk_buff *skb)
4196 {
4197 	if (skb->mono_delivery_time)
4198 		return;
4199 
4200 	skb->tstamp = 0;
4201 }
4202 
4203 static inline ktime_t skb_tstamp(const struct sk_buff *skb)
4204 {
4205 	if (skb->mono_delivery_time)
4206 		return 0;
4207 
4208 	return skb->tstamp;
4209 }
4210 
4211 static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond)
4212 {
4213 	if (!skb->mono_delivery_time && skb->tstamp)
4214 		return skb->tstamp;
4215 
4216 	if (static_branch_unlikely(&netstamp_needed_key) || cond)
4217 		return ktime_get_real();
4218 
4219 	return 0;
4220 }
4221 
4222 static inline u8 skb_metadata_len(const struct sk_buff *skb)
4223 {
4224 	return skb_shinfo(skb)->meta_len;
4225 }
4226 
4227 static inline void *skb_metadata_end(const struct sk_buff *skb)
4228 {
4229 	return skb_mac_header(skb);
4230 }
4231 
4232 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
4233 					  const struct sk_buff *skb_b,
4234 					  u8 meta_len)
4235 {
4236 	const void *a = skb_metadata_end(skb_a);
4237 	const void *b = skb_metadata_end(skb_b);
4238 	/* Using more efficient varaiant than plain call to memcmp(). */
4239 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
4240 	u64 diffs = 0;
4241 
4242 	switch (meta_len) {
4243 #define __it(x, op) (x -= sizeof(u##op))
4244 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
4245 	case 32: diffs |= __it_diff(a, b, 64);
4246 		fallthrough;
4247 	case 24: diffs |= __it_diff(a, b, 64);
4248 		fallthrough;
4249 	case 16: diffs |= __it_diff(a, b, 64);
4250 		fallthrough;
4251 	case  8: diffs |= __it_diff(a, b, 64);
4252 		break;
4253 	case 28: diffs |= __it_diff(a, b, 64);
4254 		fallthrough;
4255 	case 20: diffs |= __it_diff(a, b, 64);
4256 		fallthrough;
4257 	case 12: diffs |= __it_diff(a, b, 64);
4258 		fallthrough;
4259 	case  4: diffs |= __it_diff(a, b, 32);
4260 		break;
4261 	}
4262 	return diffs;
4263 #else
4264 	return memcmp(a - meta_len, b - meta_len, meta_len);
4265 #endif
4266 }
4267 
4268 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
4269 					const struct sk_buff *skb_b)
4270 {
4271 	u8 len_a = skb_metadata_len(skb_a);
4272 	u8 len_b = skb_metadata_len(skb_b);
4273 
4274 	if (!(len_a | len_b))
4275 		return false;
4276 
4277 	return len_a != len_b ?
4278 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
4279 }
4280 
4281 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
4282 {
4283 	skb_shinfo(skb)->meta_len = meta_len;
4284 }
4285 
4286 static inline void skb_metadata_clear(struct sk_buff *skb)
4287 {
4288 	skb_metadata_set(skb, 0);
4289 }
4290 
4291 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
4292 
4293 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
4294 
4295 void skb_clone_tx_timestamp(struct sk_buff *skb);
4296 bool skb_defer_rx_timestamp(struct sk_buff *skb);
4297 
4298 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
4299 
4300 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
4301 {
4302 }
4303 
4304 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
4305 {
4306 	return false;
4307 }
4308 
4309 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
4310 
4311 /**
4312  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
4313  *
4314  * PHY drivers may accept clones of transmitted packets for
4315  * timestamping via their phy_driver.txtstamp method. These drivers
4316  * must call this function to return the skb back to the stack with a
4317  * timestamp.
4318  *
4319  * @skb: clone of the original outgoing packet
4320  * @hwtstamps: hardware time stamps
4321  *
4322  */
4323 void skb_complete_tx_timestamp(struct sk_buff *skb,
4324 			       struct skb_shared_hwtstamps *hwtstamps);
4325 
4326 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb,
4327 		     struct skb_shared_hwtstamps *hwtstamps,
4328 		     struct sock *sk, int tstype);
4329 
4330 /**
4331  * skb_tstamp_tx - queue clone of skb with send time stamps
4332  * @orig_skb:	the original outgoing packet
4333  * @hwtstamps:	hardware time stamps, may be NULL if not available
4334  *
4335  * If the skb has a socket associated, then this function clones the
4336  * skb (thus sharing the actual data and optional structures), stores
4337  * the optional hardware time stamping information (if non NULL) or
4338  * generates a software time stamp (otherwise), then queues the clone
4339  * to the error queue of the socket.  Errors are silently ignored.
4340  */
4341 void skb_tstamp_tx(struct sk_buff *orig_skb,
4342 		   struct skb_shared_hwtstamps *hwtstamps);
4343 
4344 /**
4345  * skb_tx_timestamp() - Driver hook for transmit timestamping
4346  *
4347  * Ethernet MAC Drivers should call this function in their hard_xmit()
4348  * function immediately before giving the sk_buff to the MAC hardware.
4349  *
4350  * Specifically, one should make absolutely sure that this function is
4351  * called before TX completion of this packet can trigger.  Otherwise
4352  * the packet could potentially already be freed.
4353  *
4354  * @skb: A socket buffer.
4355  */
4356 static inline void skb_tx_timestamp(struct sk_buff *skb)
4357 {
4358 	skb_clone_tx_timestamp(skb);
4359 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
4360 		skb_tstamp_tx(skb, NULL);
4361 }
4362 
4363 /**
4364  * skb_complete_wifi_ack - deliver skb with wifi status
4365  *
4366  * @skb: the original outgoing packet
4367  * @acked: ack status
4368  *
4369  */
4370 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
4371 
4372 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
4373 __sum16 __skb_checksum_complete(struct sk_buff *skb);
4374 
4375 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
4376 {
4377 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
4378 		skb->csum_valid ||
4379 		(skb->ip_summed == CHECKSUM_PARTIAL &&
4380 		 skb_checksum_start_offset(skb) >= 0));
4381 }
4382 
4383 /**
4384  *	skb_checksum_complete - Calculate checksum of an entire packet
4385  *	@skb: packet to process
4386  *
4387  *	This function calculates the checksum over the entire packet plus
4388  *	the value of skb->csum.  The latter can be used to supply the
4389  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
4390  *	checksum.
4391  *
4392  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
4393  *	this function can be used to verify that checksum on received
4394  *	packets.  In that case the function should return zero if the
4395  *	checksum is correct.  In particular, this function will return zero
4396  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
4397  *	hardware has already verified the correctness of the checksum.
4398  */
4399 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
4400 {
4401 	return skb_csum_unnecessary(skb) ?
4402 	       0 : __skb_checksum_complete(skb);
4403 }
4404 
4405 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
4406 {
4407 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4408 		if (skb->csum_level == 0)
4409 			skb->ip_summed = CHECKSUM_NONE;
4410 		else
4411 			skb->csum_level--;
4412 	}
4413 }
4414 
4415 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
4416 {
4417 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4418 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
4419 			skb->csum_level++;
4420 	} else if (skb->ip_summed == CHECKSUM_NONE) {
4421 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4422 		skb->csum_level = 0;
4423 	}
4424 }
4425 
4426 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
4427 {
4428 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4429 		skb->ip_summed = CHECKSUM_NONE;
4430 		skb->csum_level = 0;
4431 	}
4432 }
4433 
4434 /* Check if we need to perform checksum complete validation.
4435  *
4436  * Returns true if checksum complete is needed, false otherwise
4437  * (either checksum is unnecessary or zero checksum is allowed).
4438  */
4439 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
4440 						  bool zero_okay,
4441 						  __sum16 check)
4442 {
4443 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
4444 		skb->csum_valid = 1;
4445 		__skb_decr_checksum_unnecessary(skb);
4446 		return false;
4447 	}
4448 
4449 	return true;
4450 }
4451 
4452 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
4453  * in checksum_init.
4454  */
4455 #define CHECKSUM_BREAK 76
4456 
4457 /* Unset checksum-complete
4458  *
4459  * Unset checksum complete can be done when packet is being modified
4460  * (uncompressed for instance) and checksum-complete value is
4461  * invalidated.
4462  */
4463 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
4464 {
4465 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4466 		skb->ip_summed = CHECKSUM_NONE;
4467 }
4468 
4469 /* Validate (init) checksum based on checksum complete.
4470  *
4471  * Return values:
4472  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
4473  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4474  *	checksum is stored in skb->csum for use in __skb_checksum_complete
4475  *   non-zero: value of invalid checksum
4476  *
4477  */
4478 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4479 						       bool complete,
4480 						       __wsum psum)
4481 {
4482 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
4483 		if (!csum_fold(csum_add(psum, skb->csum))) {
4484 			skb->csum_valid = 1;
4485 			return 0;
4486 		}
4487 	}
4488 
4489 	skb->csum = psum;
4490 
4491 	if (complete || skb->len <= CHECKSUM_BREAK) {
4492 		__sum16 csum;
4493 
4494 		csum = __skb_checksum_complete(skb);
4495 		skb->csum_valid = !csum;
4496 		return csum;
4497 	}
4498 
4499 	return 0;
4500 }
4501 
4502 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4503 {
4504 	return 0;
4505 }
4506 
4507 /* Perform checksum validate (init). Note that this is a macro since we only
4508  * want to calculate the pseudo header which is an input function if necessary.
4509  * First we try to validate without any computation (checksum unnecessary) and
4510  * then calculate based on checksum complete calling the function to compute
4511  * pseudo header.
4512  *
4513  * Return values:
4514  *   0: checksum is validated or try to in skb_checksum_complete
4515  *   non-zero: value of invalid checksum
4516  */
4517 #define __skb_checksum_validate(skb, proto, complete,			\
4518 				zero_okay, check, compute_pseudo)	\
4519 ({									\
4520 	__sum16 __ret = 0;						\
4521 	skb->csum_valid = 0;						\
4522 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
4523 		__ret = __skb_checksum_validate_complete(skb,		\
4524 				complete, compute_pseudo(skb, proto));	\
4525 	__ret;								\
4526 })
4527 
4528 #define skb_checksum_init(skb, proto, compute_pseudo)			\
4529 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4530 
4531 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
4532 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4533 
4534 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
4535 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4536 
4537 #define skb_checksum_validate_zero_check(skb, proto, check,		\
4538 					 compute_pseudo)		\
4539 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4540 
4541 #define skb_checksum_simple_validate(skb)				\
4542 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4543 
4544 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4545 {
4546 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4547 }
4548 
4549 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4550 {
4551 	skb->csum = ~pseudo;
4552 	skb->ip_summed = CHECKSUM_COMPLETE;
4553 }
4554 
4555 #define skb_checksum_try_convert(skb, proto, compute_pseudo)	\
4556 do {									\
4557 	if (__skb_checksum_convert_check(skb))				\
4558 		__skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4559 } while (0)
4560 
4561 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4562 					      u16 start, u16 offset)
4563 {
4564 	skb->ip_summed = CHECKSUM_PARTIAL;
4565 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4566 	skb->csum_offset = offset - start;
4567 }
4568 
4569 /* Update skbuf and packet to reflect the remote checksum offload operation.
4570  * When called, ptr indicates the starting point for skb->csum when
4571  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4572  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4573  */
4574 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4575 				       int start, int offset, bool nopartial)
4576 {
4577 	__wsum delta;
4578 
4579 	if (!nopartial) {
4580 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
4581 		return;
4582 	}
4583 
4584 	if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4585 		__skb_checksum_complete(skb);
4586 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4587 	}
4588 
4589 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
4590 
4591 	/* Adjust skb->csum since we changed the packet */
4592 	skb->csum = csum_add(skb->csum, delta);
4593 }
4594 
4595 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4596 {
4597 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4598 	return (void *)(skb->_nfct & NFCT_PTRMASK);
4599 #else
4600 	return NULL;
4601 #endif
4602 }
4603 
4604 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4605 {
4606 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4607 	return skb->_nfct;
4608 #else
4609 	return 0UL;
4610 #endif
4611 }
4612 
4613 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4614 {
4615 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4616 	skb->slow_gro |= !!nfct;
4617 	skb->_nfct = nfct;
4618 #endif
4619 }
4620 
4621 #ifdef CONFIG_SKB_EXTENSIONS
4622 enum skb_ext_id {
4623 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4624 	SKB_EXT_BRIDGE_NF,
4625 #endif
4626 #ifdef CONFIG_XFRM
4627 	SKB_EXT_SEC_PATH,
4628 #endif
4629 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4630 	TC_SKB_EXT,
4631 #endif
4632 #if IS_ENABLED(CONFIG_MPTCP)
4633 	SKB_EXT_MPTCP,
4634 #endif
4635 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4636 	SKB_EXT_MCTP,
4637 #endif
4638 	SKB_EXT_NUM, /* must be last */
4639 };
4640 
4641 /**
4642  *	struct skb_ext - sk_buff extensions
4643  *	@refcnt: 1 on allocation, deallocated on 0
4644  *	@offset: offset to add to @data to obtain extension address
4645  *	@chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4646  *	@data: start of extension data, variable sized
4647  *
4648  *	Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4649  *	to use 'u8' types while allowing up to 2kb worth of extension data.
4650  */
4651 struct skb_ext {
4652 	refcount_t refcnt;
4653 	u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4654 	u8 chunks;		/* same */
4655 	char data[] __aligned(8);
4656 };
4657 
4658 struct skb_ext *__skb_ext_alloc(gfp_t flags);
4659 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4660 		    struct skb_ext *ext);
4661 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4662 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4663 void __skb_ext_put(struct skb_ext *ext);
4664 
4665 static inline void skb_ext_put(struct sk_buff *skb)
4666 {
4667 	if (skb->active_extensions)
4668 		__skb_ext_put(skb->extensions);
4669 }
4670 
4671 static inline void __skb_ext_copy(struct sk_buff *dst,
4672 				  const struct sk_buff *src)
4673 {
4674 	dst->active_extensions = src->active_extensions;
4675 
4676 	if (src->active_extensions) {
4677 		struct skb_ext *ext = src->extensions;
4678 
4679 		refcount_inc(&ext->refcnt);
4680 		dst->extensions = ext;
4681 	}
4682 }
4683 
4684 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4685 {
4686 	skb_ext_put(dst);
4687 	__skb_ext_copy(dst, src);
4688 }
4689 
4690 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4691 {
4692 	return !!ext->offset[i];
4693 }
4694 
4695 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4696 {
4697 	return skb->active_extensions & (1 << id);
4698 }
4699 
4700 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4701 {
4702 	if (skb_ext_exist(skb, id))
4703 		__skb_ext_del(skb, id);
4704 }
4705 
4706 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4707 {
4708 	if (skb_ext_exist(skb, id)) {
4709 		struct skb_ext *ext = skb->extensions;
4710 
4711 		return (void *)ext + (ext->offset[id] << 3);
4712 	}
4713 
4714 	return NULL;
4715 }
4716 
4717 static inline void skb_ext_reset(struct sk_buff *skb)
4718 {
4719 	if (unlikely(skb->active_extensions)) {
4720 		__skb_ext_put(skb->extensions);
4721 		skb->active_extensions = 0;
4722 	}
4723 }
4724 
4725 static inline bool skb_has_extensions(struct sk_buff *skb)
4726 {
4727 	return unlikely(skb->active_extensions);
4728 }
4729 #else
4730 static inline void skb_ext_put(struct sk_buff *skb) {}
4731 static inline void skb_ext_reset(struct sk_buff *skb) {}
4732 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4733 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4734 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4735 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4736 #endif /* CONFIG_SKB_EXTENSIONS */
4737 
4738 static inline void nf_reset_ct(struct sk_buff *skb)
4739 {
4740 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4741 	nf_conntrack_put(skb_nfct(skb));
4742 	skb->_nfct = 0;
4743 #endif
4744 }
4745 
4746 static inline void nf_reset_trace(struct sk_buff *skb)
4747 {
4748 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
4749 	skb->nf_trace = 0;
4750 #endif
4751 }
4752 
4753 static inline void ipvs_reset(struct sk_buff *skb)
4754 {
4755 #if IS_ENABLED(CONFIG_IP_VS)
4756 	skb->ipvs_property = 0;
4757 #endif
4758 }
4759 
4760 /* Note: This doesn't put any conntrack info in dst. */
4761 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4762 			     bool copy)
4763 {
4764 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4765 	dst->_nfct = src->_nfct;
4766 	nf_conntrack_get(skb_nfct(src));
4767 #endif
4768 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
4769 	if (copy)
4770 		dst->nf_trace = src->nf_trace;
4771 #endif
4772 }
4773 
4774 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4775 {
4776 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4777 	nf_conntrack_put(skb_nfct(dst));
4778 #endif
4779 	dst->slow_gro = src->slow_gro;
4780 	__nf_copy(dst, src, true);
4781 }
4782 
4783 #ifdef CONFIG_NETWORK_SECMARK
4784 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4785 {
4786 	to->secmark = from->secmark;
4787 }
4788 
4789 static inline void skb_init_secmark(struct sk_buff *skb)
4790 {
4791 	skb->secmark = 0;
4792 }
4793 #else
4794 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4795 { }
4796 
4797 static inline void skb_init_secmark(struct sk_buff *skb)
4798 { }
4799 #endif
4800 
4801 static inline int secpath_exists(const struct sk_buff *skb)
4802 {
4803 #ifdef CONFIG_XFRM
4804 	return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4805 #else
4806 	return 0;
4807 #endif
4808 }
4809 
4810 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4811 {
4812 	return !skb->destructor &&
4813 		!secpath_exists(skb) &&
4814 		!skb_nfct(skb) &&
4815 		!skb->_skb_refdst &&
4816 		!skb_has_frag_list(skb);
4817 }
4818 
4819 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4820 {
4821 	skb->queue_mapping = queue_mapping;
4822 }
4823 
4824 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4825 {
4826 	return skb->queue_mapping;
4827 }
4828 
4829 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4830 {
4831 	to->queue_mapping = from->queue_mapping;
4832 }
4833 
4834 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4835 {
4836 	skb->queue_mapping = rx_queue + 1;
4837 }
4838 
4839 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4840 {
4841 	return skb->queue_mapping - 1;
4842 }
4843 
4844 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4845 {
4846 	return skb->queue_mapping != 0;
4847 }
4848 
4849 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4850 {
4851 	skb->dst_pending_confirm = val;
4852 }
4853 
4854 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4855 {
4856 	return skb->dst_pending_confirm != 0;
4857 }
4858 
4859 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4860 {
4861 #ifdef CONFIG_XFRM
4862 	return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4863 #else
4864 	return NULL;
4865 #endif
4866 }
4867 
4868 static inline bool skb_is_gso(const struct sk_buff *skb)
4869 {
4870 	return skb_shinfo(skb)->gso_size;
4871 }
4872 
4873 /* Note: Should be called only if skb_is_gso(skb) is true */
4874 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4875 {
4876 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4877 }
4878 
4879 /* Note: Should be called only if skb_is_gso(skb) is true */
4880 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4881 {
4882 	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4883 }
4884 
4885 /* Note: Should be called only if skb_is_gso(skb) is true */
4886 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4887 {
4888 	return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4889 }
4890 
4891 static inline void skb_gso_reset(struct sk_buff *skb)
4892 {
4893 	skb_shinfo(skb)->gso_size = 0;
4894 	skb_shinfo(skb)->gso_segs = 0;
4895 	skb_shinfo(skb)->gso_type = 0;
4896 }
4897 
4898 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4899 					 u16 increment)
4900 {
4901 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4902 		return;
4903 	shinfo->gso_size += increment;
4904 }
4905 
4906 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4907 					 u16 decrement)
4908 {
4909 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4910 		return;
4911 	shinfo->gso_size -= decrement;
4912 }
4913 
4914 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4915 
4916 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4917 {
4918 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
4919 	 * wanted then gso_type will be set. */
4920 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4921 
4922 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4923 	    unlikely(shinfo->gso_type == 0)) {
4924 		__skb_warn_lro_forwarding(skb);
4925 		return true;
4926 	}
4927 	return false;
4928 }
4929 
4930 static inline void skb_forward_csum(struct sk_buff *skb)
4931 {
4932 	/* Unfortunately we don't support this one.  Any brave souls? */
4933 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4934 		skb->ip_summed = CHECKSUM_NONE;
4935 }
4936 
4937 /**
4938  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4939  * @skb: skb to check
4940  *
4941  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4942  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4943  * use this helper, to document places where we make this assertion.
4944  */
4945 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4946 {
4947 	DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE);
4948 }
4949 
4950 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4951 
4952 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4953 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4954 				     unsigned int transport_len,
4955 				     __sum16(*skb_chkf)(struct sk_buff *skb));
4956 
4957 /**
4958  * skb_head_is_locked - Determine if the skb->head is locked down
4959  * @skb: skb to check
4960  *
4961  * The head on skbs build around a head frag can be removed if they are
4962  * not cloned.  This function returns true if the skb head is locked down
4963  * due to either being allocated via kmalloc, or by being a clone with
4964  * multiple references to the head.
4965  */
4966 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4967 {
4968 	return !skb->head_frag || skb_cloned(skb);
4969 }
4970 
4971 /* Local Checksum Offload.
4972  * Compute outer checksum based on the assumption that the
4973  * inner checksum will be offloaded later.
4974  * See Documentation/networking/checksum-offloads.rst for
4975  * explanation of how this works.
4976  * Fill in outer checksum adjustment (e.g. with sum of outer
4977  * pseudo-header) before calling.
4978  * Also ensure that inner checksum is in linear data area.
4979  */
4980 static inline __wsum lco_csum(struct sk_buff *skb)
4981 {
4982 	unsigned char *csum_start = skb_checksum_start(skb);
4983 	unsigned char *l4_hdr = skb_transport_header(skb);
4984 	__wsum partial;
4985 
4986 	/* Start with complement of inner checksum adjustment */
4987 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4988 						    skb->csum_offset));
4989 
4990 	/* Add in checksum of our headers (incl. outer checksum
4991 	 * adjustment filled in by caller) and return result.
4992 	 */
4993 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4994 }
4995 
4996 static inline bool skb_is_redirected(const struct sk_buff *skb)
4997 {
4998 	return skb->redirected;
4999 }
5000 
5001 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
5002 {
5003 	skb->redirected = 1;
5004 #ifdef CONFIG_NET_REDIRECT
5005 	skb->from_ingress = from_ingress;
5006 	if (skb->from_ingress)
5007 		skb_clear_tstamp(skb);
5008 #endif
5009 }
5010 
5011 static inline void skb_reset_redirect(struct sk_buff *skb)
5012 {
5013 	skb->redirected = 0;
5014 }
5015 
5016 static inline void skb_set_redirected_noclear(struct sk_buff *skb,
5017 					      bool from_ingress)
5018 {
5019 	skb->redirected = 1;
5020 #ifdef CONFIG_NET_REDIRECT
5021 	skb->from_ingress = from_ingress;
5022 #endif
5023 }
5024 
5025 static inline bool skb_csum_is_sctp(struct sk_buff *skb)
5026 {
5027 #if IS_ENABLED(CONFIG_IP_SCTP)
5028 	return skb->csum_not_inet;
5029 #else
5030 	return 0;
5031 #endif
5032 }
5033 
5034 static inline void skb_reset_csum_not_inet(struct sk_buff *skb)
5035 {
5036 	skb->ip_summed = CHECKSUM_NONE;
5037 #if IS_ENABLED(CONFIG_IP_SCTP)
5038 	skb->csum_not_inet = 0;
5039 #endif
5040 }
5041 
5042 static inline void skb_set_kcov_handle(struct sk_buff *skb,
5043 				       const u64 kcov_handle)
5044 {
5045 #ifdef CONFIG_KCOV
5046 	skb->kcov_handle = kcov_handle;
5047 #endif
5048 }
5049 
5050 static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
5051 {
5052 #ifdef CONFIG_KCOV
5053 	return skb->kcov_handle;
5054 #else
5055 	return 0;
5056 #endif
5057 }
5058 
5059 static inline void skb_mark_for_recycle(struct sk_buff *skb)
5060 {
5061 #ifdef CONFIG_PAGE_POOL
5062 	skb->pp_recycle = 1;
5063 #endif
5064 }
5065 
5066 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter,
5067 			     ssize_t maxsize, gfp_t gfp);
5068 
5069 #endif	/* __KERNEL__ */
5070 #endif	/* _LINUX_SKBUFF_H */
5071