xref: /linux-6.15/include/linux/skbuff.h (revision 9ee0034b)
1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <[email protected]>
6  *		Florian La Roche, <[email protected]>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/bug.h>
22 #include <linux/cache.h>
23 #include <linux/rbtree.h>
24 #include <linux/socket.h>
25 
26 #include <linux/atomic.h>
27 #include <asm/types.h>
28 #include <linux/spinlock.h>
29 #include <linux/net.h>
30 #include <linux/textsearch.h>
31 #include <net/checksum.h>
32 #include <linux/rcupdate.h>
33 #include <linux/hrtimer.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/netdev_features.h>
36 #include <linux/sched.h>
37 #include <net/flow_dissector.h>
38 #include <linux/splice.h>
39 #include <linux/in6.h>
40 #include <linux/if_packet.h>
41 #include <net/flow.h>
42 
43 /* The interface for checksum offload between the stack and networking drivers
44  * is as follows...
45  *
46  * A. IP checksum related features
47  *
48  * Drivers advertise checksum offload capabilities in the features of a device.
49  * From the stack's point of view these are capabilities offered by the driver,
50  * a driver typically only advertises features that it is capable of offloading
51  * to its device.
52  *
53  * The checksum related features are:
54  *
55  *	NETIF_F_HW_CSUM	- The driver (or its device) is able to compute one
56  *			  IP (one's complement) checksum for any combination
57  *			  of protocols or protocol layering. The checksum is
58  *			  computed and set in a packet per the CHECKSUM_PARTIAL
59  *			  interface (see below).
60  *
61  *	NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
62  *			  TCP or UDP packets over IPv4. These are specifically
63  *			  unencapsulated packets of the form IPv4|TCP or
64  *			  IPv4|UDP where the Protocol field in the IPv4 header
65  *			  is TCP or UDP. The IPv4 header may contain IP options
66  *			  This feature cannot be set in features for a device
67  *			  with NETIF_F_HW_CSUM also set. This feature is being
68  *			  DEPRECATED (see below).
69  *
70  *	NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
71  *			  TCP or UDP packets over IPv6. These are specifically
72  *			  unencapsulated packets of the form IPv6|TCP or
73  *			  IPv4|UDP where the Next Header field in the IPv6
74  *			  header is either TCP or UDP. IPv6 extension headers
75  *			  are not supported with this feature. This feature
76  *			  cannot be set in features for a device with
77  *			  NETIF_F_HW_CSUM also set. This feature is being
78  *			  DEPRECATED (see below).
79  *
80  *	NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
81  *			 This flag is used only used to disable the RX checksum
82  *			 feature for a device. The stack will accept receive
83  *			 checksum indication in packets received on a device
84  *			 regardless of whether NETIF_F_RXCSUM is set.
85  *
86  * B. Checksumming of received packets by device. Indication of checksum
87  *    verification is in set skb->ip_summed. Possible values are:
88  *
89  * CHECKSUM_NONE:
90  *
91  *   Device did not checksum this packet e.g. due to lack of capabilities.
92  *   The packet contains full (though not verified) checksum in packet but
93  *   not in skb->csum. Thus, skb->csum is undefined in this case.
94  *
95  * CHECKSUM_UNNECESSARY:
96  *
97  *   The hardware you're dealing with doesn't calculate the full checksum
98  *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
99  *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
100  *   if their checksums are okay. skb->csum is still undefined in this case
101  *   though. A driver or device must never modify the checksum field in the
102  *   packet even if checksum is verified.
103  *
104  *   CHECKSUM_UNNECESSARY is applicable to following protocols:
105  *     TCP: IPv6 and IPv4.
106  *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
107  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
108  *       may perform further validation in this case.
109  *     GRE: only if the checksum is present in the header.
110  *     SCTP: indicates the CRC in SCTP header has been validated.
111  *
112  *   skb->csum_level indicates the number of consecutive checksums found in
113  *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
114  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
115  *   and a device is able to verify the checksums for UDP (possibly zero),
116  *   GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
117  *   two. If the device were only able to verify the UDP checksum and not
118  *   GRE, either because it doesn't support GRE checksum of because GRE
119  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
120  *   not considered in this case).
121  *
122  * CHECKSUM_COMPLETE:
123  *
124  *   This is the most generic way. The device supplied checksum of the _whole_
125  *   packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
126  *   hardware doesn't need to parse L3/L4 headers to implement this.
127  *
128  *   Note: Even if device supports only some protocols, but is able to produce
129  *   skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
130  *
131  * CHECKSUM_PARTIAL:
132  *
133  *   A checksum is set up to be offloaded to a device as described in the
134  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
135  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
136  *   on the same host, or it may be set in the input path in GRO or remote
137  *   checksum offload. For the purposes of checksum verification, the checksum
138  *   referred to by skb->csum_start + skb->csum_offset and any preceding
139  *   checksums in the packet are considered verified. Any checksums in the
140  *   packet that are after the checksum being offloaded are not considered to
141  *   be verified.
142  *
143  * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
144  *    in the skb->ip_summed for a packet. Values are:
145  *
146  * CHECKSUM_PARTIAL:
147  *
148  *   The driver is required to checksum the packet as seen by hard_start_xmit()
149  *   from skb->csum_start up to the end, and to record/write the checksum at
150  *   offset skb->csum_start + skb->csum_offset. A driver may verify that the
151  *   csum_start and csum_offset values are valid values given the length and
152  *   offset of the packet, however they should not attempt to validate that the
153  *   checksum refers to a legitimate transport layer checksum-- it is the
154  *   purview of the stack to validate that csum_start and csum_offset are set
155  *   correctly.
156  *
157  *   When the stack requests checksum offload for a packet, the driver MUST
158  *   ensure that the checksum is set correctly. A driver can either offload the
159  *   checksum calculation to the device, or call skb_checksum_help (in the case
160  *   that the device does not support offload for a particular checksum).
161  *
162  *   NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
163  *   NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
164  *   checksum offload capability. If a	device has limited checksum capabilities
165  *   (for instance can only perform NETIF_F_IP_CSUM or NETIF_F_IPV6_CSUM as
166  *   described above) a helper function can be called to resolve
167  *   CHECKSUM_PARTIAL. The helper functions are skb_csum_off_chk*. The helper
168  *   function takes a spec argument that describes the protocol layer that is
169  *   supported for checksum offload and can be called for each packet. If a
170  *   packet does not match the specification for offload, skb_checksum_help
171  *   is called to resolve the checksum.
172  *
173  * CHECKSUM_NONE:
174  *
175  *   The skb was already checksummed by the protocol, or a checksum is not
176  *   required.
177  *
178  * CHECKSUM_UNNECESSARY:
179  *
180  *   This has the same meaning on as CHECKSUM_NONE for checksum offload on
181  *   output.
182  *
183  * CHECKSUM_COMPLETE:
184  *   Not used in checksum output. If a driver observes a packet with this value
185  *   set in skbuff, if should treat as CHECKSUM_NONE being set.
186  *
187  * D. Non-IP checksum (CRC) offloads
188  *
189  *   NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
190  *     offloading the SCTP CRC in a packet. To perform this offload the stack
191  *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
192  *     accordingly. Note the there is no indication in the skbuff that the
193  *     CHECKSUM_PARTIAL refers to an SCTP checksum, a driver that supports
194  *     both IP checksum offload and SCTP CRC offload must verify which offload
195  *     is configured for a packet presumably by inspecting packet headers.
196  *
197  *   NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
198  *     offloading the FCOE CRC in a packet. To perform this offload the stack
199  *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
200  *     accordingly. Note the there is no indication in the skbuff that the
201  *     CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
202  *     both IP checksum offload and FCOE CRC offload must verify which offload
203  *     is configured for a packet presumably by inspecting packet headers.
204  *
205  * E. Checksumming on output with GSO.
206  *
207  * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
208  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
209  * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
210  * part of the GSO operation is implied. If a checksum is being offloaded
211  * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
212  * are set to refer to the outermost checksum being offload (two offloaded
213  * checksums are possible with UDP encapsulation).
214  */
215 
216 /* Don't change this without changing skb_csum_unnecessary! */
217 #define CHECKSUM_NONE		0
218 #define CHECKSUM_UNNECESSARY	1
219 #define CHECKSUM_COMPLETE	2
220 #define CHECKSUM_PARTIAL	3
221 
222 /* Maximum value in skb->csum_level */
223 #define SKB_MAX_CSUM_LEVEL	3
224 
225 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
226 #define SKB_WITH_OVERHEAD(X)	\
227 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
228 #define SKB_MAX_ORDER(X, ORDER) \
229 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
230 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
231 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
232 
233 /* return minimum truesize of one skb containing X bytes of data */
234 #define SKB_TRUESIZE(X) ((X) +						\
235 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
236 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
237 
238 struct net_device;
239 struct scatterlist;
240 struct pipe_inode_info;
241 struct iov_iter;
242 struct napi_struct;
243 
244 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
245 struct nf_conntrack {
246 	atomic_t use;
247 };
248 #endif
249 
250 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
251 struct nf_bridge_info {
252 	atomic_t		use;
253 	enum {
254 		BRNF_PROTO_UNCHANGED,
255 		BRNF_PROTO_8021Q,
256 		BRNF_PROTO_PPPOE
257 	} orig_proto:8;
258 	u8			pkt_otherhost:1;
259 	u8			in_prerouting:1;
260 	u8			bridged_dnat:1;
261 	__u16			frag_max_size;
262 	struct net_device	*physindev;
263 
264 	/* always valid & non-NULL from FORWARD on, for physdev match */
265 	struct net_device	*physoutdev;
266 	union {
267 		/* prerouting: detect dnat in orig/reply direction */
268 		__be32          ipv4_daddr;
269 		struct in6_addr ipv6_daddr;
270 
271 		/* after prerouting + nat detected: store original source
272 		 * mac since neigh resolution overwrites it, only used while
273 		 * skb is out in neigh layer.
274 		 */
275 		char neigh_header[8];
276 	};
277 };
278 #endif
279 
280 struct sk_buff_head {
281 	/* These two members must be first. */
282 	struct sk_buff	*next;
283 	struct sk_buff	*prev;
284 
285 	__u32		qlen;
286 	spinlock_t	lock;
287 };
288 
289 struct sk_buff;
290 
291 /* To allow 64K frame to be packed as single skb without frag_list we
292  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
293  * buffers which do not start on a page boundary.
294  *
295  * Since GRO uses frags we allocate at least 16 regardless of page
296  * size.
297  */
298 #if (65536/PAGE_SIZE + 1) < 16
299 #define MAX_SKB_FRAGS 16UL
300 #else
301 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
302 #endif
303 extern int sysctl_max_skb_frags;
304 
305 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
306  * segment using its current segmentation instead.
307  */
308 #define GSO_BY_FRAGS	0xFFFF
309 
310 typedef struct skb_frag_struct skb_frag_t;
311 
312 struct skb_frag_struct {
313 	struct {
314 		struct page *p;
315 	} page;
316 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
317 	__u32 page_offset;
318 	__u32 size;
319 #else
320 	__u16 page_offset;
321 	__u16 size;
322 #endif
323 };
324 
325 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
326 {
327 	return frag->size;
328 }
329 
330 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
331 {
332 	frag->size = size;
333 }
334 
335 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
336 {
337 	frag->size += delta;
338 }
339 
340 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
341 {
342 	frag->size -= delta;
343 }
344 
345 #define HAVE_HW_TIME_STAMP
346 
347 /**
348  * struct skb_shared_hwtstamps - hardware time stamps
349  * @hwtstamp:	hardware time stamp transformed into duration
350  *		since arbitrary point in time
351  *
352  * Software time stamps generated by ktime_get_real() are stored in
353  * skb->tstamp.
354  *
355  * hwtstamps can only be compared against other hwtstamps from
356  * the same device.
357  *
358  * This structure is attached to packets as part of the
359  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
360  */
361 struct skb_shared_hwtstamps {
362 	ktime_t	hwtstamp;
363 };
364 
365 /* Definitions for tx_flags in struct skb_shared_info */
366 enum {
367 	/* generate hardware time stamp */
368 	SKBTX_HW_TSTAMP = 1 << 0,
369 
370 	/* generate software time stamp when queueing packet to NIC */
371 	SKBTX_SW_TSTAMP = 1 << 1,
372 
373 	/* device driver is going to provide hardware time stamp */
374 	SKBTX_IN_PROGRESS = 1 << 2,
375 
376 	/* device driver supports TX zero-copy buffers */
377 	SKBTX_DEV_ZEROCOPY = 1 << 3,
378 
379 	/* generate wifi status information (where possible) */
380 	SKBTX_WIFI_STATUS = 1 << 4,
381 
382 	/* This indicates at least one fragment might be overwritten
383 	 * (as in vmsplice(), sendfile() ...)
384 	 * If we need to compute a TX checksum, we'll need to copy
385 	 * all frags to avoid possible bad checksum
386 	 */
387 	SKBTX_SHARED_FRAG = 1 << 5,
388 
389 	/* generate software time stamp when entering packet scheduling */
390 	SKBTX_SCHED_TSTAMP = 1 << 6,
391 };
392 
393 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
394 				 SKBTX_SCHED_TSTAMP)
395 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
396 
397 /*
398  * The callback notifies userspace to release buffers when skb DMA is done in
399  * lower device, the skb last reference should be 0 when calling this.
400  * The zerocopy_success argument is true if zero copy transmit occurred,
401  * false on data copy or out of memory error caused by data copy attempt.
402  * The ctx field is used to track device context.
403  * The desc field is used to track userspace buffer index.
404  */
405 struct ubuf_info {
406 	void (*callback)(struct ubuf_info *, bool zerocopy_success);
407 	void *ctx;
408 	unsigned long desc;
409 };
410 
411 /* This data is invariant across clones and lives at
412  * the end of the header data, ie. at skb->end.
413  */
414 struct skb_shared_info {
415 	unsigned char	nr_frags;
416 	__u8		tx_flags;
417 	unsigned short	gso_size;
418 	/* Warning: this field is not always filled in (UFO)! */
419 	unsigned short	gso_segs;
420 	unsigned short  gso_type;
421 	struct sk_buff	*frag_list;
422 	struct skb_shared_hwtstamps hwtstamps;
423 	u32		tskey;
424 	__be32          ip6_frag_id;
425 
426 	/*
427 	 * Warning : all fields before dataref are cleared in __alloc_skb()
428 	 */
429 	atomic_t	dataref;
430 
431 	/* Intermediate layers must ensure that destructor_arg
432 	 * remains valid until skb destructor */
433 	void *		destructor_arg;
434 
435 	/* must be last field, see pskb_expand_head() */
436 	skb_frag_t	frags[MAX_SKB_FRAGS];
437 };
438 
439 /* We divide dataref into two halves.  The higher 16 bits hold references
440  * to the payload part of skb->data.  The lower 16 bits hold references to
441  * the entire skb->data.  A clone of a headerless skb holds the length of
442  * the header in skb->hdr_len.
443  *
444  * All users must obey the rule that the skb->data reference count must be
445  * greater than or equal to the payload reference count.
446  *
447  * Holding a reference to the payload part means that the user does not
448  * care about modifications to the header part of skb->data.
449  */
450 #define SKB_DATAREF_SHIFT 16
451 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
452 
453 
454 enum {
455 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
456 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
457 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
458 };
459 
460 enum {
461 	SKB_GSO_TCPV4 = 1 << 0,
462 	SKB_GSO_UDP = 1 << 1,
463 
464 	/* This indicates the skb is from an untrusted source. */
465 	SKB_GSO_DODGY = 1 << 2,
466 
467 	/* This indicates the tcp segment has CWR set. */
468 	SKB_GSO_TCP_ECN = 1 << 3,
469 
470 	SKB_GSO_TCP_FIXEDID = 1 << 4,
471 
472 	SKB_GSO_TCPV6 = 1 << 5,
473 
474 	SKB_GSO_FCOE = 1 << 6,
475 
476 	SKB_GSO_GRE = 1 << 7,
477 
478 	SKB_GSO_GRE_CSUM = 1 << 8,
479 
480 	SKB_GSO_IPXIP4 = 1 << 9,
481 
482 	SKB_GSO_IPXIP6 = 1 << 10,
483 
484 	SKB_GSO_UDP_TUNNEL = 1 << 11,
485 
486 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 12,
487 
488 	SKB_GSO_PARTIAL = 1 << 13,
489 
490 	SKB_GSO_TUNNEL_REMCSUM = 1 << 14,
491 
492 	SKB_GSO_SCTP = 1 << 15,
493 };
494 
495 #if BITS_PER_LONG > 32
496 #define NET_SKBUFF_DATA_USES_OFFSET 1
497 #endif
498 
499 #ifdef NET_SKBUFF_DATA_USES_OFFSET
500 typedef unsigned int sk_buff_data_t;
501 #else
502 typedef unsigned char *sk_buff_data_t;
503 #endif
504 
505 /**
506  * struct skb_mstamp - multi resolution time stamps
507  * @stamp_us: timestamp in us resolution
508  * @stamp_jiffies: timestamp in jiffies
509  */
510 struct skb_mstamp {
511 	union {
512 		u64		v64;
513 		struct {
514 			u32	stamp_us;
515 			u32	stamp_jiffies;
516 		};
517 	};
518 };
519 
520 /**
521  * skb_mstamp_get - get current timestamp
522  * @cl: place to store timestamps
523  */
524 static inline void skb_mstamp_get(struct skb_mstamp *cl)
525 {
526 	u64 val = local_clock();
527 
528 	do_div(val, NSEC_PER_USEC);
529 	cl->stamp_us = (u32)val;
530 	cl->stamp_jiffies = (u32)jiffies;
531 }
532 
533 /**
534  * skb_mstamp_delta - compute the difference in usec between two skb_mstamp
535  * @t1: pointer to newest sample
536  * @t0: pointer to oldest sample
537  */
538 static inline u32 skb_mstamp_us_delta(const struct skb_mstamp *t1,
539 				      const struct skb_mstamp *t0)
540 {
541 	s32 delta_us = t1->stamp_us - t0->stamp_us;
542 	u32 delta_jiffies = t1->stamp_jiffies - t0->stamp_jiffies;
543 
544 	/* If delta_us is negative, this might be because interval is too big,
545 	 * or local_clock() drift is too big : fallback using jiffies.
546 	 */
547 	if (delta_us <= 0 ||
548 	    delta_jiffies >= (INT_MAX / (USEC_PER_SEC / HZ)))
549 
550 		delta_us = jiffies_to_usecs(delta_jiffies);
551 
552 	return delta_us;
553 }
554 
555 static inline bool skb_mstamp_after(const struct skb_mstamp *t1,
556 				    const struct skb_mstamp *t0)
557 {
558 	s32 diff = t1->stamp_jiffies - t0->stamp_jiffies;
559 
560 	if (!diff)
561 		diff = t1->stamp_us - t0->stamp_us;
562 	return diff > 0;
563 }
564 
565 /**
566  *	struct sk_buff - socket buffer
567  *	@next: Next buffer in list
568  *	@prev: Previous buffer in list
569  *	@tstamp: Time we arrived/left
570  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
571  *	@sk: Socket we are owned by
572  *	@dev: Device we arrived on/are leaving by
573  *	@cb: Control buffer. Free for use by every layer. Put private vars here
574  *	@_skb_refdst: destination entry (with norefcount bit)
575  *	@sp: the security path, used for xfrm
576  *	@len: Length of actual data
577  *	@data_len: Data length
578  *	@mac_len: Length of link layer header
579  *	@hdr_len: writable header length of cloned skb
580  *	@csum: Checksum (must include start/offset pair)
581  *	@csum_start: Offset from skb->head where checksumming should start
582  *	@csum_offset: Offset from csum_start where checksum should be stored
583  *	@priority: Packet queueing priority
584  *	@ignore_df: allow local fragmentation
585  *	@cloned: Head may be cloned (check refcnt to be sure)
586  *	@ip_summed: Driver fed us an IP checksum
587  *	@nohdr: Payload reference only, must not modify header
588  *	@nfctinfo: Relationship of this skb to the connection
589  *	@pkt_type: Packet class
590  *	@fclone: skbuff clone status
591  *	@ipvs_property: skbuff is owned by ipvs
592  *	@peeked: this packet has been seen already, so stats have been
593  *		done for it, don't do them again
594  *	@nf_trace: netfilter packet trace flag
595  *	@protocol: Packet protocol from driver
596  *	@destructor: Destruct function
597  *	@nfct: Associated connection, if any
598  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
599  *	@skb_iif: ifindex of device we arrived on
600  *	@tc_index: Traffic control index
601  *	@tc_verd: traffic control verdict
602  *	@hash: the packet hash
603  *	@queue_mapping: Queue mapping for multiqueue devices
604  *	@xmit_more: More SKBs are pending for this queue
605  *	@ndisc_nodetype: router type (from link layer)
606  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
607  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
608  *		ports.
609  *	@sw_hash: indicates hash was computed in software stack
610  *	@wifi_acked_valid: wifi_acked was set
611  *	@wifi_acked: whether frame was acked on wifi or not
612  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
613   *	@napi_id: id of the NAPI struct this skb came from
614  *	@secmark: security marking
615  *	@mark: Generic packet mark
616  *	@vlan_proto: vlan encapsulation protocol
617  *	@vlan_tci: vlan tag control information
618  *	@inner_protocol: Protocol (encapsulation)
619  *	@inner_transport_header: Inner transport layer header (encapsulation)
620  *	@inner_network_header: Network layer header (encapsulation)
621  *	@inner_mac_header: Link layer header (encapsulation)
622  *	@transport_header: Transport layer header
623  *	@network_header: Network layer header
624  *	@mac_header: Link layer header
625  *	@tail: Tail pointer
626  *	@end: End pointer
627  *	@head: Head of buffer
628  *	@data: Data head pointer
629  *	@truesize: Buffer size
630  *	@users: User count - see {datagram,tcp}.c
631  */
632 
633 struct sk_buff {
634 	union {
635 		struct {
636 			/* These two members must be first. */
637 			struct sk_buff		*next;
638 			struct sk_buff		*prev;
639 
640 			union {
641 				ktime_t		tstamp;
642 				struct skb_mstamp skb_mstamp;
643 			};
644 		};
645 		struct rb_node	rbnode; /* used in netem & tcp stack */
646 	};
647 	struct sock		*sk;
648 	struct net_device	*dev;
649 
650 	/*
651 	 * This is the control buffer. It is free to use for every
652 	 * layer. Please put your private variables there. If you
653 	 * want to keep them across layers you have to do a skb_clone()
654 	 * first. This is owned by whoever has the skb queued ATM.
655 	 */
656 	char			cb[48] __aligned(8);
657 
658 	unsigned long		_skb_refdst;
659 	void			(*destructor)(struct sk_buff *skb);
660 #ifdef CONFIG_XFRM
661 	struct	sec_path	*sp;
662 #endif
663 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
664 	struct nf_conntrack	*nfct;
665 #endif
666 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
667 	struct nf_bridge_info	*nf_bridge;
668 #endif
669 	unsigned int		len,
670 				data_len;
671 	__u16			mac_len,
672 				hdr_len;
673 
674 	/* Following fields are _not_ copied in __copy_skb_header()
675 	 * Note that queue_mapping is here mostly to fill a hole.
676 	 */
677 	kmemcheck_bitfield_begin(flags1);
678 	__u16			queue_mapping;
679 	__u8			cloned:1,
680 				nohdr:1,
681 				fclone:2,
682 				peeked:1,
683 				head_frag:1,
684 				xmit_more:1;
685 	/* one bit hole */
686 	kmemcheck_bitfield_end(flags1);
687 
688 	/* fields enclosed in headers_start/headers_end are copied
689 	 * using a single memcpy() in __copy_skb_header()
690 	 */
691 	/* private: */
692 	__u32			headers_start[0];
693 	/* public: */
694 
695 /* if you move pkt_type around you also must adapt those constants */
696 #ifdef __BIG_ENDIAN_BITFIELD
697 #define PKT_TYPE_MAX	(7 << 5)
698 #else
699 #define PKT_TYPE_MAX	7
700 #endif
701 #define PKT_TYPE_OFFSET()	offsetof(struct sk_buff, __pkt_type_offset)
702 
703 	__u8			__pkt_type_offset[0];
704 	__u8			pkt_type:3;
705 	__u8			pfmemalloc:1;
706 	__u8			ignore_df:1;
707 	__u8			nfctinfo:3;
708 
709 	__u8			nf_trace:1;
710 	__u8			ip_summed:2;
711 	__u8			ooo_okay:1;
712 	__u8			l4_hash:1;
713 	__u8			sw_hash:1;
714 	__u8			wifi_acked_valid:1;
715 	__u8			wifi_acked:1;
716 
717 	__u8			no_fcs:1;
718 	/* Indicates the inner headers are valid in the skbuff. */
719 	__u8			encapsulation:1;
720 	__u8			encap_hdr_csum:1;
721 	__u8			csum_valid:1;
722 	__u8			csum_complete_sw:1;
723 	__u8			csum_level:2;
724 	__u8			csum_bad:1;
725 
726 #ifdef CONFIG_IPV6_NDISC_NODETYPE
727 	__u8			ndisc_nodetype:2;
728 #endif
729 	__u8			ipvs_property:1;
730 	__u8			inner_protocol_type:1;
731 	__u8			remcsum_offload:1;
732 #ifdef CONFIG_NET_SWITCHDEV
733 	__u8			offload_fwd_mark:1;
734 #endif
735 	/* 2, 4 or 5 bit hole */
736 
737 #ifdef CONFIG_NET_SCHED
738 	__u16			tc_index;	/* traffic control index */
739 #ifdef CONFIG_NET_CLS_ACT
740 	__u16			tc_verd;	/* traffic control verdict */
741 #endif
742 #endif
743 
744 	union {
745 		__wsum		csum;
746 		struct {
747 			__u16	csum_start;
748 			__u16	csum_offset;
749 		};
750 	};
751 	__u32			priority;
752 	int			skb_iif;
753 	__u32			hash;
754 	__be16			vlan_proto;
755 	__u16			vlan_tci;
756 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
757 	union {
758 		unsigned int	napi_id;
759 		unsigned int	sender_cpu;
760 	};
761 #endif
762 #ifdef CONFIG_NETWORK_SECMARK
763 	__u32		secmark;
764 #endif
765 
766 	union {
767 		__u32		mark;
768 		__u32		reserved_tailroom;
769 	};
770 
771 	union {
772 		__be16		inner_protocol;
773 		__u8		inner_ipproto;
774 	};
775 
776 	__u16			inner_transport_header;
777 	__u16			inner_network_header;
778 	__u16			inner_mac_header;
779 
780 	__be16			protocol;
781 	__u16			transport_header;
782 	__u16			network_header;
783 	__u16			mac_header;
784 
785 	/* private: */
786 	__u32			headers_end[0];
787 	/* public: */
788 
789 	/* These elements must be at the end, see alloc_skb() for details.  */
790 	sk_buff_data_t		tail;
791 	sk_buff_data_t		end;
792 	unsigned char		*head,
793 				*data;
794 	unsigned int		truesize;
795 	atomic_t		users;
796 };
797 
798 #ifdef __KERNEL__
799 /*
800  *	Handling routines are only of interest to the kernel
801  */
802 #include <linux/slab.h>
803 
804 
805 #define SKB_ALLOC_FCLONE	0x01
806 #define SKB_ALLOC_RX		0x02
807 #define SKB_ALLOC_NAPI		0x04
808 
809 /* Returns true if the skb was allocated from PFMEMALLOC reserves */
810 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
811 {
812 	return unlikely(skb->pfmemalloc);
813 }
814 
815 /*
816  * skb might have a dst pointer attached, refcounted or not.
817  * _skb_refdst low order bit is set if refcount was _not_ taken
818  */
819 #define SKB_DST_NOREF	1UL
820 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
821 
822 /**
823  * skb_dst - returns skb dst_entry
824  * @skb: buffer
825  *
826  * Returns skb dst_entry, regardless of reference taken or not.
827  */
828 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
829 {
830 	/* If refdst was not refcounted, check we still are in a
831 	 * rcu_read_lock section
832 	 */
833 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
834 		!rcu_read_lock_held() &&
835 		!rcu_read_lock_bh_held());
836 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
837 }
838 
839 /**
840  * skb_dst_set - sets skb dst
841  * @skb: buffer
842  * @dst: dst entry
843  *
844  * Sets skb dst, assuming a reference was taken on dst and should
845  * be released by skb_dst_drop()
846  */
847 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
848 {
849 	skb->_skb_refdst = (unsigned long)dst;
850 }
851 
852 /**
853  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
854  * @skb: buffer
855  * @dst: dst entry
856  *
857  * Sets skb dst, assuming a reference was not taken on dst.
858  * If dst entry is cached, we do not take reference and dst_release
859  * will be avoided by refdst_drop. If dst entry is not cached, we take
860  * reference, so that last dst_release can destroy the dst immediately.
861  */
862 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
863 {
864 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
865 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
866 }
867 
868 /**
869  * skb_dst_is_noref - Test if skb dst isn't refcounted
870  * @skb: buffer
871  */
872 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
873 {
874 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
875 }
876 
877 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
878 {
879 	return (struct rtable *)skb_dst(skb);
880 }
881 
882 /* For mangling skb->pkt_type from user space side from applications
883  * such as nft, tc, etc, we only allow a conservative subset of
884  * possible pkt_types to be set.
885 */
886 static inline bool skb_pkt_type_ok(u32 ptype)
887 {
888 	return ptype <= PACKET_OTHERHOST;
889 }
890 
891 void kfree_skb(struct sk_buff *skb);
892 void kfree_skb_list(struct sk_buff *segs);
893 void skb_tx_error(struct sk_buff *skb);
894 void consume_skb(struct sk_buff *skb);
895 void  __kfree_skb(struct sk_buff *skb);
896 extern struct kmem_cache *skbuff_head_cache;
897 
898 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
899 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
900 		      bool *fragstolen, int *delta_truesize);
901 
902 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
903 			    int node);
904 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
905 struct sk_buff *build_skb(void *data, unsigned int frag_size);
906 static inline struct sk_buff *alloc_skb(unsigned int size,
907 					gfp_t priority)
908 {
909 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
910 }
911 
912 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
913 				     unsigned long data_len,
914 				     int max_page_order,
915 				     int *errcode,
916 				     gfp_t gfp_mask);
917 
918 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
919 struct sk_buff_fclones {
920 	struct sk_buff	skb1;
921 
922 	struct sk_buff	skb2;
923 
924 	atomic_t	fclone_ref;
925 };
926 
927 /**
928  *	skb_fclone_busy - check if fclone is busy
929  *	@skb: buffer
930  *
931  * Returns true if skb is a fast clone, and its clone is not freed.
932  * Some drivers call skb_orphan() in their ndo_start_xmit(),
933  * so we also check that this didnt happen.
934  */
935 static inline bool skb_fclone_busy(const struct sock *sk,
936 				   const struct sk_buff *skb)
937 {
938 	const struct sk_buff_fclones *fclones;
939 
940 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
941 
942 	return skb->fclone == SKB_FCLONE_ORIG &&
943 	       atomic_read(&fclones->fclone_ref) > 1 &&
944 	       fclones->skb2.sk == sk;
945 }
946 
947 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
948 					       gfp_t priority)
949 {
950 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
951 }
952 
953 struct sk_buff *__alloc_skb_head(gfp_t priority, int node);
954 static inline struct sk_buff *alloc_skb_head(gfp_t priority)
955 {
956 	return __alloc_skb_head(priority, -1);
957 }
958 
959 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
960 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
961 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
962 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
963 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
964 				   gfp_t gfp_mask, bool fclone);
965 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
966 					  gfp_t gfp_mask)
967 {
968 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
969 }
970 
971 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
972 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
973 				     unsigned int headroom);
974 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
975 				int newtailroom, gfp_t priority);
976 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
977 			int offset, int len);
978 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset,
979 		 int len);
980 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
981 int skb_pad(struct sk_buff *skb, int pad);
982 #define dev_kfree_skb(a)	consume_skb(a)
983 
984 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
985 			    int getfrag(void *from, char *to, int offset,
986 					int len, int odd, struct sk_buff *skb),
987 			    void *from, int length);
988 
989 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
990 			 int offset, size_t size);
991 
992 struct skb_seq_state {
993 	__u32		lower_offset;
994 	__u32		upper_offset;
995 	__u32		frag_idx;
996 	__u32		stepped_offset;
997 	struct sk_buff	*root_skb;
998 	struct sk_buff	*cur_skb;
999 	__u8		*frag_data;
1000 };
1001 
1002 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1003 			  unsigned int to, struct skb_seq_state *st);
1004 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1005 			  struct skb_seq_state *st);
1006 void skb_abort_seq_read(struct skb_seq_state *st);
1007 
1008 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1009 			   unsigned int to, struct ts_config *config);
1010 
1011 /*
1012  * Packet hash types specify the type of hash in skb_set_hash.
1013  *
1014  * Hash types refer to the protocol layer addresses which are used to
1015  * construct a packet's hash. The hashes are used to differentiate or identify
1016  * flows of the protocol layer for the hash type. Hash types are either
1017  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1018  *
1019  * Properties of hashes:
1020  *
1021  * 1) Two packets in different flows have different hash values
1022  * 2) Two packets in the same flow should have the same hash value
1023  *
1024  * A hash at a higher layer is considered to be more specific. A driver should
1025  * set the most specific hash possible.
1026  *
1027  * A driver cannot indicate a more specific hash than the layer at which a hash
1028  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1029  *
1030  * A driver may indicate a hash level which is less specific than the
1031  * actual layer the hash was computed on. For instance, a hash computed
1032  * at L4 may be considered an L3 hash. This should only be done if the
1033  * driver can't unambiguously determine that the HW computed the hash at
1034  * the higher layer. Note that the "should" in the second property above
1035  * permits this.
1036  */
1037 enum pkt_hash_types {
1038 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1039 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1040 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1041 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1042 };
1043 
1044 static inline void skb_clear_hash(struct sk_buff *skb)
1045 {
1046 	skb->hash = 0;
1047 	skb->sw_hash = 0;
1048 	skb->l4_hash = 0;
1049 }
1050 
1051 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1052 {
1053 	if (!skb->l4_hash)
1054 		skb_clear_hash(skb);
1055 }
1056 
1057 static inline void
1058 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1059 {
1060 	skb->l4_hash = is_l4;
1061 	skb->sw_hash = is_sw;
1062 	skb->hash = hash;
1063 }
1064 
1065 static inline void
1066 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1067 {
1068 	/* Used by drivers to set hash from HW */
1069 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1070 }
1071 
1072 static inline void
1073 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1074 {
1075 	__skb_set_hash(skb, hash, true, is_l4);
1076 }
1077 
1078 void __skb_get_hash(struct sk_buff *skb);
1079 u32 __skb_get_hash_symmetric(struct sk_buff *skb);
1080 u32 skb_get_poff(const struct sk_buff *skb);
1081 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1082 		   const struct flow_keys *keys, int hlen);
1083 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1084 			    void *data, int hlen_proto);
1085 
1086 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1087 					int thoff, u8 ip_proto)
1088 {
1089 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1090 }
1091 
1092 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1093 			     const struct flow_dissector_key *key,
1094 			     unsigned int key_count);
1095 
1096 bool __skb_flow_dissect(const struct sk_buff *skb,
1097 			struct flow_dissector *flow_dissector,
1098 			void *target_container,
1099 			void *data, __be16 proto, int nhoff, int hlen,
1100 			unsigned int flags);
1101 
1102 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1103 				    struct flow_dissector *flow_dissector,
1104 				    void *target_container, unsigned int flags)
1105 {
1106 	return __skb_flow_dissect(skb, flow_dissector, target_container,
1107 				  NULL, 0, 0, 0, flags);
1108 }
1109 
1110 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1111 					      struct flow_keys *flow,
1112 					      unsigned int flags)
1113 {
1114 	memset(flow, 0, sizeof(*flow));
1115 	return __skb_flow_dissect(skb, &flow_keys_dissector, flow,
1116 				  NULL, 0, 0, 0, flags);
1117 }
1118 
1119 static inline bool skb_flow_dissect_flow_keys_buf(struct flow_keys *flow,
1120 						  void *data, __be16 proto,
1121 						  int nhoff, int hlen,
1122 						  unsigned int flags)
1123 {
1124 	memset(flow, 0, sizeof(*flow));
1125 	return __skb_flow_dissect(NULL, &flow_keys_buf_dissector, flow,
1126 				  data, proto, nhoff, hlen, flags);
1127 }
1128 
1129 static inline __u32 skb_get_hash(struct sk_buff *skb)
1130 {
1131 	if (!skb->l4_hash && !skb->sw_hash)
1132 		__skb_get_hash(skb);
1133 
1134 	return skb->hash;
1135 }
1136 
1137 __u32 __skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6);
1138 
1139 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1140 {
1141 	if (!skb->l4_hash && !skb->sw_hash) {
1142 		struct flow_keys keys;
1143 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1144 
1145 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1146 	}
1147 
1148 	return skb->hash;
1149 }
1150 
1151 __u32 __skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl);
1152 
1153 static inline __u32 skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl4)
1154 {
1155 	if (!skb->l4_hash && !skb->sw_hash) {
1156 		struct flow_keys keys;
1157 		__u32 hash = __get_hash_from_flowi4(fl4, &keys);
1158 
1159 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1160 	}
1161 
1162 	return skb->hash;
1163 }
1164 
1165 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);
1166 
1167 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1168 {
1169 	return skb->hash;
1170 }
1171 
1172 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1173 {
1174 	to->hash = from->hash;
1175 	to->sw_hash = from->sw_hash;
1176 	to->l4_hash = from->l4_hash;
1177 };
1178 
1179 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1180 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1181 {
1182 	return skb->head + skb->end;
1183 }
1184 
1185 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1186 {
1187 	return skb->end;
1188 }
1189 #else
1190 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1191 {
1192 	return skb->end;
1193 }
1194 
1195 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1196 {
1197 	return skb->end - skb->head;
1198 }
1199 #endif
1200 
1201 /* Internal */
1202 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1203 
1204 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1205 {
1206 	return &skb_shinfo(skb)->hwtstamps;
1207 }
1208 
1209 /**
1210  *	skb_queue_empty - check if a queue is empty
1211  *	@list: queue head
1212  *
1213  *	Returns true if the queue is empty, false otherwise.
1214  */
1215 static inline int skb_queue_empty(const struct sk_buff_head *list)
1216 {
1217 	return list->next == (const struct sk_buff *) list;
1218 }
1219 
1220 /**
1221  *	skb_queue_is_last - check if skb is the last entry in the queue
1222  *	@list: queue head
1223  *	@skb: buffer
1224  *
1225  *	Returns true if @skb is the last buffer on the list.
1226  */
1227 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1228 				     const struct sk_buff *skb)
1229 {
1230 	return skb->next == (const struct sk_buff *) list;
1231 }
1232 
1233 /**
1234  *	skb_queue_is_first - check if skb is the first entry in the queue
1235  *	@list: queue head
1236  *	@skb: buffer
1237  *
1238  *	Returns true if @skb is the first buffer on the list.
1239  */
1240 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1241 				      const struct sk_buff *skb)
1242 {
1243 	return skb->prev == (const struct sk_buff *) list;
1244 }
1245 
1246 /**
1247  *	skb_queue_next - return the next packet in the queue
1248  *	@list: queue head
1249  *	@skb: current buffer
1250  *
1251  *	Return the next packet in @list after @skb.  It is only valid to
1252  *	call this if skb_queue_is_last() evaluates to false.
1253  */
1254 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1255 					     const struct sk_buff *skb)
1256 {
1257 	/* This BUG_ON may seem severe, but if we just return then we
1258 	 * are going to dereference garbage.
1259 	 */
1260 	BUG_ON(skb_queue_is_last(list, skb));
1261 	return skb->next;
1262 }
1263 
1264 /**
1265  *	skb_queue_prev - return the prev packet in the queue
1266  *	@list: queue head
1267  *	@skb: current buffer
1268  *
1269  *	Return the prev packet in @list before @skb.  It is only valid to
1270  *	call this if skb_queue_is_first() evaluates to false.
1271  */
1272 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1273 					     const struct sk_buff *skb)
1274 {
1275 	/* This BUG_ON may seem severe, but if we just return then we
1276 	 * are going to dereference garbage.
1277 	 */
1278 	BUG_ON(skb_queue_is_first(list, skb));
1279 	return skb->prev;
1280 }
1281 
1282 /**
1283  *	skb_get - reference buffer
1284  *	@skb: buffer to reference
1285  *
1286  *	Makes another reference to a socket buffer and returns a pointer
1287  *	to the buffer.
1288  */
1289 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1290 {
1291 	atomic_inc(&skb->users);
1292 	return skb;
1293 }
1294 
1295 /*
1296  * If users == 1, we are the only owner and are can avoid redundant
1297  * atomic change.
1298  */
1299 
1300 /**
1301  *	skb_cloned - is the buffer a clone
1302  *	@skb: buffer to check
1303  *
1304  *	Returns true if the buffer was generated with skb_clone() and is
1305  *	one of multiple shared copies of the buffer. Cloned buffers are
1306  *	shared data so must not be written to under normal circumstances.
1307  */
1308 static inline int skb_cloned(const struct sk_buff *skb)
1309 {
1310 	return skb->cloned &&
1311 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1312 }
1313 
1314 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1315 {
1316 	might_sleep_if(gfpflags_allow_blocking(pri));
1317 
1318 	if (skb_cloned(skb))
1319 		return pskb_expand_head(skb, 0, 0, pri);
1320 
1321 	return 0;
1322 }
1323 
1324 /**
1325  *	skb_header_cloned - is the header a clone
1326  *	@skb: buffer to check
1327  *
1328  *	Returns true if modifying the header part of the buffer requires
1329  *	the data to be copied.
1330  */
1331 static inline int skb_header_cloned(const struct sk_buff *skb)
1332 {
1333 	int dataref;
1334 
1335 	if (!skb->cloned)
1336 		return 0;
1337 
1338 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1339 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1340 	return dataref != 1;
1341 }
1342 
1343 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1344 {
1345 	might_sleep_if(gfpflags_allow_blocking(pri));
1346 
1347 	if (skb_header_cloned(skb))
1348 		return pskb_expand_head(skb, 0, 0, pri);
1349 
1350 	return 0;
1351 }
1352 
1353 /**
1354  *	skb_header_release - release reference to header
1355  *	@skb: buffer to operate on
1356  *
1357  *	Drop a reference to the header part of the buffer.  This is done
1358  *	by acquiring a payload reference.  You must not read from the header
1359  *	part of skb->data after this.
1360  *	Note : Check if you can use __skb_header_release() instead.
1361  */
1362 static inline void skb_header_release(struct sk_buff *skb)
1363 {
1364 	BUG_ON(skb->nohdr);
1365 	skb->nohdr = 1;
1366 	atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
1367 }
1368 
1369 /**
1370  *	__skb_header_release - release reference to header
1371  *	@skb: buffer to operate on
1372  *
1373  *	Variant of skb_header_release() assuming skb is private to caller.
1374  *	We can avoid one atomic operation.
1375  */
1376 static inline void __skb_header_release(struct sk_buff *skb)
1377 {
1378 	skb->nohdr = 1;
1379 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1380 }
1381 
1382 
1383 /**
1384  *	skb_shared - is the buffer shared
1385  *	@skb: buffer to check
1386  *
1387  *	Returns true if more than one person has a reference to this
1388  *	buffer.
1389  */
1390 static inline int skb_shared(const struct sk_buff *skb)
1391 {
1392 	return atomic_read(&skb->users) != 1;
1393 }
1394 
1395 /**
1396  *	skb_share_check - check if buffer is shared and if so clone it
1397  *	@skb: buffer to check
1398  *	@pri: priority for memory allocation
1399  *
1400  *	If the buffer is shared the buffer is cloned and the old copy
1401  *	drops a reference. A new clone with a single reference is returned.
1402  *	If the buffer is not shared the original buffer is returned. When
1403  *	being called from interrupt status or with spinlocks held pri must
1404  *	be GFP_ATOMIC.
1405  *
1406  *	NULL is returned on a memory allocation failure.
1407  */
1408 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1409 {
1410 	might_sleep_if(gfpflags_allow_blocking(pri));
1411 	if (skb_shared(skb)) {
1412 		struct sk_buff *nskb = skb_clone(skb, pri);
1413 
1414 		if (likely(nskb))
1415 			consume_skb(skb);
1416 		else
1417 			kfree_skb(skb);
1418 		skb = nskb;
1419 	}
1420 	return skb;
1421 }
1422 
1423 /*
1424  *	Copy shared buffers into a new sk_buff. We effectively do COW on
1425  *	packets to handle cases where we have a local reader and forward
1426  *	and a couple of other messy ones. The normal one is tcpdumping
1427  *	a packet thats being forwarded.
1428  */
1429 
1430 /**
1431  *	skb_unshare - make a copy of a shared buffer
1432  *	@skb: buffer to check
1433  *	@pri: priority for memory allocation
1434  *
1435  *	If the socket buffer is a clone then this function creates a new
1436  *	copy of the data, drops a reference count on the old copy and returns
1437  *	the new copy with the reference count at 1. If the buffer is not a clone
1438  *	the original buffer is returned. When called with a spinlock held or
1439  *	from interrupt state @pri must be %GFP_ATOMIC
1440  *
1441  *	%NULL is returned on a memory allocation failure.
1442  */
1443 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1444 					  gfp_t pri)
1445 {
1446 	might_sleep_if(gfpflags_allow_blocking(pri));
1447 	if (skb_cloned(skb)) {
1448 		struct sk_buff *nskb = skb_copy(skb, pri);
1449 
1450 		/* Free our shared copy */
1451 		if (likely(nskb))
1452 			consume_skb(skb);
1453 		else
1454 			kfree_skb(skb);
1455 		skb = nskb;
1456 	}
1457 	return skb;
1458 }
1459 
1460 /**
1461  *	skb_peek - peek at the head of an &sk_buff_head
1462  *	@list_: list to peek at
1463  *
1464  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1465  *	be careful with this one. A peek leaves the buffer on the
1466  *	list and someone else may run off with it. You must hold
1467  *	the appropriate locks or have a private queue to do this.
1468  *
1469  *	Returns %NULL for an empty list or a pointer to the head element.
1470  *	The reference count is not incremented and the reference is therefore
1471  *	volatile. Use with caution.
1472  */
1473 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1474 {
1475 	struct sk_buff *skb = list_->next;
1476 
1477 	if (skb == (struct sk_buff *)list_)
1478 		skb = NULL;
1479 	return skb;
1480 }
1481 
1482 /**
1483  *	skb_peek_next - peek skb following the given one from a queue
1484  *	@skb: skb to start from
1485  *	@list_: list to peek at
1486  *
1487  *	Returns %NULL when the end of the list is met or a pointer to the
1488  *	next element. The reference count is not incremented and the
1489  *	reference is therefore volatile. Use with caution.
1490  */
1491 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1492 		const struct sk_buff_head *list_)
1493 {
1494 	struct sk_buff *next = skb->next;
1495 
1496 	if (next == (struct sk_buff *)list_)
1497 		next = NULL;
1498 	return next;
1499 }
1500 
1501 /**
1502  *	skb_peek_tail - peek at the tail of an &sk_buff_head
1503  *	@list_: list to peek at
1504  *
1505  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1506  *	be careful with this one. A peek leaves the buffer on the
1507  *	list and someone else may run off with it. You must hold
1508  *	the appropriate locks or have a private queue to do this.
1509  *
1510  *	Returns %NULL for an empty list or a pointer to the tail element.
1511  *	The reference count is not incremented and the reference is therefore
1512  *	volatile. Use with caution.
1513  */
1514 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1515 {
1516 	struct sk_buff *skb = list_->prev;
1517 
1518 	if (skb == (struct sk_buff *)list_)
1519 		skb = NULL;
1520 	return skb;
1521 
1522 }
1523 
1524 /**
1525  *	skb_queue_len	- get queue length
1526  *	@list_: list to measure
1527  *
1528  *	Return the length of an &sk_buff queue.
1529  */
1530 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1531 {
1532 	return list_->qlen;
1533 }
1534 
1535 /**
1536  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1537  *	@list: queue to initialize
1538  *
1539  *	This initializes only the list and queue length aspects of
1540  *	an sk_buff_head object.  This allows to initialize the list
1541  *	aspects of an sk_buff_head without reinitializing things like
1542  *	the spinlock.  It can also be used for on-stack sk_buff_head
1543  *	objects where the spinlock is known to not be used.
1544  */
1545 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1546 {
1547 	list->prev = list->next = (struct sk_buff *)list;
1548 	list->qlen = 0;
1549 }
1550 
1551 /*
1552  * This function creates a split out lock class for each invocation;
1553  * this is needed for now since a whole lot of users of the skb-queue
1554  * infrastructure in drivers have different locking usage (in hardirq)
1555  * than the networking core (in softirq only). In the long run either the
1556  * network layer or drivers should need annotation to consolidate the
1557  * main types of usage into 3 classes.
1558  */
1559 static inline void skb_queue_head_init(struct sk_buff_head *list)
1560 {
1561 	spin_lock_init(&list->lock);
1562 	__skb_queue_head_init(list);
1563 }
1564 
1565 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1566 		struct lock_class_key *class)
1567 {
1568 	skb_queue_head_init(list);
1569 	lockdep_set_class(&list->lock, class);
1570 }
1571 
1572 /*
1573  *	Insert an sk_buff on a list.
1574  *
1575  *	The "__skb_xxxx()" functions are the non-atomic ones that
1576  *	can only be called with interrupts disabled.
1577  */
1578 void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1579 		struct sk_buff_head *list);
1580 static inline void __skb_insert(struct sk_buff *newsk,
1581 				struct sk_buff *prev, struct sk_buff *next,
1582 				struct sk_buff_head *list)
1583 {
1584 	newsk->next = next;
1585 	newsk->prev = prev;
1586 	next->prev  = prev->next = newsk;
1587 	list->qlen++;
1588 }
1589 
1590 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1591 				      struct sk_buff *prev,
1592 				      struct sk_buff *next)
1593 {
1594 	struct sk_buff *first = list->next;
1595 	struct sk_buff *last = list->prev;
1596 
1597 	first->prev = prev;
1598 	prev->next = first;
1599 
1600 	last->next = next;
1601 	next->prev = last;
1602 }
1603 
1604 /**
1605  *	skb_queue_splice - join two skb lists, this is designed for stacks
1606  *	@list: the new list to add
1607  *	@head: the place to add it in the first list
1608  */
1609 static inline void skb_queue_splice(const struct sk_buff_head *list,
1610 				    struct sk_buff_head *head)
1611 {
1612 	if (!skb_queue_empty(list)) {
1613 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1614 		head->qlen += list->qlen;
1615 	}
1616 }
1617 
1618 /**
1619  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1620  *	@list: the new list to add
1621  *	@head: the place to add it in the first list
1622  *
1623  *	The list at @list is reinitialised
1624  */
1625 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1626 					 struct sk_buff_head *head)
1627 {
1628 	if (!skb_queue_empty(list)) {
1629 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1630 		head->qlen += list->qlen;
1631 		__skb_queue_head_init(list);
1632 	}
1633 }
1634 
1635 /**
1636  *	skb_queue_splice_tail - join two skb lists, each list being a queue
1637  *	@list: the new list to add
1638  *	@head: the place to add it in the first list
1639  */
1640 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1641 					 struct sk_buff_head *head)
1642 {
1643 	if (!skb_queue_empty(list)) {
1644 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1645 		head->qlen += list->qlen;
1646 	}
1647 }
1648 
1649 /**
1650  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1651  *	@list: the new list to add
1652  *	@head: the place to add it in the first list
1653  *
1654  *	Each of the lists is a queue.
1655  *	The list at @list is reinitialised
1656  */
1657 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1658 					      struct sk_buff_head *head)
1659 {
1660 	if (!skb_queue_empty(list)) {
1661 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1662 		head->qlen += list->qlen;
1663 		__skb_queue_head_init(list);
1664 	}
1665 }
1666 
1667 /**
1668  *	__skb_queue_after - queue a buffer at the list head
1669  *	@list: list to use
1670  *	@prev: place after this buffer
1671  *	@newsk: buffer to queue
1672  *
1673  *	Queue a buffer int the middle of a list. This function takes no locks
1674  *	and you must therefore hold required locks before calling it.
1675  *
1676  *	A buffer cannot be placed on two lists at the same time.
1677  */
1678 static inline void __skb_queue_after(struct sk_buff_head *list,
1679 				     struct sk_buff *prev,
1680 				     struct sk_buff *newsk)
1681 {
1682 	__skb_insert(newsk, prev, prev->next, list);
1683 }
1684 
1685 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1686 		struct sk_buff_head *list);
1687 
1688 static inline void __skb_queue_before(struct sk_buff_head *list,
1689 				      struct sk_buff *next,
1690 				      struct sk_buff *newsk)
1691 {
1692 	__skb_insert(newsk, next->prev, next, list);
1693 }
1694 
1695 /**
1696  *	__skb_queue_head - queue a buffer at the list head
1697  *	@list: list to use
1698  *	@newsk: buffer to queue
1699  *
1700  *	Queue a buffer at the start of a list. This function takes no locks
1701  *	and you must therefore hold required locks before calling it.
1702  *
1703  *	A buffer cannot be placed on two lists at the same time.
1704  */
1705 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1706 static inline void __skb_queue_head(struct sk_buff_head *list,
1707 				    struct sk_buff *newsk)
1708 {
1709 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
1710 }
1711 
1712 /**
1713  *	__skb_queue_tail - queue a buffer at the list tail
1714  *	@list: list to use
1715  *	@newsk: buffer to queue
1716  *
1717  *	Queue a buffer at the end of a list. This function takes no locks
1718  *	and you must therefore hold required locks before calling it.
1719  *
1720  *	A buffer cannot be placed on two lists at the same time.
1721  */
1722 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1723 static inline void __skb_queue_tail(struct sk_buff_head *list,
1724 				   struct sk_buff *newsk)
1725 {
1726 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
1727 }
1728 
1729 /*
1730  * remove sk_buff from list. _Must_ be called atomically, and with
1731  * the list known..
1732  */
1733 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1734 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1735 {
1736 	struct sk_buff *next, *prev;
1737 
1738 	list->qlen--;
1739 	next	   = skb->next;
1740 	prev	   = skb->prev;
1741 	skb->next  = skb->prev = NULL;
1742 	next->prev = prev;
1743 	prev->next = next;
1744 }
1745 
1746 /**
1747  *	__skb_dequeue - remove from the head of the queue
1748  *	@list: list to dequeue from
1749  *
1750  *	Remove the head of the list. This function does not take any locks
1751  *	so must be used with appropriate locks held only. The head item is
1752  *	returned or %NULL if the list is empty.
1753  */
1754 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1755 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1756 {
1757 	struct sk_buff *skb = skb_peek(list);
1758 	if (skb)
1759 		__skb_unlink(skb, list);
1760 	return skb;
1761 }
1762 
1763 /**
1764  *	__skb_dequeue_tail - remove from the tail of the queue
1765  *	@list: list to dequeue from
1766  *
1767  *	Remove the tail of the list. This function does not take any locks
1768  *	so must be used with appropriate locks held only. The tail item is
1769  *	returned or %NULL if the list is empty.
1770  */
1771 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1772 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1773 {
1774 	struct sk_buff *skb = skb_peek_tail(list);
1775 	if (skb)
1776 		__skb_unlink(skb, list);
1777 	return skb;
1778 }
1779 
1780 
1781 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1782 {
1783 	return skb->data_len;
1784 }
1785 
1786 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1787 {
1788 	return skb->len - skb->data_len;
1789 }
1790 
1791 static inline int skb_pagelen(const struct sk_buff *skb)
1792 {
1793 	int i, len = 0;
1794 
1795 	for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1796 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1797 	return len + skb_headlen(skb);
1798 }
1799 
1800 /**
1801  * __skb_fill_page_desc - initialise a paged fragment in an skb
1802  * @skb: buffer containing fragment to be initialised
1803  * @i: paged fragment index to initialise
1804  * @page: the page to use for this fragment
1805  * @off: the offset to the data with @page
1806  * @size: the length of the data
1807  *
1808  * Initialises the @i'th fragment of @skb to point to &size bytes at
1809  * offset @off within @page.
1810  *
1811  * Does not take any additional reference on the fragment.
1812  */
1813 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1814 					struct page *page, int off, int size)
1815 {
1816 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1817 
1818 	/*
1819 	 * Propagate page pfmemalloc to the skb if we can. The problem is
1820 	 * that not all callers have unique ownership of the page but rely
1821 	 * on page_is_pfmemalloc doing the right thing(tm).
1822 	 */
1823 	frag->page.p		  = page;
1824 	frag->page_offset	  = off;
1825 	skb_frag_size_set(frag, size);
1826 
1827 	page = compound_head(page);
1828 	if (page_is_pfmemalloc(page))
1829 		skb->pfmemalloc	= true;
1830 }
1831 
1832 /**
1833  * skb_fill_page_desc - initialise a paged fragment in an skb
1834  * @skb: buffer containing fragment to be initialised
1835  * @i: paged fragment index to initialise
1836  * @page: the page to use for this fragment
1837  * @off: the offset to the data with @page
1838  * @size: the length of the data
1839  *
1840  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1841  * @skb to point to @size bytes at offset @off within @page. In
1842  * addition updates @skb such that @i is the last fragment.
1843  *
1844  * Does not take any additional reference on the fragment.
1845  */
1846 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1847 				      struct page *page, int off, int size)
1848 {
1849 	__skb_fill_page_desc(skb, i, page, off, size);
1850 	skb_shinfo(skb)->nr_frags = i + 1;
1851 }
1852 
1853 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
1854 		     int size, unsigned int truesize);
1855 
1856 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
1857 			  unsigned int truesize);
1858 
1859 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
1860 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_has_frag_list(skb))
1861 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
1862 
1863 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1864 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1865 {
1866 	return skb->head + skb->tail;
1867 }
1868 
1869 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1870 {
1871 	skb->tail = skb->data - skb->head;
1872 }
1873 
1874 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1875 {
1876 	skb_reset_tail_pointer(skb);
1877 	skb->tail += offset;
1878 }
1879 
1880 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1881 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1882 {
1883 	return skb->tail;
1884 }
1885 
1886 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1887 {
1888 	skb->tail = skb->data;
1889 }
1890 
1891 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1892 {
1893 	skb->tail = skb->data + offset;
1894 }
1895 
1896 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1897 
1898 /*
1899  *	Add data to an sk_buff
1900  */
1901 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
1902 unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1903 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1904 {
1905 	unsigned char *tmp = skb_tail_pointer(skb);
1906 	SKB_LINEAR_ASSERT(skb);
1907 	skb->tail += len;
1908 	skb->len  += len;
1909 	return tmp;
1910 }
1911 
1912 unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1913 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1914 {
1915 	skb->data -= len;
1916 	skb->len  += len;
1917 	return skb->data;
1918 }
1919 
1920 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1921 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1922 {
1923 	skb->len -= len;
1924 	BUG_ON(skb->len < skb->data_len);
1925 	return skb->data += len;
1926 }
1927 
1928 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1929 {
1930 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1931 }
1932 
1933 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1934 
1935 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1936 {
1937 	if (len > skb_headlen(skb) &&
1938 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1939 		return NULL;
1940 	skb->len -= len;
1941 	return skb->data += len;
1942 }
1943 
1944 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1945 {
1946 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1947 }
1948 
1949 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1950 {
1951 	if (likely(len <= skb_headlen(skb)))
1952 		return 1;
1953 	if (unlikely(len > skb->len))
1954 		return 0;
1955 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1956 }
1957 
1958 /**
1959  *	skb_headroom - bytes at buffer head
1960  *	@skb: buffer to check
1961  *
1962  *	Return the number of bytes of free space at the head of an &sk_buff.
1963  */
1964 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1965 {
1966 	return skb->data - skb->head;
1967 }
1968 
1969 /**
1970  *	skb_tailroom - bytes at buffer end
1971  *	@skb: buffer to check
1972  *
1973  *	Return the number of bytes of free space at the tail of an sk_buff
1974  */
1975 static inline int skb_tailroom(const struct sk_buff *skb)
1976 {
1977 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1978 }
1979 
1980 /**
1981  *	skb_availroom - bytes at buffer end
1982  *	@skb: buffer to check
1983  *
1984  *	Return the number of bytes of free space at the tail of an sk_buff
1985  *	allocated by sk_stream_alloc()
1986  */
1987 static inline int skb_availroom(const struct sk_buff *skb)
1988 {
1989 	if (skb_is_nonlinear(skb))
1990 		return 0;
1991 
1992 	return skb->end - skb->tail - skb->reserved_tailroom;
1993 }
1994 
1995 /**
1996  *	skb_reserve - adjust headroom
1997  *	@skb: buffer to alter
1998  *	@len: bytes to move
1999  *
2000  *	Increase the headroom of an empty &sk_buff by reducing the tail
2001  *	room. This is only allowed for an empty buffer.
2002  */
2003 static inline void skb_reserve(struct sk_buff *skb, int len)
2004 {
2005 	skb->data += len;
2006 	skb->tail += len;
2007 }
2008 
2009 /**
2010  *	skb_tailroom_reserve - adjust reserved_tailroom
2011  *	@skb: buffer to alter
2012  *	@mtu: maximum amount of headlen permitted
2013  *	@needed_tailroom: minimum amount of reserved_tailroom
2014  *
2015  *	Set reserved_tailroom so that headlen can be as large as possible but
2016  *	not larger than mtu and tailroom cannot be smaller than
2017  *	needed_tailroom.
2018  *	The required headroom should already have been reserved before using
2019  *	this function.
2020  */
2021 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2022 					unsigned int needed_tailroom)
2023 {
2024 	SKB_LINEAR_ASSERT(skb);
2025 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2026 		/* use at most mtu */
2027 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2028 	else
2029 		/* use up to all available space */
2030 		skb->reserved_tailroom = needed_tailroom;
2031 }
2032 
2033 #define ENCAP_TYPE_ETHER	0
2034 #define ENCAP_TYPE_IPPROTO	1
2035 
2036 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2037 					  __be16 protocol)
2038 {
2039 	skb->inner_protocol = protocol;
2040 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2041 }
2042 
2043 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2044 					 __u8 ipproto)
2045 {
2046 	skb->inner_ipproto = ipproto;
2047 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2048 }
2049 
2050 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2051 {
2052 	skb->inner_mac_header = skb->mac_header;
2053 	skb->inner_network_header = skb->network_header;
2054 	skb->inner_transport_header = skb->transport_header;
2055 }
2056 
2057 static inline void skb_reset_mac_len(struct sk_buff *skb)
2058 {
2059 	skb->mac_len = skb->network_header - skb->mac_header;
2060 }
2061 
2062 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2063 							*skb)
2064 {
2065 	return skb->head + skb->inner_transport_header;
2066 }
2067 
2068 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2069 {
2070 	return skb_inner_transport_header(skb) - skb->data;
2071 }
2072 
2073 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2074 {
2075 	skb->inner_transport_header = skb->data - skb->head;
2076 }
2077 
2078 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2079 						   const int offset)
2080 {
2081 	skb_reset_inner_transport_header(skb);
2082 	skb->inner_transport_header += offset;
2083 }
2084 
2085 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2086 {
2087 	return skb->head + skb->inner_network_header;
2088 }
2089 
2090 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2091 {
2092 	skb->inner_network_header = skb->data - skb->head;
2093 }
2094 
2095 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2096 						const int offset)
2097 {
2098 	skb_reset_inner_network_header(skb);
2099 	skb->inner_network_header += offset;
2100 }
2101 
2102 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2103 {
2104 	return skb->head + skb->inner_mac_header;
2105 }
2106 
2107 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2108 {
2109 	skb->inner_mac_header = skb->data - skb->head;
2110 }
2111 
2112 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2113 					    const int offset)
2114 {
2115 	skb_reset_inner_mac_header(skb);
2116 	skb->inner_mac_header += offset;
2117 }
2118 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2119 {
2120 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2121 }
2122 
2123 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2124 {
2125 	return skb->head + skb->transport_header;
2126 }
2127 
2128 static inline void skb_reset_transport_header(struct sk_buff *skb)
2129 {
2130 	skb->transport_header = skb->data - skb->head;
2131 }
2132 
2133 static inline void skb_set_transport_header(struct sk_buff *skb,
2134 					    const int offset)
2135 {
2136 	skb_reset_transport_header(skb);
2137 	skb->transport_header += offset;
2138 }
2139 
2140 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2141 {
2142 	return skb->head + skb->network_header;
2143 }
2144 
2145 static inline void skb_reset_network_header(struct sk_buff *skb)
2146 {
2147 	skb->network_header = skb->data - skb->head;
2148 }
2149 
2150 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2151 {
2152 	skb_reset_network_header(skb);
2153 	skb->network_header += offset;
2154 }
2155 
2156 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2157 {
2158 	return skb->head + skb->mac_header;
2159 }
2160 
2161 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2162 {
2163 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2164 }
2165 
2166 static inline void skb_reset_mac_header(struct sk_buff *skb)
2167 {
2168 	skb->mac_header = skb->data - skb->head;
2169 }
2170 
2171 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2172 {
2173 	skb_reset_mac_header(skb);
2174 	skb->mac_header += offset;
2175 }
2176 
2177 static inline void skb_pop_mac_header(struct sk_buff *skb)
2178 {
2179 	skb->mac_header = skb->network_header;
2180 }
2181 
2182 static inline void skb_probe_transport_header(struct sk_buff *skb,
2183 					      const int offset_hint)
2184 {
2185 	struct flow_keys keys;
2186 
2187 	if (skb_transport_header_was_set(skb))
2188 		return;
2189 	else if (skb_flow_dissect_flow_keys(skb, &keys, 0))
2190 		skb_set_transport_header(skb, keys.control.thoff);
2191 	else
2192 		skb_set_transport_header(skb, offset_hint);
2193 }
2194 
2195 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2196 {
2197 	if (skb_mac_header_was_set(skb)) {
2198 		const unsigned char *old_mac = skb_mac_header(skb);
2199 
2200 		skb_set_mac_header(skb, -skb->mac_len);
2201 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2202 	}
2203 }
2204 
2205 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2206 {
2207 	return skb->csum_start - skb_headroom(skb);
2208 }
2209 
2210 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2211 {
2212 	return skb->head + skb->csum_start;
2213 }
2214 
2215 static inline int skb_transport_offset(const struct sk_buff *skb)
2216 {
2217 	return skb_transport_header(skb) - skb->data;
2218 }
2219 
2220 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2221 {
2222 	return skb->transport_header - skb->network_header;
2223 }
2224 
2225 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2226 {
2227 	return skb->inner_transport_header - skb->inner_network_header;
2228 }
2229 
2230 static inline int skb_network_offset(const struct sk_buff *skb)
2231 {
2232 	return skb_network_header(skb) - skb->data;
2233 }
2234 
2235 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2236 {
2237 	return skb_inner_network_header(skb) - skb->data;
2238 }
2239 
2240 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2241 {
2242 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
2243 }
2244 
2245 /*
2246  * CPUs often take a performance hit when accessing unaligned memory
2247  * locations. The actual performance hit varies, it can be small if the
2248  * hardware handles it or large if we have to take an exception and fix it
2249  * in software.
2250  *
2251  * Since an ethernet header is 14 bytes network drivers often end up with
2252  * the IP header at an unaligned offset. The IP header can be aligned by
2253  * shifting the start of the packet by 2 bytes. Drivers should do this
2254  * with:
2255  *
2256  * skb_reserve(skb, NET_IP_ALIGN);
2257  *
2258  * The downside to this alignment of the IP header is that the DMA is now
2259  * unaligned. On some architectures the cost of an unaligned DMA is high
2260  * and this cost outweighs the gains made by aligning the IP header.
2261  *
2262  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2263  * to be overridden.
2264  */
2265 #ifndef NET_IP_ALIGN
2266 #define NET_IP_ALIGN	2
2267 #endif
2268 
2269 /*
2270  * The networking layer reserves some headroom in skb data (via
2271  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2272  * the header has to grow. In the default case, if the header has to grow
2273  * 32 bytes or less we avoid the reallocation.
2274  *
2275  * Unfortunately this headroom changes the DMA alignment of the resulting
2276  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2277  * on some architectures. An architecture can override this value,
2278  * perhaps setting it to a cacheline in size (since that will maintain
2279  * cacheline alignment of the DMA). It must be a power of 2.
2280  *
2281  * Various parts of the networking layer expect at least 32 bytes of
2282  * headroom, you should not reduce this.
2283  *
2284  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2285  * to reduce average number of cache lines per packet.
2286  * get_rps_cpus() for example only access one 64 bytes aligned block :
2287  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2288  */
2289 #ifndef NET_SKB_PAD
2290 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2291 #endif
2292 
2293 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2294 
2295 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2296 {
2297 	if (unlikely(skb_is_nonlinear(skb))) {
2298 		WARN_ON(1);
2299 		return;
2300 	}
2301 	skb->len = len;
2302 	skb_set_tail_pointer(skb, len);
2303 }
2304 
2305 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2306 {
2307 	__skb_set_length(skb, len);
2308 }
2309 
2310 void skb_trim(struct sk_buff *skb, unsigned int len);
2311 
2312 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2313 {
2314 	if (skb->data_len)
2315 		return ___pskb_trim(skb, len);
2316 	__skb_trim(skb, len);
2317 	return 0;
2318 }
2319 
2320 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2321 {
2322 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2323 }
2324 
2325 /**
2326  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2327  *	@skb: buffer to alter
2328  *	@len: new length
2329  *
2330  *	This is identical to pskb_trim except that the caller knows that
2331  *	the skb is not cloned so we should never get an error due to out-
2332  *	of-memory.
2333  */
2334 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2335 {
2336 	int err = pskb_trim(skb, len);
2337 	BUG_ON(err);
2338 }
2339 
2340 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2341 {
2342 	unsigned int diff = len - skb->len;
2343 
2344 	if (skb_tailroom(skb) < diff) {
2345 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2346 					   GFP_ATOMIC);
2347 		if (ret)
2348 			return ret;
2349 	}
2350 	__skb_set_length(skb, len);
2351 	return 0;
2352 }
2353 
2354 /**
2355  *	skb_orphan - orphan a buffer
2356  *	@skb: buffer to orphan
2357  *
2358  *	If a buffer currently has an owner then we call the owner's
2359  *	destructor function and make the @skb unowned. The buffer continues
2360  *	to exist but is no longer charged to its former owner.
2361  */
2362 static inline void skb_orphan(struct sk_buff *skb)
2363 {
2364 	if (skb->destructor) {
2365 		skb->destructor(skb);
2366 		skb->destructor = NULL;
2367 		skb->sk		= NULL;
2368 	} else {
2369 		BUG_ON(skb->sk);
2370 	}
2371 }
2372 
2373 /**
2374  *	skb_orphan_frags - orphan the frags contained in a buffer
2375  *	@skb: buffer to orphan frags from
2376  *	@gfp_mask: allocation mask for replacement pages
2377  *
2378  *	For each frag in the SKB which needs a destructor (i.e. has an
2379  *	owner) create a copy of that frag and release the original
2380  *	page by calling the destructor.
2381  */
2382 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2383 {
2384 	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
2385 		return 0;
2386 	return skb_copy_ubufs(skb, gfp_mask);
2387 }
2388 
2389 /**
2390  *	__skb_queue_purge - empty a list
2391  *	@list: list to empty
2392  *
2393  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2394  *	the list and one reference dropped. This function does not take the
2395  *	list lock and the caller must hold the relevant locks to use it.
2396  */
2397 void skb_queue_purge(struct sk_buff_head *list);
2398 static inline void __skb_queue_purge(struct sk_buff_head *list)
2399 {
2400 	struct sk_buff *skb;
2401 	while ((skb = __skb_dequeue(list)) != NULL)
2402 		kfree_skb(skb);
2403 }
2404 
2405 void skb_rbtree_purge(struct rb_root *root);
2406 
2407 void *netdev_alloc_frag(unsigned int fragsz);
2408 
2409 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2410 				   gfp_t gfp_mask);
2411 
2412 /**
2413  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
2414  *	@dev: network device to receive on
2415  *	@length: length to allocate
2416  *
2417  *	Allocate a new &sk_buff and assign it a usage count of one. The
2418  *	buffer has unspecified headroom built in. Users should allocate
2419  *	the headroom they think they need without accounting for the
2420  *	built in space. The built in space is used for optimisations.
2421  *
2422  *	%NULL is returned if there is no free memory. Although this function
2423  *	allocates memory it can be called from an interrupt.
2424  */
2425 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2426 					       unsigned int length)
2427 {
2428 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2429 }
2430 
2431 /* legacy helper around __netdev_alloc_skb() */
2432 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2433 					      gfp_t gfp_mask)
2434 {
2435 	return __netdev_alloc_skb(NULL, length, gfp_mask);
2436 }
2437 
2438 /* legacy helper around netdev_alloc_skb() */
2439 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2440 {
2441 	return netdev_alloc_skb(NULL, length);
2442 }
2443 
2444 
2445 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2446 		unsigned int length, gfp_t gfp)
2447 {
2448 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2449 
2450 	if (NET_IP_ALIGN && skb)
2451 		skb_reserve(skb, NET_IP_ALIGN);
2452 	return skb;
2453 }
2454 
2455 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2456 		unsigned int length)
2457 {
2458 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2459 }
2460 
2461 static inline void skb_free_frag(void *addr)
2462 {
2463 	__free_page_frag(addr);
2464 }
2465 
2466 void *napi_alloc_frag(unsigned int fragsz);
2467 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2468 				 unsigned int length, gfp_t gfp_mask);
2469 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2470 					     unsigned int length)
2471 {
2472 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2473 }
2474 void napi_consume_skb(struct sk_buff *skb, int budget);
2475 
2476 void __kfree_skb_flush(void);
2477 void __kfree_skb_defer(struct sk_buff *skb);
2478 
2479 /**
2480  * __dev_alloc_pages - allocate page for network Rx
2481  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2482  * @order: size of the allocation
2483  *
2484  * Allocate a new page.
2485  *
2486  * %NULL is returned if there is no free memory.
2487 */
2488 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2489 					     unsigned int order)
2490 {
2491 	/* This piece of code contains several assumptions.
2492 	 * 1.  This is for device Rx, therefor a cold page is preferred.
2493 	 * 2.  The expectation is the user wants a compound page.
2494 	 * 3.  If requesting a order 0 page it will not be compound
2495 	 *     due to the check to see if order has a value in prep_new_page
2496 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2497 	 *     code in gfp_to_alloc_flags that should be enforcing this.
2498 	 */
2499 	gfp_mask |= __GFP_COLD | __GFP_COMP | __GFP_MEMALLOC;
2500 
2501 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2502 }
2503 
2504 static inline struct page *dev_alloc_pages(unsigned int order)
2505 {
2506 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2507 }
2508 
2509 /**
2510  * __dev_alloc_page - allocate a page for network Rx
2511  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2512  *
2513  * Allocate a new page.
2514  *
2515  * %NULL is returned if there is no free memory.
2516  */
2517 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2518 {
2519 	return __dev_alloc_pages(gfp_mask, 0);
2520 }
2521 
2522 static inline struct page *dev_alloc_page(void)
2523 {
2524 	return dev_alloc_pages(0);
2525 }
2526 
2527 /**
2528  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2529  *	@page: The page that was allocated from skb_alloc_page
2530  *	@skb: The skb that may need pfmemalloc set
2531  */
2532 static inline void skb_propagate_pfmemalloc(struct page *page,
2533 					     struct sk_buff *skb)
2534 {
2535 	if (page_is_pfmemalloc(page))
2536 		skb->pfmemalloc = true;
2537 }
2538 
2539 /**
2540  * skb_frag_page - retrieve the page referred to by a paged fragment
2541  * @frag: the paged fragment
2542  *
2543  * Returns the &struct page associated with @frag.
2544  */
2545 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2546 {
2547 	return frag->page.p;
2548 }
2549 
2550 /**
2551  * __skb_frag_ref - take an addition reference on a paged fragment.
2552  * @frag: the paged fragment
2553  *
2554  * Takes an additional reference on the paged fragment @frag.
2555  */
2556 static inline void __skb_frag_ref(skb_frag_t *frag)
2557 {
2558 	get_page(skb_frag_page(frag));
2559 }
2560 
2561 /**
2562  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2563  * @skb: the buffer
2564  * @f: the fragment offset.
2565  *
2566  * Takes an additional reference on the @f'th paged fragment of @skb.
2567  */
2568 static inline void skb_frag_ref(struct sk_buff *skb, int f)
2569 {
2570 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2571 }
2572 
2573 /**
2574  * __skb_frag_unref - release a reference on a paged fragment.
2575  * @frag: the paged fragment
2576  *
2577  * Releases a reference on the paged fragment @frag.
2578  */
2579 static inline void __skb_frag_unref(skb_frag_t *frag)
2580 {
2581 	put_page(skb_frag_page(frag));
2582 }
2583 
2584 /**
2585  * skb_frag_unref - release a reference on a paged fragment of an skb.
2586  * @skb: the buffer
2587  * @f: the fragment offset
2588  *
2589  * Releases a reference on the @f'th paged fragment of @skb.
2590  */
2591 static inline void skb_frag_unref(struct sk_buff *skb, int f)
2592 {
2593 	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2594 }
2595 
2596 /**
2597  * skb_frag_address - gets the address of the data contained in a paged fragment
2598  * @frag: the paged fragment buffer
2599  *
2600  * Returns the address of the data within @frag. The page must already
2601  * be mapped.
2602  */
2603 static inline void *skb_frag_address(const skb_frag_t *frag)
2604 {
2605 	return page_address(skb_frag_page(frag)) + frag->page_offset;
2606 }
2607 
2608 /**
2609  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2610  * @frag: the paged fragment buffer
2611  *
2612  * Returns the address of the data within @frag. Checks that the page
2613  * is mapped and returns %NULL otherwise.
2614  */
2615 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2616 {
2617 	void *ptr = page_address(skb_frag_page(frag));
2618 	if (unlikely(!ptr))
2619 		return NULL;
2620 
2621 	return ptr + frag->page_offset;
2622 }
2623 
2624 /**
2625  * __skb_frag_set_page - sets the page contained in a paged fragment
2626  * @frag: the paged fragment
2627  * @page: the page to set
2628  *
2629  * Sets the fragment @frag to contain @page.
2630  */
2631 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2632 {
2633 	frag->page.p = page;
2634 }
2635 
2636 /**
2637  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2638  * @skb: the buffer
2639  * @f: the fragment offset
2640  * @page: the page to set
2641  *
2642  * Sets the @f'th fragment of @skb to contain @page.
2643  */
2644 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2645 				     struct page *page)
2646 {
2647 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2648 }
2649 
2650 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2651 
2652 /**
2653  * skb_frag_dma_map - maps a paged fragment via the DMA API
2654  * @dev: the device to map the fragment to
2655  * @frag: the paged fragment to map
2656  * @offset: the offset within the fragment (starting at the
2657  *          fragment's own offset)
2658  * @size: the number of bytes to map
2659  * @dir: the direction of the mapping (%PCI_DMA_*)
2660  *
2661  * Maps the page associated with @frag to @device.
2662  */
2663 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2664 					  const skb_frag_t *frag,
2665 					  size_t offset, size_t size,
2666 					  enum dma_data_direction dir)
2667 {
2668 	return dma_map_page(dev, skb_frag_page(frag),
2669 			    frag->page_offset + offset, size, dir);
2670 }
2671 
2672 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2673 					gfp_t gfp_mask)
2674 {
2675 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2676 }
2677 
2678 
2679 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2680 						  gfp_t gfp_mask)
2681 {
2682 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2683 }
2684 
2685 
2686 /**
2687  *	skb_clone_writable - is the header of a clone writable
2688  *	@skb: buffer to check
2689  *	@len: length up to which to write
2690  *
2691  *	Returns true if modifying the header part of the cloned buffer
2692  *	does not requires the data to be copied.
2693  */
2694 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2695 {
2696 	return !skb_header_cloned(skb) &&
2697 	       skb_headroom(skb) + len <= skb->hdr_len;
2698 }
2699 
2700 static inline int skb_try_make_writable(struct sk_buff *skb,
2701 					unsigned int write_len)
2702 {
2703 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
2704 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2705 }
2706 
2707 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2708 			    int cloned)
2709 {
2710 	int delta = 0;
2711 
2712 	if (headroom > skb_headroom(skb))
2713 		delta = headroom - skb_headroom(skb);
2714 
2715 	if (delta || cloned)
2716 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2717 					GFP_ATOMIC);
2718 	return 0;
2719 }
2720 
2721 /**
2722  *	skb_cow - copy header of skb when it is required
2723  *	@skb: buffer to cow
2724  *	@headroom: needed headroom
2725  *
2726  *	If the skb passed lacks sufficient headroom or its data part
2727  *	is shared, data is reallocated. If reallocation fails, an error
2728  *	is returned and original skb is not changed.
2729  *
2730  *	The result is skb with writable area skb->head...skb->tail
2731  *	and at least @headroom of space at head.
2732  */
2733 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2734 {
2735 	return __skb_cow(skb, headroom, skb_cloned(skb));
2736 }
2737 
2738 /**
2739  *	skb_cow_head - skb_cow but only making the head writable
2740  *	@skb: buffer to cow
2741  *	@headroom: needed headroom
2742  *
2743  *	This function is identical to skb_cow except that we replace the
2744  *	skb_cloned check by skb_header_cloned.  It should be used when
2745  *	you only need to push on some header and do not need to modify
2746  *	the data.
2747  */
2748 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2749 {
2750 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
2751 }
2752 
2753 /**
2754  *	skb_padto	- pad an skbuff up to a minimal size
2755  *	@skb: buffer to pad
2756  *	@len: minimal length
2757  *
2758  *	Pads up a buffer to ensure the trailing bytes exist and are
2759  *	blanked. If the buffer already contains sufficient data it
2760  *	is untouched. Otherwise it is extended. Returns zero on
2761  *	success. The skb is freed on error.
2762  */
2763 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
2764 {
2765 	unsigned int size = skb->len;
2766 	if (likely(size >= len))
2767 		return 0;
2768 	return skb_pad(skb, len - size);
2769 }
2770 
2771 /**
2772  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
2773  *	@skb: buffer to pad
2774  *	@len: minimal length
2775  *
2776  *	Pads up a buffer to ensure the trailing bytes exist and are
2777  *	blanked. If the buffer already contains sufficient data it
2778  *	is untouched. Otherwise it is extended. Returns zero on
2779  *	success. The skb is freed on error.
2780  */
2781 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
2782 {
2783 	unsigned int size = skb->len;
2784 
2785 	if (unlikely(size < len)) {
2786 		len -= size;
2787 		if (skb_pad(skb, len))
2788 			return -ENOMEM;
2789 		__skb_put(skb, len);
2790 	}
2791 	return 0;
2792 }
2793 
2794 static inline int skb_add_data(struct sk_buff *skb,
2795 			       struct iov_iter *from, int copy)
2796 {
2797 	const int off = skb->len;
2798 
2799 	if (skb->ip_summed == CHECKSUM_NONE) {
2800 		__wsum csum = 0;
2801 		if (csum_and_copy_from_iter(skb_put(skb, copy), copy,
2802 					    &csum, from) == copy) {
2803 			skb->csum = csum_block_add(skb->csum, csum, off);
2804 			return 0;
2805 		}
2806 	} else if (copy_from_iter(skb_put(skb, copy), copy, from) == copy)
2807 		return 0;
2808 
2809 	__skb_trim(skb, off);
2810 	return -EFAULT;
2811 }
2812 
2813 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
2814 				    const struct page *page, int off)
2815 {
2816 	if (i) {
2817 		const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
2818 
2819 		return page == skb_frag_page(frag) &&
2820 		       off == frag->page_offset + skb_frag_size(frag);
2821 	}
2822 	return false;
2823 }
2824 
2825 static inline int __skb_linearize(struct sk_buff *skb)
2826 {
2827 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
2828 }
2829 
2830 /**
2831  *	skb_linearize - convert paged skb to linear one
2832  *	@skb: buffer to linarize
2833  *
2834  *	If there is no free memory -ENOMEM is returned, otherwise zero
2835  *	is returned and the old skb data released.
2836  */
2837 static inline int skb_linearize(struct sk_buff *skb)
2838 {
2839 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
2840 }
2841 
2842 /**
2843  * skb_has_shared_frag - can any frag be overwritten
2844  * @skb: buffer to test
2845  *
2846  * Return true if the skb has at least one frag that might be modified
2847  * by an external entity (as in vmsplice()/sendfile())
2848  */
2849 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
2850 {
2851 	return skb_is_nonlinear(skb) &&
2852 	       skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2853 }
2854 
2855 /**
2856  *	skb_linearize_cow - make sure skb is linear and writable
2857  *	@skb: buffer to process
2858  *
2859  *	If there is no free memory -ENOMEM is returned, otherwise zero
2860  *	is returned and the old skb data released.
2861  */
2862 static inline int skb_linearize_cow(struct sk_buff *skb)
2863 {
2864 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
2865 	       __skb_linearize(skb) : 0;
2866 }
2867 
2868 static __always_inline void
2869 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
2870 		     unsigned int off)
2871 {
2872 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2873 		skb->csum = csum_block_sub(skb->csum,
2874 					   csum_partial(start, len, 0), off);
2875 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
2876 		 skb_checksum_start_offset(skb) < 0)
2877 		skb->ip_summed = CHECKSUM_NONE;
2878 }
2879 
2880 /**
2881  *	skb_postpull_rcsum - update checksum for received skb after pull
2882  *	@skb: buffer to update
2883  *	@start: start of data before pull
2884  *	@len: length of data pulled
2885  *
2886  *	After doing a pull on a received packet, you need to call this to
2887  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
2888  *	CHECKSUM_NONE so that it can be recomputed from scratch.
2889  */
2890 static inline void skb_postpull_rcsum(struct sk_buff *skb,
2891 				      const void *start, unsigned int len)
2892 {
2893 	__skb_postpull_rcsum(skb, start, len, 0);
2894 }
2895 
2896 static __always_inline void
2897 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
2898 		     unsigned int off)
2899 {
2900 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2901 		skb->csum = csum_block_add(skb->csum,
2902 					   csum_partial(start, len, 0), off);
2903 }
2904 
2905 /**
2906  *	skb_postpush_rcsum - update checksum for received skb after push
2907  *	@skb: buffer to update
2908  *	@start: start of data after push
2909  *	@len: length of data pushed
2910  *
2911  *	After doing a push on a received packet, you need to call this to
2912  *	update the CHECKSUM_COMPLETE checksum.
2913  */
2914 static inline void skb_postpush_rcsum(struct sk_buff *skb,
2915 				      const void *start, unsigned int len)
2916 {
2917 	__skb_postpush_rcsum(skb, start, len, 0);
2918 }
2919 
2920 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
2921 
2922 /**
2923  *	skb_push_rcsum - push skb and update receive checksum
2924  *	@skb: buffer to update
2925  *	@len: length of data pulled
2926  *
2927  *	This function performs an skb_push on the packet and updates
2928  *	the CHECKSUM_COMPLETE checksum.  It should be used on
2929  *	receive path processing instead of skb_push unless you know
2930  *	that the checksum difference is zero (e.g., a valid IP header)
2931  *	or you are setting ip_summed to CHECKSUM_NONE.
2932  */
2933 static inline unsigned char *skb_push_rcsum(struct sk_buff *skb,
2934 					    unsigned int len)
2935 {
2936 	skb_push(skb, len);
2937 	skb_postpush_rcsum(skb, skb->data, len);
2938 	return skb->data;
2939 }
2940 
2941 /**
2942  *	pskb_trim_rcsum - trim received skb and update checksum
2943  *	@skb: buffer to trim
2944  *	@len: new length
2945  *
2946  *	This is exactly the same as pskb_trim except that it ensures the
2947  *	checksum of received packets are still valid after the operation.
2948  */
2949 
2950 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2951 {
2952 	if (likely(len >= skb->len))
2953 		return 0;
2954 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2955 		skb->ip_summed = CHECKSUM_NONE;
2956 	return __pskb_trim(skb, len);
2957 }
2958 
2959 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2960 {
2961 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2962 		skb->ip_summed = CHECKSUM_NONE;
2963 	__skb_trim(skb, len);
2964 	return 0;
2965 }
2966 
2967 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
2968 {
2969 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2970 		skb->ip_summed = CHECKSUM_NONE;
2971 	return __skb_grow(skb, len);
2972 }
2973 
2974 #define skb_queue_walk(queue, skb) \
2975 		for (skb = (queue)->next;					\
2976 		     skb != (struct sk_buff *)(queue);				\
2977 		     skb = skb->next)
2978 
2979 #define skb_queue_walk_safe(queue, skb, tmp)					\
2980 		for (skb = (queue)->next, tmp = skb->next;			\
2981 		     skb != (struct sk_buff *)(queue);				\
2982 		     skb = tmp, tmp = skb->next)
2983 
2984 #define skb_queue_walk_from(queue, skb)						\
2985 		for (; skb != (struct sk_buff *)(queue);			\
2986 		     skb = skb->next)
2987 
2988 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
2989 		for (tmp = skb->next;						\
2990 		     skb != (struct sk_buff *)(queue);				\
2991 		     skb = tmp, tmp = skb->next)
2992 
2993 #define skb_queue_reverse_walk(queue, skb) \
2994 		for (skb = (queue)->prev;					\
2995 		     skb != (struct sk_buff *)(queue);				\
2996 		     skb = skb->prev)
2997 
2998 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
2999 		for (skb = (queue)->prev, tmp = skb->prev;			\
3000 		     skb != (struct sk_buff *)(queue);				\
3001 		     skb = tmp, tmp = skb->prev)
3002 
3003 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3004 		for (tmp = skb->prev;						\
3005 		     skb != (struct sk_buff *)(queue);				\
3006 		     skb = tmp, tmp = skb->prev)
3007 
3008 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3009 {
3010 	return skb_shinfo(skb)->frag_list != NULL;
3011 }
3012 
3013 static inline void skb_frag_list_init(struct sk_buff *skb)
3014 {
3015 	skb_shinfo(skb)->frag_list = NULL;
3016 }
3017 
3018 #define skb_walk_frags(skb, iter)	\
3019 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3020 
3021 
3022 int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
3023 				const struct sk_buff *skb);
3024 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
3025 					int *peeked, int *off, int *err,
3026 					struct sk_buff **last);
3027 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
3028 				    int *peeked, int *off, int *err);
3029 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3030 				  int *err);
3031 unsigned int datagram_poll(struct file *file, struct socket *sock,
3032 			   struct poll_table_struct *wait);
3033 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3034 			   struct iov_iter *to, int size);
3035 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3036 					struct msghdr *msg, int size)
3037 {
3038 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3039 }
3040 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3041 				   struct msghdr *msg);
3042 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3043 				 struct iov_iter *from, int len);
3044 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3045 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3046 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3047 static inline void skb_free_datagram_locked(struct sock *sk,
3048 					    struct sk_buff *skb)
3049 {
3050 	__skb_free_datagram_locked(sk, skb, 0);
3051 }
3052 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3053 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3054 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3055 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3056 			      int len, __wsum csum);
3057 ssize_t skb_socket_splice(struct sock *sk,
3058 			  struct pipe_inode_info *pipe,
3059 			  struct splice_pipe_desc *spd);
3060 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3061 		    struct pipe_inode_info *pipe, unsigned int len,
3062 		    unsigned int flags,
3063 		    ssize_t (*splice_cb)(struct sock *,
3064 					 struct pipe_inode_info *,
3065 					 struct splice_pipe_desc *));
3066 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3067 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3068 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3069 		 int len, int hlen);
3070 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3071 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3072 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3073 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
3074 bool skb_gso_validate_mtu(const struct sk_buff *skb, unsigned int mtu);
3075 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3076 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3077 int skb_ensure_writable(struct sk_buff *skb, int write_len);
3078 int skb_vlan_pop(struct sk_buff *skb);
3079 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3080 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3081 			     gfp_t gfp);
3082 
3083 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3084 {
3085 	return copy_from_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3086 }
3087 
3088 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3089 {
3090 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3091 }
3092 
3093 struct skb_checksum_ops {
3094 	__wsum (*update)(const void *mem, int len, __wsum wsum);
3095 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3096 };
3097 
3098 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3099 		      __wsum csum, const struct skb_checksum_ops *ops);
3100 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3101 		    __wsum csum);
3102 
3103 static inline void * __must_check
3104 __skb_header_pointer(const struct sk_buff *skb, int offset,
3105 		     int len, void *data, int hlen, void *buffer)
3106 {
3107 	if (hlen - offset >= len)
3108 		return data + offset;
3109 
3110 	if (!skb ||
3111 	    skb_copy_bits(skb, offset, buffer, len) < 0)
3112 		return NULL;
3113 
3114 	return buffer;
3115 }
3116 
3117 static inline void * __must_check
3118 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3119 {
3120 	return __skb_header_pointer(skb, offset, len, skb->data,
3121 				    skb_headlen(skb), buffer);
3122 }
3123 
3124 /**
3125  *	skb_needs_linearize - check if we need to linearize a given skb
3126  *			      depending on the given device features.
3127  *	@skb: socket buffer to check
3128  *	@features: net device features
3129  *
3130  *	Returns true if either:
3131  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
3132  *	2. skb is fragmented and the device does not support SG.
3133  */
3134 static inline bool skb_needs_linearize(struct sk_buff *skb,
3135 				       netdev_features_t features)
3136 {
3137 	return skb_is_nonlinear(skb) &&
3138 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3139 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3140 }
3141 
3142 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3143 					     void *to,
3144 					     const unsigned int len)
3145 {
3146 	memcpy(to, skb->data, len);
3147 }
3148 
3149 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3150 						    const int offset, void *to,
3151 						    const unsigned int len)
3152 {
3153 	memcpy(to, skb->data + offset, len);
3154 }
3155 
3156 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3157 					   const void *from,
3158 					   const unsigned int len)
3159 {
3160 	memcpy(skb->data, from, len);
3161 }
3162 
3163 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3164 						  const int offset,
3165 						  const void *from,
3166 						  const unsigned int len)
3167 {
3168 	memcpy(skb->data + offset, from, len);
3169 }
3170 
3171 void skb_init(void);
3172 
3173 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3174 {
3175 	return skb->tstamp;
3176 }
3177 
3178 /**
3179  *	skb_get_timestamp - get timestamp from a skb
3180  *	@skb: skb to get stamp from
3181  *	@stamp: pointer to struct timeval to store stamp in
3182  *
3183  *	Timestamps are stored in the skb as offsets to a base timestamp.
3184  *	This function converts the offset back to a struct timeval and stores
3185  *	it in stamp.
3186  */
3187 static inline void skb_get_timestamp(const struct sk_buff *skb,
3188 				     struct timeval *stamp)
3189 {
3190 	*stamp = ktime_to_timeval(skb->tstamp);
3191 }
3192 
3193 static inline void skb_get_timestampns(const struct sk_buff *skb,
3194 				       struct timespec *stamp)
3195 {
3196 	*stamp = ktime_to_timespec(skb->tstamp);
3197 }
3198 
3199 static inline void __net_timestamp(struct sk_buff *skb)
3200 {
3201 	skb->tstamp = ktime_get_real();
3202 }
3203 
3204 static inline ktime_t net_timedelta(ktime_t t)
3205 {
3206 	return ktime_sub(ktime_get_real(), t);
3207 }
3208 
3209 static inline ktime_t net_invalid_timestamp(void)
3210 {
3211 	return ktime_set(0, 0);
3212 }
3213 
3214 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3215 
3216 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3217 
3218 void skb_clone_tx_timestamp(struct sk_buff *skb);
3219 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3220 
3221 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3222 
3223 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3224 {
3225 }
3226 
3227 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3228 {
3229 	return false;
3230 }
3231 
3232 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3233 
3234 /**
3235  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3236  *
3237  * PHY drivers may accept clones of transmitted packets for
3238  * timestamping via their phy_driver.txtstamp method. These drivers
3239  * must call this function to return the skb back to the stack with a
3240  * timestamp.
3241  *
3242  * @skb: clone of the the original outgoing packet
3243  * @hwtstamps: hardware time stamps
3244  *
3245  */
3246 void skb_complete_tx_timestamp(struct sk_buff *skb,
3247 			       struct skb_shared_hwtstamps *hwtstamps);
3248 
3249 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3250 		     struct skb_shared_hwtstamps *hwtstamps,
3251 		     struct sock *sk, int tstype);
3252 
3253 /**
3254  * skb_tstamp_tx - queue clone of skb with send time stamps
3255  * @orig_skb:	the original outgoing packet
3256  * @hwtstamps:	hardware time stamps, may be NULL if not available
3257  *
3258  * If the skb has a socket associated, then this function clones the
3259  * skb (thus sharing the actual data and optional structures), stores
3260  * the optional hardware time stamping information (if non NULL) or
3261  * generates a software time stamp (otherwise), then queues the clone
3262  * to the error queue of the socket.  Errors are silently ignored.
3263  */
3264 void skb_tstamp_tx(struct sk_buff *orig_skb,
3265 		   struct skb_shared_hwtstamps *hwtstamps);
3266 
3267 static inline void sw_tx_timestamp(struct sk_buff *skb)
3268 {
3269 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
3270 	    !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
3271 		skb_tstamp_tx(skb, NULL);
3272 }
3273 
3274 /**
3275  * skb_tx_timestamp() - Driver hook for transmit timestamping
3276  *
3277  * Ethernet MAC Drivers should call this function in their hard_xmit()
3278  * function immediately before giving the sk_buff to the MAC hardware.
3279  *
3280  * Specifically, one should make absolutely sure that this function is
3281  * called before TX completion of this packet can trigger.  Otherwise
3282  * the packet could potentially already be freed.
3283  *
3284  * @skb: A socket buffer.
3285  */
3286 static inline void skb_tx_timestamp(struct sk_buff *skb)
3287 {
3288 	skb_clone_tx_timestamp(skb);
3289 	sw_tx_timestamp(skb);
3290 }
3291 
3292 /**
3293  * skb_complete_wifi_ack - deliver skb with wifi status
3294  *
3295  * @skb: the original outgoing packet
3296  * @acked: ack status
3297  *
3298  */
3299 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3300 
3301 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3302 __sum16 __skb_checksum_complete(struct sk_buff *skb);
3303 
3304 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3305 {
3306 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3307 		skb->csum_valid ||
3308 		(skb->ip_summed == CHECKSUM_PARTIAL &&
3309 		 skb_checksum_start_offset(skb) >= 0));
3310 }
3311 
3312 /**
3313  *	skb_checksum_complete - Calculate checksum of an entire packet
3314  *	@skb: packet to process
3315  *
3316  *	This function calculates the checksum over the entire packet plus
3317  *	the value of skb->csum.  The latter can be used to supply the
3318  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
3319  *	checksum.
3320  *
3321  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
3322  *	this function can be used to verify that checksum on received
3323  *	packets.  In that case the function should return zero if the
3324  *	checksum is correct.  In particular, this function will return zero
3325  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3326  *	hardware has already verified the correctness of the checksum.
3327  */
3328 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3329 {
3330 	return skb_csum_unnecessary(skb) ?
3331 	       0 : __skb_checksum_complete(skb);
3332 }
3333 
3334 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3335 {
3336 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3337 		if (skb->csum_level == 0)
3338 			skb->ip_summed = CHECKSUM_NONE;
3339 		else
3340 			skb->csum_level--;
3341 	}
3342 }
3343 
3344 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3345 {
3346 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3347 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3348 			skb->csum_level++;
3349 	} else if (skb->ip_summed == CHECKSUM_NONE) {
3350 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3351 		skb->csum_level = 0;
3352 	}
3353 }
3354 
3355 static inline void __skb_mark_checksum_bad(struct sk_buff *skb)
3356 {
3357 	/* Mark current checksum as bad (typically called from GRO
3358 	 * path). In the case that ip_summed is CHECKSUM_NONE
3359 	 * this must be the first checksum encountered in the packet.
3360 	 * When ip_summed is CHECKSUM_UNNECESSARY, this is the first
3361 	 * checksum after the last one validated. For UDP, a zero
3362 	 * checksum can not be marked as bad.
3363 	 */
3364 
3365 	if (skb->ip_summed == CHECKSUM_NONE ||
3366 	    skb->ip_summed == CHECKSUM_UNNECESSARY)
3367 		skb->csum_bad = 1;
3368 }
3369 
3370 /* Check if we need to perform checksum complete validation.
3371  *
3372  * Returns true if checksum complete is needed, false otherwise
3373  * (either checksum is unnecessary or zero checksum is allowed).
3374  */
3375 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3376 						  bool zero_okay,
3377 						  __sum16 check)
3378 {
3379 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3380 		skb->csum_valid = 1;
3381 		__skb_decr_checksum_unnecessary(skb);
3382 		return false;
3383 	}
3384 
3385 	return true;
3386 }
3387 
3388 /* For small packets <= CHECKSUM_BREAK peform checksum complete directly
3389  * in checksum_init.
3390  */
3391 #define CHECKSUM_BREAK 76
3392 
3393 /* Unset checksum-complete
3394  *
3395  * Unset checksum complete can be done when packet is being modified
3396  * (uncompressed for instance) and checksum-complete value is
3397  * invalidated.
3398  */
3399 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3400 {
3401 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3402 		skb->ip_summed = CHECKSUM_NONE;
3403 }
3404 
3405 /* Validate (init) checksum based on checksum complete.
3406  *
3407  * Return values:
3408  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
3409  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3410  *	checksum is stored in skb->csum for use in __skb_checksum_complete
3411  *   non-zero: value of invalid checksum
3412  *
3413  */
3414 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3415 						       bool complete,
3416 						       __wsum psum)
3417 {
3418 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
3419 		if (!csum_fold(csum_add(psum, skb->csum))) {
3420 			skb->csum_valid = 1;
3421 			return 0;
3422 		}
3423 	} else if (skb->csum_bad) {
3424 		/* ip_summed == CHECKSUM_NONE in this case */
3425 		return (__force __sum16)1;
3426 	}
3427 
3428 	skb->csum = psum;
3429 
3430 	if (complete || skb->len <= CHECKSUM_BREAK) {
3431 		__sum16 csum;
3432 
3433 		csum = __skb_checksum_complete(skb);
3434 		skb->csum_valid = !csum;
3435 		return csum;
3436 	}
3437 
3438 	return 0;
3439 }
3440 
3441 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3442 {
3443 	return 0;
3444 }
3445 
3446 /* Perform checksum validate (init). Note that this is a macro since we only
3447  * want to calculate the pseudo header which is an input function if necessary.
3448  * First we try to validate without any computation (checksum unnecessary) and
3449  * then calculate based on checksum complete calling the function to compute
3450  * pseudo header.
3451  *
3452  * Return values:
3453  *   0: checksum is validated or try to in skb_checksum_complete
3454  *   non-zero: value of invalid checksum
3455  */
3456 #define __skb_checksum_validate(skb, proto, complete,			\
3457 				zero_okay, check, compute_pseudo)	\
3458 ({									\
3459 	__sum16 __ret = 0;						\
3460 	skb->csum_valid = 0;						\
3461 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
3462 		__ret = __skb_checksum_validate_complete(skb,		\
3463 				complete, compute_pseudo(skb, proto));	\
3464 	__ret;								\
3465 })
3466 
3467 #define skb_checksum_init(skb, proto, compute_pseudo)			\
3468 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3469 
3470 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
3471 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3472 
3473 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
3474 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3475 
3476 #define skb_checksum_validate_zero_check(skb, proto, check,		\
3477 					 compute_pseudo)		\
3478 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
3479 
3480 #define skb_checksum_simple_validate(skb)				\
3481 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3482 
3483 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3484 {
3485 	return (skb->ip_summed == CHECKSUM_NONE &&
3486 		skb->csum_valid && !skb->csum_bad);
3487 }
3488 
3489 static inline void __skb_checksum_convert(struct sk_buff *skb,
3490 					  __sum16 check, __wsum pseudo)
3491 {
3492 	skb->csum = ~pseudo;
3493 	skb->ip_summed = CHECKSUM_COMPLETE;
3494 }
3495 
3496 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo)	\
3497 do {									\
3498 	if (__skb_checksum_convert_check(skb))				\
3499 		__skb_checksum_convert(skb, check,			\
3500 				       compute_pseudo(skb, proto));	\
3501 } while (0)
3502 
3503 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3504 					      u16 start, u16 offset)
3505 {
3506 	skb->ip_summed = CHECKSUM_PARTIAL;
3507 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3508 	skb->csum_offset = offset - start;
3509 }
3510 
3511 /* Update skbuf and packet to reflect the remote checksum offload operation.
3512  * When called, ptr indicates the starting point for skb->csum when
3513  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3514  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3515  */
3516 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
3517 				       int start, int offset, bool nopartial)
3518 {
3519 	__wsum delta;
3520 
3521 	if (!nopartial) {
3522 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
3523 		return;
3524 	}
3525 
3526 	 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3527 		__skb_checksum_complete(skb);
3528 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3529 	}
3530 
3531 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
3532 
3533 	/* Adjust skb->csum since we changed the packet */
3534 	skb->csum = csum_add(skb->csum, delta);
3535 }
3536 
3537 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3538 void nf_conntrack_destroy(struct nf_conntrack *nfct);
3539 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3540 {
3541 	if (nfct && atomic_dec_and_test(&nfct->use))
3542 		nf_conntrack_destroy(nfct);
3543 }
3544 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3545 {
3546 	if (nfct)
3547 		atomic_inc(&nfct->use);
3548 }
3549 #endif
3550 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3551 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
3552 {
3553 	if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
3554 		kfree(nf_bridge);
3555 }
3556 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
3557 {
3558 	if (nf_bridge)
3559 		atomic_inc(&nf_bridge->use);
3560 }
3561 #endif /* CONFIG_BRIDGE_NETFILTER */
3562 static inline void nf_reset(struct sk_buff *skb)
3563 {
3564 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3565 	nf_conntrack_put(skb->nfct);
3566 	skb->nfct = NULL;
3567 #endif
3568 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3569 	nf_bridge_put(skb->nf_bridge);
3570 	skb->nf_bridge = NULL;
3571 #endif
3572 }
3573 
3574 static inline void nf_reset_trace(struct sk_buff *skb)
3575 {
3576 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3577 	skb->nf_trace = 0;
3578 #endif
3579 }
3580 
3581 /* Note: This doesn't put any conntrack and bridge info in dst. */
3582 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
3583 			     bool copy)
3584 {
3585 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3586 	dst->nfct = src->nfct;
3587 	nf_conntrack_get(src->nfct);
3588 	if (copy)
3589 		dst->nfctinfo = src->nfctinfo;
3590 #endif
3591 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3592 	dst->nf_bridge  = src->nf_bridge;
3593 	nf_bridge_get(src->nf_bridge);
3594 #endif
3595 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3596 	if (copy)
3597 		dst->nf_trace = src->nf_trace;
3598 #endif
3599 }
3600 
3601 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
3602 {
3603 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3604 	nf_conntrack_put(dst->nfct);
3605 #endif
3606 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3607 	nf_bridge_put(dst->nf_bridge);
3608 #endif
3609 	__nf_copy(dst, src, true);
3610 }
3611 
3612 #ifdef CONFIG_NETWORK_SECMARK
3613 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3614 {
3615 	to->secmark = from->secmark;
3616 }
3617 
3618 static inline void skb_init_secmark(struct sk_buff *skb)
3619 {
3620 	skb->secmark = 0;
3621 }
3622 #else
3623 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3624 { }
3625 
3626 static inline void skb_init_secmark(struct sk_buff *skb)
3627 { }
3628 #endif
3629 
3630 static inline bool skb_irq_freeable(const struct sk_buff *skb)
3631 {
3632 	return !skb->destructor &&
3633 #if IS_ENABLED(CONFIG_XFRM)
3634 		!skb->sp &&
3635 #endif
3636 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
3637 		!skb->nfct &&
3638 #endif
3639 		!skb->_skb_refdst &&
3640 		!skb_has_frag_list(skb);
3641 }
3642 
3643 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
3644 {
3645 	skb->queue_mapping = queue_mapping;
3646 }
3647 
3648 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
3649 {
3650 	return skb->queue_mapping;
3651 }
3652 
3653 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
3654 {
3655 	to->queue_mapping = from->queue_mapping;
3656 }
3657 
3658 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
3659 {
3660 	skb->queue_mapping = rx_queue + 1;
3661 }
3662 
3663 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
3664 {
3665 	return skb->queue_mapping - 1;
3666 }
3667 
3668 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
3669 {
3670 	return skb->queue_mapping != 0;
3671 }
3672 
3673 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
3674 {
3675 #ifdef CONFIG_XFRM
3676 	return skb->sp;
3677 #else
3678 	return NULL;
3679 #endif
3680 }
3681 
3682 /* Keeps track of mac header offset relative to skb->head.
3683  * It is useful for TSO of Tunneling protocol. e.g. GRE.
3684  * For non-tunnel skb it points to skb_mac_header() and for
3685  * tunnel skb it points to outer mac header.
3686  * Keeps track of level of encapsulation of network headers.
3687  */
3688 struct skb_gso_cb {
3689 	union {
3690 		int	mac_offset;
3691 		int	data_offset;
3692 	};
3693 	int	encap_level;
3694 	__wsum	csum;
3695 	__u16	csum_start;
3696 };
3697 #define SKB_SGO_CB_OFFSET	32
3698 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
3699 
3700 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
3701 {
3702 	return (skb_mac_header(inner_skb) - inner_skb->head) -
3703 		SKB_GSO_CB(inner_skb)->mac_offset;
3704 }
3705 
3706 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
3707 {
3708 	int new_headroom, headroom;
3709 	int ret;
3710 
3711 	headroom = skb_headroom(skb);
3712 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
3713 	if (ret)
3714 		return ret;
3715 
3716 	new_headroom = skb_headroom(skb);
3717 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
3718 	return 0;
3719 }
3720 
3721 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
3722 {
3723 	/* Do not update partial checksums if remote checksum is enabled. */
3724 	if (skb->remcsum_offload)
3725 		return;
3726 
3727 	SKB_GSO_CB(skb)->csum = res;
3728 	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
3729 }
3730 
3731 /* Compute the checksum for a gso segment. First compute the checksum value
3732  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
3733  * then add in skb->csum (checksum from csum_start to end of packet).
3734  * skb->csum and csum_start are then updated to reflect the checksum of the
3735  * resultant packet starting from the transport header-- the resultant checksum
3736  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
3737  * header.
3738  */
3739 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
3740 {
3741 	unsigned char *csum_start = skb_transport_header(skb);
3742 	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
3743 	__wsum partial = SKB_GSO_CB(skb)->csum;
3744 
3745 	SKB_GSO_CB(skb)->csum = res;
3746 	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
3747 
3748 	return csum_fold(csum_partial(csum_start, plen, partial));
3749 }
3750 
3751 static inline bool skb_is_gso(const struct sk_buff *skb)
3752 {
3753 	return skb_shinfo(skb)->gso_size;
3754 }
3755 
3756 /* Note: Should be called only if skb_is_gso(skb) is true */
3757 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
3758 {
3759 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
3760 }
3761 
3762 static inline void skb_gso_reset(struct sk_buff *skb)
3763 {
3764 	skb_shinfo(skb)->gso_size = 0;
3765 	skb_shinfo(skb)->gso_segs = 0;
3766 	skb_shinfo(skb)->gso_type = 0;
3767 }
3768 
3769 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
3770 
3771 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
3772 {
3773 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
3774 	 * wanted then gso_type will be set. */
3775 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3776 
3777 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
3778 	    unlikely(shinfo->gso_type == 0)) {
3779 		__skb_warn_lro_forwarding(skb);
3780 		return true;
3781 	}
3782 	return false;
3783 }
3784 
3785 static inline void skb_forward_csum(struct sk_buff *skb)
3786 {
3787 	/* Unfortunately we don't support this one.  Any brave souls? */
3788 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3789 		skb->ip_summed = CHECKSUM_NONE;
3790 }
3791 
3792 /**
3793  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
3794  * @skb: skb to check
3795  *
3796  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
3797  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
3798  * use this helper, to document places where we make this assertion.
3799  */
3800 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
3801 {
3802 #ifdef DEBUG
3803 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
3804 #endif
3805 }
3806 
3807 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
3808 
3809 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
3810 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
3811 				     unsigned int transport_len,
3812 				     __sum16(*skb_chkf)(struct sk_buff *skb));
3813 
3814 /**
3815  * skb_head_is_locked - Determine if the skb->head is locked down
3816  * @skb: skb to check
3817  *
3818  * The head on skbs build around a head frag can be removed if they are
3819  * not cloned.  This function returns true if the skb head is locked down
3820  * due to either being allocated via kmalloc, or by being a clone with
3821  * multiple references to the head.
3822  */
3823 static inline bool skb_head_is_locked(const struct sk_buff *skb)
3824 {
3825 	return !skb->head_frag || skb_cloned(skb);
3826 }
3827 
3828 /**
3829  * skb_gso_network_seglen - Return length of individual segments of a gso packet
3830  *
3831  * @skb: GSO skb
3832  *
3833  * skb_gso_network_seglen is used to determine the real size of the
3834  * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
3835  *
3836  * The MAC/L2 header is not accounted for.
3837  */
3838 static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
3839 {
3840 	unsigned int hdr_len = skb_transport_header(skb) -
3841 			       skb_network_header(skb);
3842 	return hdr_len + skb_gso_transport_seglen(skb);
3843 }
3844 
3845 /* Local Checksum Offload.
3846  * Compute outer checksum based on the assumption that the
3847  * inner checksum will be offloaded later.
3848  * See Documentation/networking/checksum-offloads.txt for
3849  * explanation of how this works.
3850  * Fill in outer checksum adjustment (e.g. with sum of outer
3851  * pseudo-header) before calling.
3852  * Also ensure that inner checksum is in linear data area.
3853  */
3854 static inline __wsum lco_csum(struct sk_buff *skb)
3855 {
3856 	unsigned char *csum_start = skb_checksum_start(skb);
3857 	unsigned char *l4_hdr = skb_transport_header(skb);
3858 	__wsum partial;
3859 
3860 	/* Start with complement of inner checksum adjustment */
3861 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
3862 						    skb->csum_offset));
3863 
3864 	/* Add in checksum of our headers (incl. outer checksum
3865 	 * adjustment filled in by caller) and return result.
3866 	 */
3867 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
3868 }
3869 
3870 #endif	/* __KERNEL__ */
3871 #endif	/* _LINUX_SKBUFF_H */
3872