1 /* 2 * Definitions for the 'struct sk_buff' memory handlers. 3 * 4 * Authors: 5 * Alan Cox, <[email protected]> 6 * Florian La Roche, <[email protected]> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14 #ifndef _LINUX_SKBUFF_H 15 #define _LINUX_SKBUFF_H 16 17 #include <linux/kernel.h> 18 #include <linux/kmemcheck.h> 19 #include <linux/compiler.h> 20 #include <linux/time.h> 21 #include <linux/bug.h> 22 #include <linux/cache.h> 23 #include <linux/rbtree.h> 24 #include <linux/socket.h> 25 26 #include <linux/atomic.h> 27 #include <asm/types.h> 28 #include <linux/spinlock.h> 29 #include <linux/net.h> 30 #include <linux/textsearch.h> 31 #include <net/checksum.h> 32 #include <linux/rcupdate.h> 33 #include <linux/hrtimer.h> 34 #include <linux/dma-mapping.h> 35 #include <linux/netdev_features.h> 36 #include <linux/sched.h> 37 #include <net/flow_dissector.h> 38 #include <linux/splice.h> 39 #include <linux/in6.h> 40 #include <linux/if_packet.h> 41 #include <net/flow.h> 42 43 /* The interface for checksum offload between the stack and networking drivers 44 * is as follows... 45 * 46 * A. IP checksum related features 47 * 48 * Drivers advertise checksum offload capabilities in the features of a device. 49 * From the stack's point of view these are capabilities offered by the driver, 50 * a driver typically only advertises features that it is capable of offloading 51 * to its device. 52 * 53 * The checksum related features are: 54 * 55 * NETIF_F_HW_CSUM - The driver (or its device) is able to compute one 56 * IP (one's complement) checksum for any combination 57 * of protocols or protocol layering. The checksum is 58 * computed and set in a packet per the CHECKSUM_PARTIAL 59 * interface (see below). 60 * 61 * NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain 62 * TCP or UDP packets over IPv4. These are specifically 63 * unencapsulated packets of the form IPv4|TCP or 64 * IPv4|UDP where the Protocol field in the IPv4 header 65 * is TCP or UDP. The IPv4 header may contain IP options 66 * This feature cannot be set in features for a device 67 * with NETIF_F_HW_CSUM also set. This feature is being 68 * DEPRECATED (see below). 69 * 70 * NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain 71 * TCP or UDP packets over IPv6. These are specifically 72 * unencapsulated packets of the form IPv6|TCP or 73 * IPv4|UDP where the Next Header field in the IPv6 74 * header is either TCP or UDP. IPv6 extension headers 75 * are not supported with this feature. This feature 76 * cannot be set in features for a device with 77 * NETIF_F_HW_CSUM also set. This feature is being 78 * DEPRECATED (see below). 79 * 80 * NETIF_F_RXCSUM - Driver (device) performs receive checksum offload. 81 * This flag is used only used to disable the RX checksum 82 * feature for a device. The stack will accept receive 83 * checksum indication in packets received on a device 84 * regardless of whether NETIF_F_RXCSUM is set. 85 * 86 * B. Checksumming of received packets by device. Indication of checksum 87 * verification is in set skb->ip_summed. Possible values are: 88 * 89 * CHECKSUM_NONE: 90 * 91 * Device did not checksum this packet e.g. due to lack of capabilities. 92 * The packet contains full (though not verified) checksum in packet but 93 * not in skb->csum. Thus, skb->csum is undefined in this case. 94 * 95 * CHECKSUM_UNNECESSARY: 96 * 97 * The hardware you're dealing with doesn't calculate the full checksum 98 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums 99 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY 100 * if their checksums are okay. skb->csum is still undefined in this case 101 * though. A driver or device must never modify the checksum field in the 102 * packet even if checksum is verified. 103 * 104 * CHECKSUM_UNNECESSARY is applicable to following protocols: 105 * TCP: IPv6 and IPv4. 106 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a 107 * zero UDP checksum for either IPv4 or IPv6, the networking stack 108 * may perform further validation in this case. 109 * GRE: only if the checksum is present in the header. 110 * SCTP: indicates the CRC in SCTP header has been validated. 111 * 112 * skb->csum_level indicates the number of consecutive checksums found in 113 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY. 114 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet 115 * and a device is able to verify the checksums for UDP (possibly zero), 116 * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to 117 * two. If the device were only able to verify the UDP checksum and not 118 * GRE, either because it doesn't support GRE checksum of because GRE 119 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is 120 * not considered in this case). 121 * 122 * CHECKSUM_COMPLETE: 123 * 124 * This is the most generic way. The device supplied checksum of the _whole_ 125 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the 126 * hardware doesn't need to parse L3/L4 headers to implement this. 127 * 128 * Note: Even if device supports only some protocols, but is able to produce 129 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY. 130 * 131 * CHECKSUM_PARTIAL: 132 * 133 * A checksum is set up to be offloaded to a device as described in the 134 * output description for CHECKSUM_PARTIAL. This may occur on a packet 135 * received directly from another Linux OS, e.g., a virtualized Linux kernel 136 * on the same host, or it may be set in the input path in GRO or remote 137 * checksum offload. For the purposes of checksum verification, the checksum 138 * referred to by skb->csum_start + skb->csum_offset and any preceding 139 * checksums in the packet are considered verified. Any checksums in the 140 * packet that are after the checksum being offloaded are not considered to 141 * be verified. 142 * 143 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload 144 * in the skb->ip_summed for a packet. Values are: 145 * 146 * CHECKSUM_PARTIAL: 147 * 148 * The driver is required to checksum the packet as seen by hard_start_xmit() 149 * from skb->csum_start up to the end, and to record/write the checksum at 150 * offset skb->csum_start + skb->csum_offset. A driver may verify that the 151 * csum_start and csum_offset values are valid values given the length and 152 * offset of the packet, however they should not attempt to validate that the 153 * checksum refers to a legitimate transport layer checksum-- it is the 154 * purview of the stack to validate that csum_start and csum_offset are set 155 * correctly. 156 * 157 * When the stack requests checksum offload for a packet, the driver MUST 158 * ensure that the checksum is set correctly. A driver can either offload the 159 * checksum calculation to the device, or call skb_checksum_help (in the case 160 * that the device does not support offload for a particular checksum). 161 * 162 * NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of 163 * NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate 164 * checksum offload capability. If a device has limited checksum capabilities 165 * (for instance can only perform NETIF_F_IP_CSUM or NETIF_F_IPV6_CSUM as 166 * described above) a helper function can be called to resolve 167 * CHECKSUM_PARTIAL. The helper functions are skb_csum_off_chk*. The helper 168 * function takes a spec argument that describes the protocol layer that is 169 * supported for checksum offload and can be called for each packet. If a 170 * packet does not match the specification for offload, skb_checksum_help 171 * is called to resolve the checksum. 172 * 173 * CHECKSUM_NONE: 174 * 175 * The skb was already checksummed by the protocol, or a checksum is not 176 * required. 177 * 178 * CHECKSUM_UNNECESSARY: 179 * 180 * This has the same meaning on as CHECKSUM_NONE for checksum offload on 181 * output. 182 * 183 * CHECKSUM_COMPLETE: 184 * Not used in checksum output. If a driver observes a packet with this value 185 * set in skbuff, if should treat as CHECKSUM_NONE being set. 186 * 187 * D. Non-IP checksum (CRC) offloads 188 * 189 * NETIF_F_SCTP_CRC - This feature indicates that a device is capable of 190 * offloading the SCTP CRC in a packet. To perform this offload the stack 191 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset 192 * accordingly. Note the there is no indication in the skbuff that the 193 * CHECKSUM_PARTIAL refers to an SCTP checksum, a driver that supports 194 * both IP checksum offload and SCTP CRC offload must verify which offload 195 * is configured for a packet presumably by inspecting packet headers. 196 * 197 * NETIF_F_FCOE_CRC - This feature indicates that a device is capable of 198 * offloading the FCOE CRC in a packet. To perform this offload the stack 199 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset 200 * accordingly. Note the there is no indication in the skbuff that the 201 * CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports 202 * both IP checksum offload and FCOE CRC offload must verify which offload 203 * is configured for a packet presumably by inspecting packet headers. 204 * 205 * E. Checksumming on output with GSO. 206 * 207 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload 208 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the 209 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as 210 * part of the GSO operation is implied. If a checksum is being offloaded 211 * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset 212 * are set to refer to the outermost checksum being offload (two offloaded 213 * checksums are possible with UDP encapsulation). 214 */ 215 216 /* Don't change this without changing skb_csum_unnecessary! */ 217 #define CHECKSUM_NONE 0 218 #define CHECKSUM_UNNECESSARY 1 219 #define CHECKSUM_COMPLETE 2 220 #define CHECKSUM_PARTIAL 3 221 222 /* Maximum value in skb->csum_level */ 223 #define SKB_MAX_CSUM_LEVEL 3 224 225 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES) 226 #define SKB_WITH_OVERHEAD(X) \ 227 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 228 #define SKB_MAX_ORDER(X, ORDER) \ 229 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 230 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 231 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 232 233 /* return minimum truesize of one skb containing X bytes of data */ 234 #define SKB_TRUESIZE(X) ((X) + \ 235 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ 236 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 237 238 struct net_device; 239 struct scatterlist; 240 struct pipe_inode_info; 241 struct iov_iter; 242 struct napi_struct; 243 244 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 245 struct nf_conntrack { 246 atomic_t use; 247 }; 248 #endif 249 250 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 251 struct nf_bridge_info { 252 atomic_t use; 253 enum { 254 BRNF_PROTO_UNCHANGED, 255 BRNF_PROTO_8021Q, 256 BRNF_PROTO_PPPOE 257 } orig_proto:8; 258 u8 pkt_otherhost:1; 259 u8 in_prerouting:1; 260 u8 bridged_dnat:1; 261 __u16 frag_max_size; 262 struct net_device *physindev; 263 264 /* always valid & non-NULL from FORWARD on, for physdev match */ 265 struct net_device *physoutdev; 266 union { 267 /* prerouting: detect dnat in orig/reply direction */ 268 __be32 ipv4_daddr; 269 struct in6_addr ipv6_daddr; 270 271 /* after prerouting + nat detected: store original source 272 * mac since neigh resolution overwrites it, only used while 273 * skb is out in neigh layer. 274 */ 275 char neigh_header[8]; 276 }; 277 }; 278 #endif 279 280 struct sk_buff_head { 281 /* These two members must be first. */ 282 struct sk_buff *next; 283 struct sk_buff *prev; 284 285 __u32 qlen; 286 spinlock_t lock; 287 }; 288 289 struct sk_buff; 290 291 /* To allow 64K frame to be packed as single skb without frag_list we 292 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for 293 * buffers which do not start on a page boundary. 294 * 295 * Since GRO uses frags we allocate at least 16 regardless of page 296 * size. 297 */ 298 #if (65536/PAGE_SIZE + 1) < 16 299 #define MAX_SKB_FRAGS 16UL 300 #else 301 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1) 302 #endif 303 extern int sysctl_max_skb_frags; 304 305 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to 306 * segment using its current segmentation instead. 307 */ 308 #define GSO_BY_FRAGS 0xFFFF 309 310 typedef struct skb_frag_struct skb_frag_t; 311 312 struct skb_frag_struct { 313 struct { 314 struct page *p; 315 } page; 316 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536) 317 __u32 page_offset; 318 __u32 size; 319 #else 320 __u16 page_offset; 321 __u16 size; 322 #endif 323 }; 324 325 static inline unsigned int skb_frag_size(const skb_frag_t *frag) 326 { 327 return frag->size; 328 } 329 330 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) 331 { 332 frag->size = size; 333 } 334 335 static inline void skb_frag_size_add(skb_frag_t *frag, int delta) 336 { 337 frag->size += delta; 338 } 339 340 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) 341 { 342 frag->size -= delta; 343 } 344 345 #define HAVE_HW_TIME_STAMP 346 347 /** 348 * struct skb_shared_hwtstamps - hardware time stamps 349 * @hwtstamp: hardware time stamp transformed into duration 350 * since arbitrary point in time 351 * 352 * Software time stamps generated by ktime_get_real() are stored in 353 * skb->tstamp. 354 * 355 * hwtstamps can only be compared against other hwtstamps from 356 * the same device. 357 * 358 * This structure is attached to packets as part of the 359 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 360 */ 361 struct skb_shared_hwtstamps { 362 ktime_t hwtstamp; 363 }; 364 365 /* Definitions for tx_flags in struct skb_shared_info */ 366 enum { 367 /* generate hardware time stamp */ 368 SKBTX_HW_TSTAMP = 1 << 0, 369 370 /* generate software time stamp when queueing packet to NIC */ 371 SKBTX_SW_TSTAMP = 1 << 1, 372 373 /* device driver is going to provide hardware time stamp */ 374 SKBTX_IN_PROGRESS = 1 << 2, 375 376 /* device driver supports TX zero-copy buffers */ 377 SKBTX_DEV_ZEROCOPY = 1 << 3, 378 379 /* generate wifi status information (where possible) */ 380 SKBTX_WIFI_STATUS = 1 << 4, 381 382 /* This indicates at least one fragment might be overwritten 383 * (as in vmsplice(), sendfile() ...) 384 * If we need to compute a TX checksum, we'll need to copy 385 * all frags to avoid possible bad checksum 386 */ 387 SKBTX_SHARED_FRAG = 1 << 5, 388 389 /* generate software time stamp when entering packet scheduling */ 390 SKBTX_SCHED_TSTAMP = 1 << 6, 391 }; 392 393 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \ 394 SKBTX_SCHED_TSTAMP) 395 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP) 396 397 /* 398 * The callback notifies userspace to release buffers when skb DMA is done in 399 * lower device, the skb last reference should be 0 when calling this. 400 * The zerocopy_success argument is true if zero copy transmit occurred, 401 * false on data copy or out of memory error caused by data copy attempt. 402 * The ctx field is used to track device context. 403 * The desc field is used to track userspace buffer index. 404 */ 405 struct ubuf_info { 406 void (*callback)(struct ubuf_info *, bool zerocopy_success); 407 void *ctx; 408 unsigned long desc; 409 }; 410 411 /* This data is invariant across clones and lives at 412 * the end of the header data, ie. at skb->end. 413 */ 414 struct skb_shared_info { 415 unsigned char nr_frags; 416 __u8 tx_flags; 417 unsigned short gso_size; 418 /* Warning: this field is not always filled in (UFO)! */ 419 unsigned short gso_segs; 420 unsigned short gso_type; 421 struct sk_buff *frag_list; 422 struct skb_shared_hwtstamps hwtstamps; 423 u32 tskey; 424 __be32 ip6_frag_id; 425 426 /* 427 * Warning : all fields before dataref are cleared in __alloc_skb() 428 */ 429 atomic_t dataref; 430 431 /* Intermediate layers must ensure that destructor_arg 432 * remains valid until skb destructor */ 433 void * destructor_arg; 434 435 /* must be last field, see pskb_expand_head() */ 436 skb_frag_t frags[MAX_SKB_FRAGS]; 437 }; 438 439 /* We divide dataref into two halves. The higher 16 bits hold references 440 * to the payload part of skb->data. The lower 16 bits hold references to 441 * the entire skb->data. A clone of a headerless skb holds the length of 442 * the header in skb->hdr_len. 443 * 444 * All users must obey the rule that the skb->data reference count must be 445 * greater than or equal to the payload reference count. 446 * 447 * Holding a reference to the payload part means that the user does not 448 * care about modifications to the header part of skb->data. 449 */ 450 #define SKB_DATAREF_SHIFT 16 451 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 452 453 454 enum { 455 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */ 456 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */ 457 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */ 458 }; 459 460 enum { 461 SKB_GSO_TCPV4 = 1 << 0, 462 SKB_GSO_UDP = 1 << 1, 463 464 /* This indicates the skb is from an untrusted source. */ 465 SKB_GSO_DODGY = 1 << 2, 466 467 /* This indicates the tcp segment has CWR set. */ 468 SKB_GSO_TCP_ECN = 1 << 3, 469 470 SKB_GSO_TCP_FIXEDID = 1 << 4, 471 472 SKB_GSO_TCPV6 = 1 << 5, 473 474 SKB_GSO_FCOE = 1 << 6, 475 476 SKB_GSO_GRE = 1 << 7, 477 478 SKB_GSO_GRE_CSUM = 1 << 8, 479 480 SKB_GSO_IPXIP4 = 1 << 9, 481 482 SKB_GSO_IPXIP6 = 1 << 10, 483 484 SKB_GSO_UDP_TUNNEL = 1 << 11, 485 486 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 12, 487 488 SKB_GSO_PARTIAL = 1 << 13, 489 490 SKB_GSO_TUNNEL_REMCSUM = 1 << 14, 491 492 SKB_GSO_SCTP = 1 << 15, 493 }; 494 495 #if BITS_PER_LONG > 32 496 #define NET_SKBUFF_DATA_USES_OFFSET 1 497 #endif 498 499 #ifdef NET_SKBUFF_DATA_USES_OFFSET 500 typedef unsigned int sk_buff_data_t; 501 #else 502 typedef unsigned char *sk_buff_data_t; 503 #endif 504 505 /** 506 * struct skb_mstamp - multi resolution time stamps 507 * @stamp_us: timestamp in us resolution 508 * @stamp_jiffies: timestamp in jiffies 509 */ 510 struct skb_mstamp { 511 union { 512 u64 v64; 513 struct { 514 u32 stamp_us; 515 u32 stamp_jiffies; 516 }; 517 }; 518 }; 519 520 /** 521 * skb_mstamp_get - get current timestamp 522 * @cl: place to store timestamps 523 */ 524 static inline void skb_mstamp_get(struct skb_mstamp *cl) 525 { 526 u64 val = local_clock(); 527 528 do_div(val, NSEC_PER_USEC); 529 cl->stamp_us = (u32)val; 530 cl->stamp_jiffies = (u32)jiffies; 531 } 532 533 /** 534 * skb_mstamp_delta - compute the difference in usec between two skb_mstamp 535 * @t1: pointer to newest sample 536 * @t0: pointer to oldest sample 537 */ 538 static inline u32 skb_mstamp_us_delta(const struct skb_mstamp *t1, 539 const struct skb_mstamp *t0) 540 { 541 s32 delta_us = t1->stamp_us - t0->stamp_us; 542 u32 delta_jiffies = t1->stamp_jiffies - t0->stamp_jiffies; 543 544 /* If delta_us is negative, this might be because interval is too big, 545 * or local_clock() drift is too big : fallback using jiffies. 546 */ 547 if (delta_us <= 0 || 548 delta_jiffies >= (INT_MAX / (USEC_PER_SEC / HZ))) 549 550 delta_us = jiffies_to_usecs(delta_jiffies); 551 552 return delta_us; 553 } 554 555 static inline bool skb_mstamp_after(const struct skb_mstamp *t1, 556 const struct skb_mstamp *t0) 557 { 558 s32 diff = t1->stamp_jiffies - t0->stamp_jiffies; 559 560 if (!diff) 561 diff = t1->stamp_us - t0->stamp_us; 562 return diff > 0; 563 } 564 565 /** 566 * struct sk_buff - socket buffer 567 * @next: Next buffer in list 568 * @prev: Previous buffer in list 569 * @tstamp: Time we arrived/left 570 * @rbnode: RB tree node, alternative to next/prev for netem/tcp 571 * @sk: Socket we are owned by 572 * @dev: Device we arrived on/are leaving by 573 * @cb: Control buffer. Free for use by every layer. Put private vars here 574 * @_skb_refdst: destination entry (with norefcount bit) 575 * @sp: the security path, used for xfrm 576 * @len: Length of actual data 577 * @data_len: Data length 578 * @mac_len: Length of link layer header 579 * @hdr_len: writable header length of cloned skb 580 * @csum: Checksum (must include start/offset pair) 581 * @csum_start: Offset from skb->head where checksumming should start 582 * @csum_offset: Offset from csum_start where checksum should be stored 583 * @priority: Packet queueing priority 584 * @ignore_df: allow local fragmentation 585 * @cloned: Head may be cloned (check refcnt to be sure) 586 * @ip_summed: Driver fed us an IP checksum 587 * @nohdr: Payload reference only, must not modify header 588 * @nfctinfo: Relationship of this skb to the connection 589 * @pkt_type: Packet class 590 * @fclone: skbuff clone status 591 * @ipvs_property: skbuff is owned by ipvs 592 * @peeked: this packet has been seen already, so stats have been 593 * done for it, don't do them again 594 * @nf_trace: netfilter packet trace flag 595 * @protocol: Packet protocol from driver 596 * @destructor: Destruct function 597 * @nfct: Associated connection, if any 598 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 599 * @skb_iif: ifindex of device we arrived on 600 * @tc_index: Traffic control index 601 * @tc_verd: traffic control verdict 602 * @hash: the packet hash 603 * @queue_mapping: Queue mapping for multiqueue devices 604 * @xmit_more: More SKBs are pending for this queue 605 * @ndisc_nodetype: router type (from link layer) 606 * @ooo_okay: allow the mapping of a socket to a queue to be changed 607 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport 608 * ports. 609 * @sw_hash: indicates hash was computed in software stack 610 * @wifi_acked_valid: wifi_acked was set 611 * @wifi_acked: whether frame was acked on wifi or not 612 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS 613 * @napi_id: id of the NAPI struct this skb came from 614 * @secmark: security marking 615 * @mark: Generic packet mark 616 * @vlan_proto: vlan encapsulation protocol 617 * @vlan_tci: vlan tag control information 618 * @inner_protocol: Protocol (encapsulation) 619 * @inner_transport_header: Inner transport layer header (encapsulation) 620 * @inner_network_header: Network layer header (encapsulation) 621 * @inner_mac_header: Link layer header (encapsulation) 622 * @transport_header: Transport layer header 623 * @network_header: Network layer header 624 * @mac_header: Link layer header 625 * @tail: Tail pointer 626 * @end: End pointer 627 * @head: Head of buffer 628 * @data: Data head pointer 629 * @truesize: Buffer size 630 * @users: User count - see {datagram,tcp}.c 631 */ 632 633 struct sk_buff { 634 union { 635 struct { 636 /* These two members must be first. */ 637 struct sk_buff *next; 638 struct sk_buff *prev; 639 640 union { 641 ktime_t tstamp; 642 struct skb_mstamp skb_mstamp; 643 }; 644 }; 645 struct rb_node rbnode; /* used in netem & tcp stack */ 646 }; 647 struct sock *sk; 648 struct net_device *dev; 649 650 /* 651 * This is the control buffer. It is free to use for every 652 * layer. Please put your private variables there. If you 653 * want to keep them across layers you have to do a skb_clone() 654 * first. This is owned by whoever has the skb queued ATM. 655 */ 656 char cb[48] __aligned(8); 657 658 unsigned long _skb_refdst; 659 void (*destructor)(struct sk_buff *skb); 660 #ifdef CONFIG_XFRM 661 struct sec_path *sp; 662 #endif 663 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 664 struct nf_conntrack *nfct; 665 #endif 666 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 667 struct nf_bridge_info *nf_bridge; 668 #endif 669 unsigned int len, 670 data_len; 671 __u16 mac_len, 672 hdr_len; 673 674 /* Following fields are _not_ copied in __copy_skb_header() 675 * Note that queue_mapping is here mostly to fill a hole. 676 */ 677 kmemcheck_bitfield_begin(flags1); 678 __u16 queue_mapping; 679 __u8 cloned:1, 680 nohdr:1, 681 fclone:2, 682 peeked:1, 683 head_frag:1, 684 xmit_more:1; 685 /* one bit hole */ 686 kmemcheck_bitfield_end(flags1); 687 688 /* fields enclosed in headers_start/headers_end are copied 689 * using a single memcpy() in __copy_skb_header() 690 */ 691 /* private: */ 692 __u32 headers_start[0]; 693 /* public: */ 694 695 /* if you move pkt_type around you also must adapt those constants */ 696 #ifdef __BIG_ENDIAN_BITFIELD 697 #define PKT_TYPE_MAX (7 << 5) 698 #else 699 #define PKT_TYPE_MAX 7 700 #endif 701 #define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset) 702 703 __u8 __pkt_type_offset[0]; 704 __u8 pkt_type:3; 705 __u8 pfmemalloc:1; 706 __u8 ignore_df:1; 707 __u8 nfctinfo:3; 708 709 __u8 nf_trace:1; 710 __u8 ip_summed:2; 711 __u8 ooo_okay:1; 712 __u8 l4_hash:1; 713 __u8 sw_hash:1; 714 __u8 wifi_acked_valid:1; 715 __u8 wifi_acked:1; 716 717 __u8 no_fcs:1; 718 /* Indicates the inner headers are valid in the skbuff. */ 719 __u8 encapsulation:1; 720 __u8 encap_hdr_csum:1; 721 __u8 csum_valid:1; 722 __u8 csum_complete_sw:1; 723 __u8 csum_level:2; 724 __u8 csum_bad:1; 725 726 #ifdef CONFIG_IPV6_NDISC_NODETYPE 727 __u8 ndisc_nodetype:2; 728 #endif 729 __u8 ipvs_property:1; 730 __u8 inner_protocol_type:1; 731 __u8 remcsum_offload:1; 732 #ifdef CONFIG_NET_SWITCHDEV 733 __u8 offload_fwd_mark:1; 734 #endif 735 /* 2, 4 or 5 bit hole */ 736 737 #ifdef CONFIG_NET_SCHED 738 __u16 tc_index; /* traffic control index */ 739 #ifdef CONFIG_NET_CLS_ACT 740 __u16 tc_verd; /* traffic control verdict */ 741 #endif 742 #endif 743 744 union { 745 __wsum csum; 746 struct { 747 __u16 csum_start; 748 __u16 csum_offset; 749 }; 750 }; 751 __u32 priority; 752 int skb_iif; 753 __u32 hash; 754 __be16 vlan_proto; 755 __u16 vlan_tci; 756 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS) 757 union { 758 unsigned int napi_id; 759 unsigned int sender_cpu; 760 }; 761 #endif 762 #ifdef CONFIG_NETWORK_SECMARK 763 __u32 secmark; 764 #endif 765 766 union { 767 __u32 mark; 768 __u32 reserved_tailroom; 769 }; 770 771 union { 772 __be16 inner_protocol; 773 __u8 inner_ipproto; 774 }; 775 776 __u16 inner_transport_header; 777 __u16 inner_network_header; 778 __u16 inner_mac_header; 779 780 __be16 protocol; 781 __u16 transport_header; 782 __u16 network_header; 783 __u16 mac_header; 784 785 /* private: */ 786 __u32 headers_end[0]; 787 /* public: */ 788 789 /* These elements must be at the end, see alloc_skb() for details. */ 790 sk_buff_data_t tail; 791 sk_buff_data_t end; 792 unsigned char *head, 793 *data; 794 unsigned int truesize; 795 atomic_t users; 796 }; 797 798 #ifdef __KERNEL__ 799 /* 800 * Handling routines are only of interest to the kernel 801 */ 802 #include <linux/slab.h> 803 804 805 #define SKB_ALLOC_FCLONE 0x01 806 #define SKB_ALLOC_RX 0x02 807 #define SKB_ALLOC_NAPI 0x04 808 809 /* Returns true if the skb was allocated from PFMEMALLOC reserves */ 810 static inline bool skb_pfmemalloc(const struct sk_buff *skb) 811 { 812 return unlikely(skb->pfmemalloc); 813 } 814 815 /* 816 * skb might have a dst pointer attached, refcounted or not. 817 * _skb_refdst low order bit is set if refcount was _not_ taken 818 */ 819 #define SKB_DST_NOREF 1UL 820 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 821 822 /** 823 * skb_dst - returns skb dst_entry 824 * @skb: buffer 825 * 826 * Returns skb dst_entry, regardless of reference taken or not. 827 */ 828 static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 829 { 830 /* If refdst was not refcounted, check we still are in a 831 * rcu_read_lock section 832 */ 833 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 834 !rcu_read_lock_held() && 835 !rcu_read_lock_bh_held()); 836 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 837 } 838 839 /** 840 * skb_dst_set - sets skb dst 841 * @skb: buffer 842 * @dst: dst entry 843 * 844 * Sets skb dst, assuming a reference was taken on dst and should 845 * be released by skb_dst_drop() 846 */ 847 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 848 { 849 skb->_skb_refdst = (unsigned long)dst; 850 } 851 852 /** 853 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference 854 * @skb: buffer 855 * @dst: dst entry 856 * 857 * Sets skb dst, assuming a reference was not taken on dst. 858 * If dst entry is cached, we do not take reference and dst_release 859 * will be avoided by refdst_drop. If dst entry is not cached, we take 860 * reference, so that last dst_release can destroy the dst immediately. 861 */ 862 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) 863 { 864 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 865 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF; 866 } 867 868 /** 869 * skb_dst_is_noref - Test if skb dst isn't refcounted 870 * @skb: buffer 871 */ 872 static inline bool skb_dst_is_noref(const struct sk_buff *skb) 873 { 874 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 875 } 876 877 static inline struct rtable *skb_rtable(const struct sk_buff *skb) 878 { 879 return (struct rtable *)skb_dst(skb); 880 } 881 882 /* For mangling skb->pkt_type from user space side from applications 883 * such as nft, tc, etc, we only allow a conservative subset of 884 * possible pkt_types to be set. 885 */ 886 static inline bool skb_pkt_type_ok(u32 ptype) 887 { 888 return ptype <= PACKET_OTHERHOST; 889 } 890 891 void kfree_skb(struct sk_buff *skb); 892 void kfree_skb_list(struct sk_buff *segs); 893 void skb_tx_error(struct sk_buff *skb); 894 void consume_skb(struct sk_buff *skb); 895 void __kfree_skb(struct sk_buff *skb); 896 extern struct kmem_cache *skbuff_head_cache; 897 898 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); 899 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 900 bool *fragstolen, int *delta_truesize); 901 902 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags, 903 int node); 904 struct sk_buff *__build_skb(void *data, unsigned int frag_size); 905 struct sk_buff *build_skb(void *data, unsigned int frag_size); 906 static inline struct sk_buff *alloc_skb(unsigned int size, 907 gfp_t priority) 908 { 909 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 910 } 911 912 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 913 unsigned long data_len, 914 int max_page_order, 915 int *errcode, 916 gfp_t gfp_mask); 917 918 /* Layout of fast clones : [skb1][skb2][fclone_ref] */ 919 struct sk_buff_fclones { 920 struct sk_buff skb1; 921 922 struct sk_buff skb2; 923 924 atomic_t fclone_ref; 925 }; 926 927 /** 928 * skb_fclone_busy - check if fclone is busy 929 * @skb: buffer 930 * 931 * Returns true if skb is a fast clone, and its clone is not freed. 932 * Some drivers call skb_orphan() in their ndo_start_xmit(), 933 * so we also check that this didnt happen. 934 */ 935 static inline bool skb_fclone_busy(const struct sock *sk, 936 const struct sk_buff *skb) 937 { 938 const struct sk_buff_fclones *fclones; 939 940 fclones = container_of(skb, struct sk_buff_fclones, skb1); 941 942 return skb->fclone == SKB_FCLONE_ORIG && 943 atomic_read(&fclones->fclone_ref) > 1 && 944 fclones->skb2.sk == sk; 945 } 946 947 static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 948 gfp_t priority) 949 { 950 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); 951 } 952 953 struct sk_buff *__alloc_skb_head(gfp_t priority, int node); 954 static inline struct sk_buff *alloc_skb_head(gfp_t priority) 955 { 956 return __alloc_skb_head(priority, -1); 957 } 958 959 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 960 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); 961 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority); 962 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority); 963 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 964 gfp_t gfp_mask, bool fclone); 965 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, 966 gfp_t gfp_mask) 967 { 968 return __pskb_copy_fclone(skb, headroom, gfp_mask, false); 969 } 970 971 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask); 972 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 973 unsigned int headroom); 974 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, 975 int newtailroom, gfp_t priority); 976 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 977 int offset, int len); 978 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, 979 int len); 980 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer); 981 int skb_pad(struct sk_buff *skb, int pad); 982 #define dev_kfree_skb(a) consume_skb(a) 983 984 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 985 int getfrag(void *from, char *to, int offset, 986 int len, int odd, struct sk_buff *skb), 987 void *from, int length); 988 989 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 990 int offset, size_t size); 991 992 struct skb_seq_state { 993 __u32 lower_offset; 994 __u32 upper_offset; 995 __u32 frag_idx; 996 __u32 stepped_offset; 997 struct sk_buff *root_skb; 998 struct sk_buff *cur_skb; 999 __u8 *frag_data; 1000 }; 1001 1002 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 1003 unsigned int to, struct skb_seq_state *st); 1004 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 1005 struct skb_seq_state *st); 1006 void skb_abort_seq_read(struct skb_seq_state *st); 1007 1008 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 1009 unsigned int to, struct ts_config *config); 1010 1011 /* 1012 * Packet hash types specify the type of hash in skb_set_hash. 1013 * 1014 * Hash types refer to the protocol layer addresses which are used to 1015 * construct a packet's hash. The hashes are used to differentiate or identify 1016 * flows of the protocol layer for the hash type. Hash types are either 1017 * layer-2 (L2), layer-3 (L3), or layer-4 (L4). 1018 * 1019 * Properties of hashes: 1020 * 1021 * 1) Two packets in different flows have different hash values 1022 * 2) Two packets in the same flow should have the same hash value 1023 * 1024 * A hash at a higher layer is considered to be more specific. A driver should 1025 * set the most specific hash possible. 1026 * 1027 * A driver cannot indicate a more specific hash than the layer at which a hash 1028 * was computed. For instance an L3 hash cannot be set as an L4 hash. 1029 * 1030 * A driver may indicate a hash level which is less specific than the 1031 * actual layer the hash was computed on. For instance, a hash computed 1032 * at L4 may be considered an L3 hash. This should only be done if the 1033 * driver can't unambiguously determine that the HW computed the hash at 1034 * the higher layer. Note that the "should" in the second property above 1035 * permits this. 1036 */ 1037 enum pkt_hash_types { 1038 PKT_HASH_TYPE_NONE, /* Undefined type */ 1039 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */ 1040 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */ 1041 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */ 1042 }; 1043 1044 static inline void skb_clear_hash(struct sk_buff *skb) 1045 { 1046 skb->hash = 0; 1047 skb->sw_hash = 0; 1048 skb->l4_hash = 0; 1049 } 1050 1051 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb) 1052 { 1053 if (!skb->l4_hash) 1054 skb_clear_hash(skb); 1055 } 1056 1057 static inline void 1058 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4) 1059 { 1060 skb->l4_hash = is_l4; 1061 skb->sw_hash = is_sw; 1062 skb->hash = hash; 1063 } 1064 1065 static inline void 1066 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type) 1067 { 1068 /* Used by drivers to set hash from HW */ 1069 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4); 1070 } 1071 1072 static inline void 1073 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4) 1074 { 1075 __skb_set_hash(skb, hash, true, is_l4); 1076 } 1077 1078 void __skb_get_hash(struct sk_buff *skb); 1079 u32 __skb_get_hash_symmetric(struct sk_buff *skb); 1080 u32 skb_get_poff(const struct sk_buff *skb); 1081 u32 __skb_get_poff(const struct sk_buff *skb, void *data, 1082 const struct flow_keys *keys, int hlen); 1083 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto, 1084 void *data, int hlen_proto); 1085 1086 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb, 1087 int thoff, u8 ip_proto) 1088 { 1089 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0); 1090 } 1091 1092 void skb_flow_dissector_init(struct flow_dissector *flow_dissector, 1093 const struct flow_dissector_key *key, 1094 unsigned int key_count); 1095 1096 bool __skb_flow_dissect(const struct sk_buff *skb, 1097 struct flow_dissector *flow_dissector, 1098 void *target_container, 1099 void *data, __be16 proto, int nhoff, int hlen, 1100 unsigned int flags); 1101 1102 static inline bool skb_flow_dissect(const struct sk_buff *skb, 1103 struct flow_dissector *flow_dissector, 1104 void *target_container, unsigned int flags) 1105 { 1106 return __skb_flow_dissect(skb, flow_dissector, target_container, 1107 NULL, 0, 0, 0, flags); 1108 } 1109 1110 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb, 1111 struct flow_keys *flow, 1112 unsigned int flags) 1113 { 1114 memset(flow, 0, sizeof(*flow)); 1115 return __skb_flow_dissect(skb, &flow_keys_dissector, flow, 1116 NULL, 0, 0, 0, flags); 1117 } 1118 1119 static inline bool skb_flow_dissect_flow_keys_buf(struct flow_keys *flow, 1120 void *data, __be16 proto, 1121 int nhoff, int hlen, 1122 unsigned int flags) 1123 { 1124 memset(flow, 0, sizeof(*flow)); 1125 return __skb_flow_dissect(NULL, &flow_keys_buf_dissector, flow, 1126 data, proto, nhoff, hlen, flags); 1127 } 1128 1129 static inline __u32 skb_get_hash(struct sk_buff *skb) 1130 { 1131 if (!skb->l4_hash && !skb->sw_hash) 1132 __skb_get_hash(skb); 1133 1134 return skb->hash; 1135 } 1136 1137 __u32 __skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6); 1138 1139 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6) 1140 { 1141 if (!skb->l4_hash && !skb->sw_hash) { 1142 struct flow_keys keys; 1143 __u32 hash = __get_hash_from_flowi6(fl6, &keys); 1144 1145 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys)); 1146 } 1147 1148 return skb->hash; 1149 } 1150 1151 __u32 __skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl); 1152 1153 static inline __u32 skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl4) 1154 { 1155 if (!skb->l4_hash && !skb->sw_hash) { 1156 struct flow_keys keys; 1157 __u32 hash = __get_hash_from_flowi4(fl4, &keys); 1158 1159 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys)); 1160 } 1161 1162 return skb->hash; 1163 } 1164 1165 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb); 1166 1167 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb) 1168 { 1169 return skb->hash; 1170 } 1171 1172 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from) 1173 { 1174 to->hash = from->hash; 1175 to->sw_hash = from->sw_hash; 1176 to->l4_hash = from->l4_hash; 1177 }; 1178 1179 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1180 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1181 { 1182 return skb->head + skb->end; 1183 } 1184 1185 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1186 { 1187 return skb->end; 1188 } 1189 #else 1190 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1191 { 1192 return skb->end; 1193 } 1194 1195 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1196 { 1197 return skb->end - skb->head; 1198 } 1199 #endif 1200 1201 /* Internal */ 1202 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 1203 1204 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 1205 { 1206 return &skb_shinfo(skb)->hwtstamps; 1207 } 1208 1209 /** 1210 * skb_queue_empty - check if a queue is empty 1211 * @list: queue head 1212 * 1213 * Returns true if the queue is empty, false otherwise. 1214 */ 1215 static inline int skb_queue_empty(const struct sk_buff_head *list) 1216 { 1217 return list->next == (const struct sk_buff *) list; 1218 } 1219 1220 /** 1221 * skb_queue_is_last - check if skb is the last entry in the queue 1222 * @list: queue head 1223 * @skb: buffer 1224 * 1225 * Returns true if @skb is the last buffer on the list. 1226 */ 1227 static inline bool skb_queue_is_last(const struct sk_buff_head *list, 1228 const struct sk_buff *skb) 1229 { 1230 return skb->next == (const struct sk_buff *) list; 1231 } 1232 1233 /** 1234 * skb_queue_is_first - check if skb is the first entry in the queue 1235 * @list: queue head 1236 * @skb: buffer 1237 * 1238 * Returns true if @skb is the first buffer on the list. 1239 */ 1240 static inline bool skb_queue_is_first(const struct sk_buff_head *list, 1241 const struct sk_buff *skb) 1242 { 1243 return skb->prev == (const struct sk_buff *) list; 1244 } 1245 1246 /** 1247 * skb_queue_next - return the next packet in the queue 1248 * @list: queue head 1249 * @skb: current buffer 1250 * 1251 * Return the next packet in @list after @skb. It is only valid to 1252 * call this if skb_queue_is_last() evaluates to false. 1253 */ 1254 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 1255 const struct sk_buff *skb) 1256 { 1257 /* This BUG_ON may seem severe, but if we just return then we 1258 * are going to dereference garbage. 1259 */ 1260 BUG_ON(skb_queue_is_last(list, skb)); 1261 return skb->next; 1262 } 1263 1264 /** 1265 * skb_queue_prev - return the prev packet in the queue 1266 * @list: queue head 1267 * @skb: current buffer 1268 * 1269 * Return the prev packet in @list before @skb. It is only valid to 1270 * call this if skb_queue_is_first() evaluates to false. 1271 */ 1272 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 1273 const struct sk_buff *skb) 1274 { 1275 /* This BUG_ON may seem severe, but if we just return then we 1276 * are going to dereference garbage. 1277 */ 1278 BUG_ON(skb_queue_is_first(list, skb)); 1279 return skb->prev; 1280 } 1281 1282 /** 1283 * skb_get - reference buffer 1284 * @skb: buffer to reference 1285 * 1286 * Makes another reference to a socket buffer and returns a pointer 1287 * to the buffer. 1288 */ 1289 static inline struct sk_buff *skb_get(struct sk_buff *skb) 1290 { 1291 atomic_inc(&skb->users); 1292 return skb; 1293 } 1294 1295 /* 1296 * If users == 1, we are the only owner and are can avoid redundant 1297 * atomic change. 1298 */ 1299 1300 /** 1301 * skb_cloned - is the buffer a clone 1302 * @skb: buffer to check 1303 * 1304 * Returns true if the buffer was generated with skb_clone() and is 1305 * one of multiple shared copies of the buffer. Cloned buffers are 1306 * shared data so must not be written to under normal circumstances. 1307 */ 1308 static inline int skb_cloned(const struct sk_buff *skb) 1309 { 1310 return skb->cloned && 1311 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 1312 } 1313 1314 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) 1315 { 1316 might_sleep_if(gfpflags_allow_blocking(pri)); 1317 1318 if (skb_cloned(skb)) 1319 return pskb_expand_head(skb, 0, 0, pri); 1320 1321 return 0; 1322 } 1323 1324 /** 1325 * skb_header_cloned - is the header a clone 1326 * @skb: buffer to check 1327 * 1328 * Returns true if modifying the header part of the buffer requires 1329 * the data to be copied. 1330 */ 1331 static inline int skb_header_cloned(const struct sk_buff *skb) 1332 { 1333 int dataref; 1334 1335 if (!skb->cloned) 1336 return 0; 1337 1338 dataref = atomic_read(&skb_shinfo(skb)->dataref); 1339 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 1340 return dataref != 1; 1341 } 1342 1343 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri) 1344 { 1345 might_sleep_if(gfpflags_allow_blocking(pri)); 1346 1347 if (skb_header_cloned(skb)) 1348 return pskb_expand_head(skb, 0, 0, pri); 1349 1350 return 0; 1351 } 1352 1353 /** 1354 * skb_header_release - release reference to header 1355 * @skb: buffer to operate on 1356 * 1357 * Drop a reference to the header part of the buffer. This is done 1358 * by acquiring a payload reference. You must not read from the header 1359 * part of skb->data after this. 1360 * Note : Check if you can use __skb_header_release() instead. 1361 */ 1362 static inline void skb_header_release(struct sk_buff *skb) 1363 { 1364 BUG_ON(skb->nohdr); 1365 skb->nohdr = 1; 1366 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref); 1367 } 1368 1369 /** 1370 * __skb_header_release - release reference to header 1371 * @skb: buffer to operate on 1372 * 1373 * Variant of skb_header_release() assuming skb is private to caller. 1374 * We can avoid one atomic operation. 1375 */ 1376 static inline void __skb_header_release(struct sk_buff *skb) 1377 { 1378 skb->nohdr = 1; 1379 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT)); 1380 } 1381 1382 1383 /** 1384 * skb_shared - is the buffer shared 1385 * @skb: buffer to check 1386 * 1387 * Returns true if more than one person has a reference to this 1388 * buffer. 1389 */ 1390 static inline int skb_shared(const struct sk_buff *skb) 1391 { 1392 return atomic_read(&skb->users) != 1; 1393 } 1394 1395 /** 1396 * skb_share_check - check if buffer is shared and if so clone it 1397 * @skb: buffer to check 1398 * @pri: priority for memory allocation 1399 * 1400 * If the buffer is shared the buffer is cloned and the old copy 1401 * drops a reference. A new clone with a single reference is returned. 1402 * If the buffer is not shared the original buffer is returned. When 1403 * being called from interrupt status or with spinlocks held pri must 1404 * be GFP_ATOMIC. 1405 * 1406 * NULL is returned on a memory allocation failure. 1407 */ 1408 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) 1409 { 1410 might_sleep_if(gfpflags_allow_blocking(pri)); 1411 if (skb_shared(skb)) { 1412 struct sk_buff *nskb = skb_clone(skb, pri); 1413 1414 if (likely(nskb)) 1415 consume_skb(skb); 1416 else 1417 kfree_skb(skb); 1418 skb = nskb; 1419 } 1420 return skb; 1421 } 1422 1423 /* 1424 * Copy shared buffers into a new sk_buff. We effectively do COW on 1425 * packets to handle cases where we have a local reader and forward 1426 * and a couple of other messy ones. The normal one is tcpdumping 1427 * a packet thats being forwarded. 1428 */ 1429 1430 /** 1431 * skb_unshare - make a copy of a shared buffer 1432 * @skb: buffer to check 1433 * @pri: priority for memory allocation 1434 * 1435 * If the socket buffer is a clone then this function creates a new 1436 * copy of the data, drops a reference count on the old copy and returns 1437 * the new copy with the reference count at 1. If the buffer is not a clone 1438 * the original buffer is returned. When called with a spinlock held or 1439 * from interrupt state @pri must be %GFP_ATOMIC 1440 * 1441 * %NULL is returned on a memory allocation failure. 1442 */ 1443 static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 1444 gfp_t pri) 1445 { 1446 might_sleep_if(gfpflags_allow_blocking(pri)); 1447 if (skb_cloned(skb)) { 1448 struct sk_buff *nskb = skb_copy(skb, pri); 1449 1450 /* Free our shared copy */ 1451 if (likely(nskb)) 1452 consume_skb(skb); 1453 else 1454 kfree_skb(skb); 1455 skb = nskb; 1456 } 1457 return skb; 1458 } 1459 1460 /** 1461 * skb_peek - peek at the head of an &sk_buff_head 1462 * @list_: list to peek at 1463 * 1464 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1465 * be careful with this one. A peek leaves the buffer on the 1466 * list and someone else may run off with it. You must hold 1467 * the appropriate locks or have a private queue to do this. 1468 * 1469 * Returns %NULL for an empty list or a pointer to the head element. 1470 * The reference count is not incremented and the reference is therefore 1471 * volatile. Use with caution. 1472 */ 1473 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) 1474 { 1475 struct sk_buff *skb = list_->next; 1476 1477 if (skb == (struct sk_buff *)list_) 1478 skb = NULL; 1479 return skb; 1480 } 1481 1482 /** 1483 * skb_peek_next - peek skb following the given one from a queue 1484 * @skb: skb to start from 1485 * @list_: list to peek at 1486 * 1487 * Returns %NULL when the end of the list is met or a pointer to the 1488 * next element. The reference count is not incremented and the 1489 * reference is therefore volatile. Use with caution. 1490 */ 1491 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, 1492 const struct sk_buff_head *list_) 1493 { 1494 struct sk_buff *next = skb->next; 1495 1496 if (next == (struct sk_buff *)list_) 1497 next = NULL; 1498 return next; 1499 } 1500 1501 /** 1502 * skb_peek_tail - peek at the tail of an &sk_buff_head 1503 * @list_: list to peek at 1504 * 1505 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1506 * be careful with this one. A peek leaves the buffer on the 1507 * list and someone else may run off with it. You must hold 1508 * the appropriate locks or have a private queue to do this. 1509 * 1510 * Returns %NULL for an empty list or a pointer to the tail element. 1511 * The reference count is not incremented and the reference is therefore 1512 * volatile. Use with caution. 1513 */ 1514 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) 1515 { 1516 struct sk_buff *skb = list_->prev; 1517 1518 if (skb == (struct sk_buff *)list_) 1519 skb = NULL; 1520 return skb; 1521 1522 } 1523 1524 /** 1525 * skb_queue_len - get queue length 1526 * @list_: list to measure 1527 * 1528 * Return the length of an &sk_buff queue. 1529 */ 1530 static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 1531 { 1532 return list_->qlen; 1533 } 1534 1535 /** 1536 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 1537 * @list: queue to initialize 1538 * 1539 * This initializes only the list and queue length aspects of 1540 * an sk_buff_head object. This allows to initialize the list 1541 * aspects of an sk_buff_head without reinitializing things like 1542 * the spinlock. It can also be used for on-stack sk_buff_head 1543 * objects where the spinlock is known to not be used. 1544 */ 1545 static inline void __skb_queue_head_init(struct sk_buff_head *list) 1546 { 1547 list->prev = list->next = (struct sk_buff *)list; 1548 list->qlen = 0; 1549 } 1550 1551 /* 1552 * This function creates a split out lock class for each invocation; 1553 * this is needed for now since a whole lot of users of the skb-queue 1554 * infrastructure in drivers have different locking usage (in hardirq) 1555 * than the networking core (in softirq only). In the long run either the 1556 * network layer or drivers should need annotation to consolidate the 1557 * main types of usage into 3 classes. 1558 */ 1559 static inline void skb_queue_head_init(struct sk_buff_head *list) 1560 { 1561 spin_lock_init(&list->lock); 1562 __skb_queue_head_init(list); 1563 } 1564 1565 static inline void skb_queue_head_init_class(struct sk_buff_head *list, 1566 struct lock_class_key *class) 1567 { 1568 skb_queue_head_init(list); 1569 lockdep_set_class(&list->lock, class); 1570 } 1571 1572 /* 1573 * Insert an sk_buff on a list. 1574 * 1575 * The "__skb_xxxx()" functions are the non-atomic ones that 1576 * can only be called with interrupts disabled. 1577 */ 1578 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, 1579 struct sk_buff_head *list); 1580 static inline void __skb_insert(struct sk_buff *newsk, 1581 struct sk_buff *prev, struct sk_buff *next, 1582 struct sk_buff_head *list) 1583 { 1584 newsk->next = next; 1585 newsk->prev = prev; 1586 next->prev = prev->next = newsk; 1587 list->qlen++; 1588 } 1589 1590 static inline void __skb_queue_splice(const struct sk_buff_head *list, 1591 struct sk_buff *prev, 1592 struct sk_buff *next) 1593 { 1594 struct sk_buff *first = list->next; 1595 struct sk_buff *last = list->prev; 1596 1597 first->prev = prev; 1598 prev->next = first; 1599 1600 last->next = next; 1601 next->prev = last; 1602 } 1603 1604 /** 1605 * skb_queue_splice - join two skb lists, this is designed for stacks 1606 * @list: the new list to add 1607 * @head: the place to add it in the first list 1608 */ 1609 static inline void skb_queue_splice(const struct sk_buff_head *list, 1610 struct sk_buff_head *head) 1611 { 1612 if (!skb_queue_empty(list)) { 1613 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1614 head->qlen += list->qlen; 1615 } 1616 } 1617 1618 /** 1619 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list 1620 * @list: the new list to add 1621 * @head: the place to add it in the first list 1622 * 1623 * The list at @list is reinitialised 1624 */ 1625 static inline void skb_queue_splice_init(struct sk_buff_head *list, 1626 struct sk_buff_head *head) 1627 { 1628 if (!skb_queue_empty(list)) { 1629 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1630 head->qlen += list->qlen; 1631 __skb_queue_head_init(list); 1632 } 1633 } 1634 1635 /** 1636 * skb_queue_splice_tail - join two skb lists, each list being a queue 1637 * @list: the new list to add 1638 * @head: the place to add it in the first list 1639 */ 1640 static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 1641 struct sk_buff_head *head) 1642 { 1643 if (!skb_queue_empty(list)) { 1644 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1645 head->qlen += list->qlen; 1646 } 1647 } 1648 1649 /** 1650 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list 1651 * @list: the new list to add 1652 * @head: the place to add it in the first list 1653 * 1654 * Each of the lists is a queue. 1655 * The list at @list is reinitialised 1656 */ 1657 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 1658 struct sk_buff_head *head) 1659 { 1660 if (!skb_queue_empty(list)) { 1661 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1662 head->qlen += list->qlen; 1663 __skb_queue_head_init(list); 1664 } 1665 } 1666 1667 /** 1668 * __skb_queue_after - queue a buffer at the list head 1669 * @list: list to use 1670 * @prev: place after this buffer 1671 * @newsk: buffer to queue 1672 * 1673 * Queue a buffer int the middle of a list. This function takes no locks 1674 * and you must therefore hold required locks before calling it. 1675 * 1676 * A buffer cannot be placed on two lists at the same time. 1677 */ 1678 static inline void __skb_queue_after(struct sk_buff_head *list, 1679 struct sk_buff *prev, 1680 struct sk_buff *newsk) 1681 { 1682 __skb_insert(newsk, prev, prev->next, list); 1683 } 1684 1685 void skb_append(struct sk_buff *old, struct sk_buff *newsk, 1686 struct sk_buff_head *list); 1687 1688 static inline void __skb_queue_before(struct sk_buff_head *list, 1689 struct sk_buff *next, 1690 struct sk_buff *newsk) 1691 { 1692 __skb_insert(newsk, next->prev, next, list); 1693 } 1694 1695 /** 1696 * __skb_queue_head - queue a buffer at the list head 1697 * @list: list to use 1698 * @newsk: buffer to queue 1699 * 1700 * Queue a buffer at the start of a list. This function takes no locks 1701 * and you must therefore hold required locks before calling it. 1702 * 1703 * A buffer cannot be placed on two lists at the same time. 1704 */ 1705 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 1706 static inline void __skb_queue_head(struct sk_buff_head *list, 1707 struct sk_buff *newsk) 1708 { 1709 __skb_queue_after(list, (struct sk_buff *)list, newsk); 1710 } 1711 1712 /** 1713 * __skb_queue_tail - queue a buffer at the list tail 1714 * @list: list to use 1715 * @newsk: buffer to queue 1716 * 1717 * Queue a buffer at the end of a list. This function takes no locks 1718 * and you must therefore hold required locks before calling it. 1719 * 1720 * A buffer cannot be placed on two lists at the same time. 1721 */ 1722 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 1723 static inline void __skb_queue_tail(struct sk_buff_head *list, 1724 struct sk_buff *newsk) 1725 { 1726 __skb_queue_before(list, (struct sk_buff *)list, newsk); 1727 } 1728 1729 /* 1730 * remove sk_buff from list. _Must_ be called atomically, and with 1731 * the list known.. 1732 */ 1733 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 1734 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 1735 { 1736 struct sk_buff *next, *prev; 1737 1738 list->qlen--; 1739 next = skb->next; 1740 prev = skb->prev; 1741 skb->next = skb->prev = NULL; 1742 next->prev = prev; 1743 prev->next = next; 1744 } 1745 1746 /** 1747 * __skb_dequeue - remove from the head of the queue 1748 * @list: list to dequeue from 1749 * 1750 * Remove the head of the list. This function does not take any locks 1751 * so must be used with appropriate locks held only. The head item is 1752 * returned or %NULL if the list is empty. 1753 */ 1754 struct sk_buff *skb_dequeue(struct sk_buff_head *list); 1755 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 1756 { 1757 struct sk_buff *skb = skb_peek(list); 1758 if (skb) 1759 __skb_unlink(skb, list); 1760 return skb; 1761 } 1762 1763 /** 1764 * __skb_dequeue_tail - remove from the tail of the queue 1765 * @list: list to dequeue from 1766 * 1767 * Remove the tail of the list. This function does not take any locks 1768 * so must be used with appropriate locks held only. The tail item is 1769 * returned or %NULL if the list is empty. 1770 */ 1771 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 1772 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 1773 { 1774 struct sk_buff *skb = skb_peek_tail(list); 1775 if (skb) 1776 __skb_unlink(skb, list); 1777 return skb; 1778 } 1779 1780 1781 static inline bool skb_is_nonlinear(const struct sk_buff *skb) 1782 { 1783 return skb->data_len; 1784 } 1785 1786 static inline unsigned int skb_headlen(const struct sk_buff *skb) 1787 { 1788 return skb->len - skb->data_len; 1789 } 1790 1791 static inline int skb_pagelen(const struct sk_buff *skb) 1792 { 1793 int i, len = 0; 1794 1795 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--) 1796 len += skb_frag_size(&skb_shinfo(skb)->frags[i]); 1797 return len + skb_headlen(skb); 1798 } 1799 1800 /** 1801 * __skb_fill_page_desc - initialise a paged fragment in an skb 1802 * @skb: buffer containing fragment to be initialised 1803 * @i: paged fragment index to initialise 1804 * @page: the page to use for this fragment 1805 * @off: the offset to the data with @page 1806 * @size: the length of the data 1807 * 1808 * Initialises the @i'th fragment of @skb to point to &size bytes at 1809 * offset @off within @page. 1810 * 1811 * Does not take any additional reference on the fragment. 1812 */ 1813 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, 1814 struct page *page, int off, int size) 1815 { 1816 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1817 1818 /* 1819 * Propagate page pfmemalloc to the skb if we can. The problem is 1820 * that not all callers have unique ownership of the page but rely 1821 * on page_is_pfmemalloc doing the right thing(tm). 1822 */ 1823 frag->page.p = page; 1824 frag->page_offset = off; 1825 skb_frag_size_set(frag, size); 1826 1827 page = compound_head(page); 1828 if (page_is_pfmemalloc(page)) 1829 skb->pfmemalloc = true; 1830 } 1831 1832 /** 1833 * skb_fill_page_desc - initialise a paged fragment in an skb 1834 * @skb: buffer containing fragment to be initialised 1835 * @i: paged fragment index to initialise 1836 * @page: the page to use for this fragment 1837 * @off: the offset to the data with @page 1838 * @size: the length of the data 1839 * 1840 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of 1841 * @skb to point to @size bytes at offset @off within @page. In 1842 * addition updates @skb such that @i is the last fragment. 1843 * 1844 * Does not take any additional reference on the fragment. 1845 */ 1846 static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 1847 struct page *page, int off, int size) 1848 { 1849 __skb_fill_page_desc(skb, i, page, off, size); 1850 skb_shinfo(skb)->nr_frags = i + 1; 1851 } 1852 1853 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 1854 int size, unsigned int truesize); 1855 1856 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 1857 unsigned int truesize); 1858 1859 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags) 1860 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb)) 1861 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 1862 1863 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1864 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1865 { 1866 return skb->head + skb->tail; 1867 } 1868 1869 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1870 { 1871 skb->tail = skb->data - skb->head; 1872 } 1873 1874 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1875 { 1876 skb_reset_tail_pointer(skb); 1877 skb->tail += offset; 1878 } 1879 1880 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 1881 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1882 { 1883 return skb->tail; 1884 } 1885 1886 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1887 { 1888 skb->tail = skb->data; 1889 } 1890 1891 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1892 { 1893 skb->tail = skb->data + offset; 1894 } 1895 1896 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1897 1898 /* 1899 * Add data to an sk_buff 1900 */ 1901 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len); 1902 unsigned char *skb_put(struct sk_buff *skb, unsigned int len); 1903 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len) 1904 { 1905 unsigned char *tmp = skb_tail_pointer(skb); 1906 SKB_LINEAR_ASSERT(skb); 1907 skb->tail += len; 1908 skb->len += len; 1909 return tmp; 1910 } 1911 1912 unsigned char *skb_push(struct sk_buff *skb, unsigned int len); 1913 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len) 1914 { 1915 skb->data -= len; 1916 skb->len += len; 1917 return skb->data; 1918 } 1919 1920 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len); 1921 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len) 1922 { 1923 skb->len -= len; 1924 BUG_ON(skb->len < skb->data_len); 1925 return skb->data += len; 1926 } 1927 1928 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len) 1929 { 1930 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 1931 } 1932 1933 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta); 1934 1935 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len) 1936 { 1937 if (len > skb_headlen(skb) && 1938 !__pskb_pull_tail(skb, len - skb_headlen(skb))) 1939 return NULL; 1940 skb->len -= len; 1941 return skb->data += len; 1942 } 1943 1944 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len) 1945 { 1946 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 1947 } 1948 1949 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) 1950 { 1951 if (likely(len <= skb_headlen(skb))) 1952 return 1; 1953 if (unlikely(len > skb->len)) 1954 return 0; 1955 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; 1956 } 1957 1958 /** 1959 * skb_headroom - bytes at buffer head 1960 * @skb: buffer to check 1961 * 1962 * Return the number of bytes of free space at the head of an &sk_buff. 1963 */ 1964 static inline unsigned int skb_headroom(const struct sk_buff *skb) 1965 { 1966 return skb->data - skb->head; 1967 } 1968 1969 /** 1970 * skb_tailroom - bytes at buffer end 1971 * @skb: buffer to check 1972 * 1973 * Return the number of bytes of free space at the tail of an sk_buff 1974 */ 1975 static inline int skb_tailroom(const struct sk_buff *skb) 1976 { 1977 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 1978 } 1979 1980 /** 1981 * skb_availroom - bytes at buffer end 1982 * @skb: buffer to check 1983 * 1984 * Return the number of bytes of free space at the tail of an sk_buff 1985 * allocated by sk_stream_alloc() 1986 */ 1987 static inline int skb_availroom(const struct sk_buff *skb) 1988 { 1989 if (skb_is_nonlinear(skb)) 1990 return 0; 1991 1992 return skb->end - skb->tail - skb->reserved_tailroom; 1993 } 1994 1995 /** 1996 * skb_reserve - adjust headroom 1997 * @skb: buffer to alter 1998 * @len: bytes to move 1999 * 2000 * Increase the headroom of an empty &sk_buff by reducing the tail 2001 * room. This is only allowed for an empty buffer. 2002 */ 2003 static inline void skb_reserve(struct sk_buff *skb, int len) 2004 { 2005 skb->data += len; 2006 skb->tail += len; 2007 } 2008 2009 /** 2010 * skb_tailroom_reserve - adjust reserved_tailroom 2011 * @skb: buffer to alter 2012 * @mtu: maximum amount of headlen permitted 2013 * @needed_tailroom: minimum amount of reserved_tailroom 2014 * 2015 * Set reserved_tailroom so that headlen can be as large as possible but 2016 * not larger than mtu and tailroom cannot be smaller than 2017 * needed_tailroom. 2018 * The required headroom should already have been reserved before using 2019 * this function. 2020 */ 2021 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu, 2022 unsigned int needed_tailroom) 2023 { 2024 SKB_LINEAR_ASSERT(skb); 2025 if (mtu < skb_tailroom(skb) - needed_tailroom) 2026 /* use at most mtu */ 2027 skb->reserved_tailroom = skb_tailroom(skb) - mtu; 2028 else 2029 /* use up to all available space */ 2030 skb->reserved_tailroom = needed_tailroom; 2031 } 2032 2033 #define ENCAP_TYPE_ETHER 0 2034 #define ENCAP_TYPE_IPPROTO 1 2035 2036 static inline void skb_set_inner_protocol(struct sk_buff *skb, 2037 __be16 protocol) 2038 { 2039 skb->inner_protocol = protocol; 2040 skb->inner_protocol_type = ENCAP_TYPE_ETHER; 2041 } 2042 2043 static inline void skb_set_inner_ipproto(struct sk_buff *skb, 2044 __u8 ipproto) 2045 { 2046 skb->inner_ipproto = ipproto; 2047 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO; 2048 } 2049 2050 static inline void skb_reset_inner_headers(struct sk_buff *skb) 2051 { 2052 skb->inner_mac_header = skb->mac_header; 2053 skb->inner_network_header = skb->network_header; 2054 skb->inner_transport_header = skb->transport_header; 2055 } 2056 2057 static inline void skb_reset_mac_len(struct sk_buff *skb) 2058 { 2059 skb->mac_len = skb->network_header - skb->mac_header; 2060 } 2061 2062 static inline unsigned char *skb_inner_transport_header(const struct sk_buff 2063 *skb) 2064 { 2065 return skb->head + skb->inner_transport_header; 2066 } 2067 2068 static inline int skb_inner_transport_offset(const struct sk_buff *skb) 2069 { 2070 return skb_inner_transport_header(skb) - skb->data; 2071 } 2072 2073 static inline void skb_reset_inner_transport_header(struct sk_buff *skb) 2074 { 2075 skb->inner_transport_header = skb->data - skb->head; 2076 } 2077 2078 static inline void skb_set_inner_transport_header(struct sk_buff *skb, 2079 const int offset) 2080 { 2081 skb_reset_inner_transport_header(skb); 2082 skb->inner_transport_header += offset; 2083 } 2084 2085 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) 2086 { 2087 return skb->head + skb->inner_network_header; 2088 } 2089 2090 static inline void skb_reset_inner_network_header(struct sk_buff *skb) 2091 { 2092 skb->inner_network_header = skb->data - skb->head; 2093 } 2094 2095 static inline void skb_set_inner_network_header(struct sk_buff *skb, 2096 const int offset) 2097 { 2098 skb_reset_inner_network_header(skb); 2099 skb->inner_network_header += offset; 2100 } 2101 2102 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) 2103 { 2104 return skb->head + skb->inner_mac_header; 2105 } 2106 2107 static inline void skb_reset_inner_mac_header(struct sk_buff *skb) 2108 { 2109 skb->inner_mac_header = skb->data - skb->head; 2110 } 2111 2112 static inline void skb_set_inner_mac_header(struct sk_buff *skb, 2113 const int offset) 2114 { 2115 skb_reset_inner_mac_header(skb); 2116 skb->inner_mac_header += offset; 2117 } 2118 static inline bool skb_transport_header_was_set(const struct sk_buff *skb) 2119 { 2120 return skb->transport_header != (typeof(skb->transport_header))~0U; 2121 } 2122 2123 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 2124 { 2125 return skb->head + skb->transport_header; 2126 } 2127 2128 static inline void skb_reset_transport_header(struct sk_buff *skb) 2129 { 2130 skb->transport_header = skb->data - skb->head; 2131 } 2132 2133 static inline void skb_set_transport_header(struct sk_buff *skb, 2134 const int offset) 2135 { 2136 skb_reset_transport_header(skb); 2137 skb->transport_header += offset; 2138 } 2139 2140 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 2141 { 2142 return skb->head + skb->network_header; 2143 } 2144 2145 static inline void skb_reset_network_header(struct sk_buff *skb) 2146 { 2147 skb->network_header = skb->data - skb->head; 2148 } 2149 2150 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 2151 { 2152 skb_reset_network_header(skb); 2153 skb->network_header += offset; 2154 } 2155 2156 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 2157 { 2158 return skb->head + skb->mac_header; 2159 } 2160 2161 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 2162 { 2163 return skb->mac_header != (typeof(skb->mac_header))~0U; 2164 } 2165 2166 static inline void skb_reset_mac_header(struct sk_buff *skb) 2167 { 2168 skb->mac_header = skb->data - skb->head; 2169 } 2170 2171 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 2172 { 2173 skb_reset_mac_header(skb); 2174 skb->mac_header += offset; 2175 } 2176 2177 static inline void skb_pop_mac_header(struct sk_buff *skb) 2178 { 2179 skb->mac_header = skb->network_header; 2180 } 2181 2182 static inline void skb_probe_transport_header(struct sk_buff *skb, 2183 const int offset_hint) 2184 { 2185 struct flow_keys keys; 2186 2187 if (skb_transport_header_was_set(skb)) 2188 return; 2189 else if (skb_flow_dissect_flow_keys(skb, &keys, 0)) 2190 skb_set_transport_header(skb, keys.control.thoff); 2191 else 2192 skb_set_transport_header(skb, offset_hint); 2193 } 2194 2195 static inline void skb_mac_header_rebuild(struct sk_buff *skb) 2196 { 2197 if (skb_mac_header_was_set(skb)) { 2198 const unsigned char *old_mac = skb_mac_header(skb); 2199 2200 skb_set_mac_header(skb, -skb->mac_len); 2201 memmove(skb_mac_header(skb), old_mac, skb->mac_len); 2202 } 2203 } 2204 2205 static inline int skb_checksum_start_offset(const struct sk_buff *skb) 2206 { 2207 return skb->csum_start - skb_headroom(skb); 2208 } 2209 2210 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb) 2211 { 2212 return skb->head + skb->csum_start; 2213 } 2214 2215 static inline int skb_transport_offset(const struct sk_buff *skb) 2216 { 2217 return skb_transport_header(skb) - skb->data; 2218 } 2219 2220 static inline u32 skb_network_header_len(const struct sk_buff *skb) 2221 { 2222 return skb->transport_header - skb->network_header; 2223 } 2224 2225 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) 2226 { 2227 return skb->inner_transport_header - skb->inner_network_header; 2228 } 2229 2230 static inline int skb_network_offset(const struct sk_buff *skb) 2231 { 2232 return skb_network_header(skb) - skb->data; 2233 } 2234 2235 static inline int skb_inner_network_offset(const struct sk_buff *skb) 2236 { 2237 return skb_inner_network_header(skb) - skb->data; 2238 } 2239 2240 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 2241 { 2242 return pskb_may_pull(skb, skb_network_offset(skb) + len); 2243 } 2244 2245 /* 2246 * CPUs often take a performance hit when accessing unaligned memory 2247 * locations. The actual performance hit varies, it can be small if the 2248 * hardware handles it or large if we have to take an exception and fix it 2249 * in software. 2250 * 2251 * Since an ethernet header is 14 bytes network drivers often end up with 2252 * the IP header at an unaligned offset. The IP header can be aligned by 2253 * shifting the start of the packet by 2 bytes. Drivers should do this 2254 * with: 2255 * 2256 * skb_reserve(skb, NET_IP_ALIGN); 2257 * 2258 * The downside to this alignment of the IP header is that the DMA is now 2259 * unaligned. On some architectures the cost of an unaligned DMA is high 2260 * and this cost outweighs the gains made by aligning the IP header. 2261 * 2262 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 2263 * to be overridden. 2264 */ 2265 #ifndef NET_IP_ALIGN 2266 #define NET_IP_ALIGN 2 2267 #endif 2268 2269 /* 2270 * The networking layer reserves some headroom in skb data (via 2271 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 2272 * the header has to grow. In the default case, if the header has to grow 2273 * 32 bytes or less we avoid the reallocation. 2274 * 2275 * Unfortunately this headroom changes the DMA alignment of the resulting 2276 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 2277 * on some architectures. An architecture can override this value, 2278 * perhaps setting it to a cacheline in size (since that will maintain 2279 * cacheline alignment of the DMA). It must be a power of 2. 2280 * 2281 * Various parts of the networking layer expect at least 32 bytes of 2282 * headroom, you should not reduce this. 2283 * 2284 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 2285 * to reduce average number of cache lines per packet. 2286 * get_rps_cpus() for example only access one 64 bytes aligned block : 2287 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 2288 */ 2289 #ifndef NET_SKB_PAD 2290 #define NET_SKB_PAD max(32, L1_CACHE_BYTES) 2291 #endif 2292 2293 int ___pskb_trim(struct sk_buff *skb, unsigned int len); 2294 2295 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len) 2296 { 2297 if (unlikely(skb_is_nonlinear(skb))) { 2298 WARN_ON(1); 2299 return; 2300 } 2301 skb->len = len; 2302 skb_set_tail_pointer(skb, len); 2303 } 2304 2305 static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 2306 { 2307 __skb_set_length(skb, len); 2308 } 2309 2310 void skb_trim(struct sk_buff *skb, unsigned int len); 2311 2312 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 2313 { 2314 if (skb->data_len) 2315 return ___pskb_trim(skb, len); 2316 __skb_trim(skb, len); 2317 return 0; 2318 } 2319 2320 static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 2321 { 2322 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 2323 } 2324 2325 /** 2326 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 2327 * @skb: buffer to alter 2328 * @len: new length 2329 * 2330 * This is identical to pskb_trim except that the caller knows that 2331 * the skb is not cloned so we should never get an error due to out- 2332 * of-memory. 2333 */ 2334 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 2335 { 2336 int err = pskb_trim(skb, len); 2337 BUG_ON(err); 2338 } 2339 2340 static inline int __skb_grow(struct sk_buff *skb, unsigned int len) 2341 { 2342 unsigned int diff = len - skb->len; 2343 2344 if (skb_tailroom(skb) < diff) { 2345 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb), 2346 GFP_ATOMIC); 2347 if (ret) 2348 return ret; 2349 } 2350 __skb_set_length(skb, len); 2351 return 0; 2352 } 2353 2354 /** 2355 * skb_orphan - orphan a buffer 2356 * @skb: buffer to orphan 2357 * 2358 * If a buffer currently has an owner then we call the owner's 2359 * destructor function and make the @skb unowned. The buffer continues 2360 * to exist but is no longer charged to its former owner. 2361 */ 2362 static inline void skb_orphan(struct sk_buff *skb) 2363 { 2364 if (skb->destructor) { 2365 skb->destructor(skb); 2366 skb->destructor = NULL; 2367 skb->sk = NULL; 2368 } else { 2369 BUG_ON(skb->sk); 2370 } 2371 } 2372 2373 /** 2374 * skb_orphan_frags - orphan the frags contained in a buffer 2375 * @skb: buffer to orphan frags from 2376 * @gfp_mask: allocation mask for replacement pages 2377 * 2378 * For each frag in the SKB which needs a destructor (i.e. has an 2379 * owner) create a copy of that frag and release the original 2380 * page by calling the destructor. 2381 */ 2382 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) 2383 { 2384 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY))) 2385 return 0; 2386 return skb_copy_ubufs(skb, gfp_mask); 2387 } 2388 2389 /** 2390 * __skb_queue_purge - empty a list 2391 * @list: list to empty 2392 * 2393 * Delete all buffers on an &sk_buff list. Each buffer is removed from 2394 * the list and one reference dropped. This function does not take the 2395 * list lock and the caller must hold the relevant locks to use it. 2396 */ 2397 void skb_queue_purge(struct sk_buff_head *list); 2398 static inline void __skb_queue_purge(struct sk_buff_head *list) 2399 { 2400 struct sk_buff *skb; 2401 while ((skb = __skb_dequeue(list)) != NULL) 2402 kfree_skb(skb); 2403 } 2404 2405 void skb_rbtree_purge(struct rb_root *root); 2406 2407 void *netdev_alloc_frag(unsigned int fragsz); 2408 2409 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length, 2410 gfp_t gfp_mask); 2411 2412 /** 2413 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 2414 * @dev: network device to receive on 2415 * @length: length to allocate 2416 * 2417 * Allocate a new &sk_buff and assign it a usage count of one. The 2418 * buffer has unspecified headroom built in. Users should allocate 2419 * the headroom they think they need without accounting for the 2420 * built in space. The built in space is used for optimisations. 2421 * 2422 * %NULL is returned if there is no free memory. Although this function 2423 * allocates memory it can be called from an interrupt. 2424 */ 2425 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 2426 unsigned int length) 2427 { 2428 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 2429 } 2430 2431 /* legacy helper around __netdev_alloc_skb() */ 2432 static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 2433 gfp_t gfp_mask) 2434 { 2435 return __netdev_alloc_skb(NULL, length, gfp_mask); 2436 } 2437 2438 /* legacy helper around netdev_alloc_skb() */ 2439 static inline struct sk_buff *dev_alloc_skb(unsigned int length) 2440 { 2441 return netdev_alloc_skb(NULL, length); 2442 } 2443 2444 2445 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, 2446 unsigned int length, gfp_t gfp) 2447 { 2448 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); 2449 2450 if (NET_IP_ALIGN && skb) 2451 skb_reserve(skb, NET_IP_ALIGN); 2452 return skb; 2453 } 2454 2455 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 2456 unsigned int length) 2457 { 2458 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); 2459 } 2460 2461 static inline void skb_free_frag(void *addr) 2462 { 2463 __free_page_frag(addr); 2464 } 2465 2466 void *napi_alloc_frag(unsigned int fragsz); 2467 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, 2468 unsigned int length, gfp_t gfp_mask); 2469 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi, 2470 unsigned int length) 2471 { 2472 return __napi_alloc_skb(napi, length, GFP_ATOMIC); 2473 } 2474 void napi_consume_skb(struct sk_buff *skb, int budget); 2475 2476 void __kfree_skb_flush(void); 2477 void __kfree_skb_defer(struct sk_buff *skb); 2478 2479 /** 2480 * __dev_alloc_pages - allocate page for network Rx 2481 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 2482 * @order: size of the allocation 2483 * 2484 * Allocate a new page. 2485 * 2486 * %NULL is returned if there is no free memory. 2487 */ 2488 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask, 2489 unsigned int order) 2490 { 2491 /* This piece of code contains several assumptions. 2492 * 1. This is for device Rx, therefor a cold page is preferred. 2493 * 2. The expectation is the user wants a compound page. 2494 * 3. If requesting a order 0 page it will not be compound 2495 * due to the check to see if order has a value in prep_new_page 2496 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to 2497 * code in gfp_to_alloc_flags that should be enforcing this. 2498 */ 2499 gfp_mask |= __GFP_COLD | __GFP_COMP | __GFP_MEMALLOC; 2500 2501 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order); 2502 } 2503 2504 static inline struct page *dev_alloc_pages(unsigned int order) 2505 { 2506 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order); 2507 } 2508 2509 /** 2510 * __dev_alloc_page - allocate a page for network Rx 2511 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 2512 * 2513 * Allocate a new page. 2514 * 2515 * %NULL is returned if there is no free memory. 2516 */ 2517 static inline struct page *__dev_alloc_page(gfp_t gfp_mask) 2518 { 2519 return __dev_alloc_pages(gfp_mask, 0); 2520 } 2521 2522 static inline struct page *dev_alloc_page(void) 2523 { 2524 return dev_alloc_pages(0); 2525 } 2526 2527 /** 2528 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page 2529 * @page: The page that was allocated from skb_alloc_page 2530 * @skb: The skb that may need pfmemalloc set 2531 */ 2532 static inline void skb_propagate_pfmemalloc(struct page *page, 2533 struct sk_buff *skb) 2534 { 2535 if (page_is_pfmemalloc(page)) 2536 skb->pfmemalloc = true; 2537 } 2538 2539 /** 2540 * skb_frag_page - retrieve the page referred to by a paged fragment 2541 * @frag: the paged fragment 2542 * 2543 * Returns the &struct page associated with @frag. 2544 */ 2545 static inline struct page *skb_frag_page(const skb_frag_t *frag) 2546 { 2547 return frag->page.p; 2548 } 2549 2550 /** 2551 * __skb_frag_ref - take an addition reference on a paged fragment. 2552 * @frag: the paged fragment 2553 * 2554 * Takes an additional reference on the paged fragment @frag. 2555 */ 2556 static inline void __skb_frag_ref(skb_frag_t *frag) 2557 { 2558 get_page(skb_frag_page(frag)); 2559 } 2560 2561 /** 2562 * skb_frag_ref - take an addition reference on a paged fragment of an skb. 2563 * @skb: the buffer 2564 * @f: the fragment offset. 2565 * 2566 * Takes an additional reference on the @f'th paged fragment of @skb. 2567 */ 2568 static inline void skb_frag_ref(struct sk_buff *skb, int f) 2569 { 2570 __skb_frag_ref(&skb_shinfo(skb)->frags[f]); 2571 } 2572 2573 /** 2574 * __skb_frag_unref - release a reference on a paged fragment. 2575 * @frag: the paged fragment 2576 * 2577 * Releases a reference on the paged fragment @frag. 2578 */ 2579 static inline void __skb_frag_unref(skb_frag_t *frag) 2580 { 2581 put_page(skb_frag_page(frag)); 2582 } 2583 2584 /** 2585 * skb_frag_unref - release a reference on a paged fragment of an skb. 2586 * @skb: the buffer 2587 * @f: the fragment offset 2588 * 2589 * Releases a reference on the @f'th paged fragment of @skb. 2590 */ 2591 static inline void skb_frag_unref(struct sk_buff *skb, int f) 2592 { 2593 __skb_frag_unref(&skb_shinfo(skb)->frags[f]); 2594 } 2595 2596 /** 2597 * skb_frag_address - gets the address of the data contained in a paged fragment 2598 * @frag: the paged fragment buffer 2599 * 2600 * Returns the address of the data within @frag. The page must already 2601 * be mapped. 2602 */ 2603 static inline void *skb_frag_address(const skb_frag_t *frag) 2604 { 2605 return page_address(skb_frag_page(frag)) + frag->page_offset; 2606 } 2607 2608 /** 2609 * skb_frag_address_safe - gets the address of the data contained in a paged fragment 2610 * @frag: the paged fragment buffer 2611 * 2612 * Returns the address of the data within @frag. Checks that the page 2613 * is mapped and returns %NULL otherwise. 2614 */ 2615 static inline void *skb_frag_address_safe(const skb_frag_t *frag) 2616 { 2617 void *ptr = page_address(skb_frag_page(frag)); 2618 if (unlikely(!ptr)) 2619 return NULL; 2620 2621 return ptr + frag->page_offset; 2622 } 2623 2624 /** 2625 * __skb_frag_set_page - sets the page contained in a paged fragment 2626 * @frag: the paged fragment 2627 * @page: the page to set 2628 * 2629 * Sets the fragment @frag to contain @page. 2630 */ 2631 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page) 2632 { 2633 frag->page.p = page; 2634 } 2635 2636 /** 2637 * skb_frag_set_page - sets the page contained in a paged fragment of an skb 2638 * @skb: the buffer 2639 * @f: the fragment offset 2640 * @page: the page to set 2641 * 2642 * Sets the @f'th fragment of @skb to contain @page. 2643 */ 2644 static inline void skb_frag_set_page(struct sk_buff *skb, int f, 2645 struct page *page) 2646 { 2647 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page); 2648 } 2649 2650 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio); 2651 2652 /** 2653 * skb_frag_dma_map - maps a paged fragment via the DMA API 2654 * @dev: the device to map the fragment to 2655 * @frag: the paged fragment to map 2656 * @offset: the offset within the fragment (starting at the 2657 * fragment's own offset) 2658 * @size: the number of bytes to map 2659 * @dir: the direction of the mapping (%PCI_DMA_*) 2660 * 2661 * Maps the page associated with @frag to @device. 2662 */ 2663 static inline dma_addr_t skb_frag_dma_map(struct device *dev, 2664 const skb_frag_t *frag, 2665 size_t offset, size_t size, 2666 enum dma_data_direction dir) 2667 { 2668 return dma_map_page(dev, skb_frag_page(frag), 2669 frag->page_offset + offset, size, dir); 2670 } 2671 2672 static inline struct sk_buff *pskb_copy(struct sk_buff *skb, 2673 gfp_t gfp_mask) 2674 { 2675 return __pskb_copy(skb, skb_headroom(skb), gfp_mask); 2676 } 2677 2678 2679 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb, 2680 gfp_t gfp_mask) 2681 { 2682 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true); 2683 } 2684 2685 2686 /** 2687 * skb_clone_writable - is the header of a clone writable 2688 * @skb: buffer to check 2689 * @len: length up to which to write 2690 * 2691 * Returns true if modifying the header part of the cloned buffer 2692 * does not requires the data to be copied. 2693 */ 2694 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) 2695 { 2696 return !skb_header_cloned(skb) && 2697 skb_headroom(skb) + len <= skb->hdr_len; 2698 } 2699 2700 static inline int skb_try_make_writable(struct sk_buff *skb, 2701 unsigned int write_len) 2702 { 2703 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) && 2704 pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2705 } 2706 2707 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 2708 int cloned) 2709 { 2710 int delta = 0; 2711 2712 if (headroom > skb_headroom(skb)) 2713 delta = headroom - skb_headroom(skb); 2714 2715 if (delta || cloned) 2716 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 2717 GFP_ATOMIC); 2718 return 0; 2719 } 2720 2721 /** 2722 * skb_cow - copy header of skb when it is required 2723 * @skb: buffer to cow 2724 * @headroom: needed headroom 2725 * 2726 * If the skb passed lacks sufficient headroom or its data part 2727 * is shared, data is reallocated. If reallocation fails, an error 2728 * is returned and original skb is not changed. 2729 * 2730 * The result is skb with writable area skb->head...skb->tail 2731 * and at least @headroom of space at head. 2732 */ 2733 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 2734 { 2735 return __skb_cow(skb, headroom, skb_cloned(skb)); 2736 } 2737 2738 /** 2739 * skb_cow_head - skb_cow but only making the head writable 2740 * @skb: buffer to cow 2741 * @headroom: needed headroom 2742 * 2743 * This function is identical to skb_cow except that we replace the 2744 * skb_cloned check by skb_header_cloned. It should be used when 2745 * you only need to push on some header and do not need to modify 2746 * the data. 2747 */ 2748 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 2749 { 2750 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 2751 } 2752 2753 /** 2754 * skb_padto - pad an skbuff up to a minimal size 2755 * @skb: buffer to pad 2756 * @len: minimal length 2757 * 2758 * Pads up a buffer to ensure the trailing bytes exist and are 2759 * blanked. If the buffer already contains sufficient data it 2760 * is untouched. Otherwise it is extended. Returns zero on 2761 * success. The skb is freed on error. 2762 */ 2763 static inline int skb_padto(struct sk_buff *skb, unsigned int len) 2764 { 2765 unsigned int size = skb->len; 2766 if (likely(size >= len)) 2767 return 0; 2768 return skb_pad(skb, len - size); 2769 } 2770 2771 /** 2772 * skb_put_padto - increase size and pad an skbuff up to a minimal size 2773 * @skb: buffer to pad 2774 * @len: minimal length 2775 * 2776 * Pads up a buffer to ensure the trailing bytes exist and are 2777 * blanked. If the buffer already contains sufficient data it 2778 * is untouched. Otherwise it is extended. Returns zero on 2779 * success. The skb is freed on error. 2780 */ 2781 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len) 2782 { 2783 unsigned int size = skb->len; 2784 2785 if (unlikely(size < len)) { 2786 len -= size; 2787 if (skb_pad(skb, len)) 2788 return -ENOMEM; 2789 __skb_put(skb, len); 2790 } 2791 return 0; 2792 } 2793 2794 static inline int skb_add_data(struct sk_buff *skb, 2795 struct iov_iter *from, int copy) 2796 { 2797 const int off = skb->len; 2798 2799 if (skb->ip_summed == CHECKSUM_NONE) { 2800 __wsum csum = 0; 2801 if (csum_and_copy_from_iter(skb_put(skb, copy), copy, 2802 &csum, from) == copy) { 2803 skb->csum = csum_block_add(skb->csum, csum, off); 2804 return 0; 2805 } 2806 } else if (copy_from_iter(skb_put(skb, copy), copy, from) == copy) 2807 return 0; 2808 2809 __skb_trim(skb, off); 2810 return -EFAULT; 2811 } 2812 2813 static inline bool skb_can_coalesce(struct sk_buff *skb, int i, 2814 const struct page *page, int off) 2815 { 2816 if (i) { 2817 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 2818 2819 return page == skb_frag_page(frag) && 2820 off == frag->page_offset + skb_frag_size(frag); 2821 } 2822 return false; 2823 } 2824 2825 static inline int __skb_linearize(struct sk_buff *skb) 2826 { 2827 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 2828 } 2829 2830 /** 2831 * skb_linearize - convert paged skb to linear one 2832 * @skb: buffer to linarize 2833 * 2834 * If there is no free memory -ENOMEM is returned, otherwise zero 2835 * is returned and the old skb data released. 2836 */ 2837 static inline int skb_linearize(struct sk_buff *skb) 2838 { 2839 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 2840 } 2841 2842 /** 2843 * skb_has_shared_frag - can any frag be overwritten 2844 * @skb: buffer to test 2845 * 2846 * Return true if the skb has at least one frag that might be modified 2847 * by an external entity (as in vmsplice()/sendfile()) 2848 */ 2849 static inline bool skb_has_shared_frag(const struct sk_buff *skb) 2850 { 2851 return skb_is_nonlinear(skb) && 2852 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG; 2853 } 2854 2855 /** 2856 * skb_linearize_cow - make sure skb is linear and writable 2857 * @skb: buffer to process 2858 * 2859 * If there is no free memory -ENOMEM is returned, otherwise zero 2860 * is returned and the old skb data released. 2861 */ 2862 static inline int skb_linearize_cow(struct sk_buff *skb) 2863 { 2864 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 2865 __skb_linearize(skb) : 0; 2866 } 2867 2868 static __always_inline void 2869 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 2870 unsigned int off) 2871 { 2872 if (skb->ip_summed == CHECKSUM_COMPLETE) 2873 skb->csum = csum_block_sub(skb->csum, 2874 csum_partial(start, len, 0), off); 2875 else if (skb->ip_summed == CHECKSUM_PARTIAL && 2876 skb_checksum_start_offset(skb) < 0) 2877 skb->ip_summed = CHECKSUM_NONE; 2878 } 2879 2880 /** 2881 * skb_postpull_rcsum - update checksum for received skb after pull 2882 * @skb: buffer to update 2883 * @start: start of data before pull 2884 * @len: length of data pulled 2885 * 2886 * After doing a pull on a received packet, you need to call this to 2887 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 2888 * CHECKSUM_NONE so that it can be recomputed from scratch. 2889 */ 2890 static inline void skb_postpull_rcsum(struct sk_buff *skb, 2891 const void *start, unsigned int len) 2892 { 2893 __skb_postpull_rcsum(skb, start, len, 0); 2894 } 2895 2896 static __always_inline void 2897 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 2898 unsigned int off) 2899 { 2900 if (skb->ip_summed == CHECKSUM_COMPLETE) 2901 skb->csum = csum_block_add(skb->csum, 2902 csum_partial(start, len, 0), off); 2903 } 2904 2905 /** 2906 * skb_postpush_rcsum - update checksum for received skb after push 2907 * @skb: buffer to update 2908 * @start: start of data after push 2909 * @len: length of data pushed 2910 * 2911 * After doing a push on a received packet, you need to call this to 2912 * update the CHECKSUM_COMPLETE checksum. 2913 */ 2914 static inline void skb_postpush_rcsum(struct sk_buff *skb, 2915 const void *start, unsigned int len) 2916 { 2917 __skb_postpush_rcsum(skb, start, len, 0); 2918 } 2919 2920 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 2921 2922 /** 2923 * skb_push_rcsum - push skb and update receive checksum 2924 * @skb: buffer to update 2925 * @len: length of data pulled 2926 * 2927 * This function performs an skb_push on the packet and updates 2928 * the CHECKSUM_COMPLETE checksum. It should be used on 2929 * receive path processing instead of skb_push unless you know 2930 * that the checksum difference is zero (e.g., a valid IP header) 2931 * or you are setting ip_summed to CHECKSUM_NONE. 2932 */ 2933 static inline unsigned char *skb_push_rcsum(struct sk_buff *skb, 2934 unsigned int len) 2935 { 2936 skb_push(skb, len); 2937 skb_postpush_rcsum(skb, skb->data, len); 2938 return skb->data; 2939 } 2940 2941 /** 2942 * pskb_trim_rcsum - trim received skb and update checksum 2943 * @skb: buffer to trim 2944 * @len: new length 2945 * 2946 * This is exactly the same as pskb_trim except that it ensures the 2947 * checksum of received packets are still valid after the operation. 2948 */ 2949 2950 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 2951 { 2952 if (likely(len >= skb->len)) 2953 return 0; 2954 if (skb->ip_summed == CHECKSUM_COMPLETE) 2955 skb->ip_summed = CHECKSUM_NONE; 2956 return __pskb_trim(skb, len); 2957 } 2958 2959 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len) 2960 { 2961 if (skb->ip_summed == CHECKSUM_COMPLETE) 2962 skb->ip_summed = CHECKSUM_NONE; 2963 __skb_trim(skb, len); 2964 return 0; 2965 } 2966 2967 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len) 2968 { 2969 if (skb->ip_summed == CHECKSUM_COMPLETE) 2970 skb->ip_summed = CHECKSUM_NONE; 2971 return __skb_grow(skb, len); 2972 } 2973 2974 #define skb_queue_walk(queue, skb) \ 2975 for (skb = (queue)->next; \ 2976 skb != (struct sk_buff *)(queue); \ 2977 skb = skb->next) 2978 2979 #define skb_queue_walk_safe(queue, skb, tmp) \ 2980 for (skb = (queue)->next, tmp = skb->next; \ 2981 skb != (struct sk_buff *)(queue); \ 2982 skb = tmp, tmp = skb->next) 2983 2984 #define skb_queue_walk_from(queue, skb) \ 2985 for (; skb != (struct sk_buff *)(queue); \ 2986 skb = skb->next) 2987 2988 #define skb_queue_walk_from_safe(queue, skb, tmp) \ 2989 for (tmp = skb->next; \ 2990 skb != (struct sk_buff *)(queue); \ 2991 skb = tmp, tmp = skb->next) 2992 2993 #define skb_queue_reverse_walk(queue, skb) \ 2994 for (skb = (queue)->prev; \ 2995 skb != (struct sk_buff *)(queue); \ 2996 skb = skb->prev) 2997 2998 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \ 2999 for (skb = (queue)->prev, tmp = skb->prev; \ 3000 skb != (struct sk_buff *)(queue); \ 3001 skb = tmp, tmp = skb->prev) 3002 3003 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ 3004 for (tmp = skb->prev; \ 3005 skb != (struct sk_buff *)(queue); \ 3006 skb = tmp, tmp = skb->prev) 3007 3008 static inline bool skb_has_frag_list(const struct sk_buff *skb) 3009 { 3010 return skb_shinfo(skb)->frag_list != NULL; 3011 } 3012 3013 static inline void skb_frag_list_init(struct sk_buff *skb) 3014 { 3015 skb_shinfo(skb)->frag_list = NULL; 3016 } 3017 3018 #define skb_walk_frags(skb, iter) \ 3019 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 3020 3021 3022 int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p, 3023 const struct sk_buff *skb); 3024 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags, 3025 int *peeked, int *off, int *err, 3026 struct sk_buff **last); 3027 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags, 3028 int *peeked, int *off, int *err); 3029 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock, 3030 int *err); 3031 unsigned int datagram_poll(struct file *file, struct socket *sock, 3032 struct poll_table_struct *wait); 3033 int skb_copy_datagram_iter(const struct sk_buff *from, int offset, 3034 struct iov_iter *to, int size); 3035 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset, 3036 struct msghdr *msg, int size) 3037 { 3038 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size); 3039 } 3040 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen, 3041 struct msghdr *msg); 3042 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset, 3043 struct iov_iter *from, int len); 3044 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm); 3045 void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 3046 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len); 3047 static inline void skb_free_datagram_locked(struct sock *sk, 3048 struct sk_buff *skb) 3049 { 3050 __skb_free_datagram_locked(sk, skb, 0); 3051 } 3052 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags); 3053 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len); 3054 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len); 3055 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, 3056 int len, __wsum csum); 3057 ssize_t skb_socket_splice(struct sock *sk, 3058 struct pipe_inode_info *pipe, 3059 struct splice_pipe_desc *spd); 3060 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 3061 struct pipe_inode_info *pipe, unsigned int len, 3062 unsigned int flags, 3063 ssize_t (*splice_cb)(struct sock *, 3064 struct pipe_inode_info *, 3065 struct splice_pipe_desc *)); 3066 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 3067 unsigned int skb_zerocopy_headlen(const struct sk_buff *from); 3068 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from, 3069 int len, int hlen); 3070 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len); 3071 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen); 3072 void skb_scrub_packet(struct sk_buff *skb, bool xnet); 3073 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb); 3074 bool skb_gso_validate_mtu(const struct sk_buff *skb, unsigned int mtu); 3075 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features); 3076 struct sk_buff *skb_vlan_untag(struct sk_buff *skb); 3077 int skb_ensure_writable(struct sk_buff *skb, int write_len); 3078 int skb_vlan_pop(struct sk_buff *skb); 3079 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci); 3080 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy, 3081 gfp_t gfp); 3082 3083 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len) 3084 { 3085 return copy_from_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT; 3086 } 3087 3088 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len) 3089 { 3090 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT; 3091 } 3092 3093 struct skb_checksum_ops { 3094 __wsum (*update)(const void *mem, int len, __wsum wsum); 3095 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len); 3096 }; 3097 3098 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 3099 __wsum csum, const struct skb_checksum_ops *ops); 3100 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len, 3101 __wsum csum); 3102 3103 static inline void * __must_check 3104 __skb_header_pointer(const struct sk_buff *skb, int offset, 3105 int len, void *data, int hlen, void *buffer) 3106 { 3107 if (hlen - offset >= len) 3108 return data + offset; 3109 3110 if (!skb || 3111 skb_copy_bits(skb, offset, buffer, len) < 0) 3112 return NULL; 3113 3114 return buffer; 3115 } 3116 3117 static inline void * __must_check 3118 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer) 3119 { 3120 return __skb_header_pointer(skb, offset, len, skb->data, 3121 skb_headlen(skb), buffer); 3122 } 3123 3124 /** 3125 * skb_needs_linearize - check if we need to linearize a given skb 3126 * depending on the given device features. 3127 * @skb: socket buffer to check 3128 * @features: net device features 3129 * 3130 * Returns true if either: 3131 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 3132 * 2. skb is fragmented and the device does not support SG. 3133 */ 3134 static inline bool skb_needs_linearize(struct sk_buff *skb, 3135 netdev_features_t features) 3136 { 3137 return skb_is_nonlinear(skb) && 3138 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) || 3139 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG))); 3140 } 3141 3142 static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 3143 void *to, 3144 const unsigned int len) 3145 { 3146 memcpy(to, skb->data, len); 3147 } 3148 3149 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 3150 const int offset, void *to, 3151 const unsigned int len) 3152 { 3153 memcpy(to, skb->data + offset, len); 3154 } 3155 3156 static inline void skb_copy_to_linear_data(struct sk_buff *skb, 3157 const void *from, 3158 const unsigned int len) 3159 { 3160 memcpy(skb->data, from, len); 3161 } 3162 3163 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 3164 const int offset, 3165 const void *from, 3166 const unsigned int len) 3167 { 3168 memcpy(skb->data + offset, from, len); 3169 } 3170 3171 void skb_init(void); 3172 3173 static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 3174 { 3175 return skb->tstamp; 3176 } 3177 3178 /** 3179 * skb_get_timestamp - get timestamp from a skb 3180 * @skb: skb to get stamp from 3181 * @stamp: pointer to struct timeval to store stamp in 3182 * 3183 * Timestamps are stored in the skb as offsets to a base timestamp. 3184 * This function converts the offset back to a struct timeval and stores 3185 * it in stamp. 3186 */ 3187 static inline void skb_get_timestamp(const struct sk_buff *skb, 3188 struct timeval *stamp) 3189 { 3190 *stamp = ktime_to_timeval(skb->tstamp); 3191 } 3192 3193 static inline void skb_get_timestampns(const struct sk_buff *skb, 3194 struct timespec *stamp) 3195 { 3196 *stamp = ktime_to_timespec(skb->tstamp); 3197 } 3198 3199 static inline void __net_timestamp(struct sk_buff *skb) 3200 { 3201 skb->tstamp = ktime_get_real(); 3202 } 3203 3204 static inline ktime_t net_timedelta(ktime_t t) 3205 { 3206 return ktime_sub(ktime_get_real(), t); 3207 } 3208 3209 static inline ktime_t net_invalid_timestamp(void) 3210 { 3211 return ktime_set(0, 0); 3212 } 3213 3214 struct sk_buff *skb_clone_sk(struct sk_buff *skb); 3215 3216 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 3217 3218 void skb_clone_tx_timestamp(struct sk_buff *skb); 3219 bool skb_defer_rx_timestamp(struct sk_buff *skb); 3220 3221 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 3222 3223 static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 3224 { 3225 } 3226 3227 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 3228 { 3229 return false; 3230 } 3231 3232 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 3233 3234 /** 3235 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 3236 * 3237 * PHY drivers may accept clones of transmitted packets for 3238 * timestamping via their phy_driver.txtstamp method. These drivers 3239 * must call this function to return the skb back to the stack with a 3240 * timestamp. 3241 * 3242 * @skb: clone of the the original outgoing packet 3243 * @hwtstamps: hardware time stamps 3244 * 3245 */ 3246 void skb_complete_tx_timestamp(struct sk_buff *skb, 3247 struct skb_shared_hwtstamps *hwtstamps); 3248 3249 void __skb_tstamp_tx(struct sk_buff *orig_skb, 3250 struct skb_shared_hwtstamps *hwtstamps, 3251 struct sock *sk, int tstype); 3252 3253 /** 3254 * skb_tstamp_tx - queue clone of skb with send time stamps 3255 * @orig_skb: the original outgoing packet 3256 * @hwtstamps: hardware time stamps, may be NULL if not available 3257 * 3258 * If the skb has a socket associated, then this function clones the 3259 * skb (thus sharing the actual data and optional structures), stores 3260 * the optional hardware time stamping information (if non NULL) or 3261 * generates a software time stamp (otherwise), then queues the clone 3262 * to the error queue of the socket. Errors are silently ignored. 3263 */ 3264 void skb_tstamp_tx(struct sk_buff *orig_skb, 3265 struct skb_shared_hwtstamps *hwtstamps); 3266 3267 static inline void sw_tx_timestamp(struct sk_buff *skb) 3268 { 3269 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP && 3270 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) 3271 skb_tstamp_tx(skb, NULL); 3272 } 3273 3274 /** 3275 * skb_tx_timestamp() - Driver hook for transmit timestamping 3276 * 3277 * Ethernet MAC Drivers should call this function in their hard_xmit() 3278 * function immediately before giving the sk_buff to the MAC hardware. 3279 * 3280 * Specifically, one should make absolutely sure that this function is 3281 * called before TX completion of this packet can trigger. Otherwise 3282 * the packet could potentially already be freed. 3283 * 3284 * @skb: A socket buffer. 3285 */ 3286 static inline void skb_tx_timestamp(struct sk_buff *skb) 3287 { 3288 skb_clone_tx_timestamp(skb); 3289 sw_tx_timestamp(skb); 3290 } 3291 3292 /** 3293 * skb_complete_wifi_ack - deliver skb with wifi status 3294 * 3295 * @skb: the original outgoing packet 3296 * @acked: ack status 3297 * 3298 */ 3299 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); 3300 3301 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 3302 __sum16 __skb_checksum_complete(struct sk_buff *skb); 3303 3304 static inline int skb_csum_unnecessary(const struct sk_buff *skb) 3305 { 3306 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) || 3307 skb->csum_valid || 3308 (skb->ip_summed == CHECKSUM_PARTIAL && 3309 skb_checksum_start_offset(skb) >= 0)); 3310 } 3311 3312 /** 3313 * skb_checksum_complete - Calculate checksum of an entire packet 3314 * @skb: packet to process 3315 * 3316 * This function calculates the checksum over the entire packet plus 3317 * the value of skb->csum. The latter can be used to supply the 3318 * checksum of a pseudo header as used by TCP/UDP. It returns the 3319 * checksum. 3320 * 3321 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 3322 * this function can be used to verify that checksum on received 3323 * packets. In that case the function should return zero if the 3324 * checksum is correct. In particular, this function will return zero 3325 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 3326 * hardware has already verified the correctness of the checksum. 3327 */ 3328 static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 3329 { 3330 return skb_csum_unnecessary(skb) ? 3331 0 : __skb_checksum_complete(skb); 3332 } 3333 3334 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb) 3335 { 3336 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 3337 if (skb->csum_level == 0) 3338 skb->ip_summed = CHECKSUM_NONE; 3339 else 3340 skb->csum_level--; 3341 } 3342 } 3343 3344 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb) 3345 { 3346 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 3347 if (skb->csum_level < SKB_MAX_CSUM_LEVEL) 3348 skb->csum_level++; 3349 } else if (skb->ip_summed == CHECKSUM_NONE) { 3350 skb->ip_summed = CHECKSUM_UNNECESSARY; 3351 skb->csum_level = 0; 3352 } 3353 } 3354 3355 static inline void __skb_mark_checksum_bad(struct sk_buff *skb) 3356 { 3357 /* Mark current checksum as bad (typically called from GRO 3358 * path). In the case that ip_summed is CHECKSUM_NONE 3359 * this must be the first checksum encountered in the packet. 3360 * When ip_summed is CHECKSUM_UNNECESSARY, this is the first 3361 * checksum after the last one validated. For UDP, a zero 3362 * checksum can not be marked as bad. 3363 */ 3364 3365 if (skb->ip_summed == CHECKSUM_NONE || 3366 skb->ip_summed == CHECKSUM_UNNECESSARY) 3367 skb->csum_bad = 1; 3368 } 3369 3370 /* Check if we need to perform checksum complete validation. 3371 * 3372 * Returns true if checksum complete is needed, false otherwise 3373 * (either checksum is unnecessary or zero checksum is allowed). 3374 */ 3375 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb, 3376 bool zero_okay, 3377 __sum16 check) 3378 { 3379 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) { 3380 skb->csum_valid = 1; 3381 __skb_decr_checksum_unnecessary(skb); 3382 return false; 3383 } 3384 3385 return true; 3386 } 3387 3388 /* For small packets <= CHECKSUM_BREAK peform checksum complete directly 3389 * in checksum_init. 3390 */ 3391 #define CHECKSUM_BREAK 76 3392 3393 /* Unset checksum-complete 3394 * 3395 * Unset checksum complete can be done when packet is being modified 3396 * (uncompressed for instance) and checksum-complete value is 3397 * invalidated. 3398 */ 3399 static inline void skb_checksum_complete_unset(struct sk_buff *skb) 3400 { 3401 if (skb->ip_summed == CHECKSUM_COMPLETE) 3402 skb->ip_summed = CHECKSUM_NONE; 3403 } 3404 3405 /* Validate (init) checksum based on checksum complete. 3406 * 3407 * Return values: 3408 * 0: checksum is validated or try to in skb_checksum_complete. In the latter 3409 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo 3410 * checksum is stored in skb->csum for use in __skb_checksum_complete 3411 * non-zero: value of invalid checksum 3412 * 3413 */ 3414 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb, 3415 bool complete, 3416 __wsum psum) 3417 { 3418 if (skb->ip_summed == CHECKSUM_COMPLETE) { 3419 if (!csum_fold(csum_add(psum, skb->csum))) { 3420 skb->csum_valid = 1; 3421 return 0; 3422 } 3423 } else if (skb->csum_bad) { 3424 /* ip_summed == CHECKSUM_NONE in this case */ 3425 return (__force __sum16)1; 3426 } 3427 3428 skb->csum = psum; 3429 3430 if (complete || skb->len <= CHECKSUM_BREAK) { 3431 __sum16 csum; 3432 3433 csum = __skb_checksum_complete(skb); 3434 skb->csum_valid = !csum; 3435 return csum; 3436 } 3437 3438 return 0; 3439 } 3440 3441 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto) 3442 { 3443 return 0; 3444 } 3445 3446 /* Perform checksum validate (init). Note that this is a macro since we only 3447 * want to calculate the pseudo header which is an input function if necessary. 3448 * First we try to validate without any computation (checksum unnecessary) and 3449 * then calculate based on checksum complete calling the function to compute 3450 * pseudo header. 3451 * 3452 * Return values: 3453 * 0: checksum is validated or try to in skb_checksum_complete 3454 * non-zero: value of invalid checksum 3455 */ 3456 #define __skb_checksum_validate(skb, proto, complete, \ 3457 zero_okay, check, compute_pseudo) \ 3458 ({ \ 3459 __sum16 __ret = 0; \ 3460 skb->csum_valid = 0; \ 3461 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \ 3462 __ret = __skb_checksum_validate_complete(skb, \ 3463 complete, compute_pseudo(skb, proto)); \ 3464 __ret; \ 3465 }) 3466 3467 #define skb_checksum_init(skb, proto, compute_pseudo) \ 3468 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo) 3469 3470 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \ 3471 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo) 3472 3473 #define skb_checksum_validate(skb, proto, compute_pseudo) \ 3474 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo) 3475 3476 #define skb_checksum_validate_zero_check(skb, proto, check, \ 3477 compute_pseudo) \ 3478 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo) 3479 3480 #define skb_checksum_simple_validate(skb) \ 3481 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo) 3482 3483 static inline bool __skb_checksum_convert_check(struct sk_buff *skb) 3484 { 3485 return (skb->ip_summed == CHECKSUM_NONE && 3486 skb->csum_valid && !skb->csum_bad); 3487 } 3488 3489 static inline void __skb_checksum_convert(struct sk_buff *skb, 3490 __sum16 check, __wsum pseudo) 3491 { 3492 skb->csum = ~pseudo; 3493 skb->ip_summed = CHECKSUM_COMPLETE; 3494 } 3495 3496 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo) \ 3497 do { \ 3498 if (__skb_checksum_convert_check(skb)) \ 3499 __skb_checksum_convert(skb, check, \ 3500 compute_pseudo(skb, proto)); \ 3501 } while (0) 3502 3503 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr, 3504 u16 start, u16 offset) 3505 { 3506 skb->ip_summed = CHECKSUM_PARTIAL; 3507 skb->csum_start = ((unsigned char *)ptr + start) - skb->head; 3508 skb->csum_offset = offset - start; 3509 } 3510 3511 /* Update skbuf and packet to reflect the remote checksum offload operation. 3512 * When called, ptr indicates the starting point for skb->csum when 3513 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete 3514 * here, skb_postpull_rcsum is done so skb->csum start is ptr. 3515 */ 3516 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr, 3517 int start, int offset, bool nopartial) 3518 { 3519 __wsum delta; 3520 3521 if (!nopartial) { 3522 skb_remcsum_adjust_partial(skb, ptr, start, offset); 3523 return; 3524 } 3525 3526 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) { 3527 __skb_checksum_complete(skb); 3528 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data); 3529 } 3530 3531 delta = remcsum_adjust(ptr, skb->csum, start, offset); 3532 3533 /* Adjust skb->csum since we changed the packet */ 3534 skb->csum = csum_add(skb->csum, delta); 3535 } 3536 3537 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3538 void nf_conntrack_destroy(struct nf_conntrack *nfct); 3539 static inline void nf_conntrack_put(struct nf_conntrack *nfct) 3540 { 3541 if (nfct && atomic_dec_and_test(&nfct->use)) 3542 nf_conntrack_destroy(nfct); 3543 } 3544 static inline void nf_conntrack_get(struct nf_conntrack *nfct) 3545 { 3546 if (nfct) 3547 atomic_inc(&nfct->use); 3548 } 3549 #endif 3550 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3551 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge) 3552 { 3553 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use)) 3554 kfree(nf_bridge); 3555 } 3556 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge) 3557 { 3558 if (nf_bridge) 3559 atomic_inc(&nf_bridge->use); 3560 } 3561 #endif /* CONFIG_BRIDGE_NETFILTER */ 3562 static inline void nf_reset(struct sk_buff *skb) 3563 { 3564 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3565 nf_conntrack_put(skb->nfct); 3566 skb->nfct = NULL; 3567 #endif 3568 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3569 nf_bridge_put(skb->nf_bridge); 3570 skb->nf_bridge = NULL; 3571 #endif 3572 } 3573 3574 static inline void nf_reset_trace(struct sk_buff *skb) 3575 { 3576 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 3577 skb->nf_trace = 0; 3578 #endif 3579 } 3580 3581 /* Note: This doesn't put any conntrack and bridge info in dst. */ 3582 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src, 3583 bool copy) 3584 { 3585 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3586 dst->nfct = src->nfct; 3587 nf_conntrack_get(src->nfct); 3588 if (copy) 3589 dst->nfctinfo = src->nfctinfo; 3590 #endif 3591 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3592 dst->nf_bridge = src->nf_bridge; 3593 nf_bridge_get(src->nf_bridge); 3594 #endif 3595 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 3596 if (copy) 3597 dst->nf_trace = src->nf_trace; 3598 #endif 3599 } 3600 3601 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 3602 { 3603 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3604 nf_conntrack_put(dst->nfct); 3605 #endif 3606 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3607 nf_bridge_put(dst->nf_bridge); 3608 #endif 3609 __nf_copy(dst, src, true); 3610 } 3611 3612 #ifdef CONFIG_NETWORK_SECMARK 3613 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 3614 { 3615 to->secmark = from->secmark; 3616 } 3617 3618 static inline void skb_init_secmark(struct sk_buff *skb) 3619 { 3620 skb->secmark = 0; 3621 } 3622 #else 3623 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 3624 { } 3625 3626 static inline void skb_init_secmark(struct sk_buff *skb) 3627 { } 3628 #endif 3629 3630 static inline bool skb_irq_freeable(const struct sk_buff *skb) 3631 { 3632 return !skb->destructor && 3633 #if IS_ENABLED(CONFIG_XFRM) 3634 !skb->sp && 3635 #endif 3636 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 3637 !skb->nfct && 3638 #endif 3639 !skb->_skb_refdst && 3640 !skb_has_frag_list(skb); 3641 } 3642 3643 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 3644 { 3645 skb->queue_mapping = queue_mapping; 3646 } 3647 3648 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 3649 { 3650 return skb->queue_mapping; 3651 } 3652 3653 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 3654 { 3655 to->queue_mapping = from->queue_mapping; 3656 } 3657 3658 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 3659 { 3660 skb->queue_mapping = rx_queue + 1; 3661 } 3662 3663 static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 3664 { 3665 return skb->queue_mapping - 1; 3666 } 3667 3668 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 3669 { 3670 return skb->queue_mapping != 0; 3671 } 3672 3673 static inline struct sec_path *skb_sec_path(struct sk_buff *skb) 3674 { 3675 #ifdef CONFIG_XFRM 3676 return skb->sp; 3677 #else 3678 return NULL; 3679 #endif 3680 } 3681 3682 /* Keeps track of mac header offset relative to skb->head. 3683 * It is useful for TSO of Tunneling protocol. e.g. GRE. 3684 * For non-tunnel skb it points to skb_mac_header() and for 3685 * tunnel skb it points to outer mac header. 3686 * Keeps track of level of encapsulation of network headers. 3687 */ 3688 struct skb_gso_cb { 3689 union { 3690 int mac_offset; 3691 int data_offset; 3692 }; 3693 int encap_level; 3694 __wsum csum; 3695 __u16 csum_start; 3696 }; 3697 #define SKB_SGO_CB_OFFSET 32 3698 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET)) 3699 3700 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb) 3701 { 3702 return (skb_mac_header(inner_skb) - inner_skb->head) - 3703 SKB_GSO_CB(inner_skb)->mac_offset; 3704 } 3705 3706 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra) 3707 { 3708 int new_headroom, headroom; 3709 int ret; 3710 3711 headroom = skb_headroom(skb); 3712 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC); 3713 if (ret) 3714 return ret; 3715 3716 new_headroom = skb_headroom(skb); 3717 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom); 3718 return 0; 3719 } 3720 3721 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res) 3722 { 3723 /* Do not update partial checksums if remote checksum is enabled. */ 3724 if (skb->remcsum_offload) 3725 return; 3726 3727 SKB_GSO_CB(skb)->csum = res; 3728 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head; 3729 } 3730 3731 /* Compute the checksum for a gso segment. First compute the checksum value 3732 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and 3733 * then add in skb->csum (checksum from csum_start to end of packet). 3734 * skb->csum and csum_start are then updated to reflect the checksum of the 3735 * resultant packet starting from the transport header-- the resultant checksum 3736 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo 3737 * header. 3738 */ 3739 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res) 3740 { 3741 unsigned char *csum_start = skb_transport_header(skb); 3742 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start; 3743 __wsum partial = SKB_GSO_CB(skb)->csum; 3744 3745 SKB_GSO_CB(skb)->csum = res; 3746 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head; 3747 3748 return csum_fold(csum_partial(csum_start, plen, partial)); 3749 } 3750 3751 static inline bool skb_is_gso(const struct sk_buff *skb) 3752 { 3753 return skb_shinfo(skb)->gso_size; 3754 } 3755 3756 /* Note: Should be called only if skb_is_gso(skb) is true */ 3757 static inline bool skb_is_gso_v6(const struct sk_buff *skb) 3758 { 3759 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 3760 } 3761 3762 static inline void skb_gso_reset(struct sk_buff *skb) 3763 { 3764 skb_shinfo(skb)->gso_size = 0; 3765 skb_shinfo(skb)->gso_segs = 0; 3766 skb_shinfo(skb)->gso_type = 0; 3767 } 3768 3769 void __skb_warn_lro_forwarding(const struct sk_buff *skb); 3770 3771 static inline bool skb_warn_if_lro(const struct sk_buff *skb) 3772 { 3773 /* LRO sets gso_size but not gso_type, whereas if GSO is really 3774 * wanted then gso_type will be set. */ 3775 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3776 3777 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 3778 unlikely(shinfo->gso_type == 0)) { 3779 __skb_warn_lro_forwarding(skb); 3780 return true; 3781 } 3782 return false; 3783 } 3784 3785 static inline void skb_forward_csum(struct sk_buff *skb) 3786 { 3787 /* Unfortunately we don't support this one. Any brave souls? */ 3788 if (skb->ip_summed == CHECKSUM_COMPLETE) 3789 skb->ip_summed = CHECKSUM_NONE; 3790 } 3791 3792 /** 3793 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 3794 * @skb: skb to check 3795 * 3796 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 3797 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 3798 * use this helper, to document places where we make this assertion. 3799 */ 3800 static inline void skb_checksum_none_assert(const struct sk_buff *skb) 3801 { 3802 #ifdef DEBUG 3803 BUG_ON(skb->ip_summed != CHECKSUM_NONE); 3804 #endif 3805 } 3806 3807 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 3808 3809 int skb_checksum_setup(struct sk_buff *skb, bool recalculate); 3810 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 3811 unsigned int transport_len, 3812 __sum16(*skb_chkf)(struct sk_buff *skb)); 3813 3814 /** 3815 * skb_head_is_locked - Determine if the skb->head is locked down 3816 * @skb: skb to check 3817 * 3818 * The head on skbs build around a head frag can be removed if they are 3819 * not cloned. This function returns true if the skb head is locked down 3820 * due to either being allocated via kmalloc, or by being a clone with 3821 * multiple references to the head. 3822 */ 3823 static inline bool skb_head_is_locked(const struct sk_buff *skb) 3824 { 3825 return !skb->head_frag || skb_cloned(skb); 3826 } 3827 3828 /** 3829 * skb_gso_network_seglen - Return length of individual segments of a gso packet 3830 * 3831 * @skb: GSO skb 3832 * 3833 * skb_gso_network_seglen is used to determine the real size of the 3834 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP). 3835 * 3836 * The MAC/L2 header is not accounted for. 3837 */ 3838 static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb) 3839 { 3840 unsigned int hdr_len = skb_transport_header(skb) - 3841 skb_network_header(skb); 3842 return hdr_len + skb_gso_transport_seglen(skb); 3843 } 3844 3845 /* Local Checksum Offload. 3846 * Compute outer checksum based on the assumption that the 3847 * inner checksum will be offloaded later. 3848 * See Documentation/networking/checksum-offloads.txt for 3849 * explanation of how this works. 3850 * Fill in outer checksum adjustment (e.g. with sum of outer 3851 * pseudo-header) before calling. 3852 * Also ensure that inner checksum is in linear data area. 3853 */ 3854 static inline __wsum lco_csum(struct sk_buff *skb) 3855 { 3856 unsigned char *csum_start = skb_checksum_start(skb); 3857 unsigned char *l4_hdr = skb_transport_header(skb); 3858 __wsum partial; 3859 3860 /* Start with complement of inner checksum adjustment */ 3861 partial = ~csum_unfold(*(__force __sum16 *)(csum_start + 3862 skb->csum_offset)); 3863 3864 /* Add in checksum of our headers (incl. outer checksum 3865 * adjustment filled in by caller) and return result. 3866 */ 3867 return csum_partial(l4_hdr, csum_start - l4_hdr, partial); 3868 } 3869 3870 #endif /* __KERNEL__ */ 3871 #endif /* _LINUX_SKBUFF_H */ 3872