xref: /linux-6.15/include/linux/skbuff.h (revision 9cdb81c7)
1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <[email protected]>
6  *		Florian La Roche, <[email protected]>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/bug.h>
22 #include <linux/cache.h>
23 
24 #include <linux/atomic.h>
25 #include <asm/types.h>
26 #include <linux/spinlock.h>
27 #include <linux/net.h>
28 #include <linux/textsearch.h>
29 #include <net/checksum.h>
30 #include <linux/rcupdate.h>
31 #include <linux/dmaengine.h>
32 #include <linux/hrtimer.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/netdev_features.h>
35 
36 /* Don't change this without changing skb_csum_unnecessary! */
37 #define CHECKSUM_NONE 0
38 #define CHECKSUM_UNNECESSARY 1
39 #define CHECKSUM_COMPLETE 2
40 #define CHECKSUM_PARTIAL 3
41 
42 #define SKB_DATA_ALIGN(X)	(((X) + (SMP_CACHE_BYTES - 1)) & \
43 				 ~(SMP_CACHE_BYTES - 1))
44 #define SKB_WITH_OVERHEAD(X)	\
45 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
46 #define SKB_MAX_ORDER(X, ORDER) \
47 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
48 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
49 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
50 
51 /* return minimum truesize of one skb containing X bytes of data */
52 #define SKB_TRUESIZE(X) ((X) +						\
53 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
54 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
55 
56 /* A. Checksumming of received packets by device.
57  *
58  *	NONE: device failed to checksum this packet.
59  *		skb->csum is undefined.
60  *
61  *	UNNECESSARY: device parsed packet and wouldbe verified checksum.
62  *		skb->csum is undefined.
63  *	      It is bad option, but, unfortunately, many of vendors do this.
64  *	      Apparently with secret goal to sell you new device, when you
65  *	      will add new protocol to your host. F.e. IPv6. 8)
66  *
67  *	COMPLETE: the most generic way. Device supplied checksum of _all_
68  *	    the packet as seen by netif_rx in skb->csum.
69  *	    NOTE: Even if device supports only some protocols, but
70  *	    is able to produce some skb->csum, it MUST use COMPLETE,
71  *	    not UNNECESSARY.
72  *
73  *	PARTIAL: identical to the case for output below.  This may occur
74  *	    on a packet received directly from another Linux OS, e.g.,
75  *	    a virtualised Linux kernel on the same host.  The packet can
76  *	    be treated in the same way as UNNECESSARY except that on
77  *	    output (i.e., forwarding) the checksum must be filled in
78  *	    by the OS or the hardware.
79  *
80  * B. Checksumming on output.
81  *
82  *	NONE: skb is checksummed by protocol or csum is not required.
83  *
84  *	PARTIAL: device is required to csum packet as seen by hard_start_xmit
85  *	from skb->csum_start to the end and to record the checksum
86  *	at skb->csum_start + skb->csum_offset.
87  *
88  *	Device must show its capabilities in dev->features, set
89  *	at device setup time.
90  *	NETIF_F_HW_CSUM	- it is clever device, it is able to checksum
91  *			  everything.
92  *	NETIF_F_IP_CSUM - device is dumb. It is able to csum only
93  *			  TCP/UDP over IPv4. Sigh. Vendors like this
94  *			  way by an unknown reason. Though, see comment above
95  *			  about CHECKSUM_UNNECESSARY. 8)
96  *	NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
97  *
98  *	UNNECESSARY: device will do per protocol specific csum. Protocol drivers
99  *	that do not want net to perform the checksum calculation should use
100  *	this flag in their outgoing skbs.
101  *	NETIF_F_FCOE_CRC  this indicates the device can do FCoE FC CRC
102  *			  offload. Correspondingly, the FCoE protocol driver
103  *			  stack should use CHECKSUM_UNNECESSARY.
104  *
105  *	Any questions? No questions, good. 		--ANK
106  */
107 
108 struct net_device;
109 struct scatterlist;
110 struct pipe_inode_info;
111 
112 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
113 struct nf_conntrack {
114 	atomic_t use;
115 };
116 #endif
117 
118 #ifdef CONFIG_BRIDGE_NETFILTER
119 struct nf_bridge_info {
120 	atomic_t use;
121 	struct net_device *physindev;
122 	struct net_device *physoutdev;
123 	unsigned int mask;
124 	unsigned long data[32 / sizeof(unsigned long)];
125 };
126 #endif
127 
128 struct sk_buff_head {
129 	/* These two members must be first. */
130 	struct sk_buff	*next;
131 	struct sk_buff	*prev;
132 
133 	__u32		qlen;
134 	spinlock_t	lock;
135 };
136 
137 struct sk_buff;
138 
139 /* To allow 64K frame to be packed as single skb without frag_list we
140  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
141  * buffers which do not start on a page boundary.
142  *
143  * Since GRO uses frags we allocate at least 16 regardless of page
144  * size.
145  */
146 #if (65536/PAGE_SIZE + 1) < 16
147 #define MAX_SKB_FRAGS 16UL
148 #else
149 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
150 #endif
151 
152 typedef struct skb_frag_struct skb_frag_t;
153 
154 struct skb_frag_struct {
155 	struct {
156 		struct page *p;
157 	} page;
158 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
159 	__u32 page_offset;
160 	__u32 size;
161 #else
162 	__u16 page_offset;
163 	__u16 size;
164 #endif
165 };
166 
167 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
168 {
169 	return frag->size;
170 }
171 
172 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
173 {
174 	frag->size = size;
175 }
176 
177 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
178 {
179 	frag->size += delta;
180 }
181 
182 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
183 {
184 	frag->size -= delta;
185 }
186 
187 #define HAVE_HW_TIME_STAMP
188 
189 /**
190  * struct skb_shared_hwtstamps - hardware time stamps
191  * @hwtstamp:	hardware time stamp transformed into duration
192  *		since arbitrary point in time
193  * @syststamp:	hwtstamp transformed to system time base
194  *
195  * Software time stamps generated by ktime_get_real() are stored in
196  * skb->tstamp. The relation between the different kinds of time
197  * stamps is as follows:
198  *
199  * syststamp and tstamp can be compared against each other in
200  * arbitrary combinations.  The accuracy of a
201  * syststamp/tstamp/"syststamp from other device" comparison is
202  * limited by the accuracy of the transformation into system time
203  * base. This depends on the device driver and its underlying
204  * hardware.
205  *
206  * hwtstamps can only be compared against other hwtstamps from
207  * the same device.
208  *
209  * This structure is attached to packets as part of the
210  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
211  */
212 struct skb_shared_hwtstamps {
213 	ktime_t	hwtstamp;
214 	ktime_t	syststamp;
215 };
216 
217 /* Definitions for tx_flags in struct skb_shared_info */
218 enum {
219 	/* generate hardware time stamp */
220 	SKBTX_HW_TSTAMP = 1 << 0,
221 
222 	/* generate software time stamp */
223 	SKBTX_SW_TSTAMP = 1 << 1,
224 
225 	/* device driver is going to provide hardware time stamp */
226 	SKBTX_IN_PROGRESS = 1 << 2,
227 
228 	/* ensure the originating sk reference is available on driver level */
229 	SKBTX_DRV_NEEDS_SK_REF = 1 << 3,
230 
231 	/* device driver supports TX zero-copy buffers */
232 	SKBTX_DEV_ZEROCOPY = 1 << 4,
233 
234 	/* generate wifi status information (where possible) */
235 	SKBTX_WIFI_STATUS = 1 << 5,
236 };
237 
238 /*
239  * The callback notifies userspace to release buffers when skb DMA is done in
240  * lower device, the skb last reference should be 0 when calling this.
241  * The desc is used to track userspace buffer index.
242  */
243 struct ubuf_info {
244 	void (*callback)(void *);
245 	void *arg;
246 	unsigned long desc;
247 };
248 
249 /* This data is invariant across clones and lives at
250  * the end of the header data, ie. at skb->end.
251  */
252 struct skb_shared_info {
253 	unsigned char	nr_frags;
254 	__u8		tx_flags;
255 	unsigned short	gso_size;
256 	/* Warning: this field is not always filled in (UFO)! */
257 	unsigned short	gso_segs;
258 	unsigned short  gso_type;
259 	struct sk_buff	*frag_list;
260 	struct skb_shared_hwtstamps hwtstamps;
261 	__be32          ip6_frag_id;
262 
263 	/*
264 	 * Warning : all fields before dataref are cleared in __alloc_skb()
265 	 */
266 	atomic_t	dataref;
267 
268 	/* Intermediate layers must ensure that destructor_arg
269 	 * remains valid until skb destructor */
270 	void *		destructor_arg;
271 
272 	/* must be last field, see pskb_expand_head() */
273 	skb_frag_t	frags[MAX_SKB_FRAGS];
274 };
275 
276 /* We divide dataref into two halves.  The higher 16 bits hold references
277  * to the payload part of skb->data.  The lower 16 bits hold references to
278  * the entire skb->data.  A clone of a headerless skb holds the length of
279  * the header in skb->hdr_len.
280  *
281  * All users must obey the rule that the skb->data reference count must be
282  * greater than or equal to the payload reference count.
283  *
284  * Holding a reference to the payload part means that the user does not
285  * care about modifications to the header part of skb->data.
286  */
287 #define SKB_DATAREF_SHIFT 16
288 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
289 
290 
291 enum {
292 	SKB_FCLONE_UNAVAILABLE,
293 	SKB_FCLONE_ORIG,
294 	SKB_FCLONE_CLONE,
295 };
296 
297 enum {
298 	SKB_GSO_TCPV4 = 1 << 0,
299 	SKB_GSO_UDP = 1 << 1,
300 
301 	/* This indicates the skb is from an untrusted source. */
302 	SKB_GSO_DODGY = 1 << 2,
303 
304 	/* This indicates the tcp segment has CWR set. */
305 	SKB_GSO_TCP_ECN = 1 << 3,
306 
307 	SKB_GSO_TCPV6 = 1 << 4,
308 
309 	SKB_GSO_FCOE = 1 << 5,
310 };
311 
312 #if BITS_PER_LONG > 32
313 #define NET_SKBUFF_DATA_USES_OFFSET 1
314 #endif
315 
316 #ifdef NET_SKBUFF_DATA_USES_OFFSET
317 typedef unsigned int sk_buff_data_t;
318 #else
319 typedef unsigned char *sk_buff_data_t;
320 #endif
321 
322 #if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \
323     defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE)
324 #define NET_SKBUFF_NF_DEFRAG_NEEDED 1
325 #endif
326 
327 /**
328  *	struct sk_buff - socket buffer
329  *	@next: Next buffer in list
330  *	@prev: Previous buffer in list
331  *	@tstamp: Time we arrived
332  *	@sk: Socket we are owned by
333  *	@dev: Device we arrived on/are leaving by
334  *	@cb: Control buffer. Free for use by every layer. Put private vars here
335  *	@_skb_refdst: destination entry (with norefcount bit)
336  *	@sp: the security path, used for xfrm
337  *	@len: Length of actual data
338  *	@data_len: Data length
339  *	@mac_len: Length of link layer header
340  *	@hdr_len: writable header length of cloned skb
341  *	@csum: Checksum (must include start/offset pair)
342  *	@csum_start: Offset from skb->head where checksumming should start
343  *	@csum_offset: Offset from csum_start where checksum should be stored
344  *	@priority: Packet queueing priority
345  *	@local_df: allow local fragmentation
346  *	@cloned: Head may be cloned (check refcnt to be sure)
347  *	@ip_summed: Driver fed us an IP checksum
348  *	@nohdr: Payload reference only, must not modify header
349  *	@nfctinfo: Relationship of this skb to the connection
350  *	@pkt_type: Packet class
351  *	@fclone: skbuff clone status
352  *	@ipvs_property: skbuff is owned by ipvs
353  *	@peeked: this packet has been seen already, so stats have been
354  *		done for it, don't do them again
355  *	@nf_trace: netfilter packet trace flag
356  *	@protocol: Packet protocol from driver
357  *	@destructor: Destruct function
358  *	@nfct: Associated connection, if any
359  *	@nfct_reasm: netfilter conntrack re-assembly pointer
360  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
361  *	@skb_iif: ifindex of device we arrived on
362  *	@tc_index: Traffic control index
363  *	@tc_verd: traffic control verdict
364  *	@rxhash: the packet hash computed on receive
365  *	@queue_mapping: Queue mapping for multiqueue devices
366  *	@ndisc_nodetype: router type (from link layer)
367  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
368  *	@l4_rxhash: indicate rxhash is a canonical 4-tuple hash over transport
369  *		ports.
370  *	@wifi_acked_valid: wifi_acked was set
371  *	@wifi_acked: whether frame was acked on wifi or not
372  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
373  *	@dma_cookie: a cookie to one of several possible DMA operations
374  *		done by skb DMA functions
375  *	@secmark: security marking
376  *	@mark: Generic packet mark
377  *	@dropcount: total number of sk_receive_queue overflows
378  *	@vlan_tci: vlan tag control information
379  *	@transport_header: Transport layer header
380  *	@network_header: Network layer header
381  *	@mac_header: Link layer header
382  *	@tail: Tail pointer
383  *	@end: End pointer
384  *	@head: Head of buffer
385  *	@data: Data head pointer
386  *	@truesize: Buffer size
387  *	@users: User count - see {datagram,tcp}.c
388  */
389 
390 struct sk_buff {
391 	/* These two members must be first. */
392 	struct sk_buff		*next;
393 	struct sk_buff		*prev;
394 
395 	ktime_t			tstamp;
396 
397 	struct sock		*sk;
398 	struct net_device	*dev;
399 
400 	/*
401 	 * This is the control buffer. It is free to use for every
402 	 * layer. Please put your private variables there. If you
403 	 * want to keep them across layers you have to do a skb_clone()
404 	 * first. This is owned by whoever has the skb queued ATM.
405 	 */
406 	char			cb[48] __aligned(8);
407 
408 	unsigned long		_skb_refdst;
409 #ifdef CONFIG_XFRM
410 	struct	sec_path	*sp;
411 #endif
412 	unsigned int		len,
413 				data_len;
414 	__u16			mac_len,
415 				hdr_len;
416 	union {
417 		__wsum		csum;
418 		struct {
419 			__u16	csum_start;
420 			__u16	csum_offset;
421 		};
422 	};
423 	__u32			priority;
424 	kmemcheck_bitfield_begin(flags1);
425 	__u8			local_df:1,
426 				cloned:1,
427 				ip_summed:2,
428 				nohdr:1,
429 				nfctinfo:3;
430 	__u8			pkt_type:3,
431 				fclone:2,
432 				ipvs_property:1,
433 				peeked:1,
434 				nf_trace:1;
435 	kmemcheck_bitfield_end(flags1);
436 	__be16			protocol;
437 
438 	void			(*destructor)(struct sk_buff *skb);
439 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
440 	struct nf_conntrack	*nfct;
441 #endif
442 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
443 	struct sk_buff		*nfct_reasm;
444 #endif
445 #ifdef CONFIG_BRIDGE_NETFILTER
446 	struct nf_bridge_info	*nf_bridge;
447 #endif
448 
449 	int			skb_iif;
450 
451 	__u32			rxhash;
452 
453 	__u16			vlan_tci;
454 
455 #ifdef CONFIG_NET_SCHED
456 	__u16			tc_index;	/* traffic control index */
457 #ifdef CONFIG_NET_CLS_ACT
458 	__u16			tc_verd;	/* traffic control verdict */
459 #endif
460 #endif
461 
462 	__u16			queue_mapping;
463 	kmemcheck_bitfield_begin(flags2);
464 #ifdef CONFIG_IPV6_NDISC_NODETYPE
465 	__u8			ndisc_nodetype:2;
466 #endif
467 	__u8			ooo_okay:1;
468 	__u8			l4_rxhash:1;
469 	__u8			wifi_acked_valid:1;
470 	__u8			wifi_acked:1;
471 	__u8			no_fcs:1;
472 	/* 9/11 bit hole (depending on ndisc_nodetype presence) */
473 	kmemcheck_bitfield_end(flags2);
474 
475 #ifdef CONFIG_NET_DMA
476 	dma_cookie_t		dma_cookie;
477 #endif
478 #ifdef CONFIG_NETWORK_SECMARK
479 	__u32			secmark;
480 #endif
481 	union {
482 		__u32		mark;
483 		__u32		dropcount;
484 	};
485 
486 	sk_buff_data_t		transport_header;
487 	sk_buff_data_t		network_header;
488 	sk_buff_data_t		mac_header;
489 	/* These elements must be at the end, see alloc_skb() for details.  */
490 	sk_buff_data_t		tail;
491 	sk_buff_data_t		end;
492 	unsigned char		*head,
493 				*data;
494 	unsigned int		truesize;
495 	atomic_t		users;
496 };
497 
498 #ifdef __KERNEL__
499 /*
500  *	Handling routines are only of interest to the kernel
501  */
502 #include <linux/slab.h>
503 
504 #include <asm/system.h>
505 
506 /*
507  * skb might have a dst pointer attached, refcounted or not.
508  * _skb_refdst low order bit is set if refcount was _not_ taken
509  */
510 #define SKB_DST_NOREF	1UL
511 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
512 
513 /**
514  * skb_dst - returns skb dst_entry
515  * @skb: buffer
516  *
517  * Returns skb dst_entry, regardless of reference taken or not.
518  */
519 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
520 {
521 	/* If refdst was not refcounted, check we still are in a
522 	 * rcu_read_lock section
523 	 */
524 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
525 		!rcu_read_lock_held() &&
526 		!rcu_read_lock_bh_held());
527 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
528 }
529 
530 /**
531  * skb_dst_set - sets skb dst
532  * @skb: buffer
533  * @dst: dst entry
534  *
535  * Sets skb dst, assuming a reference was taken on dst and should
536  * be released by skb_dst_drop()
537  */
538 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
539 {
540 	skb->_skb_refdst = (unsigned long)dst;
541 }
542 
543 extern void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst);
544 
545 /**
546  * skb_dst_is_noref - Test if skb dst isn't refcounted
547  * @skb: buffer
548  */
549 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
550 {
551 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
552 }
553 
554 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
555 {
556 	return (struct rtable *)skb_dst(skb);
557 }
558 
559 extern void kfree_skb(struct sk_buff *skb);
560 extern void consume_skb(struct sk_buff *skb);
561 extern void	       __kfree_skb(struct sk_buff *skb);
562 extern struct sk_buff *__alloc_skb(unsigned int size,
563 				   gfp_t priority, int fclone, int node);
564 extern struct sk_buff *build_skb(void *data);
565 static inline struct sk_buff *alloc_skb(unsigned int size,
566 					gfp_t priority)
567 {
568 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
569 }
570 
571 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
572 					       gfp_t priority)
573 {
574 	return __alloc_skb(size, priority, 1, NUMA_NO_NODE);
575 }
576 
577 extern void skb_recycle(struct sk_buff *skb);
578 extern bool skb_recycle_check(struct sk_buff *skb, int skb_size);
579 
580 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
581 extern int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
582 extern struct sk_buff *skb_clone(struct sk_buff *skb,
583 				 gfp_t priority);
584 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
585 				gfp_t priority);
586 extern struct sk_buff *__pskb_copy(struct sk_buff *skb,
587 				 int headroom, gfp_t gfp_mask);
588 
589 extern int	       pskb_expand_head(struct sk_buff *skb,
590 					int nhead, int ntail,
591 					gfp_t gfp_mask);
592 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
593 					    unsigned int headroom);
594 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
595 				       int newheadroom, int newtailroom,
596 				       gfp_t priority);
597 extern int	       skb_to_sgvec(struct sk_buff *skb,
598 				    struct scatterlist *sg, int offset,
599 				    int len);
600 extern int	       skb_cow_data(struct sk_buff *skb, int tailbits,
601 				    struct sk_buff **trailer);
602 extern int	       skb_pad(struct sk_buff *skb, int pad);
603 #define dev_kfree_skb(a)	consume_skb(a)
604 
605 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
606 			int getfrag(void *from, char *to, int offset,
607 			int len,int odd, struct sk_buff *skb),
608 			void *from, int length);
609 
610 struct skb_seq_state {
611 	__u32		lower_offset;
612 	__u32		upper_offset;
613 	__u32		frag_idx;
614 	__u32		stepped_offset;
615 	struct sk_buff	*root_skb;
616 	struct sk_buff	*cur_skb;
617 	__u8		*frag_data;
618 };
619 
620 extern void	      skb_prepare_seq_read(struct sk_buff *skb,
621 					   unsigned int from, unsigned int to,
622 					   struct skb_seq_state *st);
623 extern unsigned int   skb_seq_read(unsigned int consumed, const u8 **data,
624 				   struct skb_seq_state *st);
625 extern void	      skb_abort_seq_read(struct skb_seq_state *st);
626 
627 extern unsigned int   skb_find_text(struct sk_buff *skb, unsigned int from,
628 				    unsigned int to, struct ts_config *config,
629 				    struct ts_state *state);
630 
631 extern void __skb_get_rxhash(struct sk_buff *skb);
632 static inline __u32 skb_get_rxhash(struct sk_buff *skb)
633 {
634 	if (!skb->rxhash)
635 		__skb_get_rxhash(skb);
636 
637 	return skb->rxhash;
638 }
639 
640 #ifdef NET_SKBUFF_DATA_USES_OFFSET
641 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
642 {
643 	return skb->head + skb->end;
644 }
645 #else
646 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
647 {
648 	return skb->end;
649 }
650 #endif
651 
652 /* Internal */
653 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
654 
655 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
656 {
657 	return &skb_shinfo(skb)->hwtstamps;
658 }
659 
660 /**
661  *	skb_queue_empty - check if a queue is empty
662  *	@list: queue head
663  *
664  *	Returns true if the queue is empty, false otherwise.
665  */
666 static inline int skb_queue_empty(const struct sk_buff_head *list)
667 {
668 	return list->next == (struct sk_buff *)list;
669 }
670 
671 /**
672  *	skb_queue_is_last - check if skb is the last entry in the queue
673  *	@list: queue head
674  *	@skb: buffer
675  *
676  *	Returns true if @skb is the last buffer on the list.
677  */
678 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
679 				     const struct sk_buff *skb)
680 {
681 	return skb->next == (struct sk_buff *)list;
682 }
683 
684 /**
685  *	skb_queue_is_first - check if skb is the first entry in the queue
686  *	@list: queue head
687  *	@skb: buffer
688  *
689  *	Returns true if @skb is the first buffer on the list.
690  */
691 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
692 				      const struct sk_buff *skb)
693 {
694 	return skb->prev == (struct sk_buff *)list;
695 }
696 
697 /**
698  *	skb_queue_next - return the next packet in the queue
699  *	@list: queue head
700  *	@skb: current buffer
701  *
702  *	Return the next packet in @list after @skb.  It is only valid to
703  *	call this if skb_queue_is_last() evaluates to false.
704  */
705 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
706 					     const struct sk_buff *skb)
707 {
708 	/* This BUG_ON may seem severe, but if we just return then we
709 	 * are going to dereference garbage.
710 	 */
711 	BUG_ON(skb_queue_is_last(list, skb));
712 	return skb->next;
713 }
714 
715 /**
716  *	skb_queue_prev - return the prev packet in the queue
717  *	@list: queue head
718  *	@skb: current buffer
719  *
720  *	Return the prev packet in @list before @skb.  It is only valid to
721  *	call this if skb_queue_is_first() evaluates to false.
722  */
723 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
724 					     const struct sk_buff *skb)
725 {
726 	/* This BUG_ON may seem severe, but if we just return then we
727 	 * are going to dereference garbage.
728 	 */
729 	BUG_ON(skb_queue_is_first(list, skb));
730 	return skb->prev;
731 }
732 
733 /**
734  *	skb_get - reference buffer
735  *	@skb: buffer to reference
736  *
737  *	Makes another reference to a socket buffer and returns a pointer
738  *	to the buffer.
739  */
740 static inline struct sk_buff *skb_get(struct sk_buff *skb)
741 {
742 	atomic_inc(&skb->users);
743 	return skb;
744 }
745 
746 /*
747  * If users == 1, we are the only owner and are can avoid redundant
748  * atomic change.
749  */
750 
751 /**
752  *	skb_cloned - is the buffer a clone
753  *	@skb: buffer to check
754  *
755  *	Returns true if the buffer was generated with skb_clone() and is
756  *	one of multiple shared copies of the buffer. Cloned buffers are
757  *	shared data so must not be written to under normal circumstances.
758  */
759 static inline int skb_cloned(const struct sk_buff *skb)
760 {
761 	return skb->cloned &&
762 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
763 }
764 
765 /**
766  *	skb_header_cloned - is the header a clone
767  *	@skb: buffer to check
768  *
769  *	Returns true if modifying the header part of the buffer requires
770  *	the data to be copied.
771  */
772 static inline int skb_header_cloned(const struct sk_buff *skb)
773 {
774 	int dataref;
775 
776 	if (!skb->cloned)
777 		return 0;
778 
779 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
780 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
781 	return dataref != 1;
782 }
783 
784 /**
785  *	skb_header_release - release reference to header
786  *	@skb: buffer to operate on
787  *
788  *	Drop a reference to the header part of the buffer.  This is done
789  *	by acquiring a payload reference.  You must not read from the header
790  *	part of skb->data after this.
791  */
792 static inline void skb_header_release(struct sk_buff *skb)
793 {
794 	BUG_ON(skb->nohdr);
795 	skb->nohdr = 1;
796 	atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
797 }
798 
799 /**
800  *	skb_shared - is the buffer shared
801  *	@skb: buffer to check
802  *
803  *	Returns true if more than one person has a reference to this
804  *	buffer.
805  */
806 static inline int skb_shared(const struct sk_buff *skb)
807 {
808 	return atomic_read(&skb->users) != 1;
809 }
810 
811 /**
812  *	skb_share_check - check if buffer is shared and if so clone it
813  *	@skb: buffer to check
814  *	@pri: priority for memory allocation
815  *
816  *	If the buffer is shared the buffer is cloned and the old copy
817  *	drops a reference. A new clone with a single reference is returned.
818  *	If the buffer is not shared the original buffer is returned. When
819  *	being called from interrupt status or with spinlocks held pri must
820  *	be GFP_ATOMIC.
821  *
822  *	NULL is returned on a memory allocation failure.
823  */
824 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
825 					      gfp_t pri)
826 {
827 	might_sleep_if(pri & __GFP_WAIT);
828 	if (skb_shared(skb)) {
829 		struct sk_buff *nskb = skb_clone(skb, pri);
830 		kfree_skb(skb);
831 		skb = nskb;
832 	}
833 	return skb;
834 }
835 
836 /*
837  *	Copy shared buffers into a new sk_buff. We effectively do COW on
838  *	packets to handle cases where we have a local reader and forward
839  *	and a couple of other messy ones. The normal one is tcpdumping
840  *	a packet thats being forwarded.
841  */
842 
843 /**
844  *	skb_unshare - make a copy of a shared buffer
845  *	@skb: buffer to check
846  *	@pri: priority for memory allocation
847  *
848  *	If the socket buffer is a clone then this function creates a new
849  *	copy of the data, drops a reference count on the old copy and returns
850  *	the new copy with the reference count at 1. If the buffer is not a clone
851  *	the original buffer is returned. When called with a spinlock held or
852  *	from interrupt state @pri must be %GFP_ATOMIC
853  *
854  *	%NULL is returned on a memory allocation failure.
855  */
856 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
857 					  gfp_t pri)
858 {
859 	might_sleep_if(pri & __GFP_WAIT);
860 	if (skb_cloned(skb)) {
861 		struct sk_buff *nskb = skb_copy(skb, pri);
862 		kfree_skb(skb);	/* Free our shared copy */
863 		skb = nskb;
864 	}
865 	return skb;
866 }
867 
868 /**
869  *	skb_peek - peek at the head of an &sk_buff_head
870  *	@list_: list to peek at
871  *
872  *	Peek an &sk_buff. Unlike most other operations you _MUST_
873  *	be careful with this one. A peek leaves the buffer on the
874  *	list and someone else may run off with it. You must hold
875  *	the appropriate locks or have a private queue to do this.
876  *
877  *	Returns %NULL for an empty list or a pointer to the head element.
878  *	The reference count is not incremented and the reference is therefore
879  *	volatile. Use with caution.
880  */
881 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
882 {
883 	struct sk_buff *list = ((const struct sk_buff *)list_)->next;
884 	if (list == (struct sk_buff *)list_)
885 		list = NULL;
886 	return list;
887 }
888 
889 /**
890  *	skb_peek_next - peek skb following the given one from a queue
891  *	@skb: skb to start from
892  *	@list_: list to peek at
893  *
894  *	Returns %NULL when the end of the list is met or a pointer to the
895  *	next element. The reference count is not incremented and the
896  *	reference is therefore volatile. Use with caution.
897  */
898 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
899 		const struct sk_buff_head *list_)
900 {
901 	struct sk_buff *next = skb->next;
902 	if (next == (struct sk_buff *)list_)
903 		next = NULL;
904 	return next;
905 }
906 
907 /**
908  *	skb_peek_tail - peek at the tail of an &sk_buff_head
909  *	@list_: list to peek at
910  *
911  *	Peek an &sk_buff. Unlike most other operations you _MUST_
912  *	be careful with this one. A peek leaves the buffer on the
913  *	list and someone else may run off with it. You must hold
914  *	the appropriate locks or have a private queue to do this.
915  *
916  *	Returns %NULL for an empty list or a pointer to the tail element.
917  *	The reference count is not incremented and the reference is therefore
918  *	volatile. Use with caution.
919  */
920 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
921 {
922 	struct sk_buff *list = ((const struct sk_buff *)list_)->prev;
923 	if (list == (struct sk_buff *)list_)
924 		list = NULL;
925 	return list;
926 }
927 
928 /**
929  *	skb_queue_len	- get queue length
930  *	@list_: list to measure
931  *
932  *	Return the length of an &sk_buff queue.
933  */
934 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
935 {
936 	return list_->qlen;
937 }
938 
939 /**
940  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
941  *	@list: queue to initialize
942  *
943  *	This initializes only the list and queue length aspects of
944  *	an sk_buff_head object.  This allows to initialize the list
945  *	aspects of an sk_buff_head without reinitializing things like
946  *	the spinlock.  It can also be used for on-stack sk_buff_head
947  *	objects where the spinlock is known to not be used.
948  */
949 static inline void __skb_queue_head_init(struct sk_buff_head *list)
950 {
951 	list->prev = list->next = (struct sk_buff *)list;
952 	list->qlen = 0;
953 }
954 
955 /*
956  * This function creates a split out lock class for each invocation;
957  * this is needed for now since a whole lot of users of the skb-queue
958  * infrastructure in drivers have different locking usage (in hardirq)
959  * than the networking core (in softirq only). In the long run either the
960  * network layer or drivers should need annotation to consolidate the
961  * main types of usage into 3 classes.
962  */
963 static inline void skb_queue_head_init(struct sk_buff_head *list)
964 {
965 	spin_lock_init(&list->lock);
966 	__skb_queue_head_init(list);
967 }
968 
969 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
970 		struct lock_class_key *class)
971 {
972 	skb_queue_head_init(list);
973 	lockdep_set_class(&list->lock, class);
974 }
975 
976 /*
977  *	Insert an sk_buff on a list.
978  *
979  *	The "__skb_xxxx()" functions are the non-atomic ones that
980  *	can only be called with interrupts disabled.
981  */
982 extern void        skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
983 static inline void __skb_insert(struct sk_buff *newsk,
984 				struct sk_buff *prev, struct sk_buff *next,
985 				struct sk_buff_head *list)
986 {
987 	newsk->next = next;
988 	newsk->prev = prev;
989 	next->prev  = prev->next = newsk;
990 	list->qlen++;
991 }
992 
993 static inline void __skb_queue_splice(const struct sk_buff_head *list,
994 				      struct sk_buff *prev,
995 				      struct sk_buff *next)
996 {
997 	struct sk_buff *first = list->next;
998 	struct sk_buff *last = list->prev;
999 
1000 	first->prev = prev;
1001 	prev->next = first;
1002 
1003 	last->next = next;
1004 	next->prev = last;
1005 }
1006 
1007 /**
1008  *	skb_queue_splice - join two skb lists, this is designed for stacks
1009  *	@list: the new list to add
1010  *	@head: the place to add it in the first list
1011  */
1012 static inline void skb_queue_splice(const struct sk_buff_head *list,
1013 				    struct sk_buff_head *head)
1014 {
1015 	if (!skb_queue_empty(list)) {
1016 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1017 		head->qlen += list->qlen;
1018 	}
1019 }
1020 
1021 /**
1022  *	skb_queue_splice - join two skb lists and reinitialise the emptied list
1023  *	@list: the new list to add
1024  *	@head: the place to add it in the first list
1025  *
1026  *	The list at @list is reinitialised
1027  */
1028 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1029 					 struct sk_buff_head *head)
1030 {
1031 	if (!skb_queue_empty(list)) {
1032 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1033 		head->qlen += list->qlen;
1034 		__skb_queue_head_init(list);
1035 	}
1036 }
1037 
1038 /**
1039  *	skb_queue_splice_tail - join two skb lists, each list being a queue
1040  *	@list: the new list to add
1041  *	@head: the place to add it in the first list
1042  */
1043 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1044 					 struct sk_buff_head *head)
1045 {
1046 	if (!skb_queue_empty(list)) {
1047 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1048 		head->qlen += list->qlen;
1049 	}
1050 }
1051 
1052 /**
1053  *	skb_queue_splice_tail - join two skb lists and reinitialise the emptied list
1054  *	@list: the new list to add
1055  *	@head: the place to add it in the first list
1056  *
1057  *	Each of the lists is a queue.
1058  *	The list at @list is reinitialised
1059  */
1060 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1061 					      struct sk_buff_head *head)
1062 {
1063 	if (!skb_queue_empty(list)) {
1064 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1065 		head->qlen += list->qlen;
1066 		__skb_queue_head_init(list);
1067 	}
1068 }
1069 
1070 /**
1071  *	__skb_queue_after - queue a buffer at the list head
1072  *	@list: list to use
1073  *	@prev: place after this buffer
1074  *	@newsk: buffer to queue
1075  *
1076  *	Queue a buffer int the middle of a list. This function takes no locks
1077  *	and you must therefore hold required locks before calling it.
1078  *
1079  *	A buffer cannot be placed on two lists at the same time.
1080  */
1081 static inline void __skb_queue_after(struct sk_buff_head *list,
1082 				     struct sk_buff *prev,
1083 				     struct sk_buff *newsk)
1084 {
1085 	__skb_insert(newsk, prev, prev->next, list);
1086 }
1087 
1088 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1089 		       struct sk_buff_head *list);
1090 
1091 static inline void __skb_queue_before(struct sk_buff_head *list,
1092 				      struct sk_buff *next,
1093 				      struct sk_buff *newsk)
1094 {
1095 	__skb_insert(newsk, next->prev, next, list);
1096 }
1097 
1098 /**
1099  *	__skb_queue_head - queue a buffer at the list head
1100  *	@list: list to use
1101  *	@newsk: buffer to queue
1102  *
1103  *	Queue a buffer at the start of a list. This function takes no locks
1104  *	and you must therefore hold required locks before calling it.
1105  *
1106  *	A buffer cannot be placed on two lists at the same time.
1107  */
1108 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1109 static inline void __skb_queue_head(struct sk_buff_head *list,
1110 				    struct sk_buff *newsk)
1111 {
1112 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
1113 }
1114 
1115 /**
1116  *	__skb_queue_tail - queue a buffer at the list tail
1117  *	@list: list to use
1118  *	@newsk: buffer to queue
1119  *
1120  *	Queue a buffer at the end of a list. This function takes no locks
1121  *	and you must therefore hold required locks before calling it.
1122  *
1123  *	A buffer cannot be placed on two lists at the same time.
1124  */
1125 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1126 static inline void __skb_queue_tail(struct sk_buff_head *list,
1127 				   struct sk_buff *newsk)
1128 {
1129 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
1130 }
1131 
1132 /*
1133  * remove sk_buff from list. _Must_ be called atomically, and with
1134  * the list known..
1135  */
1136 extern void	   skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1137 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1138 {
1139 	struct sk_buff *next, *prev;
1140 
1141 	list->qlen--;
1142 	next	   = skb->next;
1143 	prev	   = skb->prev;
1144 	skb->next  = skb->prev = NULL;
1145 	next->prev = prev;
1146 	prev->next = next;
1147 }
1148 
1149 /**
1150  *	__skb_dequeue - remove from the head of the queue
1151  *	@list: list to dequeue from
1152  *
1153  *	Remove the head of the list. This function does not take any locks
1154  *	so must be used with appropriate locks held only. The head item is
1155  *	returned or %NULL if the list is empty.
1156  */
1157 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1158 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1159 {
1160 	struct sk_buff *skb = skb_peek(list);
1161 	if (skb)
1162 		__skb_unlink(skb, list);
1163 	return skb;
1164 }
1165 
1166 /**
1167  *	__skb_dequeue_tail - remove from the tail of the queue
1168  *	@list: list to dequeue from
1169  *
1170  *	Remove the tail of the list. This function does not take any locks
1171  *	so must be used with appropriate locks held only. The tail item is
1172  *	returned or %NULL if the list is empty.
1173  */
1174 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1175 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1176 {
1177 	struct sk_buff *skb = skb_peek_tail(list);
1178 	if (skb)
1179 		__skb_unlink(skb, list);
1180 	return skb;
1181 }
1182 
1183 
1184 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1185 {
1186 	return skb->data_len;
1187 }
1188 
1189 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1190 {
1191 	return skb->len - skb->data_len;
1192 }
1193 
1194 static inline int skb_pagelen(const struct sk_buff *skb)
1195 {
1196 	int i, len = 0;
1197 
1198 	for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1199 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1200 	return len + skb_headlen(skb);
1201 }
1202 
1203 /**
1204  * __skb_fill_page_desc - initialise a paged fragment in an skb
1205  * @skb: buffer containing fragment to be initialised
1206  * @i: paged fragment index to initialise
1207  * @page: the page to use for this fragment
1208  * @off: the offset to the data with @page
1209  * @size: the length of the data
1210  *
1211  * Initialises the @i'th fragment of @skb to point to &size bytes at
1212  * offset @off within @page.
1213  *
1214  * Does not take any additional reference on the fragment.
1215  */
1216 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1217 					struct page *page, int off, int size)
1218 {
1219 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1220 
1221 	frag->page.p		  = page;
1222 	frag->page_offset	  = off;
1223 	skb_frag_size_set(frag, size);
1224 }
1225 
1226 /**
1227  * skb_fill_page_desc - initialise a paged fragment in an skb
1228  * @skb: buffer containing fragment to be initialised
1229  * @i: paged fragment index to initialise
1230  * @page: the page to use for this fragment
1231  * @off: the offset to the data with @page
1232  * @size: the length of the data
1233  *
1234  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1235  * @skb to point to &size bytes at offset @off within @page. In
1236  * addition updates @skb such that @i is the last fragment.
1237  *
1238  * Does not take any additional reference on the fragment.
1239  */
1240 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1241 				      struct page *page, int off, int size)
1242 {
1243 	__skb_fill_page_desc(skb, i, page, off, size);
1244 	skb_shinfo(skb)->nr_frags = i + 1;
1245 }
1246 
1247 extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
1248 			    int off, int size, unsigned int truesize);
1249 
1250 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
1251 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_has_frag_list(skb))
1252 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
1253 
1254 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1255 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1256 {
1257 	return skb->head + skb->tail;
1258 }
1259 
1260 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1261 {
1262 	skb->tail = skb->data - skb->head;
1263 }
1264 
1265 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1266 {
1267 	skb_reset_tail_pointer(skb);
1268 	skb->tail += offset;
1269 }
1270 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1271 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1272 {
1273 	return skb->tail;
1274 }
1275 
1276 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1277 {
1278 	skb->tail = skb->data;
1279 }
1280 
1281 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1282 {
1283 	skb->tail = skb->data + offset;
1284 }
1285 
1286 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1287 
1288 /*
1289  *	Add data to an sk_buff
1290  */
1291 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1292 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1293 {
1294 	unsigned char *tmp = skb_tail_pointer(skb);
1295 	SKB_LINEAR_ASSERT(skb);
1296 	skb->tail += len;
1297 	skb->len  += len;
1298 	return tmp;
1299 }
1300 
1301 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1302 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1303 {
1304 	skb->data -= len;
1305 	skb->len  += len;
1306 	return skb->data;
1307 }
1308 
1309 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1310 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1311 {
1312 	skb->len -= len;
1313 	BUG_ON(skb->len < skb->data_len);
1314 	return skb->data += len;
1315 }
1316 
1317 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1318 {
1319 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1320 }
1321 
1322 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1323 
1324 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1325 {
1326 	if (len > skb_headlen(skb) &&
1327 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1328 		return NULL;
1329 	skb->len -= len;
1330 	return skb->data += len;
1331 }
1332 
1333 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1334 {
1335 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1336 }
1337 
1338 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1339 {
1340 	if (likely(len <= skb_headlen(skb)))
1341 		return 1;
1342 	if (unlikely(len > skb->len))
1343 		return 0;
1344 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1345 }
1346 
1347 /**
1348  *	skb_headroom - bytes at buffer head
1349  *	@skb: buffer to check
1350  *
1351  *	Return the number of bytes of free space at the head of an &sk_buff.
1352  */
1353 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1354 {
1355 	return skb->data - skb->head;
1356 }
1357 
1358 /**
1359  *	skb_tailroom - bytes at buffer end
1360  *	@skb: buffer to check
1361  *
1362  *	Return the number of bytes of free space at the tail of an sk_buff
1363  */
1364 static inline int skb_tailroom(const struct sk_buff *skb)
1365 {
1366 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1367 }
1368 
1369 /**
1370  *	skb_reserve - adjust headroom
1371  *	@skb: buffer to alter
1372  *	@len: bytes to move
1373  *
1374  *	Increase the headroom of an empty &sk_buff by reducing the tail
1375  *	room. This is only allowed for an empty buffer.
1376  */
1377 static inline void skb_reserve(struct sk_buff *skb, int len)
1378 {
1379 	skb->data += len;
1380 	skb->tail += len;
1381 }
1382 
1383 static inline void skb_reset_mac_len(struct sk_buff *skb)
1384 {
1385 	skb->mac_len = skb->network_header - skb->mac_header;
1386 }
1387 
1388 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1389 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1390 {
1391 	return skb->head + skb->transport_header;
1392 }
1393 
1394 static inline void skb_reset_transport_header(struct sk_buff *skb)
1395 {
1396 	skb->transport_header = skb->data - skb->head;
1397 }
1398 
1399 static inline void skb_set_transport_header(struct sk_buff *skb,
1400 					    const int offset)
1401 {
1402 	skb_reset_transport_header(skb);
1403 	skb->transport_header += offset;
1404 }
1405 
1406 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1407 {
1408 	return skb->head + skb->network_header;
1409 }
1410 
1411 static inline void skb_reset_network_header(struct sk_buff *skb)
1412 {
1413 	skb->network_header = skb->data - skb->head;
1414 }
1415 
1416 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1417 {
1418 	skb_reset_network_header(skb);
1419 	skb->network_header += offset;
1420 }
1421 
1422 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1423 {
1424 	return skb->head + skb->mac_header;
1425 }
1426 
1427 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1428 {
1429 	return skb->mac_header != ~0U;
1430 }
1431 
1432 static inline void skb_reset_mac_header(struct sk_buff *skb)
1433 {
1434 	skb->mac_header = skb->data - skb->head;
1435 }
1436 
1437 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1438 {
1439 	skb_reset_mac_header(skb);
1440 	skb->mac_header += offset;
1441 }
1442 
1443 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1444 
1445 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1446 {
1447 	return skb->transport_header;
1448 }
1449 
1450 static inline void skb_reset_transport_header(struct sk_buff *skb)
1451 {
1452 	skb->transport_header = skb->data;
1453 }
1454 
1455 static inline void skb_set_transport_header(struct sk_buff *skb,
1456 					    const int offset)
1457 {
1458 	skb->transport_header = skb->data + offset;
1459 }
1460 
1461 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1462 {
1463 	return skb->network_header;
1464 }
1465 
1466 static inline void skb_reset_network_header(struct sk_buff *skb)
1467 {
1468 	skb->network_header = skb->data;
1469 }
1470 
1471 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1472 {
1473 	skb->network_header = skb->data + offset;
1474 }
1475 
1476 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1477 {
1478 	return skb->mac_header;
1479 }
1480 
1481 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1482 {
1483 	return skb->mac_header != NULL;
1484 }
1485 
1486 static inline void skb_reset_mac_header(struct sk_buff *skb)
1487 {
1488 	skb->mac_header = skb->data;
1489 }
1490 
1491 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1492 {
1493 	skb->mac_header = skb->data + offset;
1494 }
1495 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1496 
1497 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
1498 {
1499 	if (skb_mac_header_was_set(skb)) {
1500 		const unsigned char *old_mac = skb_mac_header(skb);
1501 
1502 		skb_set_mac_header(skb, -skb->mac_len);
1503 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
1504 	}
1505 }
1506 
1507 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
1508 {
1509 	return skb->csum_start - skb_headroom(skb);
1510 }
1511 
1512 static inline int skb_transport_offset(const struct sk_buff *skb)
1513 {
1514 	return skb_transport_header(skb) - skb->data;
1515 }
1516 
1517 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1518 {
1519 	return skb->transport_header - skb->network_header;
1520 }
1521 
1522 static inline int skb_network_offset(const struct sk_buff *skb)
1523 {
1524 	return skb_network_header(skb) - skb->data;
1525 }
1526 
1527 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
1528 {
1529 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
1530 }
1531 
1532 /*
1533  * CPUs often take a performance hit when accessing unaligned memory
1534  * locations. The actual performance hit varies, it can be small if the
1535  * hardware handles it or large if we have to take an exception and fix it
1536  * in software.
1537  *
1538  * Since an ethernet header is 14 bytes network drivers often end up with
1539  * the IP header at an unaligned offset. The IP header can be aligned by
1540  * shifting the start of the packet by 2 bytes. Drivers should do this
1541  * with:
1542  *
1543  * skb_reserve(skb, NET_IP_ALIGN);
1544  *
1545  * The downside to this alignment of the IP header is that the DMA is now
1546  * unaligned. On some architectures the cost of an unaligned DMA is high
1547  * and this cost outweighs the gains made by aligning the IP header.
1548  *
1549  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1550  * to be overridden.
1551  */
1552 #ifndef NET_IP_ALIGN
1553 #define NET_IP_ALIGN	2
1554 #endif
1555 
1556 /*
1557  * The networking layer reserves some headroom in skb data (via
1558  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1559  * the header has to grow. In the default case, if the header has to grow
1560  * 32 bytes or less we avoid the reallocation.
1561  *
1562  * Unfortunately this headroom changes the DMA alignment of the resulting
1563  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1564  * on some architectures. An architecture can override this value,
1565  * perhaps setting it to a cacheline in size (since that will maintain
1566  * cacheline alignment of the DMA). It must be a power of 2.
1567  *
1568  * Various parts of the networking layer expect at least 32 bytes of
1569  * headroom, you should not reduce this.
1570  *
1571  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
1572  * to reduce average number of cache lines per packet.
1573  * get_rps_cpus() for example only access one 64 bytes aligned block :
1574  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
1575  */
1576 #ifndef NET_SKB_PAD
1577 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
1578 #endif
1579 
1580 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1581 
1582 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1583 {
1584 	if (unlikely(skb_is_nonlinear(skb))) {
1585 		WARN_ON(1);
1586 		return;
1587 	}
1588 	skb->len = len;
1589 	skb_set_tail_pointer(skb, len);
1590 }
1591 
1592 extern void skb_trim(struct sk_buff *skb, unsigned int len);
1593 
1594 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1595 {
1596 	if (skb->data_len)
1597 		return ___pskb_trim(skb, len);
1598 	__skb_trim(skb, len);
1599 	return 0;
1600 }
1601 
1602 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1603 {
1604 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1605 }
1606 
1607 /**
1608  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1609  *	@skb: buffer to alter
1610  *	@len: new length
1611  *
1612  *	This is identical to pskb_trim except that the caller knows that
1613  *	the skb is not cloned so we should never get an error due to out-
1614  *	of-memory.
1615  */
1616 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1617 {
1618 	int err = pskb_trim(skb, len);
1619 	BUG_ON(err);
1620 }
1621 
1622 /**
1623  *	skb_orphan - orphan a buffer
1624  *	@skb: buffer to orphan
1625  *
1626  *	If a buffer currently has an owner then we call the owner's
1627  *	destructor function and make the @skb unowned. The buffer continues
1628  *	to exist but is no longer charged to its former owner.
1629  */
1630 static inline void skb_orphan(struct sk_buff *skb)
1631 {
1632 	if (skb->destructor)
1633 		skb->destructor(skb);
1634 	skb->destructor = NULL;
1635 	skb->sk		= NULL;
1636 }
1637 
1638 /**
1639  *	__skb_queue_purge - empty a list
1640  *	@list: list to empty
1641  *
1642  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
1643  *	the list and one reference dropped. This function does not take the
1644  *	list lock and the caller must hold the relevant locks to use it.
1645  */
1646 extern void skb_queue_purge(struct sk_buff_head *list);
1647 static inline void __skb_queue_purge(struct sk_buff_head *list)
1648 {
1649 	struct sk_buff *skb;
1650 	while ((skb = __skb_dequeue(list)) != NULL)
1651 		kfree_skb(skb);
1652 }
1653 
1654 /**
1655  *	__dev_alloc_skb - allocate an skbuff for receiving
1656  *	@length: length to allocate
1657  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
1658  *
1659  *	Allocate a new &sk_buff and assign it a usage count of one. The
1660  *	buffer has unspecified headroom built in. Users should allocate
1661  *	the headroom they think they need without accounting for the
1662  *	built in space. The built in space is used for optimisations.
1663  *
1664  *	%NULL is returned if there is no free memory.
1665  */
1666 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1667 					      gfp_t gfp_mask)
1668 {
1669 	struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1670 	if (likely(skb))
1671 		skb_reserve(skb, NET_SKB_PAD);
1672 	return skb;
1673 }
1674 
1675 extern struct sk_buff *dev_alloc_skb(unsigned int length);
1676 
1677 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1678 		unsigned int length, gfp_t gfp_mask);
1679 
1680 /**
1681  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
1682  *	@dev: network device to receive on
1683  *	@length: length to allocate
1684  *
1685  *	Allocate a new &sk_buff and assign it a usage count of one. The
1686  *	buffer has unspecified headroom built in. Users should allocate
1687  *	the headroom they think they need without accounting for the
1688  *	built in space. The built in space is used for optimisations.
1689  *
1690  *	%NULL is returned if there is no free memory. Although this function
1691  *	allocates memory it can be called from an interrupt.
1692  */
1693 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1694 		unsigned int length)
1695 {
1696 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1697 }
1698 
1699 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
1700 		unsigned int length, gfp_t gfp)
1701 {
1702 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
1703 
1704 	if (NET_IP_ALIGN && skb)
1705 		skb_reserve(skb, NET_IP_ALIGN);
1706 	return skb;
1707 }
1708 
1709 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
1710 		unsigned int length)
1711 {
1712 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
1713 }
1714 
1715 /**
1716  * skb_frag_page - retrieve the page refered to by a paged fragment
1717  * @frag: the paged fragment
1718  *
1719  * Returns the &struct page associated with @frag.
1720  */
1721 static inline struct page *skb_frag_page(const skb_frag_t *frag)
1722 {
1723 	return frag->page.p;
1724 }
1725 
1726 /**
1727  * __skb_frag_ref - take an addition reference on a paged fragment.
1728  * @frag: the paged fragment
1729  *
1730  * Takes an additional reference on the paged fragment @frag.
1731  */
1732 static inline void __skb_frag_ref(skb_frag_t *frag)
1733 {
1734 	get_page(skb_frag_page(frag));
1735 }
1736 
1737 /**
1738  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
1739  * @skb: the buffer
1740  * @f: the fragment offset.
1741  *
1742  * Takes an additional reference on the @f'th paged fragment of @skb.
1743  */
1744 static inline void skb_frag_ref(struct sk_buff *skb, int f)
1745 {
1746 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
1747 }
1748 
1749 /**
1750  * __skb_frag_unref - release a reference on a paged fragment.
1751  * @frag: the paged fragment
1752  *
1753  * Releases a reference on the paged fragment @frag.
1754  */
1755 static inline void __skb_frag_unref(skb_frag_t *frag)
1756 {
1757 	put_page(skb_frag_page(frag));
1758 }
1759 
1760 /**
1761  * skb_frag_unref - release a reference on a paged fragment of an skb.
1762  * @skb: the buffer
1763  * @f: the fragment offset
1764  *
1765  * Releases a reference on the @f'th paged fragment of @skb.
1766  */
1767 static inline void skb_frag_unref(struct sk_buff *skb, int f)
1768 {
1769 	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
1770 }
1771 
1772 /**
1773  * skb_frag_address - gets the address of the data contained in a paged fragment
1774  * @frag: the paged fragment buffer
1775  *
1776  * Returns the address of the data within @frag. The page must already
1777  * be mapped.
1778  */
1779 static inline void *skb_frag_address(const skb_frag_t *frag)
1780 {
1781 	return page_address(skb_frag_page(frag)) + frag->page_offset;
1782 }
1783 
1784 /**
1785  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
1786  * @frag: the paged fragment buffer
1787  *
1788  * Returns the address of the data within @frag. Checks that the page
1789  * is mapped and returns %NULL otherwise.
1790  */
1791 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
1792 {
1793 	void *ptr = page_address(skb_frag_page(frag));
1794 	if (unlikely(!ptr))
1795 		return NULL;
1796 
1797 	return ptr + frag->page_offset;
1798 }
1799 
1800 /**
1801  * __skb_frag_set_page - sets the page contained in a paged fragment
1802  * @frag: the paged fragment
1803  * @page: the page to set
1804  *
1805  * Sets the fragment @frag to contain @page.
1806  */
1807 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
1808 {
1809 	frag->page.p = page;
1810 }
1811 
1812 /**
1813  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
1814  * @skb: the buffer
1815  * @f: the fragment offset
1816  * @page: the page to set
1817  *
1818  * Sets the @f'th fragment of @skb to contain @page.
1819  */
1820 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
1821 				     struct page *page)
1822 {
1823 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
1824 }
1825 
1826 /**
1827  * skb_frag_dma_map - maps a paged fragment via the DMA API
1828  * @dev: the device to map the fragment to
1829  * @frag: the paged fragment to map
1830  * @offset: the offset within the fragment (starting at the
1831  *          fragment's own offset)
1832  * @size: the number of bytes to map
1833  * @dir: the direction of the mapping (%PCI_DMA_*)
1834  *
1835  * Maps the page associated with @frag to @device.
1836  */
1837 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
1838 					  const skb_frag_t *frag,
1839 					  size_t offset, size_t size,
1840 					  enum dma_data_direction dir)
1841 {
1842 	return dma_map_page(dev, skb_frag_page(frag),
1843 			    frag->page_offset + offset, size, dir);
1844 }
1845 
1846 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
1847 					gfp_t gfp_mask)
1848 {
1849 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
1850 }
1851 
1852 /**
1853  *	skb_clone_writable - is the header of a clone writable
1854  *	@skb: buffer to check
1855  *	@len: length up to which to write
1856  *
1857  *	Returns true if modifying the header part of the cloned buffer
1858  *	does not requires the data to be copied.
1859  */
1860 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
1861 {
1862 	return !skb_header_cloned(skb) &&
1863 	       skb_headroom(skb) + len <= skb->hdr_len;
1864 }
1865 
1866 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1867 			    int cloned)
1868 {
1869 	int delta = 0;
1870 
1871 	if (headroom < NET_SKB_PAD)
1872 		headroom = NET_SKB_PAD;
1873 	if (headroom > skb_headroom(skb))
1874 		delta = headroom - skb_headroom(skb);
1875 
1876 	if (delta || cloned)
1877 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1878 					GFP_ATOMIC);
1879 	return 0;
1880 }
1881 
1882 /**
1883  *	skb_cow - copy header of skb when it is required
1884  *	@skb: buffer to cow
1885  *	@headroom: needed headroom
1886  *
1887  *	If the skb passed lacks sufficient headroom or its data part
1888  *	is shared, data is reallocated. If reallocation fails, an error
1889  *	is returned and original skb is not changed.
1890  *
1891  *	The result is skb with writable area skb->head...skb->tail
1892  *	and at least @headroom of space at head.
1893  */
1894 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1895 {
1896 	return __skb_cow(skb, headroom, skb_cloned(skb));
1897 }
1898 
1899 /**
1900  *	skb_cow_head - skb_cow but only making the head writable
1901  *	@skb: buffer to cow
1902  *	@headroom: needed headroom
1903  *
1904  *	This function is identical to skb_cow except that we replace the
1905  *	skb_cloned check by skb_header_cloned.  It should be used when
1906  *	you only need to push on some header and do not need to modify
1907  *	the data.
1908  */
1909 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1910 {
1911 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
1912 }
1913 
1914 /**
1915  *	skb_padto	- pad an skbuff up to a minimal size
1916  *	@skb: buffer to pad
1917  *	@len: minimal length
1918  *
1919  *	Pads up a buffer to ensure the trailing bytes exist and are
1920  *	blanked. If the buffer already contains sufficient data it
1921  *	is untouched. Otherwise it is extended. Returns zero on
1922  *	success. The skb is freed on error.
1923  */
1924 
1925 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1926 {
1927 	unsigned int size = skb->len;
1928 	if (likely(size >= len))
1929 		return 0;
1930 	return skb_pad(skb, len - size);
1931 }
1932 
1933 static inline int skb_add_data(struct sk_buff *skb,
1934 			       char __user *from, int copy)
1935 {
1936 	const int off = skb->len;
1937 
1938 	if (skb->ip_summed == CHECKSUM_NONE) {
1939 		int err = 0;
1940 		__wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1941 							    copy, 0, &err);
1942 		if (!err) {
1943 			skb->csum = csum_block_add(skb->csum, csum, off);
1944 			return 0;
1945 		}
1946 	} else if (!copy_from_user(skb_put(skb, copy), from, copy))
1947 		return 0;
1948 
1949 	__skb_trim(skb, off);
1950 	return -EFAULT;
1951 }
1952 
1953 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1954 				   const struct page *page, int off)
1955 {
1956 	if (i) {
1957 		const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1958 
1959 		return page == skb_frag_page(frag) &&
1960 		       off == frag->page_offset + skb_frag_size(frag);
1961 	}
1962 	return 0;
1963 }
1964 
1965 static inline int __skb_linearize(struct sk_buff *skb)
1966 {
1967 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1968 }
1969 
1970 /**
1971  *	skb_linearize - convert paged skb to linear one
1972  *	@skb: buffer to linarize
1973  *
1974  *	If there is no free memory -ENOMEM is returned, otherwise zero
1975  *	is returned and the old skb data released.
1976  */
1977 static inline int skb_linearize(struct sk_buff *skb)
1978 {
1979 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1980 }
1981 
1982 /**
1983  *	skb_linearize_cow - make sure skb is linear and writable
1984  *	@skb: buffer to process
1985  *
1986  *	If there is no free memory -ENOMEM is returned, otherwise zero
1987  *	is returned and the old skb data released.
1988  */
1989 static inline int skb_linearize_cow(struct sk_buff *skb)
1990 {
1991 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1992 	       __skb_linearize(skb) : 0;
1993 }
1994 
1995 /**
1996  *	skb_postpull_rcsum - update checksum for received skb after pull
1997  *	@skb: buffer to update
1998  *	@start: start of data before pull
1999  *	@len: length of data pulled
2000  *
2001  *	After doing a pull on a received packet, you need to call this to
2002  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
2003  *	CHECKSUM_NONE so that it can be recomputed from scratch.
2004  */
2005 
2006 static inline void skb_postpull_rcsum(struct sk_buff *skb,
2007 				      const void *start, unsigned int len)
2008 {
2009 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2010 		skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
2011 }
2012 
2013 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
2014 
2015 /**
2016  *	pskb_trim_rcsum - trim received skb and update checksum
2017  *	@skb: buffer to trim
2018  *	@len: new length
2019  *
2020  *	This is exactly the same as pskb_trim except that it ensures the
2021  *	checksum of received packets are still valid after the operation.
2022  */
2023 
2024 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2025 {
2026 	if (likely(len >= skb->len))
2027 		return 0;
2028 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2029 		skb->ip_summed = CHECKSUM_NONE;
2030 	return __pskb_trim(skb, len);
2031 }
2032 
2033 #define skb_queue_walk(queue, skb) \
2034 		for (skb = (queue)->next;					\
2035 		     skb != (struct sk_buff *)(queue);				\
2036 		     skb = skb->next)
2037 
2038 #define skb_queue_walk_safe(queue, skb, tmp)					\
2039 		for (skb = (queue)->next, tmp = skb->next;			\
2040 		     skb != (struct sk_buff *)(queue);				\
2041 		     skb = tmp, tmp = skb->next)
2042 
2043 #define skb_queue_walk_from(queue, skb)						\
2044 		for (; skb != (struct sk_buff *)(queue);			\
2045 		     skb = skb->next)
2046 
2047 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
2048 		for (tmp = skb->next;						\
2049 		     skb != (struct sk_buff *)(queue);				\
2050 		     skb = tmp, tmp = skb->next)
2051 
2052 #define skb_queue_reverse_walk(queue, skb) \
2053 		for (skb = (queue)->prev;					\
2054 		     skb != (struct sk_buff *)(queue);				\
2055 		     skb = skb->prev)
2056 
2057 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
2058 		for (skb = (queue)->prev, tmp = skb->prev;			\
2059 		     skb != (struct sk_buff *)(queue);				\
2060 		     skb = tmp, tmp = skb->prev)
2061 
2062 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
2063 		for (tmp = skb->prev;						\
2064 		     skb != (struct sk_buff *)(queue);				\
2065 		     skb = tmp, tmp = skb->prev)
2066 
2067 static inline bool skb_has_frag_list(const struct sk_buff *skb)
2068 {
2069 	return skb_shinfo(skb)->frag_list != NULL;
2070 }
2071 
2072 static inline void skb_frag_list_init(struct sk_buff *skb)
2073 {
2074 	skb_shinfo(skb)->frag_list = NULL;
2075 }
2076 
2077 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
2078 {
2079 	frag->next = skb_shinfo(skb)->frag_list;
2080 	skb_shinfo(skb)->frag_list = frag;
2081 }
2082 
2083 #define skb_walk_frags(skb, iter)	\
2084 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
2085 
2086 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
2087 					   int *peeked, int *off, int *err);
2088 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
2089 					 int noblock, int *err);
2090 extern unsigned int    datagram_poll(struct file *file, struct socket *sock,
2091 				     struct poll_table_struct *wait);
2092 extern int	       skb_copy_datagram_iovec(const struct sk_buff *from,
2093 					       int offset, struct iovec *to,
2094 					       int size);
2095 extern int	       skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
2096 							int hlen,
2097 							struct iovec *iov);
2098 extern int	       skb_copy_datagram_from_iovec(struct sk_buff *skb,
2099 						    int offset,
2100 						    const struct iovec *from,
2101 						    int from_offset,
2102 						    int len);
2103 extern int	       skb_copy_datagram_const_iovec(const struct sk_buff *from,
2104 						     int offset,
2105 						     const struct iovec *to,
2106 						     int to_offset,
2107 						     int size);
2108 extern void	       skb_free_datagram(struct sock *sk, struct sk_buff *skb);
2109 extern void	       skb_free_datagram_locked(struct sock *sk,
2110 						struct sk_buff *skb);
2111 extern int	       skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
2112 					 unsigned int flags);
2113 extern __wsum	       skb_checksum(const struct sk_buff *skb, int offset,
2114 				    int len, __wsum csum);
2115 extern int	       skb_copy_bits(const struct sk_buff *skb, int offset,
2116 				     void *to, int len);
2117 extern int	       skb_store_bits(struct sk_buff *skb, int offset,
2118 				      const void *from, int len);
2119 extern __wsum	       skb_copy_and_csum_bits(const struct sk_buff *skb,
2120 					      int offset, u8 *to, int len,
2121 					      __wsum csum);
2122 extern int             skb_splice_bits(struct sk_buff *skb,
2123 						unsigned int offset,
2124 						struct pipe_inode_info *pipe,
2125 						unsigned int len,
2126 						unsigned int flags);
2127 extern void	       skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
2128 extern void	       skb_split(struct sk_buff *skb,
2129 				 struct sk_buff *skb1, const u32 len);
2130 extern int	       skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
2131 				 int shiftlen);
2132 
2133 extern struct sk_buff *skb_segment(struct sk_buff *skb,
2134 				   netdev_features_t features);
2135 
2136 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
2137 				       int len, void *buffer)
2138 {
2139 	int hlen = skb_headlen(skb);
2140 
2141 	if (hlen - offset >= len)
2142 		return skb->data + offset;
2143 
2144 	if (skb_copy_bits(skb, offset, buffer, len) < 0)
2145 		return NULL;
2146 
2147 	return buffer;
2148 }
2149 
2150 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
2151 					     void *to,
2152 					     const unsigned int len)
2153 {
2154 	memcpy(to, skb->data, len);
2155 }
2156 
2157 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
2158 						    const int offset, void *to,
2159 						    const unsigned int len)
2160 {
2161 	memcpy(to, skb->data + offset, len);
2162 }
2163 
2164 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
2165 					   const void *from,
2166 					   const unsigned int len)
2167 {
2168 	memcpy(skb->data, from, len);
2169 }
2170 
2171 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
2172 						  const int offset,
2173 						  const void *from,
2174 						  const unsigned int len)
2175 {
2176 	memcpy(skb->data + offset, from, len);
2177 }
2178 
2179 extern void skb_init(void);
2180 
2181 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
2182 {
2183 	return skb->tstamp;
2184 }
2185 
2186 /**
2187  *	skb_get_timestamp - get timestamp from a skb
2188  *	@skb: skb to get stamp from
2189  *	@stamp: pointer to struct timeval to store stamp in
2190  *
2191  *	Timestamps are stored in the skb as offsets to a base timestamp.
2192  *	This function converts the offset back to a struct timeval and stores
2193  *	it in stamp.
2194  */
2195 static inline void skb_get_timestamp(const struct sk_buff *skb,
2196 				     struct timeval *stamp)
2197 {
2198 	*stamp = ktime_to_timeval(skb->tstamp);
2199 }
2200 
2201 static inline void skb_get_timestampns(const struct sk_buff *skb,
2202 				       struct timespec *stamp)
2203 {
2204 	*stamp = ktime_to_timespec(skb->tstamp);
2205 }
2206 
2207 static inline void __net_timestamp(struct sk_buff *skb)
2208 {
2209 	skb->tstamp = ktime_get_real();
2210 }
2211 
2212 static inline ktime_t net_timedelta(ktime_t t)
2213 {
2214 	return ktime_sub(ktime_get_real(), t);
2215 }
2216 
2217 static inline ktime_t net_invalid_timestamp(void)
2218 {
2219 	return ktime_set(0, 0);
2220 }
2221 
2222 extern void skb_timestamping_init(void);
2223 
2224 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2225 
2226 extern void skb_clone_tx_timestamp(struct sk_buff *skb);
2227 extern bool skb_defer_rx_timestamp(struct sk_buff *skb);
2228 
2229 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
2230 
2231 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
2232 {
2233 }
2234 
2235 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
2236 {
2237 	return false;
2238 }
2239 
2240 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
2241 
2242 /**
2243  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
2244  *
2245  * PHY drivers may accept clones of transmitted packets for
2246  * timestamping via their phy_driver.txtstamp method. These drivers
2247  * must call this function to return the skb back to the stack, with
2248  * or without a timestamp.
2249  *
2250  * @skb: clone of the the original outgoing packet
2251  * @hwtstamps: hardware time stamps, may be NULL if not available
2252  *
2253  */
2254 void skb_complete_tx_timestamp(struct sk_buff *skb,
2255 			       struct skb_shared_hwtstamps *hwtstamps);
2256 
2257 /**
2258  * skb_tstamp_tx - queue clone of skb with send time stamps
2259  * @orig_skb:	the original outgoing packet
2260  * @hwtstamps:	hardware time stamps, may be NULL if not available
2261  *
2262  * If the skb has a socket associated, then this function clones the
2263  * skb (thus sharing the actual data and optional structures), stores
2264  * the optional hardware time stamping information (if non NULL) or
2265  * generates a software time stamp (otherwise), then queues the clone
2266  * to the error queue of the socket.  Errors are silently ignored.
2267  */
2268 extern void skb_tstamp_tx(struct sk_buff *orig_skb,
2269 			struct skb_shared_hwtstamps *hwtstamps);
2270 
2271 static inline void sw_tx_timestamp(struct sk_buff *skb)
2272 {
2273 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
2274 	    !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2275 		skb_tstamp_tx(skb, NULL);
2276 }
2277 
2278 /**
2279  * skb_tx_timestamp() - Driver hook for transmit timestamping
2280  *
2281  * Ethernet MAC Drivers should call this function in their hard_xmit()
2282  * function immediately before giving the sk_buff to the MAC hardware.
2283  *
2284  * @skb: A socket buffer.
2285  */
2286 static inline void skb_tx_timestamp(struct sk_buff *skb)
2287 {
2288 	skb_clone_tx_timestamp(skb);
2289 	sw_tx_timestamp(skb);
2290 }
2291 
2292 /**
2293  * skb_complete_wifi_ack - deliver skb with wifi status
2294  *
2295  * @skb: the original outgoing packet
2296  * @acked: ack status
2297  *
2298  */
2299 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
2300 
2301 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
2302 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
2303 
2304 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
2305 {
2306 	return skb->ip_summed & CHECKSUM_UNNECESSARY;
2307 }
2308 
2309 /**
2310  *	skb_checksum_complete - Calculate checksum of an entire packet
2311  *	@skb: packet to process
2312  *
2313  *	This function calculates the checksum over the entire packet plus
2314  *	the value of skb->csum.  The latter can be used to supply the
2315  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
2316  *	checksum.
2317  *
2318  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
2319  *	this function can be used to verify that checksum on received
2320  *	packets.  In that case the function should return zero if the
2321  *	checksum is correct.  In particular, this function will return zero
2322  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
2323  *	hardware has already verified the correctness of the checksum.
2324  */
2325 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
2326 {
2327 	return skb_csum_unnecessary(skb) ?
2328 	       0 : __skb_checksum_complete(skb);
2329 }
2330 
2331 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2332 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
2333 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
2334 {
2335 	if (nfct && atomic_dec_and_test(&nfct->use))
2336 		nf_conntrack_destroy(nfct);
2337 }
2338 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
2339 {
2340 	if (nfct)
2341 		atomic_inc(&nfct->use);
2342 }
2343 #endif
2344 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2345 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
2346 {
2347 	if (skb)
2348 		atomic_inc(&skb->users);
2349 }
2350 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
2351 {
2352 	if (skb)
2353 		kfree_skb(skb);
2354 }
2355 #endif
2356 #ifdef CONFIG_BRIDGE_NETFILTER
2357 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
2358 {
2359 	if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
2360 		kfree(nf_bridge);
2361 }
2362 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
2363 {
2364 	if (nf_bridge)
2365 		atomic_inc(&nf_bridge->use);
2366 }
2367 #endif /* CONFIG_BRIDGE_NETFILTER */
2368 static inline void nf_reset(struct sk_buff *skb)
2369 {
2370 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2371 	nf_conntrack_put(skb->nfct);
2372 	skb->nfct = NULL;
2373 #endif
2374 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2375 	nf_conntrack_put_reasm(skb->nfct_reasm);
2376 	skb->nfct_reasm = NULL;
2377 #endif
2378 #ifdef CONFIG_BRIDGE_NETFILTER
2379 	nf_bridge_put(skb->nf_bridge);
2380 	skb->nf_bridge = NULL;
2381 #endif
2382 }
2383 
2384 /* Note: This doesn't put any conntrack and bridge info in dst. */
2385 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2386 {
2387 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2388 	dst->nfct = src->nfct;
2389 	nf_conntrack_get(src->nfct);
2390 	dst->nfctinfo = src->nfctinfo;
2391 #endif
2392 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2393 	dst->nfct_reasm = src->nfct_reasm;
2394 	nf_conntrack_get_reasm(src->nfct_reasm);
2395 #endif
2396 #ifdef CONFIG_BRIDGE_NETFILTER
2397 	dst->nf_bridge  = src->nf_bridge;
2398 	nf_bridge_get(src->nf_bridge);
2399 #endif
2400 }
2401 
2402 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2403 {
2404 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2405 	nf_conntrack_put(dst->nfct);
2406 #endif
2407 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2408 	nf_conntrack_put_reasm(dst->nfct_reasm);
2409 #endif
2410 #ifdef CONFIG_BRIDGE_NETFILTER
2411 	nf_bridge_put(dst->nf_bridge);
2412 #endif
2413 	__nf_copy(dst, src);
2414 }
2415 
2416 #ifdef CONFIG_NETWORK_SECMARK
2417 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2418 {
2419 	to->secmark = from->secmark;
2420 }
2421 
2422 static inline void skb_init_secmark(struct sk_buff *skb)
2423 {
2424 	skb->secmark = 0;
2425 }
2426 #else
2427 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2428 { }
2429 
2430 static inline void skb_init_secmark(struct sk_buff *skb)
2431 { }
2432 #endif
2433 
2434 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
2435 {
2436 	skb->queue_mapping = queue_mapping;
2437 }
2438 
2439 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
2440 {
2441 	return skb->queue_mapping;
2442 }
2443 
2444 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
2445 {
2446 	to->queue_mapping = from->queue_mapping;
2447 }
2448 
2449 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
2450 {
2451 	skb->queue_mapping = rx_queue + 1;
2452 }
2453 
2454 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
2455 {
2456 	return skb->queue_mapping - 1;
2457 }
2458 
2459 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
2460 {
2461 	return skb->queue_mapping != 0;
2462 }
2463 
2464 extern u16 __skb_tx_hash(const struct net_device *dev,
2465 			 const struct sk_buff *skb,
2466 			 unsigned int num_tx_queues);
2467 
2468 #ifdef CONFIG_XFRM
2469 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2470 {
2471 	return skb->sp;
2472 }
2473 #else
2474 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2475 {
2476 	return NULL;
2477 }
2478 #endif
2479 
2480 static inline bool skb_is_gso(const struct sk_buff *skb)
2481 {
2482 	return skb_shinfo(skb)->gso_size;
2483 }
2484 
2485 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
2486 {
2487 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
2488 }
2489 
2490 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
2491 
2492 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
2493 {
2494 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
2495 	 * wanted then gso_type will be set. */
2496 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
2497 
2498 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
2499 	    unlikely(shinfo->gso_type == 0)) {
2500 		__skb_warn_lro_forwarding(skb);
2501 		return true;
2502 	}
2503 	return false;
2504 }
2505 
2506 static inline void skb_forward_csum(struct sk_buff *skb)
2507 {
2508 	/* Unfortunately we don't support this one.  Any brave souls? */
2509 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2510 		skb->ip_summed = CHECKSUM_NONE;
2511 }
2512 
2513 /**
2514  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
2515  * @skb: skb to check
2516  *
2517  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
2518  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
2519  * use this helper, to document places where we make this assertion.
2520  */
2521 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
2522 {
2523 #ifdef DEBUG
2524 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
2525 #endif
2526 }
2527 
2528 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
2529 
2530 static inline bool skb_is_recycleable(const struct sk_buff *skb, int skb_size)
2531 {
2532 	if (irqs_disabled())
2533 		return false;
2534 
2535 	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)
2536 		return false;
2537 
2538 	if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE)
2539 		return false;
2540 
2541 	skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD);
2542 	if (skb_end_pointer(skb) - skb->head < skb_size)
2543 		return false;
2544 
2545 	if (skb_shared(skb) || skb_cloned(skb))
2546 		return false;
2547 
2548 	return true;
2549 }
2550 #endif	/* __KERNEL__ */
2551 #endif	/* _LINUX_SKBUFF_H */
2552