xref: /linux-6.15/include/linux/skbuff.h (revision 9bbef187)
1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <[email protected]>
6  *		Florian La Roche, <[email protected]>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/bug.h>
22 #include <linux/cache.h>
23 #include <linux/rbtree.h>
24 #include <linux/socket.h>
25 
26 #include <linux/atomic.h>
27 #include <asm/types.h>
28 #include <linux/spinlock.h>
29 #include <linux/net.h>
30 #include <linux/textsearch.h>
31 #include <net/checksum.h>
32 #include <linux/rcupdate.h>
33 #include <linux/hrtimer.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/netdev_features.h>
36 #include <linux/sched.h>
37 #include <net/flow_keys.h>
38 
39 /* A. Checksumming of received packets by device.
40  *
41  * CHECKSUM_NONE:
42  *
43  *   Device failed to checksum this packet e.g. due to lack of capabilities.
44  *   The packet contains full (though not verified) checksum in packet but
45  *   not in skb->csum. Thus, skb->csum is undefined in this case.
46  *
47  * CHECKSUM_UNNECESSARY:
48  *
49  *   The hardware you're dealing with doesn't calculate the full checksum
50  *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
51  *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
52  *   if their checksums are okay. skb->csum is still undefined in this case
53  *   though. It is a bad option, but, unfortunately, nowadays most vendors do
54  *   this. Apparently with the secret goal to sell you new devices, when you
55  *   will add new protocol to your host, f.e. IPv6 8)
56  *
57  *   CHECKSUM_UNNECESSARY is applicable to following protocols:
58  *     TCP: IPv6 and IPv4.
59  *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
60  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
61  *       may perform further validation in this case.
62  *     GRE: only if the checksum is present in the header.
63  *     SCTP: indicates the CRC in SCTP header has been validated.
64  *
65  *   skb->csum_level indicates the number of consecutive checksums found in
66  *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
67  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
68  *   and a device is able to verify the checksums for UDP (possibly zero),
69  *   GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
70  *   two. If the device were only able to verify the UDP checksum and not
71  *   GRE, either because it doesn't support GRE checksum of because GRE
72  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
73  *   not considered in this case).
74  *
75  * CHECKSUM_COMPLETE:
76  *
77  *   This is the most generic way. The device supplied checksum of the _whole_
78  *   packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
79  *   hardware doesn't need to parse L3/L4 headers to implement this.
80  *
81  *   Note: Even if device supports only some protocols, but is able to produce
82  *   skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
83  *
84  * CHECKSUM_PARTIAL:
85  *
86  *   A checksum is set up to be offloaded to a device as described in the
87  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
88  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
89  *   on the same host, or it may be set in the input path in GRO or remote
90  *   checksum offload. For the purposes of checksum verification, the checksum
91  *   referred to by skb->csum_start + skb->csum_offset and any preceding
92  *   checksums in the packet are considered verified. Any checksums in the
93  *   packet that are after the checksum being offloaded are not considered to
94  *   be verified.
95  *
96  * B. Checksumming on output.
97  *
98  * CHECKSUM_NONE:
99  *
100  *   The skb was already checksummed by the protocol, or a checksum is not
101  *   required.
102  *
103  * CHECKSUM_PARTIAL:
104  *
105  *   The device is required to checksum the packet as seen by hard_start_xmit()
106  *   from skb->csum_start up to the end, and to record/write the checksum at
107  *   offset skb->csum_start + skb->csum_offset.
108  *
109  *   The device must show its capabilities in dev->features, set up at device
110  *   setup time, e.g. netdev_features.h:
111  *
112  *	NETIF_F_HW_CSUM	- It's a clever device, it's able to checksum everything.
113  *	NETIF_F_IP_CSUM - Device is dumb, it's able to checksum only TCP/UDP over
114  *			  IPv4. Sigh. Vendors like this way for an unknown reason.
115  *			  Though, see comment above about CHECKSUM_UNNECESSARY. 8)
116  *	NETIF_F_IPV6_CSUM - About as dumb as the last one but does IPv6 instead.
117  *	NETIF_F_...     - Well, you get the picture.
118  *
119  * CHECKSUM_UNNECESSARY:
120  *
121  *   Normally, the device will do per protocol specific checksumming. Protocol
122  *   implementations that do not want the NIC to perform the checksum
123  *   calculation should use this flag in their outgoing skbs.
124  *
125  *	NETIF_F_FCOE_CRC - This indicates that the device can do FCoE FC CRC
126  *			   offload. Correspondingly, the FCoE protocol driver
127  *			   stack should use CHECKSUM_UNNECESSARY.
128  *
129  * Any questions? No questions, good.		--ANK
130  */
131 
132 /* Don't change this without changing skb_csum_unnecessary! */
133 #define CHECKSUM_NONE		0
134 #define CHECKSUM_UNNECESSARY	1
135 #define CHECKSUM_COMPLETE	2
136 #define CHECKSUM_PARTIAL	3
137 
138 /* Maximum value in skb->csum_level */
139 #define SKB_MAX_CSUM_LEVEL	3
140 
141 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
142 #define SKB_WITH_OVERHEAD(X)	\
143 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
144 #define SKB_MAX_ORDER(X, ORDER) \
145 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
146 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
147 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
148 
149 /* return minimum truesize of one skb containing X bytes of data */
150 #define SKB_TRUESIZE(X) ((X) +						\
151 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
152 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
153 
154 struct net_device;
155 struct scatterlist;
156 struct pipe_inode_info;
157 struct iov_iter;
158 struct napi_struct;
159 
160 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
161 struct nf_conntrack {
162 	atomic_t use;
163 };
164 #endif
165 
166 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
167 struct nf_bridge_info {
168 	atomic_t		use;
169 	enum {
170 		BRNF_PROTO_UNCHANGED,
171 		BRNF_PROTO_8021Q,
172 		BRNF_PROTO_PPPOE
173 	} orig_proto;
174 	bool			pkt_otherhost;
175 	unsigned int		mask;
176 	struct net_device	*physindev;
177 	struct net_device	*physoutdev;
178 	char			neigh_header[8];
179 };
180 #endif
181 
182 struct sk_buff_head {
183 	/* These two members must be first. */
184 	struct sk_buff	*next;
185 	struct sk_buff	*prev;
186 
187 	__u32		qlen;
188 	spinlock_t	lock;
189 };
190 
191 struct sk_buff;
192 
193 /* To allow 64K frame to be packed as single skb without frag_list we
194  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
195  * buffers which do not start on a page boundary.
196  *
197  * Since GRO uses frags we allocate at least 16 regardless of page
198  * size.
199  */
200 #if (65536/PAGE_SIZE + 1) < 16
201 #define MAX_SKB_FRAGS 16UL
202 #else
203 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
204 #endif
205 
206 typedef struct skb_frag_struct skb_frag_t;
207 
208 struct skb_frag_struct {
209 	struct {
210 		struct page *p;
211 	} page;
212 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
213 	__u32 page_offset;
214 	__u32 size;
215 #else
216 	__u16 page_offset;
217 	__u16 size;
218 #endif
219 };
220 
221 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
222 {
223 	return frag->size;
224 }
225 
226 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
227 {
228 	frag->size = size;
229 }
230 
231 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
232 {
233 	frag->size += delta;
234 }
235 
236 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
237 {
238 	frag->size -= delta;
239 }
240 
241 #define HAVE_HW_TIME_STAMP
242 
243 /**
244  * struct skb_shared_hwtstamps - hardware time stamps
245  * @hwtstamp:	hardware time stamp transformed into duration
246  *		since arbitrary point in time
247  *
248  * Software time stamps generated by ktime_get_real() are stored in
249  * skb->tstamp.
250  *
251  * hwtstamps can only be compared against other hwtstamps from
252  * the same device.
253  *
254  * This structure is attached to packets as part of the
255  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
256  */
257 struct skb_shared_hwtstamps {
258 	ktime_t	hwtstamp;
259 };
260 
261 /* Definitions for tx_flags in struct skb_shared_info */
262 enum {
263 	/* generate hardware time stamp */
264 	SKBTX_HW_TSTAMP = 1 << 0,
265 
266 	/* generate software time stamp when queueing packet to NIC */
267 	SKBTX_SW_TSTAMP = 1 << 1,
268 
269 	/* device driver is going to provide hardware time stamp */
270 	SKBTX_IN_PROGRESS = 1 << 2,
271 
272 	/* device driver supports TX zero-copy buffers */
273 	SKBTX_DEV_ZEROCOPY = 1 << 3,
274 
275 	/* generate wifi status information (where possible) */
276 	SKBTX_WIFI_STATUS = 1 << 4,
277 
278 	/* This indicates at least one fragment might be overwritten
279 	 * (as in vmsplice(), sendfile() ...)
280 	 * If we need to compute a TX checksum, we'll need to copy
281 	 * all frags to avoid possible bad checksum
282 	 */
283 	SKBTX_SHARED_FRAG = 1 << 5,
284 
285 	/* generate software time stamp when entering packet scheduling */
286 	SKBTX_SCHED_TSTAMP = 1 << 6,
287 
288 	/* generate software timestamp on peer data acknowledgment */
289 	SKBTX_ACK_TSTAMP = 1 << 7,
290 };
291 
292 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
293 				 SKBTX_SCHED_TSTAMP | \
294 				 SKBTX_ACK_TSTAMP)
295 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
296 
297 /*
298  * The callback notifies userspace to release buffers when skb DMA is done in
299  * lower device, the skb last reference should be 0 when calling this.
300  * The zerocopy_success argument is true if zero copy transmit occurred,
301  * false on data copy or out of memory error caused by data copy attempt.
302  * The ctx field is used to track device context.
303  * The desc field is used to track userspace buffer index.
304  */
305 struct ubuf_info {
306 	void (*callback)(struct ubuf_info *, bool zerocopy_success);
307 	void *ctx;
308 	unsigned long desc;
309 };
310 
311 /* This data is invariant across clones and lives at
312  * the end of the header data, ie. at skb->end.
313  */
314 struct skb_shared_info {
315 	unsigned char	nr_frags;
316 	__u8		tx_flags;
317 	unsigned short	gso_size;
318 	/* Warning: this field is not always filled in (UFO)! */
319 	unsigned short	gso_segs;
320 	unsigned short  gso_type;
321 	struct sk_buff	*frag_list;
322 	struct skb_shared_hwtstamps hwtstamps;
323 	u32		tskey;
324 	__be32          ip6_frag_id;
325 
326 	/*
327 	 * Warning : all fields before dataref are cleared in __alloc_skb()
328 	 */
329 	atomic_t	dataref;
330 
331 	/* Intermediate layers must ensure that destructor_arg
332 	 * remains valid until skb destructor */
333 	void *		destructor_arg;
334 
335 	/* must be last field, see pskb_expand_head() */
336 	skb_frag_t	frags[MAX_SKB_FRAGS];
337 };
338 
339 /* We divide dataref into two halves.  The higher 16 bits hold references
340  * to the payload part of skb->data.  The lower 16 bits hold references to
341  * the entire skb->data.  A clone of a headerless skb holds the length of
342  * the header in skb->hdr_len.
343  *
344  * All users must obey the rule that the skb->data reference count must be
345  * greater than or equal to the payload reference count.
346  *
347  * Holding a reference to the payload part means that the user does not
348  * care about modifications to the header part of skb->data.
349  */
350 #define SKB_DATAREF_SHIFT 16
351 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
352 
353 
354 enum {
355 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
356 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
357 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
358 };
359 
360 enum {
361 	SKB_GSO_TCPV4 = 1 << 0,
362 	SKB_GSO_UDP = 1 << 1,
363 
364 	/* This indicates the skb is from an untrusted source. */
365 	SKB_GSO_DODGY = 1 << 2,
366 
367 	/* This indicates the tcp segment has CWR set. */
368 	SKB_GSO_TCP_ECN = 1 << 3,
369 
370 	SKB_GSO_TCPV6 = 1 << 4,
371 
372 	SKB_GSO_FCOE = 1 << 5,
373 
374 	SKB_GSO_GRE = 1 << 6,
375 
376 	SKB_GSO_GRE_CSUM = 1 << 7,
377 
378 	SKB_GSO_IPIP = 1 << 8,
379 
380 	SKB_GSO_SIT = 1 << 9,
381 
382 	SKB_GSO_UDP_TUNNEL = 1 << 10,
383 
384 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
385 
386 	SKB_GSO_TUNNEL_REMCSUM = 1 << 12,
387 };
388 
389 #if BITS_PER_LONG > 32
390 #define NET_SKBUFF_DATA_USES_OFFSET 1
391 #endif
392 
393 #ifdef NET_SKBUFF_DATA_USES_OFFSET
394 typedef unsigned int sk_buff_data_t;
395 #else
396 typedef unsigned char *sk_buff_data_t;
397 #endif
398 
399 /**
400  * struct skb_mstamp - multi resolution time stamps
401  * @stamp_us: timestamp in us resolution
402  * @stamp_jiffies: timestamp in jiffies
403  */
404 struct skb_mstamp {
405 	union {
406 		u64		v64;
407 		struct {
408 			u32	stamp_us;
409 			u32	stamp_jiffies;
410 		};
411 	};
412 };
413 
414 /**
415  * skb_mstamp_get - get current timestamp
416  * @cl: place to store timestamps
417  */
418 static inline void skb_mstamp_get(struct skb_mstamp *cl)
419 {
420 	u64 val = local_clock();
421 
422 	do_div(val, NSEC_PER_USEC);
423 	cl->stamp_us = (u32)val;
424 	cl->stamp_jiffies = (u32)jiffies;
425 }
426 
427 /**
428  * skb_mstamp_delta - compute the difference in usec between two skb_mstamp
429  * @t1: pointer to newest sample
430  * @t0: pointer to oldest sample
431  */
432 static inline u32 skb_mstamp_us_delta(const struct skb_mstamp *t1,
433 				      const struct skb_mstamp *t0)
434 {
435 	s32 delta_us = t1->stamp_us - t0->stamp_us;
436 	u32 delta_jiffies = t1->stamp_jiffies - t0->stamp_jiffies;
437 
438 	/* If delta_us is negative, this might be because interval is too big,
439 	 * or local_clock() drift is too big : fallback using jiffies.
440 	 */
441 	if (delta_us <= 0 ||
442 	    delta_jiffies >= (INT_MAX / (USEC_PER_SEC / HZ)))
443 
444 		delta_us = jiffies_to_usecs(delta_jiffies);
445 
446 	return delta_us;
447 }
448 
449 
450 /**
451  *	struct sk_buff - socket buffer
452  *	@next: Next buffer in list
453  *	@prev: Previous buffer in list
454  *	@tstamp: Time we arrived/left
455  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
456  *	@sk: Socket we are owned by
457  *	@dev: Device we arrived on/are leaving by
458  *	@cb: Control buffer. Free for use by every layer. Put private vars here
459  *	@_skb_refdst: destination entry (with norefcount bit)
460  *	@sp: the security path, used for xfrm
461  *	@len: Length of actual data
462  *	@data_len: Data length
463  *	@mac_len: Length of link layer header
464  *	@hdr_len: writable header length of cloned skb
465  *	@csum: Checksum (must include start/offset pair)
466  *	@csum_start: Offset from skb->head where checksumming should start
467  *	@csum_offset: Offset from csum_start where checksum should be stored
468  *	@priority: Packet queueing priority
469  *	@ignore_df: allow local fragmentation
470  *	@cloned: Head may be cloned (check refcnt to be sure)
471  *	@ip_summed: Driver fed us an IP checksum
472  *	@nohdr: Payload reference only, must not modify header
473  *	@nfctinfo: Relationship of this skb to the connection
474  *	@pkt_type: Packet class
475  *	@fclone: skbuff clone status
476  *	@ipvs_property: skbuff is owned by ipvs
477  *	@peeked: this packet has been seen already, so stats have been
478  *		done for it, don't do them again
479  *	@nf_trace: netfilter packet trace flag
480  *	@protocol: Packet protocol from driver
481  *	@destructor: Destruct function
482  *	@nfct: Associated connection, if any
483  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
484  *	@skb_iif: ifindex of device we arrived on
485  *	@tc_index: Traffic control index
486  *	@tc_verd: traffic control verdict
487  *	@hash: the packet hash
488  *	@queue_mapping: Queue mapping for multiqueue devices
489  *	@xmit_more: More SKBs are pending for this queue
490  *	@ndisc_nodetype: router type (from link layer)
491  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
492  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
493  *		ports.
494  *	@sw_hash: indicates hash was computed in software stack
495  *	@wifi_acked_valid: wifi_acked was set
496  *	@wifi_acked: whether frame was acked on wifi or not
497  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
498   *	@napi_id: id of the NAPI struct this skb came from
499  *	@secmark: security marking
500  *	@mark: Generic packet mark
501  *	@vlan_proto: vlan encapsulation protocol
502  *	@vlan_tci: vlan tag control information
503  *	@inner_protocol: Protocol (encapsulation)
504  *	@inner_transport_header: Inner transport layer header (encapsulation)
505  *	@inner_network_header: Network layer header (encapsulation)
506  *	@inner_mac_header: Link layer header (encapsulation)
507  *	@transport_header: Transport layer header
508  *	@network_header: Network layer header
509  *	@mac_header: Link layer header
510  *	@tail: Tail pointer
511  *	@end: End pointer
512  *	@head: Head of buffer
513  *	@data: Data head pointer
514  *	@truesize: Buffer size
515  *	@users: User count - see {datagram,tcp}.c
516  */
517 
518 struct sk_buff {
519 	union {
520 		struct {
521 			/* These two members must be first. */
522 			struct sk_buff		*next;
523 			struct sk_buff		*prev;
524 
525 			union {
526 				ktime_t		tstamp;
527 				struct skb_mstamp skb_mstamp;
528 			};
529 		};
530 		struct rb_node	rbnode; /* used in netem & tcp stack */
531 	};
532 	struct sock		*sk;
533 	struct net_device	*dev;
534 
535 	/*
536 	 * This is the control buffer. It is free to use for every
537 	 * layer. Please put your private variables there. If you
538 	 * want to keep them across layers you have to do a skb_clone()
539 	 * first. This is owned by whoever has the skb queued ATM.
540 	 */
541 	char			cb[48] __aligned(8);
542 
543 	unsigned long		_skb_refdst;
544 	void			(*destructor)(struct sk_buff *skb);
545 #ifdef CONFIG_XFRM
546 	struct	sec_path	*sp;
547 #endif
548 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
549 	struct nf_conntrack	*nfct;
550 #endif
551 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
552 	struct nf_bridge_info	*nf_bridge;
553 #endif
554 	unsigned int		len,
555 				data_len;
556 	__u16			mac_len,
557 				hdr_len;
558 
559 	/* Following fields are _not_ copied in __copy_skb_header()
560 	 * Note that queue_mapping is here mostly to fill a hole.
561 	 */
562 	kmemcheck_bitfield_begin(flags1);
563 	__u16			queue_mapping;
564 	__u8			cloned:1,
565 				nohdr:1,
566 				fclone:2,
567 				peeked:1,
568 				head_frag:1,
569 				xmit_more:1;
570 	/* one bit hole */
571 	kmemcheck_bitfield_end(flags1);
572 
573 	/* fields enclosed in headers_start/headers_end are copied
574 	 * using a single memcpy() in __copy_skb_header()
575 	 */
576 	/* private: */
577 	__u32			headers_start[0];
578 	/* public: */
579 
580 /* if you move pkt_type around you also must adapt those constants */
581 #ifdef __BIG_ENDIAN_BITFIELD
582 #define PKT_TYPE_MAX	(7 << 5)
583 #else
584 #define PKT_TYPE_MAX	7
585 #endif
586 #define PKT_TYPE_OFFSET()	offsetof(struct sk_buff, __pkt_type_offset)
587 
588 	__u8			__pkt_type_offset[0];
589 	__u8			pkt_type:3;
590 	__u8			pfmemalloc:1;
591 	__u8			ignore_df:1;
592 	__u8			nfctinfo:3;
593 
594 	__u8			nf_trace:1;
595 	__u8			ip_summed:2;
596 	__u8			ooo_okay:1;
597 	__u8			l4_hash:1;
598 	__u8			sw_hash:1;
599 	__u8			wifi_acked_valid:1;
600 	__u8			wifi_acked:1;
601 
602 	__u8			no_fcs:1;
603 	/* Indicates the inner headers are valid in the skbuff. */
604 	__u8			encapsulation:1;
605 	__u8			encap_hdr_csum:1;
606 	__u8			csum_valid:1;
607 	__u8			csum_complete_sw:1;
608 	__u8			csum_level:2;
609 	__u8			csum_bad:1;
610 
611 #ifdef CONFIG_IPV6_NDISC_NODETYPE
612 	__u8			ndisc_nodetype:2;
613 #endif
614 	__u8			ipvs_property:1;
615 	__u8			inner_protocol_type:1;
616 	__u8			remcsum_offload:1;
617 	/* 3 or 5 bit hole */
618 
619 #ifdef CONFIG_NET_SCHED
620 	__u16			tc_index;	/* traffic control index */
621 #ifdef CONFIG_NET_CLS_ACT
622 	__u16			tc_verd;	/* traffic control verdict */
623 #endif
624 #endif
625 
626 	union {
627 		__wsum		csum;
628 		struct {
629 			__u16	csum_start;
630 			__u16	csum_offset;
631 		};
632 	};
633 	__u32			priority;
634 	int			skb_iif;
635 	__u32			hash;
636 	__be16			vlan_proto;
637 	__u16			vlan_tci;
638 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
639 	union {
640 		unsigned int	napi_id;
641 		unsigned int	sender_cpu;
642 	};
643 #endif
644 #ifdef CONFIG_NETWORK_SECMARK
645 	__u32			secmark;
646 #endif
647 	union {
648 		__u32		mark;
649 		__u32		reserved_tailroom;
650 	};
651 
652 	union {
653 		__be16		inner_protocol;
654 		__u8		inner_ipproto;
655 	};
656 
657 	__u16			inner_transport_header;
658 	__u16			inner_network_header;
659 	__u16			inner_mac_header;
660 
661 	__be16			protocol;
662 	__u16			transport_header;
663 	__u16			network_header;
664 	__u16			mac_header;
665 
666 	/* private: */
667 	__u32			headers_end[0];
668 	/* public: */
669 
670 	/* These elements must be at the end, see alloc_skb() for details.  */
671 	sk_buff_data_t		tail;
672 	sk_buff_data_t		end;
673 	unsigned char		*head,
674 				*data;
675 	unsigned int		truesize;
676 	atomic_t		users;
677 };
678 
679 #ifdef __KERNEL__
680 /*
681  *	Handling routines are only of interest to the kernel
682  */
683 #include <linux/slab.h>
684 
685 
686 #define SKB_ALLOC_FCLONE	0x01
687 #define SKB_ALLOC_RX		0x02
688 #define SKB_ALLOC_NAPI		0x04
689 
690 /* Returns true if the skb was allocated from PFMEMALLOC reserves */
691 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
692 {
693 	return unlikely(skb->pfmemalloc);
694 }
695 
696 /*
697  * skb might have a dst pointer attached, refcounted or not.
698  * _skb_refdst low order bit is set if refcount was _not_ taken
699  */
700 #define SKB_DST_NOREF	1UL
701 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
702 
703 /**
704  * skb_dst - returns skb dst_entry
705  * @skb: buffer
706  *
707  * Returns skb dst_entry, regardless of reference taken or not.
708  */
709 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
710 {
711 	/* If refdst was not refcounted, check we still are in a
712 	 * rcu_read_lock section
713 	 */
714 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
715 		!rcu_read_lock_held() &&
716 		!rcu_read_lock_bh_held());
717 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
718 }
719 
720 /**
721  * skb_dst_set - sets skb dst
722  * @skb: buffer
723  * @dst: dst entry
724  *
725  * Sets skb dst, assuming a reference was taken on dst and should
726  * be released by skb_dst_drop()
727  */
728 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
729 {
730 	skb->_skb_refdst = (unsigned long)dst;
731 }
732 
733 /**
734  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
735  * @skb: buffer
736  * @dst: dst entry
737  *
738  * Sets skb dst, assuming a reference was not taken on dst.
739  * If dst entry is cached, we do not take reference and dst_release
740  * will be avoided by refdst_drop. If dst entry is not cached, we take
741  * reference, so that last dst_release can destroy the dst immediately.
742  */
743 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
744 {
745 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
746 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
747 }
748 
749 /**
750  * skb_dst_is_noref - Test if skb dst isn't refcounted
751  * @skb: buffer
752  */
753 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
754 {
755 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
756 }
757 
758 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
759 {
760 	return (struct rtable *)skb_dst(skb);
761 }
762 
763 void kfree_skb(struct sk_buff *skb);
764 void kfree_skb_list(struct sk_buff *segs);
765 void skb_tx_error(struct sk_buff *skb);
766 void consume_skb(struct sk_buff *skb);
767 void  __kfree_skb(struct sk_buff *skb);
768 extern struct kmem_cache *skbuff_head_cache;
769 
770 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
771 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
772 		      bool *fragstolen, int *delta_truesize);
773 
774 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
775 			    int node);
776 struct sk_buff *build_skb(void *data, unsigned int frag_size);
777 static inline struct sk_buff *alloc_skb(unsigned int size,
778 					gfp_t priority)
779 {
780 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
781 }
782 
783 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
784 				     unsigned long data_len,
785 				     int max_page_order,
786 				     int *errcode,
787 				     gfp_t gfp_mask);
788 
789 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
790 struct sk_buff_fclones {
791 	struct sk_buff	skb1;
792 
793 	struct sk_buff	skb2;
794 
795 	atomic_t	fclone_ref;
796 };
797 
798 /**
799  *	skb_fclone_busy - check if fclone is busy
800  *	@skb: buffer
801  *
802  * Returns true is skb is a fast clone, and its clone is not freed.
803  * Some drivers call skb_orphan() in their ndo_start_xmit(),
804  * so we also check that this didnt happen.
805  */
806 static inline bool skb_fclone_busy(const struct sock *sk,
807 				   const struct sk_buff *skb)
808 {
809 	const struct sk_buff_fclones *fclones;
810 
811 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
812 
813 	return skb->fclone == SKB_FCLONE_ORIG &&
814 	       atomic_read(&fclones->fclone_ref) > 1 &&
815 	       fclones->skb2.sk == sk;
816 }
817 
818 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
819 					       gfp_t priority)
820 {
821 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
822 }
823 
824 struct sk_buff *__alloc_skb_head(gfp_t priority, int node);
825 static inline struct sk_buff *alloc_skb_head(gfp_t priority)
826 {
827 	return __alloc_skb_head(priority, -1);
828 }
829 
830 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
831 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
832 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
833 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
834 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
835 				   gfp_t gfp_mask, bool fclone);
836 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
837 					  gfp_t gfp_mask)
838 {
839 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
840 }
841 
842 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
843 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
844 				     unsigned int headroom);
845 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
846 				int newtailroom, gfp_t priority);
847 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
848 			int offset, int len);
849 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset,
850 		 int len);
851 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
852 int skb_pad(struct sk_buff *skb, int pad);
853 #define dev_kfree_skb(a)	consume_skb(a)
854 
855 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
856 			    int getfrag(void *from, char *to, int offset,
857 					int len, int odd, struct sk_buff *skb),
858 			    void *from, int length);
859 
860 struct skb_seq_state {
861 	__u32		lower_offset;
862 	__u32		upper_offset;
863 	__u32		frag_idx;
864 	__u32		stepped_offset;
865 	struct sk_buff	*root_skb;
866 	struct sk_buff	*cur_skb;
867 	__u8		*frag_data;
868 };
869 
870 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
871 			  unsigned int to, struct skb_seq_state *st);
872 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
873 			  struct skb_seq_state *st);
874 void skb_abort_seq_read(struct skb_seq_state *st);
875 
876 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
877 			   unsigned int to, struct ts_config *config);
878 
879 /*
880  * Packet hash types specify the type of hash in skb_set_hash.
881  *
882  * Hash types refer to the protocol layer addresses which are used to
883  * construct a packet's hash. The hashes are used to differentiate or identify
884  * flows of the protocol layer for the hash type. Hash types are either
885  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
886  *
887  * Properties of hashes:
888  *
889  * 1) Two packets in different flows have different hash values
890  * 2) Two packets in the same flow should have the same hash value
891  *
892  * A hash at a higher layer is considered to be more specific. A driver should
893  * set the most specific hash possible.
894  *
895  * A driver cannot indicate a more specific hash than the layer at which a hash
896  * was computed. For instance an L3 hash cannot be set as an L4 hash.
897  *
898  * A driver may indicate a hash level which is less specific than the
899  * actual layer the hash was computed on. For instance, a hash computed
900  * at L4 may be considered an L3 hash. This should only be done if the
901  * driver can't unambiguously determine that the HW computed the hash at
902  * the higher layer. Note that the "should" in the second property above
903  * permits this.
904  */
905 enum pkt_hash_types {
906 	PKT_HASH_TYPE_NONE,	/* Undefined type */
907 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
908 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
909 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
910 };
911 
912 static inline void
913 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
914 {
915 	skb->l4_hash = (type == PKT_HASH_TYPE_L4);
916 	skb->sw_hash = 0;
917 	skb->hash = hash;
918 }
919 
920 void __skb_get_hash(struct sk_buff *skb);
921 static inline __u32 skb_get_hash(struct sk_buff *skb)
922 {
923 	if (!skb->l4_hash && !skb->sw_hash)
924 		__skb_get_hash(skb);
925 
926 	return skb->hash;
927 }
928 
929 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
930 {
931 	return skb->hash;
932 }
933 
934 static inline void skb_clear_hash(struct sk_buff *skb)
935 {
936 	skb->hash = 0;
937 	skb->sw_hash = 0;
938 	skb->l4_hash = 0;
939 }
940 
941 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
942 {
943 	if (!skb->l4_hash)
944 		skb_clear_hash(skb);
945 }
946 
947 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
948 {
949 	to->hash = from->hash;
950 	to->sw_hash = from->sw_hash;
951 	to->l4_hash = from->l4_hash;
952 };
953 
954 static inline void skb_sender_cpu_clear(struct sk_buff *skb)
955 {
956 #ifdef CONFIG_XPS
957 	skb->sender_cpu = 0;
958 #endif
959 }
960 
961 #ifdef NET_SKBUFF_DATA_USES_OFFSET
962 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
963 {
964 	return skb->head + skb->end;
965 }
966 
967 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
968 {
969 	return skb->end;
970 }
971 #else
972 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
973 {
974 	return skb->end;
975 }
976 
977 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
978 {
979 	return skb->end - skb->head;
980 }
981 #endif
982 
983 /* Internal */
984 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
985 
986 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
987 {
988 	return &skb_shinfo(skb)->hwtstamps;
989 }
990 
991 /**
992  *	skb_queue_empty - check if a queue is empty
993  *	@list: queue head
994  *
995  *	Returns true if the queue is empty, false otherwise.
996  */
997 static inline int skb_queue_empty(const struct sk_buff_head *list)
998 {
999 	return list->next == (const struct sk_buff *) list;
1000 }
1001 
1002 /**
1003  *	skb_queue_is_last - check if skb is the last entry in the queue
1004  *	@list: queue head
1005  *	@skb: buffer
1006  *
1007  *	Returns true if @skb is the last buffer on the list.
1008  */
1009 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1010 				     const struct sk_buff *skb)
1011 {
1012 	return skb->next == (const struct sk_buff *) list;
1013 }
1014 
1015 /**
1016  *	skb_queue_is_first - check if skb is the first entry in the queue
1017  *	@list: queue head
1018  *	@skb: buffer
1019  *
1020  *	Returns true if @skb is the first buffer on the list.
1021  */
1022 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1023 				      const struct sk_buff *skb)
1024 {
1025 	return skb->prev == (const struct sk_buff *) list;
1026 }
1027 
1028 /**
1029  *	skb_queue_next - return the next packet in the queue
1030  *	@list: queue head
1031  *	@skb: current buffer
1032  *
1033  *	Return the next packet in @list after @skb.  It is only valid to
1034  *	call this if skb_queue_is_last() evaluates to false.
1035  */
1036 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1037 					     const struct sk_buff *skb)
1038 {
1039 	/* This BUG_ON may seem severe, but if we just return then we
1040 	 * are going to dereference garbage.
1041 	 */
1042 	BUG_ON(skb_queue_is_last(list, skb));
1043 	return skb->next;
1044 }
1045 
1046 /**
1047  *	skb_queue_prev - return the prev packet in the queue
1048  *	@list: queue head
1049  *	@skb: current buffer
1050  *
1051  *	Return the prev packet in @list before @skb.  It is only valid to
1052  *	call this if skb_queue_is_first() evaluates to false.
1053  */
1054 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1055 					     const struct sk_buff *skb)
1056 {
1057 	/* This BUG_ON may seem severe, but if we just return then we
1058 	 * are going to dereference garbage.
1059 	 */
1060 	BUG_ON(skb_queue_is_first(list, skb));
1061 	return skb->prev;
1062 }
1063 
1064 /**
1065  *	skb_get - reference buffer
1066  *	@skb: buffer to reference
1067  *
1068  *	Makes another reference to a socket buffer and returns a pointer
1069  *	to the buffer.
1070  */
1071 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1072 {
1073 	atomic_inc(&skb->users);
1074 	return skb;
1075 }
1076 
1077 /*
1078  * If users == 1, we are the only owner and are can avoid redundant
1079  * atomic change.
1080  */
1081 
1082 /**
1083  *	skb_cloned - is the buffer a clone
1084  *	@skb: buffer to check
1085  *
1086  *	Returns true if the buffer was generated with skb_clone() and is
1087  *	one of multiple shared copies of the buffer. Cloned buffers are
1088  *	shared data so must not be written to under normal circumstances.
1089  */
1090 static inline int skb_cloned(const struct sk_buff *skb)
1091 {
1092 	return skb->cloned &&
1093 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1094 }
1095 
1096 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1097 {
1098 	might_sleep_if(pri & __GFP_WAIT);
1099 
1100 	if (skb_cloned(skb))
1101 		return pskb_expand_head(skb, 0, 0, pri);
1102 
1103 	return 0;
1104 }
1105 
1106 /**
1107  *	skb_header_cloned - is the header a clone
1108  *	@skb: buffer to check
1109  *
1110  *	Returns true if modifying the header part of the buffer requires
1111  *	the data to be copied.
1112  */
1113 static inline int skb_header_cloned(const struct sk_buff *skb)
1114 {
1115 	int dataref;
1116 
1117 	if (!skb->cloned)
1118 		return 0;
1119 
1120 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1121 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1122 	return dataref != 1;
1123 }
1124 
1125 /**
1126  *	skb_header_release - release reference to header
1127  *	@skb: buffer to operate on
1128  *
1129  *	Drop a reference to the header part of the buffer.  This is done
1130  *	by acquiring a payload reference.  You must not read from the header
1131  *	part of skb->data after this.
1132  *	Note : Check if you can use __skb_header_release() instead.
1133  */
1134 static inline void skb_header_release(struct sk_buff *skb)
1135 {
1136 	BUG_ON(skb->nohdr);
1137 	skb->nohdr = 1;
1138 	atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
1139 }
1140 
1141 /**
1142  *	__skb_header_release - release reference to header
1143  *	@skb: buffer to operate on
1144  *
1145  *	Variant of skb_header_release() assuming skb is private to caller.
1146  *	We can avoid one atomic operation.
1147  */
1148 static inline void __skb_header_release(struct sk_buff *skb)
1149 {
1150 	skb->nohdr = 1;
1151 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1152 }
1153 
1154 
1155 /**
1156  *	skb_shared - is the buffer shared
1157  *	@skb: buffer to check
1158  *
1159  *	Returns true if more than one person has a reference to this
1160  *	buffer.
1161  */
1162 static inline int skb_shared(const struct sk_buff *skb)
1163 {
1164 	return atomic_read(&skb->users) != 1;
1165 }
1166 
1167 /**
1168  *	skb_share_check - check if buffer is shared and if so clone it
1169  *	@skb: buffer to check
1170  *	@pri: priority for memory allocation
1171  *
1172  *	If the buffer is shared the buffer is cloned and the old copy
1173  *	drops a reference. A new clone with a single reference is returned.
1174  *	If the buffer is not shared the original buffer is returned. When
1175  *	being called from interrupt status or with spinlocks held pri must
1176  *	be GFP_ATOMIC.
1177  *
1178  *	NULL is returned on a memory allocation failure.
1179  */
1180 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1181 {
1182 	might_sleep_if(pri & __GFP_WAIT);
1183 	if (skb_shared(skb)) {
1184 		struct sk_buff *nskb = skb_clone(skb, pri);
1185 
1186 		if (likely(nskb))
1187 			consume_skb(skb);
1188 		else
1189 			kfree_skb(skb);
1190 		skb = nskb;
1191 	}
1192 	return skb;
1193 }
1194 
1195 /*
1196  *	Copy shared buffers into a new sk_buff. We effectively do COW on
1197  *	packets to handle cases where we have a local reader and forward
1198  *	and a couple of other messy ones. The normal one is tcpdumping
1199  *	a packet thats being forwarded.
1200  */
1201 
1202 /**
1203  *	skb_unshare - make a copy of a shared buffer
1204  *	@skb: buffer to check
1205  *	@pri: priority for memory allocation
1206  *
1207  *	If the socket buffer is a clone then this function creates a new
1208  *	copy of the data, drops a reference count on the old copy and returns
1209  *	the new copy with the reference count at 1. If the buffer is not a clone
1210  *	the original buffer is returned. When called with a spinlock held or
1211  *	from interrupt state @pri must be %GFP_ATOMIC
1212  *
1213  *	%NULL is returned on a memory allocation failure.
1214  */
1215 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1216 					  gfp_t pri)
1217 {
1218 	might_sleep_if(pri & __GFP_WAIT);
1219 	if (skb_cloned(skb)) {
1220 		struct sk_buff *nskb = skb_copy(skb, pri);
1221 
1222 		/* Free our shared copy */
1223 		if (likely(nskb))
1224 			consume_skb(skb);
1225 		else
1226 			kfree_skb(skb);
1227 		skb = nskb;
1228 	}
1229 	return skb;
1230 }
1231 
1232 /**
1233  *	skb_peek - peek at the head of an &sk_buff_head
1234  *	@list_: list to peek at
1235  *
1236  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1237  *	be careful with this one. A peek leaves the buffer on the
1238  *	list and someone else may run off with it. You must hold
1239  *	the appropriate locks or have a private queue to do this.
1240  *
1241  *	Returns %NULL for an empty list or a pointer to the head element.
1242  *	The reference count is not incremented and the reference is therefore
1243  *	volatile. Use with caution.
1244  */
1245 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1246 {
1247 	struct sk_buff *skb = list_->next;
1248 
1249 	if (skb == (struct sk_buff *)list_)
1250 		skb = NULL;
1251 	return skb;
1252 }
1253 
1254 /**
1255  *	skb_peek_next - peek skb following the given one from a queue
1256  *	@skb: skb to start from
1257  *	@list_: list to peek at
1258  *
1259  *	Returns %NULL when the end of the list is met or a pointer to the
1260  *	next element. The reference count is not incremented and the
1261  *	reference is therefore volatile. Use with caution.
1262  */
1263 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1264 		const struct sk_buff_head *list_)
1265 {
1266 	struct sk_buff *next = skb->next;
1267 
1268 	if (next == (struct sk_buff *)list_)
1269 		next = NULL;
1270 	return next;
1271 }
1272 
1273 /**
1274  *	skb_peek_tail - peek at the tail of an &sk_buff_head
1275  *	@list_: list to peek at
1276  *
1277  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1278  *	be careful with this one. A peek leaves the buffer on the
1279  *	list and someone else may run off with it. You must hold
1280  *	the appropriate locks or have a private queue to do this.
1281  *
1282  *	Returns %NULL for an empty list or a pointer to the tail element.
1283  *	The reference count is not incremented and the reference is therefore
1284  *	volatile. Use with caution.
1285  */
1286 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1287 {
1288 	struct sk_buff *skb = list_->prev;
1289 
1290 	if (skb == (struct sk_buff *)list_)
1291 		skb = NULL;
1292 	return skb;
1293 
1294 }
1295 
1296 /**
1297  *	skb_queue_len	- get queue length
1298  *	@list_: list to measure
1299  *
1300  *	Return the length of an &sk_buff queue.
1301  */
1302 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1303 {
1304 	return list_->qlen;
1305 }
1306 
1307 /**
1308  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1309  *	@list: queue to initialize
1310  *
1311  *	This initializes only the list and queue length aspects of
1312  *	an sk_buff_head object.  This allows to initialize the list
1313  *	aspects of an sk_buff_head without reinitializing things like
1314  *	the spinlock.  It can also be used for on-stack sk_buff_head
1315  *	objects where the spinlock is known to not be used.
1316  */
1317 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1318 {
1319 	list->prev = list->next = (struct sk_buff *)list;
1320 	list->qlen = 0;
1321 }
1322 
1323 /*
1324  * This function creates a split out lock class for each invocation;
1325  * this is needed for now since a whole lot of users of the skb-queue
1326  * infrastructure in drivers have different locking usage (in hardirq)
1327  * than the networking core (in softirq only). In the long run either the
1328  * network layer or drivers should need annotation to consolidate the
1329  * main types of usage into 3 classes.
1330  */
1331 static inline void skb_queue_head_init(struct sk_buff_head *list)
1332 {
1333 	spin_lock_init(&list->lock);
1334 	__skb_queue_head_init(list);
1335 }
1336 
1337 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1338 		struct lock_class_key *class)
1339 {
1340 	skb_queue_head_init(list);
1341 	lockdep_set_class(&list->lock, class);
1342 }
1343 
1344 /*
1345  *	Insert an sk_buff on a list.
1346  *
1347  *	The "__skb_xxxx()" functions are the non-atomic ones that
1348  *	can only be called with interrupts disabled.
1349  */
1350 void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1351 		struct sk_buff_head *list);
1352 static inline void __skb_insert(struct sk_buff *newsk,
1353 				struct sk_buff *prev, struct sk_buff *next,
1354 				struct sk_buff_head *list)
1355 {
1356 	newsk->next = next;
1357 	newsk->prev = prev;
1358 	next->prev  = prev->next = newsk;
1359 	list->qlen++;
1360 }
1361 
1362 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1363 				      struct sk_buff *prev,
1364 				      struct sk_buff *next)
1365 {
1366 	struct sk_buff *first = list->next;
1367 	struct sk_buff *last = list->prev;
1368 
1369 	first->prev = prev;
1370 	prev->next = first;
1371 
1372 	last->next = next;
1373 	next->prev = last;
1374 }
1375 
1376 /**
1377  *	skb_queue_splice - join two skb lists, this is designed for stacks
1378  *	@list: the new list to add
1379  *	@head: the place to add it in the first list
1380  */
1381 static inline void skb_queue_splice(const struct sk_buff_head *list,
1382 				    struct sk_buff_head *head)
1383 {
1384 	if (!skb_queue_empty(list)) {
1385 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1386 		head->qlen += list->qlen;
1387 	}
1388 }
1389 
1390 /**
1391  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1392  *	@list: the new list to add
1393  *	@head: the place to add it in the first list
1394  *
1395  *	The list at @list is reinitialised
1396  */
1397 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1398 					 struct sk_buff_head *head)
1399 {
1400 	if (!skb_queue_empty(list)) {
1401 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1402 		head->qlen += list->qlen;
1403 		__skb_queue_head_init(list);
1404 	}
1405 }
1406 
1407 /**
1408  *	skb_queue_splice_tail - join two skb lists, each list being a queue
1409  *	@list: the new list to add
1410  *	@head: the place to add it in the first list
1411  */
1412 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1413 					 struct sk_buff_head *head)
1414 {
1415 	if (!skb_queue_empty(list)) {
1416 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1417 		head->qlen += list->qlen;
1418 	}
1419 }
1420 
1421 /**
1422  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1423  *	@list: the new list to add
1424  *	@head: the place to add it in the first list
1425  *
1426  *	Each of the lists is a queue.
1427  *	The list at @list is reinitialised
1428  */
1429 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1430 					      struct sk_buff_head *head)
1431 {
1432 	if (!skb_queue_empty(list)) {
1433 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1434 		head->qlen += list->qlen;
1435 		__skb_queue_head_init(list);
1436 	}
1437 }
1438 
1439 /**
1440  *	__skb_queue_after - queue a buffer at the list head
1441  *	@list: list to use
1442  *	@prev: place after this buffer
1443  *	@newsk: buffer to queue
1444  *
1445  *	Queue a buffer int the middle of a list. This function takes no locks
1446  *	and you must therefore hold required locks before calling it.
1447  *
1448  *	A buffer cannot be placed on two lists at the same time.
1449  */
1450 static inline void __skb_queue_after(struct sk_buff_head *list,
1451 				     struct sk_buff *prev,
1452 				     struct sk_buff *newsk)
1453 {
1454 	__skb_insert(newsk, prev, prev->next, list);
1455 }
1456 
1457 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1458 		struct sk_buff_head *list);
1459 
1460 static inline void __skb_queue_before(struct sk_buff_head *list,
1461 				      struct sk_buff *next,
1462 				      struct sk_buff *newsk)
1463 {
1464 	__skb_insert(newsk, next->prev, next, list);
1465 }
1466 
1467 /**
1468  *	__skb_queue_head - queue a buffer at the list head
1469  *	@list: list to use
1470  *	@newsk: buffer to queue
1471  *
1472  *	Queue a buffer at the start of a list. This function takes no locks
1473  *	and you must therefore hold required locks before calling it.
1474  *
1475  *	A buffer cannot be placed on two lists at the same time.
1476  */
1477 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1478 static inline void __skb_queue_head(struct sk_buff_head *list,
1479 				    struct sk_buff *newsk)
1480 {
1481 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
1482 }
1483 
1484 /**
1485  *	__skb_queue_tail - queue a buffer at the list tail
1486  *	@list: list to use
1487  *	@newsk: buffer to queue
1488  *
1489  *	Queue a buffer at the end of a list. This function takes no locks
1490  *	and you must therefore hold required locks before calling it.
1491  *
1492  *	A buffer cannot be placed on two lists at the same time.
1493  */
1494 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1495 static inline void __skb_queue_tail(struct sk_buff_head *list,
1496 				   struct sk_buff *newsk)
1497 {
1498 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
1499 }
1500 
1501 /*
1502  * remove sk_buff from list. _Must_ be called atomically, and with
1503  * the list known..
1504  */
1505 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1506 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1507 {
1508 	struct sk_buff *next, *prev;
1509 
1510 	list->qlen--;
1511 	next	   = skb->next;
1512 	prev	   = skb->prev;
1513 	skb->next  = skb->prev = NULL;
1514 	next->prev = prev;
1515 	prev->next = next;
1516 }
1517 
1518 /**
1519  *	__skb_dequeue - remove from the head of the queue
1520  *	@list: list to dequeue from
1521  *
1522  *	Remove the head of the list. This function does not take any locks
1523  *	so must be used with appropriate locks held only. The head item is
1524  *	returned or %NULL if the list is empty.
1525  */
1526 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1527 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1528 {
1529 	struct sk_buff *skb = skb_peek(list);
1530 	if (skb)
1531 		__skb_unlink(skb, list);
1532 	return skb;
1533 }
1534 
1535 /**
1536  *	__skb_dequeue_tail - remove from the tail of the queue
1537  *	@list: list to dequeue from
1538  *
1539  *	Remove the tail of the list. This function does not take any locks
1540  *	so must be used with appropriate locks held only. The tail item is
1541  *	returned or %NULL if the list is empty.
1542  */
1543 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1544 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1545 {
1546 	struct sk_buff *skb = skb_peek_tail(list);
1547 	if (skb)
1548 		__skb_unlink(skb, list);
1549 	return skb;
1550 }
1551 
1552 
1553 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1554 {
1555 	return skb->data_len;
1556 }
1557 
1558 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1559 {
1560 	return skb->len - skb->data_len;
1561 }
1562 
1563 static inline int skb_pagelen(const struct sk_buff *skb)
1564 {
1565 	int i, len = 0;
1566 
1567 	for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1568 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1569 	return len + skb_headlen(skb);
1570 }
1571 
1572 /**
1573  * __skb_fill_page_desc - initialise a paged fragment in an skb
1574  * @skb: buffer containing fragment to be initialised
1575  * @i: paged fragment index to initialise
1576  * @page: the page to use for this fragment
1577  * @off: the offset to the data with @page
1578  * @size: the length of the data
1579  *
1580  * Initialises the @i'th fragment of @skb to point to &size bytes at
1581  * offset @off within @page.
1582  *
1583  * Does not take any additional reference on the fragment.
1584  */
1585 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1586 					struct page *page, int off, int size)
1587 {
1588 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1589 
1590 	/*
1591 	 * Propagate page->pfmemalloc to the skb if we can. The problem is
1592 	 * that not all callers have unique ownership of the page. If
1593 	 * pfmemalloc is set, we check the mapping as a mapping implies
1594 	 * page->index is set (index and pfmemalloc share space).
1595 	 * If it's a valid mapping, we cannot use page->pfmemalloc but we
1596 	 * do not lose pfmemalloc information as the pages would not be
1597 	 * allocated using __GFP_MEMALLOC.
1598 	 */
1599 	frag->page.p		  = page;
1600 	frag->page_offset	  = off;
1601 	skb_frag_size_set(frag, size);
1602 
1603 	page = compound_head(page);
1604 	if (page->pfmemalloc && !page->mapping)
1605 		skb->pfmemalloc	= true;
1606 }
1607 
1608 /**
1609  * skb_fill_page_desc - initialise a paged fragment in an skb
1610  * @skb: buffer containing fragment to be initialised
1611  * @i: paged fragment index to initialise
1612  * @page: the page to use for this fragment
1613  * @off: the offset to the data with @page
1614  * @size: the length of the data
1615  *
1616  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1617  * @skb to point to @size bytes at offset @off within @page. In
1618  * addition updates @skb such that @i is the last fragment.
1619  *
1620  * Does not take any additional reference on the fragment.
1621  */
1622 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1623 				      struct page *page, int off, int size)
1624 {
1625 	__skb_fill_page_desc(skb, i, page, off, size);
1626 	skb_shinfo(skb)->nr_frags = i + 1;
1627 }
1628 
1629 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
1630 		     int size, unsigned int truesize);
1631 
1632 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
1633 			  unsigned int truesize);
1634 
1635 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
1636 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_has_frag_list(skb))
1637 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
1638 
1639 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1640 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1641 {
1642 	return skb->head + skb->tail;
1643 }
1644 
1645 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1646 {
1647 	skb->tail = skb->data - skb->head;
1648 }
1649 
1650 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1651 {
1652 	skb_reset_tail_pointer(skb);
1653 	skb->tail += offset;
1654 }
1655 
1656 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1657 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1658 {
1659 	return skb->tail;
1660 }
1661 
1662 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1663 {
1664 	skb->tail = skb->data;
1665 }
1666 
1667 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1668 {
1669 	skb->tail = skb->data + offset;
1670 }
1671 
1672 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1673 
1674 /*
1675  *	Add data to an sk_buff
1676  */
1677 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
1678 unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1679 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1680 {
1681 	unsigned char *tmp = skb_tail_pointer(skb);
1682 	SKB_LINEAR_ASSERT(skb);
1683 	skb->tail += len;
1684 	skb->len  += len;
1685 	return tmp;
1686 }
1687 
1688 unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1689 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1690 {
1691 	skb->data -= len;
1692 	skb->len  += len;
1693 	return skb->data;
1694 }
1695 
1696 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1697 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1698 {
1699 	skb->len -= len;
1700 	BUG_ON(skb->len < skb->data_len);
1701 	return skb->data += len;
1702 }
1703 
1704 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1705 {
1706 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1707 }
1708 
1709 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1710 
1711 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1712 {
1713 	if (len > skb_headlen(skb) &&
1714 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1715 		return NULL;
1716 	skb->len -= len;
1717 	return skb->data += len;
1718 }
1719 
1720 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1721 {
1722 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1723 }
1724 
1725 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1726 {
1727 	if (likely(len <= skb_headlen(skb)))
1728 		return 1;
1729 	if (unlikely(len > skb->len))
1730 		return 0;
1731 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1732 }
1733 
1734 /**
1735  *	skb_headroom - bytes at buffer head
1736  *	@skb: buffer to check
1737  *
1738  *	Return the number of bytes of free space at the head of an &sk_buff.
1739  */
1740 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1741 {
1742 	return skb->data - skb->head;
1743 }
1744 
1745 /**
1746  *	skb_tailroom - bytes at buffer end
1747  *	@skb: buffer to check
1748  *
1749  *	Return the number of bytes of free space at the tail of an sk_buff
1750  */
1751 static inline int skb_tailroom(const struct sk_buff *skb)
1752 {
1753 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1754 }
1755 
1756 /**
1757  *	skb_availroom - bytes at buffer end
1758  *	@skb: buffer to check
1759  *
1760  *	Return the number of bytes of free space at the tail of an sk_buff
1761  *	allocated by sk_stream_alloc()
1762  */
1763 static inline int skb_availroom(const struct sk_buff *skb)
1764 {
1765 	if (skb_is_nonlinear(skb))
1766 		return 0;
1767 
1768 	return skb->end - skb->tail - skb->reserved_tailroom;
1769 }
1770 
1771 /**
1772  *	skb_reserve - adjust headroom
1773  *	@skb: buffer to alter
1774  *	@len: bytes to move
1775  *
1776  *	Increase the headroom of an empty &sk_buff by reducing the tail
1777  *	room. This is only allowed for an empty buffer.
1778  */
1779 static inline void skb_reserve(struct sk_buff *skb, int len)
1780 {
1781 	skb->data += len;
1782 	skb->tail += len;
1783 }
1784 
1785 #define ENCAP_TYPE_ETHER	0
1786 #define ENCAP_TYPE_IPPROTO	1
1787 
1788 static inline void skb_set_inner_protocol(struct sk_buff *skb,
1789 					  __be16 protocol)
1790 {
1791 	skb->inner_protocol = protocol;
1792 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
1793 }
1794 
1795 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
1796 					 __u8 ipproto)
1797 {
1798 	skb->inner_ipproto = ipproto;
1799 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
1800 }
1801 
1802 static inline void skb_reset_inner_headers(struct sk_buff *skb)
1803 {
1804 	skb->inner_mac_header = skb->mac_header;
1805 	skb->inner_network_header = skb->network_header;
1806 	skb->inner_transport_header = skb->transport_header;
1807 }
1808 
1809 static inline void skb_reset_mac_len(struct sk_buff *skb)
1810 {
1811 	skb->mac_len = skb->network_header - skb->mac_header;
1812 }
1813 
1814 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
1815 							*skb)
1816 {
1817 	return skb->head + skb->inner_transport_header;
1818 }
1819 
1820 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
1821 {
1822 	skb->inner_transport_header = skb->data - skb->head;
1823 }
1824 
1825 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
1826 						   const int offset)
1827 {
1828 	skb_reset_inner_transport_header(skb);
1829 	skb->inner_transport_header += offset;
1830 }
1831 
1832 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
1833 {
1834 	return skb->head + skb->inner_network_header;
1835 }
1836 
1837 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
1838 {
1839 	skb->inner_network_header = skb->data - skb->head;
1840 }
1841 
1842 static inline void skb_set_inner_network_header(struct sk_buff *skb,
1843 						const int offset)
1844 {
1845 	skb_reset_inner_network_header(skb);
1846 	skb->inner_network_header += offset;
1847 }
1848 
1849 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
1850 {
1851 	return skb->head + skb->inner_mac_header;
1852 }
1853 
1854 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
1855 {
1856 	skb->inner_mac_header = skb->data - skb->head;
1857 }
1858 
1859 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
1860 					    const int offset)
1861 {
1862 	skb_reset_inner_mac_header(skb);
1863 	skb->inner_mac_header += offset;
1864 }
1865 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
1866 {
1867 	return skb->transport_header != (typeof(skb->transport_header))~0U;
1868 }
1869 
1870 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1871 {
1872 	return skb->head + skb->transport_header;
1873 }
1874 
1875 static inline void skb_reset_transport_header(struct sk_buff *skb)
1876 {
1877 	skb->transport_header = skb->data - skb->head;
1878 }
1879 
1880 static inline void skb_set_transport_header(struct sk_buff *skb,
1881 					    const int offset)
1882 {
1883 	skb_reset_transport_header(skb);
1884 	skb->transport_header += offset;
1885 }
1886 
1887 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1888 {
1889 	return skb->head + skb->network_header;
1890 }
1891 
1892 static inline void skb_reset_network_header(struct sk_buff *skb)
1893 {
1894 	skb->network_header = skb->data - skb->head;
1895 }
1896 
1897 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1898 {
1899 	skb_reset_network_header(skb);
1900 	skb->network_header += offset;
1901 }
1902 
1903 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1904 {
1905 	return skb->head + skb->mac_header;
1906 }
1907 
1908 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1909 {
1910 	return skb->mac_header != (typeof(skb->mac_header))~0U;
1911 }
1912 
1913 static inline void skb_reset_mac_header(struct sk_buff *skb)
1914 {
1915 	skb->mac_header = skb->data - skb->head;
1916 }
1917 
1918 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1919 {
1920 	skb_reset_mac_header(skb);
1921 	skb->mac_header += offset;
1922 }
1923 
1924 static inline void skb_pop_mac_header(struct sk_buff *skb)
1925 {
1926 	skb->mac_header = skb->network_header;
1927 }
1928 
1929 static inline void skb_probe_transport_header(struct sk_buff *skb,
1930 					      const int offset_hint)
1931 {
1932 	struct flow_keys keys;
1933 
1934 	if (skb_transport_header_was_set(skb))
1935 		return;
1936 	else if (skb_flow_dissect(skb, &keys))
1937 		skb_set_transport_header(skb, keys.thoff);
1938 	else
1939 		skb_set_transport_header(skb, offset_hint);
1940 }
1941 
1942 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
1943 {
1944 	if (skb_mac_header_was_set(skb)) {
1945 		const unsigned char *old_mac = skb_mac_header(skb);
1946 
1947 		skb_set_mac_header(skb, -skb->mac_len);
1948 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
1949 	}
1950 }
1951 
1952 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
1953 {
1954 	return skb->csum_start - skb_headroom(skb);
1955 }
1956 
1957 static inline int skb_transport_offset(const struct sk_buff *skb)
1958 {
1959 	return skb_transport_header(skb) - skb->data;
1960 }
1961 
1962 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1963 {
1964 	return skb->transport_header - skb->network_header;
1965 }
1966 
1967 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
1968 {
1969 	return skb->inner_transport_header - skb->inner_network_header;
1970 }
1971 
1972 static inline int skb_network_offset(const struct sk_buff *skb)
1973 {
1974 	return skb_network_header(skb) - skb->data;
1975 }
1976 
1977 static inline int skb_inner_network_offset(const struct sk_buff *skb)
1978 {
1979 	return skb_inner_network_header(skb) - skb->data;
1980 }
1981 
1982 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
1983 {
1984 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
1985 }
1986 
1987 /*
1988  * CPUs often take a performance hit when accessing unaligned memory
1989  * locations. The actual performance hit varies, it can be small if the
1990  * hardware handles it or large if we have to take an exception and fix it
1991  * in software.
1992  *
1993  * Since an ethernet header is 14 bytes network drivers often end up with
1994  * the IP header at an unaligned offset. The IP header can be aligned by
1995  * shifting the start of the packet by 2 bytes. Drivers should do this
1996  * with:
1997  *
1998  * skb_reserve(skb, NET_IP_ALIGN);
1999  *
2000  * The downside to this alignment of the IP header is that the DMA is now
2001  * unaligned. On some architectures the cost of an unaligned DMA is high
2002  * and this cost outweighs the gains made by aligning the IP header.
2003  *
2004  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2005  * to be overridden.
2006  */
2007 #ifndef NET_IP_ALIGN
2008 #define NET_IP_ALIGN	2
2009 #endif
2010 
2011 /*
2012  * The networking layer reserves some headroom in skb data (via
2013  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2014  * the header has to grow. In the default case, if the header has to grow
2015  * 32 bytes or less we avoid the reallocation.
2016  *
2017  * Unfortunately this headroom changes the DMA alignment of the resulting
2018  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2019  * on some architectures. An architecture can override this value,
2020  * perhaps setting it to a cacheline in size (since that will maintain
2021  * cacheline alignment of the DMA). It must be a power of 2.
2022  *
2023  * Various parts of the networking layer expect at least 32 bytes of
2024  * headroom, you should not reduce this.
2025  *
2026  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2027  * to reduce average number of cache lines per packet.
2028  * get_rps_cpus() for example only access one 64 bytes aligned block :
2029  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2030  */
2031 #ifndef NET_SKB_PAD
2032 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2033 #endif
2034 
2035 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2036 
2037 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2038 {
2039 	if (unlikely(skb_is_nonlinear(skb))) {
2040 		WARN_ON(1);
2041 		return;
2042 	}
2043 	skb->len = len;
2044 	skb_set_tail_pointer(skb, len);
2045 }
2046 
2047 void skb_trim(struct sk_buff *skb, unsigned int len);
2048 
2049 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2050 {
2051 	if (skb->data_len)
2052 		return ___pskb_trim(skb, len);
2053 	__skb_trim(skb, len);
2054 	return 0;
2055 }
2056 
2057 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2058 {
2059 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2060 }
2061 
2062 /**
2063  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2064  *	@skb: buffer to alter
2065  *	@len: new length
2066  *
2067  *	This is identical to pskb_trim except that the caller knows that
2068  *	the skb is not cloned so we should never get an error due to out-
2069  *	of-memory.
2070  */
2071 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2072 {
2073 	int err = pskb_trim(skb, len);
2074 	BUG_ON(err);
2075 }
2076 
2077 /**
2078  *	skb_orphan - orphan a buffer
2079  *	@skb: buffer to orphan
2080  *
2081  *	If a buffer currently has an owner then we call the owner's
2082  *	destructor function and make the @skb unowned. The buffer continues
2083  *	to exist but is no longer charged to its former owner.
2084  */
2085 static inline void skb_orphan(struct sk_buff *skb)
2086 {
2087 	if (skb->destructor) {
2088 		skb->destructor(skb);
2089 		skb->destructor = NULL;
2090 		skb->sk		= NULL;
2091 	} else {
2092 		BUG_ON(skb->sk);
2093 	}
2094 }
2095 
2096 /**
2097  *	skb_orphan_frags - orphan the frags contained in a buffer
2098  *	@skb: buffer to orphan frags from
2099  *	@gfp_mask: allocation mask for replacement pages
2100  *
2101  *	For each frag in the SKB which needs a destructor (i.e. has an
2102  *	owner) create a copy of that frag and release the original
2103  *	page by calling the destructor.
2104  */
2105 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2106 {
2107 	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
2108 		return 0;
2109 	return skb_copy_ubufs(skb, gfp_mask);
2110 }
2111 
2112 /**
2113  *	__skb_queue_purge - empty a list
2114  *	@list: list to empty
2115  *
2116  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2117  *	the list and one reference dropped. This function does not take the
2118  *	list lock and the caller must hold the relevant locks to use it.
2119  */
2120 void skb_queue_purge(struct sk_buff_head *list);
2121 static inline void __skb_queue_purge(struct sk_buff_head *list)
2122 {
2123 	struct sk_buff *skb;
2124 	while ((skb = __skb_dequeue(list)) != NULL)
2125 		kfree_skb(skb);
2126 }
2127 
2128 #define NETDEV_FRAG_PAGE_MAX_ORDER get_order(32768)
2129 #define NETDEV_FRAG_PAGE_MAX_SIZE  (PAGE_SIZE << NETDEV_FRAG_PAGE_MAX_ORDER)
2130 #define NETDEV_PAGECNT_MAX_BIAS	   NETDEV_FRAG_PAGE_MAX_SIZE
2131 
2132 void *netdev_alloc_frag(unsigned int fragsz);
2133 
2134 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2135 				   gfp_t gfp_mask);
2136 
2137 /**
2138  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
2139  *	@dev: network device to receive on
2140  *	@length: length to allocate
2141  *
2142  *	Allocate a new &sk_buff and assign it a usage count of one. The
2143  *	buffer has unspecified headroom built in. Users should allocate
2144  *	the headroom they think they need without accounting for the
2145  *	built in space. The built in space is used for optimisations.
2146  *
2147  *	%NULL is returned if there is no free memory. Although this function
2148  *	allocates memory it can be called from an interrupt.
2149  */
2150 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2151 					       unsigned int length)
2152 {
2153 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2154 }
2155 
2156 /* legacy helper around __netdev_alloc_skb() */
2157 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2158 					      gfp_t gfp_mask)
2159 {
2160 	return __netdev_alloc_skb(NULL, length, gfp_mask);
2161 }
2162 
2163 /* legacy helper around netdev_alloc_skb() */
2164 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2165 {
2166 	return netdev_alloc_skb(NULL, length);
2167 }
2168 
2169 
2170 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2171 		unsigned int length, gfp_t gfp)
2172 {
2173 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2174 
2175 	if (NET_IP_ALIGN && skb)
2176 		skb_reserve(skb, NET_IP_ALIGN);
2177 	return skb;
2178 }
2179 
2180 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2181 		unsigned int length)
2182 {
2183 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2184 }
2185 
2186 void *napi_alloc_frag(unsigned int fragsz);
2187 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2188 				 unsigned int length, gfp_t gfp_mask);
2189 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2190 					     unsigned int length)
2191 {
2192 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2193 }
2194 
2195 /**
2196  * __dev_alloc_pages - allocate page for network Rx
2197  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2198  * @order: size of the allocation
2199  *
2200  * Allocate a new page.
2201  *
2202  * %NULL is returned if there is no free memory.
2203 */
2204 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2205 					     unsigned int order)
2206 {
2207 	/* This piece of code contains several assumptions.
2208 	 * 1.  This is for device Rx, therefor a cold page is preferred.
2209 	 * 2.  The expectation is the user wants a compound page.
2210 	 * 3.  If requesting a order 0 page it will not be compound
2211 	 *     due to the check to see if order has a value in prep_new_page
2212 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2213 	 *     code in gfp_to_alloc_flags that should be enforcing this.
2214 	 */
2215 	gfp_mask |= __GFP_COLD | __GFP_COMP | __GFP_MEMALLOC;
2216 
2217 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2218 }
2219 
2220 static inline struct page *dev_alloc_pages(unsigned int order)
2221 {
2222 	return __dev_alloc_pages(GFP_ATOMIC, order);
2223 }
2224 
2225 /**
2226  * __dev_alloc_page - allocate a page for network Rx
2227  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2228  *
2229  * Allocate a new page.
2230  *
2231  * %NULL is returned if there is no free memory.
2232  */
2233 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2234 {
2235 	return __dev_alloc_pages(gfp_mask, 0);
2236 }
2237 
2238 static inline struct page *dev_alloc_page(void)
2239 {
2240 	return __dev_alloc_page(GFP_ATOMIC);
2241 }
2242 
2243 /**
2244  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2245  *	@page: The page that was allocated from skb_alloc_page
2246  *	@skb: The skb that may need pfmemalloc set
2247  */
2248 static inline void skb_propagate_pfmemalloc(struct page *page,
2249 					     struct sk_buff *skb)
2250 {
2251 	if (page && page->pfmemalloc)
2252 		skb->pfmemalloc = true;
2253 }
2254 
2255 /**
2256  * skb_frag_page - retrieve the page referred to by a paged fragment
2257  * @frag: the paged fragment
2258  *
2259  * Returns the &struct page associated with @frag.
2260  */
2261 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2262 {
2263 	return frag->page.p;
2264 }
2265 
2266 /**
2267  * __skb_frag_ref - take an addition reference on a paged fragment.
2268  * @frag: the paged fragment
2269  *
2270  * Takes an additional reference on the paged fragment @frag.
2271  */
2272 static inline void __skb_frag_ref(skb_frag_t *frag)
2273 {
2274 	get_page(skb_frag_page(frag));
2275 }
2276 
2277 /**
2278  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2279  * @skb: the buffer
2280  * @f: the fragment offset.
2281  *
2282  * Takes an additional reference on the @f'th paged fragment of @skb.
2283  */
2284 static inline void skb_frag_ref(struct sk_buff *skb, int f)
2285 {
2286 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2287 }
2288 
2289 /**
2290  * __skb_frag_unref - release a reference on a paged fragment.
2291  * @frag: the paged fragment
2292  *
2293  * Releases a reference on the paged fragment @frag.
2294  */
2295 static inline void __skb_frag_unref(skb_frag_t *frag)
2296 {
2297 	put_page(skb_frag_page(frag));
2298 }
2299 
2300 /**
2301  * skb_frag_unref - release a reference on a paged fragment of an skb.
2302  * @skb: the buffer
2303  * @f: the fragment offset
2304  *
2305  * Releases a reference on the @f'th paged fragment of @skb.
2306  */
2307 static inline void skb_frag_unref(struct sk_buff *skb, int f)
2308 {
2309 	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2310 }
2311 
2312 /**
2313  * skb_frag_address - gets the address of the data contained in a paged fragment
2314  * @frag: the paged fragment buffer
2315  *
2316  * Returns the address of the data within @frag. The page must already
2317  * be mapped.
2318  */
2319 static inline void *skb_frag_address(const skb_frag_t *frag)
2320 {
2321 	return page_address(skb_frag_page(frag)) + frag->page_offset;
2322 }
2323 
2324 /**
2325  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2326  * @frag: the paged fragment buffer
2327  *
2328  * Returns the address of the data within @frag. Checks that the page
2329  * is mapped and returns %NULL otherwise.
2330  */
2331 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2332 {
2333 	void *ptr = page_address(skb_frag_page(frag));
2334 	if (unlikely(!ptr))
2335 		return NULL;
2336 
2337 	return ptr + frag->page_offset;
2338 }
2339 
2340 /**
2341  * __skb_frag_set_page - sets the page contained in a paged fragment
2342  * @frag: the paged fragment
2343  * @page: the page to set
2344  *
2345  * Sets the fragment @frag to contain @page.
2346  */
2347 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2348 {
2349 	frag->page.p = page;
2350 }
2351 
2352 /**
2353  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2354  * @skb: the buffer
2355  * @f: the fragment offset
2356  * @page: the page to set
2357  *
2358  * Sets the @f'th fragment of @skb to contain @page.
2359  */
2360 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2361 				     struct page *page)
2362 {
2363 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2364 }
2365 
2366 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2367 
2368 /**
2369  * skb_frag_dma_map - maps a paged fragment via the DMA API
2370  * @dev: the device to map the fragment to
2371  * @frag: the paged fragment to map
2372  * @offset: the offset within the fragment (starting at the
2373  *          fragment's own offset)
2374  * @size: the number of bytes to map
2375  * @dir: the direction of the mapping (%PCI_DMA_*)
2376  *
2377  * Maps the page associated with @frag to @device.
2378  */
2379 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2380 					  const skb_frag_t *frag,
2381 					  size_t offset, size_t size,
2382 					  enum dma_data_direction dir)
2383 {
2384 	return dma_map_page(dev, skb_frag_page(frag),
2385 			    frag->page_offset + offset, size, dir);
2386 }
2387 
2388 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2389 					gfp_t gfp_mask)
2390 {
2391 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2392 }
2393 
2394 
2395 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2396 						  gfp_t gfp_mask)
2397 {
2398 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2399 }
2400 
2401 
2402 /**
2403  *	skb_clone_writable - is the header of a clone writable
2404  *	@skb: buffer to check
2405  *	@len: length up to which to write
2406  *
2407  *	Returns true if modifying the header part of the cloned buffer
2408  *	does not requires the data to be copied.
2409  */
2410 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2411 {
2412 	return !skb_header_cloned(skb) &&
2413 	       skb_headroom(skb) + len <= skb->hdr_len;
2414 }
2415 
2416 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2417 			    int cloned)
2418 {
2419 	int delta = 0;
2420 
2421 	if (headroom > skb_headroom(skb))
2422 		delta = headroom - skb_headroom(skb);
2423 
2424 	if (delta || cloned)
2425 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2426 					GFP_ATOMIC);
2427 	return 0;
2428 }
2429 
2430 /**
2431  *	skb_cow - copy header of skb when it is required
2432  *	@skb: buffer to cow
2433  *	@headroom: needed headroom
2434  *
2435  *	If the skb passed lacks sufficient headroom or its data part
2436  *	is shared, data is reallocated. If reallocation fails, an error
2437  *	is returned and original skb is not changed.
2438  *
2439  *	The result is skb with writable area skb->head...skb->tail
2440  *	and at least @headroom of space at head.
2441  */
2442 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2443 {
2444 	return __skb_cow(skb, headroom, skb_cloned(skb));
2445 }
2446 
2447 /**
2448  *	skb_cow_head - skb_cow but only making the head writable
2449  *	@skb: buffer to cow
2450  *	@headroom: needed headroom
2451  *
2452  *	This function is identical to skb_cow except that we replace the
2453  *	skb_cloned check by skb_header_cloned.  It should be used when
2454  *	you only need to push on some header and do not need to modify
2455  *	the data.
2456  */
2457 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2458 {
2459 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
2460 }
2461 
2462 /**
2463  *	skb_padto	- pad an skbuff up to a minimal size
2464  *	@skb: buffer to pad
2465  *	@len: minimal length
2466  *
2467  *	Pads up a buffer to ensure the trailing bytes exist and are
2468  *	blanked. If the buffer already contains sufficient data it
2469  *	is untouched. Otherwise it is extended. Returns zero on
2470  *	success. The skb is freed on error.
2471  */
2472 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
2473 {
2474 	unsigned int size = skb->len;
2475 	if (likely(size >= len))
2476 		return 0;
2477 	return skb_pad(skb, len - size);
2478 }
2479 
2480 /**
2481  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
2482  *	@skb: buffer to pad
2483  *	@len: minimal length
2484  *
2485  *	Pads up a buffer to ensure the trailing bytes exist and are
2486  *	blanked. If the buffer already contains sufficient data it
2487  *	is untouched. Otherwise it is extended. Returns zero on
2488  *	success. The skb is freed on error.
2489  */
2490 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
2491 {
2492 	unsigned int size = skb->len;
2493 
2494 	if (unlikely(size < len)) {
2495 		len -= size;
2496 		if (skb_pad(skb, len))
2497 			return -ENOMEM;
2498 		__skb_put(skb, len);
2499 	}
2500 	return 0;
2501 }
2502 
2503 static inline int skb_add_data(struct sk_buff *skb,
2504 			       struct iov_iter *from, int copy)
2505 {
2506 	const int off = skb->len;
2507 
2508 	if (skb->ip_summed == CHECKSUM_NONE) {
2509 		__wsum csum = 0;
2510 		if (csum_and_copy_from_iter(skb_put(skb, copy), copy,
2511 					    &csum, from) == copy) {
2512 			skb->csum = csum_block_add(skb->csum, csum, off);
2513 			return 0;
2514 		}
2515 	} else if (copy_from_iter(skb_put(skb, copy), copy, from) == copy)
2516 		return 0;
2517 
2518 	__skb_trim(skb, off);
2519 	return -EFAULT;
2520 }
2521 
2522 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
2523 				    const struct page *page, int off)
2524 {
2525 	if (i) {
2526 		const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
2527 
2528 		return page == skb_frag_page(frag) &&
2529 		       off == frag->page_offset + skb_frag_size(frag);
2530 	}
2531 	return false;
2532 }
2533 
2534 static inline int __skb_linearize(struct sk_buff *skb)
2535 {
2536 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
2537 }
2538 
2539 /**
2540  *	skb_linearize - convert paged skb to linear one
2541  *	@skb: buffer to linarize
2542  *
2543  *	If there is no free memory -ENOMEM is returned, otherwise zero
2544  *	is returned and the old skb data released.
2545  */
2546 static inline int skb_linearize(struct sk_buff *skb)
2547 {
2548 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
2549 }
2550 
2551 /**
2552  * skb_has_shared_frag - can any frag be overwritten
2553  * @skb: buffer to test
2554  *
2555  * Return true if the skb has at least one frag that might be modified
2556  * by an external entity (as in vmsplice()/sendfile())
2557  */
2558 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
2559 {
2560 	return skb_is_nonlinear(skb) &&
2561 	       skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2562 }
2563 
2564 /**
2565  *	skb_linearize_cow - make sure skb is linear and writable
2566  *	@skb: buffer to process
2567  *
2568  *	If there is no free memory -ENOMEM is returned, otherwise zero
2569  *	is returned and the old skb data released.
2570  */
2571 static inline int skb_linearize_cow(struct sk_buff *skb)
2572 {
2573 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
2574 	       __skb_linearize(skb) : 0;
2575 }
2576 
2577 /**
2578  *	skb_postpull_rcsum - update checksum for received skb after pull
2579  *	@skb: buffer to update
2580  *	@start: start of data before pull
2581  *	@len: length of data pulled
2582  *
2583  *	After doing a pull on a received packet, you need to call this to
2584  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
2585  *	CHECKSUM_NONE so that it can be recomputed from scratch.
2586  */
2587 
2588 static inline void skb_postpull_rcsum(struct sk_buff *skb,
2589 				      const void *start, unsigned int len)
2590 {
2591 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2592 		skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
2593 }
2594 
2595 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
2596 
2597 /**
2598  *	pskb_trim_rcsum - trim received skb and update checksum
2599  *	@skb: buffer to trim
2600  *	@len: new length
2601  *
2602  *	This is exactly the same as pskb_trim except that it ensures the
2603  *	checksum of received packets are still valid after the operation.
2604  */
2605 
2606 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2607 {
2608 	if (likely(len >= skb->len))
2609 		return 0;
2610 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2611 		skb->ip_summed = CHECKSUM_NONE;
2612 	return __pskb_trim(skb, len);
2613 }
2614 
2615 #define skb_queue_walk(queue, skb) \
2616 		for (skb = (queue)->next;					\
2617 		     skb != (struct sk_buff *)(queue);				\
2618 		     skb = skb->next)
2619 
2620 #define skb_queue_walk_safe(queue, skb, tmp)					\
2621 		for (skb = (queue)->next, tmp = skb->next;			\
2622 		     skb != (struct sk_buff *)(queue);				\
2623 		     skb = tmp, tmp = skb->next)
2624 
2625 #define skb_queue_walk_from(queue, skb)						\
2626 		for (; skb != (struct sk_buff *)(queue);			\
2627 		     skb = skb->next)
2628 
2629 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
2630 		for (tmp = skb->next;						\
2631 		     skb != (struct sk_buff *)(queue);				\
2632 		     skb = tmp, tmp = skb->next)
2633 
2634 #define skb_queue_reverse_walk(queue, skb) \
2635 		for (skb = (queue)->prev;					\
2636 		     skb != (struct sk_buff *)(queue);				\
2637 		     skb = skb->prev)
2638 
2639 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
2640 		for (skb = (queue)->prev, tmp = skb->prev;			\
2641 		     skb != (struct sk_buff *)(queue);				\
2642 		     skb = tmp, tmp = skb->prev)
2643 
2644 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
2645 		for (tmp = skb->prev;						\
2646 		     skb != (struct sk_buff *)(queue);				\
2647 		     skb = tmp, tmp = skb->prev)
2648 
2649 static inline bool skb_has_frag_list(const struct sk_buff *skb)
2650 {
2651 	return skb_shinfo(skb)->frag_list != NULL;
2652 }
2653 
2654 static inline void skb_frag_list_init(struct sk_buff *skb)
2655 {
2656 	skb_shinfo(skb)->frag_list = NULL;
2657 }
2658 
2659 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
2660 {
2661 	frag->next = skb_shinfo(skb)->frag_list;
2662 	skb_shinfo(skb)->frag_list = frag;
2663 }
2664 
2665 #define skb_walk_frags(skb, iter)	\
2666 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
2667 
2668 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
2669 				    int *peeked, int *off, int *err);
2670 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
2671 				  int *err);
2672 unsigned int datagram_poll(struct file *file, struct socket *sock,
2673 			   struct poll_table_struct *wait);
2674 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
2675 			   struct iov_iter *to, int size);
2676 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
2677 					struct msghdr *msg, int size)
2678 {
2679 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
2680 }
2681 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
2682 				   struct msghdr *msg);
2683 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
2684 				 struct iov_iter *from, int len);
2685 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
2686 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
2687 void skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb);
2688 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
2689 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
2690 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
2691 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
2692 			      int len, __wsum csum);
2693 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
2694 		    struct pipe_inode_info *pipe, unsigned int len,
2695 		    unsigned int flags);
2696 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
2697 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
2698 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
2699 		 int len, int hlen);
2700 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
2701 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
2702 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
2703 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
2704 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
2705 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
2706 int skb_ensure_writable(struct sk_buff *skb, int write_len);
2707 int skb_vlan_pop(struct sk_buff *skb);
2708 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
2709 
2710 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
2711 {
2712 	return copy_from_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
2713 }
2714 
2715 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
2716 {
2717 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
2718 }
2719 
2720 struct skb_checksum_ops {
2721 	__wsum (*update)(const void *mem, int len, __wsum wsum);
2722 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
2723 };
2724 
2725 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2726 		      __wsum csum, const struct skb_checksum_ops *ops);
2727 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
2728 		    __wsum csum);
2729 
2730 static inline void *__skb_header_pointer(const struct sk_buff *skb, int offset,
2731 					 int len, void *data, int hlen, void *buffer)
2732 {
2733 	if (hlen - offset >= len)
2734 		return data + offset;
2735 
2736 	if (!skb ||
2737 	    skb_copy_bits(skb, offset, buffer, len) < 0)
2738 		return NULL;
2739 
2740 	return buffer;
2741 }
2742 
2743 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
2744 				       int len, void *buffer)
2745 {
2746 	return __skb_header_pointer(skb, offset, len, skb->data,
2747 				    skb_headlen(skb), buffer);
2748 }
2749 
2750 /**
2751  *	skb_needs_linearize - check if we need to linearize a given skb
2752  *			      depending on the given device features.
2753  *	@skb: socket buffer to check
2754  *	@features: net device features
2755  *
2756  *	Returns true if either:
2757  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
2758  *	2. skb is fragmented and the device does not support SG.
2759  */
2760 static inline bool skb_needs_linearize(struct sk_buff *skb,
2761 				       netdev_features_t features)
2762 {
2763 	return skb_is_nonlinear(skb) &&
2764 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
2765 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
2766 }
2767 
2768 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
2769 					     void *to,
2770 					     const unsigned int len)
2771 {
2772 	memcpy(to, skb->data, len);
2773 }
2774 
2775 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
2776 						    const int offset, void *to,
2777 						    const unsigned int len)
2778 {
2779 	memcpy(to, skb->data + offset, len);
2780 }
2781 
2782 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
2783 					   const void *from,
2784 					   const unsigned int len)
2785 {
2786 	memcpy(skb->data, from, len);
2787 }
2788 
2789 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
2790 						  const int offset,
2791 						  const void *from,
2792 						  const unsigned int len)
2793 {
2794 	memcpy(skb->data + offset, from, len);
2795 }
2796 
2797 void skb_init(void);
2798 
2799 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
2800 {
2801 	return skb->tstamp;
2802 }
2803 
2804 /**
2805  *	skb_get_timestamp - get timestamp from a skb
2806  *	@skb: skb to get stamp from
2807  *	@stamp: pointer to struct timeval to store stamp in
2808  *
2809  *	Timestamps are stored in the skb as offsets to a base timestamp.
2810  *	This function converts the offset back to a struct timeval and stores
2811  *	it in stamp.
2812  */
2813 static inline void skb_get_timestamp(const struct sk_buff *skb,
2814 				     struct timeval *stamp)
2815 {
2816 	*stamp = ktime_to_timeval(skb->tstamp);
2817 }
2818 
2819 static inline void skb_get_timestampns(const struct sk_buff *skb,
2820 				       struct timespec *stamp)
2821 {
2822 	*stamp = ktime_to_timespec(skb->tstamp);
2823 }
2824 
2825 static inline void __net_timestamp(struct sk_buff *skb)
2826 {
2827 	skb->tstamp = ktime_get_real();
2828 }
2829 
2830 static inline ktime_t net_timedelta(ktime_t t)
2831 {
2832 	return ktime_sub(ktime_get_real(), t);
2833 }
2834 
2835 static inline ktime_t net_invalid_timestamp(void)
2836 {
2837 	return ktime_set(0, 0);
2838 }
2839 
2840 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
2841 
2842 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2843 
2844 void skb_clone_tx_timestamp(struct sk_buff *skb);
2845 bool skb_defer_rx_timestamp(struct sk_buff *skb);
2846 
2847 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
2848 
2849 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
2850 {
2851 }
2852 
2853 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
2854 {
2855 	return false;
2856 }
2857 
2858 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
2859 
2860 /**
2861  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
2862  *
2863  * PHY drivers may accept clones of transmitted packets for
2864  * timestamping via their phy_driver.txtstamp method. These drivers
2865  * must call this function to return the skb back to the stack, with
2866  * or without a timestamp.
2867  *
2868  * @skb: clone of the the original outgoing packet
2869  * @hwtstamps: hardware time stamps, may be NULL if not available
2870  *
2871  */
2872 void skb_complete_tx_timestamp(struct sk_buff *skb,
2873 			       struct skb_shared_hwtstamps *hwtstamps);
2874 
2875 void __skb_tstamp_tx(struct sk_buff *orig_skb,
2876 		     struct skb_shared_hwtstamps *hwtstamps,
2877 		     struct sock *sk, int tstype);
2878 
2879 /**
2880  * skb_tstamp_tx - queue clone of skb with send time stamps
2881  * @orig_skb:	the original outgoing packet
2882  * @hwtstamps:	hardware time stamps, may be NULL if not available
2883  *
2884  * If the skb has a socket associated, then this function clones the
2885  * skb (thus sharing the actual data and optional structures), stores
2886  * the optional hardware time stamping information (if non NULL) or
2887  * generates a software time stamp (otherwise), then queues the clone
2888  * to the error queue of the socket.  Errors are silently ignored.
2889  */
2890 void skb_tstamp_tx(struct sk_buff *orig_skb,
2891 		   struct skb_shared_hwtstamps *hwtstamps);
2892 
2893 static inline void sw_tx_timestamp(struct sk_buff *skb)
2894 {
2895 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
2896 	    !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2897 		skb_tstamp_tx(skb, NULL);
2898 }
2899 
2900 /**
2901  * skb_tx_timestamp() - Driver hook for transmit timestamping
2902  *
2903  * Ethernet MAC Drivers should call this function in their hard_xmit()
2904  * function immediately before giving the sk_buff to the MAC hardware.
2905  *
2906  * Specifically, one should make absolutely sure that this function is
2907  * called before TX completion of this packet can trigger.  Otherwise
2908  * the packet could potentially already be freed.
2909  *
2910  * @skb: A socket buffer.
2911  */
2912 static inline void skb_tx_timestamp(struct sk_buff *skb)
2913 {
2914 	skb_clone_tx_timestamp(skb);
2915 	sw_tx_timestamp(skb);
2916 }
2917 
2918 /**
2919  * skb_complete_wifi_ack - deliver skb with wifi status
2920  *
2921  * @skb: the original outgoing packet
2922  * @acked: ack status
2923  *
2924  */
2925 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
2926 
2927 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
2928 __sum16 __skb_checksum_complete(struct sk_buff *skb);
2929 
2930 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
2931 {
2932 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
2933 		skb->csum_valid ||
2934 		(skb->ip_summed == CHECKSUM_PARTIAL &&
2935 		 skb_checksum_start_offset(skb) >= 0));
2936 }
2937 
2938 /**
2939  *	skb_checksum_complete - Calculate checksum of an entire packet
2940  *	@skb: packet to process
2941  *
2942  *	This function calculates the checksum over the entire packet plus
2943  *	the value of skb->csum.  The latter can be used to supply the
2944  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
2945  *	checksum.
2946  *
2947  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
2948  *	this function can be used to verify that checksum on received
2949  *	packets.  In that case the function should return zero if the
2950  *	checksum is correct.  In particular, this function will return zero
2951  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
2952  *	hardware has already verified the correctness of the checksum.
2953  */
2954 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
2955 {
2956 	return skb_csum_unnecessary(skb) ?
2957 	       0 : __skb_checksum_complete(skb);
2958 }
2959 
2960 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
2961 {
2962 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
2963 		if (skb->csum_level == 0)
2964 			skb->ip_summed = CHECKSUM_NONE;
2965 		else
2966 			skb->csum_level--;
2967 	}
2968 }
2969 
2970 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
2971 {
2972 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
2973 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
2974 			skb->csum_level++;
2975 	} else if (skb->ip_summed == CHECKSUM_NONE) {
2976 		skb->ip_summed = CHECKSUM_UNNECESSARY;
2977 		skb->csum_level = 0;
2978 	}
2979 }
2980 
2981 static inline void __skb_mark_checksum_bad(struct sk_buff *skb)
2982 {
2983 	/* Mark current checksum as bad (typically called from GRO
2984 	 * path). In the case that ip_summed is CHECKSUM_NONE
2985 	 * this must be the first checksum encountered in the packet.
2986 	 * When ip_summed is CHECKSUM_UNNECESSARY, this is the first
2987 	 * checksum after the last one validated. For UDP, a zero
2988 	 * checksum can not be marked as bad.
2989 	 */
2990 
2991 	if (skb->ip_summed == CHECKSUM_NONE ||
2992 	    skb->ip_summed == CHECKSUM_UNNECESSARY)
2993 		skb->csum_bad = 1;
2994 }
2995 
2996 /* Check if we need to perform checksum complete validation.
2997  *
2998  * Returns true if checksum complete is needed, false otherwise
2999  * (either checksum is unnecessary or zero checksum is allowed).
3000  */
3001 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3002 						  bool zero_okay,
3003 						  __sum16 check)
3004 {
3005 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3006 		skb->csum_valid = 1;
3007 		__skb_decr_checksum_unnecessary(skb);
3008 		return false;
3009 	}
3010 
3011 	return true;
3012 }
3013 
3014 /* For small packets <= CHECKSUM_BREAK peform checksum complete directly
3015  * in checksum_init.
3016  */
3017 #define CHECKSUM_BREAK 76
3018 
3019 /* Unset checksum-complete
3020  *
3021  * Unset checksum complete can be done when packet is being modified
3022  * (uncompressed for instance) and checksum-complete value is
3023  * invalidated.
3024  */
3025 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3026 {
3027 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3028 		skb->ip_summed = CHECKSUM_NONE;
3029 }
3030 
3031 /* Validate (init) checksum based on checksum complete.
3032  *
3033  * Return values:
3034  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
3035  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3036  *	checksum is stored in skb->csum for use in __skb_checksum_complete
3037  *   non-zero: value of invalid checksum
3038  *
3039  */
3040 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3041 						       bool complete,
3042 						       __wsum psum)
3043 {
3044 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
3045 		if (!csum_fold(csum_add(psum, skb->csum))) {
3046 			skb->csum_valid = 1;
3047 			return 0;
3048 		}
3049 	} else if (skb->csum_bad) {
3050 		/* ip_summed == CHECKSUM_NONE in this case */
3051 		return 1;
3052 	}
3053 
3054 	skb->csum = psum;
3055 
3056 	if (complete || skb->len <= CHECKSUM_BREAK) {
3057 		__sum16 csum;
3058 
3059 		csum = __skb_checksum_complete(skb);
3060 		skb->csum_valid = !csum;
3061 		return csum;
3062 	}
3063 
3064 	return 0;
3065 }
3066 
3067 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3068 {
3069 	return 0;
3070 }
3071 
3072 /* Perform checksum validate (init). Note that this is a macro since we only
3073  * want to calculate the pseudo header which is an input function if necessary.
3074  * First we try to validate without any computation (checksum unnecessary) and
3075  * then calculate based on checksum complete calling the function to compute
3076  * pseudo header.
3077  *
3078  * Return values:
3079  *   0: checksum is validated or try to in skb_checksum_complete
3080  *   non-zero: value of invalid checksum
3081  */
3082 #define __skb_checksum_validate(skb, proto, complete,			\
3083 				zero_okay, check, compute_pseudo)	\
3084 ({									\
3085 	__sum16 __ret = 0;						\
3086 	skb->csum_valid = 0;						\
3087 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
3088 		__ret = __skb_checksum_validate_complete(skb,		\
3089 				complete, compute_pseudo(skb, proto));	\
3090 	__ret;								\
3091 })
3092 
3093 #define skb_checksum_init(skb, proto, compute_pseudo)			\
3094 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3095 
3096 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
3097 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3098 
3099 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
3100 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3101 
3102 #define skb_checksum_validate_zero_check(skb, proto, check,		\
3103 					 compute_pseudo)		\
3104 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
3105 
3106 #define skb_checksum_simple_validate(skb)				\
3107 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3108 
3109 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3110 {
3111 	return (skb->ip_summed == CHECKSUM_NONE &&
3112 		skb->csum_valid && !skb->csum_bad);
3113 }
3114 
3115 static inline void __skb_checksum_convert(struct sk_buff *skb,
3116 					  __sum16 check, __wsum pseudo)
3117 {
3118 	skb->csum = ~pseudo;
3119 	skb->ip_summed = CHECKSUM_COMPLETE;
3120 }
3121 
3122 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo)	\
3123 do {									\
3124 	if (__skb_checksum_convert_check(skb))				\
3125 		__skb_checksum_convert(skb, check,			\
3126 				       compute_pseudo(skb, proto));	\
3127 } while (0)
3128 
3129 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3130 					      u16 start, u16 offset)
3131 {
3132 	skb->ip_summed = CHECKSUM_PARTIAL;
3133 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3134 	skb->csum_offset = offset - start;
3135 }
3136 
3137 /* Update skbuf and packet to reflect the remote checksum offload operation.
3138  * When called, ptr indicates the starting point for skb->csum when
3139  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3140  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3141  */
3142 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
3143 				       int start, int offset, bool nopartial)
3144 {
3145 	__wsum delta;
3146 
3147 	if (!nopartial) {
3148 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
3149 		return;
3150 	}
3151 
3152 	 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3153 		__skb_checksum_complete(skb);
3154 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3155 	}
3156 
3157 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
3158 
3159 	/* Adjust skb->csum since we changed the packet */
3160 	skb->csum = csum_add(skb->csum, delta);
3161 }
3162 
3163 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3164 void nf_conntrack_destroy(struct nf_conntrack *nfct);
3165 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3166 {
3167 	if (nfct && atomic_dec_and_test(&nfct->use))
3168 		nf_conntrack_destroy(nfct);
3169 }
3170 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3171 {
3172 	if (nfct)
3173 		atomic_inc(&nfct->use);
3174 }
3175 #endif
3176 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3177 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
3178 {
3179 	if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
3180 		kfree(nf_bridge);
3181 }
3182 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
3183 {
3184 	if (nf_bridge)
3185 		atomic_inc(&nf_bridge->use);
3186 }
3187 #endif /* CONFIG_BRIDGE_NETFILTER */
3188 static inline void nf_reset(struct sk_buff *skb)
3189 {
3190 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3191 	nf_conntrack_put(skb->nfct);
3192 	skb->nfct = NULL;
3193 #endif
3194 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3195 	nf_bridge_put(skb->nf_bridge);
3196 	skb->nf_bridge = NULL;
3197 #endif
3198 }
3199 
3200 static inline void nf_reset_trace(struct sk_buff *skb)
3201 {
3202 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3203 	skb->nf_trace = 0;
3204 #endif
3205 }
3206 
3207 /* Note: This doesn't put any conntrack and bridge info in dst. */
3208 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
3209 			     bool copy)
3210 {
3211 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3212 	dst->nfct = src->nfct;
3213 	nf_conntrack_get(src->nfct);
3214 	if (copy)
3215 		dst->nfctinfo = src->nfctinfo;
3216 #endif
3217 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3218 	dst->nf_bridge  = src->nf_bridge;
3219 	nf_bridge_get(src->nf_bridge);
3220 #endif
3221 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3222 	if (copy)
3223 		dst->nf_trace = src->nf_trace;
3224 #endif
3225 }
3226 
3227 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
3228 {
3229 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3230 	nf_conntrack_put(dst->nfct);
3231 #endif
3232 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3233 	nf_bridge_put(dst->nf_bridge);
3234 #endif
3235 	__nf_copy(dst, src, true);
3236 }
3237 
3238 #ifdef CONFIG_NETWORK_SECMARK
3239 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3240 {
3241 	to->secmark = from->secmark;
3242 }
3243 
3244 static inline void skb_init_secmark(struct sk_buff *skb)
3245 {
3246 	skb->secmark = 0;
3247 }
3248 #else
3249 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3250 { }
3251 
3252 static inline void skb_init_secmark(struct sk_buff *skb)
3253 { }
3254 #endif
3255 
3256 static inline bool skb_irq_freeable(const struct sk_buff *skb)
3257 {
3258 	return !skb->destructor &&
3259 #if IS_ENABLED(CONFIG_XFRM)
3260 		!skb->sp &&
3261 #endif
3262 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
3263 		!skb->nfct &&
3264 #endif
3265 		!skb->_skb_refdst &&
3266 		!skb_has_frag_list(skb);
3267 }
3268 
3269 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
3270 {
3271 	skb->queue_mapping = queue_mapping;
3272 }
3273 
3274 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
3275 {
3276 	return skb->queue_mapping;
3277 }
3278 
3279 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
3280 {
3281 	to->queue_mapping = from->queue_mapping;
3282 }
3283 
3284 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
3285 {
3286 	skb->queue_mapping = rx_queue + 1;
3287 }
3288 
3289 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
3290 {
3291 	return skb->queue_mapping - 1;
3292 }
3293 
3294 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
3295 {
3296 	return skb->queue_mapping != 0;
3297 }
3298 
3299 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
3300 		  unsigned int num_tx_queues);
3301 
3302 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
3303 {
3304 #ifdef CONFIG_XFRM
3305 	return skb->sp;
3306 #else
3307 	return NULL;
3308 #endif
3309 }
3310 
3311 /* Keeps track of mac header offset relative to skb->head.
3312  * It is useful for TSO of Tunneling protocol. e.g. GRE.
3313  * For non-tunnel skb it points to skb_mac_header() and for
3314  * tunnel skb it points to outer mac header.
3315  * Keeps track of level of encapsulation of network headers.
3316  */
3317 struct skb_gso_cb {
3318 	int	mac_offset;
3319 	int	encap_level;
3320 	__u16	csum_start;
3321 };
3322 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)(skb)->cb)
3323 
3324 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
3325 {
3326 	return (skb_mac_header(inner_skb) - inner_skb->head) -
3327 		SKB_GSO_CB(inner_skb)->mac_offset;
3328 }
3329 
3330 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
3331 {
3332 	int new_headroom, headroom;
3333 	int ret;
3334 
3335 	headroom = skb_headroom(skb);
3336 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
3337 	if (ret)
3338 		return ret;
3339 
3340 	new_headroom = skb_headroom(skb);
3341 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
3342 	return 0;
3343 }
3344 
3345 /* Compute the checksum for a gso segment. First compute the checksum value
3346  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
3347  * then add in skb->csum (checksum from csum_start to end of packet).
3348  * skb->csum and csum_start are then updated to reflect the checksum of the
3349  * resultant packet starting from the transport header-- the resultant checksum
3350  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
3351  * header.
3352  */
3353 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
3354 {
3355 	int plen = SKB_GSO_CB(skb)->csum_start - skb_headroom(skb) -
3356 	    skb_transport_offset(skb);
3357 	__u16 csum;
3358 
3359 	csum = csum_fold(csum_partial(skb_transport_header(skb),
3360 				      plen, skb->csum));
3361 	skb->csum = res;
3362 	SKB_GSO_CB(skb)->csum_start -= plen;
3363 
3364 	return csum;
3365 }
3366 
3367 static inline bool skb_is_gso(const struct sk_buff *skb)
3368 {
3369 	return skb_shinfo(skb)->gso_size;
3370 }
3371 
3372 /* Note: Should be called only if skb_is_gso(skb) is true */
3373 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
3374 {
3375 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
3376 }
3377 
3378 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
3379 
3380 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
3381 {
3382 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
3383 	 * wanted then gso_type will be set. */
3384 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3385 
3386 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
3387 	    unlikely(shinfo->gso_type == 0)) {
3388 		__skb_warn_lro_forwarding(skb);
3389 		return true;
3390 	}
3391 	return false;
3392 }
3393 
3394 static inline void skb_forward_csum(struct sk_buff *skb)
3395 {
3396 	/* Unfortunately we don't support this one.  Any brave souls? */
3397 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3398 		skb->ip_summed = CHECKSUM_NONE;
3399 }
3400 
3401 /**
3402  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
3403  * @skb: skb to check
3404  *
3405  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
3406  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
3407  * use this helper, to document places where we make this assertion.
3408  */
3409 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
3410 {
3411 #ifdef DEBUG
3412 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
3413 #endif
3414 }
3415 
3416 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
3417 
3418 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
3419 
3420 u32 skb_get_poff(const struct sk_buff *skb);
3421 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
3422 		   const struct flow_keys *keys, int hlen);
3423 
3424 /**
3425  * skb_head_is_locked - Determine if the skb->head is locked down
3426  * @skb: skb to check
3427  *
3428  * The head on skbs build around a head frag can be removed if they are
3429  * not cloned.  This function returns true if the skb head is locked down
3430  * due to either being allocated via kmalloc, or by being a clone with
3431  * multiple references to the head.
3432  */
3433 static inline bool skb_head_is_locked(const struct sk_buff *skb)
3434 {
3435 	return !skb->head_frag || skb_cloned(skb);
3436 }
3437 
3438 /**
3439  * skb_gso_network_seglen - Return length of individual segments of a gso packet
3440  *
3441  * @skb: GSO skb
3442  *
3443  * skb_gso_network_seglen is used to determine the real size of the
3444  * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
3445  *
3446  * The MAC/L2 header is not accounted for.
3447  */
3448 static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
3449 {
3450 	unsigned int hdr_len = skb_transport_header(skb) -
3451 			       skb_network_header(skb);
3452 	return hdr_len + skb_gso_transport_seglen(skb);
3453 }
3454 #endif	/* __KERNEL__ */
3455 #endif	/* _LINUX_SKBUFF_H */
3456