xref: /linux-6.15/include/linux/skbuff.h (revision 982c97ee)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  *	Definitions for the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:
6  *		Alan Cox, <[email protected]>
7  *		Florian La Roche, <[email protected]>
8  */
9 
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12 
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
22 
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/hrtimer.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/netdev_features.h>
33 #include <linux/sched.h>
34 #include <linux/sched/clock.h>
35 #include <net/flow_dissector.h>
36 #include <linux/splice.h>
37 #include <linux/in6.h>
38 #include <linux/if_packet.h>
39 #include <linux/llist.h>
40 #include <net/flow.h>
41 #include <net/page_pool.h>
42 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
43 #include <linux/netfilter/nf_conntrack_common.h>
44 #endif
45 #include <net/net_debug.h>
46 
47 /**
48  * DOC: skb checksums
49  *
50  * The interface for checksum offload between the stack and networking drivers
51  * is as follows...
52  *
53  * IP checksum related features
54  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
55  *
56  * Drivers advertise checksum offload capabilities in the features of a device.
57  * From the stack's point of view these are capabilities offered by the driver.
58  * A driver typically only advertises features that it is capable of offloading
59  * to its device.
60  *
61  * .. flat-table:: Checksum related device features
62  *   :widths: 1 10
63  *
64  *   * - %NETIF_F_HW_CSUM
65  *     - The driver (or its device) is able to compute one
66  *	 IP (one's complement) checksum for any combination
67  *	 of protocols or protocol layering. The checksum is
68  *	 computed and set in a packet per the CHECKSUM_PARTIAL
69  *	 interface (see below).
70  *
71  *   * - %NETIF_F_IP_CSUM
72  *     - Driver (device) is only able to checksum plain
73  *	 TCP or UDP packets over IPv4. These are specifically
74  *	 unencapsulated packets of the form IPv4|TCP or
75  *	 IPv4|UDP where the Protocol field in the IPv4 header
76  *	 is TCP or UDP. The IPv4 header may contain IP options.
77  *	 This feature cannot be set in features for a device
78  *	 with NETIF_F_HW_CSUM also set. This feature is being
79  *	 DEPRECATED (see below).
80  *
81  *   * - %NETIF_F_IPV6_CSUM
82  *     - Driver (device) is only able to checksum plain
83  *	 TCP or UDP packets over IPv6. These are specifically
84  *	 unencapsulated packets of the form IPv6|TCP or
85  *	 IPv6|UDP where the Next Header field in the IPv6
86  *	 header is either TCP or UDP. IPv6 extension headers
87  *	 are not supported with this feature. This feature
88  *	 cannot be set in features for a device with
89  *	 NETIF_F_HW_CSUM also set. This feature is being
90  *	 DEPRECATED (see below).
91  *
92  *   * - %NETIF_F_RXCSUM
93  *     - Driver (device) performs receive checksum offload.
94  *	 This flag is only used to disable the RX checksum
95  *	 feature for a device. The stack will accept receive
96  *	 checksum indication in packets received on a device
97  *	 regardless of whether NETIF_F_RXCSUM is set.
98  *
99  * Checksumming of received packets by device
100  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
101  *
102  * Indication of checksum verification is set in &sk_buff.ip_summed.
103  * Possible values are:
104  *
105  * - %CHECKSUM_NONE
106  *
107  *   Device did not checksum this packet e.g. due to lack of capabilities.
108  *   The packet contains full (though not verified) checksum in packet but
109  *   not in skb->csum. Thus, skb->csum is undefined in this case.
110  *
111  * - %CHECKSUM_UNNECESSARY
112  *
113  *   The hardware you're dealing with doesn't calculate the full checksum
114  *   (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums
115  *   for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY
116  *   if their checksums are okay. &sk_buff.csum is still undefined in this case
117  *   though. A driver or device must never modify the checksum field in the
118  *   packet even if checksum is verified.
119  *
120  *   %CHECKSUM_UNNECESSARY is applicable to following protocols:
121  *
122  *     - TCP: IPv6 and IPv4.
123  *     - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
124  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
125  *       may perform further validation in this case.
126  *     - GRE: only if the checksum is present in the header.
127  *     - SCTP: indicates the CRC in SCTP header has been validated.
128  *     - FCOE: indicates the CRC in FC frame has been validated.
129  *
130  *   &sk_buff.csum_level indicates the number of consecutive checksums found in
131  *   the packet minus one that have been verified as %CHECKSUM_UNNECESSARY.
132  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
133  *   and a device is able to verify the checksums for UDP (possibly zero),
134  *   GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to
135  *   two. If the device were only able to verify the UDP checksum and not
136  *   GRE, either because it doesn't support GRE checksum or because GRE
137  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
138  *   not considered in this case).
139  *
140  * - %CHECKSUM_COMPLETE
141  *
142  *   This is the most generic way. The device supplied checksum of the _whole_
143  *   packet as seen by netif_rx() and fills in &sk_buff.csum. This means the
144  *   hardware doesn't need to parse L3/L4 headers to implement this.
145  *
146  *   Notes:
147  *
148  *   - Even if device supports only some protocols, but is able to produce
149  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
150  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
151  *
152  * - %CHECKSUM_PARTIAL
153  *
154  *   A checksum is set up to be offloaded to a device as described in the
155  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
156  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
157  *   on the same host, or it may be set in the input path in GRO or remote
158  *   checksum offload. For the purposes of checksum verification, the checksum
159  *   referred to by skb->csum_start + skb->csum_offset and any preceding
160  *   checksums in the packet are considered verified. Any checksums in the
161  *   packet that are after the checksum being offloaded are not considered to
162  *   be verified.
163  *
164  * Checksumming on transmit for non-GSO
165  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
166  *
167  * The stack requests checksum offload in the &sk_buff.ip_summed for a packet.
168  * Values are:
169  *
170  * - %CHECKSUM_PARTIAL
171  *
172  *   The driver is required to checksum the packet as seen by hard_start_xmit()
173  *   from &sk_buff.csum_start up to the end, and to record/write the checksum at
174  *   offset &sk_buff.csum_start + &sk_buff.csum_offset.
175  *   A driver may verify that the
176  *   csum_start and csum_offset values are valid values given the length and
177  *   offset of the packet, but it should not attempt to validate that the
178  *   checksum refers to a legitimate transport layer checksum -- it is the
179  *   purview of the stack to validate that csum_start and csum_offset are set
180  *   correctly.
181  *
182  *   When the stack requests checksum offload for a packet, the driver MUST
183  *   ensure that the checksum is set correctly. A driver can either offload the
184  *   checksum calculation to the device, or call skb_checksum_help (in the case
185  *   that the device does not support offload for a particular checksum).
186  *
187  *   %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of
188  *   %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate
189  *   checksum offload capability.
190  *   skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based
191  *   on network device checksumming capabilities: if a packet does not match
192  *   them, skb_checksum_help() or skb_crc32c_help() (depending on the value of
193  *   &sk_buff.csum_not_inet, see :ref:`crc`)
194  *   is called to resolve the checksum.
195  *
196  * - %CHECKSUM_NONE
197  *
198  *   The skb was already checksummed by the protocol, or a checksum is not
199  *   required.
200  *
201  * - %CHECKSUM_UNNECESSARY
202  *
203  *   This has the same meaning as CHECKSUM_NONE for checksum offload on
204  *   output.
205  *
206  * - %CHECKSUM_COMPLETE
207  *
208  *   Not used in checksum output. If a driver observes a packet with this value
209  *   set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set.
210  *
211  * .. _crc:
212  *
213  * Non-IP checksum (CRC) offloads
214  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
215  *
216  * .. flat-table::
217  *   :widths: 1 10
218  *
219  *   * - %NETIF_F_SCTP_CRC
220  *     - This feature indicates that a device is capable of
221  *	 offloading the SCTP CRC in a packet. To perform this offload the stack
222  *	 will set csum_start and csum_offset accordingly, set ip_summed to
223  *	 %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication
224  *	 in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c.
225  *	 A driver that supports both IP checksum offload and SCTP CRC32c offload
226  *	 must verify which offload is configured for a packet by testing the
227  *	 value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to
228  *	 resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
229  *
230  *   * - %NETIF_F_FCOE_CRC
231  *     - This feature indicates that a device is capable of offloading the FCOE
232  *	 CRC in a packet. To perform this offload the stack will set ip_summed
233  *	 to %CHECKSUM_PARTIAL and set csum_start and csum_offset
234  *	 accordingly. Note that there is no indication in the skbuff that the
235  *	 %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
236  *	 both IP checksum offload and FCOE CRC offload must verify which offload
237  *	 is configured for a packet, presumably by inspecting packet headers.
238  *
239  * Checksumming on output with GSO
240  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
241  *
242  * In the case of a GSO packet (skb_is_gso() is true), checksum offload
243  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
244  * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as
245  * part of the GSO operation is implied. If a checksum is being offloaded
246  * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and
247  * csum_offset are set to refer to the outermost checksum being offloaded
248  * (two offloaded checksums are possible with UDP encapsulation).
249  */
250 
251 /* Don't change this without changing skb_csum_unnecessary! */
252 #define CHECKSUM_NONE		0
253 #define CHECKSUM_UNNECESSARY	1
254 #define CHECKSUM_COMPLETE	2
255 #define CHECKSUM_PARTIAL	3
256 
257 /* Maximum value in skb->csum_level */
258 #define SKB_MAX_CSUM_LEVEL	3
259 
260 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
261 #define SKB_WITH_OVERHEAD(X)	\
262 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
263 #define SKB_MAX_ORDER(X, ORDER) \
264 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
265 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
266 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
267 
268 /* return minimum truesize of one skb containing X bytes of data */
269 #define SKB_TRUESIZE(X) ((X) +						\
270 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
271 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
272 
273 struct ahash_request;
274 struct net_device;
275 struct scatterlist;
276 struct pipe_inode_info;
277 struct iov_iter;
278 struct napi_struct;
279 struct bpf_prog;
280 union bpf_attr;
281 struct skb_ext;
282 
283 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
284 struct nf_bridge_info {
285 	enum {
286 		BRNF_PROTO_UNCHANGED,
287 		BRNF_PROTO_8021Q,
288 		BRNF_PROTO_PPPOE
289 	} orig_proto:8;
290 	u8			pkt_otherhost:1;
291 	u8			in_prerouting:1;
292 	u8			bridged_dnat:1;
293 	__u16			frag_max_size;
294 	struct net_device	*physindev;
295 
296 	/* always valid & non-NULL from FORWARD on, for physdev match */
297 	struct net_device	*physoutdev;
298 	union {
299 		/* prerouting: detect dnat in orig/reply direction */
300 		__be32          ipv4_daddr;
301 		struct in6_addr ipv6_daddr;
302 
303 		/* after prerouting + nat detected: store original source
304 		 * mac since neigh resolution overwrites it, only used while
305 		 * skb is out in neigh layer.
306 		 */
307 		char neigh_header[8];
308 	};
309 };
310 #endif
311 
312 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
313 /* Chain in tc_skb_ext will be used to share the tc chain with
314  * ovs recirc_id. It will be set to the current chain by tc
315  * and read by ovs to recirc_id.
316  */
317 struct tc_skb_ext {
318 	__u32 chain;
319 	__u16 mru;
320 	__u16 zone;
321 	u8 post_ct:1;
322 	u8 post_ct_snat:1;
323 	u8 post_ct_dnat:1;
324 };
325 #endif
326 
327 struct sk_buff_head {
328 	/* These two members must be first to match sk_buff. */
329 	struct_group_tagged(sk_buff_list, list,
330 		struct sk_buff	*next;
331 		struct sk_buff	*prev;
332 	);
333 
334 	__u32		qlen;
335 	spinlock_t	lock;
336 };
337 
338 struct sk_buff;
339 
340 /* The reason of skb drop, which is used in kfree_skb_reason().
341  * en...maybe they should be splited by group?
342  *
343  * Each item here should also be in 'TRACE_SKB_DROP_REASON', which is
344  * used to translate the reason to string.
345  */
346 enum skb_drop_reason {
347 	SKB_NOT_DROPPED_YET = 0,
348 	SKB_DROP_REASON_NOT_SPECIFIED,	/* drop reason is not specified */
349 	SKB_DROP_REASON_NO_SOCKET,	/* socket not found */
350 	SKB_DROP_REASON_PKT_TOO_SMALL,	/* packet size is too small */
351 	SKB_DROP_REASON_TCP_CSUM,	/* TCP checksum error */
352 	SKB_DROP_REASON_SOCKET_FILTER,	/* dropped by socket filter */
353 	SKB_DROP_REASON_UDP_CSUM,	/* UDP checksum error */
354 	SKB_DROP_REASON_NETFILTER_DROP,	/* dropped by netfilter */
355 	SKB_DROP_REASON_OTHERHOST,	/* packet don't belong to current
356 					 * host (interface is in promisc
357 					 * mode)
358 					 */
359 	SKB_DROP_REASON_IP_CSUM,	/* IP checksum error */
360 	SKB_DROP_REASON_IP_INHDR,	/* there is something wrong with
361 					 * IP header (see
362 					 * IPSTATS_MIB_INHDRERRORS)
363 					 */
364 	SKB_DROP_REASON_IP_RPFILTER,	/* IP rpfilter validate failed.
365 					 * see the document for rp_filter
366 					 * in ip-sysctl.rst for more
367 					 * information
368 					 */
369 	SKB_DROP_REASON_UNICAST_IN_L2_MULTICAST, /* destination address of L2
370 						  * is multicast, but L3 is
371 						  * unicast.
372 						  */
373 	SKB_DROP_REASON_XFRM_POLICY,	/* xfrm policy check failed */
374 	SKB_DROP_REASON_IP_NOPROTO,	/* no support for IP protocol */
375 	SKB_DROP_REASON_SOCKET_RCVBUFF,	/* socket receive buff is full */
376 	SKB_DROP_REASON_PROTO_MEM,	/* proto memory limition, such as
377 					 * udp packet drop out of
378 					 * udp_memory_allocated.
379 					 */
380 	SKB_DROP_REASON_TCP_MD5NOTFOUND,	/* no MD5 hash and one
381 						 * expected, corresponding
382 						 * to LINUX_MIB_TCPMD5NOTFOUND
383 						 */
384 	SKB_DROP_REASON_TCP_MD5UNEXPECTED,	/* MD5 hash and we're not
385 						 * expecting one, corresponding
386 						 * to LINUX_MIB_TCPMD5UNEXPECTED
387 						 */
388 	SKB_DROP_REASON_TCP_MD5FAILURE,	/* MD5 hash and its wrong,
389 					 * corresponding to
390 					 * LINUX_MIB_TCPMD5FAILURE
391 					 */
392 	SKB_DROP_REASON_SOCKET_BACKLOG,	/* failed to add skb to socket
393 					 * backlog (see
394 					 * LINUX_MIB_TCPBACKLOGDROP)
395 					 */
396 	SKB_DROP_REASON_TCP_FLAGS,	/* TCP flags invalid */
397 	SKB_DROP_REASON_TCP_ZEROWINDOW,	/* TCP receive window size is zero,
398 					 * see LINUX_MIB_TCPZEROWINDOWDROP
399 					 */
400 	SKB_DROP_REASON_TCP_OLD_DATA,	/* the TCP data reveived is already
401 					 * received before (spurious retrans
402 					 * may happened), see
403 					 * LINUX_MIB_DELAYEDACKLOST
404 					 */
405 	SKB_DROP_REASON_TCP_OVERWINDOW,	/* the TCP data is out of window,
406 					 * the seq of the first byte exceed
407 					 * the right edges of receive
408 					 * window
409 					 */
410 	SKB_DROP_REASON_TCP_OFOMERGE,	/* the data of skb is already in
411 					 * the ofo queue, corresponding to
412 					 * LINUX_MIB_TCPOFOMERGE
413 					 */
414 	SKB_DROP_REASON_TCP_RFC7323_PAWS, /* PAWS check, corresponding to
415 					   * LINUX_MIB_PAWSESTABREJECTED
416 					   */
417 	SKB_DROP_REASON_TCP_INVALID_SEQUENCE, /* Not acceptable SEQ field */
418 	SKB_DROP_REASON_TCP_RESET,	/* Invalid RST packet */
419 	SKB_DROP_REASON_TCP_INVALID_SYN, /* Incoming packet has unexpected SYN flag */
420 	SKB_DROP_REASON_TCP_CLOSE,	/* TCP socket in CLOSE state */
421 	SKB_DROP_REASON_TCP_FASTOPEN,	/* dropped by FASTOPEN request socket */
422 	SKB_DROP_REASON_TCP_OLD_ACK,	/* TCP ACK is old, but in window */
423 	SKB_DROP_REASON_TCP_TOO_OLD_ACK, /* TCP ACK is too old */
424 	SKB_DROP_REASON_TCP_ACK_UNSENT_DATA, /* TCP ACK for data we haven't sent yet */
425 	SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE, /* pruned from TCP OFO queue */
426 	SKB_DROP_REASON_TCP_OFO_DROP,	/* data already in receive queue */
427 	SKB_DROP_REASON_IP_OUTNOROUTES,	/* route lookup failed */
428 	SKB_DROP_REASON_BPF_CGROUP_EGRESS,	/* dropped by
429 						 * BPF_PROG_TYPE_CGROUP_SKB
430 						 * eBPF program
431 						 */
432 	SKB_DROP_REASON_IPV6DISABLED,	/* IPv6 is disabled on the device */
433 	SKB_DROP_REASON_NEIGH_CREATEFAIL,	/* failed to create neigh
434 						 * entry
435 						 */
436 	SKB_DROP_REASON_NEIGH_FAILED,	/* neigh entry in failed state */
437 	SKB_DROP_REASON_NEIGH_QUEUEFULL,	/* arp_queue for neigh
438 						 * entry is full
439 						 */
440 	SKB_DROP_REASON_NEIGH_DEAD,	/* neigh entry is dead */
441 	SKB_DROP_REASON_TC_EGRESS,	/* dropped in TC egress HOOK */
442 	SKB_DROP_REASON_QDISC_DROP,	/* dropped by qdisc when packet
443 					 * outputting (failed to enqueue to
444 					 * current qdisc)
445 					 */
446 	SKB_DROP_REASON_CPU_BACKLOG,	/* failed to enqueue the skb to
447 					 * the per CPU backlog queue. This
448 					 * can be caused by backlog queue
449 					 * full (see netdev_max_backlog in
450 					 * net.rst) or RPS flow limit
451 					 */
452 	SKB_DROP_REASON_XDP,		/* dropped by XDP in input path */
453 	SKB_DROP_REASON_TC_INGRESS,	/* dropped in TC ingress HOOK */
454 	SKB_DROP_REASON_UNHANDLED_PROTO,	/* protocol not implemented
455 						 * or not supported
456 						 */
457 	SKB_DROP_REASON_SKB_CSUM,	/* sk_buff checksum computation
458 					 * error
459 					 */
460 	SKB_DROP_REASON_SKB_GSO_SEG,	/* gso segmentation error */
461 	SKB_DROP_REASON_SKB_UCOPY_FAULT,	/* failed to copy data from
462 						 * user space, e.g., via
463 						 * zerocopy_sg_from_iter()
464 						 * or skb_orphan_frags_rx()
465 						 */
466 	SKB_DROP_REASON_DEV_HDR,	/* device driver specific
467 					 * header/metadata is invalid
468 					 */
469 	/* the device is not ready to xmit/recv due to any of its data
470 	 * structure that is not up/ready/initialized, e.g., the IFF_UP is
471 	 * not set, or driver specific tun->tfiles[txq] is not initialized
472 	 */
473 	SKB_DROP_REASON_DEV_READY,
474 	SKB_DROP_REASON_FULL_RING,	/* ring buffer is full */
475 	SKB_DROP_REASON_NOMEM,		/* error due to OOM */
476 	SKB_DROP_REASON_HDR_TRUNC,      /* failed to trunc/extract the header
477 					 * from networking data, e.g., failed
478 					 * to pull the protocol header from
479 					 * frags via pskb_may_pull()
480 					 */
481 	SKB_DROP_REASON_TAP_FILTER,     /* dropped by (ebpf) filter directly
482 					 * attached to tun/tap, e.g., via
483 					 * TUNSETFILTEREBPF
484 					 */
485 	SKB_DROP_REASON_TAP_TXFILTER,	/* dropped by tx filter implemented
486 					 * at tun/tap, e.g., check_filter()
487 					 */
488 	SKB_DROP_REASON_ICMP_CSUM,	/* ICMP checksum error */
489 	SKB_DROP_REASON_INVALID_PROTO,	/* the packet doesn't follow RFC
490 					 * 2211, such as a broadcasts
491 					 * ICMP_TIMESTAMP
492 					 */
493 	SKB_DROP_REASON_IP_INADDRERRORS,	/* host unreachable, corresponding
494 						 * to IPSTATS_MIB_INADDRERRORS
495 						 */
496 	SKB_DROP_REASON_IP_INNOROUTES,	/* network unreachable, corresponding
497 					 * to IPSTATS_MIB_INADDRERRORS
498 					 */
499 	SKB_DROP_REASON_PKT_TOO_BIG,	/* packet size is too big (maybe exceed
500 					 * the MTU)
501 					 */
502 	SKB_DROP_REASON_MAX,
503 };
504 
505 #define SKB_DR_INIT(name, reason)				\
506 	enum skb_drop_reason name = SKB_DROP_REASON_##reason
507 #define SKB_DR(name)						\
508 	SKB_DR_INIT(name, NOT_SPECIFIED)
509 #define SKB_DR_SET(name, reason)				\
510 	(name = SKB_DROP_REASON_##reason)
511 #define SKB_DR_OR(name, reason)					\
512 	do {							\
513 		if (name == SKB_DROP_REASON_NOT_SPECIFIED)	\
514 			SKB_DR_SET(name, reason);		\
515 	} while (0)
516 
517 /* To allow 64K frame to be packed as single skb without frag_list we
518  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
519  * buffers which do not start on a page boundary.
520  *
521  * Since GRO uses frags we allocate at least 16 regardless of page
522  * size.
523  */
524 #if (65536/PAGE_SIZE + 1) < 16
525 #define MAX_SKB_FRAGS 16UL
526 #else
527 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
528 #endif
529 extern int sysctl_max_skb_frags;
530 
531 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
532  * segment using its current segmentation instead.
533  */
534 #define GSO_BY_FRAGS	0xFFFF
535 
536 typedef struct bio_vec skb_frag_t;
537 
538 /**
539  * skb_frag_size() - Returns the size of a skb fragment
540  * @frag: skb fragment
541  */
542 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
543 {
544 	return frag->bv_len;
545 }
546 
547 /**
548  * skb_frag_size_set() - Sets the size of a skb fragment
549  * @frag: skb fragment
550  * @size: size of fragment
551  */
552 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
553 {
554 	frag->bv_len = size;
555 }
556 
557 /**
558  * skb_frag_size_add() - Increments the size of a skb fragment by @delta
559  * @frag: skb fragment
560  * @delta: value to add
561  */
562 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
563 {
564 	frag->bv_len += delta;
565 }
566 
567 /**
568  * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
569  * @frag: skb fragment
570  * @delta: value to subtract
571  */
572 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
573 {
574 	frag->bv_len -= delta;
575 }
576 
577 /**
578  * skb_frag_must_loop - Test if %p is a high memory page
579  * @p: fragment's page
580  */
581 static inline bool skb_frag_must_loop(struct page *p)
582 {
583 #if defined(CONFIG_HIGHMEM)
584 	if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p))
585 		return true;
586 #endif
587 	return false;
588 }
589 
590 /**
591  *	skb_frag_foreach_page - loop over pages in a fragment
592  *
593  *	@f:		skb frag to operate on
594  *	@f_off:		offset from start of f->bv_page
595  *	@f_len:		length from f_off to loop over
596  *	@p:		(temp var) current page
597  *	@p_off:		(temp var) offset from start of current page,
598  *	                           non-zero only on first page.
599  *	@p_len:		(temp var) length in current page,
600  *				   < PAGE_SIZE only on first and last page.
601  *	@copied:	(temp var) length so far, excluding current p_len.
602  *
603  *	A fragment can hold a compound page, in which case per-page
604  *	operations, notably kmap_atomic, must be called for each
605  *	regular page.
606  */
607 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
608 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
609 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
610 	     p_len = skb_frag_must_loop(p) ?				\
611 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
612 	     copied = 0;						\
613 	     copied < f_len;						\
614 	     copied += p_len, p++, p_off = 0,				\
615 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
616 
617 #define HAVE_HW_TIME_STAMP
618 
619 /**
620  * struct skb_shared_hwtstamps - hardware time stamps
621  * @hwtstamp:		hardware time stamp transformed into duration
622  *			since arbitrary point in time
623  * @netdev_data:	address/cookie of network device driver used as
624  *			reference to actual hardware time stamp
625  *
626  * Software time stamps generated by ktime_get_real() are stored in
627  * skb->tstamp.
628  *
629  * hwtstamps can only be compared against other hwtstamps from
630  * the same device.
631  *
632  * This structure is attached to packets as part of the
633  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
634  */
635 struct skb_shared_hwtstamps {
636 	union {
637 		ktime_t	hwtstamp;
638 		void *netdev_data;
639 	};
640 };
641 
642 /* Definitions for tx_flags in struct skb_shared_info */
643 enum {
644 	/* generate hardware time stamp */
645 	SKBTX_HW_TSTAMP = 1 << 0,
646 
647 	/* generate software time stamp when queueing packet to NIC */
648 	SKBTX_SW_TSTAMP = 1 << 1,
649 
650 	/* device driver is going to provide hardware time stamp */
651 	SKBTX_IN_PROGRESS = 1 << 2,
652 
653 	/* generate hardware time stamp based on cycles if supported */
654 	SKBTX_HW_TSTAMP_USE_CYCLES = 1 << 3,
655 
656 	/* generate wifi status information (where possible) */
657 	SKBTX_WIFI_STATUS = 1 << 4,
658 
659 	/* determine hardware time stamp based on time or cycles */
660 	SKBTX_HW_TSTAMP_NETDEV = 1 << 5,
661 
662 	/* generate software time stamp when entering packet scheduling */
663 	SKBTX_SCHED_TSTAMP = 1 << 6,
664 };
665 
666 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
667 				 SKBTX_SCHED_TSTAMP)
668 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | \
669 				 SKBTX_HW_TSTAMP_USE_CYCLES | \
670 				 SKBTX_ANY_SW_TSTAMP)
671 
672 /* Definitions for flags in struct skb_shared_info */
673 enum {
674 	/* use zcopy routines */
675 	SKBFL_ZEROCOPY_ENABLE = BIT(0),
676 
677 	/* This indicates at least one fragment might be overwritten
678 	 * (as in vmsplice(), sendfile() ...)
679 	 * If we need to compute a TX checksum, we'll need to copy
680 	 * all frags to avoid possible bad checksum
681 	 */
682 	SKBFL_SHARED_FRAG = BIT(1),
683 
684 	/* segment contains only zerocopy data and should not be
685 	 * charged to the kernel memory.
686 	 */
687 	SKBFL_PURE_ZEROCOPY = BIT(2),
688 };
689 
690 #define SKBFL_ZEROCOPY_FRAG	(SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG)
691 #define SKBFL_ALL_ZEROCOPY	(SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY)
692 
693 /*
694  * The callback notifies userspace to release buffers when skb DMA is done in
695  * lower device, the skb last reference should be 0 when calling this.
696  * The zerocopy_success argument is true if zero copy transmit occurred,
697  * false on data copy or out of memory error caused by data copy attempt.
698  * The ctx field is used to track device context.
699  * The desc field is used to track userspace buffer index.
700  */
701 struct ubuf_info {
702 	void (*callback)(struct sk_buff *, struct ubuf_info *,
703 			 bool zerocopy_success);
704 	union {
705 		struct {
706 			unsigned long desc;
707 			void *ctx;
708 		};
709 		struct {
710 			u32 id;
711 			u16 len;
712 			u16 zerocopy:1;
713 			u32 bytelen;
714 		};
715 	};
716 	refcount_t refcnt;
717 	u8 flags;
718 
719 	struct mmpin {
720 		struct user_struct *user;
721 		unsigned int num_pg;
722 	} mmp;
723 };
724 
725 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
726 
727 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
728 void mm_unaccount_pinned_pages(struct mmpin *mmp);
729 
730 /* This data is invariant across clones and lives at
731  * the end of the header data, ie. at skb->end.
732  */
733 struct skb_shared_info {
734 	__u8		flags;
735 	__u8		meta_len;
736 	__u8		nr_frags;
737 	__u8		tx_flags;
738 	unsigned short	gso_size;
739 	/* Warning: this field is not always filled in (UFO)! */
740 	unsigned short	gso_segs;
741 	struct sk_buff	*frag_list;
742 	struct skb_shared_hwtstamps hwtstamps;
743 	unsigned int	gso_type;
744 	u32		tskey;
745 
746 	/*
747 	 * Warning : all fields before dataref are cleared in __alloc_skb()
748 	 */
749 	atomic_t	dataref;
750 	unsigned int	xdp_frags_size;
751 
752 	/* Intermediate layers must ensure that destructor_arg
753 	 * remains valid until skb destructor */
754 	void *		destructor_arg;
755 
756 	/* must be last field, see pskb_expand_head() */
757 	skb_frag_t	frags[MAX_SKB_FRAGS];
758 };
759 
760 /**
761  * DOC: dataref and headerless skbs
762  *
763  * Transport layers send out clones of payload skbs they hold for
764  * retransmissions. To allow lower layers of the stack to prepend their headers
765  * we split &skb_shared_info.dataref into two halves.
766  * The lower 16 bits count the overall number of references.
767  * The higher 16 bits indicate how many of the references are payload-only.
768  * skb_header_cloned() checks if skb is allowed to add / write the headers.
769  *
770  * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr
771  * (via __skb_header_release()). Any clone created from marked skb will get
772  * &sk_buff.hdr_len populated with the available headroom.
773  * If there's the only clone in existence it's able to modify the headroom
774  * at will. The sequence of calls inside the transport layer is::
775  *
776  *  <alloc skb>
777  *  skb_reserve()
778  *  __skb_header_release()
779  *  skb_clone()
780  *  // send the clone down the stack
781  *
782  * This is not a very generic construct and it depends on the transport layers
783  * doing the right thing. In practice there's usually only one payload-only skb.
784  * Having multiple payload-only skbs with different lengths of hdr_len is not
785  * possible. The payload-only skbs should never leave their owner.
786  */
787 #define SKB_DATAREF_SHIFT 16
788 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
789 
790 
791 enum {
792 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
793 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
794 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
795 };
796 
797 enum {
798 	SKB_GSO_TCPV4 = 1 << 0,
799 
800 	/* This indicates the skb is from an untrusted source. */
801 	SKB_GSO_DODGY = 1 << 1,
802 
803 	/* This indicates the tcp segment has CWR set. */
804 	SKB_GSO_TCP_ECN = 1 << 2,
805 
806 	SKB_GSO_TCP_FIXEDID = 1 << 3,
807 
808 	SKB_GSO_TCPV6 = 1 << 4,
809 
810 	SKB_GSO_FCOE = 1 << 5,
811 
812 	SKB_GSO_GRE = 1 << 6,
813 
814 	SKB_GSO_GRE_CSUM = 1 << 7,
815 
816 	SKB_GSO_IPXIP4 = 1 << 8,
817 
818 	SKB_GSO_IPXIP6 = 1 << 9,
819 
820 	SKB_GSO_UDP_TUNNEL = 1 << 10,
821 
822 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
823 
824 	SKB_GSO_PARTIAL = 1 << 12,
825 
826 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
827 
828 	SKB_GSO_SCTP = 1 << 14,
829 
830 	SKB_GSO_ESP = 1 << 15,
831 
832 	SKB_GSO_UDP = 1 << 16,
833 
834 	SKB_GSO_UDP_L4 = 1 << 17,
835 
836 	SKB_GSO_FRAGLIST = 1 << 18,
837 };
838 
839 #if BITS_PER_LONG > 32
840 #define NET_SKBUFF_DATA_USES_OFFSET 1
841 #endif
842 
843 #ifdef NET_SKBUFF_DATA_USES_OFFSET
844 typedef unsigned int sk_buff_data_t;
845 #else
846 typedef unsigned char *sk_buff_data_t;
847 #endif
848 
849 /**
850  * DOC: Basic sk_buff geometry
851  *
852  * struct sk_buff itself is a metadata structure and does not hold any packet
853  * data. All the data is held in associated buffers.
854  *
855  * &sk_buff.head points to the main "head" buffer. The head buffer is divided
856  * into two parts:
857  *
858  *  - data buffer, containing headers and sometimes payload;
859  *    this is the part of the skb operated on by the common helpers
860  *    such as skb_put() or skb_pull();
861  *  - shared info (struct skb_shared_info) which holds an array of pointers
862  *    to read-only data in the (page, offset, length) format.
863  *
864  * Optionally &skb_shared_info.frag_list may point to another skb.
865  *
866  * Basic diagram may look like this::
867  *
868  *                                  ---------------
869  *                                 | sk_buff       |
870  *                                  ---------------
871  *     ,---------------------------  + head
872  *    /          ,-----------------  + data
873  *   /          /      ,-----------  + tail
874  *  |          |      |            , + end
875  *  |          |      |           |
876  *  v          v      v           v
877  *   -----------------------------------------------
878  *  | headroom | data |  tailroom | skb_shared_info |
879  *   -----------------------------------------------
880  *                                 + [page frag]
881  *                                 + [page frag]
882  *                                 + [page frag]
883  *                                 + [page frag]       ---------
884  *                                 + frag_list    --> | sk_buff |
885  *                                                     ---------
886  *
887  */
888 
889 /**
890  *	struct sk_buff - socket buffer
891  *	@next: Next buffer in list
892  *	@prev: Previous buffer in list
893  *	@tstamp: Time we arrived/left
894  *	@skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
895  *		for retransmit timer
896  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
897  *	@list: queue head
898  *	@ll_node: anchor in an llist (eg socket defer_list)
899  *	@sk: Socket we are owned by
900  *	@ip_defrag_offset: (aka @sk) alternate use of @sk, used in
901  *		fragmentation management
902  *	@dev: Device we arrived on/are leaving by
903  *	@dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
904  *	@cb: Control buffer. Free for use by every layer. Put private vars here
905  *	@_skb_refdst: destination entry (with norefcount bit)
906  *	@sp: the security path, used for xfrm
907  *	@len: Length of actual data
908  *	@data_len: Data length
909  *	@mac_len: Length of link layer header
910  *	@hdr_len: writable header length of cloned skb
911  *	@csum: Checksum (must include start/offset pair)
912  *	@csum_start: Offset from skb->head where checksumming should start
913  *	@csum_offset: Offset from csum_start where checksum should be stored
914  *	@priority: Packet queueing priority
915  *	@ignore_df: allow local fragmentation
916  *	@cloned: Head may be cloned (check refcnt to be sure)
917  *	@ip_summed: Driver fed us an IP checksum
918  *	@nohdr: Payload reference only, must not modify header
919  *	@pkt_type: Packet class
920  *	@fclone: skbuff clone status
921  *	@ipvs_property: skbuff is owned by ipvs
922  *	@inner_protocol_type: whether the inner protocol is
923  *		ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
924  *	@remcsum_offload: remote checksum offload is enabled
925  *	@offload_fwd_mark: Packet was L2-forwarded in hardware
926  *	@offload_l3_fwd_mark: Packet was L3-forwarded in hardware
927  *	@tc_skip_classify: do not classify packet. set by IFB device
928  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
929  *	@redirected: packet was redirected by packet classifier
930  *	@from_ingress: packet was redirected from the ingress path
931  *	@nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h
932  *	@peeked: this packet has been seen already, so stats have been
933  *		done for it, don't do them again
934  *	@nf_trace: netfilter packet trace flag
935  *	@protocol: Packet protocol from driver
936  *	@destructor: Destruct function
937  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
938  *	@_sk_redir: socket redirection information for skmsg
939  *	@_nfct: Associated connection, if any (with nfctinfo bits)
940  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
941  *	@skb_iif: ifindex of device we arrived on
942  *	@tc_index: Traffic control index
943  *	@hash: the packet hash
944  *	@queue_mapping: Queue mapping for multiqueue devices
945  *	@head_frag: skb was allocated from page fragments,
946  *		not allocated by kmalloc() or vmalloc().
947  *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
948  *	@pp_recycle: mark the packet for recycling instead of freeing (implies
949  *		page_pool support on driver)
950  *	@active_extensions: active extensions (skb_ext_id types)
951  *	@ndisc_nodetype: router type (from link layer)
952  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
953  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
954  *		ports.
955  *	@sw_hash: indicates hash was computed in software stack
956  *	@wifi_acked_valid: wifi_acked was set
957  *	@wifi_acked: whether frame was acked on wifi or not
958  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
959  *	@encapsulation: indicates the inner headers in the skbuff are valid
960  *	@encap_hdr_csum: software checksum is needed
961  *	@csum_valid: checksum is already valid
962  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
963  *	@csum_complete_sw: checksum was completed by software
964  *	@csum_level: indicates the number of consecutive checksums found in
965  *		the packet minus one that have been verified as
966  *		CHECKSUM_UNNECESSARY (max 3)
967  *	@dst_pending_confirm: need to confirm neighbour
968  *	@decrypted: Decrypted SKB
969  *	@slow_gro: state present at GRO time, slower prepare step required
970  *	@mono_delivery_time: When set, skb->tstamp has the
971  *		delivery_time in mono clock base (i.e. EDT).  Otherwise, the
972  *		skb->tstamp has the (rcv) timestamp at ingress and
973  *		delivery_time at egress.
974  *	@napi_id: id of the NAPI struct this skb came from
975  *	@sender_cpu: (aka @napi_id) source CPU in XPS
976  *	@alloc_cpu: CPU which did the skb allocation.
977  *	@secmark: security marking
978  *	@mark: Generic packet mark
979  *	@reserved_tailroom: (aka @mark) number of bytes of free space available
980  *		at the tail of an sk_buff
981  *	@vlan_present: VLAN tag is present
982  *	@vlan_proto: vlan encapsulation protocol
983  *	@vlan_tci: vlan tag control information
984  *	@inner_protocol: Protocol (encapsulation)
985  *	@inner_ipproto: (aka @inner_protocol) stores ipproto when
986  *		skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
987  *	@inner_transport_header: Inner transport layer header (encapsulation)
988  *	@inner_network_header: Network layer header (encapsulation)
989  *	@inner_mac_header: Link layer header (encapsulation)
990  *	@transport_header: Transport layer header
991  *	@network_header: Network layer header
992  *	@mac_header: Link layer header
993  *	@kcov_handle: KCOV remote handle for remote coverage collection
994  *	@tail: Tail pointer
995  *	@end: End pointer
996  *	@head: Head of buffer
997  *	@data: Data head pointer
998  *	@truesize: Buffer size
999  *	@users: User count - see {datagram,tcp}.c
1000  *	@extensions: allocated extensions, valid if active_extensions is nonzero
1001  */
1002 
1003 struct sk_buff {
1004 	union {
1005 		struct {
1006 			/* These two members must be first to match sk_buff_head. */
1007 			struct sk_buff		*next;
1008 			struct sk_buff		*prev;
1009 
1010 			union {
1011 				struct net_device	*dev;
1012 				/* Some protocols might use this space to store information,
1013 				 * while device pointer would be NULL.
1014 				 * UDP receive path is one user.
1015 				 */
1016 				unsigned long		dev_scratch;
1017 			};
1018 		};
1019 		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
1020 		struct list_head	list;
1021 		struct llist_node	ll_node;
1022 	};
1023 
1024 	union {
1025 		struct sock		*sk;
1026 		int			ip_defrag_offset;
1027 	};
1028 
1029 	union {
1030 		ktime_t		tstamp;
1031 		u64		skb_mstamp_ns; /* earliest departure time */
1032 	};
1033 	/*
1034 	 * This is the control buffer. It is free to use for every
1035 	 * layer. Please put your private variables there. If you
1036 	 * want to keep them across layers you have to do a skb_clone()
1037 	 * first. This is owned by whoever has the skb queued ATM.
1038 	 */
1039 	char			cb[48] __aligned(8);
1040 
1041 	union {
1042 		struct {
1043 			unsigned long	_skb_refdst;
1044 			void		(*destructor)(struct sk_buff *skb);
1045 		};
1046 		struct list_head	tcp_tsorted_anchor;
1047 #ifdef CONFIG_NET_SOCK_MSG
1048 		unsigned long		_sk_redir;
1049 #endif
1050 	};
1051 
1052 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1053 	unsigned long		 _nfct;
1054 #endif
1055 	unsigned int		len,
1056 				data_len;
1057 	__u16			mac_len,
1058 				hdr_len;
1059 
1060 	/* Following fields are _not_ copied in __copy_skb_header()
1061 	 * Note that queue_mapping is here mostly to fill a hole.
1062 	 */
1063 	__u16			queue_mapping;
1064 
1065 /* if you move cloned around you also must adapt those constants */
1066 #ifdef __BIG_ENDIAN_BITFIELD
1067 #define CLONED_MASK	(1 << 7)
1068 #else
1069 #define CLONED_MASK	1
1070 #endif
1071 #define CLONED_OFFSET		offsetof(struct sk_buff, __cloned_offset)
1072 
1073 	/* private: */
1074 	__u8			__cloned_offset[0];
1075 	/* public: */
1076 	__u8			cloned:1,
1077 				nohdr:1,
1078 				fclone:2,
1079 				peeked:1,
1080 				head_frag:1,
1081 				pfmemalloc:1,
1082 				pp_recycle:1; /* page_pool recycle indicator */
1083 #ifdef CONFIG_SKB_EXTENSIONS
1084 	__u8			active_extensions;
1085 #endif
1086 
1087 	/* Fields enclosed in headers group are copied
1088 	 * using a single memcpy() in __copy_skb_header()
1089 	 */
1090 	struct_group(headers,
1091 
1092 	/* private: */
1093 	__u8			__pkt_type_offset[0];
1094 	/* public: */
1095 	__u8			pkt_type:3; /* see PKT_TYPE_MAX */
1096 	__u8			ignore_df:1;
1097 	__u8			nf_trace:1;
1098 	__u8			ip_summed:2;
1099 	__u8			ooo_okay:1;
1100 
1101 	__u8			l4_hash:1;
1102 	__u8			sw_hash:1;
1103 	__u8			wifi_acked_valid:1;
1104 	__u8			wifi_acked:1;
1105 	__u8			no_fcs:1;
1106 	/* Indicates the inner headers are valid in the skbuff. */
1107 	__u8			encapsulation:1;
1108 	__u8			encap_hdr_csum:1;
1109 	__u8			csum_valid:1;
1110 
1111 	/* private: */
1112 	__u8			__pkt_vlan_present_offset[0];
1113 	/* public: */
1114 	__u8			vlan_present:1;	/* See PKT_VLAN_PRESENT_BIT */
1115 	__u8			csum_complete_sw:1;
1116 	__u8			csum_level:2;
1117 	__u8			dst_pending_confirm:1;
1118 	__u8			mono_delivery_time:1;	/* See SKB_MONO_DELIVERY_TIME_MASK */
1119 #ifdef CONFIG_NET_CLS_ACT
1120 	__u8			tc_skip_classify:1;
1121 	__u8			tc_at_ingress:1;	/* See TC_AT_INGRESS_MASK */
1122 #endif
1123 #ifdef CONFIG_IPV6_NDISC_NODETYPE
1124 	__u8			ndisc_nodetype:2;
1125 #endif
1126 
1127 	__u8			ipvs_property:1;
1128 	__u8			inner_protocol_type:1;
1129 	__u8			remcsum_offload:1;
1130 #ifdef CONFIG_NET_SWITCHDEV
1131 	__u8			offload_fwd_mark:1;
1132 	__u8			offload_l3_fwd_mark:1;
1133 #endif
1134 	__u8			redirected:1;
1135 #ifdef CONFIG_NET_REDIRECT
1136 	__u8			from_ingress:1;
1137 #endif
1138 #ifdef CONFIG_NETFILTER_SKIP_EGRESS
1139 	__u8			nf_skip_egress:1;
1140 #endif
1141 #ifdef CONFIG_TLS_DEVICE
1142 	__u8			decrypted:1;
1143 #endif
1144 	__u8			slow_gro:1;
1145 	__u8			csum_not_inet:1;
1146 
1147 #ifdef CONFIG_NET_SCHED
1148 	__u16			tc_index;	/* traffic control index */
1149 #endif
1150 
1151 	union {
1152 		__wsum		csum;
1153 		struct {
1154 			__u16	csum_start;
1155 			__u16	csum_offset;
1156 		};
1157 	};
1158 	__u32			priority;
1159 	int			skb_iif;
1160 	__u32			hash;
1161 	__be16			vlan_proto;
1162 	__u16			vlan_tci;
1163 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
1164 	union {
1165 		unsigned int	napi_id;
1166 		unsigned int	sender_cpu;
1167 	};
1168 #endif
1169 	u16			alloc_cpu;
1170 #ifdef CONFIG_NETWORK_SECMARK
1171 	__u32		secmark;
1172 #endif
1173 
1174 	union {
1175 		__u32		mark;
1176 		__u32		reserved_tailroom;
1177 	};
1178 
1179 	union {
1180 		__be16		inner_protocol;
1181 		__u8		inner_ipproto;
1182 	};
1183 
1184 	__u16			inner_transport_header;
1185 	__u16			inner_network_header;
1186 	__u16			inner_mac_header;
1187 
1188 	__be16			protocol;
1189 	__u16			transport_header;
1190 	__u16			network_header;
1191 	__u16			mac_header;
1192 
1193 #ifdef CONFIG_KCOV
1194 	u64			kcov_handle;
1195 #endif
1196 
1197 	); /* end headers group */
1198 
1199 	/* These elements must be at the end, see alloc_skb() for details.  */
1200 	sk_buff_data_t		tail;
1201 	sk_buff_data_t		end;
1202 	unsigned char		*head,
1203 				*data;
1204 	unsigned int		truesize;
1205 	refcount_t		users;
1206 
1207 #ifdef CONFIG_SKB_EXTENSIONS
1208 	/* only useable after checking ->active_extensions != 0 */
1209 	struct skb_ext		*extensions;
1210 #endif
1211 };
1212 
1213 /* if you move pkt_type around you also must adapt those constants */
1214 #ifdef __BIG_ENDIAN_BITFIELD
1215 #define PKT_TYPE_MAX	(7 << 5)
1216 #else
1217 #define PKT_TYPE_MAX	7
1218 #endif
1219 #define PKT_TYPE_OFFSET		offsetof(struct sk_buff, __pkt_type_offset)
1220 
1221 /* if you move pkt_vlan_present, tc_at_ingress, or mono_delivery_time
1222  * around, you also must adapt these constants.
1223  */
1224 #ifdef __BIG_ENDIAN_BITFIELD
1225 #define PKT_VLAN_PRESENT_BIT	7
1226 #define TC_AT_INGRESS_MASK		(1 << 0)
1227 #define SKB_MONO_DELIVERY_TIME_MASK	(1 << 2)
1228 #else
1229 #define PKT_VLAN_PRESENT_BIT	0
1230 #define TC_AT_INGRESS_MASK		(1 << 7)
1231 #define SKB_MONO_DELIVERY_TIME_MASK	(1 << 5)
1232 #endif
1233 #define PKT_VLAN_PRESENT_OFFSET	offsetof(struct sk_buff, __pkt_vlan_present_offset)
1234 
1235 #ifdef __KERNEL__
1236 /*
1237  *	Handling routines are only of interest to the kernel
1238  */
1239 
1240 #define SKB_ALLOC_FCLONE	0x01
1241 #define SKB_ALLOC_RX		0x02
1242 #define SKB_ALLOC_NAPI		0x04
1243 
1244 /**
1245  * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
1246  * @skb: buffer
1247  */
1248 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
1249 {
1250 	return unlikely(skb->pfmemalloc);
1251 }
1252 
1253 /*
1254  * skb might have a dst pointer attached, refcounted or not.
1255  * _skb_refdst low order bit is set if refcount was _not_ taken
1256  */
1257 #define SKB_DST_NOREF	1UL
1258 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
1259 
1260 /**
1261  * skb_dst - returns skb dst_entry
1262  * @skb: buffer
1263  *
1264  * Returns skb dst_entry, regardless of reference taken or not.
1265  */
1266 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
1267 {
1268 	/* If refdst was not refcounted, check we still are in a
1269 	 * rcu_read_lock section
1270 	 */
1271 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
1272 		!rcu_read_lock_held() &&
1273 		!rcu_read_lock_bh_held());
1274 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
1275 }
1276 
1277 /**
1278  * skb_dst_set - sets skb dst
1279  * @skb: buffer
1280  * @dst: dst entry
1281  *
1282  * Sets skb dst, assuming a reference was taken on dst and should
1283  * be released by skb_dst_drop()
1284  */
1285 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
1286 {
1287 	skb->slow_gro |= !!dst;
1288 	skb->_skb_refdst = (unsigned long)dst;
1289 }
1290 
1291 /**
1292  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
1293  * @skb: buffer
1294  * @dst: dst entry
1295  *
1296  * Sets skb dst, assuming a reference was not taken on dst.
1297  * If dst entry is cached, we do not take reference and dst_release
1298  * will be avoided by refdst_drop. If dst entry is not cached, we take
1299  * reference, so that last dst_release can destroy the dst immediately.
1300  */
1301 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
1302 {
1303 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
1304 	skb->slow_gro |= !!dst;
1305 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
1306 }
1307 
1308 /**
1309  * skb_dst_is_noref - Test if skb dst isn't refcounted
1310  * @skb: buffer
1311  */
1312 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1313 {
1314 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1315 }
1316 
1317 /**
1318  * skb_rtable - Returns the skb &rtable
1319  * @skb: buffer
1320  */
1321 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
1322 {
1323 	return (struct rtable *)skb_dst(skb);
1324 }
1325 
1326 /* For mangling skb->pkt_type from user space side from applications
1327  * such as nft, tc, etc, we only allow a conservative subset of
1328  * possible pkt_types to be set.
1329 */
1330 static inline bool skb_pkt_type_ok(u32 ptype)
1331 {
1332 	return ptype <= PACKET_OTHERHOST;
1333 }
1334 
1335 /**
1336  * skb_napi_id - Returns the skb's NAPI id
1337  * @skb: buffer
1338  */
1339 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1340 {
1341 #ifdef CONFIG_NET_RX_BUSY_POLL
1342 	return skb->napi_id;
1343 #else
1344 	return 0;
1345 #endif
1346 }
1347 
1348 /**
1349  * skb_unref - decrement the skb's reference count
1350  * @skb: buffer
1351  *
1352  * Returns true if we can free the skb.
1353  */
1354 static inline bool skb_unref(struct sk_buff *skb)
1355 {
1356 	if (unlikely(!skb))
1357 		return false;
1358 	if (likely(refcount_read(&skb->users) == 1))
1359 		smp_rmb();
1360 	else if (likely(!refcount_dec_and_test(&skb->users)))
1361 		return false;
1362 
1363 	return true;
1364 }
1365 
1366 void kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason);
1367 
1368 /**
1369  *	kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason
1370  *	@skb: buffer to free
1371  */
1372 static inline void kfree_skb(struct sk_buff *skb)
1373 {
1374 	kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1375 }
1376 
1377 void skb_release_head_state(struct sk_buff *skb);
1378 void kfree_skb_list_reason(struct sk_buff *segs,
1379 			   enum skb_drop_reason reason);
1380 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1381 void skb_tx_error(struct sk_buff *skb);
1382 
1383 static inline void kfree_skb_list(struct sk_buff *segs)
1384 {
1385 	kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED);
1386 }
1387 
1388 #ifdef CONFIG_TRACEPOINTS
1389 void consume_skb(struct sk_buff *skb);
1390 #else
1391 static inline void consume_skb(struct sk_buff *skb)
1392 {
1393 	return kfree_skb(skb);
1394 }
1395 #endif
1396 
1397 void __consume_stateless_skb(struct sk_buff *skb);
1398 void  __kfree_skb(struct sk_buff *skb);
1399 extern struct kmem_cache *skbuff_head_cache;
1400 
1401 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1402 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1403 		      bool *fragstolen, int *delta_truesize);
1404 
1405 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1406 			    int node);
1407 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1408 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1409 struct sk_buff *build_skb_around(struct sk_buff *skb,
1410 				 void *data, unsigned int frag_size);
1411 void skb_attempt_defer_free(struct sk_buff *skb);
1412 
1413 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size);
1414 
1415 /**
1416  * alloc_skb - allocate a network buffer
1417  * @size: size to allocate
1418  * @priority: allocation mask
1419  *
1420  * This function is a convenient wrapper around __alloc_skb().
1421  */
1422 static inline struct sk_buff *alloc_skb(unsigned int size,
1423 					gfp_t priority)
1424 {
1425 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1426 }
1427 
1428 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1429 				     unsigned long data_len,
1430 				     int max_page_order,
1431 				     int *errcode,
1432 				     gfp_t gfp_mask);
1433 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1434 
1435 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1436 struct sk_buff_fclones {
1437 	struct sk_buff	skb1;
1438 
1439 	struct sk_buff	skb2;
1440 
1441 	refcount_t	fclone_ref;
1442 };
1443 
1444 /**
1445  *	skb_fclone_busy - check if fclone is busy
1446  *	@sk: socket
1447  *	@skb: buffer
1448  *
1449  * Returns true if skb is a fast clone, and its clone is not freed.
1450  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1451  * so we also check that this didnt happen.
1452  */
1453 static inline bool skb_fclone_busy(const struct sock *sk,
1454 				   const struct sk_buff *skb)
1455 {
1456 	const struct sk_buff_fclones *fclones;
1457 
1458 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1459 
1460 	return skb->fclone == SKB_FCLONE_ORIG &&
1461 	       refcount_read(&fclones->fclone_ref) > 1 &&
1462 	       READ_ONCE(fclones->skb2.sk) == sk;
1463 }
1464 
1465 /**
1466  * alloc_skb_fclone - allocate a network buffer from fclone cache
1467  * @size: size to allocate
1468  * @priority: allocation mask
1469  *
1470  * This function is a convenient wrapper around __alloc_skb().
1471  */
1472 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1473 					       gfp_t priority)
1474 {
1475 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1476 }
1477 
1478 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1479 void skb_headers_offset_update(struct sk_buff *skb, int off);
1480 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1481 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1482 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1483 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1484 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1485 				   gfp_t gfp_mask, bool fclone);
1486 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1487 					  gfp_t gfp_mask)
1488 {
1489 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1490 }
1491 
1492 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1493 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1494 				     unsigned int headroom);
1495 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom);
1496 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1497 				int newtailroom, gfp_t priority);
1498 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1499 				     int offset, int len);
1500 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1501 			      int offset, int len);
1502 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1503 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1504 
1505 /**
1506  *	skb_pad			-	zero pad the tail of an skb
1507  *	@skb: buffer to pad
1508  *	@pad: space to pad
1509  *
1510  *	Ensure that a buffer is followed by a padding area that is zero
1511  *	filled. Used by network drivers which may DMA or transfer data
1512  *	beyond the buffer end onto the wire.
1513  *
1514  *	May return error in out of memory cases. The skb is freed on error.
1515  */
1516 static inline int skb_pad(struct sk_buff *skb, int pad)
1517 {
1518 	return __skb_pad(skb, pad, true);
1519 }
1520 #define dev_kfree_skb(a)	consume_skb(a)
1521 
1522 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1523 			 int offset, size_t size);
1524 
1525 struct skb_seq_state {
1526 	__u32		lower_offset;
1527 	__u32		upper_offset;
1528 	__u32		frag_idx;
1529 	__u32		stepped_offset;
1530 	struct sk_buff	*root_skb;
1531 	struct sk_buff	*cur_skb;
1532 	__u8		*frag_data;
1533 	__u32		frag_off;
1534 };
1535 
1536 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1537 			  unsigned int to, struct skb_seq_state *st);
1538 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1539 			  struct skb_seq_state *st);
1540 void skb_abort_seq_read(struct skb_seq_state *st);
1541 
1542 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1543 			   unsigned int to, struct ts_config *config);
1544 
1545 /*
1546  * Packet hash types specify the type of hash in skb_set_hash.
1547  *
1548  * Hash types refer to the protocol layer addresses which are used to
1549  * construct a packet's hash. The hashes are used to differentiate or identify
1550  * flows of the protocol layer for the hash type. Hash types are either
1551  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1552  *
1553  * Properties of hashes:
1554  *
1555  * 1) Two packets in different flows have different hash values
1556  * 2) Two packets in the same flow should have the same hash value
1557  *
1558  * A hash at a higher layer is considered to be more specific. A driver should
1559  * set the most specific hash possible.
1560  *
1561  * A driver cannot indicate a more specific hash than the layer at which a hash
1562  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1563  *
1564  * A driver may indicate a hash level which is less specific than the
1565  * actual layer the hash was computed on. For instance, a hash computed
1566  * at L4 may be considered an L3 hash. This should only be done if the
1567  * driver can't unambiguously determine that the HW computed the hash at
1568  * the higher layer. Note that the "should" in the second property above
1569  * permits this.
1570  */
1571 enum pkt_hash_types {
1572 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1573 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1574 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1575 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1576 };
1577 
1578 static inline void skb_clear_hash(struct sk_buff *skb)
1579 {
1580 	skb->hash = 0;
1581 	skb->sw_hash = 0;
1582 	skb->l4_hash = 0;
1583 }
1584 
1585 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1586 {
1587 	if (!skb->l4_hash)
1588 		skb_clear_hash(skb);
1589 }
1590 
1591 static inline void
1592 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1593 {
1594 	skb->l4_hash = is_l4;
1595 	skb->sw_hash = is_sw;
1596 	skb->hash = hash;
1597 }
1598 
1599 static inline void
1600 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1601 {
1602 	/* Used by drivers to set hash from HW */
1603 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1604 }
1605 
1606 static inline void
1607 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1608 {
1609 	__skb_set_hash(skb, hash, true, is_l4);
1610 }
1611 
1612 void __skb_get_hash(struct sk_buff *skb);
1613 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1614 u32 skb_get_poff(const struct sk_buff *skb);
1615 u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
1616 		   const struct flow_keys_basic *keys, int hlen);
1617 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1618 			    const void *data, int hlen_proto);
1619 
1620 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1621 					int thoff, u8 ip_proto)
1622 {
1623 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1624 }
1625 
1626 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1627 			     const struct flow_dissector_key *key,
1628 			     unsigned int key_count);
1629 
1630 struct bpf_flow_dissector;
1631 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1632 		      __be16 proto, int nhoff, int hlen, unsigned int flags);
1633 
1634 bool __skb_flow_dissect(const struct net *net,
1635 			const struct sk_buff *skb,
1636 			struct flow_dissector *flow_dissector,
1637 			void *target_container, const void *data,
1638 			__be16 proto, int nhoff, int hlen, unsigned int flags);
1639 
1640 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1641 				    struct flow_dissector *flow_dissector,
1642 				    void *target_container, unsigned int flags)
1643 {
1644 	return __skb_flow_dissect(NULL, skb, flow_dissector,
1645 				  target_container, NULL, 0, 0, 0, flags);
1646 }
1647 
1648 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1649 					      struct flow_keys *flow,
1650 					      unsigned int flags)
1651 {
1652 	memset(flow, 0, sizeof(*flow));
1653 	return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1654 				  flow, NULL, 0, 0, 0, flags);
1655 }
1656 
1657 static inline bool
1658 skb_flow_dissect_flow_keys_basic(const struct net *net,
1659 				 const struct sk_buff *skb,
1660 				 struct flow_keys_basic *flow,
1661 				 const void *data, __be16 proto,
1662 				 int nhoff, int hlen, unsigned int flags)
1663 {
1664 	memset(flow, 0, sizeof(*flow));
1665 	return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1666 				  data, proto, nhoff, hlen, flags);
1667 }
1668 
1669 void skb_flow_dissect_meta(const struct sk_buff *skb,
1670 			   struct flow_dissector *flow_dissector,
1671 			   void *target_container);
1672 
1673 /* Gets a skb connection tracking info, ctinfo map should be a
1674  * map of mapsize to translate enum ip_conntrack_info states
1675  * to user states.
1676  */
1677 void
1678 skb_flow_dissect_ct(const struct sk_buff *skb,
1679 		    struct flow_dissector *flow_dissector,
1680 		    void *target_container,
1681 		    u16 *ctinfo_map, size_t mapsize,
1682 		    bool post_ct, u16 zone);
1683 void
1684 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1685 			     struct flow_dissector *flow_dissector,
1686 			     void *target_container);
1687 
1688 void skb_flow_dissect_hash(const struct sk_buff *skb,
1689 			   struct flow_dissector *flow_dissector,
1690 			   void *target_container);
1691 
1692 static inline __u32 skb_get_hash(struct sk_buff *skb)
1693 {
1694 	if (!skb->l4_hash && !skb->sw_hash)
1695 		__skb_get_hash(skb);
1696 
1697 	return skb->hash;
1698 }
1699 
1700 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1701 {
1702 	if (!skb->l4_hash && !skb->sw_hash) {
1703 		struct flow_keys keys;
1704 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1705 
1706 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1707 	}
1708 
1709 	return skb->hash;
1710 }
1711 
1712 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1713 			   const siphash_key_t *perturb);
1714 
1715 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1716 {
1717 	return skb->hash;
1718 }
1719 
1720 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1721 {
1722 	to->hash = from->hash;
1723 	to->sw_hash = from->sw_hash;
1724 	to->l4_hash = from->l4_hash;
1725 };
1726 
1727 static inline void skb_copy_decrypted(struct sk_buff *to,
1728 				      const struct sk_buff *from)
1729 {
1730 #ifdef CONFIG_TLS_DEVICE
1731 	to->decrypted = from->decrypted;
1732 #endif
1733 }
1734 
1735 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1736 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1737 {
1738 	return skb->head + skb->end;
1739 }
1740 
1741 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1742 {
1743 	return skb->end;
1744 }
1745 
1746 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1747 {
1748 	skb->end = offset;
1749 }
1750 #else
1751 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1752 {
1753 	return skb->end;
1754 }
1755 
1756 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1757 {
1758 	return skb->end - skb->head;
1759 }
1760 
1761 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1762 {
1763 	skb->end = skb->head + offset;
1764 }
1765 #endif
1766 
1767 static inline unsigned int skb_data_area_size(struct sk_buff *skb)
1768 {
1769 	return skb_end_pointer(skb) - skb->data;
1770 }
1771 
1772 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1773 				       struct ubuf_info *uarg);
1774 
1775 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
1776 
1777 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1778 			   bool success);
1779 
1780 int __zerocopy_sg_from_iter(struct sock *sk, struct sk_buff *skb,
1781 			    struct iov_iter *from, size_t length);
1782 
1783 static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb,
1784 					  struct msghdr *msg, int len)
1785 {
1786 	return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len);
1787 }
1788 
1789 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1790 			     struct msghdr *msg, int len,
1791 			     struct ubuf_info *uarg);
1792 
1793 /* Internal */
1794 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1795 
1796 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1797 {
1798 	return &skb_shinfo(skb)->hwtstamps;
1799 }
1800 
1801 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1802 {
1803 	bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE;
1804 
1805 	return is_zcopy ? skb_uarg(skb) : NULL;
1806 }
1807 
1808 static inline bool skb_zcopy_pure(const struct sk_buff *skb)
1809 {
1810 	return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY;
1811 }
1812 
1813 static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1,
1814 				       const struct sk_buff *skb2)
1815 {
1816 	return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2);
1817 }
1818 
1819 static inline void net_zcopy_get(struct ubuf_info *uarg)
1820 {
1821 	refcount_inc(&uarg->refcnt);
1822 }
1823 
1824 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg)
1825 {
1826 	skb_shinfo(skb)->destructor_arg = uarg;
1827 	skb_shinfo(skb)->flags |= uarg->flags;
1828 }
1829 
1830 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1831 				 bool *have_ref)
1832 {
1833 	if (skb && uarg && !skb_zcopy(skb)) {
1834 		if (unlikely(have_ref && *have_ref))
1835 			*have_ref = false;
1836 		else
1837 			net_zcopy_get(uarg);
1838 		skb_zcopy_init(skb, uarg);
1839 	}
1840 }
1841 
1842 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1843 {
1844 	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1845 	skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG;
1846 }
1847 
1848 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1849 {
1850 	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1851 }
1852 
1853 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1854 {
1855 	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1856 }
1857 
1858 static inline void net_zcopy_put(struct ubuf_info *uarg)
1859 {
1860 	if (uarg)
1861 		uarg->callback(NULL, uarg, true);
1862 }
1863 
1864 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1865 {
1866 	if (uarg) {
1867 		if (uarg->callback == msg_zerocopy_callback)
1868 			msg_zerocopy_put_abort(uarg, have_uref);
1869 		else if (have_uref)
1870 			net_zcopy_put(uarg);
1871 	}
1872 }
1873 
1874 /* Release a reference on a zerocopy structure */
1875 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success)
1876 {
1877 	struct ubuf_info *uarg = skb_zcopy(skb);
1878 
1879 	if (uarg) {
1880 		if (!skb_zcopy_is_nouarg(skb))
1881 			uarg->callback(skb, uarg, zerocopy_success);
1882 
1883 		skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY;
1884 	}
1885 }
1886 
1887 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1888 {
1889 	skb->next = NULL;
1890 }
1891 
1892 /* Iterate through singly-linked GSO fragments of an skb. */
1893 #define skb_list_walk_safe(first, skb, next_skb)                               \
1894 	for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb);  \
1895 	     (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1896 
1897 static inline void skb_list_del_init(struct sk_buff *skb)
1898 {
1899 	__list_del_entry(&skb->list);
1900 	skb_mark_not_on_list(skb);
1901 }
1902 
1903 /**
1904  *	skb_queue_empty - check if a queue is empty
1905  *	@list: queue head
1906  *
1907  *	Returns true if the queue is empty, false otherwise.
1908  */
1909 static inline int skb_queue_empty(const struct sk_buff_head *list)
1910 {
1911 	return list->next == (const struct sk_buff *) list;
1912 }
1913 
1914 /**
1915  *	skb_queue_empty_lockless - check if a queue is empty
1916  *	@list: queue head
1917  *
1918  *	Returns true if the queue is empty, false otherwise.
1919  *	This variant can be used in lockless contexts.
1920  */
1921 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1922 {
1923 	return READ_ONCE(list->next) == (const struct sk_buff *) list;
1924 }
1925 
1926 
1927 /**
1928  *	skb_queue_is_last - check if skb is the last entry in the queue
1929  *	@list: queue head
1930  *	@skb: buffer
1931  *
1932  *	Returns true if @skb is the last buffer on the list.
1933  */
1934 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1935 				     const struct sk_buff *skb)
1936 {
1937 	return skb->next == (const struct sk_buff *) list;
1938 }
1939 
1940 /**
1941  *	skb_queue_is_first - check if skb is the first entry in the queue
1942  *	@list: queue head
1943  *	@skb: buffer
1944  *
1945  *	Returns true if @skb is the first buffer on the list.
1946  */
1947 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1948 				      const struct sk_buff *skb)
1949 {
1950 	return skb->prev == (const struct sk_buff *) list;
1951 }
1952 
1953 /**
1954  *	skb_queue_next - return the next packet in the queue
1955  *	@list: queue head
1956  *	@skb: current buffer
1957  *
1958  *	Return the next packet in @list after @skb.  It is only valid to
1959  *	call this if skb_queue_is_last() evaluates to false.
1960  */
1961 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1962 					     const struct sk_buff *skb)
1963 {
1964 	/* This BUG_ON may seem severe, but if we just return then we
1965 	 * are going to dereference garbage.
1966 	 */
1967 	BUG_ON(skb_queue_is_last(list, skb));
1968 	return skb->next;
1969 }
1970 
1971 /**
1972  *	skb_queue_prev - return the prev packet in the queue
1973  *	@list: queue head
1974  *	@skb: current buffer
1975  *
1976  *	Return the prev packet in @list before @skb.  It is only valid to
1977  *	call this if skb_queue_is_first() evaluates to false.
1978  */
1979 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1980 					     const struct sk_buff *skb)
1981 {
1982 	/* This BUG_ON may seem severe, but if we just return then we
1983 	 * are going to dereference garbage.
1984 	 */
1985 	BUG_ON(skb_queue_is_first(list, skb));
1986 	return skb->prev;
1987 }
1988 
1989 /**
1990  *	skb_get - reference buffer
1991  *	@skb: buffer to reference
1992  *
1993  *	Makes another reference to a socket buffer and returns a pointer
1994  *	to the buffer.
1995  */
1996 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1997 {
1998 	refcount_inc(&skb->users);
1999 	return skb;
2000 }
2001 
2002 /*
2003  * If users == 1, we are the only owner and can avoid redundant atomic changes.
2004  */
2005 
2006 /**
2007  *	skb_cloned - is the buffer a clone
2008  *	@skb: buffer to check
2009  *
2010  *	Returns true if the buffer was generated with skb_clone() and is
2011  *	one of multiple shared copies of the buffer. Cloned buffers are
2012  *	shared data so must not be written to under normal circumstances.
2013  */
2014 static inline int skb_cloned(const struct sk_buff *skb)
2015 {
2016 	return skb->cloned &&
2017 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
2018 }
2019 
2020 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
2021 {
2022 	might_sleep_if(gfpflags_allow_blocking(pri));
2023 
2024 	if (skb_cloned(skb))
2025 		return pskb_expand_head(skb, 0, 0, pri);
2026 
2027 	return 0;
2028 }
2029 
2030 /* This variant of skb_unclone() makes sure skb->truesize
2031  * and skb_end_offset() are not changed, whenever a new skb->head is needed.
2032  *
2033  * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X))
2034  * when various debugging features are in place.
2035  */
2036 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri);
2037 static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
2038 {
2039 	might_sleep_if(gfpflags_allow_blocking(pri));
2040 
2041 	if (skb_cloned(skb))
2042 		return __skb_unclone_keeptruesize(skb, pri);
2043 	return 0;
2044 }
2045 
2046 /**
2047  *	skb_header_cloned - is the header a clone
2048  *	@skb: buffer to check
2049  *
2050  *	Returns true if modifying the header part of the buffer requires
2051  *	the data to be copied.
2052  */
2053 static inline int skb_header_cloned(const struct sk_buff *skb)
2054 {
2055 	int dataref;
2056 
2057 	if (!skb->cloned)
2058 		return 0;
2059 
2060 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
2061 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
2062 	return dataref != 1;
2063 }
2064 
2065 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
2066 {
2067 	might_sleep_if(gfpflags_allow_blocking(pri));
2068 
2069 	if (skb_header_cloned(skb))
2070 		return pskb_expand_head(skb, 0, 0, pri);
2071 
2072 	return 0;
2073 }
2074 
2075 /**
2076  * __skb_header_release() - allow clones to use the headroom
2077  * @skb: buffer to operate on
2078  *
2079  * See "DOC: dataref and headerless skbs".
2080  */
2081 static inline void __skb_header_release(struct sk_buff *skb)
2082 {
2083 	skb->nohdr = 1;
2084 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
2085 }
2086 
2087 
2088 /**
2089  *	skb_shared - is the buffer shared
2090  *	@skb: buffer to check
2091  *
2092  *	Returns true if more than one person has a reference to this
2093  *	buffer.
2094  */
2095 static inline int skb_shared(const struct sk_buff *skb)
2096 {
2097 	return refcount_read(&skb->users) != 1;
2098 }
2099 
2100 /**
2101  *	skb_share_check - check if buffer is shared and if so clone it
2102  *	@skb: buffer to check
2103  *	@pri: priority for memory allocation
2104  *
2105  *	If the buffer is shared the buffer is cloned and the old copy
2106  *	drops a reference. A new clone with a single reference is returned.
2107  *	If the buffer is not shared the original buffer is returned. When
2108  *	being called from interrupt status or with spinlocks held pri must
2109  *	be GFP_ATOMIC.
2110  *
2111  *	NULL is returned on a memory allocation failure.
2112  */
2113 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
2114 {
2115 	might_sleep_if(gfpflags_allow_blocking(pri));
2116 	if (skb_shared(skb)) {
2117 		struct sk_buff *nskb = skb_clone(skb, pri);
2118 
2119 		if (likely(nskb))
2120 			consume_skb(skb);
2121 		else
2122 			kfree_skb(skb);
2123 		skb = nskb;
2124 	}
2125 	return skb;
2126 }
2127 
2128 /*
2129  *	Copy shared buffers into a new sk_buff. We effectively do COW on
2130  *	packets to handle cases where we have a local reader and forward
2131  *	and a couple of other messy ones. The normal one is tcpdumping
2132  *	a packet thats being forwarded.
2133  */
2134 
2135 /**
2136  *	skb_unshare - make a copy of a shared buffer
2137  *	@skb: buffer to check
2138  *	@pri: priority for memory allocation
2139  *
2140  *	If the socket buffer is a clone then this function creates a new
2141  *	copy of the data, drops a reference count on the old copy and returns
2142  *	the new copy with the reference count at 1. If the buffer is not a clone
2143  *	the original buffer is returned. When called with a spinlock held or
2144  *	from interrupt state @pri must be %GFP_ATOMIC
2145  *
2146  *	%NULL is returned on a memory allocation failure.
2147  */
2148 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
2149 					  gfp_t pri)
2150 {
2151 	might_sleep_if(gfpflags_allow_blocking(pri));
2152 	if (skb_cloned(skb)) {
2153 		struct sk_buff *nskb = skb_copy(skb, pri);
2154 
2155 		/* Free our shared copy */
2156 		if (likely(nskb))
2157 			consume_skb(skb);
2158 		else
2159 			kfree_skb(skb);
2160 		skb = nskb;
2161 	}
2162 	return skb;
2163 }
2164 
2165 /**
2166  *	skb_peek - peek at the head of an &sk_buff_head
2167  *	@list_: list to peek at
2168  *
2169  *	Peek an &sk_buff. Unlike most other operations you _MUST_
2170  *	be careful with this one. A peek leaves the buffer on the
2171  *	list and someone else may run off with it. You must hold
2172  *	the appropriate locks or have a private queue to do this.
2173  *
2174  *	Returns %NULL for an empty list or a pointer to the head element.
2175  *	The reference count is not incremented and the reference is therefore
2176  *	volatile. Use with caution.
2177  */
2178 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
2179 {
2180 	struct sk_buff *skb = list_->next;
2181 
2182 	if (skb == (struct sk_buff *)list_)
2183 		skb = NULL;
2184 	return skb;
2185 }
2186 
2187 /**
2188  *	__skb_peek - peek at the head of a non-empty &sk_buff_head
2189  *	@list_: list to peek at
2190  *
2191  *	Like skb_peek(), but the caller knows that the list is not empty.
2192  */
2193 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
2194 {
2195 	return list_->next;
2196 }
2197 
2198 /**
2199  *	skb_peek_next - peek skb following the given one from a queue
2200  *	@skb: skb to start from
2201  *	@list_: list to peek at
2202  *
2203  *	Returns %NULL when the end of the list is met or a pointer to the
2204  *	next element. The reference count is not incremented and the
2205  *	reference is therefore volatile. Use with caution.
2206  */
2207 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
2208 		const struct sk_buff_head *list_)
2209 {
2210 	struct sk_buff *next = skb->next;
2211 
2212 	if (next == (struct sk_buff *)list_)
2213 		next = NULL;
2214 	return next;
2215 }
2216 
2217 /**
2218  *	skb_peek_tail - peek at the tail of an &sk_buff_head
2219  *	@list_: list to peek at
2220  *
2221  *	Peek an &sk_buff. Unlike most other operations you _MUST_
2222  *	be careful with this one. A peek leaves the buffer on the
2223  *	list and someone else may run off with it. You must hold
2224  *	the appropriate locks or have a private queue to do this.
2225  *
2226  *	Returns %NULL for an empty list or a pointer to the tail element.
2227  *	The reference count is not incremented and the reference is therefore
2228  *	volatile. Use with caution.
2229  */
2230 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
2231 {
2232 	struct sk_buff *skb = READ_ONCE(list_->prev);
2233 
2234 	if (skb == (struct sk_buff *)list_)
2235 		skb = NULL;
2236 	return skb;
2237 
2238 }
2239 
2240 /**
2241  *	skb_queue_len	- get queue length
2242  *	@list_: list to measure
2243  *
2244  *	Return the length of an &sk_buff queue.
2245  */
2246 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
2247 {
2248 	return list_->qlen;
2249 }
2250 
2251 /**
2252  *	skb_queue_len_lockless	- get queue length
2253  *	@list_: list to measure
2254  *
2255  *	Return the length of an &sk_buff queue.
2256  *	This variant can be used in lockless contexts.
2257  */
2258 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
2259 {
2260 	return READ_ONCE(list_->qlen);
2261 }
2262 
2263 /**
2264  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
2265  *	@list: queue to initialize
2266  *
2267  *	This initializes only the list and queue length aspects of
2268  *	an sk_buff_head object.  This allows to initialize the list
2269  *	aspects of an sk_buff_head without reinitializing things like
2270  *	the spinlock.  It can also be used for on-stack sk_buff_head
2271  *	objects where the spinlock is known to not be used.
2272  */
2273 static inline void __skb_queue_head_init(struct sk_buff_head *list)
2274 {
2275 	list->prev = list->next = (struct sk_buff *)list;
2276 	list->qlen = 0;
2277 }
2278 
2279 /*
2280  * This function creates a split out lock class for each invocation;
2281  * this is needed for now since a whole lot of users of the skb-queue
2282  * infrastructure in drivers have different locking usage (in hardirq)
2283  * than the networking core (in softirq only). In the long run either the
2284  * network layer or drivers should need annotation to consolidate the
2285  * main types of usage into 3 classes.
2286  */
2287 static inline void skb_queue_head_init(struct sk_buff_head *list)
2288 {
2289 	spin_lock_init(&list->lock);
2290 	__skb_queue_head_init(list);
2291 }
2292 
2293 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
2294 		struct lock_class_key *class)
2295 {
2296 	skb_queue_head_init(list);
2297 	lockdep_set_class(&list->lock, class);
2298 }
2299 
2300 /*
2301  *	Insert an sk_buff on a list.
2302  *
2303  *	The "__skb_xxxx()" functions are the non-atomic ones that
2304  *	can only be called with interrupts disabled.
2305  */
2306 static inline void __skb_insert(struct sk_buff *newsk,
2307 				struct sk_buff *prev, struct sk_buff *next,
2308 				struct sk_buff_head *list)
2309 {
2310 	/* See skb_queue_empty_lockless() and skb_peek_tail()
2311 	 * for the opposite READ_ONCE()
2312 	 */
2313 	WRITE_ONCE(newsk->next, next);
2314 	WRITE_ONCE(newsk->prev, prev);
2315 	WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk);
2316 	WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk);
2317 	WRITE_ONCE(list->qlen, list->qlen + 1);
2318 }
2319 
2320 static inline void __skb_queue_splice(const struct sk_buff_head *list,
2321 				      struct sk_buff *prev,
2322 				      struct sk_buff *next)
2323 {
2324 	struct sk_buff *first = list->next;
2325 	struct sk_buff *last = list->prev;
2326 
2327 	WRITE_ONCE(first->prev, prev);
2328 	WRITE_ONCE(prev->next, first);
2329 
2330 	WRITE_ONCE(last->next, next);
2331 	WRITE_ONCE(next->prev, last);
2332 }
2333 
2334 /**
2335  *	skb_queue_splice - join two skb lists, this is designed for stacks
2336  *	@list: the new list to add
2337  *	@head: the place to add it in the first list
2338  */
2339 static inline void skb_queue_splice(const struct sk_buff_head *list,
2340 				    struct sk_buff_head *head)
2341 {
2342 	if (!skb_queue_empty(list)) {
2343 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2344 		head->qlen += list->qlen;
2345 	}
2346 }
2347 
2348 /**
2349  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
2350  *	@list: the new list to add
2351  *	@head: the place to add it in the first list
2352  *
2353  *	The list at @list is reinitialised
2354  */
2355 static inline void skb_queue_splice_init(struct sk_buff_head *list,
2356 					 struct sk_buff_head *head)
2357 {
2358 	if (!skb_queue_empty(list)) {
2359 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2360 		head->qlen += list->qlen;
2361 		__skb_queue_head_init(list);
2362 	}
2363 }
2364 
2365 /**
2366  *	skb_queue_splice_tail - join two skb lists, each list being a queue
2367  *	@list: the new list to add
2368  *	@head: the place to add it in the first list
2369  */
2370 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
2371 					 struct sk_buff_head *head)
2372 {
2373 	if (!skb_queue_empty(list)) {
2374 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2375 		head->qlen += list->qlen;
2376 	}
2377 }
2378 
2379 /**
2380  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
2381  *	@list: the new list to add
2382  *	@head: the place to add it in the first list
2383  *
2384  *	Each of the lists is a queue.
2385  *	The list at @list is reinitialised
2386  */
2387 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
2388 					      struct sk_buff_head *head)
2389 {
2390 	if (!skb_queue_empty(list)) {
2391 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2392 		head->qlen += list->qlen;
2393 		__skb_queue_head_init(list);
2394 	}
2395 }
2396 
2397 /**
2398  *	__skb_queue_after - queue a buffer at the list head
2399  *	@list: list to use
2400  *	@prev: place after this buffer
2401  *	@newsk: buffer to queue
2402  *
2403  *	Queue a buffer int the middle of a list. This function takes no locks
2404  *	and you must therefore hold required locks before calling it.
2405  *
2406  *	A buffer cannot be placed on two lists at the same time.
2407  */
2408 static inline void __skb_queue_after(struct sk_buff_head *list,
2409 				     struct sk_buff *prev,
2410 				     struct sk_buff *newsk)
2411 {
2412 	__skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list);
2413 }
2414 
2415 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2416 		struct sk_buff_head *list);
2417 
2418 static inline void __skb_queue_before(struct sk_buff_head *list,
2419 				      struct sk_buff *next,
2420 				      struct sk_buff *newsk)
2421 {
2422 	__skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list);
2423 }
2424 
2425 /**
2426  *	__skb_queue_head - queue a buffer at the list head
2427  *	@list: list to use
2428  *	@newsk: buffer to queue
2429  *
2430  *	Queue a buffer at the start of a list. This function takes no locks
2431  *	and you must therefore hold required locks before calling it.
2432  *
2433  *	A buffer cannot be placed on two lists at the same time.
2434  */
2435 static inline void __skb_queue_head(struct sk_buff_head *list,
2436 				    struct sk_buff *newsk)
2437 {
2438 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
2439 }
2440 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2441 
2442 /**
2443  *	__skb_queue_tail - queue a buffer at the list tail
2444  *	@list: list to use
2445  *	@newsk: buffer to queue
2446  *
2447  *	Queue a buffer at the end of a list. This function takes no locks
2448  *	and you must therefore hold required locks before calling it.
2449  *
2450  *	A buffer cannot be placed on two lists at the same time.
2451  */
2452 static inline void __skb_queue_tail(struct sk_buff_head *list,
2453 				   struct sk_buff *newsk)
2454 {
2455 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
2456 }
2457 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2458 
2459 /*
2460  * remove sk_buff from list. _Must_ be called atomically, and with
2461  * the list known..
2462  */
2463 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
2464 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2465 {
2466 	struct sk_buff *next, *prev;
2467 
2468 	WRITE_ONCE(list->qlen, list->qlen - 1);
2469 	next	   = skb->next;
2470 	prev	   = skb->prev;
2471 	skb->next  = skb->prev = NULL;
2472 	WRITE_ONCE(next->prev, prev);
2473 	WRITE_ONCE(prev->next, next);
2474 }
2475 
2476 /**
2477  *	__skb_dequeue - remove from the head of the queue
2478  *	@list: list to dequeue from
2479  *
2480  *	Remove the head of the list. This function does not take any locks
2481  *	so must be used with appropriate locks held only. The head item is
2482  *	returned or %NULL if the list is empty.
2483  */
2484 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2485 {
2486 	struct sk_buff *skb = skb_peek(list);
2487 	if (skb)
2488 		__skb_unlink(skb, list);
2489 	return skb;
2490 }
2491 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2492 
2493 /**
2494  *	__skb_dequeue_tail - remove from the tail of the queue
2495  *	@list: list to dequeue from
2496  *
2497  *	Remove the tail of the list. This function does not take any locks
2498  *	so must be used with appropriate locks held only. The tail item is
2499  *	returned or %NULL if the list is empty.
2500  */
2501 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2502 {
2503 	struct sk_buff *skb = skb_peek_tail(list);
2504 	if (skb)
2505 		__skb_unlink(skb, list);
2506 	return skb;
2507 }
2508 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2509 
2510 
2511 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2512 {
2513 	return skb->data_len;
2514 }
2515 
2516 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2517 {
2518 	return skb->len - skb->data_len;
2519 }
2520 
2521 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2522 {
2523 	unsigned int i, len = 0;
2524 
2525 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2526 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2527 	return len;
2528 }
2529 
2530 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2531 {
2532 	return skb_headlen(skb) + __skb_pagelen(skb);
2533 }
2534 
2535 /**
2536  * __skb_fill_page_desc - initialise a paged fragment in an skb
2537  * @skb: buffer containing fragment to be initialised
2538  * @i: paged fragment index to initialise
2539  * @page: the page to use for this fragment
2540  * @off: the offset to the data with @page
2541  * @size: the length of the data
2542  *
2543  * Initialises the @i'th fragment of @skb to point to &size bytes at
2544  * offset @off within @page.
2545  *
2546  * Does not take any additional reference on the fragment.
2547  */
2548 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2549 					struct page *page, int off, int size)
2550 {
2551 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2552 
2553 	/*
2554 	 * Propagate page pfmemalloc to the skb if we can. The problem is
2555 	 * that not all callers have unique ownership of the page but rely
2556 	 * on page_is_pfmemalloc doing the right thing(tm).
2557 	 */
2558 	frag->bv_page		  = page;
2559 	frag->bv_offset		  = off;
2560 	skb_frag_size_set(frag, size);
2561 
2562 	page = compound_head(page);
2563 	if (page_is_pfmemalloc(page))
2564 		skb->pfmemalloc	= true;
2565 }
2566 
2567 /**
2568  * skb_fill_page_desc - initialise a paged fragment in an skb
2569  * @skb: buffer containing fragment to be initialised
2570  * @i: paged fragment index to initialise
2571  * @page: the page to use for this fragment
2572  * @off: the offset to the data with @page
2573  * @size: the length of the data
2574  *
2575  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2576  * @skb to point to @size bytes at offset @off within @page. In
2577  * addition updates @skb such that @i is the last fragment.
2578  *
2579  * Does not take any additional reference on the fragment.
2580  */
2581 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2582 				      struct page *page, int off, int size)
2583 {
2584 	__skb_fill_page_desc(skb, i, page, off, size);
2585 	skb_shinfo(skb)->nr_frags = i + 1;
2586 }
2587 
2588 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2589 		     int size, unsigned int truesize);
2590 
2591 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2592 			  unsigned int truesize);
2593 
2594 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2595 
2596 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2597 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2598 {
2599 	return skb->head + skb->tail;
2600 }
2601 
2602 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2603 {
2604 	skb->tail = skb->data - skb->head;
2605 }
2606 
2607 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2608 {
2609 	skb_reset_tail_pointer(skb);
2610 	skb->tail += offset;
2611 }
2612 
2613 #else /* NET_SKBUFF_DATA_USES_OFFSET */
2614 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2615 {
2616 	return skb->tail;
2617 }
2618 
2619 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2620 {
2621 	skb->tail = skb->data;
2622 }
2623 
2624 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2625 {
2626 	skb->tail = skb->data + offset;
2627 }
2628 
2629 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2630 
2631 /*
2632  *	Add data to an sk_buff
2633  */
2634 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2635 void *skb_put(struct sk_buff *skb, unsigned int len);
2636 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2637 {
2638 	void *tmp = skb_tail_pointer(skb);
2639 	SKB_LINEAR_ASSERT(skb);
2640 	skb->tail += len;
2641 	skb->len  += len;
2642 	return tmp;
2643 }
2644 
2645 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2646 {
2647 	void *tmp = __skb_put(skb, len);
2648 
2649 	memset(tmp, 0, len);
2650 	return tmp;
2651 }
2652 
2653 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2654 				   unsigned int len)
2655 {
2656 	void *tmp = __skb_put(skb, len);
2657 
2658 	memcpy(tmp, data, len);
2659 	return tmp;
2660 }
2661 
2662 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2663 {
2664 	*(u8 *)__skb_put(skb, 1) = val;
2665 }
2666 
2667 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2668 {
2669 	void *tmp = skb_put(skb, len);
2670 
2671 	memset(tmp, 0, len);
2672 
2673 	return tmp;
2674 }
2675 
2676 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2677 				 unsigned int len)
2678 {
2679 	void *tmp = skb_put(skb, len);
2680 
2681 	memcpy(tmp, data, len);
2682 
2683 	return tmp;
2684 }
2685 
2686 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2687 {
2688 	*(u8 *)skb_put(skb, 1) = val;
2689 }
2690 
2691 void *skb_push(struct sk_buff *skb, unsigned int len);
2692 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2693 {
2694 	skb->data -= len;
2695 	skb->len  += len;
2696 	return skb->data;
2697 }
2698 
2699 void *skb_pull(struct sk_buff *skb, unsigned int len);
2700 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2701 {
2702 	skb->len -= len;
2703 	BUG_ON(skb->len < skb->data_len);
2704 	return skb->data += len;
2705 }
2706 
2707 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2708 {
2709 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2710 }
2711 
2712 void *skb_pull_data(struct sk_buff *skb, size_t len);
2713 
2714 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2715 
2716 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2717 {
2718 	if (len > skb_headlen(skb) &&
2719 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2720 		return NULL;
2721 	skb->len -= len;
2722 	return skb->data += len;
2723 }
2724 
2725 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2726 {
2727 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2728 }
2729 
2730 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2731 {
2732 	if (likely(len <= skb_headlen(skb)))
2733 		return true;
2734 	if (unlikely(len > skb->len))
2735 		return false;
2736 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2737 }
2738 
2739 void skb_condense(struct sk_buff *skb);
2740 
2741 /**
2742  *	skb_headroom - bytes at buffer head
2743  *	@skb: buffer to check
2744  *
2745  *	Return the number of bytes of free space at the head of an &sk_buff.
2746  */
2747 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2748 {
2749 	return skb->data - skb->head;
2750 }
2751 
2752 /**
2753  *	skb_tailroom - bytes at buffer end
2754  *	@skb: buffer to check
2755  *
2756  *	Return the number of bytes of free space at the tail of an sk_buff
2757  */
2758 static inline int skb_tailroom(const struct sk_buff *skb)
2759 {
2760 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2761 }
2762 
2763 /**
2764  *	skb_availroom - bytes at buffer end
2765  *	@skb: buffer to check
2766  *
2767  *	Return the number of bytes of free space at the tail of an sk_buff
2768  *	allocated by sk_stream_alloc()
2769  */
2770 static inline int skb_availroom(const struct sk_buff *skb)
2771 {
2772 	if (skb_is_nonlinear(skb))
2773 		return 0;
2774 
2775 	return skb->end - skb->tail - skb->reserved_tailroom;
2776 }
2777 
2778 /**
2779  *	skb_reserve - adjust headroom
2780  *	@skb: buffer to alter
2781  *	@len: bytes to move
2782  *
2783  *	Increase the headroom of an empty &sk_buff by reducing the tail
2784  *	room. This is only allowed for an empty buffer.
2785  */
2786 static inline void skb_reserve(struct sk_buff *skb, int len)
2787 {
2788 	skb->data += len;
2789 	skb->tail += len;
2790 }
2791 
2792 /**
2793  *	skb_tailroom_reserve - adjust reserved_tailroom
2794  *	@skb: buffer to alter
2795  *	@mtu: maximum amount of headlen permitted
2796  *	@needed_tailroom: minimum amount of reserved_tailroom
2797  *
2798  *	Set reserved_tailroom so that headlen can be as large as possible but
2799  *	not larger than mtu and tailroom cannot be smaller than
2800  *	needed_tailroom.
2801  *	The required headroom should already have been reserved before using
2802  *	this function.
2803  */
2804 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2805 					unsigned int needed_tailroom)
2806 {
2807 	SKB_LINEAR_ASSERT(skb);
2808 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2809 		/* use at most mtu */
2810 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2811 	else
2812 		/* use up to all available space */
2813 		skb->reserved_tailroom = needed_tailroom;
2814 }
2815 
2816 #define ENCAP_TYPE_ETHER	0
2817 #define ENCAP_TYPE_IPPROTO	1
2818 
2819 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2820 					  __be16 protocol)
2821 {
2822 	skb->inner_protocol = protocol;
2823 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2824 }
2825 
2826 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2827 					 __u8 ipproto)
2828 {
2829 	skb->inner_ipproto = ipproto;
2830 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2831 }
2832 
2833 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2834 {
2835 	skb->inner_mac_header = skb->mac_header;
2836 	skb->inner_network_header = skb->network_header;
2837 	skb->inner_transport_header = skb->transport_header;
2838 }
2839 
2840 static inline void skb_reset_mac_len(struct sk_buff *skb)
2841 {
2842 	skb->mac_len = skb->network_header - skb->mac_header;
2843 }
2844 
2845 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2846 							*skb)
2847 {
2848 	return skb->head + skb->inner_transport_header;
2849 }
2850 
2851 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2852 {
2853 	return skb_inner_transport_header(skb) - skb->data;
2854 }
2855 
2856 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2857 {
2858 	skb->inner_transport_header = skb->data - skb->head;
2859 }
2860 
2861 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2862 						   const int offset)
2863 {
2864 	skb_reset_inner_transport_header(skb);
2865 	skb->inner_transport_header += offset;
2866 }
2867 
2868 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2869 {
2870 	return skb->head + skb->inner_network_header;
2871 }
2872 
2873 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2874 {
2875 	skb->inner_network_header = skb->data - skb->head;
2876 }
2877 
2878 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2879 						const int offset)
2880 {
2881 	skb_reset_inner_network_header(skb);
2882 	skb->inner_network_header += offset;
2883 }
2884 
2885 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2886 {
2887 	return skb->head + skb->inner_mac_header;
2888 }
2889 
2890 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2891 {
2892 	skb->inner_mac_header = skb->data - skb->head;
2893 }
2894 
2895 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2896 					    const int offset)
2897 {
2898 	skb_reset_inner_mac_header(skb);
2899 	skb->inner_mac_header += offset;
2900 }
2901 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2902 {
2903 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2904 }
2905 
2906 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2907 {
2908 	DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb));
2909 	return skb->head + skb->transport_header;
2910 }
2911 
2912 static inline void skb_reset_transport_header(struct sk_buff *skb)
2913 {
2914 	skb->transport_header = skb->data - skb->head;
2915 }
2916 
2917 static inline void skb_set_transport_header(struct sk_buff *skb,
2918 					    const int offset)
2919 {
2920 	skb_reset_transport_header(skb);
2921 	skb->transport_header += offset;
2922 }
2923 
2924 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2925 {
2926 	return skb->head + skb->network_header;
2927 }
2928 
2929 static inline void skb_reset_network_header(struct sk_buff *skb)
2930 {
2931 	skb->network_header = skb->data - skb->head;
2932 }
2933 
2934 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2935 {
2936 	skb_reset_network_header(skb);
2937 	skb->network_header += offset;
2938 }
2939 
2940 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2941 {
2942 	return skb->head + skb->mac_header;
2943 }
2944 
2945 static inline int skb_mac_offset(const struct sk_buff *skb)
2946 {
2947 	return skb_mac_header(skb) - skb->data;
2948 }
2949 
2950 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2951 {
2952 	return skb->network_header - skb->mac_header;
2953 }
2954 
2955 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2956 {
2957 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2958 }
2959 
2960 static inline void skb_unset_mac_header(struct sk_buff *skb)
2961 {
2962 	skb->mac_header = (typeof(skb->mac_header))~0U;
2963 }
2964 
2965 static inline void skb_reset_mac_header(struct sk_buff *skb)
2966 {
2967 	skb->mac_header = skb->data - skb->head;
2968 }
2969 
2970 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2971 {
2972 	skb_reset_mac_header(skb);
2973 	skb->mac_header += offset;
2974 }
2975 
2976 static inline void skb_pop_mac_header(struct sk_buff *skb)
2977 {
2978 	skb->mac_header = skb->network_header;
2979 }
2980 
2981 static inline void skb_probe_transport_header(struct sk_buff *skb)
2982 {
2983 	struct flow_keys_basic keys;
2984 
2985 	if (skb_transport_header_was_set(skb))
2986 		return;
2987 
2988 	if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2989 					     NULL, 0, 0, 0, 0))
2990 		skb_set_transport_header(skb, keys.control.thoff);
2991 }
2992 
2993 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2994 {
2995 	if (skb_mac_header_was_set(skb)) {
2996 		const unsigned char *old_mac = skb_mac_header(skb);
2997 
2998 		skb_set_mac_header(skb, -skb->mac_len);
2999 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
3000 	}
3001 }
3002 
3003 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
3004 {
3005 	return skb->csum_start - skb_headroom(skb);
3006 }
3007 
3008 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
3009 {
3010 	return skb->head + skb->csum_start;
3011 }
3012 
3013 static inline int skb_transport_offset(const struct sk_buff *skb)
3014 {
3015 	return skb_transport_header(skb) - skb->data;
3016 }
3017 
3018 static inline u32 skb_network_header_len(const struct sk_buff *skb)
3019 {
3020 	return skb->transport_header - skb->network_header;
3021 }
3022 
3023 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
3024 {
3025 	return skb->inner_transport_header - skb->inner_network_header;
3026 }
3027 
3028 static inline int skb_network_offset(const struct sk_buff *skb)
3029 {
3030 	return skb_network_header(skb) - skb->data;
3031 }
3032 
3033 static inline int skb_inner_network_offset(const struct sk_buff *skb)
3034 {
3035 	return skb_inner_network_header(skb) - skb->data;
3036 }
3037 
3038 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
3039 {
3040 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
3041 }
3042 
3043 /*
3044  * CPUs often take a performance hit when accessing unaligned memory
3045  * locations. The actual performance hit varies, it can be small if the
3046  * hardware handles it or large if we have to take an exception and fix it
3047  * in software.
3048  *
3049  * Since an ethernet header is 14 bytes network drivers often end up with
3050  * the IP header at an unaligned offset. The IP header can be aligned by
3051  * shifting the start of the packet by 2 bytes. Drivers should do this
3052  * with:
3053  *
3054  * skb_reserve(skb, NET_IP_ALIGN);
3055  *
3056  * The downside to this alignment of the IP header is that the DMA is now
3057  * unaligned. On some architectures the cost of an unaligned DMA is high
3058  * and this cost outweighs the gains made by aligning the IP header.
3059  *
3060  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
3061  * to be overridden.
3062  */
3063 #ifndef NET_IP_ALIGN
3064 #define NET_IP_ALIGN	2
3065 #endif
3066 
3067 /*
3068  * The networking layer reserves some headroom in skb data (via
3069  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
3070  * the header has to grow. In the default case, if the header has to grow
3071  * 32 bytes or less we avoid the reallocation.
3072  *
3073  * Unfortunately this headroom changes the DMA alignment of the resulting
3074  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
3075  * on some architectures. An architecture can override this value,
3076  * perhaps setting it to a cacheline in size (since that will maintain
3077  * cacheline alignment of the DMA). It must be a power of 2.
3078  *
3079  * Various parts of the networking layer expect at least 32 bytes of
3080  * headroom, you should not reduce this.
3081  *
3082  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
3083  * to reduce average number of cache lines per packet.
3084  * get_rps_cpu() for example only access one 64 bytes aligned block :
3085  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
3086  */
3087 #ifndef NET_SKB_PAD
3088 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
3089 #endif
3090 
3091 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
3092 
3093 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
3094 {
3095 	if (WARN_ON(skb_is_nonlinear(skb)))
3096 		return;
3097 	skb->len = len;
3098 	skb_set_tail_pointer(skb, len);
3099 }
3100 
3101 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
3102 {
3103 	__skb_set_length(skb, len);
3104 }
3105 
3106 void skb_trim(struct sk_buff *skb, unsigned int len);
3107 
3108 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
3109 {
3110 	if (skb->data_len)
3111 		return ___pskb_trim(skb, len);
3112 	__skb_trim(skb, len);
3113 	return 0;
3114 }
3115 
3116 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
3117 {
3118 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
3119 }
3120 
3121 /**
3122  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
3123  *	@skb: buffer to alter
3124  *	@len: new length
3125  *
3126  *	This is identical to pskb_trim except that the caller knows that
3127  *	the skb is not cloned so we should never get an error due to out-
3128  *	of-memory.
3129  */
3130 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
3131 {
3132 	int err = pskb_trim(skb, len);
3133 	BUG_ON(err);
3134 }
3135 
3136 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
3137 {
3138 	unsigned int diff = len - skb->len;
3139 
3140 	if (skb_tailroom(skb) < diff) {
3141 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
3142 					   GFP_ATOMIC);
3143 		if (ret)
3144 			return ret;
3145 	}
3146 	__skb_set_length(skb, len);
3147 	return 0;
3148 }
3149 
3150 /**
3151  *	skb_orphan - orphan a buffer
3152  *	@skb: buffer to orphan
3153  *
3154  *	If a buffer currently has an owner then we call the owner's
3155  *	destructor function and make the @skb unowned. The buffer continues
3156  *	to exist but is no longer charged to its former owner.
3157  */
3158 static inline void skb_orphan(struct sk_buff *skb)
3159 {
3160 	if (skb->destructor) {
3161 		skb->destructor(skb);
3162 		skb->destructor = NULL;
3163 		skb->sk		= NULL;
3164 	} else {
3165 		BUG_ON(skb->sk);
3166 	}
3167 }
3168 
3169 /**
3170  *	skb_orphan_frags - orphan the frags contained in a buffer
3171  *	@skb: buffer to orphan frags from
3172  *	@gfp_mask: allocation mask for replacement pages
3173  *
3174  *	For each frag in the SKB which needs a destructor (i.e. has an
3175  *	owner) create a copy of that frag and release the original
3176  *	page by calling the destructor.
3177  */
3178 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
3179 {
3180 	if (likely(!skb_zcopy(skb)))
3181 		return 0;
3182 	if (!skb_zcopy_is_nouarg(skb) &&
3183 	    skb_uarg(skb)->callback == msg_zerocopy_callback)
3184 		return 0;
3185 	return skb_copy_ubufs(skb, gfp_mask);
3186 }
3187 
3188 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
3189 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
3190 {
3191 	if (likely(!skb_zcopy(skb)))
3192 		return 0;
3193 	return skb_copy_ubufs(skb, gfp_mask);
3194 }
3195 
3196 /**
3197  *	__skb_queue_purge - empty a list
3198  *	@list: list to empty
3199  *
3200  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3201  *	the list and one reference dropped. This function does not take the
3202  *	list lock and the caller must hold the relevant locks to use it.
3203  */
3204 static inline void __skb_queue_purge(struct sk_buff_head *list)
3205 {
3206 	struct sk_buff *skb;
3207 	while ((skb = __skb_dequeue(list)) != NULL)
3208 		kfree_skb(skb);
3209 }
3210 void skb_queue_purge(struct sk_buff_head *list);
3211 
3212 unsigned int skb_rbtree_purge(struct rb_root *root);
3213 
3214 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3215 
3216 /**
3217  * netdev_alloc_frag - allocate a page fragment
3218  * @fragsz: fragment size
3219  *
3220  * Allocates a frag from a page for receive buffer.
3221  * Uses GFP_ATOMIC allocations.
3222  */
3223 static inline void *netdev_alloc_frag(unsigned int fragsz)
3224 {
3225 	return __netdev_alloc_frag_align(fragsz, ~0u);
3226 }
3227 
3228 static inline void *netdev_alloc_frag_align(unsigned int fragsz,
3229 					    unsigned int align)
3230 {
3231 	WARN_ON_ONCE(!is_power_of_2(align));
3232 	return __netdev_alloc_frag_align(fragsz, -align);
3233 }
3234 
3235 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
3236 				   gfp_t gfp_mask);
3237 
3238 /**
3239  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
3240  *	@dev: network device to receive on
3241  *	@length: length to allocate
3242  *
3243  *	Allocate a new &sk_buff and assign it a usage count of one. The
3244  *	buffer has unspecified headroom built in. Users should allocate
3245  *	the headroom they think they need without accounting for the
3246  *	built in space. The built in space is used for optimisations.
3247  *
3248  *	%NULL is returned if there is no free memory. Although this function
3249  *	allocates memory it can be called from an interrupt.
3250  */
3251 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
3252 					       unsigned int length)
3253 {
3254 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
3255 }
3256 
3257 /* legacy helper around __netdev_alloc_skb() */
3258 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
3259 					      gfp_t gfp_mask)
3260 {
3261 	return __netdev_alloc_skb(NULL, length, gfp_mask);
3262 }
3263 
3264 /* legacy helper around netdev_alloc_skb() */
3265 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
3266 {
3267 	return netdev_alloc_skb(NULL, length);
3268 }
3269 
3270 
3271 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
3272 		unsigned int length, gfp_t gfp)
3273 {
3274 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
3275 
3276 	if (NET_IP_ALIGN && skb)
3277 		skb_reserve(skb, NET_IP_ALIGN);
3278 	return skb;
3279 }
3280 
3281 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
3282 		unsigned int length)
3283 {
3284 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
3285 }
3286 
3287 static inline void skb_free_frag(void *addr)
3288 {
3289 	page_frag_free(addr);
3290 }
3291 
3292 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3293 
3294 static inline void *napi_alloc_frag(unsigned int fragsz)
3295 {
3296 	return __napi_alloc_frag_align(fragsz, ~0u);
3297 }
3298 
3299 static inline void *napi_alloc_frag_align(unsigned int fragsz,
3300 					  unsigned int align)
3301 {
3302 	WARN_ON_ONCE(!is_power_of_2(align));
3303 	return __napi_alloc_frag_align(fragsz, -align);
3304 }
3305 
3306 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
3307 				 unsigned int length, gfp_t gfp_mask);
3308 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
3309 					     unsigned int length)
3310 {
3311 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
3312 }
3313 void napi_consume_skb(struct sk_buff *skb, int budget);
3314 
3315 void napi_skb_free_stolen_head(struct sk_buff *skb);
3316 void __kfree_skb_defer(struct sk_buff *skb);
3317 
3318 /**
3319  * __dev_alloc_pages - allocate page for network Rx
3320  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3321  * @order: size of the allocation
3322  *
3323  * Allocate a new page.
3324  *
3325  * %NULL is returned if there is no free memory.
3326 */
3327 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
3328 					     unsigned int order)
3329 {
3330 	/* This piece of code contains several assumptions.
3331 	 * 1.  This is for device Rx, therefor a cold page is preferred.
3332 	 * 2.  The expectation is the user wants a compound page.
3333 	 * 3.  If requesting a order 0 page it will not be compound
3334 	 *     due to the check to see if order has a value in prep_new_page
3335 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
3336 	 *     code in gfp_to_alloc_flags that should be enforcing this.
3337 	 */
3338 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
3339 
3340 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
3341 }
3342 
3343 static inline struct page *dev_alloc_pages(unsigned int order)
3344 {
3345 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
3346 }
3347 
3348 /**
3349  * __dev_alloc_page - allocate a page for network Rx
3350  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3351  *
3352  * Allocate a new page.
3353  *
3354  * %NULL is returned if there is no free memory.
3355  */
3356 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
3357 {
3358 	return __dev_alloc_pages(gfp_mask, 0);
3359 }
3360 
3361 static inline struct page *dev_alloc_page(void)
3362 {
3363 	return dev_alloc_pages(0);
3364 }
3365 
3366 /**
3367  * dev_page_is_reusable - check whether a page can be reused for network Rx
3368  * @page: the page to test
3369  *
3370  * A page shouldn't be considered for reusing/recycling if it was allocated
3371  * under memory pressure or at a distant memory node.
3372  *
3373  * Returns false if this page should be returned to page allocator, true
3374  * otherwise.
3375  */
3376 static inline bool dev_page_is_reusable(const struct page *page)
3377 {
3378 	return likely(page_to_nid(page) == numa_mem_id() &&
3379 		      !page_is_pfmemalloc(page));
3380 }
3381 
3382 /**
3383  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
3384  *	@page: The page that was allocated from skb_alloc_page
3385  *	@skb: The skb that may need pfmemalloc set
3386  */
3387 static inline void skb_propagate_pfmemalloc(const struct page *page,
3388 					    struct sk_buff *skb)
3389 {
3390 	if (page_is_pfmemalloc(page))
3391 		skb->pfmemalloc = true;
3392 }
3393 
3394 /**
3395  * skb_frag_off() - Returns the offset of a skb fragment
3396  * @frag: the paged fragment
3397  */
3398 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
3399 {
3400 	return frag->bv_offset;
3401 }
3402 
3403 /**
3404  * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
3405  * @frag: skb fragment
3406  * @delta: value to add
3407  */
3408 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
3409 {
3410 	frag->bv_offset += delta;
3411 }
3412 
3413 /**
3414  * skb_frag_off_set() - Sets the offset of a skb fragment
3415  * @frag: skb fragment
3416  * @offset: offset of fragment
3417  */
3418 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
3419 {
3420 	frag->bv_offset = offset;
3421 }
3422 
3423 /**
3424  * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
3425  * @fragto: skb fragment where offset is set
3426  * @fragfrom: skb fragment offset is copied from
3427  */
3428 static inline void skb_frag_off_copy(skb_frag_t *fragto,
3429 				     const skb_frag_t *fragfrom)
3430 {
3431 	fragto->bv_offset = fragfrom->bv_offset;
3432 }
3433 
3434 /**
3435  * skb_frag_page - retrieve the page referred to by a paged fragment
3436  * @frag: the paged fragment
3437  *
3438  * Returns the &struct page associated with @frag.
3439  */
3440 static inline struct page *skb_frag_page(const skb_frag_t *frag)
3441 {
3442 	return frag->bv_page;
3443 }
3444 
3445 /**
3446  * __skb_frag_ref - take an addition reference on a paged fragment.
3447  * @frag: the paged fragment
3448  *
3449  * Takes an additional reference on the paged fragment @frag.
3450  */
3451 static inline void __skb_frag_ref(skb_frag_t *frag)
3452 {
3453 	get_page(skb_frag_page(frag));
3454 }
3455 
3456 /**
3457  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
3458  * @skb: the buffer
3459  * @f: the fragment offset.
3460  *
3461  * Takes an additional reference on the @f'th paged fragment of @skb.
3462  */
3463 static inline void skb_frag_ref(struct sk_buff *skb, int f)
3464 {
3465 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
3466 }
3467 
3468 /**
3469  * __skb_frag_unref - release a reference on a paged fragment.
3470  * @frag: the paged fragment
3471  * @recycle: recycle the page if allocated via page_pool
3472  *
3473  * Releases a reference on the paged fragment @frag
3474  * or recycles the page via the page_pool API.
3475  */
3476 static inline void __skb_frag_unref(skb_frag_t *frag, bool recycle)
3477 {
3478 	struct page *page = skb_frag_page(frag);
3479 
3480 #ifdef CONFIG_PAGE_POOL
3481 	if (recycle && page_pool_return_skb_page(page))
3482 		return;
3483 #endif
3484 	put_page(page);
3485 }
3486 
3487 /**
3488  * skb_frag_unref - release a reference on a paged fragment of an skb.
3489  * @skb: the buffer
3490  * @f: the fragment offset
3491  *
3492  * Releases a reference on the @f'th paged fragment of @skb.
3493  */
3494 static inline void skb_frag_unref(struct sk_buff *skb, int f)
3495 {
3496 	__skb_frag_unref(&skb_shinfo(skb)->frags[f], skb->pp_recycle);
3497 }
3498 
3499 /**
3500  * skb_frag_address - gets the address of the data contained in a paged fragment
3501  * @frag: the paged fragment buffer
3502  *
3503  * Returns the address of the data within @frag. The page must already
3504  * be mapped.
3505  */
3506 static inline void *skb_frag_address(const skb_frag_t *frag)
3507 {
3508 	return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3509 }
3510 
3511 /**
3512  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3513  * @frag: the paged fragment buffer
3514  *
3515  * Returns the address of the data within @frag. Checks that the page
3516  * is mapped and returns %NULL otherwise.
3517  */
3518 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3519 {
3520 	void *ptr = page_address(skb_frag_page(frag));
3521 	if (unlikely(!ptr))
3522 		return NULL;
3523 
3524 	return ptr + skb_frag_off(frag);
3525 }
3526 
3527 /**
3528  * skb_frag_page_copy() - sets the page in a fragment from another fragment
3529  * @fragto: skb fragment where page is set
3530  * @fragfrom: skb fragment page is copied from
3531  */
3532 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3533 				      const skb_frag_t *fragfrom)
3534 {
3535 	fragto->bv_page = fragfrom->bv_page;
3536 }
3537 
3538 /**
3539  * __skb_frag_set_page - sets the page contained in a paged fragment
3540  * @frag: the paged fragment
3541  * @page: the page to set
3542  *
3543  * Sets the fragment @frag to contain @page.
3544  */
3545 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
3546 {
3547 	frag->bv_page = page;
3548 }
3549 
3550 /**
3551  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
3552  * @skb: the buffer
3553  * @f: the fragment offset
3554  * @page: the page to set
3555  *
3556  * Sets the @f'th fragment of @skb to contain @page.
3557  */
3558 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
3559 				     struct page *page)
3560 {
3561 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
3562 }
3563 
3564 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3565 
3566 /**
3567  * skb_frag_dma_map - maps a paged fragment via the DMA API
3568  * @dev: the device to map the fragment to
3569  * @frag: the paged fragment to map
3570  * @offset: the offset within the fragment (starting at the
3571  *          fragment's own offset)
3572  * @size: the number of bytes to map
3573  * @dir: the direction of the mapping (``PCI_DMA_*``)
3574  *
3575  * Maps the page associated with @frag to @device.
3576  */
3577 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3578 					  const skb_frag_t *frag,
3579 					  size_t offset, size_t size,
3580 					  enum dma_data_direction dir)
3581 {
3582 	return dma_map_page(dev, skb_frag_page(frag),
3583 			    skb_frag_off(frag) + offset, size, dir);
3584 }
3585 
3586 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3587 					gfp_t gfp_mask)
3588 {
3589 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3590 }
3591 
3592 
3593 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3594 						  gfp_t gfp_mask)
3595 {
3596 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3597 }
3598 
3599 
3600 /**
3601  *	skb_clone_writable - is the header of a clone writable
3602  *	@skb: buffer to check
3603  *	@len: length up to which to write
3604  *
3605  *	Returns true if modifying the header part of the cloned buffer
3606  *	does not requires the data to be copied.
3607  */
3608 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3609 {
3610 	return !skb_header_cloned(skb) &&
3611 	       skb_headroom(skb) + len <= skb->hdr_len;
3612 }
3613 
3614 static inline int skb_try_make_writable(struct sk_buff *skb,
3615 					unsigned int write_len)
3616 {
3617 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3618 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3619 }
3620 
3621 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3622 			    int cloned)
3623 {
3624 	int delta = 0;
3625 
3626 	if (headroom > skb_headroom(skb))
3627 		delta = headroom - skb_headroom(skb);
3628 
3629 	if (delta || cloned)
3630 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3631 					GFP_ATOMIC);
3632 	return 0;
3633 }
3634 
3635 /**
3636  *	skb_cow - copy header of skb when it is required
3637  *	@skb: buffer to cow
3638  *	@headroom: needed headroom
3639  *
3640  *	If the skb passed lacks sufficient headroom or its data part
3641  *	is shared, data is reallocated. If reallocation fails, an error
3642  *	is returned and original skb is not changed.
3643  *
3644  *	The result is skb with writable area skb->head...skb->tail
3645  *	and at least @headroom of space at head.
3646  */
3647 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3648 {
3649 	return __skb_cow(skb, headroom, skb_cloned(skb));
3650 }
3651 
3652 /**
3653  *	skb_cow_head - skb_cow but only making the head writable
3654  *	@skb: buffer to cow
3655  *	@headroom: needed headroom
3656  *
3657  *	This function is identical to skb_cow except that we replace the
3658  *	skb_cloned check by skb_header_cloned.  It should be used when
3659  *	you only need to push on some header and do not need to modify
3660  *	the data.
3661  */
3662 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3663 {
3664 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
3665 }
3666 
3667 /**
3668  *	skb_padto	- pad an skbuff up to a minimal size
3669  *	@skb: buffer to pad
3670  *	@len: minimal length
3671  *
3672  *	Pads up a buffer to ensure the trailing bytes exist and are
3673  *	blanked. If the buffer already contains sufficient data it
3674  *	is untouched. Otherwise it is extended. Returns zero on
3675  *	success. The skb is freed on error.
3676  */
3677 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3678 {
3679 	unsigned int size = skb->len;
3680 	if (likely(size >= len))
3681 		return 0;
3682 	return skb_pad(skb, len - size);
3683 }
3684 
3685 /**
3686  *	__skb_put_padto - increase size and pad an skbuff up to a minimal size
3687  *	@skb: buffer to pad
3688  *	@len: minimal length
3689  *	@free_on_error: free buffer on error
3690  *
3691  *	Pads up a buffer to ensure the trailing bytes exist and are
3692  *	blanked. If the buffer already contains sufficient data it
3693  *	is untouched. Otherwise it is extended. Returns zero on
3694  *	success. The skb is freed on error if @free_on_error is true.
3695  */
3696 static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3697 					       unsigned int len,
3698 					       bool free_on_error)
3699 {
3700 	unsigned int size = skb->len;
3701 
3702 	if (unlikely(size < len)) {
3703 		len -= size;
3704 		if (__skb_pad(skb, len, free_on_error))
3705 			return -ENOMEM;
3706 		__skb_put(skb, len);
3707 	}
3708 	return 0;
3709 }
3710 
3711 /**
3712  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3713  *	@skb: buffer to pad
3714  *	@len: minimal length
3715  *
3716  *	Pads up a buffer to ensure the trailing bytes exist and are
3717  *	blanked. If the buffer already contains sufficient data it
3718  *	is untouched. Otherwise it is extended. Returns zero on
3719  *	success. The skb is freed on error.
3720  */
3721 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3722 {
3723 	return __skb_put_padto(skb, len, true);
3724 }
3725 
3726 static inline int skb_add_data(struct sk_buff *skb,
3727 			       struct iov_iter *from, int copy)
3728 {
3729 	const int off = skb->len;
3730 
3731 	if (skb->ip_summed == CHECKSUM_NONE) {
3732 		__wsum csum = 0;
3733 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3734 					         &csum, from)) {
3735 			skb->csum = csum_block_add(skb->csum, csum, off);
3736 			return 0;
3737 		}
3738 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3739 		return 0;
3740 
3741 	__skb_trim(skb, off);
3742 	return -EFAULT;
3743 }
3744 
3745 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3746 				    const struct page *page, int off)
3747 {
3748 	if (skb_zcopy(skb))
3749 		return false;
3750 	if (i) {
3751 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3752 
3753 		return page == skb_frag_page(frag) &&
3754 		       off == skb_frag_off(frag) + skb_frag_size(frag);
3755 	}
3756 	return false;
3757 }
3758 
3759 static inline int __skb_linearize(struct sk_buff *skb)
3760 {
3761 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3762 }
3763 
3764 /**
3765  *	skb_linearize - convert paged skb to linear one
3766  *	@skb: buffer to linarize
3767  *
3768  *	If there is no free memory -ENOMEM is returned, otherwise zero
3769  *	is returned and the old skb data released.
3770  */
3771 static inline int skb_linearize(struct sk_buff *skb)
3772 {
3773 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3774 }
3775 
3776 /**
3777  * skb_has_shared_frag - can any frag be overwritten
3778  * @skb: buffer to test
3779  *
3780  * Return true if the skb has at least one frag that might be modified
3781  * by an external entity (as in vmsplice()/sendfile())
3782  */
3783 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3784 {
3785 	return skb_is_nonlinear(skb) &&
3786 	       skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3787 }
3788 
3789 /**
3790  *	skb_linearize_cow - make sure skb is linear and writable
3791  *	@skb: buffer to process
3792  *
3793  *	If there is no free memory -ENOMEM is returned, otherwise zero
3794  *	is returned and the old skb data released.
3795  */
3796 static inline int skb_linearize_cow(struct sk_buff *skb)
3797 {
3798 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3799 	       __skb_linearize(skb) : 0;
3800 }
3801 
3802 static __always_inline void
3803 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3804 		     unsigned int off)
3805 {
3806 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3807 		skb->csum = csum_block_sub(skb->csum,
3808 					   csum_partial(start, len, 0), off);
3809 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3810 		 skb_checksum_start_offset(skb) < 0)
3811 		skb->ip_summed = CHECKSUM_NONE;
3812 }
3813 
3814 /**
3815  *	skb_postpull_rcsum - update checksum for received skb after pull
3816  *	@skb: buffer to update
3817  *	@start: start of data before pull
3818  *	@len: length of data pulled
3819  *
3820  *	After doing a pull on a received packet, you need to call this to
3821  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3822  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3823  */
3824 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3825 				      const void *start, unsigned int len)
3826 {
3827 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3828 		skb->csum = wsum_negate(csum_partial(start, len,
3829 						     wsum_negate(skb->csum)));
3830 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3831 		 skb_checksum_start_offset(skb) < 0)
3832 		skb->ip_summed = CHECKSUM_NONE;
3833 }
3834 
3835 static __always_inline void
3836 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3837 		     unsigned int off)
3838 {
3839 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3840 		skb->csum = csum_block_add(skb->csum,
3841 					   csum_partial(start, len, 0), off);
3842 }
3843 
3844 /**
3845  *	skb_postpush_rcsum - update checksum for received skb after push
3846  *	@skb: buffer to update
3847  *	@start: start of data after push
3848  *	@len: length of data pushed
3849  *
3850  *	After doing a push on a received packet, you need to call this to
3851  *	update the CHECKSUM_COMPLETE checksum.
3852  */
3853 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3854 				      const void *start, unsigned int len)
3855 {
3856 	__skb_postpush_rcsum(skb, start, len, 0);
3857 }
3858 
3859 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3860 
3861 /**
3862  *	skb_push_rcsum - push skb and update receive checksum
3863  *	@skb: buffer to update
3864  *	@len: length of data pulled
3865  *
3866  *	This function performs an skb_push on the packet and updates
3867  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3868  *	receive path processing instead of skb_push unless you know
3869  *	that the checksum difference is zero (e.g., a valid IP header)
3870  *	or you are setting ip_summed to CHECKSUM_NONE.
3871  */
3872 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3873 {
3874 	skb_push(skb, len);
3875 	skb_postpush_rcsum(skb, skb->data, len);
3876 	return skb->data;
3877 }
3878 
3879 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3880 /**
3881  *	pskb_trim_rcsum - trim received skb and update checksum
3882  *	@skb: buffer to trim
3883  *	@len: new length
3884  *
3885  *	This is exactly the same as pskb_trim except that it ensures the
3886  *	checksum of received packets are still valid after the operation.
3887  *	It can change skb pointers.
3888  */
3889 
3890 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3891 {
3892 	if (likely(len >= skb->len))
3893 		return 0;
3894 	return pskb_trim_rcsum_slow(skb, len);
3895 }
3896 
3897 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3898 {
3899 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3900 		skb->ip_summed = CHECKSUM_NONE;
3901 	__skb_trim(skb, len);
3902 	return 0;
3903 }
3904 
3905 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3906 {
3907 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3908 		skb->ip_summed = CHECKSUM_NONE;
3909 	return __skb_grow(skb, len);
3910 }
3911 
3912 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3913 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3914 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3915 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3916 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3917 
3918 #define skb_queue_walk(queue, skb) \
3919 		for (skb = (queue)->next;					\
3920 		     skb != (struct sk_buff *)(queue);				\
3921 		     skb = skb->next)
3922 
3923 #define skb_queue_walk_safe(queue, skb, tmp)					\
3924 		for (skb = (queue)->next, tmp = skb->next;			\
3925 		     skb != (struct sk_buff *)(queue);				\
3926 		     skb = tmp, tmp = skb->next)
3927 
3928 #define skb_queue_walk_from(queue, skb)						\
3929 		for (; skb != (struct sk_buff *)(queue);			\
3930 		     skb = skb->next)
3931 
3932 #define skb_rbtree_walk(skb, root)						\
3933 		for (skb = skb_rb_first(root); skb != NULL;			\
3934 		     skb = skb_rb_next(skb))
3935 
3936 #define skb_rbtree_walk_from(skb)						\
3937 		for (; skb != NULL;						\
3938 		     skb = skb_rb_next(skb))
3939 
3940 #define skb_rbtree_walk_from_safe(skb, tmp)					\
3941 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
3942 		     skb = tmp)
3943 
3944 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3945 		for (tmp = skb->next;						\
3946 		     skb != (struct sk_buff *)(queue);				\
3947 		     skb = tmp, tmp = skb->next)
3948 
3949 #define skb_queue_reverse_walk(queue, skb) \
3950 		for (skb = (queue)->prev;					\
3951 		     skb != (struct sk_buff *)(queue);				\
3952 		     skb = skb->prev)
3953 
3954 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3955 		for (skb = (queue)->prev, tmp = skb->prev;			\
3956 		     skb != (struct sk_buff *)(queue);				\
3957 		     skb = tmp, tmp = skb->prev)
3958 
3959 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3960 		for (tmp = skb->prev;						\
3961 		     skb != (struct sk_buff *)(queue);				\
3962 		     skb = tmp, tmp = skb->prev)
3963 
3964 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3965 {
3966 	return skb_shinfo(skb)->frag_list != NULL;
3967 }
3968 
3969 static inline void skb_frag_list_init(struct sk_buff *skb)
3970 {
3971 	skb_shinfo(skb)->frag_list = NULL;
3972 }
3973 
3974 #define skb_walk_frags(skb, iter)	\
3975 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3976 
3977 
3978 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3979 				int *err, long *timeo_p,
3980 				const struct sk_buff *skb);
3981 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3982 					  struct sk_buff_head *queue,
3983 					  unsigned int flags,
3984 					  int *off, int *err,
3985 					  struct sk_buff **last);
3986 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
3987 					struct sk_buff_head *queue,
3988 					unsigned int flags, int *off, int *err,
3989 					struct sk_buff **last);
3990 struct sk_buff *__skb_recv_datagram(struct sock *sk,
3991 				    struct sk_buff_head *sk_queue,
3992 				    unsigned int flags, int *off, int *err);
3993 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err);
3994 __poll_t datagram_poll(struct file *file, struct socket *sock,
3995 			   struct poll_table_struct *wait);
3996 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3997 			   struct iov_iter *to, int size);
3998 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3999 					struct msghdr *msg, int size)
4000 {
4001 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
4002 }
4003 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
4004 				   struct msghdr *msg);
4005 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
4006 			   struct iov_iter *to, int len,
4007 			   struct ahash_request *hash);
4008 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
4009 				 struct iov_iter *from, int len);
4010 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
4011 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
4012 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
4013 static inline void skb_free_datagram_locked(struct sock *sk,
4014 					    struct sk_buff *skb)
4015 {
4016 	__skb_free_datagram_locked(sk, skb, 0);
4017 }
4018 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
4019 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
4020 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
4021 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
4022 			      int len);
4023 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
4024 		    struct pipe_inode_info *pipe, unsigned int len,
4025 		    unsigned int flags);
4026 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
4027 			 int len);
4028 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
4029 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
4030 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
4031 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
4032 		 int len, int hlen);
4033 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
4034 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
4035 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
4036 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
4037 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
4038 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
4039 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
4040 				 unsigned int offset);
4041 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
4042 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len);
4043 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
4044 int skb_vlan_pop(struct sk_buff *skb);
4045 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
4046 int skb_eth_pop(struct sk_buff *skb);
4047 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
4048 		 const unsigned char *src);
4049 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
4050 		  int mac_len, bool ethernet);
4051 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
4052 		 bool ethernet);
4053 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
4054 int skb_mpls_dec_ttl(struct sk_buff *skb);
4055 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
4056 			     gfp_t gfp);
4057 
4058 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
4059 {
4060 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
4061 }
4062 
4063 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
4064 {
4065 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
4066 }
4067 
4068 struct skb_checksum_ops {
4069 	__wsum (*update)(const void *mem, int len, __wsum wsum);
4070 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
4071 };
4072 
4073 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
4074 
4075 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
4076 		      __wsum csum, const struct skb_checksum_ops *ops);
4077 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
4078 		    __wsum csum);
4079 
4080 static inline void * __must_check
4081 __skb_header_pointer(const struct sk_buff *skb, int offset, int len,
4082 		     const void *data, int hlen, void *buffer)
4083 {
4084 	if (likely(hlen - offset >= len))
4085 		return (void *)data + offset;
4086 
4087 	if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0))
4088 		return NULL;
4089 
4090 	return buffer;
4091 }
4092 
4093 static inline void * __must_check
4094 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
4095 {
4096 	return __skb_header_pointer(skb, offset, len, skb->data,
4097 				    skb_headlen(skb), buffer);
4098 }
4099 
4100 /**
4101  *	skb_needs_linearize - check if we need to linearize a given skb
4102  *			      depending on the given device features.
4103  *	@skb: socket buffer to check
4104  *	@features: net device features
4105  *
4106  *	Returns true if either:
4107  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
4108  *	2. skb is fragmented and the device does not support SG.
4109  */
4110 static inline bool skb_needs_linearize(struct sk_buff *skb,
4111 				       netdev_features_t features)
4112 {
4113 	return skb_is_nonlinear(skb) &&
4114 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
4115 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
4116 }
4117 
4118 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
4119 					     void *to,
4120 					     const unsigned int len)
4121 {
4122 	memcpy(to, skb->data, len);
4123 }
4124 
4125 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
4126 						    const int offset, void *to,
4127 						    const unsigned int len)
4128 {
4129 	memcpy(to, skb->data + offset, len);
4130 }
4131 
4132 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
4133 					   const void *from,
4134 					   const unsigned int len)
4135 {
4136 	memcpy(skb->data, from, len);
4137 }
4138 
4139 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
4140 						  const int offset,
4141 						  const void *from,
4142 						  const unsigned int len)
4143 {
4144 	memcpy(skb->data + offset, from, len);
4145 }
4146 
4147 void skb_init(void);
4148 
4149 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
4150 {
4151 	return skb->tstamp;
4152 }
4153 
4154 /**
4155  *	skb_get_timestamp - get timestamp from a skb
4156  *	@skb: skb to get stamp from
4157  *	@stamp: pointer to struct __kernel_old_timeval to store stamp in
4158  *
4159  *	Timestamps are stored in the skb as offsets to a base timestamp.
4160  *	This function converts the offset back to a struct timeval and stores
4161  *	it in stamp.
4162  */
4163 static inline void skb_get_timestamp(const struct sk_buff *skb,
4164 				     struct __kernel_old_timeval *stamp)
4165 {
4166 	*stamp = ns_to_kernel_old_timeval(skb->tstamp);
4167 }
4168 
4169 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
4170 					 struct __kernel_sock_timeval *stamp)
4171 {
4172 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4173 
4174 	stamp->tv_sec = ts.tv_sec;
4175 	stamp->tv_usec = ts.tv_nsec / 1000;
4176 }
4177 
4178 static inline void skb_get_timestampns(const struct sk_buff *skb,
4179 				       struct __kernel_old_timespec *stamp)
4180 {
4181 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4182 
4183 	stamp->tv_sec = ts.tv_sec;
4184 	stamp->tv_nsec = ts.tv_nsec;
4185 }
4186 
4187 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
4188 					   struct __kernel_timespec *stamp)
4189 {
4190 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4191 
4192 	stamp->tv_sec = ts.tv_sec;
4193 	stamp->tv_nsec = ts.tv_nsec;
4194 }
4195 
4196 static inline void __net_timestamp(struct sk_buff *skb)
4197 {
4198 	skb->tstamp = ktime_get_real();
4199 	skb->mono_delivery_time = 0;
4200 }
4201 
4202 static inline ktime_t net_timedelta(ktime_t t)
4203 {
4204 	return ktime_sub(ktime_get_real(), t);
4205 }
4206 
4207 static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt,
4208 					 bool mono)
4209 {
4210 	skb->tstamp = kt;
4211 	skb->mono_delivery_time = kt && mono;
4212 }
4213 
4214 DECLARE_STATIC_KEY_FALSE(netstamp_needed_key);
4215 
4216 /* It is used in the ingress path to clear the delivery_time.
4217  * If needed, set the skb->tstamp to the (rcv) timestamp.
4218  */
4219 static inline void skb_clear_delivery_time(struct sk_buff *skb)
4220 {
4221 	if (skb->mono_delivery_time) {
4222 		skb->mono_delivery_time = 0;
4223 		if (static_branch_unlikely(&netstamp_needed_key))
4224 			skb->tstamp = ktime_get_real();
4225 		else
4226 			skb->tstamp = 0;
4227 	}
4228 }
4229 
4230 static inline void skb_clear_tstamp(struct sk_buff *skb)
4231 {
4232 	if (skb->mono_delivery_time)
4233 		return;
4234 
4235 	skb->tstamp = 0;
4236 }
4237 
4238 static inline ktime_t skb_tstamp(const struct sk_buff *skb)
4239 {
4240 	if (skb->mono_delivery_time)
4241 		return 0;
4242 
4243 	return skb->tstamp;
4244 }
4245 
4246 static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond)
4247 {
4248 	if (!skb->mono_delivery_time && skb->tstamp)
4249 		return skb->tstamp;
4250 
4251 	if (static_branch_unlikely(&netstamp_needed_key) || cond)
4252 		return ktime_get_real();
4253 
4254 	return 0;
4255 }
4256 
4257 static inline u8 skb_metadata_len(const struct sk_buff *skb)
4258 {
4259 	return skb_shinfo(skb)->meta_len;
4260 }
4261 
4262 static inline void *skb_metadata_end(const struct sk_buff *skb)
4263 {
4264 	return skb_mac_header(skb);
4265 }
4266 
4267 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
4268 					  const struct sk_buff *skb_b,
4269 					  u8 meta_len)
4270 {
4271 	const void *a = skb_metadata_end(skb_a);
4272 	const void *b = skb_metadata_end(skb_b);
4273 	/* Using more efficient varaiant than plain call to memcmp(). */
4274 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
4275 	u64 diffs = 0;
4276 
4277 	switch (meta_len) {
4278 #define __it(x, op) (x -= sizeof(u##op))
4279 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
4280 	case 32: diffs |= __it_diff(a, b, 64);
4281 		fallthrough;
4282 	case 24: diffs |= __it_diff(a, b, 64);
4283 		fallthrough;
4284 	case 16: diffs |= __it_diff(a, b, 64);
4285 		fallthrough;
4286 	case  8: diffs |= __it_diff(a, b, 64);
4287 		break;
4288 	case 28: diffs |= __it_diff(a, b, 64);
4289 		fallthrough;
4290 	case 20: diffs |= __it_diff(a, b, 64);
4291 		fallthrough;
4292 	case 12: diffs |= __it_diff(a, b, 64);
4293 		fallthrough;
4294 	case  4: diffs |= __it_diff(a, b, 32);
4295 		break;
4296 	}
4297 	return diffs;
4298 #else
4299 	return memcmp(a - meta_len, b - meta_len, meta_len);
4300 #endif
4301 }
4302 
4303 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
4304 					const struct sk_buff *skb_b)
4305 {
4306 	u8 len_a = skb_metadata_len(skb_a);
4307 	u8 len_b = skb_metadata_len(skb_b);
4308 
4309 	if (!(len_a | len_b))
4310 		return false;
4311 
4312 	return len_a != len_b ?
4313 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
4314 }
4315 
4316 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
4317 {
4318 	skb_shinfo(skb)->meta_len = meta_len;
4319 }
4320 
4321 static inline void skb_metadata_clear(struct sk_buff *skb)
4322 {
4323 	skb_metadata_set(skb, 0);
4324 }
4325 
4326 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
4327 
4328 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
4329 
4330 void skb_clone_tx_timestamp(struct sk_buff *skb);
4331 bool skb_defer_rx_timestamp(struct sk_buff *skb);
4332 
4333 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
4334 
4335 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
4336 {
4337 }
4338 
4339 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
4340 {
4341 	return false;
4342 }
4343 
4344 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
4345 
4346 /**
4347  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
4348  *
4349  * PHY drivers may accept clones of transmitted packets for
4350  * timestamping via their phy_driver.txtstamp method. These drivers
4351  * must call this function to return the skb back to the stack with a
4352  * timestamp.
4353  *
4354  * @skb: clone of the original outgoing packet
4355  * @hwtstamps: hardware time stamps
4356  *
4357  */
4358 void skb_complete_tx_timestamp(struct sk_buff *skb,
4359 			       struct skb_shared_hwtstamps *hwtstamps);
4360 
4361 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb,
4362 		     struct skb_shared_hwtstamps *hwtstamps,
4363 		     struct sock *sk, int tstype);
4364 
4365 /**
4366  * skb_tstamp_tx - queue clone of skb with send time stamps
4367  * @orig_skb:	the original outgoing packet
4368  * @hwtstamps:	hardware time stamps, may be NULL if not available
4369  *
4370  * If the skb has a socket associated, then this function clones the
4371  * skb (thus sharing the actual data and optional structures), stores
4372  * the optional hardware time stamping information (if non NULL) or
4373  * generates a software time stamp (otherwise), then queues the clone
4374  * to the error queue of the socket.  Errors are silently ignored.
4375  */
4376 void skb_tstamp_tx(struct sk_buff *orig_skb,
4377 		   struct skb_shared_hwtstamps *hwtstamps);
4378 
4379 /**
4380  * skb_tx_timestamp() - Driver hook for transmit timestamping
4381  *
4382  * Ethernet MAC Drivers should call this function in their hard_xmit()
4383  * function immediately before giving the sk_buff to the MAC hardware.
4384  *
4385  * Specifically, one should make absolutely sure that this function is
4386  * called before TX completion of this packet can trigger.  Otherwise
4387  * the packet could potentially already be freed.
4388  *
4389  * @skb: A socket buffer.
4390  */
4391 static inline void skb_tx_timestamp(struct sk_buff *skb)
4392 {
4393 	skb_clone_tx_timestamp(skb);
4394 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
4395 		skb_tstamp_tx(skb, NULL);
4396 }
4397 
4398 /**
4399  * skb_complete_wifi_ack - deliver skb with wifi status
4400  *
4401  * @skb: the original outgoing packet
4402  * @acked: ack status
4403  *
4404  */
4405 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
4406 
4407 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
4408 __sum16 __skb_checksum_complete(struct sk_buff *skb);
4409 
4410 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
4411 {
4412 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
4413 		skb->csum_valid ||
4414 		(skb->ip_summed == CHECKSUM_PARTIAL &&
4415 		 skb_checksum_start_offset(skb) >= 0));
4416 }
4417 
4418 /**
4419  *	skb_checksum_complete - Calculate checksum of an entire packet
4420  *	@skb: packet to process
4421  *
4422  *	This function calculates the checksum over the entire packet plus
4423  *	the value of skb->csum.  The latter can be used to supply the
4424  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
4425  *	checksum.
4426  *
4427  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
4428  *	this function can be used to verify that checksum on received
4429  *	packets.  In that case the function should return zero if the
4430  *	checksum is correct.  In particular, this function will return zero
4431  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
4432  *	hardware has already verified the correctness of the checksum.
4433  */
4434 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
4435 {
4436 	return skb_csum_unnecessary(skb) ?
4437 	       0 : __skb_checksum_complete(skb);
4438 }
4439 
4440 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
4441 {
4442 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4443 		if (skb->csum_level == 0)
4444 			skb->ip_summed = CHECKSUM_NONE;
4445 		else
4446 			skb->csum_level--;
4447 	}
4448 }
4449 
4450 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
4451 {
4452 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4453 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
4454 			skb->csum_level++;
4455 	} else if (skb->ip_summed == CHECKSUM_NONE) {
4456 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4457 		skb->csum_level = 0;
4458 	}
4459 }
4460 
4461 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
4462 {
4463 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4464 		skb->ip_summed = CHECKSUM_NONE;
4465 		skb->csum_level = 0;
4466 	}
4467 }
4468 
4469 /* Check if we need to perform checksum complete validation.
4470  *
4471  * Returns true if checksum complete is needed, false otherwise
4472  * (either checksum is unnecessary or zero checksum is allowed).
4473  */
4474 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
4475 						  bool zero_okay,
4476 						  __sum16 check)
4477 {
4478 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
4479 		skb->csum_valid = 1;
4480 		__skb_decr_checksum_unnecessary(skb);
4481 		return false;
4482 	}
4483 
4484 	return true;
4485 }
4486 
4487 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
4488  * in checksum_init.
4489  */
4490 #define CHECKSUM_BREAK 76
4491 
4492 /* Unset checksum-complete
4493  *
4494  * Unset checksum complete can be done when packet is being modified
4495  * (uncompressed for instance) and checksum-complete value is
4496  * invalidated.
4497  */
4498 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
4499 {
4500 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4501 		skb->ip_summed = CHECKSUM_NONE;
4502 }
4503 
4504 /* Validate (init) checksum based on checksum complete.
4505  *
4506  * Return values:
4507  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
4508  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4509  *	checksum is stored in skb->csum for use in __skb_checksum_complete
4510  *   non-zero: value of invalid checksum
4511  *
4512  */
4513 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4514 						       bool complete,
4515 						       __wsum psum)
4516 {
4517 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
4518 		if (!csum_fold(csum_add(psum, skb->csum))) {
4519 			skb->csum_valid = 1;
4520 			return 0;
4521 		}
4522 	}
4523 
4524 	skb->csum = psum;
4525 
4526 	if (complete || skb->len <= CHECKSUM_BREAK) {
4527 		__sum16 csum;
4528 
4529 		csum = __skb_checksum_complete(skb);
4530 		skb->csum_valid = !csum;
4531 		return csum;
4532 	}
4533 
4534 	return 0;
4535 }
4536 
4537 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4538 {
4539 	return 0;
4540 }
4541 
4542 /* Perform checksum validate (init). Note that this is a macro since we only
4543  * want to calculate the pseudo header which is an input function if necessary.
4544  * First we try to validate without any computation (checksum unnecessary) and
4545  * then calculate based on checksum complete calling the function to compute
4546  * pseudo header.
4547  *
4548  * Return values:
4549  *   0: checksum is validated or try to in skb_checksum_complete
4550  *   non-zero: value of invalid checksum
4551  */
4552 #define __skb_checksum_validate(skb, proto, complete,			\
4553 				zero_okay, check, compute_pseudo)	\
4554 ({									\
4555 	__sum16 __ret = 0;						\
4556 	skb->csum_valid = 0;						\
4557 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
4558 		__ret = __skb_checksum_validate_complete(skb,		\
4559 				complete, compute_pseudo(skb, proto));	\
4560 	__ret;								\
4561 })
4562 
4563 #define skb_checksum_init(skb, proto, compute_pseudo)			\
4564 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4565 
4566 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
4567 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4568 
4569 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
4570 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4571 
4572 #define skb_checksum_validate_zero_check(skb, proto, check,		\
4573 					 compute_pseudo)		\
4574 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4575 
4576 #define skb_checksum_simple_validate(skb)				\
4577 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4578 
4579 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4580 {
4581 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4582 }
4583 
4584 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4585 {
4586 	skb->csum = ~pseudo;
4587 	skb->ip_summed = CHECKSUM_COMPLETE;
4588 }
4589 
4590 #define skb_checksum_try_convert(skb, proto, compute_pseudo)	\
4591 do {									\
4592 	if (__skb_checksum_convert_check(skb))				\
4593 		__skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4594 } while (0)
4595 
4596 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4597 					      u16 start, u16 offset)
4598 {
4599 	skb->ip_summed = CHECKSUM_PARTIAL;
4600 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4601 	skb->csum_offset = offset - start;
4602 }
4603 
4604 /* Update skbuf and packet to reflect the remote checksum offload operation.
4605  * When called, ptr indicates the starting point for skb->csum when
4606  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4607  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4608  */
4609 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4610 				       int start, int offset, bool nopartial)
4611 {
4612 	__wsum delta;
4613 
4614 	if (!nopartial) {
4615 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
4616 		return;
4617 	}
4618 
4619 	if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4620 		__skb_checksum_complete(skb);
4621 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4622 	}
4623 
4624 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
4625 
4626 	/* Adjust skb->csum since we changed the packet */
4627 	skb->csum = csum_add(skb->csum, delta);
4628 }
4629 
4630 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4631 {
4632 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4633 	return (void *)(skb->_nfct & NFCT_PTRMASK);
4634 #else
4635 	return NULL;
4636 #endif
4637 }
4638 
4639 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4640 {
4641 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4642 	return skb->_nfct;
4643 #else
4644 	return 0UL;
4645 #endif
4646 }
4647 
4648 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4649 {
4650 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4651 	skb->slow_gro |= !!nfct;
4652 	skb->_nfct = nfct;
4653 #endif
4654 }
4655 
4656 #ifdef CONFIG_SKB_EXTENSIONS
4657 enum skb_ext_id {
4658 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4659 	SKB_EXT_BRIDGE_NF,
4660 #endif
4661 #ifdef CONFIG_XFRM
4662 	SKB_EXT_SEC_PATH,
4663 #endif
4664 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4665 	TC_SKB_EXT,
4666 #endif
4667 #if IS_ENABLED(CONFIG_MPTCP)
4668 	SKB_EXT_MPTCP,
4669 #endif
4670 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4671 	SKB_EXT_MCTP,
4672 #endif
4673 	SKB_EXT_NUM, /* must be last */
4674 };
4675 
4676 /**
4677  *	struct skb_ext - sk_buff extensions
4678  *	@refcnt: 1 on allocation, deallocated on 0
4679  *	@offset: offset to add to @data to obtain extension address
4680  *	@chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4681  *	@data: start of extension data, variable sized
4682  *
4683  *	Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4684  *	to use 'u8' types while allowing up to 2kb worth of extension data.
4685  */
4686 struct skb_ext {
4687 	refcount_t refcnt;
4688 	u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4689 	u8 chunks;		/* same */
4690 	char data[] __aligned(8);
4691 };
4692 
4693 struct skb_ext *__skb_ext_alloc(gfp_t flags);
4694 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4695 		    struct skb_ext *ext);
4696 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4697 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4698 void __skb_ext_put(struct skb_ext *ext);
4699 
4700 static inline void skb_ext_put(struct sk_buff *skb)
4701 {
4702 	if (skb->active_extensions)
4703 		__skb_ext_put(skb->extensions);
4704 }
4705 
4706 static inline void __skb_ext_copy(struct sk_buff *dst,
4707 				  const struct sk_buff *src)
4708 {
4709 	dst->active_extensions = src->active_extensions;
4710 
4711 	if (src->active_extensions) {
4712 		struct skb_ext *ext = src->extensions;
4713 
4714 		refcount_inc(&ext->refcnt);
4715 		dst->extensions = ext;
4716 	}
4717 }
4718 
4719 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4720 {
4721 	skb_ext_put(dst);
4722 	__skb_ext_copy(dst, src);
4723 }
4724 
4725 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4726 {
4727 	return !!ext->offset[i];
4728 }
4729 
4730 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4731 {
4732 	return skb->active_extensions & (1 << id);
4733 }
4734 
4735 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4736 {
4737 	if (skb_ext_exist(skb, id))
4738 		__skb_ext_del(skb, id);
4739 }
4740 
4741 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4742 {
4743 	if (skb_ext_exist(skb, id)) {
4744 		struct skb_ext *ext = skb->extensions;
4745 
4746 		return (void *)ext + (ext->offset[id] << 3);
4747 	}
4748 
4749 	return NULL;
4750 }
4751 
4752 static inline void skb_ext_reset(struct sk_buff *skb)
4753 {
4754 	if (unlikely(skb->active_extensions)) {
4755 		__skb_ext_put(skb->extensions);
4756 		skb->active_extensions = 0;
4757 	}
4758 }
4759 
4760 static inline bool skb_has_extensions(struct sk_buff *skb)
4761 {
4762 	return unlikely(skb->active_extensions);
4763 }
4764 #else
4765 static inline void skb_ext_put(struct sk_buff *skb) {}
4766 static inline void skb_ext_reset(struct sk_buff *skb) {}
4767 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4768 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4769 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4770 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4771 #endif /* CONFIG_SKB_EXTENSIONS */
4772 
4773 static inline void nf_reset_ct(struct sk_buff *skb)
4774 {
4775 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4776 	nf_conntrack_put(skb_nfct(skb));
4777 	skb->_nfct = 0;
4778 #endif
4779 }
4780 
4781 static inline void nf_reset_trace(struct sk_buff *skb)
4782 {
4783 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4784 	skb->nf_trace = 0;
4785 #endif
4786 }
4787 
4788 static inline void ipvs_reset(struct sk_buff *skb)
4789 {
4790 #if IS_ENABLED(CONFIG_IP_VS)
4791 	skb->ipvs_property = 0;
4792 #endif
4793 }
4794 
4795 /* Note: This doesn't put any conntrack info in dst. */
4796 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4797 			     bool copy)
4798 {
4799 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4800 	dst->_nfct = src->_nfct;
4801 	nf_conntrack_get(skb_nfct(src));
4802 #endif
4803 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4804 	if (copy)
4805 		dst->nf_trace = src->nf_trace;
4806 #endif
4807 }
4808 
4809 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4810 {
4811 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4812 	nf_conntrack_put(skb_nfct(dst));
4813 #endif
4814 	dst->slow_gro = src->slow_gro;
4815 	__nf_copy(dst, src, true);
4816 }
4817 
4818 #ifdef CONFIG_NETWORK_SECMARK
4819 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4820 {
4821 	to->secmark = from->secmark;
4822 }
4823 
4824 static inline void skb_init_secmark(struct sk_buff *skb)
4825 {
4826 	skb->secmark = 0;
4827 }
4828 #else
4829 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4830 { }
4831 
4832 static inline void skb_init_secmark(struct sk_buff *skb)
4833 { }
4834 #endif
4835 
4836 static inline int secpath_exists(const struct sk_buff *skb)
4837 {
4838 #ifdef CONFIG_XFRM
4839 	return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4840 #else
4841 	return 0;
4842 #endif
4843 }
4844 
4845 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4846 {
4847 	return !skb->destructor &&
4848 		!secpath_exists(skb) &&
4849 		!skb_nfct(skb) &&
4850 		!skb->_skb_refdst &&
4851 		!skb_has_frag_list(skb);
4852 }
4853 
4854 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4855 {
4856 	skb->queue_mapping = queue_mapping;
4857 }
4858 
4859 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4860 {
4861 	return skb->queue_mapping;
4862 }
4863 
4864 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4865 {
4866 	to->queue_mapping = from->queue_mapping;
4867 }
4868 
4869 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4870 {
4871 	skb->queue_mapping = rx_queue + 1;
4872 }
4873 
4874 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4875 {
4876 	return skb->queue_mapping - 1;
4877 }
4878 
4879 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4880 {
4881 	return skb->queue_mapping != 0;
4882 }
4883 
4884 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4885 {
4886 	skb->dst_pending_confirm = val;
4887 }
4888 
4889 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4890 {
4891 	return skb->dst_pending_confirm != 0;
4892 }
4893 
4894 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4895 {
4896 #ifdef CONFIG_XFRM
4897 	return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4898 #else
4899 	return NULL;
4900 #endif
4901 }
4902 
4903 /* Keeps track of mac header offset relative to skb->head.
4904  * It is useful for TSO of Tunneling protocol. e.g. GRE.
4905  * For non-tunnel skb it points to skb_mac_header() and for
4906  * tunnel skb it points to outer mac header.
4907  * Keeps track of level of encapsulation of network headers.
4908  */
4909 struct skb_gso_cb {
4910 	union {
4911 		int	mac_offset;
4912 		int	data_offset;
4913 	};
4914 	int	encap_level;
4915 	__wsum	csum;
4916 	__u16	csum_start;
4917 };
4918 #define SKB_GSO_CB_OFFSET	32
4919 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET))
4920 
4921 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4922 {
4923 	return (skb_mac_header(inner_skb) - inner_skb->head) -
4924 		SKB_GSO_CB(inner_skb)->mac_offset;
4925 }
4926 
4927 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4928 {
4929 	int new_headroom, headroom;
4930 	int ret;
4931 
4932 	headroom = skb_headroom(skb);
4933 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4934 	if (ret)
4935 		return ret;
4936 
4937 	new_headroom = skb_headroom(skb);
4938 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4939 	return 0;
4940 }
4941 
4942 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4943 {
4944 	/* Do not update partial checksums if remote checksum is enabled. */
4945 	if (skb->remcsum_offload)
4946 		return;
4947 
4948 	SKB_GSO_CB(skb)->csum = res;
4949 	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4950 }
4951 
4952 /* Compute the checksum for a gso segment. First compute the checksum value
4953  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4954  * then add in skb->csum (checksum from csum_start to end of packet).
4955  * skb->csum and csum_start are then updated to reflect the checksum of the
4956  * resultant packet starting from the transport header-- the resultant checksum
4957  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4958  * header.
4959  */
4960 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4961 {
4962 	unsigned char *csum_start = skb_transport_header(skb);
4963 	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4964 	__wsum partial = SKB_GSO_CB(skb)->csum;
4965 
4966 	SKB_GSO_CB(skb)->csum = res;
4967 	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4968 
4969 	return csum_fold(csum_partial(csum_start, plen, partial));
4970 }
4971 
4972 static inline bool skb_is_gso(const struct sk_buff *skb)
4973 {
4974 	return skb_shinfo(skb)->gso_size;
4975 }
4976 
4977 /* Note: Should be called only if skb_is_gso(skb) is true */
4978 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4979 {
4980 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4981 }
4982 
4983 /* Note: Should be called only if skb_is_gso(skb) is true */
4984 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4985 {
4986 	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4987 }
4988 
4989 /* Note: Should be called only if skb_is_gso(skb) is true */
4990 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4991 {
4992 	return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4993 }
4994 
4995 static inline void skb_gso_reset(struct sk_buff *skb)
4996 {
4997 	skb_shinfo(skb)->gso_size = 0;
4998 	skb_shinfo(skb)->gso_segs = 0;
4999 	skb_shinfo(skb)->gso_type = 0;
5000 }
5001 
5002 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
5003 					 u16 increment)
5004 {
5005 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
5006 		return;
5007 	shinfo->gso_size += increment;
5008 }
5009 
5010 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
5011 					 u16 decrement)
5012 {
5013 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
5014 		return;
5015 	shinfo->gso_size -= decrement;
5016 }
5017 
5018 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
5019 
5020 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
5021 {
5022 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
5023 	 * wanted then gso_type will be set. */
5024 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5025 
5026 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
5027 	    unlikely(shinfo->gso_type == 0)) {
5028 		__skb_warn_lro_forwarding(skb);
5029 		return true;
5030 	}
5031 	return false;
5032 }
5033 
5034 static inline void skb_forward_csum(struct sk_buff *skb)
5035 {
5036 	/* Unfortunately we don't support this one.  Any brave souls? */
5037 	if (skb->ip_summed == CHECKSUM_COMPLETE)
5038 		skb->ip_summed = CHECKSUM_NONE;
5039 }
5040 
5041 /**
5042  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
5043  * @skb: skb to check
5044  *
5045  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
5046  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
5047  * use this helper, to document places where we make this assertion.
5048  */
5049 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
5050 {
5051 #ifdef DEBUG
5052 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
5053 #endif
5054 }
5055 
5056 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
5057 
5058 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
5059 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5060 				     unsigned int transport_len,
5061 				     __sum16(*skb_chkf)(struct sk_buff *skb));
5062 
5063 /**
5064  * skb_head_is_locked - Determine if the skb->head is locked down
5065  * @skb: skb to check
5066  *
5067  * The head on skbs build around a head frag can be removed if they are
5068  * not cloned.  This function returns true if the skb head is locked down
5069  * due to either being allocated via kmalloc, or by being a clone with
5070  * multiple references to the head.
5071  */
5072 static inline bool skb_head_is_locked(const struct sk_buff *skb)
5073 {
5074 	return !skb->head_frag || skb_cloned(skb);
5075 }
5076 
5077 /* Local Checksum Offload.
5078  * Compute outer checksum based on the assumption that the
5079  * inner checksum will be offloaded later.
5080  * See Documentation/networking/checksum-offloads.rst for
5081  * explanation of how this works.
5082  * Fill in outer checksum adjustment (e.g. with sum of outer
5083  * pseudo-header) before calling.
5084  * Also ensure that inner checksum is in linear data area.
5085  */
5086 static inline __wsum lco_csum(struct sk_buff *skb)
5087 {
5088 	unsigned char *csum_start = skb_checksum_start(skb);
5089 	unsigned char *l4_hdr = skb_transport_header(skb);
5090 	__wsum partial;
5091 
5092 	/* Start with complement of inner checksum adjustment */
5093 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
5094 						    skb->csum_offset));
5095 
5096 	/* Add in checksum of our headers (incl. outer checksum
5097 	 * adjustment filled in by caller) and return result.
5098 	 */
5099 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
5100 }
5101 
5102 static inline bool skb_is_redirected(const struct sk_buff *skb)
5103 {
5104 	return skb->redirected;
5105 }
5106 
5107 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
5108 {
5109 	skb->redirected = 1;
5110 #ifdef CONFIG_NET_REDIRECT
5111 	skb->from_ingress = from_ingress;
5112 	if (skb->from_ingress)
5113 		skb_clear_tstamp(skb);
5114 #endif
5115 }
5116 
5117 static inline void skb_reset_redirect(struct sk_buff *skb)
5118 {
5119 	skb->redirected = 0;
5120 }
5121 
5122 static inline bool skb_csum_is_sctp(struct sk_buff *skb)
5123 {
5124 	return skb->csum_not_inet;
5125 }
5126 
5127 static inline void skb_set_kcov_handle(struct sk_buff *skb,
5128 				       const u64 kcov_handle)
5129 {
5130 #ifdef CONFIG_KCOV
5131 	skb->kcov_handle = kcov_handle;
5132 #endif
5133 }
5134 
5135 static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
5136 {
5137 #ifdef CONFIG_KCOV
5138 	return skb->kcov_handle;
5139 #else
5140 	return 0;
5141 #endif
5142 }
5143 
5144 #ifdef CONFIG_PAGE_POOL
5145 static inline void skb_mark_for_recycle(struct sk_buff *skb)
5146 {
5147 	skb->pp_recycle = 1;
5148 }
5149 #endif
5150 
5151 static inline bool skb_pp_recycle(struct sk_buff *skb, void *data)
5152 {
5153 	if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
5154 		return false;
5155 	return page_pool_return_skb_page(virt_to_page(data));
5156 }
5157 
5158 #endif	/* __KERNEL__ */
5159 #endif	/* _LINUX_SKBUFF_H */
5160