xref: /linux-6.15/include/linux/skbuff.h (revision 96c63fa7)
1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <[email protected]>
6  *		Florian La Roche, <[email protected]>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/bug.h>
22 #include <linux/cache.h>
23 #include <linux/rbtree.h>
24 #include <linux/socket.h>
25 
26 #include <linux/atomic.h>
27 #include <asm/types.h>
28 #include <linux/spinlock.h>
29 #include <linux/net.h>
30 #include <linux/textsearch.h>
31 #include <net/checksum.h>
32 #include <linux/rcupdate.h>
33 #include <linux/hrtimer.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/netdev_features.h>
36 #include <linux/sched.h>
37 #include <net/flow_dissector.h>
38 #include <linux/splice.h>
39 #include <linux/in6.h>
40 #include <net/flow.h>
41 
42 /* The interface for checksum offload between the stack and networking drivers
43  * is as follows...
44  *
45  * A. IP checksum related features
46  *
47  * Drivers advertise checksum offload capabilities in the features of a device.
48  * From the stack's point of view these are capabilities offered by the driver,
49  * a driver typically only advertises features that it is capable of offloading
50  * to its device.
51  *
52  * The checksum related features are:
53  *
54  *	NETIF_F_HW_CSUM	- The driver (or its device) is able to compute one
55  *			  IP (one's complement) checksum for any combination
56  *			  of protocols or protocol layering. The checksum is
57  *			  computed and set in a packet per the CHECKSUM_PARTIAL
58  *			  interface (see below).
59  *
60  *	NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
61  *			  TCP or UDP packets over IPv4. These are specifically
62  *			  unencapsulated packets of the form IPv4|TCP or
63  *			  IPv4|UDP where the Protocol field in the IPv4 header
64  *			  is TCP or UDP. The IPv4 header may contain IP options
65  *			  This feature cannot be set in features for a device
66  *			  with NETIF_F_HW_CSUM also set. This feature is being
67  *			  DEPRECATED (see below).
68  *
69  *	NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
70  *			  TCP or UDP packets over IPv6. These are specifically
71  *			  unencapsulated packets of the form IPv6|TCP or
72  *			  IPv4|UDP where the Next Header field in the IPv6
73  *			  header is either TCP or UDP. IPv6 extension headers
74  *			  are not supported with this feature. This feature
75  *			  cannot be set in features for a device with
76  *			  NETIF_F_HW_CSUM also set. This feature is being
77  *			  DEPRECATED (see below).
78  *
79  *	NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
80  *			 This flag is used only used to disable the RX checksum
81  *			 feature for a device. The stack will accept receive
82  *			 checksum indication in packets received on a device
83  *			 regardless of whether NETIF_F_RXCSUM is set.
84  *
85  * B. Checksumming of received packets by device. Indication of checksum
86  *    verification is in set skb->ip_summed. Possible values are:
87  *
88  * CHECKSUM_NONE:
89  *
90  *   Device did not checksum this packet e.g. due to lack of capabilities.
91  *   The packet contains full (though not verified) checksum in packet but
92  *   not in skb->csum. Thus, skb->csum is undefined in this case.
93  *
94  * CHECKSUM_UNNECESSARY:
95  *
96  *   The hardware you're dealing with doesn't calculate the full checksum
97  *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
98  *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
99  *   if their checksums are okay. skb->csum is still undefined in this case
100  *   though. A driver or device must never modify the checksum field in the
101  *   packet even if checksum is verified.
102  *
103  *   CHECKSUM_UNNECESSARY is applicable to following protocols:
104  *     TCP: IPv6 and IPv4.
105  *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
106  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
107  *       may perform further validation in this case.
108  *     GRE: only if the checksum is present in the header.
109  *     SCTP: indicates the CRC in SCTP header has been validated.
110  *
111  *   skb->csum_level indicates the number of consecutive checksums found in
112  *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
113  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
114  *   and a device is able to verify the checksums for UDP (possibly zero),
115  *   GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
116  *   two. If the device were only able to verify the UDP checksum and not
117  *   GRE, either because it doesn't support GRE checksum of because GRE
118  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
119  *   not considered in this case).
120  *
121  * CHECKSUM_COMPLETE:
122  *
123  *   This is the most generic way. The device supplied checksum of the _whole_
124  *   packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
125  *   hardware doesn't need to parse L3/L4 headers to implement this.
126  *
127  *   Note: Even if device supports only some protocols, but is able to produce
128  *   skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
129  *
130  * CHECKSUM_PARTIAL:
131  *
132  *   A checksum is set up to be offloaded to a device as described in the
133  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
134  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
135  *   on the same host, or it may be set in the input path in GRO or remote
136  *   checksum offload. For the purposes of checksum verification, the checksum
137  *   referred to by skb->csum_start + skb->csum_offset and any preceding
138  *   checksums in the packet are considered verified. Any checksums in the
139  *   packet that are after the checksum being offloaded are not considered to
140  *   be verified.
141  *
142  * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
143  *    in the skb->ip_summed for a packet. Values are:
144  *
145  * CHECKSUM_PARTIAL:
146  *
147  *   The driver is required to checksum the packet as seen by hard_start_xmit()
148  *   from skb->csum_start up to the end, and to record/write the checksum at
149  *   offset skb->csum_start + skb->csum_offset. A driver may verify that the
150  *   csum_start and csum_offset values are valid values given the length and
151  *   offset of the packet, however they should not attempt to validate that the
152  *   checksum refers to a legitimate transport layer checksum-- it is the
153  *   purview of the stack to validate that csum_start and csum_offset are set
154  *   correctly.
155  *
156  *   When the stack requests checksum offload for a packet, the driver MUST
157  *   ensure that the checksum is set correctly. A driver can either offload the
158  *   checksum calculation to the device, or call skb_checksum_help (in the case
159  *   that the device does not support offload for a particular checksum).
160  *
161  *   NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
162  *   NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
163  *   checksum offload capability. If a	device has limited checksum capabilities
164  *   (for instance can only perform NETIF_F_IP_CSUM or NETIF_F_IPV6_CSUM as
165  *   described above) a helper function can be called to resolve
166  *   CHECKSUM_PARTIAL. The helper functions are skb_csum_off_chk*. The helper
167  *   function takes a spec argument that describes the protocol layer that is
168  *   supported for checksum offload and can be called for each packet. If a
169  *   packet does not match the specification for offload, skb_checksum_help
170  *   is called to resolve the checksum.
171  *
172  * CHECKSUM_NONE:
173  *
174  *   The skb was already checksummed by the protocol, or a checksum is not
175  *   required.
176  *
177  * CHECKSUM_UNNECESSARY:
178  *
179  *   This has the same meaning on as CHECKSUM_NONE for checksum offload on
180  *   output.
181  *
182  * CHECKSUM_COMPLETE:
183  *   Not used in checksum output. If a driver observes a packet with this value
184  *   set in skbuff, if should treat as CHECKSUM_NONE being set.
185  *
186  * D. Non-IP checksum (CRC) offloads
187  *
188  *   NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
189  *     offloading the SCTP CRC in a packet. To perform this offload the stack
190  *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
191  *     accordingly. Note the there is no indication in the skbuff that the
192  *     CHECKSUM_PARTIAL refers to an SCTP checksum, a driver that supports
193  *     both IP checksum offload and SCTP CRC offload must verify which offload
194  *     is configured for a packet presumably by inspecting packet headers.
195  *
196  *   NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
197  *     offloading the FCOE CRC in a packet. To perform this offload the stack
198  *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
199  *     accordingly. Note the there is no indication in the skbuff that the
200  *     CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
201  *     both IP checksum offload and FCOE CRC offload must verify which offload
202  *     is configured for a packet presumably by inspecting packet headers.
203  *
204  * E. Checksumming on output with GSO.
205  *
206  * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
207  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
208  * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
209  * part of the GSO operation is implied. If a checksum is being offloaded
210  * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
211  * are set to refer to the outermost checksum being offload (two offloaded
212  * checksums are possible with UDP encapsulation).
213  */
214 
215 /* Don't change this without changing skb_csum_unnecessary! */
216 #define CHECKSUM_NONE		0
217 #define CHECKSUM_UNNECESSARY	1
218 #define CHECKSUM_COMPLETE	2
219 #define CHECKSUM_PARTIAL	3
220 
221 /* Maximum value in skb->csum_level */
222 #define SKB_MAX_CSUM_LEVEL	3
223 
224 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
225 #define SKB_WITH_OVERHEAD(X)	\
226 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
227 #define SKB_MAX_ORDER(X, ORDER) \
228 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
229 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
230 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
231 
232 /* return minimum truesize of one skb containing X bytes of data */
233 #define SKB_TRUESIZE(X) ((X) +						\
234 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
235 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
236 
237 struct net_device;
238 struct scatterlist;
239 struct pipe_inode_info;
240 struct iov_iter;
241 struct napi_struct;
242 
243 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
244 struct nf_conntrack {
245 	atomic_t use;
246 };
247 #endif
248 
249 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
250 struct nf_bridge_info {
251 	atomic_t		use;
252 	enum {
253 		BRNF_PROTO_UNCHANGED,
254 		BRNF_PROTO_8021Q,
255 		BRNF_PROTO_PPPOE
256 	} orig_proto:8;
257 	u8			pkt_otherhost:1;
258 	u8			in_prerouting:1;
259 	u8			bridged_dnat:1;
260 	__u16			frag_max_size;
261 	struct net_device	*physindev;
262 
263 	/* always valid & non-NULL from FORWARD on, for physdev match */
264 	struct net_device	*physoutdev;
265 	union {
266 		/* prerouting: detect dnat in orig/reply direction */
267 		__be32          ipv4_daddr;
268 		struct in6_addr ipv6_daddr;
269 
270 		/* after prerouting + nat detected: store original source
271 		 * mac since neigh resolution overwrites it, only used while
272 		 * skb is out in neigh layer.
273 		 */
274 		char neigh_header[8];
275 	};
276 };
277 #endif
278 
279 struct sk_buff_head {
280 	/* These two members must be first. */
281 	struct sk_buff	*next;
282 	struct sk_buff	*prev;
283 
284 	__u32		qlen;
285 	spinlock_t	lock;
286 };
287 
288 struct sk_buff;
289 
290 /* To allow 64K frame to be packed as single skb without frag_list we
291  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
292  * buffers which do not start on a page boundary.
293  *
294  * Since GRO uses frags we allocate at least 16 regardless of page
295  * size.
296  */
297 #if (65536/PAGE_SIZE + 1) < 16
298 #define MAX_SKB_FRAGS 16UL
299 #else
300 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
301 #endif
302 extern int sysctl_max_skb_frags;
303 
304 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
305  * segment using its current segmentation instead.
306  */
307 #define GSO_BY_FRAGS	0xFFFF
308 
309 typedef struct skb_frag_struct skb_frag_t;
310 
311 struct skb_frag_struct {
312 	struct {
313 		struct page *p;
314 	} page;
315 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
316 	__u32 page_offset;
317 	__u32 size;
318 #else
319 	__u16 page_offset;
320 	__u16 size;
321 #endif
322 };
323 
324 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
325 {
326 	return frag->size;
327 }
328 
329 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
330 {
331 	frag->size = size;
332 }
333 
334 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
335 {
336 	frag->size += delta;
337 }
338 
339 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
340 {
341 	frag->size -= delta;
342 }
343 
344 #define HAVE_HW_TIME_STAMP
345 
346 /**
347  * struct skb_shared_hwtstamps - hardware time stamps
348  * @hwtstamp:	hardware time stamp transformed into duration
349  *		since arbitrary point in time
350  *
351  * Software time stamps generated by ktime_get_real() are stored in
352  * skb->tstamp.
353  *
354  * hwtstamps can only be compared against other hwtstamps from
355  * the same device.
356  *
357  * This structure is attached to packets as part of the
358  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
359  */
360 struct skb_shared_hwtstamps {
361 	ktime_t	hwtstamp;
362 };
363 
364 /* Definitions for tx_flags in struct skb_shared_info */
365 enum {
366 	/* generate hardware time stamp */
367 	SKBTX_HW_TSTAMP = 1 << 0,
368 
369 	/* generate software time stamp when queueing packet to NIC */
370 	SKBTX_SW_TSTAMP = 1 << 1,
371 
372 	/* device driver is going to provide hardware time stamp */
373 	SKBTX_IN_PROGRESS = 1 << 2,
374 
375 	/* device driver supports TX zero-copy buffers */
376 	SKBTX_DEV_ZEROCOPY = 1 << 3,
377 
378 	/* generate wifi status information (where possible) */
379 	SKBTX_WIFI_STATUS = 1 << 4,
380 
381 	/* This indicates at least one fragment might be overwritten
382 	 * (as in vmsplice(), sendfile() ...)
383 	 * If we need to compute a TX checksum, we'll need to copy
384 	 * all frags to avoid possible bad checksum
385 	 */
386 	SKBTX_SHARED_FRAG = 1 << 5,
387 
388 	/* generate software time stamp when entering packet scheduling */
389 	SKBTX_SCHED_TSTAMP = 1 << 6,
390 };
391 
392 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
393 				 SKBTX_SCHED_TSTAMP)
394 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
395 
396 /*
397  * The callback notifies userspace to release buffers when skb DMA is done in
398  * lower device, the skb last reference should be 0 when calling this.
399  * The zerocopy_success argument is true if zero copy transmit occurred,
400  * false on data copy or out of memory error caused by data copy attempt.
401  * The ctx field is used to track device context.
402  * The desc field is used to track userspace buffer index.
403  */
404 struct ubuf_info {
405 	void (*callback)(struct ubuf_info *, bool zerocopy_success);
406 	void *ctx;
407 	unsigned long desc;
408 };
409 
410 /* This data is invariant across clones and lives at
411  * the end of the header data, ie. at skb->end.
412  */
413 struct skb_shared_info {
414 	unsigned char	nr_frags;
415 	__u8		tx_flags;
416 	unsigned short	gso_size;
417 	/* Warning: this field is not always filled in (UFO)! */
418 	unsigned short	gso_segs;
419 	unsigned short  gso_type;
420 	struct sk_buff	*frag_list;
421 	struct skb_shared_hwtstamps hwtstamps;
422 	u32		tskey;
423 	__be32          ip6_frag_id;
424 
425 	/*
426 	 * Warning : all fields before dataref are cleared in __alloc_skb()
427 	 */
428 	atomic_t	dataref;
429 
430 	/* Intermediate layers must ensure that destructor_arg
431 	 * remains valid until skb destructor */
432 	void *		destructor_arg;
433 
434 	/* must be last field, see pskb_expand_head() */
435 	skb_frag_t	frags[MAX_SKB_FRAGS];
436 };
437 
438 /* We divide dataref into two halves.  The higher 16 bits hold references
439  * to the payload part of skb->data.  The lower 16 bits hold references to
440  * the entire skb->data.  A clone of a headerless skb holds the length of
441  * the header in skb->hdr_len.
442  *
443  * All users must obey the rule that the skb->data reference count must be
444  * greater than or equal to the payload reference count.
445  *
446  * Holding a reference to the payload part means that the user does not
447  * care about modifications to the header part of skb->data.
448  */
449 #define SKB_DATAREF_SHIFT 16
450 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
451 
452 
453 enum {
454 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
455 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
456 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
457 };
458 
459 enum {
460 	SKB_GSO_TCPV4 = 1 << 0,
461 	SKB_GSO_UDP = 1 << 1,
462 
463 	/* This indicates the skb is from an untrusted source. */
464 	SKB_GSO_DODGY = 1 << 2,
465 
466 	/* This indicates the tcp segment has CWR set. */
467 	SKB_GSO_TCP_ECN = 1 << 3,
468 
469 	SKB_GSO_TCP_FIXEDID = 1 << 4,
470 
471 	SKB_GSO_TCPV6 = 1 << 5,
472 
473 	SKB_GSO_FCOE = 1 << 6,
474 
475 	SKB_GSO_GRE = 1 << 7,
476 
477 	SKB_GSO_GRE_CSUM = 1 << 8,
478 
479 	SKB_GSO_IPXIP4 = 1 << 9,
480 
481 	SKB_GSO_IPXIP6 = 1 << 10,
482 
483 	SKB_GSO_UDP_TUNNEL = 1 << 11,
484 
485 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 12,
486 
487 	SKB_GSO_PARTIAL = 1 << 13,
488 
489 	SKB_GSO_TUNNEL_REMCSUM = 1 << 14,
490 
491 	SKB_GSO_SCTP = 1 << 15,
492 };
493 
494 #if BITS_PER_LONG > 32
495 #define NET_SKBUFF_DATA_USES_OFFSET 1
496 #endif
497 
498 #ifdef NET_SKBUFF_DATA_USES_OFFSET
499 typedef unsigned int sk_buff_data_t;
500 #else
501 typedef unsigned char *sk_buff_data_t;
502 #endif
503 
504 /**
505  * struct skb_mstamp - multi resolution time stamps
506  * @stamp_us: timestamp in us resolution
507  * @stamp_jiffies: timestamp in jiffies
508  */
509 struct skb_mstamp {
510 	union {
511 		u64		v64;
512 		struct {
513 			u32	stamp_us;
514 			u32	stamp_jiffies;
515 		};
516 	};
517 };
518 
519 /**
520  * skb_mstamp_get - get current timestamp
521  * @cl: place to store timestamps
522  */
523 static inline void skb_mstamp_get(struct skb_mstamp *cl)
524 {
525 	u64 val = local_clock();
526 
527 	do_div(val, NSEC_PER_USEC);
528 	cl->stamp_us = (u32)val;
529 	cl->stamp_jiffies = (u32)jiffies;
530 }
531 
532 /**
533  * skb_mstamp_delta - compute the difference in usec between two skb_mstamp
534  * @t1: pointer to newest sample
535  * @t0: pointer to oldest sample
536  */
537 static inline u32 skb_mstamp_us_delta(const struct skb_mstamp *t1,
538 				      const struct skb_mstamp *t0)
539 {
540 	s32 delta_us = t1->stamp_us - t0->stamp_us;
541 	u32 delta_jiffies = t1->stamp_jiffies - t0->stamp_jiffies;
542 
543 	/* If delta_us is negative, this might be because interval is too big,
544 	 * or local_clock() drift is too big : fallback using jiffies.
545 	 */
546 	if (delta_us <= 0 ||
547 	    delta_jiffies >= (INT_MAX / (USEC_PER_SEC / HZ)))
548 
549 		delta_us = jiffies_to_usecs(delta_jiffies);
550 
551 	return delta_us;
552 }
553 
554 static inline bool skb_mstamp_after(const struct skb_mstamp *t1,
555 				    const struct skb_mstamp *t0)
556 {
557 	s32 diff = t1->stamp_jiffies - t0->stamp_jiffies;
558 
559 	if (!diff)
560 		diff = t1->stamp_us - t0->stamp_us;
561 	return diff > 0;
562 }
563 
564 /**
565  *	struct sk_buff - socket buffer
566  *	@next: Next buffer in list
567  *	@prev: Previous buffer in list
568  *	@tstamp: Time we arrived/left
569  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
570  *	@sk: Socket we are owned by
571  *	@dev: Device we arrived on/are leaving by
572  *	@cb: Control buffer. Free for use by every layer. Put private vars here
573  *	@_skb_refdst: destination entry (with norefcount bit)
574  *	@sp: the security path, used for xfrm
575  *	@len: Length of actual data
576  *	@data_len: Data length
577  *	@mac_len: Length of link layer header
578  *	@hdr_len: writable header length of cloned skb
579  *	@csum: Checksum (must include start/offset pair)
580  *	@csum_start: Offset from skb->head where checksumming should start
581  *	@csum_offset: Offset from csum_start where checksum should be stored
582  *	@priority: Packet queueing priority
583  *	@ignore_df: allow local fragmentation
584  *	@cloned: Head may be cloned (check refcnt to be sure)
585  *	@ip_summed: Driver fed us an IP checksum
586  *	@nohdr: Payload reference only, must not modify header
587  *	@nfctinfo: Relationship of this skb to the connection
588  *	@pkt_type: Packet class
589  *	@fclone: skbuff clone status
590  *	@ipvs_property: skbuff is owned by ipvs
591  *	@peeked: this packet has been seen already, so stats have been
592  *		done for it, don't do them again
593  *	@nf_trace: netfilter packet trace flag
594  *	@protocol: Packet protocol from driver
595  *	@destructor: Destruct function
596  *	@nfct: Associated connection, if any
597  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
598  *	@skb_iif: ifindex of device we arrived on
599  *	@tc_index: Traffic control index
600  *	@tc_verd: traffic control verdict
601  *	@hash: the packet hash
602  *	@queue_mapping: Queue mapping for multiqueue devices
603  *	@xmit_more: More SKBs are pending for this queue
604  *	@ndisc_nodetype: router type (from link layer)
605  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
606  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
607  *		ports.
608  *	@sw_hash: indicates hash was computed in software stack
609  *	@wifi_acked_valid: wifi_acked was set
610  *	@wifi_acked: whether frame was acked on wifi or not
611  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
612   *	@napi_id: id of the NAPI struct this skb came from
613  *	@secmark: security marking
614  *	@offload_fwd_mark: fwding offload mark
615  *	@mark: Generic packet mark
616  *	@vlan_proto: vlan encapsulation protocol
617  *	@vlan_tci: vlan tag control information
618  *	@inner_protocol: Protocol (encapsulation)
619  *	@inner_transport_header: Inner transport layer header (encapsulation)
620  *	@inner_network_header: Network layer header (encapsulation)
621  *	@inner_mac_header: Link layer header (encapsulation)
622  *	@transport_header: Transport layer header
623  *	@network_header: Network layer header
624  *	@mac_header: Link layer header
625  *	@tail: Tail pointer
626  *	@end: End pointer
627  *	@head: Head of buffer
628  *	@data: Data head pointer
629  *	@truesize: Buffer size
630  *	@users: User count - see {datagram,tcp}.c
631  */
632 
633 struct sk_buff {
634 	union {
635 		struct {
636 			/* These two members must be first. */
637 			struct sk_buff		*next;
638 			struct sk_buff		*prev;
639 
640 			union {
641 				ktime_t		tstamp;
642 				struct skb_mstamp skb_mstamp;
643 			};
644 		};
645 		struct rb_node	rbnode; /* used in netem & tcp stack */
646 	};
647 	struct sock		*sk;
648 	struct net_device	*dev;
649 
650 	/*
651 	 * This is the control buffer. It is free to use for every
652 	 * layer. Please put your private variables there. If you
653 	 * want to keep them across layers you have to do a skb_clone()
654 	 * first. This is owned by whoever has the skb queued ATM.
655 	 */
656 	char			cb[48] __aligned(8);
657 
658 	unsigned long		_skb_refdst;
659 	void			(*destructor)(struct sk_buff *skb);
660 #ifdef CONFIG_XFRM
661 	struct	sec_path	*sp;
662 #endif
663 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
664 	struct nf_conntrack	*nfct;
665 #endif
666 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
667 	struct nf_bridge_info	*nf_bridge;
668 #endif
669 	unsigned int		len,
670 				data_len;
671 	__u16			mac_len,
672 				hdr_len;
673 
674 	/* Following fields are _not_ copied in __copy_skb_header()
675 	 * Note that queue_mapping is here mostly to fill a hole.
676 	 */
677 	kmemcheck_bitfield_begin(flags1);
678 	__u16			queue_mapping;
679 	__u8			cloned:1,
680 				nohdr:1,
681 				fclone:2,
682 				peeked:1,
683 				head_frag:1,
684 				xmit_more:1;
685 	/* one bit hole */
686 	kmemcheck_bitfield_end(flags1);
687 
688 	/* fields enclosed in headers_start/headers_end are copied
689 	 * using a single memcpy() in __copy_skb_header()
690 	 */
691 	/* private: */
692 	__u32			headers_start[0];
693 	/* public: */
694 
695 /* if you move pkt_type around you also must adapt those constants */
696 #ifdef __BIG_ENDIAN_BITFIELD
697 #define PKT_TYPE_MAX	(7 << 5)
698 #else
699 #define PKT_TYPE_MAX	7
700 #endif
701 #define PKT_TYPE_OFFSET()	offsetof(struct sk_buff, __pkt_type_offset)
702 
703 	__u8			__pkt_type_offset[0];
704 	__u8			pkt_type:3;
705 	__u8			pfmemalloc:1;
706 	__u8			ignore_df:1;
707 	__u8			nfctinfo:3;
708 
709 	__u8			nf_trace:1;
710 	__u8			ip_summed:2;
711 	__u8			ooo_okay:1;
712 	__u8			l4_hash:1;
713 	__u8			sw_hash:1;
714 	__u8			wifi_acked_valid:1;
715 	__u8			wifi_acked:1;
716 
717 	__u8			no_fcs:1;
718 	/* Indicates the inner headers are valid in the skbuff. */
719 	__u8			encapsulation:1;
720 	__u8			encap_hdr_csum:1;
721 	__u8			csum_valid:1;
722 	__u8			csum_complete_sw:1;
723 	__u8			csum_level:2;
724 	__u8			csum_bad:1;
725 
726 #ifdef CONFIG_IPV6_NDISC_NODETYPE
727 	__u8			ndisc_nodetype:2;
728 #endif
729 	__u8			ipvs_property:1;
730 	__u8			inner_protocol_type:1;
731 	__u8			remcsum_offload:1;
732 	/* 3 or 5 bit hole */
733 
734 #ifdef CONFIG_NET_SCHED
735 	__u16			tc_index;	/* traffic control index */
736 #ifdef CONFIG_NET_CLS_ACT
737 	__u16			tc_verd;	/* traffic control verdict */
738 #endif
739 #endif
740 
741 	union {
742 		__wsum		csum;
743 		struct {
744 			__u16	csum_start;
745 			__u16	csum_offset;
746 		};
747 	};
748 	__u32			priority;
749 	int			skb_iif;
750 	__u32			hash;
751 	__be16			vlan_proto;
752 	__u16			vlan_tci;
753 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
754 	union {
755 		unsigned int	napi_id;
756 		unsigned int	sender_cpu;
757 	};
758 #endif
759 	union {
760 #ifdef CONFIG_NETWORK_SECMARK
761 		__u32		secmark;
762 #endif
763 #ifdef CONFIG_NET_SWITCHDEV
764 		__u32		offload_fwd_mark;
765 #endif
766 	};
767 
768 	union {
769 		__u32		mark;
770 		__u32		reserved_tailroom;
771 	};
772 
773 	union {
774 		__be16		inner_protocol;
775 		__u8		inner_ipproto;
776 	};
777 
778 	__u16			inner_transport_header;
779 	__u16			inner_network_header;
780 	__u16			inner_mac_header;
781 
782 	__be16			protocol;
783 	__u16			transport_header;
784 	__u16			network_header;
785 	__u16			mac_header;
786 
787 	/* private: */
788 	__u32			headers_end[0];
789 	/* public: */
790 
791 	/* These elements must be at the end, see alloc_skb() for details.  */
792 	sk_buff_data_t		tail;
793 	sk_buff_data_t		end;
794 	unsigned char		*head,
795 				*data;
796 	unsigned int		truesize;
797 	atomic_t		users;
798 };
799 
800 #ifdef __KERNEL__
801 /*
802  *	Handling routines are only of interest to the kernel
803  */
804 #include <linux/slab.h>
805 
806 
807 #define SKB_ALLOC_FCLONE	0x01
808 #define SKB_ALLOC_RX		0x02
809 #define SKB_ALLOC_NAPI		0x04
810 
811 /* Returns true if the skb was allocated from PFMEMALLOC reserves */
812 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
813 {
814 	return unlikely(skb->pfmemalloc);
815 }
816 
817 /*
818  * skb might have a dst pointer attached, refcounted or not.
819  * _skb_refdst low order bit is set if refcount was _not_ taken
820  */
821 #define SKB_DST_NOREF	1UL
822 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
823 
824 /**
825  * skb_dst - returns skb dst_entry
826  * @skb: buffer
827  *
828  * Returns skb dst_entry, regardless of reference taken or not.
829  */
830 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
831 {
832 	/* If refdst was not refcounted, check we still are in a
833 	 * rcu_read_lock section
834 	 */
835 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
836 		!rcu_read_lock_held() &&
837 		!rcu_read_lock_bh_held());
838 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
839 }
840 
841 /**
842  * skb_dst_set - sets skb dst
843  * @skb: buffer
844  * @dst: dst entry
845  *
846  * Sets skb dst, assuming a reference was taken on dst and should
847  * be released by skb_dst_drop()
848  */
849 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
850 {
851 	skb->_skb_refdst = (unsigned long)dst;
852 }
853 
854 /**
855  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
856  * @skb: buffer
857  * @dst: dst entry
858  *
859  * Sets skb dst, assuming a reference was not taken on dst.
860  * If dst entry is cached, we do not take reference and dst_release
861  * will be avoided by refdst_drop. If dst entry is not cached, we take
862  * reference, so that last dst_release can destroy the dst immediately.
863  */
864 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
865 {
866 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
867 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
868 }
869 
870 /**
871  * skb_dst_is_noref - Test if skb dst isn't refcounted
872  * @skb: buffer
873  */
874 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
875 {
876 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
877 }
878 
879 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
880 {
881 	return (struct rtable *)skb_dst(skb);
882 }
883 
884 void kfree_skb(struct sk_buff *skb);
885 void kfree_skb_list(struct sk_buff *segs);
886 void skb_tx_error(struct sk_buff *skb);
887 void consume_skb(struct sk_buff *skb);
888 void  __kfree_skb(struct sk_buff *skb);
889 extern struct kmem_cache *skbuff_head_cache;
890 
891 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
892 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
893 		      bool *fragstolen, int *delta_truesize);
894 
895 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
896 			    int node);
897 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
898 struct sk_buff *build_skb(void *data, unsigned int frag_size);
899 static inline struct sk_buff *alloc_skb(unsigned int size,
900 					gfp_t priority)
901 {
902 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
903 }
904 
905 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
906 				     unsigned long data_len,
907 				     int max_page_order,
908 				     int *errcode,
909 				     gfp_t gfp_mask);
910 
911 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
912 struct sk_buff_fclones {
913 	struct sk_buff	skb1;
914 
915 	struct sk_buff	skb2;
916 
917 	atomic_t	fclone_ref;
918 };
919 
920 /**
921  *	skb_fclone_busy - check if fclone is busy
922  *	@skb: buffer
923  *
924  * Returns true if skb is a fast clone, and its clone is not freed.
925  * Some drivers call skb_orphan() in their ndo_start_xmit(),
926  * so we also check that this didnt happen.
927  */
928 static inline bool skb_fclone_busy(const struct sock *sk,
929 				   const struct sk_buff *skb)
930 {
931 	const struct sk_buff_fclones *fclones;
932 
933 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
934 
935 	return skb->fclone == SKB_FCLONE_ORIG &&
936 	       atomic_read(&fclones->fclone_ref) > 1 &&
937 	       fclones->skb2.sk == sk;
938 }
939 
940 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
941 					       gfp_t priority)
942 {
943 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
944 }
945 
946 struct sk_buff *__alloc_skb_head(gfp_t priority, int node);
947 static inline struct sk_buff *alloc_skb_head(gfp_t priority)
948 {
949 	return __alloc_skb_head(priority, -1);
950 }
951 
952 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
953 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
954 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
955 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
956 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
957 				   gfp_t gfp_mask, bool fclone);
958 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
959 					  gfp_t gfp_mask)
960 {
961 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
962 }
963 
964 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
965 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
966 				     unsigned int headroom);
967 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
968 				int newtailroom, gfp_t priority);
969 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
970 			int offset, int len);
971 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset,
972 		 int len);
973 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
974 int skb_pad(struct sk_buff *skb, int pad);
975 #define dev_kfree_skb(a)	consume_skb(a)
976 
977 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
978 			    int getfrag(void *from, char *to, int offset,
979 					int len, int odd, struct sk_buff *skb),
980 			    void *from, int length);
981 
982 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
983 			 int offset, size_t size);
984 
985 struct skb_seq_state {
986 	__u32		lower_offset;
987 	__u32		upper_offset;
988 	__u32		frag_idx;
989 	__u32		stepped_offset;
990 	struct sk_buff	*root_skb;
991 	struct sk_buff	*cur_skb;
992 	__u8		*frag_data;
993 };
994 
995 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
996 			  unsigned int to, struct skb_seq_state *st);
997 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
998 			  struct skb_seq_state *st);
999 void skb_abort_seq_read(struct skb_seq_state *st);
1000 
1001 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1002 			   unsigned int to, struct ts_config *config);
1003 
1004 /*
1005  * Packet hash types specify the type of hash in skb_set_hash.
1006  *
1007  * Hash types refer to the protocol layer addresses which are used to
1008  * construct a packet's hash. The hashes are used to differentiate or identify
1009  * flows of the protocol layer for the hash type. Hash types are either
1010  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1011  *
1012  * Properties of hashes:
1013  *
1014  * 1) Two packets in different flows have different hash values
1015  * 2) Two packets in the same flow should have the same hash value
1016  *
1017  * A hash at a higher layer is considered to be more specific. A driver should
1018  * set the most specific hash possible.
1019  *
1020  * A driver cannot indicate a more specific hash than the layer at which a hash
1021  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1022  *
1023  * A driver may indicate a hash level which is less specific than the
1024  * actual layer the hash was computed on. For instance, a hash computed
1025  * at L4 may be considered an L3 hash. This should only be done if the
1026  * driver can't unambiguously determine that the HW computed the hash at
1027  * the higher layer. Note that the "should" in the second property above
1028  * permits this.
1029  */
1030 enum pkt_hash_types {
1031 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1032 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1033 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1034 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1035 };
1036 
1037 static inline void skb_clear_hash(struct sk_buff *skb)
1038 {
1039 	skb->hash = 0;
1040 	skb->sw_hash = 0;
1041 	skb->l4_hash = 0;
1042 }
1043 
1044 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1045 {
1046 	if (!skb->l4_hash)
1047 		skb_clear_hash(skb);
1048 }
1049 
1050 static inline void
1051 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1052 {
1053 	skb->l4_hash = is_l4;
1054 	skb->sw_hash = is_sw;
1055 	skb->hash = hash;
1056 }
1057 
1058 static inline void
1059 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1060 {
1061 	/* Used by drivers to set hash from HW */
1062 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1063 }
1064 
1065 static inline void
1066 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1067 {
1068 	__skb_set_hash(skb, hash, true, is_l4);
1069 }
1070 
1071 void __skb_get_hash(struct sk_buff *skb);
1072 u32 skb_get_poff(const struct sk_buff *skb);
1073 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1074 		   const struct flow_keys *keys, int hlen);
1075 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1076 			    void *data, int hlen_proto);
1077 
1078 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1079 					int thoff, u8 ip_proto)
1080 {
1081 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1082 }
1083 
1084 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1085 			     const struct flow_dissector_key *key,
1086 			     unsigned int key_count);
1087 
1088 bool __skb_flow_dissect(const struct sk_buff *skb,
1089 			struct flow_dissector *flow_dissector,
1090 			void *target_container,
1091 			void *data, __be16 proto, int nhoff, int hlen,
1092 			unsigned int flags);
1093 
1094 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1095 				    struct flow_dissector *flow_dissector,
1096 				    void *target_container, unsigned int flags)
1097 {
1098 	return __skb_flow_dissect(skb, flow_dissector, target_container,
1099 				  NULL, 0, 0, 0, flags);
1100 }
1101 
1102 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1103 					      struct flow_keys *flow,
1104 					      unsigned int flags)
1105 {
1106 	memset(flow, 0, sizeof(*flow));
1107 	return __skb_flow_dissect(skb, &flow_keys_dissector, flow,
1108 				  NULL, 0, 0, 0, flags);
1109 }
1110 
1111 static inline bool skb_flow_dissect_flow_keys_buf(struct flow_keys *flow,
1112 						  void *data, __be16 proto,
1113 						  int nhoff, int hlen,
1114 						  unsigned int flags)
1115 {
1116 	memset(flow, 0, sizeof(*flow));
1117 	return __skb_flow_dissect(NULL, &flow_keys_buf_dissector, flow,
1118 				  data, proto, nhoff, hlen, flags);
1119 }
1120 
1121 static inline __u32 skb_get_hash(struct sk_buff *skb)
1122 {
1123 	if (!skb->l4_hash && !skb->sw_hash)
1124 		__skb_get_hash(skb);
1125 
1126 	return skb->hash;
1127 }
1128 
1129 __u32 __skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6);
1130 
1131 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1132 {
1133 	if (!skb->l4_hash && !skb->sw_hash) {
1134 		struct flow_keys keys;
1135 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1136 
1137 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1138 	}
1139 
1140 	return skb->hash;
1141 }
1142 
1143 __u32 __skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl);
1144 
1145 static inline __u32 skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl4)
1146 {
1147 	if (!skb->l4_hash && !skb->sw_hash) {
1148 		struct flow_keys keys;
1149 		__u32 hash = __get_hash_from_flowi4(fl4, &keys);
1150 
1151 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1152 	}
1153 
1154 	return skb->hash;
1155 }
1156 
1157 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);
1158 
1159 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1160 {
1161 	return skb->hash;
1162 }
1163 
1164 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1165 {
1166 	to->hash = from->hash;
1167 	to->sw_hash = from->sw_hash;
1168 	to->l4_hash = from->l4_hash;
1169 };
1170 
1171 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1172 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1173 {
1174 	return skb->head + skb->end;
1175 }
1176 
1177 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1178 {
1179 	return skb->end;
1180 }
1181 #else
1182 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1183 {
1184 	return skb->end;
1185 }
1186 
1187 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1188 {
1189 	return skb->end - skb->head;
1190 }
1191 #endif
1192 
1193 /* Internal */
1194 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1195 
1196 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1197 {
1198 	return &skb_shinfo(skb)->hwtstamps;
1199 }
1200 
1201 /**
1202  *	skb_queue_empty - check if a queue is empty
1203  *	@list: queue head
1204  *
1205  *	Returns true if the queue is empty, false otherwise.
1206  */
1207 static inline int skb_queue_empty(const struct sk_buff_head *list)
1208 {
1209 	return list->next == (const struct sk_buff *) list;
1210 }
1211 
1212 /**
1213  *	skb_queue_is_last - check if skb is the last entry in the queue
1214  *	@list: queue head
1215  *	@skb: buffer
1216  *
1217  *	Returns true if @skb is the last buffer on the list.
1218  */
1219 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1220 				     const struct sk_buff *skb)
1221 {
1222 	return skb->next == (const struct sk_buff *) list;
1223 }
1224 
1225 /**
1226  *	skb_queue_is_first - check if skb is the first entry in the queue
1227  *	@list: queue head
1228  *	@skb: buffer
1229  *
1230  *	Returns true if @skb is the first buffer on the list.
1231  */
1232 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1233 				      const struct sk_buff *skb)
1234 {
1235 	return skb->prev == (const struct sk_buff *) list;
1236 }
1237 
1238 /**
1239  *	skb_queue_next - return the next packet in the queue
1240  *	@list: queue head
1241  *	@skb: current buffer
1242  *
1243  *	Return the next packet in @list after @skb.  It is only valid to
1244  *	call this if skb_queue_is_last() evaluates to false.
1245  */
1246 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1247 					     const struct sk_buff *skb)
1248 {
1249 	/* This BUG_ON may seem severe, but if we just return then we
1250 	 * are going to dereference garbage.
1251 	 */
1252 	BUG_ON(skb_queue_is_last(list, skb));
1253 	return skb->next;
1254 }
1255 
1256 /**
1257  *	skb_queue_prev - return the prev packet in the queue
1258  *	@list: queue head
1259  *	@skb: current buffer
1260  *
1261  *	Return the prev packet in @list before @skb.  It is only valid to
1262  *	call this if skb_queue_is_first() evaluates to false.
1263  */
1264 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1265 					     const struct sk_buff *skb)
1266 {
1267 	/* This BUG_ON may seem severe, but if we just return then we
1268 	 * are going to dereference garbage.
1269 	 */
1270 	BUG_ON(skb_queue_is_first(list, skb));
1271 	return skb->prev;
1272 }
1273 
1274 /**
1275  *	skb_get - reference buffer
1276  *	@skb: buffer to reference
1277  *
1278  *	Makes another reference to a socket buffer and returns a pointer
1279  *	to the buffer.
1280  */
1281 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1282 {
1283 	atomic_inc(&skb->users);
1284 	return skb;
1285 }
1286 
1287 /*
1288  * If users == 1, we are the only owner and are can avoid redundant
1289  * atomic change.
1290  */
1291 
1292 /**
1293  *	skb_cloned - is the buffer a clone
1294  *	@skb: buffer to check
1295  *
1296  *	Returns true if the buffer was generated with skb_clone() and is
1297  *	one of multiple shared copies of the buffer. Cloned buffers are
1298  *	shared data so must not be written to under normal circumstances.
1299  */
1300 static inline int skb_cloned(const struct sk_buff *skb)
1301 {
1302 	return skb->cloned &&
1303 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1304 }
1305 
1306 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1307 {
1308 	might_sleep_if(gfpflags_allow_blocking(pri));
1309 
1310 	if (skb_cloned(skb))
1311 		return pskb_expand_head(skb, 0, 0, pri);
1312 
1313 	return 0;
1314 }
1315 
1316 /**
1317  *	skb_header_cloned - is the header a clone
1318  *	@skb: buffer to check
1319  *
1320  *	Returns true if modifying the header part of the buffer requires
1321  *	the data to be copied.
1322  */
1323 static inline int skb_header_cloned(const struct sk_buff *skb)
1324 {
1325 	int dataref;
1326 
1327 	if (!skb->cloned)
1328 		return 0;
1329 
1330 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1331 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1332 	return dataref != 1;
1333 }
1334 
1335 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1336 {
1337 	might_sleep_if(gfpflags_allow_blocking(pri));
1338 
1339 	if (skb_header_cloned(skb))
1340 		return pskb_expand_head(skb, 0, 0, pri);
1341 
1342 	return 0;
1343 }
1344 
1345 /**
1346  *	skb_header_release - release reference to header
1347  *	@skb: buffer to operate on
1348  *
1349  *	Drop a reference to the header part of the buffer.  This is done
1350  *	by acquiring a payload reference.  You must not read from the header
1351  *	part of skb->data after this.
1352  *	Note : Check if you can use __skb_header_release() instead.
1353  */
1354 static inline void skb_header_release(struct sk_buff *skb)
1355 {
1356 	BUG_ON(skb->nohdr);
1357 	skb->nohdr = 1;
1358 	atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
1359 }
1360 
1361 /**
1362  *	__skb_header_release - release reference to header
1363  *	@skb: buffer to operate on
1364  *
1365  *	Variant of skb_header_release() assuming skb is private to caller.
1366  *	We can avoid one atomic operation.
1367  */
1368 static inline void __skb_header_release(struct sk_buff *skb)
1369 {
1370 	skb->nohdr = 1;
1371 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1372 }
1373 
1374 
1375 /**
1376  *	skb_shared - is the buffer shared
1377  *	@skb: buffer to check
1378  *
1379  *	Returns true if more than one person has a reference to this
1380  *	buffer.
1381  */
1382 static inline int skb_shared(const struct sk_buff *skb)
1383 {
1384 	return atomic_read(&skb->users) != 1;
1385 }
1386 
1387 /**
1388  *	skb_share_check - check if buffer is shared and if so clone it
1389  *	@skb: buffer to check
1390  *	@pri: priority for memory allocation
1391  *
1392  *	If the buffer is shared the buffer is cloned and the old copy
1393  *	drops a reference. A new clone with a single reference is returned.
1394  *	If the buffer is not shared the original buffer is returned. When
1395  *	being called from interrupt status or with spinlocks held pri must
1396  *	be GFP_ATOMIC.
1397  *
1398  *	NULL is returned on a memory allocation failure.
1399  */
1400 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1401 {
1402 	might_sleep_if(gfpflags_allow_blocking(pri));
1403 	if (skb_shared(skb)) {
1404 		struct sk_buff *nskb = skb_clone(skb, pri);
1405 
1406 		if (likely(nskb))
1407 			consume_skb(skb);
1408 		else
1409 			kfree_skb(skb);
1410 		skb = nskb;
1411 	}
1412 	return skb;
1413 }
1414 
1415 /*
1416  *	Copy shared buffers into a new sk_buff. We effectively do COW on
1417  *	packets to handle cases where we have a local reader and forward
1418  *	and a couple of other messy ones. The normal one is tcpdumping
1419  *	a packet thats being forwarded.
1420  */
1421 
1422 /**
1423  *	skb_unshare - make a copy of a shared buffer
1424  *	@skb: buffer to check
1425  *	@pri: priority for memory allocation
1426  *
1427  *	If the socket buffer is a clone then this function creates a new
1428  *	copy of the data, drops a reference count on the old copy and returns
1429  *	the new copy with the reference count at 1. If the buffer is not a clone
1430  *	the original buffer is returned. When called with a spinlock held or
1431  *	from interrupt state @pri must be %GFP_ATOMIC
1432  *
1433  *	%NULL is returned on a memory allocation failure.
1434  */
1435 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1436 					  gfp_t pri)
1437 {
1438 	might_sleep_if(gfpflags_allow_blocking(pri));
1439 	if (skb_cloned(skb)) {
1440 		struct sk_buff *nskb = skb_copy(skb, pri);
1441 
1442 		/* Free our shared copy */
1443 		if (likely(nskb))
1444 			consume_skb(skb);
1445 		else
1446 			kfree_skb(skb);
1447 		skb = nskb;
1448 	}
1449 	return skb;
1450 }
1451 
1452 /**
1453  *	skb_peek - peek at the head of an &sk_buff_head
1454  *	@list_: list to peek at
1455  *
1456  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1457  *	be careful with this one. A peek leaves the buffer on the
1458  *	list and someone else may run off with it. You must hold
1459  *	the appropriate locks or have a private queue to do this.
1460  *
1461  *	Returns %NULL for an empty list or a pointer to the head element.
1462  *	The reference count is not incremented and the reference is therefore
1463  *	volatile. Use with caution.
1464  */
1465 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1466 {
1467 	struct sk_buff *skb = list_->next;
1468 
1469 	if (skb == (struct sk_buff *)list_)
1470 		skb = NULL;
1471 	return skb;
1472 }
1473 
1474 /**
1475  *	skb_peek_next - peek skb following the given one from a queue
1476  *	@skb: skb to start from
1477  *	@list_: list to peek at
1478  *
1479  *	Returns %NULL when the end of the list is met or a pointer to the
1480  *	next element. The reference count is not incremented and the
1481  *	reference is therefore volatile. Use with caution.
1482  */
1483 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1484 		const struct sk_buff_head *list_)
1485 {
1486 	struct sk_buff *next = skb->next;
1487 
1488 	if (next == (struct sk_buff *)list_)
1489 		next = NULL;
1490 	return next;
1491 }
1492 
1493 /**
1494  *	skb_peek_tail - peek at the tail of an &sk_buff_head
1495  *	@list_: list to peek at
1496  *
1497  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1498  *	be careful with this one. A peek leaves the buffer on the
1499  *	list and someone else may run off with it. You must hold
1500  *	the appropriate locks or have a private queue to do this.
1501  *
1502  *	Returns %NULL for an empty list or a pointer to the tail element.
1503  *	The reference count is not incremented and the reference is therefore
1504  *	volatile. Use with caution.
1505  */
1506 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1507 {
1508 	struct sk_buff *skb = list_->prev;
1509 
1510 	if (skb == (struct sk_buff *)list_)
1511 		skb = NULL;
1512 	return skb;
1513 
1514 }
1515 
1516 /**
1517  *	skb_queue_len	- get queue length
1518  *	@list_: list to measure
1519  *
1520  *	Return the length of an &sk_buff queue.
1521  */
1522 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1523 {
1524 	return list_->qlen;
1525 }
1526 
1527 /**
1528  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1529  *	@list: queue to initialize
1530  *
1531  *	This initializes only the list and queue length aspects of
1532  *	an sk_buff_head object.  This allows to initialize the list
1533  *	aspects of an sk_buff_head without reinitializing things like
1534  *	the spinlock.  It can also be used for on-stack sk_buff_head
1535  *	objects where the spinlock is known to not be used.
1536  */
1537 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1538 {
1539 	list->prev = list->next = (struct sk_buff *)list;
1540 	list->qlen = 0;
1541 }
1542 
1543 /*
1544  * This function creates a split out lock class for each invocation;
1545  * this is needed for now since a whole lot of users of the skb-queue
1546  * infrastructure in drivers have different locking usage (in hardirq)
1547  * than the networking core (in softirq only). In the long run either the
1548  * network layer or drivers should need annotation to consolidate the
1549  * main types of usage into 3 classes.
1550  */
1551 static inline void skb_queue_head_init(struct sk_buff_head *list)
1552 {
1553 	spin_lock_init(&list->lock);
1554 	__skb_queue_head_init(list);
1555 }
1556 
1557 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1558 		struct lock_class_key *class)
1559 {
1560 	skb_queue_head_init(list);
1561 	lockdep_set_class(&list->lock, class);
1562 }
1563 
1564 /*
1565  *	Insert an sk_buff on a list.
1566  *
1567  *	The "__skb_xxxx()" functions are the non-atomic ones that
1568  *	can only be called with interrupts disabled.
1569  */
1570 void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1571 		struct sk_buff_head *list);
1572 static inline void __skb_insert(struct sk_buff *newsk,
1573 				struct sk_buff *prev, struct sk_buff *next,
1574 				struct sk_buff_head *list)
1575 {
1576 	newsk->next = next;
1577 	newsk->prev = prev;
1578 	next->prev  = prev->next = newsk;
1579 	list->qlen++;
1580 }
1581 
1582 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1583 				      struct sk_buff *prev,
1584 				      struct sk_buff *next)
1585 {
1586 	struct sk_buff *first = list->next;
1587 	struct sk_buff *last = list->prev;
1588 
1589 	first->prev = prev;
1590 	prev->next = first;
1591 
1592 	last->next = next;
1593 	next->prev = last;
1594 }
1595 
1596 /**
1597  *	skb_queue_splice - join two skb lists, this is designed for stacks
1598  *	@list: the new list to add
1599  *	@head: the place to add it in the first list
1600  */
1601 static inline void skb_queue_splice(const struct sk_buff_head *list,
1602 				    struct sk_buff_head *head)
1603 {
1604 	if (!skb_queue_empty(list)) {
1605 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1606 		head->qlen += list->qlen;
1607 	}
1608 }
1609 
1610 /**
1611  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1612  *	@list: the new list to add
1613  *	@head: the place to add it in the first list
1614  *
1615  *	The list at @list is reinitialised
1616  */
1617 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1618 					 struct sk_buff_head *head)
1619 {
1620 	if (!skb_queue_empty(list)) {
1621 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1622 		head->qlen += list->qlen;
1623 		__skb_queue_head_init(list);
1624 	}
1625 }
1626 
1627 /**
1628  *	skb_queue_splice_tail - join two skb lists, each list being a queue
1629  *	@list: the new list to add
1630  *	@head: the place to add it in the first list
1631  */
1632 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1633 					 struct sk_buff_head *head)
1634 {
1635 	if (!skb_queue_empty(list)) {
1636 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1637 		head->qlen += list->qlen;
1638 	}
1639 }
1640 
1641 /**
1642  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1643  *	@list: the new list to add
1644  *	@head: the place to add it in the first list
1645  *
1646  *	Each of the lists is a queue.
1647  *	The list at @list is reinitialised
1648  */
1649 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1650 					      struct sk_buff_head *head)
1651 {
1652 	if (!skb_queue_empty(list)) {
1653 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1654 		head->qlen += list->qlen;
1655 		__skb_queue_head_init(list);
1656 	}
1657 }
1658 
1659 /**
1660  *	__skb_queue_after - queue a buffer at the list head
1661  *	@list: list to use
1662  *	@prev: place after this buffer
1663  *	@newsk: buffer to queue
1664  *
1665  *	Queue a buffer int the middle of a list. This function takes no locks
1666  *	and you must therefore hold required locks before calling it.
1667  *
1668  *	A buffer cannot be placed on two lists at the same time.
1669  */
1670 static inline void __skb_queue_after(struct sk_buff_head *list,
1671 				     struct sk_buff *prev,
1672 				     struct sk_buff *newsk)
1673 {
1674 	__skb_insert(newsk, prev, prev->next, list);
1675 }
1676 
1677 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1678 		struct sk_buff_head *list);
1679 
1680 static inline void __skb_queue_before(struct sk_buff_head *list,
1681 				      struct sk_buff *next,
1682 				      struct sk_buff *newsk)
1683 {
1684 	__skb_insert(newsk, next->prev, next, list);
1685 }
1686 
1687 /**
1688  *	__skb_queue_head - queue a buffer at the list head
1689  *	@list: list to use
1690  *	@newsk: buffer to queue
1691  *
1692  *	Queue a buffer at the start of a list. This function takes no locks
1693  *	and you must therefore hold required locks before calling it.
1694  *
1695  *	A buffer cannot be placed on two lists at the same time.
1696  */
1697 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1698 static inline void __skb_queue_head(struct sk_buff_head *list,
1699 				    struct sk_buff *newsk)
1700 {
1701 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
1702 }
1703 
1704 /**
1705  *	__skb_queue_tail - queue a buffer at the list tail
1706  *	@list: list to use
1707  *	@newsk: buffer to queue
1708  *
1709  *	Queue a buffer at the end of a list. This function takes no locks
1710  *	and you must therefore hold required locks before calling it.
1711  *
1712  *	A buffer cannot be placed on two lists at the same time.
1713  */
1714 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1715 static inline void __skb_queue_tail(struct sk_buff_head *list,
1716 				   struct sk_buff *newsk)
1717 {
1718 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
1719 }
1720 
1721 /*
1722  * remove sk_buff from list. _Must_ be called atomically, and with
1723  * the list known..
1724  */
1725 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1726 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1727 {
1728 	struct sk_buff *next, *prev;
1729 
1730 	list->qlen--;
1731 	next	   = skb->next;
1732 	prev	   = skb->prev;
1733 	skb->next  = skb->prev = NULL;
1734 	next->prev = prev;
1735 	prev->next = next;
1736 }
1737 
1738 /**
1739  *	__skb_dequeue - remove from the head of the queue
1740  *	@list: list to dequeue from
1741  *
1742  *	Remove the head of the list. This function does not take any locks
1743  *	so must be used with appropriate locks held only. The head item is
1744  *	returned or %NULL if the list is empty.
1745  */
1746 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1747 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1748 {
1749 	struct sk_buff *skb = skb_peek(list);
1750 	if (skb)
1751 		__skb_unlink(skb, list);
1752 	return skb;
1753 }
1754 
1755 /**
1756  *	__skb_dequeue_tail - remove from the tail of the queue
1757  *	@list: list to dequeue from
1758  *
1759  *	Remove the tail of the list. This function does not take any locks
1760  *	so must be used with appropriate locks held only. The tail item is
1761  *	returned or %NULL if the list is empty.
1762  */
1763 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1764 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1765 {
1766 	struct sk_buff *skb = skb_peek_tail(list);
1767 	if (skb)
1768 		__skb_unlink(skb, list);
1769 	return skb;
1770 }
1771 
1772 
1773 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1774 {
1775 	return skb->data_len;
1776 }
1777 
1778 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1779 {
1780 	return skb->len - skb->data_len;
1781 }
1782 
1783 static inline int skb_pagelen(const struct sk_buff *skb)
1784 {
1785 	int i, len = 0;
1786 
1787 	for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1788 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1789 	return len + skb_headlen(skb);
1790 }
1791 
1792 /**
1793  * __skb_fill_page_desc - initialise a paged fragment in an skb
1794  * @skb: buffer containing fragment to be initialised
1795  * @i: paged fragment index to initialise
1796  * @page: the page to use for this fragment
1797  * @off: the offset to the data with @page
1798  * @size: the length of the data
1799  *
1800  * Initialises the @i'th fragment of @skb to point to &size bytes at
1801  * offset @off within @page.
1802  *
1803  * Does not take any additional reference on the fragment.
1804  */
1805 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1806 					struct page *page, int off, int size)
1807 {
1808 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1809 
1810 	/*
1811 	 * Propagate page pfmemalloc to the skb if we can. The problem is
1812 	 * that not all callers have unique ownership of the page but rely
1813 	 * on page_is_pfmemalloc doing the right thing(tm).
1814 	 */
1815 	frag->page.p		  = page;
1816 	frag->page_offset	  = off;
1817 	skb_frag_size_set(frag, size);
1818 
1819 	page = compound_head(page);
1820 	if (page_is_pfmemalloc(page))
1821 		skb->pfmemalloc	= true;
1822 }
1823 
1824 /**
1825  * skb_fill_page_desc - initialise a paged fragment in an skb
1826  * @skb: buffer containing fragment to be initialised
1827  * @i: paged fragment index to initialise
1828  * @page: the page to use for this fragment
1829  * @off: the offset to the data with @page
1830  * @size: the length of the data
1831  *
1832  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1833  * @skb to point to @size bytes at offset @off within @page. In
1834  * addition updates @skb such that @i is the last fragment.
1835  *
1836  * Does not take any additional reference on the fragment.
1837  */
1838 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1839 				      struct page *page, int off, int size)
1840 {
1841 	__skb_fill_page_desc(skb, i, page, off, size);
1842 	skb_shinfo(skb)->nr_frags = i + 1;
1843 }
1844 
1845 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
1846 		     int size, unsigned int truesize);
1847 
1848 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
1849 			  unsigned int truesize);
1850 
1851 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
1852 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_has_frag_list(skb))
1853 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
1854 
1855 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1856 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1857 {
1858 	return skb->head + skb->tail;
1859 }
1860 
1861 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1862 {
1863 	skb->tail = skb->data - skb->head;
1864 }
1865 
1866 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1867 {
1868 	skb_reset_tail_pointer(skb);
1869 	skb->tail += offset;
1870 }
1871 
1872 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1873 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1874 {
1875 	return skb->tail;
1876 }
1877 
1878 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1879 {
1880 	skb->tail = skb->data;
1881 }
1882 
1883 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1884 {
1885 	skb->tail = skb->data + offset;
1886 }
1887 
1888 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1889 
1890 /*
1891  *	Add data to an sk_buff
1892  */
1893 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
1894 unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1895 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1896 {
1897 	unsigned char *tmp = skb_tail_pointer(skb);
1898 	SKB_LINEAR_ASSERT(skb);
1899 	skb->tail += len;
1900 	skb->len  += len;
1901 	return tmp;
1902 }
1903 
1904 unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1905 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1906 {
1907 	skb->data -= len;
1908 	skb->len  += len;
1909 	return skb->data;
1910 }
1911 
1912 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1913 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1914 {
1915 	skb->len -= len;
1916 	BUG_ON(skb->len < skb->data_len);
1917 	return skb->data += len;
1918 }
1919 
1920 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1921 {
1922 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1923 }
1924 
1925 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1926 
1927 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1928 {
1929 	if (len > skb_headlen(skb) &&
1930 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1931 		return NULL;
1932 	skb->len -= len;
1933 	return skb->data += len;
1934 }
1935 
1936 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1937 {
1938 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1939 }
1940 
1941 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1942 {
1943 	if (likely(len <= skb_headlen(skb)))
1944 		return 1;
1945 	if (unlikely(len > skb->len))
1946 		return 0;
1947 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1948 }
1949 
1950 /**
1951  *	skb_headroom - bytes at buffer head
1952  *	@skb: buffer to check
1953  *
1954  *	Return the number of bytes of free space at the head of an &sk_buff.
1955  */
1956 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1957 {
1958 	return skb->data - skb->head;
1959 }
1960 
1961 /**
1962  *	skb_tailroom - bytes at buffer end
1963  *	@skb: buffer to check
1964  *
1965  *	Return the number of bytes of free space at the tail of an sk_buff
1966  */
1967 static inline int skb_tailroom(const struct sk_buff *skb)
1968 {
1969 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1970 }
1971 
1972 /**
1973  *	skb_availroom - bytes at buffer end
1974  *	@skb: buffer to check
1975  *
1976  *	Return the number of bytes of free space at the tail of an sk_buff
1977  *	allocated by sk_stream_alloc()
1978  */
1979 static inline int skb_availroom(const struct sk_buff *skb)
1980 {
1981 	if (skb_is_nonlinear(skb))
1982 		return 0;
1983 
1984 	return skb->end - skb->tail - skb->reserved_tailroom;
1985 }
1986 
1987 /**
1988  *	skb_reserve - adjust headroom
1989  *	@skb: buffer to alter
1990  *	@len: bytes to move
1991  *
1992  *	Increase the headroom of an empty &sk_buff by reducing the tail
1993  *	room. This is only allowed for an empty buffer.
1994  */
1995 static inline void skb_reserve(struct sk_buff *skb, int len)
1996 {
1997 	skb->data += len;
1998 	skb->tail += len;
1999 }
2000 
2001 /**
2002  *	skb_tailroom_reserve - adjust reserved_tailroom
2003  *	@skb: buffer to alter
2004  *	@mtu: maximum amount of headlen permitted
2005  *	@needed_tailroom: minimum amount of reserved_tailroom
2006  *
2007  *	Set reserved_tailroom so that headlen can be as large as possible but
2008  *	not larger than mtu and tailroom cannot be smaller than
2009  *	needed_tailroom.
2010  *	The required headroom should already have been reserved before using
2011  *	this function.
2012  */
2013 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2014 					unsigned int needed_tailroom)
2015 {
2016 	SKB_LINEAR_ASSERT(skb);
2017 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2018 		/* use at most mtu */
2019 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2020 	else
2021 		/* use up to all available space */
2022 		skb->reserved_tailroom = needed_tailroom;
2023 }
2024 
2025 #define ENCAP_TYPE_ETHER	0
2026 #define ENCAP_TYPE_IPPROTO	1
2027 
2028 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2029 					  __be16 protocol)
2030 {
2031 	skb->inner_protocol = protocol;
2032 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2033 }
2034 
2035 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2036 					 __u8 ipproto)
2037 {
2038 	skb->inner_ipproto = ipproto;
2039 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2040 }
2041 
2042 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2043 {
2044 	skb->inner_mac_header = skb->mac_header;
2045 	skb->inner_network_header = skb->network_header;
2046 	skb->inner_transport_header = skb->transport_header;
2047 }
2048 
2049 static inline void skb_reset_mac_len(struct sk_buff *skb)
2050 {
2051 	skb->mac_len = skb->network_header - skb->mac_header;
2052 }
2053 
2054 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2055 							*skb)
2056 {
2057 	return skb->head + skb->inner_transport_header;
2058 }
2059 
2060 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2061 {
2062 	return skb_inner_transport_header(skb) - skb->data;
2063 }
2064 
2065 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2066 {
2067 	skb->inner_transport_header = skb->data - skb->head;
2068 }
2069 
2070 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2071 						   const int offset)
2072 {
2073 	skb_reset_inner_transport_header(skb);
2074 	skb->inner_transport_header += offset;
2075 }
2076 
2077 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2078 {
2079 	return skb->head + skb->inner_network_header;
2080 }
2081 
2082 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2083 {
2084 	skb->inner_network_header = skb->data - skb->head;
2085 }
2086 
2087 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2088 						const int offset)
2089 {
2090 	skb_reset_inner_network_header(skb);
2091 	skb->inner_network_header += offset;
2092 }
2093 
2094 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2095 {
2096 	return skb->head + skb->inner_mac_header;
2097 }
2098 
2099 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2100 {
2101 	skb->inner_mac_header = skb->data - skb->head;
2102 }
2103 
2104 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2105 					    const int offset)
2106 {
2107 	skb_reset_inner_mac_header(skb);
2108 	skb->inner_mac_header += offset;
2109 }
2110 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2111 {
2112 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2113 }
2114 
2115 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2116 {
2117 	return skb->head + skb->transport_header;
2118 }
2119 
2120 static inline void skb_reset_transport_header(struct sk_buff *skb)
2121 {
2122 	skb->transport_header = skb->data - skb->head;
2123 }
2124 
2125 static inline void skb_set_transport_header(struct sk_buff *skb,
2126 					    const int offset)
2127 {
2128 	skb_reset_transport_header(skb);
2129 	skb->transport_header += offset;
2130 }
2131 
2132 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2133 {
2134 	return skb->head + skb->network_header;
2135 }
2136 
2137 static inline void skb_reset_network_header(struct sk_buff *skb)
2138 {
2139 	skb->network_header = skb->data - skb->head;
2140 }
2141 
2142 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2143 {
2144 	skb_reset_network_header(skb);
2145 	skb->network_header += offset;
2146 }
2147 
2148 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2149 {
2150 	return skb->head + skb->mac_header;
2151 }
2152 
2153 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2154 {
2155 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2156 }
2157 
2158 static inline void skb_reset_mac_header(struct sk_buff *skb)
2159 {
2160 	skb->mac_header = skb->data - skb->head;
2161 }
2162 
2163 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2164 {
2165 	skb_reset_mac_header(skb);
2166 	skb->mac_header += offset;
2167 }
2168 
2169 static inline void skb_pop_mac_header(struct sk_buff *skb)
2170 {
2171 	skb->mac_header = skb->network_header;
2172 }
2173 
2174 static inline void skb_probe_transport_header(struct sk_buff *skb,
2175 					      const int offset_hint)
2176 {
2177 	struct flow_keys keys;
2178 
2179 	if (skb_transport_header_was_set(skb))
2180 		return;
2181 	else if (skb_flow_dissect_flow_keys(skb, &keys, 0))
2182 		skb_set_transport_header(skb, keys.control.thoff);
2183 	else
2184 		skb_set_transport_header(skb, offset_hint);
2185 }
2186 
2187 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2188 {
2189 	if (skb_mac_header_was_set(skb)) {
2190 		const unsigned char *old_mac = skb_mac_header(skb);
2191 
2192 		skb_set_mac_header(skb, -skb->mac_len);
2193 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2194 	}
2195 }
2196 
2197 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2198 {
2199 	return skb->csum_start - skb_headroom(skb);
2200 }
2201 
2202 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2203 {
2204 	return skb->head + skb->csum_start;
2205 }
2206 
2207 static inline int skb_transport_offset(const struct sk_buff *skb)
2208 {
2209 	return skb_transport_header(skb) - skb->data;
2210 }
2211 
2212 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2213 {
2214 	return skb->transport_header - skb->network_header;
2215 }
2216 
2217 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2218 {
2219 	return skb->inner_transport_header - skb->inner_network_header;
2220 }
2221 
2222 static inline int skb_network_offset(const struct sk_buff *skb)
2223 {
2224 	return skb_network_header(skb) - skb->data;
2225 }
2226 
2227 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2228 {
2229 	return skb_inner_network_header(skb) - skb->data;
2230 }
2231 
2232 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2233 {
2234 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
2235 }
2236 
2237 /*
2238  * CPUs often take a performance hit when accessing unaligned memory
2239  * locations. The actual performance hit varies, it can be small if the
2240  * hardware handles it or large if we have to take an exception and fix it
2241  * in software.
2242  *
2243  * Since an ethernet header is 14 bytes network drivers often end up with
2244  * the IP header at an unaligned offset. The IP header can be aligned by
2245  * shifting the start of the packet by 2 bytes. Drivers should do this
2246  * with:
2247  *
2248  * skb_reserve(skb, NET_IP_ALIGN);
2249  *
2250  * The downside to this alignment of the IP header is that the DMA is now
2251  * unaligned. On some architectures the cost of an unaligned DMA is high
2252  * and this cost outweighs the gains made by aligning the IP header.
2253  *
2254  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2255  * to be overridden.
2256  */
2257 #ifndef NET_IP_ALIGN
2258 #define NET_IP_ALIGN	2
2259 #endif
2260 
2261 /*
2262  * The networking layer reserves some headroom in skb data (via
2263  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2264  * the header has to grow. In the default case, if the header has to grow
2265  * 32 bytes or less we avoid the reallocation.
2266  *
2267  * Unfortunately this headroom changes the DMA alignment of the resulting
2268  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2269  * on some architectures. An architecture can override this value,
2270  * perhaps setting it to a cacheline in size (since that will maintain
2271  * cacheline alignment of the DMA). It must be a power of 2.
2272  *
2273  * Various parts of the networking layer expect at least 32 bytes of
2274  * headroom, you should not reduce this.
2275  *
2276  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2277  * to reduce average number of cache lines per packet.
2278  * get_rps_cpus() for example only access one 64 bytes aligned block :
2279  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2280  */
2281 #ifndef NET_SKB_PAD
2282 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2283 #endif
2284 
2285 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2286 
2287 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2288 {
2289 	if (unlikely(skb_is_nonlinear(skb))) {
2290 		WARN_ON(1);
2291 		return;
2292 	}
2293 	skb->len = len;
2294 	skb_set_tail_pointer(skb, len);
2295 }
2296 
2297 void skb_trim(struct sk_buff *skb, unsigned int len);
2298 
2299 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2300 {
2301 	if (skb->data_len)
2302 		return ___pskb_trim(skb, len);
2303 	__skb_trim(skb, len);
2304 	return 0;
2305 }
2306 
2307 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2308 {
2309 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2310 }
2311 
2312 /**
2313  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2314  *	@skb: buffer to alter
2315  *	@len: new length
2316  *
2317  *	This is identical to pskb_trim except that the caller knows that
2318  *	the skb is not cloned so we should never get an error due to out-
2319  *	of-memory.
2320  */
2321 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2322 {
2323 	int err = pskb_trim(skb, len);
2324 	BUG_ON(err);
2325 }
2326 
2327 /**
2328  *	skb_orphan - orphan a buffer
2329  *	@skb: buffer to orphan
2330  *
2331  *	If a buffer currently has an owner then we call the owner's
2332  *	destructor function and make the @skb unowned. The buffer continues
2333  *	to exist but is no longer charged to its former owner.
2334  */
2335 static inline void skb_orphan(struct sk_buff *skb)
2336 {
2337 	if (skb->destructor) {
2338 		skb->destructor(skb);
2339 		skb->destructor = NULL;
2340 		skb->sk		= NULL;
2341 	} else {
2342 		BUG_ON(skb->sk);
2343 	}
2344 }
2345 
2346 /**
2347  *	skb_orphan_frags - orphan the frags contained in a buffer
2348  *	@skb: buffer to orphan frags from
2349  *	@gfp_mask: allocation mask for replacement pages
2350  *
2351  *	For each frag in the SKB which needs a destructor (i.e. has an
2352  *	owner) create a copy of that frag and release the original
2353  *	page by calling the destructor.
2354  */
2355 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2356 {
2357 	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
2358 		return 0;
2359 	return skb_copy_ubufs(skb, gfp_mask);
2360 }
2361 
2362 /**
2363  *	__skb_queue_purge - empty a list
2364  *	@list: list to empty
2365  *
2366  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2367  *	the list and one reference dropped. This function does not take the
2368  *	list lock and the caller must hold the relevant locks to use it.
2369  */
2370 void skb_queue_purge(struct sk_buff_head *list);
2371 static inline void __skb_queue_purge(struct sk_buff_head *list)
2372 {
2373 	struct sk_buff *skb;
2374 	while ((skb = __skb_dequeue(list)) != NULL)
2375 		kfree_skb(skb);
2376 }
2377 
2378 void *netdev_alloc_frag(unsigned int fragsz);
2379 
2380 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2381 				   gfp_t gfp_mask);
2382 
2383 /**
2384  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
2385  *	@dev: network device to receive on
2386  *	@length: length to allocate
2387  *
2388  *	Allocate a new &sk_buff and assign it a usage count of one. The
2389  *	buffer has unspecified headroom built in. Users should allocate
2390  *	the headroom they think they need without accounting for the
2391  *	built in space. The built in space is used for optimisations.
2392  *
2393  *	%NULL is returned if there is no free memory. Although this function
2394  *	allocates memory it can be called from an interrupt.
2395  */
2396 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2397 					       unsigned int length)
2398 {
2399 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2400 }
2401 
2402 /* legacy helper around __netdev_alloc_skb() */
2403 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2404 					      gfp_t gfp_mask)
2405 {
2406 	return __netdev_alloc_skb(NULL, length, gfp_mask);
2407 }
2408 
2409 /* legacy helper around netdev_alloc_skb() */
2410 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2411 {
2412 	return netdev_alloc_skb(NULL, length);
2413 }
2414 
2415 
2416 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2417 		unsigned int length, gfp_t gfp)
2418 {
2419 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2420 
2421 	if (NET_IP_ALIGN && skb)
2422 		skb_reserve(skb, NET_IP_ALIGN);
2423 	return skb;
2424 }
2425 
2426 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2427 		unsigned int length)
2428 {
2429 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2430 }
2431 
2432 static inline void skb_free_frag(void *addr)
2433 {
2434 	__free_page_frag(addr);
2435 }
2436 
2437 void *napi_alloc_frag(unsigned int fragsz);
2438 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2439 				 unsigned int length, gfp_t gfp_mask);
2440 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2441 					     unsigned int length)
2442 {
2443 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2444 }
2445 void napi_consume_skb(struct sk_buff *skb, int budget);
2446 
2447 void __kfree_skb_flush(void);
2448 void __kfree_skb_defer(struct sk_buff *skb);
2449 
2450 /**
2451  * __dev_alloc_pages - allocate page for network Rx
2452  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2453  * @order: size of the allocation
2454  *
2455  * Allocate a new page.
2456  *
2457  * %NULL is returned if there is no free memory.
2458 */
2459 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2460 					     unsigned int order)
2461 {
2462 	/* This piece of code contains several assumptions.
2463 	 * 1.  This is for device Rx, therefor a cold page is preferred.
2464 	 * 2.  The expectation is the user wants a compound page.
2465 	 * 3.  If requesting a order 0 page it will not be compound
2466 	 *     due to the check to see if order has a value in prep_new_page
2467 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2468 	 *     code in gfp_to_alloc_flags that should be enforcing this.
2469 	 */
2470 	gfp_mask |= __GFP_COLD | __GFP_COMP | __GFP_MEMALLOC;
2471 
2472 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2473 }
2474 
2475 static inline struct page *dev_alloc_pages(unsigned int order)
2476 {
2477 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2478 }
2479 
2480 /**
2481  * __dev_alloc_page - allocate a page for network Rx
2482  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2483  *
2484  * Allocate a new page.
2485  *
2486  * %NULL is returned if there is no free memory.
2487  */
2488 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2489 {
2490 	return __dev_alloc_pages(gfp_mask, 0);
2491 }
2492 
2493 static inline struct page *dev_alloc_page(void)
2494 {
2495 	return dev_alloc_pages(0);
2496 }
2497 
2498 /**
2499  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2500  *	@page: The page that was allocated from skb_alloc_page
2501  *	@skb: The skb that may need pfmemalloc set
2502  */
2503 static inline void skb_propagate_pfmemalloc(struct page *page,
2504 					     struct sk_buff *skb)
2505 {
2506 	if (page_is_pfmemalloc(page))
2507 		skb->pfmemalloc = true;
2508 }
2509 
2510 /**
2511  * skb_frag_page - retrieve the page referred to by a paged fragment
2512  * @frag: the paged fragment
2513  *
2514  * Returns the &struct page associated with @frag.
2515  */
2516 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2517 {
2518 	return frag->page.p;
2519 }
2520 
2521 /**
2522  * __skb_frag_ref - take an addition reference on a paged fragment.
2523  * @frag: the paged fragment
2524  *
2525  * Takes an additional reference on the paged fragment @frag.
2526  */
2527 static inline void __skb_frag_ref(skb_frag_t *frag)
2528 {
2529 	get_page(skb_frag_page(frag));
2530 }
2531 
2532 /**
2533  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2534  * @skb: the buffer
2535  * @f: the fragment offset.
2536  *
2537  * Takes an additional reference on the @f'th paged fragment of @skb.
2538  */
2539 static inline void skb_frag_ref(struct sk_buff *skb, int f)
2540 {
2541 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2542 }
2543 
2544 /**
2545  * __skb_frag_unref - release a reference on a paged fragment.
2546  * @frag: the paged fragment
2547  *
2548  * Releases a reference on the paged fragment @frag.
2549  */
2550 static inline void __skb_frag_unref(skb_frag_t *frag)
2551 {
2552 	put_page(skb_frag_page(frag));
2553 }
2554 
2555 /**
2556  * skb_frag_unref - release a reference on a paged fragment of an skb.
2557  * @skb: the buffer
2558  * @f: the fragment offset
2559  *
2560  * Releases a reference on the @f'th paged fragment of @skb.
2561  */
2562 static inline void skb_frag_unref(struct sk_buff *skb, int f)
2563 {
2564 	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2565 }
2566 
2567 /**
2568  * skb_frag_address - gets the address of the data contained in a paged fragment
2569  * @frag: the paged fragment buffer
2570  *
2571  * Returns the address of the data within @frag. The page must already
2572  * be mapped.
2573  */
2574 static inline void *skb_frag_address(const skb_frag_t *frag)
2575 {
2576 	return page_address(skb_frag_page(frag)) + frag->page_offset;
2577 }
2578 
2579 /**
2580  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2581  * @frag: the paged fragment buffer
2582  *
2583  * Returns the address of the data within @frag. Checks that the page
2584  * is mapped and returns %NULL otherwise.
2585  */
2586 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2587 {
2588 	void *ptr = page_address(skb_frag_page(frag));
2589 	if (unlikely(!ptr))
2590 		return NULL;
2591 
2592 	return ptr + frag->page_offset;
2593 }
2594 
2595 /**
2596  * __skb_frag_set_page - sets the page contained in a paged fragment
2597  * @frag: the paged fragment
2598  * @page: the page to set
2599  *
2600  * Sets the fragment @frag to contain @page.
2601  */
2602 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2603 {
2604 	frag->page.p = page;
2605 }
2606 
2607 /**
2608  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2609  * @skb: the buffer
2610  * @f: the fragment offset
2611  * @page: the page to set
2612  *
2613  * Sets the @f'th fragment of @skb to contain @page.
2614  */
2615 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2616 				     struct page *page)
2617 {
2618 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2619 }
2620 
2621 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2622 
2623 /**
2624  * skb_frag_dma_map - maps a paged fragment via the DMA API
2625  * @dev: the device to map the fragment to
2626  * @frag: the paged fragment to map
2627  * @offset: the offset within the fragment (starting at the
2628  *          fragment's own offset)
2629  * @size: the number of bytes to map
2630  * @dir: the direction of the mapping (%PCI_DMA_*)
2631  *
2632  * Maps the page associated with @frag to @device.
2633  */
2634 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2635 					  const skb_frag_t *frag,
2636 					  size_t offset, size_t size,
2637 					  enum dma_data_direction dir)
2638 {
2639 	return dma_map_page(dev, skb_frag_page(frag),
2640 			    frag->page_offset + offset, size, dir);
2641 }
2642 
2643 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2644 					gfp_t gfp_mask)
2645 {
2646 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2647 }
2648 
2649 
2650 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2651 						  gfp_t gfp_mask)
2652 {
2653 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2654 }
2655 
2656 
2657 /**
2658  *	skb_clone_writable - is the header of a clone writable
2659  *	@skb: buffer to check
2660  *	@len: length up to which to write
2661  *
2662  *	Returns true if modifying the header part of the cloned buffer
2663  *	does not requires the data to be copied.
2664  */
2665 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2666 {
2667 	return !skb_header_cloned(skb) &&
2668 	       skb_headroom(skb) + len <= skb->hdr_len;
2669 }
2670 
2671 static inline int skb_try_make_writable(struct sk_buff *skb,
2672 					unsigned int write_len)
2673 {
2674 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
2675 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2676 }
2677 
2678 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2679 			    int cloned)
2680 {
2681 	int delta = 0;
2682 
2683 	if (headroom > skb_headroom(skb))
2684 		delta = headroom - skb_headroom(skb);
2685 
2686 	if (delta || cloned)
2687 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2688 					GFP_ATOMIC);
2689 	return 0;
2690 }
2691 
2692 /**
2693  *	skb_cow - copy header of skb when it is required
2694  *	@skb: buffer to cow
2695  *	@headroom: needed headroom
2696  *
2697  *	If the skb passed lacks sufficient headroom or its data part
2698  *	is shared, data is reallocated. If reallocation fails, an error
2699  *	is returned and original skb is not changed.
2700  *
2701  *	The result is skb with writable area skb->head...skb->tail
2702  *	and at least @headroom of space at head.
2703  */
2704 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2705 {
2706 	return __skb_cow(skb, headroom, skb_cloned(skb));
2707 }
2708 
2709 /**
2710  *	skb_cow_head - skb_cow but only making the head writable
2711  *	@skb: buffer to cow
2712  *	@headroom: needed headroom
2713  *
2714  *	This function is identical to skb_cow except that we replace the
2715  *	skb_cloned check by skb_header_cloned.  It should be used when
2716  *	you only need to push on some header and do not need to modify
2717  *	the data.
2718  */
2719 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2720 {
2721 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
2722 }
2723 
2724 /**
2725  *	skb_padto	- pad an skbuff up to a minimal size
2726  *	@skb: buffer to pad
2727  *	@len: minimal length
2728  *
2729  *	Pads up a buffer to ensure the trailing bytes exist and are
2730  *	blanked. If the buffer already contains sufficient data it
2731  *	is untouched. Otherwise it is extended. Returns zero on
2732  *	success. The skb is freed on error.
2733  */
2734 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
2735 {
2736 	unsigned int size = skb->len;
2737 	if (likely(size >= len))
2738 		return 0;
2739 	return skb_pad(skb, len - size);
2740 }
2741 
2742 /**
2743  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
2744  *	@skb: buffer to pad
2745  *	@len: minimal length
2746  *
2747  *	Pads up a buffer to ensure the trailing bytes exist and are
2748  *	blanked. If the buffer already contains sufficient data it
2749  *	is untouched. Otherwise it is extended. Returns zero on
2750  *	success. The skb is freed on error.
2751  */
2752 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
2753 {
2754 	unsigned int size = skb->len;
2755 
2756 	if (unlikely(size < len)) {
2757 		len -= size;
2758 		if (skb_pad(skb, len))
2759 			return -ENOMEM;
2760 		__skb_put(skb, len);
2761 	}
2762 	return 0;
2763 }
2764 
2765 static inline int skb_add_data(struct sk_buff *skb,
2766 			       struct iov_iter *from, int copy)
2767 {
2768 	const int off = skb->len;
2769 
2770 	if (skb->ip_summed == CHECKSUM_NONE) {
2771 		__wsum csum = 0;
2772 		if (csum_and_copy_from_iter(skb_put(skb, copy), copy,
2773 					    &csum, from) == copy) {
2774 			skb->csum = csum_block_add(skb->csum, csum, off);
2775 			return 0;
2776 		}
2777 	} else if (copy_from_iter(skb_put(skb, copy), copy, from) == copy)
2778 		return 0;
2779 
2780 	__skb_trim(skb, off);
2781 	return -EFAULT;
2782 }
2783 
2784 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
2785 				    const struct page *page, int off)
2786 {
2787 	if (i) {
2788 		const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
2789 
2790 		return page == skb_frag_page(frag) &&
2791 		       off == frag->page_offset + skb_frag_size(frag);
2792 	}
2793 	return false;
2794 }
2795 
2796 static inline int __skb_linearize(struct sk_buff *skb)
2797 {
2798 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
2799 }
2800 
2801 /**
2802  *	skb_linearize - convert paged skb to linear one
2803  *	@skb: buffer to linarize
2804  *
2805  *	If there is no free memory -ENOMEM is returned, otherwise zero
2806  *	is returned and the old skb data released.
2807  */
2808 static inline int skb_linearize(struct sk_buff *skb)
2809 {
2810 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
2811 }
2812 
2813 /**
2814  * skb_has_shared_frag - can any frag be overwritten
2815  * @skb: buffer to test
2816  *
2817  * Return true if the skb has at least one frag that might be modified
2818  * by an external entity (as in vmsplice()/sendfile())
2819  */
2820 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
2821 {
2822 	return skb_is_nonlinear(skb) &&
2823 	       skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2824 }
2825 
2826 /**
2827  *	skb_linearize_cow - make sure skb is linear and writable
2828  *	@skb: buffer to process
2829  *
2830  *	If there is no free memory -ENOMEM is returned, otherwise zero
2831  *	is returned and the old skb data released.
2832  */
2833 static inline int skb_linearize_cow(struct sk_buff *skb)
2834 {
2835 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
2836 	       __skb_linearize(skb) : 0;
2837 }
2838 
2839 /**
2840  *	skb_postpull_rcsum - update checksum for received skb after pull
2841  *	@skb: buffer to update
2842  *	@start: start of data before pull
2843  *	@len: length of data pulled
2844  *
2845  *	After doing a pull on a received packet, you need to call this to
2846  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
2847  *	CHECKSUM_NONE so that it can be recomputed from scratch.
2848  */
2849 
2850 static inline void skb_postpull_rcsum(struct sk_buff *skb,
2851 				      const void *start, unsigned int len)
2852 {
2853 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2854 		skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
2855 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
2856 		 skb_checksum_start_offset(skb) < 0)
2857 		skb->ip_summed = CHECKSUM_NONE;
2858 }
2859 
2860 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
2861 
2862 static inline void skb_postpush_rcsum(struct sk_buff *skb,
2863 				      const void *start, unsigned int len)
2864 {
2865 	/* For performing the reverse operation to skb_postpull_rcsum(),
2866 	 * we can instead of ...
2867 	 *
2868 	 *   skb->csum = csum_add(skb->csum, csum_partial(start, len, 0));
2869 	 *
2870 	 * ... just use this equivalent version here to save a few
2871 	 * instructions. Feeding csum of 0 in csum_partial() and later
2872 	 * on adding skb->csum is equivalent to feed skb->csum in the
2873 	 * first place.
2874 	 */
2875 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2876 		skb->csum = csum_partial(start, len, skb->csum);
2877 }
2878 
2879 /**
2880  *	pskb_trim_rcsum - trim received skb and update checksum
2881  *	@skb: buffer to trim
2882  *	@len: new length
2883  *
2884  *	This is exactly the same as pskb_trim except that it ensures the
2885  *	checksum of received packets are still valid after the operation.
2886  */
2887 
2888 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2889 {
2890 	if (likely(len >= skb->len))
2891 		return 0;
2892 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2893 		skb->ip_summed = CHECKSUM_NONE;
2894 	return __pskb_trim(skb, len);
2895 }
2896 
2897 #define skb_queue_walk(queue, skb) \
2898 		for (skb = (queue)->next;					\
2899 		     skb != (struct sk_buff *)(queue);				\
2900 		     skb = skb->next)
2901 
2902 #define skb_queue_walk_safe(queue, skb, tmp)					\
2903 		for (skb = (queue)->next, tmp = skb->next;			\
2904 		     skb != (struct sk_buff *)(queue);				\
2905 		     skb = tmp, tmp = skb->next)
2906 
2907 #define skb_queue_walk_from(queue, skb)						\
2908 		for (; skb != (struct sk_buff *)(queue);			\
2909 		     skb = skb->next)
2910 
2911 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
2912 		for (tmp = skb->next;						\
2913 		     skb != (struct sk_buff *)(queue);				\
2914 		     skb = tmp, tmp = skb->next)
2915 
2916 #define skb_queue_reverse_walk(queue, skb) \
2917 		for (skb = (queue)->prev;					\
2918 		     skb != (struct sk_buff *)(queue);				\
2919 		     skb = skb->prev)
2920 
2921 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
2922 		for (skb = (queue)->prev, tmp = skb->prev;			\
2923 		     skb != (struct sk_buff *)(queue);				\
2924 		     skb = tmp, tmp = skb->prev)
2925 
2926 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
2927 		for (tmp = skb->prev;						\
2928 		     skb != (struct sk_buff *)(queue);				\
2929 		     skb = tmp, tmp = skb->prev)
2930 
2931 static inline bool skb_has_frag_list(const struct sk_buff *skb)
2932 {
2933 	return skb_shinfo(skb)->frag_list != NULL;
2934 }
2935 
2936 static inline void skb_frag_list_init(struct sk_buff *skb)
2937 {
2938 	skb_shinfo(skb)->frag_list = NULL;
2939 }
2940 
2941 #define skb_walk_frags(skb, iter)	\
2942 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
2943 
2944 
2945 int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
2946 				const struct sk_buff *skb);
2947 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
2948 					int *peeked, int *off, int *err,
2949 					struct sk_buff **last);
2950 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
2951 				    int *peeked, int *off, int *err);
2952 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
2953 				  int *err);
2954 unsigned int datagram_poll(struct file *file, struct socket *sock,
2955 			   struct poll_table_struct *wait);
2956 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
2957 			   struct iov_iter *to, int size);
2958 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
2959 					struct msghdr *msg, int size)
2960 {
2961 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
2962 }
2963 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
2964 				   struct msghdr *msg);
2965 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
2966 				 struct iov_iter *from, int len);
2967 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
2968 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
2969 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
2970 static inline void skb_free_datagram_locked(struct sock *sk,
2971 					    struct sk_buff *skb)
2972 {
2973 	__skb_free_datagram_locked(sk, skb, 0);
2974 }
2975 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
2976 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
2977 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
2978 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
2979 			      int len, __wsum csum);
2980 ssize_t skb_socket_splice(struct sock *sk,
2981 			  struct pipe_inode_info *pipe,
2982 			  struct splice_pipe_desc *spd);
2983 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2984 		    struct pipe_inode_info *pipe, unsigned int len,
2985 		    unsigned int flags,
2986 		    ssize_t (*splice_cb)(struct sock *,
2987 					 struct pipe_inode_info *,
2988 					 struct splice_pipe_desc *));
2989 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
2990 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
2991 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
2992 		 int len, int hlen);
2993 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
2994 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
2995 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
2996 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
2997 bool skb_gso_validate_mtu(const struct sk_buff *skb, unsigned int mtu);
2998 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
2999 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3000 int skb_ensure_writable(struct sk_buff *skb, int write_len);
3001 int skb_vlan_pop(struct sk_buff *skb);
3002 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3003 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3004 			     gfp_t gfp);
3005 
3006 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3007 {
3008 	return copy_from_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3009 }
3010 
3011 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3012 {
3013 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3014 }
3015 
3016 struct skb_checksum_ops {
3017 	__wsum (*update)(const void *mem, int len, __wsum wsum);
3018 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3019 };
3020 
3021 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3022 		      __wsum csum, const struct skb_checksum_ops *ops);
3023 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3024 		    __wsum csum);
3025 
3026 static inline void * __must_check
3027 __skb_header_pointer(const struct sk_buff *skb, int offset,
3028 		     int len, void *data, int hlen, void *buffer)
3029 {
3030 	if (hlen - offset >= len)
3031 		return data + offset;
3032 
3033 	if (!skb ||
3034 	    skb_copy_bits(skb, offset, buffer, len) < 0)
3035 		return NULL;
3036 
3037 	return buffer;
3038 }
3039 
3040 static inline void * __must_check
3041 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3042 {
3043 	return __skb_header_pointer(skb, offset, len, skb->data,
3044 				    skb_headlen(skb), buffer);
3045 }
3046 
3047 /**
3048  *	skb_needs_linearize - check if we need to linearize a given skb
3049  *			      depending on the given device features.
3050  *	@skb: socket buffer to check
3051  *	@features: net device features
3052  *
3053  *	Returns true if either:
3054  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
3055  *	2. skb is fragmented and the device does not support SG.
3056  */
3057 static inline bool skb_needs_linearize(struct sk_buff *skb,
3058 				       netdev_features_t features)
3059 {
3060 	return skb_is_nonlinear(skb) &&
3061 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3062 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3063 }
3064 
3065 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3066 					     void *to,
3067 					     const unsigned int len)
3068 {
3069 	memcpy(to, skb->data, len);
3070 }
3071 
3072 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3073 						    const int offset, void *to,
3074 						    const unsigned int len)
3075 {
3076 	memcpy(to, skb->data + offset, len);
3077 }
3078 
3079 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3080 					   const void *from,
3081 					   const unsigned int len)
3082 {
3083 	memcpy(skb->data, from, len);
3084 }
3085 
3086 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3087 						  const int offset,
3088 						  const void *from,
3089 						  const unsigned int len)
3090 {
3091 	memcpy(skb->data + offset, from, len);
3092 }
3093 
3094 void skb_init(void);
3095 
3096 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3097 {
3098 	return skb->tstamp;
3099 }
3100 
3101 /**
3102  *	skb_get_timestamp - get timestamp from a skb
3103  *	@skb: skb to get stamp from
3104  *	@stamp: pointer to struct timeval to store stamp in
3105  *
3106  *	Timestamps are stored in the skb as offsets to a base timestamp.
3107  *	This function converts the offset back to a struct timeval and stores
3108  *	it in stamp.
3109  */
3110 static inline void skb_get_timestamp(const struct sk_buff *skb,
3111 				     struct timeval *stamp)
3112 {
3113 	*stamp = ktime_to_timeval(skb->tstamp);
3114 }
3115 
3116 static inline void skb_get_timestampns(const struct sk_buff *skb,
3117 				       struct timespec *stamp)
3118 {
3119 	*stamp = ktime_to_timespec(skb->tstamp);
3120 }
3121 
3122 static inline void __net_timestamp(struct sk_buff *skb)
3123 {
3124 	skb->tstamp = ktime_get_real();
3125 }
3126 
3127 static inline ktime_t net_timedelta(ktime_t t)
3128 {
3129 	return ktime_sub(ktime_get_real(), t);
3130 }
3131 
3132 static inline ktime_t net_invalid_timestamp(void)
3133 {
3134 	return ktime_set(0, 0);
3135 }
3136 
3137 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3138 
3139 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3140 
3141 void skb_clone_tx_timestamp(struct sk_buff *skb);
3142 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3143 
3144 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3145 
3146 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3147 {
3148 }
3149 
3150 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3151 {
3152 	return false;
3153 }
3154 
3155 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3156 
3157 /**
3158  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3159  *
3160  * PHY drivers may accept clones of transmitted packets for
3161  * timestamping via their phy_driver.txtstamp method. These drivers
3162  * must call this function to return the skb back to the stack with a
3163  * timestamp.
3164  *
3165  * @skb: clone of the the original outgoing packet
3166  * @hwtstamps: hardware time stamps
3167  *
3168  */
3169 void skb_complete_tx_timestamp(struct sk_buff *skb,
3170 			       struct skb_shared_hwtstamps *hwtstamps);
3171 
3172 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3173 		     struct skb_shared_hwtstamps *hwtstamps,
3174 		     struct sock *sk, int tstype);
3175 
3176 /**
3177  * skb_tstamp_tx - queue clone of skb with send time stamps
3178  * @orig_skb:	the original outgoing packet
3179  * @hwtstamps:	hardware time stamps, may be NULL if not available
3180  *
3181  * If the skb has a socket associated, then this function clones the
3182  * skb (thus sharing the actual data and optional structures), stores
3183  * the optional hardware time stamping information (if non NULL) or
3184  * generates a software time stamp (otherwise), then queues the clone
3185  * to the error queue of the socket.  Errors are silently ignored.
3186  */
3187 void skb_tstamp_tx(struct sk_buff *orig_skb,
3188 		   struct skb_shared_hwtstamps *hwtstamps);
3189 
3190 static inline void sw_tx_timestamp(struct sk_buff *skb)
3191 {
3192 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
3193 	    !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
3194 		skb_tstamp_tx(skb, NULL);
3195 }
3196 
3197 /**
3198  * skb_tx_timestamp() - Driver hook for transmit timestamping
3199  *
3200  * Ethernet MAC Drivers should call this function in their hard_xmit()
3201  * function immediately before giving the sk_buff to the MAC hardware.
3202  *
3203  * Specifically, one should make absolutely sure that this function is
3204  * called before TX completion of this packet can trigger.  Otherwise
3205  * the packet could potentially already be freed.
3206  *
3207  * @skb: A socket buffer.
3208  */
3209 static inline void skb_tx_timestamp(struct sk_buff *skb)
3210 {
3211 	skb_clone_tx_timestamp(skb);
3212 	sw_tx_timestamp(skb);
3213 }
3214 
3215 /**
3216  * skb_complete_wifi_ack - deliver skb with wifi status
3217  *
3218  * @skb: the original outgoing packet
3219  * @acked: ack status
3220  *
3221  */
3222 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3223 
3224 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3225 __sum16 __skb_checksum_complete(struct sk_buff *skb);
3226 
3227 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3228 {
3229 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3230 		skb->csum_valid ||
3231 		(skb->ip_summed == CHECKSUM_PARTIAL &&
3232 		 skb_checksum_start_offset(skb) >= 0));
3233 }
3234 
3235 /**
3236  *	skb_checksum_complete - Calculate checksum of an entire packet
3237  *	@skb: packet to process
3238  *
3239  *	This function calculates the checksum over the entire packet plus
3240  *	the value of skb->csum.  The latter can be used to supply the
3241  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
3242  *	checksum.
3243  *
3244  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
3245  *	this function can be used to verify that checksum on received
3246  *	packets.  In that case the function should return zero if the
3247  *	checksum is correct.  In particular, this function will return zero
3248  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3249  *	hardware has already verified the correctness of the checksum.
3250  */
3251 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3252 {
3253 	return skb_csum_unnecessary(skb) ?
3254 	       0 : __skb_checksum_complete(skb);
3255 }
3256 
3257 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3258 {
3259 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3260 		if (skb->csum_level == 0)
3261 			skb->ip_summed = CHECKSUM_NONE;
3262 		else
3263 			skb->csum_level--;
3264 	}
3265 }
3266 
3267 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3268 {
3269 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3270 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3271 			skb->csum_level++;
3272 	} else if (skb->ip_summed == CHECKSUM_NONE) {
3273 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3274 		skb->csum_level = 0;
3275 	}
3276 }
3277 
3278 static inline void __skb_mark_checksum_bad(struct sk_buff *skb)
3279 {
3280 	/* Mark current checksum as bad (typically called from GRO
3281 	 * path). In the case that ip_summed is CHECKSUM_NONE
3282 	 * this must be the first checksum encountered in the packet.
3283 	 * When ip_summed is CHECKSUM_UNNECESSARY, this is the first
3284 	 * checksum after the last one validated. For UDP, a zero
3285 	 * checksum can not be marked as bad.
3286 	 */
3287 
3288 	if (skb->ip_summed == CHECKSUM_NONE ||
3289 	    skb->ip_summed == CHECKSUM_UNNECESSARY)
3290 		skb->csum_bad = 1;
3291 }
3292 
3293 /* Check if we need to perform checksum complete validation.
3294  *
3295  * Returns true if checksum complete is needed, false otherwise
3296  * (either checksum is unnecessary or zero checksum is allowed).
3297  */
3298 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3299 						  bool zero_okay,
3300 						  __sum16 check)
3301 {
3302 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3303 		skb->csum_valid = 1;
3304 		__skb_decr_checksum_unnecessary(skb);
3305 		return false;
3306 	}
3307 
3308 	return true;
3309 }
3310 
3311 /* For small packets <= CHECKSUM_BREAK peform checksum complete directly
3312  * in checksum_init.
3313  */
3314 #define CHECKSUM_BREAK 76
3315 
3316 /* Unset checksum-complete
3317  *
3318  * Unset checksum complete can be done when packet is being modified
3319  * (uncompressed for instance) and checksum-complete value is
3320  * invalidated.
3321  */
3322 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3323 {
3324 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3325 		skb->ip_summed = CHECKSUM_NONE;
3326 }
3327 
3328 /* Validate (init) checksum based on checksum complete.
3329  *
3330  * Return values:
3331  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
3332  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3333  *	checksum is stored in skb->csum for use in __skb_checksum_complete
3334  *   non-zero: value of invalid checksum
3335  *
3336  */
3337 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3338 						       bool complete,
3339 						       __wsum psum)
3340 {
3341 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
3342 		if (!csum_fold(csum_add(psum, skb->csum))) {
3343 			skb->csum_valid = 1;
3344 			return 0;
3345 		}
3346 	} else if (skb->csum_bad) {
3347 		/* ip_summed == CHECKSUM_NONE in this case */
3348 		return (__force __sum16)1;
3349 	}
3350 
3351 	skb->csum = psum;
3352 
3353 	if (complete || skb->len <= CHECKSUM_BREAK) {
3354 		__sum16 csum;
3355 
3356 		csum = __skb_checksum_complete(skb);
3357 		skb->csum_valid = !csum;
3358 		return csum;
3359 	}
3360 
3361 	return 0;
3362 }
3363 
3364 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3365 {
3366 	return 0;
3367 }
3368 
3369 /* Perform checksum validate (init). Note that this is a macro since we only
3370  * want to calculate the pseudo header which is an input function if necessary.
3371  * First we try to validate without any computation (checksum unnecessary) and
3372  * then calculate based on checksum complete calling the function to compute
3373  * pseudo header.
3374  *
3375  * Return values:
3376  *   0: checksum is validated or try to in skb_checksum_complete
3377  *   non-zero: value of invalid checksum
3378  */
3379 #define __skb_checksum_validate(skb, proto, complete,			\
3380 				zero_okay, check, compute_pseudo)	\
3381 ({									\
3382 	__sum16 __ret = 0;						\
3383 	skb->csum_valid = 0;						\
3384 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
3385 		__ret = __skb_checksum_validate_complete(skb,		\
3386 				complete, compute_pseudo(skb, proto));	\
3387 	__ret;								\
3388 })
3389 
3390 #define skb_checksum_init(skb, proto, compute_pseudo)			\
3391 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3392 
3393 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
3394 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3395 
3396 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
3397 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3398 
3399 #define skb_checksum_validate_zero_check(skb, proto, check,		\
3400 					 compute_pseudo)		\
3401 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
3402 
3403 #define skb_checksum_simple_validate(skb)				\
3404 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3405 
3406 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3407 {
3408 	return (skb->ip_summed == CHECKSUM_NONE &&
3409 		skb->csum_valid && !skb->csum_bad);
3410 }
3411 
3412 static inline void __skb_checksum_convert(struct sk_buff *skb,
3413 					  __sum16 check, __wsum pseudo)
3414 {
3415 	skb->csum = ~pseudo;
3416 	skb->ip_summed = CHECKSUM_COMPLETE;
3417 }
3418 
3419 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo)	\
3420 do {									\
3421 	if (__skb_checksum_convert_check(skb))				\
3422 		__skb_checksum_convert(skb, check,			\
3423 				       compute_pseudo(skb, proto));	\
3424 } while (0)
3425 
3426 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3427 					      u16 start, u16 offset)
3428 {
3429 	skb->ip_summed = CHECKSUM_PARTIAL;
3430 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3431 	skb->csum_offset = offset - start;
3432 }
3433 
3434 /* Update skbuf and packet to reflect the remote checksum offload operation.
3435  * When called, ptr indicates the starting point for skb->csum when
3436  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3437  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3438  */
3439 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
3440 				       int start, int offset, bool nopartial)
3441 {
3442 	__wsum delta;
3443 
3444 	if (!nopartial) {
3445 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
3446 		return;
3447 	}
3448 
3449 	 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3450 		__skb_checksum_complete(skb);
3451 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3452 	}
3453 
3454 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
3455 
3456 	/* Adjust skb->csum since we changed the packet */
3457 	skb->csum = csum_add(skb->csum, delta);
3458 }
3459 
3460 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3461 void nf_conntrack_destroy(struct nf_conntrack *nfct);
3462 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3463 {
3464 	if (nfct && atomic_dec_and_test(&nfct->use))
3465 		nf_conntrack_destroy(nfct);
3466 }
3467 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3468 {
3469 	if (nfct)
3470 		atomic_inc(&nfct->use);
3471 }
3472 #endif
3473 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3474 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
3475 {
3476 	if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
3477 		kfree(nf_bridge);
3478 }
3479 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
3480 {
3481 	if (nf_bridge)
3482 		atomic_inc(&nf_bridge->use);
3483 }
3484 #endif /* CONFIG_BRIDGE_NETFILTER */
3485 static inline void nf_reset(struct sk_buff *skb)
3486 {
3487 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3488 	nf_conntrack_put(skb->nfct);
3489 	skb->nfct = NULL;
3490 #endif
3491 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3492 	nf_bridge_put(skb->nf_bridge);
3493 	skb->nf_bridge = NULL;
3494 #endif
3495 }
3496 
3497 static inline void nf_reset_trace(struct sk_buff *skb)
3498 {
3499 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3500 	skb->nf_trace = 0;
3501 #endif
3502 }
3503 
3504 /* Note: This doesn't put any conntrack and bridge info in dst. */
3505 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
3506 			     bool copy)
3507 {
3508 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3509 	dst->nfct = src->nfct;
3510 	nf_conntrack_get(src->nfct);
3511 	if (copy)
3512 		dst->nfctinfo = src->nfctinfo;
3513 #endif
3514 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3515 	dst->nf_bridge  = src->nf_bridge;
3516 	nf_bridge_get(src->nf_bridge);
3517 #endif
3518 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3519 	if (copy)
3520 		dst->nf_trace = src->nf_trace;
3521 #endif
3522 }
3523 
3524 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
3525 {
3526 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3527 	nf_conntrack_put(dst->nfct);
3528 #endif
3529 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3530 	nf_bridge_put(dst->nf_bridge);
3531 #endif
3532 	__nf_copy(dst, src, true);
3533 }
3534 
3535 #ifdef CONFIG_NETWORK_SECMARK
3536 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3537 {
3538 	to->secmark = from->secmark;
3539 }
3540 
3541 static inline void skb_init_secmark(struct sk_buff *skb)
3542 {
3543 	skb->secmark = 0;
3544 }
3545 #else
3546 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3547 { }
3548 
3549 static inline void skb_init_secmark(struct sk_buff *skb)
3550 { }
3551 #endif
3552 
3553 static inline bool skb_irq_freeable(const struct sk_buff *skb)
3554 {
3555 	return !skb->destructor &&
3556 #if IS_ENABLED(CONFIG_XFRM)
3557 		!skb->sp &&
3558 #endif
3559 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
3560 		!skb->nfct &&
3561 #endif
3562 		!skb->_skb_refdst &&
3563 		!skb_has_frag_list(skb);
3564 }
3565 
3566 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
3567 {
3568 	skb->queue_mapping = queue_mapping;
3569 }
3570 
3571 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
3572 {
3573 	return skb->queue_mapping;
3574 }
3575 
3576 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
3577 {
3578 	to->queue_mapping = from->queue_mapping;
3579 }
3580 
3581 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
3582 {
3583 	skb->queue_mapping = rx_queue + 1;
3584 }
3585 
3586 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
3587 {
3588 	return skb->queue_mapping - 1;
3589 }
3590 
3591 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
3592 {
3593 	return skb->queue_mapping != 0;
3594 }
3595 
3596 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
3597 {
3598 #ifdef CONFIG_XFRM
3599 	return skb->sp;
3600 #else
3601 	return NULL;
3602 #endif
3603 }
3604 
3605 /* Keeps track of mac header offset relative to skb->head.
3606  * It is useful for TSO of Tunneling protocol. e.g. GRE.
3607  * For non-tunnel skb it points to skb_mac_header() and for
3608  * tunnel skb it points to outer mac header.
3609  * Keeps track of level of encapsulation of network headers.
3610  */
3611 struct skb_gso_cb {
3612 	union {
3613 		int	mac_offset;
3614 		int	data_offset;
3615 	};
3616 	int	encap_level;
3617 	__wsum	csum;
3618 	__u16	csum_start;
3619 };
3620 #define SKB_SGO_CB_OFFSET	32
3621 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
3622 
3623 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
3624 {
3625 	return (skb_mac_header(inner_skb) - inner_skb->head) -
3626 		SKB_GSO_CB(inner_skb)->mac_offset;
3627 }
3628 
3629 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
3630 {
3631 	int new_headroom, headroom;
3632 	int ret;
3633 
3634 	headroom = skb_headroom(skb);
3635 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
3636 	if (ret)
3637 		return ret;
3638 
3639 	new_headroom = skb_headroom(skb);
3640 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
3641 	return 0;
3642 }
3643 
3644 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
3645 {
3646 	/* Do not update partial checksums if remote checksum is enabled. */
3647 	if (skb->remcsum_offload)
3648 		return;
3649 
3650 	SKB_GSO_CB(skb)->csum = res;
3651 	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
3652 }
3653 
3654 /* Compute the checksum for a gso segment. First compute the checksum value
3655  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
3656  * then add in skb->csum (checksum from csum_start to end of packet).
3657  * skb->csum and csum_start are then updated to reflect the checksum of the
3658  * resultant packet starting from the transport header-- the resultant checksum
3659  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
3660  * header.
3661  */
3662 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
3663 {
3664 	unsigned char *csum_start = skb_transport_header(skb);
3665 	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
3666 	__wsum partial = SKB_GSO_CB(skb)->csum;
3667 
3668 	SKB_GSO_CB(skb)->csum = res;
3669 	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
3670 
3671 	return csum_fold(csum_partial(csum_start, plen, partial));
3672 }
3673 
3674 static inline bool skb_is_gso(const struct sk_buff *skb)
3675 {
3676 	return skb_shinfo(skb)->gso_size;
3677 }
3678 
3679 /* Note: Should be called only if skb_is_gso(skb) is true */
3680 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
3681 {
3682 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
3683 }
3684 
3685 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
3686 
3687 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
3688 {
3689 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
3690 	 * wanted then gso_type will be set. */
3691 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3692 
3693 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
3694 	    unlikely(shinfo->gso_type == 0)) {
3695 		__skb_warn_lro_forwarding(skb);
3696 		return true;
3697 	}
3698 	return false;
3699 }
3700 
3701 static inline void skb_forward_csum(struct sk_buff *skb)
3702 {
3703 	/* Unfortunately we don't support this one.  Any brave souls? */
3704 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3705 		skb->ip_summed = CHECKSUM_NONE;
3706 }
3707 
3708 /**
3709  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
3710  * @skb: skb to check
3711  *
3712  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
3713  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
3714  * use this helper, to document places where we make this assertion.
3715  */
3716 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
3717 {
3718 #ifdef DEBUG
3719 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
3720 #endif
3721 }
3722 
3723 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
3724 
3725 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
3726 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
3727 				     unsigned int transport_len,
3728 				     __sum16(*skb_chkf)(struct sk_buff *skb));
3729 
3730 /**
3731  * skb_head_is_locked - Determine if the skb->head is locked down
3732  * @skb: skb to check
3733  *
3734  * The head on skbs build around a head frag can be removed if they are
3735  * not cloned.  This function returns true if the skb head is locked down
3736  * due to either being allocated via kmalloc, or by being a clone with
3737  * multiple references to the head.
3738  */
3739 static inline bool skb_head_is_locked(const struct sk_buff *skb)
3740 {
3741 	return !skb->head_frag || skb_cloned(skb);
3742 }
3743 
3744 /**
3745  * skb_gso_network_seglen - Return length of individual segments of a gso packet
3746  *
3747  * @skb: GSO skb
3748  *
3749  * skb_gso_network_seglen is used to determine the real size of the
3750  * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
3751  *
3752  * The MAC/L2 header is not accounted for.
3753  */
3754 static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
3755 {
3756 	unsigned int hdr_len = skb_transport_header(skb) -
3757 			       skb_network_header(skb);
3758 	return hdr_len + skb_gso_transport_seglen(skb);
3759 }
3760 
3761 /* Local Checksum Offload.
3762  * Compute outer checksum based on the assumption that the
3763  * inner checksum will be offloaded later.
3764  * See Documentation/networking/checksum-offloads.txt for
3765  * explanation of how this works.
3766  * Fill in outer checksum adjustment (e.g. with sum of outer
3767  * pseudo-header) before calling.
3768  * Also ensure that inner checksum is in linear data area.
3769  */
3770 static inline __wsum lco_csum(struct sk_buff *skb)
3771 {
3772 	unsigned char *csum_start = skb_checksum_start(skb);
3773 	unsigned char *l4_hdr = skb_transport_header(skb);
3774 	__wsum partial;
3775 
3776 	/* Start with complement of inner checksum adjustment */
3777 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
3778 						    skb->csum_offset));
3779 
3780 	/* Add in checksum of our headers (incl. outer checksum
3781 	 * adjustment filled in by caller) and return result.
3782 	 */
3783 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
3784 }
3785 
3786 #endif	/* __KERNEL__ */
3787 #endif	/* _LINUX_SKBUFF_H */
3788