1 /* 2 * Definitions for the 'struct sk_buff' memory handlers. 3 * 4 * Authors: 5 * Alan Cox, <[email protected]> 6 * Florian La Roche, <[email protected]> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14 #ifndef _LINUX_SKBUFF_H 15 #define _LINUX_SKBUFF_H 16 17 #include <linux/kernel.h> 18 #include <linux/kmemcheck.h> 19 #include <linux/compiler.h> 20 #include <linux/time.h> 21 #include <linux/bug.h> 22 #include <linux/cache.h> 23 #include <linux/rbtree.h> 24 #include <linux/socket.h> 25 26 #include <linux/atomic.h> 27 #include <asm/types.h> 28 #include <linux/spinlock.h> 29 #include <linux/net.h> 30 #include <linux/textsearch.h> 31 #include <net/checksum.h> 32 #include <linux/rcupdate.h> 33 #include <linux/hrtimer.h> 34 #include <linux/dma-mapping.h> 35 #include <linux/netdev_features.h> 36 #include <linux/sched.h> 37 #include <net/flow_dissector.h> 38 #include <linux/splice.h> 39 #include <linux/in6.h> 40 #include <net/flow.h> 41 42 /* The interface for checksum offload between the stack and networking drivers 43 * is as follows... 44 * 45 * A. IP checksum related features 46 * 47 * Drivers advertise checksum offload capabilities in the features of a device. 48 * From the stack's point of view these are capabilities offered by the driver, 49 * a driver typically only advertises features that it is capable of offloading 50 * to its device. 51 * 52 * The checksum related features are: 53 * 54 * NETIF_F_HW_CSUM - The driver (or its device) is able to compute one 55 * IP (one's complement) checksum for any combination 56 * of protocols or protocol layering. The checksum is 57 * computed and set in a packet per the CHECKSUM_PARTIAL 58 * interface (see below). 59 * 60 * NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain 61 * TCP or UDP packets over IPv4. These are specifically 62 * unencapsulated packets of the form IPv4|TCP or 63 * IPv4|UDP where the Protocol field in the IPv4 header 64 * is TCP or UDP. The IPv4 header may contain IP options 65 * This feature cannot be set in features for a device 66 * with NETIF_F_HW_CSUM also set. This feature is being 67 * DEPRECATED (see below). 68 * 69 * NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain 70 * TCP or UDP packets over IPv6. These are specifically 71 * unencapsulated packets of the form IPv6|TCP or 72 * IPv4|UDP where the Next Header field in the IPv6 73 * header is either TCP or UDP. IPv6 extension headers 74 * are not supported with this feature. This feature 75 * cannot be set in features for a device with 76 * NETIF_F_HW_CSUM also set. This feature is being 77 * DEPRECATED (see below). 78 * 79 * NETIF_F_RXCSUM - Driver (device) performs receive checksum offload. 80 * This flag is used only used to disable the RX checksum 81 * feature for a device. The stack will accept receive 82 * checksum indication in packets received on a device 83 * regardless of whether NETIF_F_RXCSUM is set. 84 * 85 * B. Checksumming of received packets by device. Indication of checksum 86 * verification is in set skb->ip_summed. Possible values are: 87 * 88 * CHECKSUM_NONE: 89 * 90 * Device did not checksum this packet e.g. due to lack of capabilities. 91 * The packet contains full (though not verified) checksum in packet but 92 * not in skb->csum. Thus, skb->csum is undefined in this case. 93 * 94 * CHECKSUM_UNNECESSARY: 95 * 96 * The hardware you're dealing with doesn't calculate the full checksum 97 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums 98 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY 99 * if their checksums are okay. skb->csum is still undefined in this case 100 * though. A driver or device must never modify the checksum field in the 101 * packet even if checksum is verified. 102 * 103 * CHECKSUM_UNNECESSARY is applicable to following protocols: 104 * TCP: IPv6 and IPv4. 105 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a 106 * zero UDP checksum for either IPv4 or IPv6, the networking stack 107 * may perform further validation in this case. 108 * GRE: only if the checksum is present in the header. 109 * SCTP: indicates the CRC in SCTP header has been validated. 110 * 111 * skb->csum_level indicates the number of consecutive checksums found in 112 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY. 113 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet 114 * and a device is able to verify the checksums for UDP (possibly zero), 115 * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to 116 * two. If the device were only able to verify the UDP checksum and not 117 * GRE, either because it doesn't support GRE checksum of because GRE 118 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is 119 * not considered in this case). 120 * 121 * CHECKSUM_COMPLETE: 122 * 123 * This is the most generic way. The device supplied checksum of the _whole_ 124 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the 125 * hardware doesn't need to parse L3/L4 headers to implement this. 126 * 127 * Note: Even if device supports only some protocols, but is able to produce 128 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY. 129 * 130 * CHECKSUM_PARTIAL: 131 * 132 * A checksum is set up to be offloaded to a device as described in the 133 * output description for CHECKSUM_PARTIAL. This may occur on a packet 134 * received directly from another Linux OS, e.g., a virtualized Linux kernel 135 * on the same host, or it may be set in the input path in GRO or remote 136 * checksum offload. For the purposes of checksum verification, the checksum 137 * referred to by skb->csum_start + skb->csum_offset and any preceding 138 * checksums in the packet are considered verified. Any checksums in the 139 * packet that are after the checksum being offloaded are not considered to 140 * be verified. 141 * 142 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload 143 * in the skb->ip_summed for a packet. Values are: 144 * 145 * CHECKSUM_PARTIAL: 146 * 147 * The driver is required to checksum the packet as seen by hard_start_xmit() 148 * from skb->csum_start up to the end, and to record/write the checksum at 149 * offset skb->csum_start + skb->csum_offset. A driver may verify that the 150 * csum_start and csum_offset values are valid values given the length and 151 * offset of the packet, however they should not attempt to validate that the 152 * checksum refers to a legitimate transport layer checksum-- it is the 153 * purview of the stack to validate that csum_start and csum_offset are set 154 * correctly. 155 * 156 * When the stack requests checksum offload for a packet, the driver MUST 157 * ensure that the checksum is set correctly. A driver can either offload the 158 * checksum calculation to the device, or call skb_checksum_help (in the case 159 * that the device does not support offload for a particular checksum). 160 * 161 * NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of 162 * NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate 163 * checksum offload capability. If a device has limited checksum capabilities 164 * (for instance can only perform NETIF_F_IP_CSUM or NETIF_F_IPV6_CSUM as 165 * described above) a helper function can be called to resolve 166 * CHECKSUM_PARTIAL. The helper functions are skb_csum_off_chk*. The helper 167 * function takes a spec argument that describes the protocol layer that is 168 * supported for checksum offload and can be called for each packet. If a 169 * packet does not match the specification for offload, skb_checksum_help 170 * is called to resolve the checksum. 171 * 172 * CHECKSUM_NONE: 173 * 174 * The skb was already checksummed by the protocol, or a checksum is not 175 * required. 176 * 177 * CHECKSUM_UNNECESSARY: 178 * 179 * This has the same meaning on as CHECKSUM_NONE for checksum offload on 180 * output. 181 * 182 * CHECKSUM_COMPLETE: 183 * Not used in checksum output. If a driver observes a packet with this value 184 * set in skbuff, if should treat as CHECKSUM_NONE being set. 185 * 186 * D. Non-IP checksum (CRC) offloads 187 * 188 * NETIF_F_SCTP_CRC - This feature indicates that a device is capable of 189 * offloading the SCTP CRC in a packet. To perform this offload the stack 190 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset 191 * accordingly. Note the there is no indication in the skbuff that the 192 * CHECKSUM_PARTIAL refers to an SCTP checksum, a driver that supports 193 * both IP checksum offload and SCTP CRC offload must verify which offload 194 * is configured for a packet presumably by inspecting packet headers. 195 * 196 * NETIF_F_FCOE_CRC - This feature indicates that a device is capable of 197 * offloading the FCOE CRC in a packet. To perform this offload the stack 198 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset 199 * accordingly. Note the there is no indication in the skbuff that the 200 * CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports 201 * both IP checksum offload and FCOE CRC offload must verify which offload 202 * is configured for a packet presumably by inspecting packet headers. 203 * 204 * E. Checksumming on output with GSO. 205 * 206 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload 207 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the 208 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as 209 * part of the GSO operation is implied. If a checksum is being offloaded 210 * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset 211 * are set to refer to the outermost checksum being offload (two offloaded 212 * checksums are possible with UDP encapsulation). 213 */ 214 215 /* Don't change this without changing skb_csum_unnecessary! */ 216 #define CHECKSUM_NONE 0 217 #define CHECKSUM_UNNECESSARY 1 218 #define CHECKSUM_COMPLETE 2 219 #define CHECKSUM_PARTIAL 3 220 221 /* Maximum value in skb->csum_level */ 222 #define SKB_MAX_CSUM_LEVEL 3 223 224 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES) 225 #define SKB_WITH_OVERHEAD(X) \ 226 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 227 #define SKB_MAX_ORDER(X, ORDER) \ 228 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 229 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 230 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 231 232 /* return minimum truesize of one skb containing X bytes of data */ 233 #define SKB_TRUESIZE(X) ((X) + \ 234 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ 235 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 236 237 struct net_device; 238 struct scatterlist; 239 struct pipe_inode_info; 240 struct iov_iter; 241 struct napi_struct; 242 243 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 244 struct nf_conntrack { 245 atomic_t use; 246 }; 247 #endif 248 249 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 250 struct nf_bridge_info { 251 atomic_t use; 252 enum { 253 BRNF_PROTO_UNCHANGED, 254 BRNF_PROTO_8021Q, 255 BRNF_PROTO_PPPOE 256 } orig_proto:8; 257 u8 pkt_otherhost:1; 258 u8 in_prerouting:1; 259 u8 bridged_dnat:1; 260 __u16 frag_max_size; 261 struct net_device *physindev; 262 263 /* always valid & non-NULL from FORWARD on, for physdev match */ 264 struct net_device *physoutdev; 265 union { 266 /* prerouting: detect dnat in orig/reply direction */ 267 __be32 ipv4_daddr; 268 struct in6_addr ipv6_daddr; 269 270 /* after prerouting + nat detected: store original source 271 * mac since neigh resolution overwrites it, only used while 272 * skb is out in neigh layer. 273 */ 274 char neigh_header[8]; 275 }; 276 }; 277 #endif 278 279 struct sk_buff_head { 280 /* These two members must be first. */ 281 struct sk_buff *next; 282 struct sk_buff *prev; 283 284 __u32 qlen; 285 spinlock_t lock; 286 }; 287 288 struct sk_buff; 289 290 /* To allow 64K frame to be packed as single skb without frag_list we 291 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for 292 * buffers which do not start on a page boundary. 293 * 294 * Since GRO uses frags we allocate at least 16 regardless of page 295 * size. 296 */ 297 #if (65536/PAGE_SIZE + 1) < 16 298 #define MAX_SKB_FRAGS 16UL 299 #else 300 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1) 301 #endif 302 extern int sysctl_max_skb_frags; 303 304 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to 305 * segment using its current segmentation instead. 306 */ 307 #define GSO_BY_FRAGS 0xFFFF 308 309 typedef struct skb_frag_struct skb_frag_t; 310 311 struct skb_frag_struct { 312 struct { 313 struct page *p; 314 } page; 315 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536) 316 __u32 page_offset; 317 __u32 size; 318 #else 319 __u16 page_offset; 320 __u16 size; 321 #endif 322 }; 323 324 static inline unsigned int skb_frag_size(const skb_frag_t *frag) 325 { 326 return frag->size; 327 } 328 329 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) 330 { 331 frag->size = size; 332 } 333 334 static inline void skb_frag_size_add(skb_frag_t *frag, int delta) 335 { 336 frag->size += delta; 337 } 338 339 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) 340 { 341 frag->size -= delta; 342 } 343 344 #define HAVE_HW_TIME_STAMP 345 346 /** 347 * struct skb_shared_hwtstamps - hardware time stamps 348 * @hwtstamp: hardware time stamp transformed into duration 349 * since arbitrary point in time 350 * 351 * Software time stamps generated by ktime_get_real() are stored in 352 * skb->tstamp. 353 * 354 * hwtstamps can only be compared against other hwtstamps from 355 * the same device. 356 * 357 * This structure is attached to packets as part of the 358 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 359 */ 360 struct skb_shared_hwtstamps { 361 ktime_t hwtstamp; 362 }; 363 364 /* Definitions for tx_flags in struct skb_shared_info */ 365 enum { 366 /* generate hardware time stamp */ 367 SKBTX_HW_TSTAMP = 1 << 0, 368 369 /* generate software time stamp when queueing packet to NIC */ 370 SKBTX_SW_TSTAMP = 1 << 1, 371 372 /* device driver is going to provide hardware time stamp */ 373 SKBTX_IN_PROGRESS = 1 << 2, 374 375 /* device driver supports TX zero-copy buffers */ 376 SKBTX_DEV_ZEROCOPY = 1 << 3, 377 378 /* generate wifi status information (where possible) */ 379 SKBTX_WIFI_STATUS = 1 << 4, 380 381 /* This indicates at least one fragment might be overwritten 382 * (as in vmsplice(), sendfile() ...) 383 * If we need to compute a TX checksum, we'll need to copy 384 * all frags to avoid possible bad checksum 385 */ 386 SKBTX_SHARED_FRAG = 1 << 5, 387 388 /* generate software time stamp when entering packet scheduling */ 389 SKBTX_SCHED_TSTAMP = 1 << 6, 390 }; 391 392 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \ 393 SKBTX_SCHED_TSTAMP) 394 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP) 395 396 /* 397 * The callback notifies userspace to release buffers when skb DMA is done in 398 * lower device, the skb last reference should be 0 when calling this. 399 * The zerocopy_success argument is true if zero copy transmit occurred, 400 * false on data copy or out of memory error caused by data copy attempt. 401 * The ctx field is used to track device context. 402 * The desc field is used to track userspace buffer index. 403 */ 404 struct ubuf_info { 405 void (*callback)(struct ubuf_info *, bool zerocopy_success); 406 void *ctx; 407 unsigned long desc; 408 }; 409 410 /* This data is invariant across clones and lives at 411 * the end of the header data, ie. at skb->end. 412 */ 413 struct skb_shared_info { 414 unsigned char nr_frags; 415 __u8 tx_flags; 416 unsigned short gso_size; 417 /* Warning: this field is not always filled in (UFO)! */ 418 unsigned short gso_segs; 419 unsigned short gso_type; 420 struct sk_buff *frag_list; 421 struct skb_shared_hwtstamps hwtstamps; 422 u32 tskey; 423 __be32 ip6_frag_id; 424 425 /* 426 * Warning : all fields before dataref are cleared in __alloc_skb() 427 */ 428 atomic_t dataref; 429 430 /* Intermediate layers must ensure that destructor_arg 431 * remains valid until skb destructor */ 432 void * destructor_arg; 433 434 /* must be last field, see pskb_expand_head() */ 435 skb_frag_t frags[MAX_SKB_FRAGS]; 436 }; 437 438 /* We divide dataref into two halves. The higher 16 bits hold references 439 * to the payload part of skb->data. The lower 16 bits hold references to 440 * the entire skb->data. A clone of a headerless skb holds the length of 441 * the header in skb->hdr_len. 442 * 443 * All users must obey the rule that the skb->data reference count must be 444 * greater than or equal to the payload reference count. 445 * 446 * Holding a reference to the payload part means that the user does not 447 * care about modifications to the header part of skb->data. 448 */ 449 #define SKB_DATAREF_SHIFT 16 450 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 451 452 453 enum { 454 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */ 455 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */ 456 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */ 457 }; 458 459 enum { 460 SKB_GSO_TCPV4 = 1 << 0, 461 SKB_GSO_UDP = 1 << 1, 462 463 /* This indicates the skb is from an untrusted source. */ 464 SKB_GSO_DODGY = 1 << 2, 465 466 /* This indicates the tcp segment has CWR set. */ 467 SKB_GSO_TCP_ECN = 1 << 3, 468 469 SKB_GSO_TCP_FIXEDID = 1 << 4, 470 471 SKB_GSO_TCPV6 = 1 << 5, 472 473 SKB_GSO_FCOE = 1 << 6, 474 475 SKB_GSO_GRE = 1 << 7, 476 477 SKB_GSO_GRE_CSUM = 1 << 8, 478 479 SKB_GSO_IPXIP4 = 1 << 9, 480 481 SKB_GSO_IPXIP6 = 1 << 10, 482 483 SKB_GSO_UDP_TUNNEL = 1 << 11, 484 485 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 12, 486 487 SKB_GSO_PARTIAL = 1 << 13, 488 489 SKB_GSO_TUNNEL_REMCSUM = 1 << 14, 490 491 SKB_GSO_SCTP = 1 << 15, 492 }; 493 494 #if BITS_PER_LONG > 32 495 #define NET_SKBUFF_DATA_USES_OFFSET 1 496 #endif 497 498 #ifdef NET_SKBUFF_DATA_USES_OFFSET 499 typedef unsigned int sk_buff_data_t; 500 #else 501 typedef unsigned char *sk_buff_data_t; 502 #endif 503 504 /** 505 * struct skb_mstamp - multi resolution time stamps 506 * @stamp_us: timestamp in us resolution 507 * @stamp_jiffies: timestamp in jiffies 508 */ 509 struct skb_mstamp { 510 union { 511 u64 v64; 512 struct { 513 u32 stamp_us; 514 u32 stamp_jiffies; 515 }; 516 }; 517 }; 518 519 /** 520 * skb_mstamp_get - get current timestamp 521 * @cl: place to store timestamps 522 */ 523 static inline void skb_mstamp_get(struct skb_mstamp *cl) 524 { 525 u64 val = local_clock(); 526 527 do_div(val, NSEC_PER_USEC); 528 cl->stamp_us = (u32)val; 529 cl->stamp_jiffies = (u32)jiffies; 530 } 531 532 /** 533 * skb_mstamp_delta - compute the difference in usec between two skb_mstamp 534 * @t1: pointer to newest sample 535 * @t0: pointer to oldest sample 536 */ 537 static inline u32 skb_mstamp_us_delta(const struct skb_mstamp *t1, 538 const struct skb_mstamp *t0) 539 { 540 s32 delta_us = t1->stamp_us - t0->stamp_us; 541 u32 delta_jiffies = t1->stamp_jiffies - t0->stamp_jiffies; 542 543 /* If delta_us is negative, this might be because interval is too big, 544 * or local_clock() drift is too big : fallback using jiffies. 545 */ 546 if (delta_us <= 0 || 547 delta_jiffies >= (INT_MAX / (USEC_PER_SEC / HZ))) 548 549 delta_us = jiffies_to_usecs(delta_jiffies); 550 551 return delta_us; 552 } 553 554 static inline bool skb_mstamp_after(const struct skb_mstamp *t1, 555 const struct skb_mstamp *t0) 556 { 557 s32 diff = t1->stamp_jiffies - t0->stamp_jiffies; 558 559 if (!diff) 560 diff = t1->stamp_us - t0->stamp_us; 561 return diff > 0; 562 } 563 564 /** 565 * struct sk_buff - socket buffer 566 * @next: Next buffer in list 567 * @prev: Previous buffer in list 568 * @tstamp: Time we arrived/left 569 * @rbnode: RB tree node, alternative to next/prev for netem/tcp 570 * @sk: Socket we are owned by 571 * @dev: Device we arrived on/are leaving by 572 * @cb: Control buffer. Free for use by every layer. Put private vars here 573 * @_skb_refdst: destination entry (with norefcount bit) 574 * @sp: the security path, used for xfrm 575 * @len: Length of actual data 576 * @data_len: Data length 577 * @mac_len: Length of link layer header 578 * @hdr_len: writable header length of cloned skb 579 * @csum: Checksum (must include start/offset pair) 580 * @csum_start: Offset from skb->head where checksumming should start 581 * @csum_offset: Offset from csum_start where checksum should be stored 582 * @priority: Packet queueing priority 583 * @ignore_df: allow local fragmentation 584 * @cloned: Head may be cloned (check refcnt to be sure) 585 * @ip_summed: Driver fed us an IP checksum 586 * @nohdr: Payload reference only, must not modify header 587 * @nfctinfo: Relationship of this skb to the connection 588 * @pkt_type: Packet class 589 * @fclone: skbuff clone status 590 * @ipvs_property: skbuff is owned by ipvs 591 * @peeked: this packet has been seen already, so stats have been 592 * done for it, don't do them again 593 * @nf_trace: netfilter packet trace flag 594 * @protocol: Packet protocol from driver 595 * @destructor: Destruct function 596 * @nfct: Associated connection, if any 597 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 598 * @skb_iif: ifindex of device we arrived on 599 * @tc_index: Traffic control index 600 * @tc_verd: traffic control verdict 601 * @hash: the packet hash 602 * @queue_mapping: Queue mapping for multiqueue devices 603 * @xmit_more: More SKBs are pending for this queue 604 * @ndisc_nodetype: router type (from link layer) 605 * @ooo_okay: allow the mapping of a socket to a queue to be changed 606 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport 607 * ports. 608 * @sw_hash: indicates hash was computed in software stack 609 * @wifi_acked_valid: wifi_acked was set 610 * @wifi_acked: whether frame was acked on wifi or not 611 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS 612 * @napi_id: id of the NAPI struct this skb came from 613 * @secmark: security marking 614 * @offload_fwd_mark: fwding offload mark 615 * @mark: Generic packet mark 616 * @vlan_proto: vlan encapsulation protocol 617 * @vlan_tci: vlan tag control information 618 * @inner_protocol: Protocol (encapsulation) 619 * @inner_transport_header: Inner transport layer header (encapsulation) 620 * @inner_network_header: Network layer header (encapsulation) 621 * @inner_mac_header: Link layer header (encapsulation) 622 * @transport_header: Transport layer header 623 * @network_header: Network layer header 624 * @mac_header: Link layer header 625 * @tail: Tail pointer 626 * @end: End pointer 627 * @head: Head of buffer 628 * @data: Data head pointer 629 * @truesize: Buffer size 630 * @users: User count - see {datagram,tcp}.c 631 */ 632 633 struct sk_buff { 634 union { 635 struct { 636 /* These two members must be first. */ 637 struct sk_buff *next; 638 struct sk_buff *prev; 639 640 union { 641 ktime_t tstamp; 642 struct skb_mstamp skb_mstamp; 643 }; 644 }; 645 struct rb_node rbnode; /* used in netem & tcp stack */ 646 }; 647 struct sock *sk; 648 struct net_device *dev; 649 650 /* 651 * This is the control buffer. It is free to use for every 652 * layer. Please put your private variables there. If you 653 * want to keep them across layers you have to do a skb_clone() 654 * first. This is owned by whoever has the skb queued ATM. 655 */ 656 char cb[48] __aligned(8); 657 658 unsigned long _skb_refdst; 659 void (*destructor)(struct sk_buff *skb); 660 #ifdef CONFIG_XFRM 661 struct sec_path *sp; 662 #endif 663 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 664 struct nf_conntrack *nfct; 665 #endif 666 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 667 struct nf_bridge_info *nf_bridge; 668 #endif 669 unsigned int len, 670 data_len; 671 __u16 mac_len, 672 hdr_len; 673 674 /* Following fields are _not_ copied in __copy_skb_header() 675 * Note that queue_mapping is here mostly to fill a hole. 676 */ 677 kmemcheck_bitfield_begin(flags1); 678 __u16 queue_mapping; 679 __u8 cloned:1, 680 nohdr:1, 681 fclone:2, 682 peeked:1, 683 head_frag:1, 684 xmit_more:1; 685 /* one bit hole */ 686 kmemcheck_bitfield_end(flags1); 687 688 /* fields enclosed in headers_start/headers_end are copied 689 * using a single memcpy() in __copy_skb_header() 690 */ 691 /* private: */ 692 __u32 headers_start[0]; 693 /* public: */ 694 695 /* if you move pkt_type around you also must adapt those constants */ 696 #ifdef __BIG_ENDIAN_BITFIELD 697 #define PKT_TYPE_MAX (7 << 5) 698 #else 699 #define PKT_TYPE_MAX 7 700 #endif 701 #define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset) 702 703 __u8 __pkt_type_offset[0]; 704 __u8 pkt_type:3; 705 __u8 pfmemalloc:1; 706 __u8 ignore_df:1; 707 __u8 nfctinfo:3; 708 709 __u8 nf_trace:1; 710 __u8 ip_summed:2; 711 __u8 ooo_okay:1; 712 __u8 l4_hash:1; 713 __u8 sw_hash:1; 714 __u8 wifi_acked_valid:1; 715 __u8 wifi_acked:1; 716 717 __u8 no_fcs:1; 718 /* Indicates the inner headers are valid in the skbuff. */ 719 __u8 encapsulation:1; 720 __u8 encap_hdr_csum:1; 721 __u8 csum_valid:1; 722 __u8 csum_complete_sw:1; 723 __u8 csum_level:2; 724 __u8 csum_bad:1; 725 726 #ifdef CONFIG_IPV6_NDISC_NODETYPE 727 __u8 ndisc_nodetype:2; 728 #endif 729 __u8 ipvs_property:1; 730 __u8 inner_protocol_type:1; 731 __u8 remcsum_offload:1; 732 /* 3 or 5 bit hole */ 733 734 #ifdef CONFIG_NET_SCHED 735 __u16 tc_index; /* traffic control index */ 736 #ifdef CONFIG_NET_CLS_ACT 737 __u16 tc_verd; /* traffic control verdict */ 738 #endif 739 #endif 740 741 union { 742 __wsum csum; 743 struct { 744 __u16 csum_start; 745 __u16 csum_offset; 746 }; 747 }; 748 __u32 priority; 749 int skb_iif; 750 __u32 hash; 751 __be16 vlan_proto; 752 __u16 vlan_tci; 753 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS) 754 union { 755 unsigned int napi_id; 756 unsigned int sender_cpu; 757 }; 758 #endif 759 union { 760 #ifdef CONFIG_NETWORK_SECMARK 761 __u32 secmark; 762 #endif 763 #ifdef CONFIG_NET_SWITCHDEV 764 __u32 offload_fwd_mark; 765 #endif 766 }; 767 768 union { 769 __u32 mark; 770 __u32 reserved_tailroom; 771 }; 772 773 union { 774 __be16 inner_protocol; 775 __u8 inner_ipproto; 776 }; 777 778 __u16 inner_transport_header; 779 __u16 inner_network_header; 780 __u16 inner_mac_header; 781 782 __be16 protocol; 783 __u16 transport_header; 784 __u16 network_header; 785 __u16 mac_header; 786 787 /* private: */ 788 __u32 headers_end[0]; 789 /* public: */ 790 791 /* These elements must be at the end, see alloc_skb() for details. */ 792 sk_buff_data_t tail; 793 sk_buff_data_t end; 794 unsigned char *head, 795 *data; 796 unsigned int truesize; 797 atomic_t users; 798 }; 799 800 #ifdef __KERNEL__ 801 /* 802 * Handling routines are only of interest to the kernel 803 */ 804 #include <linux/slab.h> 805 806 807 #define SKB_ALLOC_FCLONE 0x01 808 #define SKB_ALLOC_RX 0x02 809 #define SKB_ALLOC_NAPI 0x04 810 811 /* Returns true if the skb was allocated from PFMEMALLOC reserves */ 812 static inline bool skb_pfmemalloc(const struct sk_buff *skb) 813 { 814 return unlikely(skb->pfmemalloc); 815 } 816 817 /* 818 * skb might have a dst pointer attached, refcounted or not. 819 * _skb_refdst low order bit is set if refcount was _not_ taken 820 */ 821 #define SKB_DST_NOREF 1UL 822 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 823 824 /** 825 * skb_dst - returns skb dst_entry 826 * @skb: buffer 827 * 828 * Returns skb dst_entry, regardless of reference taken or not. 829 */ 830 static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 831 { 832 /* If refdst was not refcounted, check we still are in a 833 * rcu_read_lock section 834 */ 835 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 836 !rcu_read_lock_held() && 837 !rcu_read_lock_bh_held()); 838 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 839 } 840 841 /** 842 * skb_dst_set - sets skb dst 843 * @skb: buffer 844 * @dst: dst entry 845 * 846 * Sets skb dst, assuming a reference was taken on dst and should 847 * be released by skb_dst_drop() 848 */ 849 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 850 { 851 skb->_skb_refdst = (unsigned long)dst; 852 } 853 854 /** 855 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference 856 * @skb: buffer 857 * @dst: dst entry 858 * 859 * Sets skb dst, assuming a reference was not taken on dst. 860 * If dst entry is cached, we do not take reference and dst_release 861 * will be avoided by refdst_drop. If dst entry is not cached, we take 862 * reference, so that last dst_release can destroy the dst immediately. 863 */ 864 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) 865 { 866 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 867 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF; 868 } 869 870 /** 871 * skb_dst_is_noref - Test if skb dst isn't refcounted 872 * @skb: buffer 873 */ 874 static inline bool skb_dst_is_noref(const struct sk_buff *skb) 875 { 876 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 877 } 878 879 static inline struct rtable *skb_rtable(const struct sk_buff *skb) 880 { 881 return (struct rtable *)skb_dst(skb); 882 } 883 884 void kfree_skb(struct sk_buff *skb); 885 void kfree_skb_list(struct sk_buff *segs); 886 void skb_tx_error(struct sk_buff *skb); 887 void consume_skb(struct sk_buff *skb); 888 void __kfree_skb(struct sk_buff *skb); 889 extern struct kmem_cache *skbuff_head_cache; 890 891 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); 892 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 893 bool *fragstolen, int *delta_truesize); 894 895 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags, 896 int node); 897 struct sk_buff *__build_skb(void *data, unsigned int frag_size); 898 struct sk_buff *build_skb(void *data, unsigned int frag_size); 899 static inline struct sk_buff *alloc_skb(unsigned int size, 900 gfp_t priority) 901 { 902 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 903 } 904 905 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 906 unsigned long data_len, 907 int max_page_order, 908 int *errcode, 909 gfp_t gfp_mask); 910 911 /* Layout of fast clones : [skb1][skb2][fclone_ref] */ 912 struct sk_buff_fclones { 913 struct sk_buff skb1; 914 915 struct sk_buff skb2; 916 917 atomic_t fclone_ref; 918 }; 919 920 /** 921 * skb_fclone_busy - check if fclone is busy 922 * @skb: buffer 923 * 924 * Returns true if skb is a fast clone, and its clone is not freed. 925 * Some drivers call skb_orphan() in their ndo_start_xmit(), 926 * so we also check that this didnt happen. 927 */ 928 static inline bool skb_fclone_busy(const struct sock *sk, 929 const struct sk_buff *skb) 930 { 931 const struct sk_buff_fclones *fclones; 932 933 fclones = container_of(skb, struct sk_buff_fclones, skb1); 934 935 return skb->fclone == SKB_FCLONE_ORIG && 936 atomic_read(&fclones->fclone_ref) > 1 && 937 fclones->skb2.sk == sk; 938 } 939 940 static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 941 gfp_t priority) 942 { 943 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); 944 } 945 946 struct sk_buff *__alloc_skb_head(gfp_t priority, int node); 947 static inline struct sk_buff *alloc_skb_head(gfp_t priority) 948 { 949 return __alloc_skb_head(priority, -1); 950 } 951 952 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 953 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); 954 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority); 955 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority); 956 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 957 gfp_t gfp_mask, bool fclone); 958 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, 959 gfp_t gfp_mask) 960 { 961 return __pskb_copy_fclone(skb, headroom, gfp_mask, false); 962 } 963 964 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask); 965 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 966 unsigned int headroom); 967 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, 968 int newtailroom, gfp_t priority); 969 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 970 int offset, int len); 971 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, 972 int len); 973 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer); 974 int skb_pad(struct sk_buff *skb, int pad); 975 #define dev_kfree_skb(a) consume_skb(a) 976 977 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 978 int getfrag(void *from, char *to, int offset, 979 int len, int odd, struct sk_buff *skb), 980 void *from, int length); 981 982 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 983 int offset, size_t size); 984 985 struct skb_seq_state { 986 __u32 lower_offset; 987 __u32 upper_offset; 988 __u32 frag_idx; 989 __u32 stepped_offset; 990 struct sk_buff *root_skb; 991 struct sk_buff *cur_skb; 992 __u8 *frag_data; 993 }; 994 995 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 996 unsigned int to, struct skb_seq_state *st); 997 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 998 struct skb_seq_state *st); 999 void skb_abort_seq_read(struct skb_seq_state *st); 1000 1001 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 1002 unsigned int to, struct ts_config *config); 1003 1004 /* 1005 * Packet hash types specify the type of hash in skb_set_hash. 1006 * 1007 * Hash types refer to the protocol layer addresses which are used to 1008 * construct a packet's hash. The hashes are used to differentiate or identify 1009 * flows of the protocol layer for the hash type. Hash types are either 1010 * layer-2 (L2), layer-3 (L3), or layer-4 (L4). 1011 * 1012 * Properties of hashes: 1013 * 1014 * 1) Two packets in different flows have different hash values 1015 * 2) Two packets in the same flow should have the same hash value 1016 * 1017 * A hash at a higher layer is considered to be more specific. A driver should 1018 * set the most specific hash possible. 1019 * 1020 * A driver cannot indicate a more specific hash than the layer at which a hash 1021 * was computed. For instance an L3 hash cannot be set as an L4 hash. 1022 * 1023 * A driver may indicate a hash level which is less specific than the 1024 * actual layer the hash was computed on. For instance, a hash computed 1025 * at L4 may be considered an L3 hash. This should only be done if the 1026 * driver can't unambiguously determine that the HW computed the hash at 1027 * the higher layer. Note that the "should" in the second property above 1028 * permits this. 1029 */ 1030 enum pkt_hash_types { 1031 PKT_HASH_TYPE_NONE, /* Undefined type */ 1032 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */ 1033 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */ 1034 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */ 1035 }; 1036 1037 static inline void skb_clear_hash(struct sk_buff *skb) 1038 { 1039 skb->hash = 0; 1040 skb->sw_hash = 0; 1041 skb->l4_hash = 0; 1042 } 1043 1044 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb) 1045 { 1046 if (!skb->l4_hash) 1047 skb_clear_hash(skb); 1048 } 1049 1050 static inline void 1051 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4) 1052 { 1053 skb->l4_hash = is_l4; 1054 skb->sw_hash = is_sw; 1055 skb->hash = hash; 1056 } 1057 1058 static inline void 1059 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type) 1060 { 1061 /* Used by drivers to set hash from HW */ 1062 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4); 1063 } 1064 1065 static inline void 1066 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4) 1067 { 1068 __skb_set_hash(skb, hash, true, is_l4); 1069 } 1070 1071 void __skb_get_hash(struct sk_buff *skb); 1072 u32 skb_get_poff(const struct sk_buff *skb); 1073 u32 __skb_get_poff(const struct sk_buff *skb, void *data, 1074 const struct flow_keys *keys, int hlen); 1075 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto, 1076 void *data, int hlen_proto); 1077 1078 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb, 1079 int thoff, u8 ip_proto) 1080 { 1081 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0); 1082 } 1083 1084 void skb_flow_dissector_init(struct flow_dissector *flow_dissector, 1085 const struct flow_dissector_key *key, 1086 unsigned int key_count); 1087 1088 bool __skb_flow_dissect(const struct sk_buff *skb, 1089 struct flow_dissector *flow_dissector, 1090 void *target_container, 1091 void *data, __be16 proto, int nhoff, int hlen, 1092 unsigned int flags); 1093 1094 static inline bool skb_flow_dissect(const struct sk_buff *skb, 1095 struct flow_dissector *flow_dissector, 1096 void *target_container, unsigned int flags) 1097 { 1098 return __skb_flow_dissect(skb, flow_dissector, target_container, 1099 NULL, 0, 0, 0, flags); 1100 } 1101 1102 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb, 1103 struct flow_keys *flow, 1104 unsigned int flags) 1105 { 1106 memset(flow, 0, sizeof(*flow)); 1107 return __skb_flow_dissect(skb, &flow_keys_dissector, flow, 1108 NULL, 0, 0, 0, flags); 1109 } 1110 1111 static inline bool skb_flow_dissect_flow_keys_buf(struct flow_keys *flow, 1112 void *data, __be16 proto, 1113 int nhoff, int hlen, 1114 unsigned int flags) 1115 { 1116 memset(flow, 0, sizeof(*flow)); 1117 return __skb_flow_dissect(NULL, &flow_keys_buf_dissector, flow, 1118 data, proto, nhoff, hlen, flags); 1119 } 1120 1121 static inline __u32 skb_get_hash(struct sk_buff *skb) 1122 { 1123 if (!skb->l4_hash && !skb->sw_hash) 1124 __skb_get_hash(skb); 1125 1126 return skb->hash; 1127 } 1128 1129 __u32 __skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6); 1130 1131 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6) 1132 { 1133 if (!skb->l4_hash && !skb->sw_hash) { 1134 struct flow_keys keys; 1135 __u32 hash = __get_hash_from_flowi6(fl6, &keys); 1136 1137 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys)); 1138 } 1139 1140 return skb->hash; 1141 } 1142 1143 __u32 __skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl); 1144 1145 static inline __u32 skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl4) 1146 { 1147 if (!skb->l4_hash && !skb->sw_hash) { 1148 struct flow_keys keys; 1149 __u32 hash = __get_hash_from_flowi4(fl4, &keys); 1150 1151 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys)); 1152 } 1153 1154 return skb->hash; 1155 } 1156 1157 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb); 1158 1159 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb) 1160 { 1161 return skb->hash; 1162 } 1163 1164 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from) 1165 { 1166 to->hash = from->hash; 1167 to->sw_hash = from->sw_hash; 1168 to->l4_hash = from->l4_hash; 1169 }; 1170 1171 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1172 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1173 { 1174 return skb->head + skb->end; 1175 } 1176 1177 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1178 { 1179 return skb->end; 1180 } 1181 #else 1182 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1183 { 1184 return skb->end; 1185 } 1186 1187 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1188 { 1189 return skb->end - skb->head; 1190 } 1191 #endif 1192 1193 /* Internal */ 1194 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 1195 1196 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 1197 { 1198 return &skb_shinfo(skb)->hwtstamps; 1199 } 1200 1201 /** 1202 * skb_queue_empty - check if a queue is empty 1203 * @list: queue head 1204 * 1205 * Returns true if the queue is empty, false otherwise. 1206 */ 1207 static inline int skb_queue_empty(const struct sk_buff_head *list) 1208 { 1209 return list->next == (const struct sk_buff *) list; 1210 } 1211 1212 /** 1213 * skb_queue_is_last - check if skb is the last entry in the queue 1214 * @list: queue head 1215 * @skb: buffer 1216 * 1217 * Returns true if @skb is the last buffer on the list. 1218 */ 1219 static inline bool skb_queue_is_last(const struct sk_buff_head *list, 1220 const struct sk_buff *skb) 1221 { 1222 return skb->next == (const struct sk_buff *) list; 1223 } 1224 1225 /** 1226 * skb_queue_is_first - check if skb is the first entry in the queue 1227 * @list: queue head 1228 * @skb: buffer 1229 * 1230 * Returns true if @skb is the first buffer on the list. 1231 */ 1232 static inline bool skb_queue_is_first(const struct sk_buff_head *list, 1233 const struct sk_buff *skb) 1234 { 1235 return skb->prev == (const struct sk_buff *) list; 1236 } 1237 1238 /** 1239 * skb_queue_next - return the next packet in the queue 1240 * @list: queue head 1241 * @skb: current buffer 1242 * 1243 * Return the next packet in @list after @skb. It is only valid to 1244 * call this if skb_queue_is_last() evaluates to false. 1245 */ 1246 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 1247 const struct sk_buff *skb) 1248 { 1249 /* This BUG_ON may seem severe, but if we just return then we 1250 * are going to dereference garbage. 1251 */ 1252 BUG_ON(skb_queue_is_last(list, skb)); 1253 return skb->next; 1254 } 1255 1256 /** 1257 * skb_queue_prev - return the prev packet in the queue 1258 * @list: queue head 1259 * @skb: current buffer 1260 * 1261 * Return the prev packet in @list before @skb. It is only valid to 1262 * call this if skb_queue_is_first() evaluates to false. 1263 */ 1264 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 1265 const struct sk_buff *skb) 1266 { 1267 /* This BUG_ON may seem severe, but if we just return then we 1268 * are going to dereference garbage. 1269 */ 1270 BUG_ON(skb_queue_is_first(list, skb)); 1271 return skb->prev; 1272 } 1273 1274 /** 1275 * skb_get - reference buffer 1276 * @skb: buffer to reference 1277 * 1278 * Makes another reference to a socket buffer and returns a pointer 1279 * to the buffer. 1280 */ 1281 static inline struct sk_buff *skb_get(struct sk_buff *skb) 1282 { 1283 atomic_inc(&skb->users); 1284 return skb; 1285 } 1286 1287 /* 1288 * If users == 1, we are the only owner and are can avoid redundant 1289 * atomic change. 1290 */ 1291 1292 /** 1293 * skb_cloned - is the buffer a clone 1294 * @skb: buffer to check 1295 * 1296 * Returns true if the buffer was generated with skb_clone() and is 1297 * one of multiple shared copies of the buffer. Cloned buffers are 1298 * shared data so must not be written to under normal circumstances. 1299 */ 1300 static inline int skb_cloned(const struct sk_buff *skb) 1301 { 1302 return skb->cloned && 1303 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 1304 } 1305 1306 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) 1307 { 1308 might_sleep_if(gfpflags_allow_blocking(pri)); 1309 1310 if (skb_cloned(skb)) 1311 return pskb_expand_head(skb, 0, 0, pri); 1312 1313 return 0; 1314 } 1315 1316 /** 1317 * skb_header_cloned - is the header a clone 1318 * @skb: buffer to check 1319 * 1320 * Returns true if modifying the header part of the buffer requires 1321 * the data to be copied. 1322 */ 1323 static inline int skb_header_cloned(const struct sk_buff *skb) 1324 { 1325 int dataref; 1326 1327 if (!skb->cloned) 1328 return 0; 1329 1330 dataref = atomic_read(&skb_shinfo(skb)->dataref); 1331 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 1332 return dataref != 1; 1333 } 1334 1335 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri) 1336 { 1337 might_sleep_if(gfpflags_allow_blocking(pri)); 1338 1339 if (skb_header_cloned(skb)) 1340 return pskb_expand_head(skb, 0, 0, pri); 1341 1342 return 0; 1343 } 1344 1345 /** 1346 * skb_header_release - release reference to header 1347 * @skb: buffer to operate on 1348 * 1349 * Drop a reference to the header part of the buffer. This is done 1350 * by acquiring a payload reference. You must not read from the header 1351 * part of skb->data after this. 1352 * Note : Check if you can use __skb_header_release() instead. 1353 */ 1354 static inline void skb_header_release(struct sk_buff *skb) 1355 { 1356 BUG_ON(skb->nohdr); 1357 skb->nohdr = 1; 1358 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref); 1359 } 1360 1361 /** 1362 * __skb_header_release - release reference to header 1363 * @skb: buffer to operate on 1364 * 1365 * Variant of skb_header_release() assuming skb is private to caller. 1366 * We can avoid one atomic operation. 1367 */ 1368 static inline void __skb_header_release(struct sk_buff *skb) 1369 { 1370 skb->nohdr = 1; 1371 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT)); 1372 } 1373 1374 1375 /** 1376 * skb_shared - is the buffer shared 1377 * @skb: buffer to check 1378 * 1379 * Returns true if more than one person has a reference to this 1380 * buffer. 1381 */ 1382 static inline int skb_shared(const struct sk_buff *skb) 1383 { 1384 return atomic_read(&skb->users) != 1; 1385 } 1386 1387 /** 1388 * skb_share_check - check if buffer is shared and if so clone it 1389 * @skb: buffer to check 1390 * @pri: priority for memory allocation 1391 * 1392 * If the buffer is shared the buffer is cloned and the old copy 1393 * drops a reference. A new clone with a single reference is returned. 1394 * If the buffer is not shared the original buffer is returned. When 1395 * being called from interrupt status or with spinlocks held pri must 1396 * be GFP_ATOMIC. 1397 * 1398 * NULL is returned on a memory allocation failure. 1399 */ 1400 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) 1401 { 1402 might_sleep_if(gfpflags_allow_blocking(pri)); 1403 if (skb_shared(skb)) { 1404 struct sk_buff *nskb = skb_clone(skb, pri); 1405 1406 if (likely(nskb)) 1407 consume_skb(skb); 1408 else 1409 kfree_skb(skb); 1410 skb = nskb; 1411 } 1412 return skb; 1413 } 1414 1415 /* 1416 * Copy shared buffers into a new sk_buff. We effectively do COW on 1417 * packets to handle cases where we have a local reader and forward 1418 * and a couple of other messy ones. The normal one is tcpdumping 1419 * a packet thats being forwarded. 1420 */ 1421 1422 /** 1423 * skb_unshare - make a copy of a shared buffer 1424 * @skb: buffer to check 1425 * @pri: priority for memory allocation 1426 * 1427 * If the socket buffer is a clone then this function creates a new 1428 * copy of the data, drops a reference count on the old copy and returns 1429 * the new copy with the reference count at 1. If the buffer is not a clone 1430 * the original buffer is returned. When called with a spinlock held or 1431 * from interrupt state @pri must be %GFP_ATOMIC 1432 * 1433 * %NULL is returned on a memory allocation failure. 1434 */ 1435 static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 1436 gfp_t pri) 1437 { 1438 might_sleep_if(gfpflags_allow_blocking(pri)); 1439 if (skb_cloned(skb)) { 1440 struct sk_buff *nskb = skb_copy(skb, pri); 1441 1442 /* Free our shared copy */ 1443 if (likely(nskb)) 1444 consume_skb(skb); 1445 else 1446 kfree_skb(skb); 1447 skb = nskb; 1448 } 1449 return skb; 1450 } 1451 1452 /** 1453 * skb_peek - peek at the head of an &sk_buff_head 1454 * @list_: list to peek at 1455 * 1456 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1457 * be careful with this one. A peek leaves the buffer on the 1458 * list and someone else may run off with it. You must hold 1459 * the appropriate locks or have a private queue to do this. 1460 * 1461 * Returns %NULL for an empty list or a pointer to the head element. 1462 * The reference count is not incremented and the reference is therefore 1463 * volatile. Use with caution. 1464 */ 1465 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) 1466 { 1467 struct sk_buff *skb = list_->next; 1468 1469 if (skb == (struct sk_buff *)list_) 1470 skb = NULL; 1471 return skb; 1472 } 1473 1474 /** 1475 * skb_peek_next - peek skb following the given one from a queue 1476 * @skb: skb to start from 1477 * @list_: list to peek at 1478 * 1479 * Returns %NULL when the end of the list is met or a pointer to the 1480 * next element. The reference count is not incremented and the 1481 * reference is therefore volatile. Use with caution. 1482 */ 1483 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, 1484 const struct sk_buff_head *list_) 1485 { 1486 struct sk_buff *next = skb->next; 1487 1488 if (next == (struct sk_buff *)list_) 1489 next = NULL; 1490 return next; 1491 } 1492 1493 /** 1494 * skb_peek_tail - peek at the tail of an &sk_buff_head 1495 * @list_: list to peek at 1496 * 1497 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1498 * be careful with this one. A peek leaves the buffer on the 1499 * list and someone else may run off with it. You must hold 1500 * the appropriate locks or have a private queue to do this. 1501 * 1502 * Returns %NULL for an empty list or a pointer to the tail element. 1503 * The reference count is not incremented and the reference is therefore 1504 * volatile. Use with caution. 1505 */ 1506 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) 1507 { 1508 struct sk_buff *skb = list_->prev; 1509 1510 if (skb == (struct sk_buff *)list_) 1511 skb = NULL; 1512 return skb; 1513 1514 } 1515 1516 /** 1517 * skb_queue_len - get queue length 1518 * @list_: list to measure 1519 * 1520 * Return the length of an &sk_buff queue. 1521 */ 1522 static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 1523 { 1524 return list_->qlen; 1525 } 1526 1527 /** 1528 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 1529 * @list: queue to initialize 1530 * 1531 * This initializes only the list and queue length aspects of 1532 * an sk_buff_head object. This allows to initialize the list 1533 * aspects of an sk_buff_head without reinitializing things like 1534 * the spinlock. It can also be used for on-stack sk_buff_head 1535 * objects where the spinlock is known to not be used. 1536 */ 1537 static inline void __skb_queue_head_init(struct sk_buff_head *list) 1538 { 1539 list->prev = list->next = (struct sk_buff *)list; 1540 list->qlen = 0; 1541 } 1542 1543 /* 1544 * This function creates a split out lock class for each invocation; 1545 * this is needed for now since a whole lot of users of the skb-queue 1546 * infrastructure in drivers have different locking usage (in hardirq) 1547 * than the networking core (in softirq only). In the long run either the 1548 * network layer or drivers should need annotation to consolidate the 1549 * main types of usage into 3 classes. 1550 */ 1551 static inline void skb_queue_head_init(struct sk_buff_head *list) 1552 { 1553 spin_lock_init(&list->lock); 1554 __skb_queue_head_init(list); 1555 } 1556 1557 static inline void skb_queue_head_init_class(struct sk_buff_head *list, 1558 struct lock_class_key *class) 1559 { 1560 skb_queue_head_init(list); 1561 lockdep_set_class(&list->lock, class); 1562 } 1563 1564 /* 1565 * Insert an sk_buff on a list. 1566 * 1567 * The "__skb_xxxx()" functions are the non-atomic ones that 1568 * can only be called with interrupts disabled. 1569 */ 1570 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, 1571 struct sk_buff_head *list); 1572 static inline void __skb_insert(struct sk_buff *newsk, 1573 struct sk_buff *prev, struct sk_buff *next, 1574 struct sk_buff_head *list) 1575 { 1576 newsk->next = next; 1577 newsk->prev = prev; 1578 next->prev = prev->next = newsk; 1579 list->qlen++; 1580 } 1581 1582 static inline void __skb_queue_splice(const struct sk_buff_head *list, 1583 struct sk_buff *prev, 1584 struct sk_buff *next) 1585 { 1586 struct sk_buff *first = list->next; 1587 struct sk_buff *last = list->prev; 1588 1589 first->prev = prev; 1590 prev->next = first; 1591 1592 last->next = next; 1593 next->prev = last; 1594 } 1595 1596 /** 1597 * skb_queue_splice - join two skb lists, this is designed for stacks 1598 * @list: the new list to add 1599 * @head: the place to add it in the first list 1600 */ 1601 static inline void skb_queue_splice(const struct sk_buff_head *list, 1602 struct sk_buff_head *head) 1603 { 1604 if (!skb_queue_empty(list)) { 1605 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1606 head->qlen += list->qlen; 1607 } 1608 } 1609 1610 /** 1611 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list 1612 * @list: the new list to add 1613 * @head: the place to add it in the first list 1614 * 1615 * The list at @list is reinitialised 1616 */ 1617 static inline void skb_queue_splice_init(struct sk_buff_head *list, 1618 struct sk_buff_head *head) 1619 { 1620 if (!skb_queue_empty(list)) { 1621 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1622 head->qlen += list->qlen; 1623 __skb_queue_head_init(list); 1624 } 1625 } 1626 1627 /** 1628 * skb_queue_splice_tail - join two skb lists, each list being a queue 1629 * @list: the new list to add 1630 * @head: the place to add it in the first list 1631 */ 1632 static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 1633 struct sk_buff_head *head) 1634 { 1635 if (!skb_queue_empty(list)) { 1636 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1637 head->qlen += list->qlen; 1638 } 1639 } 1640 1641 /** 1642 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list 1643 * @list: the new list to add 1644 * @head: the place to add it in the first list 1645 * 1646 * Each of the lists is a queue. 1647 * The list at @list is reinitialised 1648 */ 1649 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 1650 struct sk_buff_head *head) 1651 { 1652 if (!skb_queue_empty(list)) { 1653 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1654 head->qlen += list->qlen; 1655 __skb_queue_head_init(list); 1656 } 1657 } 1658 1659 /** 1660 * __skb_queue_after - queue a buffer at the list head 1661 * @list: list to use 1662 * @prev: place after this buffer 1663 * @newsk: buffer to queue 1664 * 1665 * Queue a buffer int the middle of a list. This function takes no locks 1666 * and you must therefore hold required locks before calling it. 1667 * 1668 * A buffer cannot be placed on two lists at the same time. 1669 */ 1670 static inline void __skb_queue_after(struct sk_buff_head *list, 1671 struct sk_buff *prev, 1672 struct sk_buff *newsk) 1673 { 1674 __skb_insert(newsk, prev, prev->next, list); 1675 } 1676 1677 void skb_append(struct sk_buff *old, struct sk_buff *newsk, 1678 struct sk_buff_head *list); 1679 1680 static inline void __skb_queue_before(struct sk_buff_head *list, 1681 struct sk_buff *next, 1682 struct sk_buff *newsk) 1683 { 1684 __skb_insert(newsk, next->prev, next, list); 1685 } 1686 1687 /** 1688 * __skb_queue_head - queue a buffer at the list head 1689 * @list: list to use 1690 * @newsk: buffer to queue 1691 * 1692 * Queue a buffer at the start of a list. This function takes no locks 1693 * and you must therefore hold required locks before calling it. 1694 * 1695 * A buffer cannot be placed on two lists at the same time. 1696 */ 1697 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 1698 static inline void __skb_queue_head(struct sk_buff_head *list, 1699 struct sk_buff *newsk) 1700 { 1701 __skb_queue_after(list, (struct sk_buff *)list, newsk); 1702 } 1703 1704 /** 1705 * __skb_queue_tail - queue a buffer at the list tail 1706 * @list: list to use 1707 * @newsk: buffer to queue 1708 * 1709 * Queue a buffer at the end of a list. This function takes no locks 1710 * and you must therefore hold required locks before calling it. 1711 * 1712 * A buffer cannot be placed on two lists at the same time. 1713 */ 1714 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 1715 static inline void __skb_queue_tail(struct sk_buff_head *list, 1716 struct sk_buff *newsk) 1717 { 1718 __skb_queue_before(list, (struct sk_buff *)list, newsk); 1719 } 1720 1721 /* 1722 * remove sk_buff from list. _Must_ be called atomically, and with 1723 * the list known.. 1724 */ 1725 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 1726 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 1727 { 1728 struct sk_buff *next, *prev; 1729 1730 list->qlen--; 1731 next = skb->next; 1732 prev = skb->prev; 1733 skb->next = skb->prev = NULL; 1734 next->prev = prev; 1735 prev->next = next; 1736 } 1737 1738 /** 1739 * __skb_dequeue - remove from the head of the queue 1740 * @list: list to dequeue from 1741 * 1742 * Remove the head of the list. This function does not take any locks 1743 * so must be used with appropriate locks held only. The head item is 1744 * returned or %NULL if the list is empty. 1745 */ 1746 struct sk_buff *skb_dequeue(struct sk_buff_head *list); 1747 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 1748 { 1749 struct sk_buff *skb = skb_peek(list); 1750 if (skb) 1751 __skb_unlink(skb, list); 1752 return skb; 1753 } 1754 1755 /** 1756 * __skb_dequeue_tail - remove from the tail of the queue 1757 * @list: list to dequeue from 1758 * 1759 * Remove the tail of the list. This function does not take any locks 1760 * so must be used with appropriate locks held only. The tail item is 1761 * returned or %NULL if the list is empty. 1762 */ 1763 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 1764 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 1765 { 1766 struct sk_buff *skb = skb_peek_tail(list); 1767 if (skb) 1768 __skb_unlink(skb, list); 1769 return skb; 1770 } 1771 1772 1773 static inline bool skb_is_nonlinear(const struct sk_buff *skb) 1774 { 1775 return skb->data_len; 1776 } 1777 1778 static inline unsigned int skb_headlen(const struct sk_buff *skb) 1779 { 1780 return skb->len - skb->data_len; 1781 } 1782 1783 static inline int skb_pagelen(const struct sk_buff *skb) 1784 { 1785 int i, len = 0; 1786 1787 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--) 1788 len += skb_frag_size(&skb_shinfo(skb)->frags[i]); 1789 return len + skb_headlen(skb); 1790 } 1791 1792 /** 1793 * __skb_fill_page_desc - initialise a paged fragment in an skb 1794 * @skb: buffer containing fragment to be initialised 1795 * @i: paged fragment index to initialise 1796 * @page: the page to use for this fragment 1797 * @off: the offset to the data with @page 1798 * @size: the length of the data 1799 * 1800 * Initialises the @i'th fragment of @skb to point to &size bytes at 1801 * offset @off within @page. 1802 * 1803 * Does not take any additional reference on the fragment. 1804 */ 1805 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, 1806 struct page *page, int off, int size) 1807 { 1808 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1809 1810 /* 1811 * Propagate page pfmemalloc to the skb if we can. The problem is 1812 * that not all callers have unique ownership of the page but rely 1813 * on page_is_pfmemalloc doing the right thing(tm). 1814 */ 1815 frag->page.p = page; 1816 frag->page_offset = off; 1817 skb_frag_size_set(frag, size); 1818 1819 page = compound_head(page); 1820 if (page_is_pfmemalloc(page)) 1821 skb->pfmemalloc = true; 1822 } 1823 1824 /** 1825 * skb_fill_page_desc - initialise a paged fragment in an skb 1826 * @skb: buffer containing fragment to be initialised 1827 * @i: paged fragment index to initialise 1828 * @page: the page to use for this fragment 1829 * @off: the offset to the data with @page 1830 * @size: the length of the data 1831 * 1832 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of 1833 * @skb to point to @size bytes at offset @off within @page. In 1834 * addition updates @skb such that @i is the last fragment. 1835 * 1836 * Does not take any additional reference on the fragment. 1837 */ 1838 static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 1839 struct page *page, int off, int size) 1840 { 1841 __skb_fill_page_desc(skb, i, page, off, size); 1842 skb_shinfo(skb)->nr_frags = i + 1; 1843 } 1844 1845 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 1846 int size, unsigned int truesize); 1847 1848 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 1849 unsigned int truesize); 1850 1851 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags) 1852 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb)) 1853 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 1854 1855 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1856 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1857 { 1858 return skb->head + skb->tail; 1859 } 1860 1861 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1862 { 1863 skb->tail = skb->data - skb->head; 1864 } 1865 1866 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1867 { 1868 skb_reset_tail_pointer(skb); 1869 skb->tail += offset; 1870 } 1871 1872 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 1873 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1874 { 1875 return skb->tail; 1876 } 1877 1878 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1879 { 1880 skb->tail = skb->data; 1881 } 1882 1883 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1884 { 1885 skb->tail = skb->data + offset; 1886 } 1887 1888 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1889 1890 /* 1891 * Add data to an sk_buff 1892 */ 1893 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len); 1894 unsigned char *skb_put(struct sk_buff *skb, unsigned int len); 1895 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len) 1896 { 1897 unsigned char *tmp = skb_tail_pointer(skb); 1898 SKB_LINEAR_ASSERT(skb); 1899 skb->tail += len; 1900 skb->len += len; 1901 return tmp; 1902 } 1903 1904 unsigned char *skb_push(struct sk_buff *skb, unsigned int len); 1905 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len) 1906 { 1907 skb->data -= len; 1908 skb->len += len; 1909 return skb->data; 1910 } 1911 1912 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len); 1913 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len) 1914 { 1915 skb->len -= len; 1916 BUG_ON(skb->len < skb->data_len); 1917 return skb->data += len; 1918 } 1919 1920 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len) 1921 { 1922 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 1923 } 1924 1925 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta); 1926 1927 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len) 1928 { 1929 if (len > skb_headlen(skb) && 1930 !__pskb_pull_tail(skb, len - skb_headlen(skb))) 1931 return NULL; 1932 skb->len -= len; 1933 return skb->data += len; 1934 } 1935 1936 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len) 1937 { 1938 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 1939 } 1940 1941 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) 1942 { 1943 if (likely(len <= skb_headlen(skb))) 1944 return 1; 1945 if (unlikely(len > skb->len)) 1946 return 0; 1947 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; 1948 } 1949 1950 /** 1951 * skb_headroom - bytes at buffer head 1952 * @skb: buffer to check 1953 * 1954 * Return the number of bytes of free space at the head of an &sk_buff. 1955 */ 1956 static inline unsigned int skb_headroom(const struct sk_buff *skb) 1957 { 1958 return skb->data - skb->head; 1959 } 1960 1961 /** 1962 * skb_tailroom - bytes at buffer end 1963 * @skb: buffer to check 1964 * 1965 * Return the number of bytes of free space at the tail of an sk_buff 1966 */ 1967 static inline int skb_tailroom(const struct sk_buff *skb) 1968 { 1969 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 1970 } 1971 1972 /** 1973 * skb_availroom - bytes at buffer end 1974 * @skb: buffer to check 1975 * 1976 * Return the number of bytes of free space at the tail of an sk_buff 1977 * allocated by sk_stream_alloc() 1978 */ 1979 static inline int skb_availroom(const struct sk_buff *skb) 1980 { 1981 if (skb_is_nonlinear(skb)) 1982 return 0; 1983 1984 return skb->end - skb->tail - skb->reserved_tailroom; 1985 } 1986 1987 /** 1988 * skb_reserve - adjust headroom 1989 * @skb: buffer to alter 1990 * @len: bytes to move 1991 * 1992 * Increase the headroom of an empty &sk_buff by reducing the tail 1993 * room. This is only allowed for an empty buffer. 1994 */ 1995 static inline void skb_reserve(struct sk_buff *skb, int len) 1996 { 1997 skb->data += len; 1998 skb->tail += len; 1999 } 2000 2001 /** 2002 * skb_tailroom_reserve - adjust reserved_tailroom 2003 * @skb: buffer to alter 2004 * @mtu: maximum amount of headlen permitted 2005 * @needed_tailroom: minimum amount of reserved_tailroom 2006 * 2007 * Set reserved_tailroom so that headlen can be as large as possible but 2008 * not larger than mtu and tailroom cannot be smaller than 2009 * needed_tailroom. 2010 * The required headroom should already have been reserved before using 2011 * this function. 2012 */ 2013 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu, 2014 unsigned int needed_tailroom) 2015 { 2016 SKB_LINEAR_ASSERT(skb); 2017 if (mtu < skb_tailroom(skb) - needed_tailroom) 2018 /* use at most mtu */ 2019 skb->reserved_tailroom = skb_tailroom(skb) - mtu; 2020 else 2021 /* use up to all available space */ 2022 skb->reserved_tailroom = needed_tailroom; 2023 } 2024 2025 #define ENCAP_TYPE_ETHER 0 2026 #define ENCAP_TYPE_IPPROTO 1 2027 2028 static inline void skb_set_inner_protocol(struct sk_buff *skb, 2029 __be16 protocol) 2030 { 2031 skb->inner_protocol = protocol; 2032 skb->inner_protocol_type = ENCAP_TYPE_ETHER; 2033 } 2034 2035 static inline void skb_set_inner_ipproto(struct sk_buff *skb, 2036 __u8 ipproto) 2037 { 2038 skb->inner_ipproto = ipproto; 2039 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO; 2040 } 2041 2042 static inline void skb_reset_inner_headers(struct sk_buff *skb) 2043 { 2044 skb->inner_mac_header = skb->mac_header; 2045 skb->inner_network_header = skb->network_header; 2046 skb->inner_transport_header = skb->transport_header; 2047 } 2048 2049 static inline void skb_reset_mac_len(struct sk_buff *skb) 2050 { 2051 skb->mac_len = skb->network_header - skb->mac_header; 2052 } 2053 2054 static inline unsigned char *skb_inner_transport_header(const struct sk_buff 2055 *skb) 2056 { 2057 return skb->head + skb->inner_transport_header; 2058 } 2059 2060 static inline int skb_inner_transport_offset(const struct sk_buff *skb) 2061 { 2062 return skb_inner_transport_header(skb) - skb->data; 2063 } 2064 2065 static inline void skb_reset_inner_transport_header(struct sk_buff *skb) 2066 { 2067 skb->inner_transport_header = skb->data - skb->head; 2068 } 2069 2070 static inline void skb_set_inner_transport_header(struct sk_buff *skb, 2071 const int offset) 2072 { 2073 skb_reset_inner_transport_header(skb); 2074 skb->inner_transport_header += offset; 2075 } 2076 2077 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) 2078 { 2079 return skb->head + skb->inner_network_header; 2080 } 2081 2082 static inline void skb_reset_inner_network_header(struct sk_buff *skb) 2083 { 2084 skb->inner_network_header = skb->data - skb->head; 2085 } 2086 2087 static inline void skb_set_inner_network_header(struct sk_buff *skb, 2088 const int offset) 2089 { 2090 skb_reset_inner_network_header(skb); 2091 skb->inner_network_header += offset; 2092 } 2093 2094 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) 2095 { 2096 return skb->head + skb->inner_mac_header; 2097 } 2098 2099 static inline void skb_reset_inner_mac_header(struct sk_buff *skb) 2100 { 2101 skb->inner_mac_header = skb->data - skb->head; 2102 } 2103 2104 static inline void skb_set_inner_mac_header(struct sk_buff *skb, 2105 const int offset) 2106 { 2107 skb_reset_inner_mac_header(skb); 2108 skb->inner_mac_header += offset; 2109 } 2110 static inline bool skb_transport_header_was_set(const struct sk_buff *skb) 2111 { 2112 return skb->transport_header != (typeof(skb->transport_header))~0U; 2113 } 2114 2115 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 2116 { 2117 return skb->head + skb->transport_header; 2118 } 2119 2120 static inline void skb_reset_transport_header(struct sk_buff *skb) 2121 { 2122 skb->transport_header = skb->data - skb->head; 2123 } 2124 2125 static inline void skb_set_transport_header(struct sk_buff *skb, 2126 const int offset) 2127 { 2128 skb_reset_transport_header(skb); 2129 skb->transport_header += offset; 2130 } 2131 2132 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 2133 { 2134 return skb->head + skb->network_header; 2135 } 2136 2137 static inline void skb_reset_network_header(struct sk_buff *skb) 2138 { 2139 skb->network_header = skb->data - skb->head; 2140 } 2141 2142 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 2143 { 2144 skb_reset_network_header(skb); 2145 skb->network_header += offset; 2146 } 2147 2148 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 2149 { 2150 return skb->head + skb->mac_header; 2151 } 2152 2153 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 2154 { 2155 return skb->mac_header != (typeof(skb->mac_header))~0U; 2156 } 2157 2158 static inline void skb_reset_mac_header(struct sk_buff *skb) 2159 { 2160 skb->mac_header = skb->data - skb->head; 2161 } 2162 2163 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 2164 { 2165 skb_reset_mac_header(skb); 2166 skb->mac_header += offset; 2167 } 2168 2169 static inline void skb_pop_mac_header(struct sk_buff *skb) 2170 { 2171 skb->mac_header = skb->network_header; 2172 } 2173 2174 static inline void skb_probe_transport_header(struct sk_buff *skb, 2175 const int offset_hint) 2176 { 2177 struct flow_keys keys; 2178 2179 if (skb_transport_header_was_set(skb)) 2180 return; 2181 else if (skb_flow_dissect_flow_keys(skb, &keys, 0)) 2182 skb_set_transport_header(skb, keys.control.thoff); 2183 else 2184 skb_set_transport_header(skb, offset_hint); 2185 } 2186 2187 static inline void skb_mac_header_rebuild(struct sk_buff *skb) 2188 { 2189 if (skb_mac_header_was_set(skb)) { 2190 const unsigned char *old_mac = skb_mac_header(skb); 2191 2192 skb_set_mac_header(skb, -skb->mac_len); 2193 memmove(skb_mac_header(skb), old_mac, skb->mac_len); 2194 } 2195 } 2196 2197 static inline int skb_checksum_start_offset(const struct sk_buff *skb) 2198 { 2199 return skb->csum_start - skb_headroom(skb); 2200 } 2201 2202 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb) 2203 { 2204 return skb->head + skb->csum_start; 2205 } 2206 2207 static inline int skb_transport_offset(const struct sk_buff *skb) 2208 { 2209 return skb_transport_header(skb) - skb->data; 2210 } 2211 2212 static inline u32 skb_network_header_len(const struct sk_buff *skb) 2213 { 2214 return skb->transport_header - skb->network_header; 2215 } 2216 2217 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) 2218 { 2219 return skb->inner_transport_header - skb->inner_network_header; 2220 } 2221 2222 static inline int skb_network_offset(const struct sk_buff *skb) 2223 { 2224 return skb_network_header(skb) - skb->data; 2225 } 2226 2227 static inline int skb_inner_network_offset(const struct sk_buff *skb) 2228 { 2229 return skb_inner_network_header(skb) - skb->data; 2230 } 2231 2232 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 2233 { 2234 return pskb_may_pull(skb, skb_network_offset(skb) + len); 2235 } 2236 2237 /* 2238 * CPUs often take a performance hit when accessing unaligned memory 2239 * locations. The actual performance hit varies, it can be small if the 2240 * hardware handles it or large if we have to take an exception and fix it 2241 * in software. 2242 * 2243 * Since an ethernet header is 14 bytes network drivers often end up with 2244 * the IP header at an unaligned offset. The IP header can be aligned by 2245 * shifting the start of the packet by 2 bytes. Drivers should do this 2246 * with: 2247 * 2248 * skb_reserve(skb, NET_IP_ALIGN); 2249 * 2250 * The downside to this alignment of the IP header is that the DMA is now 2251 * unaligned. On some architectures the cost of an unaligned DMA is high 2252 * and this cost outweighs the gains made by aligning the IP header. 2253 * 2254 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 2255 * to be overridden. 2256 */ 2257 #ifndef NET_IP_ALIGN 2258 #define NET_IP_ALIGN 2 2259 #endif 2260 2261 /* 2262 * The networking layer reserves some headroom in skb data (via 2263 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 2264 * the header has to grow. In the default case, if the header has to grow 2265 * 32 bytes or less we avoid the reallocation. 2266 * 2267 * Unfortunately this headroom changes the DMA alignment of the resulting 2268 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 2269 * on some architectures. An architecture can override this value, 2270 * perhaps setting it to a cacheline in size (since that will maintain 2271 * cacheline alignment of the DMA). It must be a power of 2. 2272 * 2273 * Various parts of the networking layer expect at least 32 bytes of 2274 * headroom, you should not reduce this. 2275 * 2276 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 2277 * to reduce average number of cache lines per packet. 2278 * get_rps_cpus() for example only access one 64 bytes aligned block : 2279 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 2280 */ 2281 #ifndef NET_SKB_PAD 2282 #define NET_SKB_PAD max(32, L1_CACHE_BYTES) 2283 #endif 2284 2285 int ___pskb_trim(struct sk_buff *skb, unsigned int len); 2286 2287 static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 2288 { 2289 if (unlikely(skb_is_nonlinear(skb))) { 2290 WARN_ON(1); 2291 return; 2292 } 2293 skb->len = len; 2294 skb_set_tail_pointer(skb, len); 2295 } 2296 2297 void skb_trim(struct sk_buff *skb, unsigned int len); 2298 2299 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 2300 { 2301 if (skb->data_len) 2302 return ___pskb_trim(skb, len); 2303 __skb_trim(skb, len); 2304 return 0; 2305 } 2306 2307 static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 2308 { 2309 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 2310 } 2311 2312 /** 2313 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 2314 * @skb: buffer to alter 2315 * @len: new length 2316 * 2317 * This is identical to pskb_trim except that the caller knows that 2318 * the skb is not cloned so we should never get an error due to out- 2319 * of-memory. 2320 */ 2321 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 2322 { 2323 int err = pskb_trim(skb, len); 2324 BUG_ON(err); 2325 } 2326 2327 /** 2328 * skb_orphan - orphan a buffer 2329 * @skb: buffer to orphan 2330 * 2331 * If a buffer currently has an owner then we call the owner's 2332 * destructor function and make the @skb unowned. The buffer continues 2333 * to exist but is no longer charged to its former owner. 2334 */ 2335 static inline void skb_orphan(struct sk_buff *skb) 2336 { 2337 if (skb->destructor) { 2338 skb->destructor(skb); 2339 skb->destructor = NULL; 2340 skb->sk = NULL; 2341 } else { 2342 BUG_ON(skb->sk); 2343 } 2344 } 2345 2346 /** 2347 * skb_orphan_frags - orphan the frags contained in a buffer 2348 * @skb: buffer to orphan frags from 2349 * @gfp_mask: allocation mask for replacement pages 2350 * 2351 * For each frag in the SKB which needs a destructor (i.e. has an 2352 * owner) create a copy of that frag and release the original 2353 * page by calling the destructor. 2354 */ 2355 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) 2356 { 2357 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY))) 2358 return 0; 2359 return skb_copy_ubufs(skb, gfp_mask); 2360 } 2361 2362 /** 2363 * __skb_queue_purge - empty a list 2364 * @list: list to empty 2365 * 2366 * Delete all buffers on an &sk_buff list. Each buffer is removed from 2367 * the list and one reference dropped. This function does not take the 2368 * list lock and the caller must hold the relevant locks to use it. 2369 */ 2370 void skb_queue_purge(struct sk_buff_head *list); 2371 static inline void __skb_queue_purge(struct sk_buff_head *list) 2372 { 2373 struct sk_buff *skb; 2374 while ((skb = __skb_dequeue(list)) != NULL) 2375 kfree_skb(skb); 2376 } 2377 2378 void *netdev_alloc_frag(unsigned int fragsz); 2379 2380 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length, 2381 gfp_t gfp_mask); 2382 2383 /** 2384 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 2385 * @dev: network device to receive on 2386 * @length: length to allocate 2387 * 2388 * Allocate a new &sk_buff and assign it a usage count of one. The 2389 * buffer has unspecified headroom built in. Users should allocate 2390 * the headroom they think they need without accounting for the 2391 * built in space. The built in space is used for optimisations. 2392 * 2393 * %NULL is returned if there is no free memory. Although this function 2394 * allocates memory it can be called from an interrupt. 2395 */ 2396 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 2397 unsigned int length) 2398 { 2399 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 2400 } 2401 2402 /* legacy helper around __netdev_alloc_skb() */ 2403 static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 2404 gfp_t gfp_mask) 2405 { 2406 return __netdev_alloc_skb(NULL, length, gfp_mask); 2407 } 2408 2409 /* legacy helper around netdev_alloc_skb() */ 2410 static inline struct sk_buff *dev_alloc_skb(unsigned int length) 2411 { 2412 return netdev_alloc_skb(NULL, length); 2413 } 2414 2415 2416 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, 2417 unsigned int length, gfp_t gfp) 2418 { 2419 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); 2420 2421 if (NET_IP_ALIGN && skb) 2422 skb_reserve(skb, NET_IP_ALIGN); 2423 return skb; 2424 } 2425 2426 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 2427 unsigned int length) 2428 { 2429 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); 2430 } 2431 2432 static inline void skb_free_frag(void *addr) 2433 { 2434 __free_page_frag(addr); 2435 } 2436 2437 void *napi_alloc_frag(unsigned int fragsz); 2438 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, 2439 unsigned int length, gfp_t gfp_mask); 2440 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi, 2441 unsigned int length) 2442 { 2443 return __napi_alloc_skb(napi, length, GFP_ATOMIC); 2444 } 2445 void napi_consume_skb(struct sk_buff *skb, int budget); 2446 2447 void __kfree_skb_flush(void); 2448 void __kfree_skb_defer(struct sk_buff *skb); 2449 2450 /** 2451 * __dev_alloc_pages - allocate page for network Rx 2452 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 2453 * @order: size of the allocation 2454 * 2455 * Allocate a new page. 2456 * 2457 * %NULL is returned if there is no free memory. 2458 */ 2459 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask, 2460 unsigned int order) 2461 { 2462 /* This piece of code contains several assumptions. 2463 * 1. This is for device Rx, therefor a cold page is preferred. 2464 * 2. The expectation is the user wants a compound page. 2465 * 3. If requesting a order 0 page it will not be compound 2466 * due to the check to see if order has a value in prep_new_page 2467 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to 2468 * code in gfp_to_alloc_flags that should be enforcing this. 2469 */ 2470 gfp_mask |= __GFP_COLD | __GFP_COMP | __GFP_MEMALLOC; 2471 2472 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order); 2473 } 2474 2475 static inline struct page *dev_alloc_pages(unsigned int order) 2476 { 2477 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order); 2478 } 2479 2480 /** 2481 * __dev_alloc_page - allocate a page for network Rx 2482 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 2483 * 2484 * Allocate a new page. 2485 * 2486 * %NULL is returned if there is no free memory. 2487 */ 2488 static inline struct page *__dev_alloc_page(gfp_t gfp_mask) 2489 { 2490 return __dev_alloc_pages(gfp_mask, 0); 2491 } 2492 2493 static inline struct page *dev_alloc_page(void) 2494 { 2495 return dev_alloc_pages(0); 2496 } 2497 2498 /** 2499 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page 2500 * @page: The page that was allocated from skb_alloc_page 2501 * @skb: The skb that may need pfmemalloc set 2502 */ 2503 static inline void skb_propagate_pfmemalloc(struct page *page, 2504 struct sk_buff *skb) 2505 { 2506 if (page_is_pfmemalloc(page)) 2507 skb->pfmemalloc = true; 2508 } 2509 2510 /** 2511 * skb_frag_page - retrieve the page referred to by a paged fragment 2512 * @frag: the paged fragment 2513 * 2514 * Returns the &struct page associated with @frag. 2515 */ 2516 static inline struct page *skb_frag_page(const skb_frag_t *frag) 2517 { 2518 return frag->page.p; 2519 } 2520 2521 /** 2522 * __skb_frag_ref - take an addition reference on a paged fragment. 2523 * @frag: the paged fragment 2524 * 2525 * Takes an additional reference on the paged fragment @frag. 2526 */ 2527 static inline void __skb_frag_ref(skb_frag_t *frag) 2528 { 2529 get_page(skb_frag_page(frag)); 2530 } 2531 2532 /** 2533 * skb_frag_ref - take an addition reference on a paged fragment of an skb. 2534 * @skb: the buffer 2535 * @f: the fragment offset. 2536 * 2537 * Takes an additional reference on the @f'th paged fragment of @skb. 2538 */ 2539 static inline void skb_frag_ref(struct sk_buff *skb, int f) 2540 { 2541 __skb_frag_ref(&skb_shinfo(skb)->frags[f]); 2542 } 2543 2544 /** 2545 * __skb_frag_unref - release a reference on a paged fragment. 2546 * @frag: the paged fragment 2547 * 2548 * Releases a reference on the paged fragment @frag. 2549 */ 2550 static inline void __skb_frag_unref(skb_frag_t *frag) 2551 { 2552 put_page(skb_frag_page(frag)); 2553 } 2554 2555 /** 2556 * skb_frag_unref - release a reference on a paged fragment of an skb. 2557 * @skb: the buffer 2558 * @f: the fragment offset 2559 * 2560 * Releases a reference on the @f'th paged fragment of @skb. 2561 */ 2562 static inline void skb_frag_unref(struct sk_buff *skb, int f) 2563 { 2564 __skb_frag_unref(&skb_shinfo(skb)->frags[f]); 2565 } 2566 2567 /** 2568 * skb_frag_address - gets the address of the data contained in a paged fragment 2569 * @frag: the paged fragment buffer 2570 * 2571 * Returns the address of the data within @frag. The page must already 2572 * be mapped. 2573 */ 2574 static inline void *skb_frag_address(const skb_frag_t *frag) 2575 { 2576 return page_address(skb_frag_page(frag)) + frag->page_offset; 2577 } 2578 2579 /** 2580 * skb_frag_address_safe - gets the address of the data contained in a paged fragment 2581 * @frag: the paged fragment buffer 2582 * 2583 * Returns the address of the data within @frag. Checks that the page 2584 * is mapped and returns %NULL otherwise. 2585 */ 2586 static inline void *skb_frag_address_safe(const skb_frag_t *frag) 2587 { 2588 void *ptr = page_address(skb_frag_page(frag)); 2589 if (unlikely(!ptr)) 2590 return NULL; 2591 2592 return ptr + frag->page_offset; 2593 } 2594 2595 /** 2596 * __skb_frag_set_page - sets the page contained in a paged fragment 2597 * @frag: the paged fragment 2598 * @page: the page to set 2599 * 2600 * Sets the fragment @frag to contain @page. 2601 */ 2602 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page) 2603 { 2604 frag->page.p = page; 2605 } 2606 2607 /** 2608 * skb_frag_set_page - sets the page contained in a paged fragment of an skb 2609 * @skb: the buffer 2610 * @f: the fragment offset 2611 * @page: the page to set 2612 * 2613 * Sets the @f'th fragment of @skb to contain @page. 2614 */ 2615 static inline void skb_frag_set_page(struct sk_buff *skb, int f, 2616 struct page *page) 2617 { 2618 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page); 2619 } 2620 2621 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio); 2622 2623 /** 2624 * skb_frag_dma_map - maps a paged fragment via the DMA API 2625 * @dev: the device to map the fragment to 2626 * @frag: the paged fragment to map 2627 * @offset: the offset within the fragment (starting at the 2628 * fragment's own offset) 2629 * @size: the number of bytes to map 2630 * @dir: the direction of the mapping (%PCI_DMA_*) 2631 * 2632 * Maps the page associated with @frag to @device. 2633 */ 2634 static inline dma_addr_t skb_frag_dma_map(struct device *dev, 2635 const skb_frag_t *frag, 2636 size_t offset, size_t size, 2637 enum dma_data_direction dir) 2638 { 2639 return dma_map_page(dev, skb_frag_page(frag), 2640 frag->page_offset + offset, size, dir); 2641 } 2642 2643 static inline struct sk_buff *pskb_copy(struct sk_buff *skb, 2644 gfp_t gfp_mask) 2645 { 2646 return __pskb_copy(skb, skb_headroom(skb), gfp_mask); 2647 } 2648 2649 2650 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb, 2651 gfp_t gfp_mask) 2652 { 2653 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true); 2654 } 2655 2656 2657 /** 2658 * skb_clone_writable - is the header of a clone writable 2659 * @skb: buffer to check 2660 * @len: length up to which to write 2661 * 2662 * Returns true if modifying the header part of the cloned buffer 2663 * does not requires the data to be copied. 2664 */ 2665 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) 2666 { 2667 return !skb_header_cloned(skb) && 2668 skb_headroom(skb) + len <= skb->hdr_len; 2669 } 2670 2671 static inline int skb_try_make_writable(struct sk_buff *skb, 2672 unsigned int write_len) 2673 { 2674 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) && 2675 pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2676 } 2677 2678 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 2679 int cloned) 2680 { 2681 int delta = 0; 2682 2683 if (headroom > skb_headroom(skb)) 2684 delta = headroom - skb_headroom(skb); 2685 2686 if (delta || cloned) 2687 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 2688 GFP_ATOMIC); 2689 return 0; 2690 } 2691 2692 /** 2693 * skb_cow - copy header of skb when it is required 2694 * @skb: buffer to cow 2695 * @headroom: needed headroom 2696 * 2697 * If the skb passed lacks sufficient headroom or its data part 2698 * is shared, data is reallocated. If reallocation fails, an error 2699 * is returned and original skb is not changed. 2700 * 2701 * The result is skb with writable area skb->head...skb->tail 2702 * and at least @headroom of space at head. 2703 */ 2704 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 2705 { 2706 return __skb_cow(skb, headroom, skb_cloned(skb)); 2707 } 2708 2709 /** 2710 * skb_cow_head - skb_cow but only making the head writable 2711 * @skb: buffer to cow 2712 * @headroom: needed headroom 2713 * 2714 * This function is identical to skb_cow except that we replace the 2715 * skb_cloned check by skb_header_cloned. It should be used when 2716 * you only need to push on some header and do not need to modify 2717 * the data. 2718 */ 2719 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 2720 { 2721 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 2722 } 2723 2724 /** 2725 * skb_padto - pad an skbuff up to a minimal size 2726 * @skb: buffer to pad 2727 * @len: minimal length 2728 * 2729 * Pads up a buffer to ensure the trailing bytes exist and are 2730 * blanked. If the buffer already contains sufficient data it 2731 * is untouched. Otherwise it is extended. Returns zero on 2732 * success. The skb is freed on error. 2733 */ 2734 static inline int skb_padto(struct sk_buff *skb, unsigned int len) 2735 { 2736 unsigned int size = skb->len; 2737 if (likely(size >= len)) 2738 return 0; 2739 return skb_pad(skb, len - size); 2740 } 2741 2742 /** 2743 * skb_put_padto - increase size and pad an skbuff up to a minimal size 2744 * @skb: buffer to pad 2745 * @len: minimal length 2746 * 2747 * Pads up a buffer to ensure the trailing bytes exist and are 2748 * blanked. If the buffer already contains sufficient data it 2749 * is untouched. Otherwise it is extended. Returns zero on 2750 * success. The skb is freed on error. 2751 */ 2752 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len) 2753 { 2754 unsigned int size = skb->len; 2755 2756 if (unlikely(size < len)) { 2757 len -= size; 2758 if (skb_pad(skb, len)) 2759 return -ENOMEM; 2760 __skb_put(skb, len); 2761 } 2762 return 0; 2763 } 2764 2765 static inline int skb_add_data(struct sk_buff *skb, 2766 struct iov_iter *from, int copy) 2767 { 2768 const int off = skb->len; 2769 2770 if (skb->ip_summed == CHECKSUM_NONE) { 2771 __wsum csum = 0; 2772 if (csum_and_copy_from_iter(skb_put(skb, copy), copy, 2773 &csum, from) == copy) { 2774 skb->csum = csum_block_add(skb->csum, csum, off); 2775 return 0; 2776 } 2777 } else if (copy_from_iter(skb_put(skb, copy), copy, from) == copy) 2778 return 0; 2779 2780 __skb_trim(skb, off); 2781 return -EFAULT; 2782 } 2783 2784 static inline bool skb_can_coalesce(struct sk_buff *skb, int i, 2785 const struct page *page, int off) 2786 { 2787 if (i) { 2788 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 2789 2790 return page == skb_frag_page(frag) && 2791 off == frag->page_offset + skb_frag_size(frag); 2792 } 2793 return false; 2794 } 2795 2796 static inline int __skb_linearize(struct sk_buff *skb) 2797 { 2798 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 2799 } 2800 2801 /** 2802 * skb_linearize - convert paged skb to linear one 2803 * @skb: buffer to linarize 2804 * 2805 * If there is no free memory -ENOMEM is returned, otherwise zero 2806 * is returned and the old skb data released. 2807 */ 2808 static inline int skb_linearize(struct sk_buff *skb) 2809 { 2810 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 2811 } 2812 2813 /** 2814 * skb_has_shared_frag - can any frag be overwritten 2815 * @skb: buffer to test 2816 * 2817 * Return true if the skb has at least one frag that might be modified 2818 * by an external entity (as in vmsplice()/sendfile()) 2819 */ 2820 static inline bool skb_has_shared_frag(const struct sk_buff *skb) 2821 { 2822 return skb_is_nonlinear(skb) && 2823 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG; 2824 } 2825 2826 /** 2827 * skb_linearize_cow - make sure skb is linear and writable 2828 * @skb: buffer to process 2829 * 2830 * If there is no free memory -ENOMEM is returned, otherwise zero 2831 * is returned and the old skb data released. 2832 */ 2833 static inline int skb_linearize_cow(struct sk_buff *skb) 2834 { 2835 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 2836 __skb_linearize(skb) : 0; 2837 } 2838 2839 /** 2840 * skb_postpull_rcsum - update checksum for received skb after pull 2841 * @skb: buffer to update 2842 * @start: start of data before pull 2843 * @len: length of data pulled 2844 * 2845 * After doing a pull on a received packet, you need to call this to 2846 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 2847 * CHECKSUM_NONE so that it can be recomputed from scratch. 2848 */ 2849 2850 static inline void skb_postpull_rcsum(struct sk_buff *skb, 2851 const void *start, unsigned int len) 2852 { 2853 if (skb->ip_summed == CHECKSUM_COMPLETE) 2854 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0)); 2855 else if (skb->ip_summed == CHECKSUM_PARTIAL && 2856 skb_checksum_start_offset(skb) < 0) 2857 skb->ip_summed = CHECKSUM_NONE; 2858 } 2859 2860 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 2861 2862 static inline void skb_postpush_rcsum(struct sk_buff *skb, 2863 const void *start, unsigned int len) 2864 { 2865 /* For performing the reverse operation to skb_postpull_rcsum(), 2866 * we can instead of ... 2867 * 2868 * skb->csum = csum_add(skb->csum, csum_partial(start, len, 0)); 2869 * 2870 * ... just use this equivalent version here to save a few 2871 * instructions. Feeding csum of 0 in csum_partial() and later 2872 * on adding skb->csum is equivalent to feed skb->csum in the 2873 * first place. 2874 */ 2875 if (skb->ip_summed == CHECKSUM_COMPLETE) 2876 skb->csum = csum_partial(start, len, skb->csum); 2877 } 2878 2879 /** 2880 * pskb_trim_rcsum - trim received skb and update checksum 2881 * @skb: buffer to trim 2882 * @len: new length 2883 * 2884 * This is exactly the same as pskb_trim except that it ensures the 2885 * checksum of received packets are still valid after the operation. 2886 */ 2887 2888 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 2889 { 2890 if (likely(len >= skb->len)) 2891 return 0; 2892 if (skb->ip_summed == CHECKSUM_COMPLETE) 2893 skb->ip_summed = CHECKSUM_NONE; 2894 return __pskb_trim(skb, len); 2895 } 2896 2897 #define skb_queue_walk(queue, skb) \ 2898 for (skb = (queue)->next; \ 2899 skb != (struct sk_buff *)(queue); \ 2900 skb = skb->next) 2901 2902 #define skb_queue_walk_safe(queue, skb, tmp) \ 2903 for (skb = (queue)->next, tmp = skb->next; \ 2904 skb != (struct sk_buff *)(queue); \ 2905 skb = tmp, tmp = skb->next) 2906 2907 #define skb_queue_walk_from(queue, skb) \ 2908 for (; skb != (struct sk_buff *)(queue); \ 2909 skb = skb->next) 2910 2911 #define skb_queue_walk_from_safe(queue, skb, tmp) \ 2912 for (tmp = skb->next; \ 2913 skb != (struct sk_buff *)(queue); \ 2914 skb = tmp, tmp = skb->next) 2915 2916 #define skb_queue_reverse_walk(queue, skb) \ 2917 for (skb = (queue)->prev; \ 2918 skb != (struct sk_buff *)(queue); \ 2919 skb = skb->prev) 2920 2921 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \ 2922 for (skb = (queue)->prev, tmp = skb->prev; \ 2923 skb != (struct sk_buff *)(queue); \ 2924 skb = tmp, tmp = skb->prev) 2925 2926 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ 2927 for (tmp = skb->prev; \ 2928 skb != (struct sk_buff *)(queue); \ 2929 skb = tmp, tmp = skb->prev) 2930 2931 static inline bool skb_has_frag_list(const struct sk_buff *skb) 2932 { 2933 return skb_shinfo(skb)->frag_list != NULL; 2934 } 2935 2936 static inline void skb_frag_list_init(struct sk_buff *skb) 2937 { 2938 skb_shinfo(skb)->frag_list = NULL; 2939 } 2940 2941 #define skb_walk_frags(skb, iter) \ 2942 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 2943 2944 2945 int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p, 2946 const struct sk_buff *skb); 2947 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags, 2948 int *peeked, int *off, int *err, 2949 struct sk_buff **last); 2950 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags, 2951 int *peeked, int *off, int *err); 2952 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock, 2953 int *err); 2954 unsigned int datagram_poll(struct file *file, struct socket *sock, 2955 struct poll_table_struct *wait); 2956 int skb_copy_datagram_iter(const struct sk_buff *from, int offset, 2957 struct iov_iter *to, int size); 2958 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset, 2959 struct msghdr *msg, int size) 2960 { 2961 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size); 2962 } 2963 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen, 2964 struct msghdr *msg); 2965 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset, 2966 struct iov_iter *from, int len); 2967 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm); 2968 void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 2969 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len); 2970 static inline void skb_free_datagram_locked(struct sock *sk, 2971 struct sk_buff *skb) 2972 { 2973 __skb_free_datagram_locked(sk, skb, 0); 2974 } 2975 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags); 2976 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len); 2977 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len); 2978 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, 2979 int len, __wsum csum); 2980 ssize_t skb_socket_splice(struct sock *sk, 2981 struct pipe_inode_info *pipe, 2982 struct splice_pipe_desc *spd); 2983 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 2984 struct pipe_inode_info *pipe, unsigned int len, 2985 unsigned int flags, 2986 ssize_t (*splice_cb)(struct sock *, 2987 struct pipe_inode_info *, 2988 struct splice_pipe_desc *)); 2989 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 2990 unsigned int skb_zerocopy_headlen(const struct sk_buff *from); 2991 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from, 2992 int len, int hlen); 2993 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len); 2994 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen); 2995 void skb_scrub_packet(struct sk_buff *skb, bool xnet); 2996 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb); 2997 bool skb_gso_validate_mtu(const struct sk_buff *skb, unsigned int mtu); 2998 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features); 2999 struct sk_buff *skb_vlan_untag(struct sk_buff *skb); 3000 int skb_ensure_writable(struct sk_buff *skb, int write_len); 3001 int skb_vlan_pop(struct sk_buff *skb); 3002 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci); 3003 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy, 3004 gfp_t gfp); 3005 3006 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len) 3007 { 3008 return copy_from_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT; 3009 } 3010 3011 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len) 3012 { 3013 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT; 3014 } 3015 3016 struct skb_checksum_ops { 3017 __wsum (*update)(const void *mem, int len, __wsum wsum); 3018 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len); 3019 }; 3020 3021 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 3022 __wsum csum, const struct skb_checksum_ops *ops); 3023 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len, 3024 __wsum csum); 3025 3026 static inline void * __must_check 3027 __skb_header_pointer(const struct sk_buff *skb, int offset, 3028 int len, void *data, int hlen, void *buffer) 3029 { 3030 if (hlen - offset >= len) 3031 return data + offset; 3032 3033 if (!skb || 3034 skb_copy_bits(skb, offset, buffer, len) < 0) 3035 return NULL; 3036 3037 return buffer; 3038 } 3039 3040 static inline void * __must_check 3041 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer) 3042 { 3043 return __skb_header_pointer(skb, offset, len, skb->data, 3044 skb_headlen(skb), buffer); 3045 } 3046 3047 /** 3048 * skb_needs_linearize - check if we need to linearize a given skb 3049 * depending on the given device features. 3050 * @skb: socket buffer to check 3051 * @features: net device features 3052 * 3053 * Returns true if either: 3054 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 3055 * 2. skb is fragmented and the device does not support SG. 3056 */ 3057 static inline bool skb_needs_linearize(struct sk_buff *skb, 3058 netdev_features_t features) 3059 { 3060 return skb_is_nonlinear(skb) && 3061 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) || 3062 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG))); 3063 } 3064 3065 static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 3066 void *to, 3067 const unsigned int len) 3068 { 3069 memcpy(to, skb->data, len); 3070 } 3071 3072 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 3073 const int offset, void *to, 3074 const unsigned int len) 3075 { 3076 memcpy(to, skb->data + offset, len); 3077 } 3078 3079 static inline void skb_copy_to_linear_data(struct sk_buff *skb, 3080 const void *from, 3081 const unsigned int len) 3082 { 3083 memcpy(skb->data, from, len); 3084 } 3085 3086 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 3087 const int offset, 3088 const void *from, 3089 const unsigned int len) 3090 { 3091 memcpy(skb->data + offset, from, len); 3092 } 3093 3094 void skb_init(void); 3095 3096 static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 3097 { 3098 return skb->tstamp; 3099 } 3100 3101 /** 3102 * skb_get_timestamp - get timestamp from a skb 3103 * @skb: skb to get stamp from 3104 * @stamp: pointer to struct timeval to store stamp in 3105 * 3106 * Timestamps are stored in the skb as offsets to a base timestamp. 3107 * This function converts the offset back to a struct timeval and stores 3108 * it in stamp. 3109 */ 3110 static inline void skb_get_timestamp(const struct sk_buff *skb, 3111 struct timeval *stamp) 3112 { 3113 *stamp = ktime_to_timeval(skb->tstamp); 3114 } 3115 3116 static inline void skb_get_timestampns(const struct sk_buff *skb, 3117 struct timespec *stamp) 3118 { 3119 *stamp = ktime_to_timespec(skb->tstamp); 3120 } 3121 3122 static inline void __net_timestamp(struct sk_buff *skb) 3123 { 3124 skb->tstamp = ktime_get_real(); 3125 } 3126 3127 static inline ktime_t net_timedelta(ktime_t t) 3128 { 3129 return ktime_sub(ktime_get_real(), t); 3130 } 3131 3132 static inline ktime_t net_invalid_timestamp(void) 3133 { 3134 return ktime_set(0, 0); 3135 } 3136 3137 struct sk_buff *skb_clone_sk(struct sk_buff *skb); 3138 3139 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 3140 3141 void skb_clone_tx_timestamp(struct sk_buff *skb); 3142 bool skb_defer_rx_timestamp(struct sk_buff *skb); 3143 3144 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 3145 3146 static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 3147 { 3148 } 3149 3150 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 3151 { 3152 return false; 3153 } 3154 3155 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 3156 3157 /** 3158 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 3159 * 3160 * PHY drivers may accept clones of transmitted packets for 3161 * timestamping via their phy_driver.txtstamp method. These drivers 3162 * must call this function to return the skb back to the stack with a 3163 * timestamp. 3164 * 3165 * @skb: clone of the the original outgoing packet 3166 * @hwtstamps: hardware time stamps 3167 * 3168 */ 3169 void skb_complete_tx_timestamp(struct sk_buff *skb, 3170 struct skb_shared_hwtstamps *hwtstamps); 3171 3172 void __skb_tstamp_tx(struct sk_buff *orig_skb, 3173 struct skb_shared_hwtstamps *hwtstamps, 3174 struct sock *sk, int tstype); 3175 3176 /** 3177 * skb_tstamp_tx - queue clone of skb with send time stamps 3178 * @orig_skb: the original outgoing packet 3179 * @hwtstamps: hardware time stamps, may be NULL if not available 3180 * 3181 * If the skb has a socket associated, then this function clones the 3182 * skb (thus sharing the actual data and optional structures), stores 3183 * the optional hardware time stamping information (if non NULL) or 3184 * generates a software time stamp (otherwise), then queues the clone 3185 * to the error queue of the socket. Errors are silently ignored. 3186 */ 3187 void skb_tstamp_tx(struct sk_buff *orig_skb, 3188 struct skb_shared_hwtstamps *hwtstamps); 3189 3190 static inline void sw_tx_timestamp(struct sk_buff *skb) 3191 { 3192 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP && 3193 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) 3194 skb_tstamp_tx(skb, NULL); 3195 } 3196 3197 /** 3198 * skb_tx_timestamp() - Driver hook for transmit timestamping 3199 * 3200 * Ethernet MAC Drivers should call this function in their hard_xmit() 3201 * function immediately before giving the sk_buff to the MAC hardware. 3202 * 3203 * Specifically, one should make absolutely sure that this function is 3204 * called before TX completion of this packet can trigger. Otherwise 3205 * the packet could potentially already be freed. 3206 * 3207 * @skb: A socket buffer. 3208 */ 3209 static inline void skb_tx_timestamp(struct sk_buff *skb) 3210 { 3211 skb_clone_tx_timestamp(skb); 3212 sw_tx_timestamp(skb); 3213 } 3214 3215 /** 3216 * skb_complete_wifi_ack - deliver skb with wifi status 3217 * 3218 * @skb: the original outgoing packet 3219 * @acked: ack status 3220 * 3221 */ 3222 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); 3223 3224 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 3225 __sum16 __skb_checksum_complete(struct sk_buff *skb); 3226 3227 static inline int skb_csum_unnecessary(const struct sk_buff *skb) 3228 { 3229 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) || 3230 skb->csum_valid || 3231 (skb->ip_summed == CHECKSUM_PARTIAL && 3232 skb_checksum_start_offset(skb) >= 0)); 3233 } 3234 3235 /** 3236 * skb_checksum_complete - Calculate checksum of an entire packet 3237 * @skb: packet to process 3238 * 3239 * This function calculates the checksum over the entire packet plus 3240 * the value of skb->csum. The latter can be used to supply the 3241 * checksum of a pseudo header as used by TCP/UDP. It returns the 3242 * checksum. 3243 * 3244 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 3245 * this function can be used to verify that checksum on received 3246 * packets. In that case the function should return zero if the 3247 * checksum is correct. In particular, this function will return zero 3248 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 3249 * hardware has already verified the correctness of the checksum. 3250 */ 3251 static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 3252 { 3253 return skb_csum_unnecessary(skb) ? 3254 0 : __skb_checksum_complete(skb); 3255 } 3256 3257 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb) 3258 { 3259 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 3260 if (skb->csum_level == 0) 3261 skb->ip_summed = CHECKSUM_NONE; 3262 else 3263 skb->csum_level--; 3264 } 3265 } 3266 3267 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb) 3268 { 3269 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 3270 if (skb->csum_level < SKB_MAX_CSUM_LEVEL) 3271 skb->csum_level++; 3272 } else if (skb->ip_summed == CHECKSUM_NONE) { 3273 skb->ip_summed = CHECKSUM_UNNECESSARY; 3274 skb->csum_level = 0; 3275 } 3276 } 3277 3278 static inline void __skb_mark_checksum_bad(struct sk_buff *skb) 3279 { 3280 /* Mark current checksum as bad (typically called from GRO 3281 * path). In the case that ip_summed is CHECKSUM_NONE 3282 * this must be the first checksum encountered in the packet. 3283 * When ip_summed is CHECKSUM_UNNECESSARY, this is the first 3284 * checksum after the last one validated. For UDP, a zero 3285 * checksum can not be marked as bad. 3286 */ 3287 3288 if (skb->ip_summed == CHECKSUM_NONE || 3289 skb->ip_summed == CHECKSUM_UNNECESSARY) 3290 skb->csum_bad = 1; 3291 } 3292 3293 /* Check if we need to perform checksum complete validation. 3294 * 3295 * Returns true if checksum complete is needed, false otherwise 3296 * (either checksum is unnecessary or zero checksum is allowed). 3297 */ 3298 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb, 3299 bool zero_okay, 3300 __sum16 check) 3301 { 3302 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) { 3303 skb->csum_valid = 1; 3304 __skb_decr_checksum_unnecessary(skb); 3305 return false; 3306 } 3307 3308 return true; 3309 } 3310 3311 /* For small packets <= CHECKSUM_BREAK peform checksum complete directly 3312 * in checksum_init. 3313 */ 3314 #define CHECKSUM_BREAK 76 3315 3316 /* Unset checksum-complete 3317 * 3318 * Unset checksum complete can be done when packet is being modified 3319 * (uncompressed for instance) and checksum-complete value is 3320 * invalidated. 3321 */ 3322 static inline void skb_checksum_complete_unset(struct sk_buff *skb) 3323 { 3324 if (skb->ip_summed == CHECKSUM_COMPLETE) 3325 skb->ip_summed = CHECKSUM_NONE; 3326 } 3327 3328 /* Validate (init) checksum based on checksum complete. 3329 * 3330 * Return values: 3331 * 0: checksum is validated or try to in skb_checksum_complete. In the latter 3332 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo 3333 * checksum is stored in skb->csum for use in __skb_checksum_complete 3334 * non-zero: value of invalid checksum 3335 * 3336 */ 3337 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb, 3338 bool complete, 3339 __wsum psum) 3340 { 3341 if (skb->ip_summed == CHECKSUM_COMPLETE) { 3342 if (!csum_fold(csum_add(psum, skb->csum))) { 3343 skb->csum_valid = 1; 3344 return 0; 3345 } 3346 } else if (skb->csum_bad) { 3347 /* ip_summed == CHECKSUM_NONE in this case */ 3348 return (__force __sum16)1; 3349 } 3350 3351 skb->csum = psum; 3352 3353 if (complete || skb->len <= CHECKSUM_BREAK) { 3354 __sum16 csum; 3355 3356 csum = __skb_checksum_complete(skb); 3357 skb->csum_valid = !csum; 3358 return csum; 3359 } 3360 3361 return 0; 3362 } 3363 3364 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto) 3365 { 3366 return 0; 3367 } 3368 3369 /* Perform checksum validate (init). Note that this is a macro since we only 3370 * want to calculate the pseudo header which is an input function if necessary. 3371 * First we try to validate without any computation (checksum unnecessary) and 3372 * then calculate based on checksum complete calling the function to compute 3373 * pseudo header. 3374 * 3375 * Return values: 3376 * 0: checksum is validated or try to in skb_checksum_complete 3377 * non-zero: value of invalid checksum 3378 */ 3379 #define __skb_checksum_validate(skb, proto, complete, \ 3380 zero_okay, check, compute_pseudo) \ 3381 ({ \ 3382 __sum16 __ret = 0; \ 3383 skb->csum_valid = 0; \ 3384 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \ 3385 __ret = __skb_checksum_validate_complete(skb, \ 3386 complete, compute_pseudo(skb, proto)); \ 3387 __ret; \ 3388 }) 3389 3390 #define skb_checksum_init(skb, proto, compute_pseudo) \ 3391 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo) 3392 3393 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \ 3394 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo) 3395 3396 #define skb_checksum_validate(skb, proto, compute_pseudo) \ 3397 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo) 3398 3399 #define skb_checksum_validate_zero_check(skb, proto, check, \ 3400 compute_pseudo) \ 3401 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo) 3402 3403 #define skb_checksum_simple_validate(skb) \ 3404 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo) 3405 3406 static inline bool __skb_checksum_convert_check(struct sk_buff *skb) 3407 { 3408 return (skb->ip_summed == CHECKSUM_NONE && 3409 skb->csum_valid && !skb->csum_bad); 3410 } 3411 3412 static inline void __skb_checksum_convert(struct sk_buff *skb, 3413 __sum16 check, __wsum pseudo) 3414 { 3415 skb->csum = ~pseudo; 3416 skb->ip_summed = CHECKSUM_COMPLETE; 3417 } 3418 3419 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo) \ 3420 do { \ 3421 if (__skb_checksum_convert_check(skb)) \ 3422 __skb_checksum_convert(skb, check, \ 3423 compute_pseudo(skb, proto)); \ 3424 } while (0) 3425 3426 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr, 3427 u16 start, u16 offset) 3428 { 3429 skb->ip_summed = CHECKSUM_PARTIAL; 3430 skb->csum_start = ((unsigned char *)ptr + start) - skb->head; 3431 skb->csum_offset = offset - start; 3432 } 3433 3434 /* Update skbuf and packet to reflect the remote checksum offload operation. 3435 * When called, ptr indicates the starting point for skb->csum when 3436 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete 3437 * here, skb_postpull_rcsum is done so skb->csum start is ptr. 3438 */ 3439 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr, 3440 int start, int offset, bool nopartial) 3441 { 3442 __wsum delta; 3443 3444 if (!nopartial) { 3445 skb_remcsum_adjust_partial(skb, ptr, start, offset); 3446 return; 3447 } 3448 3449 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) { 3450 __skb_checksum_complete(skb); 3451 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data); 3452 } 3453 3454 delta = remcsum_adjust(ptr, skb->csum, start, offset); 3455 3456 /* Adjust skb->csum since we changed the packet */ 3457 skb->csum = csum_add(skb->csum, delta); 3458 } 3459 3460 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3461 void nf_conntrack_destroy(struct nf_conntrack *nfct); 3462 static inline void nf_conntrack_put(struct nf_conntrack *nfct) 3463 { 3464 if (nfct && atomic_dec_and_test(&nfct->use)) 3465 nf_conntrack_destroy(nfct); 3466 } 3467 static inline void nf_conntrack_get(struct nf_conntrack *nfct) 3468 { 3469 if (nfct) 3470 atomic_inc(&nfct->use); 3471 } 3472 #endif 3473 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3474 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge) 3475 { 3476 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use)) 3477 kfree(nf_bridge); 3478 } 3479 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge) 3480 { 3481 if (nf_bridge) 3482 atomic_inc(&nf_bridge->use); 3483 } 3484 #endif /* CONFIG_BRIDGE_NETFILTER */ 3485 static inline void nf_reset(struct sk_buff *skb) 3486 { 3487 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3488 nf_conntrack_put(skb->nfct); 3489 skb->nfct = NULL; 3490 #endif 3491 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3492 nf_bridge_put(skb->nf_bridge); 3493 skb->nf_bridge = NULL; 3494 #endif 3495 } 3496 3497 static inline void nf_reset_trace(struct sk_buff *skb) 3498 { 3499 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 3500 skb->nf_trace = 0; 3501 #endif 3502 } 3503 3504 /* Note: This doesn't put any conntrack and bridge info in dst. */ 3505 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src, 3506 bool copy) 3507 { 3508 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3509 dst->nfct = src->nfct; 3510 nf_conntrack_get(src->nfct); 3511 if (copy) 3512 dst->nfctinfo = src->nfctinfo; 3513 #endif 3514 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3515 dst->nf_bridge = src->nf_bridge; 3516 nf_bridge_get(src->nf_bridge); 3517 #endif 3518 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 3519 if (copy) 3520 dst->nf_trace = src->nf_trace; 3521 #endif 3522 } 3523 3524 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 3525 { 3526 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3527 nf_conntrack_put(dst->nfct); 3528 #endif 3529 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3530 nf_bridge_put(dst->nf_bridge); 3531 #endif 3532 __nf_copy(dst, src, true); 3533 } 3534 3535 #ifdef CONFIG_NETWORK_SECMARK 3536 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 3537 { 3538 to->secmark = from->secmark; 3539 } 3540 3541 static inline void skb_init_secmark(struct sk_buff *skb) 3542 { 3543 skb->secmark = 0; 3544 } 3545 #else 3546 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 3547 { } 3548 3549 static inline void skb_init_secmark(struct sk_buff *skb) 3550 { } 3551 #endif 3552 3553 static inline bool skb_irq_freeable(const struct sk_buff *skb) 3554 { 3555 return !skb->destructor && 3556 #if IS_ENABLED(CONFIG_XFRM) 3557 !skb->sp && 3558 #endif 3559 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 3560 !skb->nfct && 3561 #endif 3562 !skb->_skb_refdst && 3563 !skb_has_frag_list(skb); 3564 } 3565 3566 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 3567 { 3568 skb->queue_mapping = queue_mapping; 3569 } 3570 3571 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 3572 { 3573 return skb->queue_mapping; 3574 } 3575 3576 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 3577 { 3578 to->queue_mapping = from->queue_mapping; 3579 } 3580 3581 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 3582 { 3583 skb->queue_mapping = rx_queue + 1; 3584 } 3585 3586 static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 3587 { 3588 return skb->queue_mapping - 1; 3589 } 3590 3591 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 3592 { 3593 return skb->queue_mapping != 0; 3594 } 3595 3596 static inline struct sec_path *skb_sec_path(struct sk_buff *skb) 3597 { 3598 #ifdef CONFIG_XFRM 3599 return skb->sp; 3600 #else 3601 return NULL; 3602 #endif 3603 } 3604 3605 /* Keeps track of mac header offset relative to skb->head. 3606 * It is useful for TSO of Tunneling protocol. e.g. GRE. 3607 * For non-tunnel skb it points to skb_mac_header() and for 3608 * tunnel skb it points to outer mac header. 3609 * Keeps track of level of encapsulation of network headers. 3610 */ 3611 struct skb_gso_cb { 3612 union { 3613 int mac_offset; 3614 int data_offset; 3615 }; 3616 int encap_level; 3617 __wsum csum; 3618 __u16 csum_start; 3619 }; 3620 #define SKB_SGO_CB_OFFSET 32 3621 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET)) 3622 3623 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb) 3624 { 3625 return (skb_mac_header(inner_skb) - inner_skb->head) - 3626 SKB_GSO_CB(inner_skb)->mac_offset; 3627 } 3628 3629 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra) 3630 { 3631 int new_headroom, headroom; 3632 int ret; 3633 3634 headroom = skb_headroom(skb); 3635 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC); 3636 if (ret) 3637 return ret; 3638 3639 new_headroom = skb_headroom(skb); 3640 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom); 3641 return 0; 3642 } 3643 3644 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res) 3645 { 3646 /* Do not update partial checksums if remote checksum is enabled. */ 3647 if (skb->remcsum_offload) 3648 return; 3649 3650 SKB_GSO_CB(skb)->csum = res; 3651 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head; 3652 } 3653 3654 /* Compute the checksum for a gso segment. First compute the checksum value 3655 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and 3656 * then add in skb->csum (checksum from csum_start to end of packet). 3657 * skb->csum and csum_start are then updated to reflect the checksum of the 3658 * resultant packet starting from the transport header-- the resultant checksum 3659 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo 3660 * header. 3661 */ 3662 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res) 3663 { 3664 unsigned char *csum_start = skb_transport_header(skb); 3665 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start; 3666 __wsum partial = SKB_GSO_CB(skb)->csum; 3667 3668 SKB_GSO_CB(skb)->csum = res; 3669 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head; 3670 3671 return csum_fold(csum_partial(csum_start, plen, partial)); 3672 } 3673 3674 static inline bool skb_is_gso(const struct sk_buff *skb) 3675 { 3676 return skb_shinfo(skb)->gso_size; 3677 } 3678 3679 /* Note: Should be called only if skb_is_gso(skb) is true */ 3680 static inline bool skb_is_gso_v6(const struct sk_buff *skb) 3681 { 3682 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 3683 } 3684 3685 void __skb_warn_lro_forwarding(const struct sk_buff *skb); 3686 3687 static inline bool skb_warn_if_lro(const struct sk_buff *skb) 3688 { 3689 /* LRO sets gso_size but not gso_type, whereas if GSO is really 3690 * wanted then gso_type will be set. */ 3691 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3692 3693 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 3694 unlikely(shinfo->gso_type == 0)) { 3695 __skb_warn_lro_forwarding(skb); 3696 return true; 3697 } 3698 return false; 3699 } 3700 3701 static inline void skb_forward_csum(struct sk_buff *skb) 3702 { 3703 /* Unfortunately we don't support this one. Any brave souls? */ 3704 if (skb->ip_summed == CHECKSUM_COMPLETE) 3705 skb->ip_summed = CHECKSUM_NONE; 3706 } 3707 3708 /** 3709 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 3710 * @skb: skb to check 3711 * 3712 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 3713 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 3714 * use this helper, to document places where we make this assertion. 3715 */ 3716 static inline void skb_checksum_none_assert(const struct sk_buff *skb) 3717 { 3718 #ifdef DEBUG 3719 BUG_ON(skb->ip_summed != CHECKSUM_NONE); 3720 #endif 3721 } 3722 3723 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 3724 3725 int skb_checksum_setup(struct sk_buff *skb, bool recalculate); 3726 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 3727 unsigned int transport_len, 3728 __sum16(*skb_chkf)(struct sk_buff *skb)); 3729 3730 /** 3731 * skb_head_is_locked - Determine if the skb->head is locked down 3732 * @skb: skb to check 3733 * 3734 * The head on skbs build around a head frag can be removed if they are 3735 * not cloned. This function returns true if the skb head is locked down 3736 * due to either being allocated via kmalloc, or by being a clone with 3737 * multiple references to the head. 3738 */ 3739 static inline bool skb_head_is_locked(const struct sk_buff *skb) 3740 { 3741 return !skb->head_frag || skb_cloned(skb); 3742 } 3743 3744 /** 3745 * skb_gso_network_seglen - Return length of individual segments of a gso packet 3746 * 3747 * @skb: GSO skb 3748 * 3749 * skb_gso_network_seglen is used to determine the real size of the 3750 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP). 3751 * 3752 * The MAC/L2 header is not accounted for. 3753 */ 3754 static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb) 3755 { 3756 unsigned int hdr_len = skb_transport_header(skb) - 3757 skb_network_header(skb); 3758 return hdr_len + skb_gso_transport_seglen(skb); 3759 } 3760 3761 /* Local Checksum Offload. 3762 * Compute outer checksum based on the assumption that the 3763 * inner checksum will be offloaded later. 3764 * See Documentation/networking/checksum-offloads.txt for 3765 * explanation of how this works. 3766 * Fill in outer checksum adjustment (e.g. with sum of outer 3767 * pseudo-header) before calling. 3768 * Also ensure that inner checksum is in linear data area. 3769 */ 3770 static inline __wsum lco_csum(struct sk_buff *skb) 3771 { 3772 unsigned char *csum_start = skb_checksum_start(skb); 3773 unsigned char *l4_hdr = skb_transport_header(skb); 3774 __wsum partial; 3775 3776 /* Start with complement of inner checksum adjustment */ 3777 partial = ~csum_unfold(*(__force __sum16 *)(csum_start + 3778 skb->csum_offset)); 3779 3780 /* Add in checksum of our headers (incl. outer checksum 3781 * adjustment filled in by caller) and return result. 3782 */ 3783 return csum_partial(l4_hdr, csum_start - l4_hdr, partial); 3784 } 3785 3786 #endif /* __KERNEL__ */ 3787 #endif /* _LINUX_SKBUFF_H */ 3788